WorldWideScience

Sample records for anionic ion exchangers

  1. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  2. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  3. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  4. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  5. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs+ ions and their regeneration

    International Nuclear Information System (INIS)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun; Chung, Won Yang

    2008-01-01

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs + ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs + ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs + ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs + ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe 2+ ion in the reduction step could also be reduced by adding the K + ion

  6. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  7. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.

    1988-01-01

    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  8. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  9. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  10. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    Science.gov (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Determination of the ion-exchange capacity of anion-selective membranes

    Czech Academy of Sciences Publication Activity Database

    Karas, F.; Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 5054-5062 ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : ion-exchange capacity * anion-selective membranes * titration Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  12. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  13. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    comparable assumptions, a similar equation can be derived starting with the Nernst -Planck equation . σ = ∑ σi = ∑ F2z2i RT (ε− ε0)q D0i 1 + δi Ci [1] Using Eq...an appropriate ion-membrane diffusion coefficient. Finally, an equation derived from the dusty fluid model can be used to calculate the ionic...Finally, an equation derived from the dusty fluid model can be used to calculate the ionic conductivity of the membrane in different counter ion forms

  14. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  15. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  16. Ion-exchange equilibrium of Fe3+-Cl- and UO22+-Cl- systems in a porous anion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Kawakami, Fumiaki; Sasaki, Mitsunaga

    1985-01-01

    The ion-exchange equilibrium behavior of complex ions was investigatided in the systems of UO 2 2+ - Cl - and Fe 3+ - Cl - using an anion exchanger. It was performed by examining the dependency of adsorption distribution and selectivity of complexes on the micro structure of ion-exchangers, and temperature-dependency of selectivity. Changes in micropore structure of the ion-exchanger were found to have a significant effect on selectivity; the coefficient of selectivity and the average valence of the adsorbed species increased as the discrete pore ratio used as the index for pore structure decreased. In this study, equilibrium reactions were regarded as a sort of addition reaction for a easier analysis. This analysis based on the concept of addition chemical potential suggested that decreases in the discrete pore ratio were advantageous for the adsorption of complex ion species with higher valence, and average valence of the adsorbed species within the exchanger was shifted to the higher side. For this reason, it is assumed that the coefficient of selectivity became larger with a decrease in the discrete pore ratio. There is also a marked change in the coefficient of selectivity with temperature, and this becomes greater the higher the temperature. The ΔH of the present system accompanying the complex forming reaction is estimated to be 7 to 8 kcal/mol, and this value suggests that the temperature effect of the complex forming reaction contributes greatly to the change in selectivity with temperature. (author)

  17. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Sakuma, Yoichi; Aida, Masao; Okamoto, Makoto; Kakihana, Hidetake

    1980-01-01

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  18. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  19. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs{sup +} ions and their regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Won Yang [Kangwon University, Chuncheon (Korea, Republic of)

    2008-10-15

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs{sup +} ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs{sup +} ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs{sup +} ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs{sup +} ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe{sup 2+} ion in the reduction step could also be reduced by adding the K{sup +} ion.

  20. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    Science.gov (United States)

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  3. Ion chromatographic determination of fluoride and chloride in UO2 using microbore anion exchange columns

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Meena, D.L.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    Chemical characterization of nuclear fuels is required to ensure that nuclear fuel meets the technical specifications of the fuel. Trace non- metallic impurities like Cl and F is important as they affect clad corrosion. Their effect is more severe in presence of moisture. Chlorine and Fluorine is routinely analysed by ion selective electrode or conventional ion chromatography after pyrohydrolyzing the sample in moist O 2 atmosphere at 950°. Both the technique generates large quantity of liquid waste. Generally 1 ml/min flow rate required for the separation of F - and Cl - in conventional ion-chromatographic separation of F - and Cl - on 4.6- 4.0 mm id analytical column. The waste produced per sample injection is ∼ 30-40 ml with suppressed conductivity detection in ion chromatography. There is a need to reduce this analytical waste in analyzing the radioactive samples for the determination of F - and Cl - . Waste generation could be effectively reduced by using microbore anion exchange analytical column. Present paper describe the use of Metrosep A Supp 16 - 100/2.0 column with Na 2 CO 3 +NaOH mobile phase for the determination of F - and Cl - in UO 2 samples using suppressed conductivity detection

  4. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  5. Comparative study on bromide and iodide ion-isotopic exchange reactions using strongly basic anion exchange resin Duolite A-113

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Dole, M.H.; Singare, P.U.

    2006-01-01

    Kinetics of ion-isotopic exchange reaction was studied using industrial grade ion exchange resin Duolite A-113. The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reaction. The experiments were performed in the temperature range of 26.0degC to 43.0degC and the concentration of external ionic solution varying from 0.005 M to 0.100 M. For bromide ion-isotopic exchange reaction, the calculated values of specific reaction rate, initial rate of bromide ion exchange, and amount of bromide ions exchanged were obtained higher than that for iodide ion-isotopic exchange reaction under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (author)

  6. Gaseous anion chemistry. Hydrogen-deuterium exchange in mono- and dialcohol alkoxide ions: ionization reactions in dialcohols

    International Nuclear Information System (INIS)

    Lloyd, J.R.; Agosta, W.C.; Field, F.H.

    1980-01-01

    The subject of this work is H-D exchange in certain gaseous anions using D 2 as the exchanging agent. The anions involved are produced from ethylene glycol, 1,3-propanediol, 1,4-butanediol, ethanol, 1-propanol, and 1-butanol. Spectra and postulated ionization reactions for these mono- and dialcohols are given. Hydrogen-deuterium exchange occurs in the (M - 1) - and (2M - 1) - ions of ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The amount of exchange occurring is 3-8 times greater in (2M - 1) - than in (M - 1) - . The amount of H-D exchange occurring in ethanol, 1-propanol, and 1-butanol is small or zero in the (2M - 1) - ions and in the (M - 1) - ion for 1-butanol [the only (M - 1) - ion which could be examined experimentally]. The amount of exchange occurring in the (2M - 1) - and (M - 1) - ions from ethylene glycol is not affected by the total pressure or composition of the reaction mixture in the ionization chamber of the mass spectrometer. A novel hydrogen-bridging mechanism is suggested to account for the observed exchange occurring in the dialcohols

  7. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables

  8. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  9. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  10. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  11. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  12. Influence of some factors on kinetics of boron ions sorption by inorganic anion exchanger of MNG type

    International Nuclear Information System (INIS)

    Leont'eva, G.V.

    1991-01-01

    Consideration is given to the influence of particle size of anion exchanger and boron ion concentration on boron sorption from the solution of the following composition (kg/m 3 ): Na + -71.3; K + - 1.9; Ca 2+ - 43.8; Mg 2+ - 5.7; B 2 O 3 -0.32-1.50; Cl - - 204.6, SO 4 2- - 0.02, CO 3 2+ - 0.40; HCO 3 - - 1.74; pH=8.1; density - 1225 kg/m 3 . Increase of dispersivity of ion-exchange material promotes the elevation of sorption rate. Increase of boron ion concentration in the solution leads to exchange capacity growth and reduction of latent period of nucleation; this results to increase of sorption rate

  13. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  14. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  15. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  16. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  17. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    Souza Filho, G. de; Abrao, A.

    1976-01-01

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH 4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined [pt

  18. Kinetics of boron ions sorption from solution by inorganic anion exchanger of MNH type

    International Nuclear Information System (INIS)

    Leont'eva, G.V.

    1990-01-01

    By the method of restricted volume in case of boron excess in solution kinetics of boron sorption by inorganic anion-exchanger of the composition (Mg 0.55 Ni 0.45 )(OH) 2 has been studied. The sorption was carried out from solution containing Na + , K + , Ca 2+ , Mg 2+ , Cl - , SO 4 2- , CO 3 2- , HCO 3 at 283, 293, 303 and 313 K and pH 8.1, while the density of solution was 1225 kg/m 3 . The sorption mechanism was considered. It is shown that heterogeneity of the character of kinetic curves is caused by the change in the mechanism of limiting stages of the sorption

  19. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  20. APLIKASI PENGOLAHAN POLUTAN ANION KHROM(VI DENGAN MENGGUNAKAN AGEN PENUKAR ION HYDROTALCIT ZN-AI-SO4 (Synthesis of and its Application to Treat Chrom(VI Pollutant Using Hydrotalcite Zn-Al_SO4 as Anion Exchanger

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2009-03-01

    Full Text Available ABSTRAK Keberadaan logam khrom di dalam sistem perairan bersifat polutan yang harus ditangani dengan baik, dan untuk khrom (Vl yang sering dijumpai dalam bentuk anion dapat diolah dengan menggunakan mekanisme pertukaran ion. Suatu agen penukar anion telah dibuat berupa senyawa hidrotalsit Zn-Al-SOa melalui proses sintesis, karakterisasi serta dilakukan pula pengujian aplikasinya untuk pengurangan polutant anion khrom (VI dalam bentuk ion dikromat. Sintesis hidrotalsit Zn-Al-SOa dilakukan dengan metode stoikiometri pada pH 8 dan perlakuan hidrotermal. Aplikasi pertukaran dikromat dengan anion sulfat dalam antar lapis hidrotalsit serta uji regenerasi bahan diamati dengan bantuan analisis struktur dan analisis kinetika reaksi pertukaran. Produk pertukaran ion dikarakterisasi dengan XRD, spektrofotometri IR dan spektrometri serapan atom. Rumus kimia hidrotalsit produk diketahui adalah Zn0,74Al0,26(OH1,74(SO40,13.0,52H2O. Anion dikromat dapat menukar sulfat dalam antarlapis hidrotalsit yang ditunjukkan dalam spektra IR dan pola XRD. Kapasitas pertukaran anion untuk dikromat diketahui 216,84 mek/100 g, sedangkan kinetika reaksi pertukaran ion mengikuti orde dua dengan k = 3 x 10-8 ppm-1.detik-1. Hasil menunjukkan Zn-Al-Cr2O7 dapat mudah diregenerasi.    ABSTRACT  Chrom as pollutant in aquatics system usually establishes as crom (VI and should be worked with special treatment and as an example is ion exchanger. Material Zn-Al-SO4 hydrotalcite product have been synthesized and its application as anion exchanger for dichromate have been studied. Synthesis of Zn-Al-SO4 hydrotalcite was carried out by stoichiometric method at pH 8 and hydrothermal treatment. Sulphate in hydrotalcite interlayer was exchanged by dichromate. Kinetics of ion exchange was also investigated. The product of ion exchange was characterized by XRD, IR spectrophotometry and atomic adsorption  spectrometry. The chemical formula of the  hydrotalcite is Zn0.74Al0.26(OH1.74(SO4 0

  1. Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Leung, P.K.; Xu, Q.; Zhao, T.S.; Zeng, L.; Zhang, C.

    2013-01-01

    Highlights: • The permeability of vanadium ions through the silica nanocomposite AEM (SNAEM) is ten times lower than that for Nafion 115. • The rates of self-discharge and capacity fading of the VRFB are substantially reduced with the use of the SNAEM. • The Coulombic and energy efficiencies are as high as 92% and 73%, respectively, at 40 mA cm −2 . -- Abstract: Crossover of vanadium ions through the membranes of all-vanadium redox flow batteries (VRFB) is an issue that limits the performance of this type of flow battery. This paper reports on the preparation of a sol–gel derived silica nanocomposite anion exchange membrane (AEM) for VRFBs. The EDS and FT-IR characterizations confirm the presence and the uniformity of the silica nanoparticles formed in the membrane via an in situ sol–gel process. The properties of the obtained membrane, including the ion-exchange capacity, the area resistance, and the water uptake, are evaluated and compared to the pristine AEM and the Nafion cation exchange membrane (CEM). The experimental results show that the permeability of the vanadium ions through the silica nanocomposite AEM is about 20% lower than that of the pristine AEM, and one order of magnitude lower than that of the Nafion CEM. As a result, the rates of self-discharge and the capacity fading of the VRFB are substantially reduced. The Coulombic and energy efficiencies at a current density of 40 mA cm −2 are, respectively, as high as 92% and 73%

  2. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption.

    Science.gov (United States)

    Katayama, Yu; Yamauchi, Kosuke; Hayashi, Kohei; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Kikkawa, Yuuki; Negishi, Takayuki; Watanabe, Shin; Isomura, Takenori; Eguchi, Koichi

    2017-08-30

    Over the last few decades, because of the significant development of anion exchange membranes, increasing efforts have been devoted the realization of anion exchange membrane fuel cells (AEMFCs) that operate with the supply of hydrogen generated on-site. In this paper, ammonia was selected as a hydrogen source, following which the effect of conceivable impurities, unreacted NH 3 and atmospheric CO 2 , on the performance of AEMFCs was established. As expected, we show that these impurities worsen the performance of AEMFCs significantly. Furthermore, with the help of in situ attenuated total reflection infrared (ATR-IR) spectroscopy, it was revealed that the degradation of the cell performance was primarily due to the inhibition of the hydrogen oxidation reaction (HOR). This is attributed to the active site occupation by CO-related adspecies derived from (bi)carbonate adspecies. Interestingly, this degradation in the HOR activity is suppressed in the presence of both NH 3 and HCO 3 - because of the bicarbonate ion consumption reaction induced by the existence of NH 3 . Further analysis using in situ ATR-IR and electrochemical methods revealed that the poisonous CO-related adspecies were completely removed under NH 3 -HCO 3 - conditions, accompanied by the improvement in HOR activity. Finally, a fuel cell test was conducted by using the practical AEMFC with the supply of NH 3 -contained H 2 gas to the anode and ambient air to the cathode. The result confirmed the validity of this positive effect of NH 3 -HCO 3 - coexistence on CO 2 -tolerence of AEMFCs. The cell performance achieved nearly 95% of that without any impurity in the fuels. These results clearly show the impact of the chemically induced bicarbonate ion consumption reaction on the realization of highly CO 2 -tolerent AEMFCs.

  3. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  4. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  5. Determination of chromium(VI) in water by PIXE analysis using ion exchange paper. Limit of detection and interference by coexisting anions

    International Nuclear Information System (INIS)

    Thomyasirigul, Sureerat; Fukuda, Hitoshi; Hasegawa, Jun; Oguri, Yoshiyuki

    2009-01-01

    Concerning the PIXE analysis of Cr(VI) in water using ion-exchange filters, the limit of detection (LOD) and the influence of matrix anions were investigated. In order to look for the experimental condition for obtaining the minimum LOD, we measured the Cr-Kα X-ray counts and background counts under the Kα X-ray peak as a function of the incident proton energy and the thickness of the Mylar absorber foil in front of the detector. To investigate the interference by coexisting anions, each of PO 4 3- , SO 4 2- , NO 3 - , Cl - , and F - ions and Cr(VI) ions were mixed in aqueous solutions and adsorbed on DE81-DEAE cellulose paper, a weakly basic anion exchanger with diethylaminoethyl functional groups. Then the filter samples were measured by PIXE using 2.5 MeV proton beams. We obtained a LOD of 0.16 μg or 8 ppb for 20 mL samples at a proton energy of 2.5 MeV and a Mylar film thickness of 50 or 100 μm. The experimental results on the mixed solutions indicated that NO 3 - , Cl - , and F - as coexisting ions didn't interfere significantly with determination of a 50 μg/L Cr(VI) concentration for 40 mL total solution volume, despite the total amount of anions was about 90% of ion exchange capacity of a filter. On the other hand, slight interferences by PO 4 3- ions were observed. However, under the same condition, we found that if the total amount of SO 4 2- ions was higher than 20% of ion exchange capacity, they induced significant interferences in determining Cr(VI). (author)

  6. Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford

    International Nuclear Information System (INIS)

    Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P.; Jaschke, Naomi M.

    2014-01-01

    The U.S. Department of Energy's (DOE's) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 ®, was effective at removing chromium, had a significantly higher

  7. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  8. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  9. Effects of pH and Competing Anions on the Solution Speciation of Arsenic by Ion Exchange Resins

    Energy Technology Data Exchange (ETDEWEB)

    Impellitteri, Christopher A.; Ryan, JAmes A.; Al-Abed, Souhail R.; Scheckel, Kirk G.; Randall, Paul M.; Richardson, Collin A.

    2003-03-26

    Anion-exchange resins (AER) are used to differentiate As(V) and As(III) by retaining As(V) and allowing As(III) to pass through. AERs allow rapid speciation of As in the field which precludes the effects of sample preservation on As speciation. Aqueous environmental samples contain anions that may interfere with the speciation of As. This study compares the speciation of As by two commercially available AERs. A silica-based AER was selected for further study. As(V) and As(III) were passed through the AER in the presence of NO3 -, SO4 2-, HPO4 2-, Cl- and HCO3 - at pH 4, 6 and 8. Recoveries of As species in mixed systems range between 90 to 100%. Breakthrough curves for As(V) are presented which allow calculation of loading rates. HPO4 2- has the greatest effect on the speciation of As by AER.

  10. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)

  11. Theory and applications of a novel ion exchange chromatographic technology using controlled pH gradients for separating proteins on anionic and cationic stationary phases.

    Science.gov (United States)

    Tsonev, Latchezar I; Hirsh, Allen G

    2008-07-25

    pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.

  12. Uranium isotopic effect studies on cation and anion exchange resins

    International Nuclear Information System (INIS)

    Sarpal, S.K.; Gupta, A.R.

    1975-01-01

    Uranium isotope effects in exchange reactions involving hexavalent and tetravalent uranium, on ion exchange resins, have been re-examined. The earlier work on uranium isotope effects in electron exchange reactions involving hexavalent and tetravalent uranium, has been critically reviewed. New experimental data on these systems in hydrochloric acid medium, has been obtained, using break-through technique on anion-exchange columns. The isotope effects in these break-through experiments have been reinterpreted in a way which is consistent with the anion exchange behaviour of the various uranium species in these systems. (author)

  13. Studies on the rates of exchange of Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion-exchanger Dowex-1x8(NO3-)

    International Nuclear Information System (INIS)

    Bhatnagar, R.P.; Bhardwaj, Archana; Bhardwaj, S.D.

    1998-01-01

    Rate of exchange has been studied on Hg(II), Cd(II), La(III) and Ce(III) ions in sodium nitrite-aqueous acetone media using an anion exchanger Dowex-1 x 8(NO 3 - ). Acetone was used to provide solvent media of 10%, 30% and 50% and temperature was used in rate studies, carried out at 30 deg, 40 deg, 50 degC. Always 1 g. of Dowex-1x8 in nitrate form was used for distribution studies to get rate data. After suitable time intervals aliquots (1 ml) were withdrawn and metal ion concentration was found out. (author)

  14. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi; Kagoshima, Mayumi

    2000-01-01

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  15. Selective adsorption and ion exchange of metal cations and anions with silico-titanates and layered titanates

    International Nuclear Information System (INIS)

    Anthony, R.G.; Philip, C.V.

    1993-01-01

    Metal ions may be removed from aqueous wastes from metal processing plants and from refineries. They may also be used in concentrating radioactive elements found in dilute, aqueous, nuclear wastes. A new series of silico-titanates and alkali titanates are shown to have specific selectivity for cations of lead, mercury, and cadmium and the dichromate anion in solutions with low and high pH. Furthermore, one particular silico-titanate, TAM-5, was found to be highly selective for Cs + and Sr 2+ in solutions of 5.7 M Na + and 0.6 M Oh - . A high potential exists for these materials for removing Cs + and Sr 2+ from radioactive aqueous wastes containing high concentrations of Na + at high and low pH

  16. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Itagaki, Takaharu; Kosuge, Masao; Fukuda, Junji; Fujii, Yasuhiko.

    1992-01-01

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm 3 ). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  17. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions

    International Nuclear Information System (INIS)

    Rezvani, Mehdi; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shekari, Nafiseh

    2014-01-01

    This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g −1 . The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L −1 , and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. (author)

  18. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  19. Multivariate analysis of the transport in an ion exchange membrane bioreactor for removal of anionic micropollutants from drinking water.

    Science.gov (United States)

    Ricardo, A R; Velizarov, S; Crespo, J G; Reis, M A M

    2011-01-01

    The present study focuses on investigating the effects of biological compartment conditions on the transport of nitrate and perchlorate in an Ion Exchange Membrane Bioreactor (IEMB). In this hybrid process, the transport depends not only on the membrane properties but also on the biological compartment conditions. The experiments were planned according to the Plackett-Burman statistical design in order to cover a broader range of experimental conditions, under which a previously developed mechanistic transport model was not able to predict correctly the transport fluxes of the target pollutants. Using Principal Component Analysis, it was possible to identify not only the concentrations of target (nitrate and perchlorate) and of major driving counter-ion (chloride) but also those of some biomedium components (e.g. ammonia, ethanol and sulphate) as variables that affect the transport rate of micropollutants across the membrane. These conclusions are based on the loadings of the two first principal components that describe 84% of the data variance. The present study also revealed that the hydraulic retention time and the hydrodynamic conditions in the biocompartment have a minor contribution to the micropollutants transport. The results obtained are important for process optimization purposes.

  20. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  1. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  2. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  3. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  4. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  5. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  6. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  7. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; McGinnes, D.F.

    1988-07-01

    Organic anion exchange resins are evaluated for 99-TcO 4 - (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I - , NO 3 - , SO 4 = , CO 3 = , Cl - and OH - . Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  8. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  9. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  10. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  11. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  12. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  13. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.; Geise, Geoffrey M.; Hatzell, Marta C.; Hickner, Michael A.; Logan, Bruce E.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  14. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  15. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-01-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents

  16. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  17. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  18. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  19. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.

    1976-01-01

    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  20. Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P. [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)], E-mail: tpvalsala@yahoo.co.in; Joseph, Annie [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-02-15

    Transition metal ferrocyanides have important applications in the selective removal of radioactive caesium from low level and intermediate level radioactive liquid waste streams. The microcrystalline nature of these materials renders them useless for application in column mode operations. Special preparation procedures have been developed to prepare granular solids by in situ precipitation of metal ferrocyanides on organic anion exchangers, which is suitable for column mode operations. The elemental compositions of the metal ferrocyanides precipitated inside the pores of anion exchanger were determined by analysing the dissolved samples using ICP-AES system and flame photometer. From the XRD and EDX analyses and the elemental composition of the synthesized materials, the nature of the compound formed inside the anion exchanger was found to be cobalt ferrocyanide. From SEM analysis of the samples, the particle size of the cobalt ferrocyanide precipitated inside the anion exchanger was found to be much less than that of cobalt ferrocyanide precipitated outside. The efficiency of these materials for removal of Cs was evaluated by measuring the distribution coefficient (Kd), ion exchange capacity and kinetics of Cs uptake. The Kd of the materials loaded on anion exchanger was found to be of the order of 10{sup 5} ml/g. The Cs uptake kinetics of the materials loaded on anion exchanger was slower than that of precipitated materials. The ion exchange capacity of the cobalt ferrocyanide loaded on anion exchanger was found to be much higher than that of the precipitated cobalt ferrocyanide.

  1. Outlook for ion exchange

    International Nuclear Information System (INIS)

    Kunin, R.

    1977-01-01

    This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties

  2. Radiation stability of anion-exchange resins based on epichlorohydrin and vinylpyridines

    International Nuclear Information System (INIS)

    Zainutdinov, S.S.; Dzhalilov, A.T.; Askarov, M.A.

    1983-01-01

    The vigorous development of nuclear technology and atomic energy and the hydrometallurgy of the rare and radioactive metals has made it necessary to create and use ion-exchange materials possessing a high resistance to the action of ionizing radiations and the temperature. In view of this, the necessity has arisen for obtaining ion-exchange materials possessing adequate radiation stability. The results of an investigation of the radiation stability of anion-exchange resins based on the products of spontaneous polymerization in the interaction of epichlorohydrin with vinylpyridines show that they possess higher radiation resistance than the industrial anion-exchange resin AN-31 used at the present time

  3. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  4. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  5. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  6. The mechanism of ion exchange on ammonium 12-molybdophosphate (AMP)

    International Nuclear Information System (INIS)

    Boeyens, J.C.A.; McDougall, G.J.; Smit, J. van R.

    1987-01-01

    This paper reviews some published and unpublished data on the ion-exchange properties of AMP. The three NH 4 + ions are only partially exchanged for large monovalent ions. In the case of NH 4 + /K + exchange, the energy lost by the breaking of H bonds between the NH 4 + ions and anionic cage oxygen atoms beyond the point of maximum exchange is no longer compensated for by bond strengthening in the anion due to contraction of the cage. With Rb + , Cs + and T1 + , limited convertibility results from the lattice expansion required to accommodate these larger ions. During exchange, part of the cations pass through the anionic cages, thereby causing considerable lattice disorder. The maximum exchange capacity of AMP for the alkali metal ions is not a simple function of cation radius. (author)

  7. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    Science.gov (United States)

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  8. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  9. Effects of ionizing radiation on modern ion exchange materials

    International Nuclear Information System (INIS)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included

  10. Isolation of nitrosylruthenium nitrato complexes by ion exchange and extraction chromatography

    International Nuclear Information System (INIS)

    Huang, H.; Liu, L.

    TBP Levextrel and cation exchange resins were used to separate RuNO nitrato complexes of different nitric acid concentrations. 7402 quaternary ammonium salt Levextrel was used instead of an anionic exchange resin to separate anionic and neutral complex ions. The results indicated that D 3 and D 4 , which can easily be extracted by TBP, were anionic and neutral complex ions

  11. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  12. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  13. Radiation-induced decomposition of anion exchange resins

    International Nuclear Information System (INIS)

    Baidak, Aliaksandr; LaVerne, Jay A.

    2010-01-01

    Radiation-induced degradation of the strongly basic anion exchange resin Amberlite TM IRA400 in NO 3 - , Cl - and OH - forms has been studied. The research focused on the formation of molecular hydrogen in the gamma-radiolysis of water slurries of these quaternary ammonium resins with varying water content. Extended studies with various electron scavengers (NO 3 - , N 2 O and O 2 ) prove an important role of e solv - in the formation of H 2 from these resins. An excess production of H 2 in these systems at about 85% water weight fraction was found to be due to trimethylamine, dimethylamine and other compounds that leach from the resin to the aqueous phase. Irradiations with 5 MeV 4 He ions were performed to simulate the effects of α-particles.

  14. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  15. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  16. Application of ion exchangers

    International Nuclear Information System (INIS)

    Markhol, M.

    1985-01-01

    Existing methods of multi-element separation for radiochemical analysis are considered. The majority of existing methods is noted to be based on application of organic and inorganic ion exchangers. Distillation, coprecipitation, extraction as well as combination of the above methods are also used. Concrete flowsheets of multi-element separation are presented

  17. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  18. Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.

    Science.gov (United States)

    Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie

    2012-01-01

    A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.

  19. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  20. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  1. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  2. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  3. Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Min Gil; Kim, Gye Nam; Jung, Chung Hun; Park, Jin Ho; Oh, Won Zin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-03-15

    Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs{sup -} ion were performed. Adsorption capability of the prepared resin on the Cs{sup -} ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs{sup -} ion reached within 360 minutes. Adsorption capability on the Cs{sup -} ion became to decrease above the necessary Co{sup 2-} ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs{sup -} ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  4. Separation of transfer ribonucleic acids on polystyrene anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.P.; Griffin, G.D.; Novelli, G.D.

    1976-11-16

    The transfer RNA separation by chromatography on strong-base-polystyrene exchange materials is examined and compared with the widely used reversed-phase chromatography. Results indicate important differences in some transfer RNA (tRNA) elution patterns by the anion-exchange chromatography, as compared with the reversed-phase chromatography. Transfer RNAs containing hydrophobic groups are adsorbed more strongly. The anion exchanger has twice the number of theoretical plates. Single peaks of tRNA/sub 2//sup Glu/ and tRNA/sub 1//sup Phe/ obtained from the reversed-phase column give multiple peaks on polystyrene anion-exchange chromatography. All six leucine tRNAs (Escherichia coli) and differences in tRNA populations synthesized during early and late stages of the dividing lymphocytes from normal human blood can be characterized by the anion-exchange chromatography. Different separation profiles are obtained by two separation systems for tyrosine tRNAs from mouse liver and mouse-plasma-cell tumor. The results indicate that, in contrast to the reversed-phase chromatography, strong-base-polystyrene anion-exchange chromatography is capable of separating tRNAs with minor structural differences.

  5. Test procedure for anion exchange testing with Argonne 10-L solutions

    International Nuclear Information System (INIS)

    Compton, J.A.

    1995-01-01

    Four anion exchange resins will be tested to confirm that they will sorb and release plutonium from/to the appropriate solutions in the presence of other cations. Certain cations need to be removed from the test solutions to minimize adverse behavior in other processing equipment. The ion exchange resins will be tested using old laboratory solutions from Argonne National Laboratory; results will be compared to results from other similar processes for application to all plutonium solutions stored in the Plutonium Finishing Plant

  6. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; Jamil, M.A.

    1987-07-01

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO 3 - , OH - and BO 3 - environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  7. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  8. Determination of nitrate by anion exchange with ultraviolet detection

    Energy Technology Data Exchange (ETDEWEB)

    McComas, J.G.

    1976-01-01

    A weak base anion exchange resin is synthesized by surface bonding 3-aminopropyltriethoxysilane to silica gel. This silylated silica gel is used to separate nitrate from interferences. The nitrate is then determined by measuring its absorbance at 220 nm. An interference study was performed and no anions commonly found in potable water interferes. A comparison of this method was made with the brucine method on real samples and satisfactory agreement was obtained between the two methods.

  9. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  10. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  11. Influence of glucose and urea on 125I transport across an anion exchange paper membrane

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi

    2001-01-01

    In order to study the influence of glucose and urea on the 125 I transport across an anion exchange paper membrane, the transmembrane potential, the fluxes, and the concentrations of 125 I, glucose and urea within the membrane were measured in the Na 125 I concentration-cell system containing glucose or urea. Glucose and urea increased the membrane/solution distribution of the iodide ion, but scarcely affected the diffusion process of iodide ion within the membrane

  12. Method of pyrolysis for spent ion-exchange resins

    International Nuclear Information System (INIS)

    Aoyama, Yoshiyuki; Matsuda, Masami; Kawamura, Fumio; Yusa, Hideo.

    1985-01-01

    Purpose: To prevent the generation of noxious sulfur oxide and ammonia on the pyrolysis for spent ion-exchange resins discharged from nuclear power plants. Method: In the case where the pyrolysis is made for the cationic exchange resins having sulfonic acids as the ion-exchange group, alkali metals or alkaline earth metals capable of reacting with sulfonic acid groups to form solid sulfates are previously deposited by way of ion-exchange reactions prior to the pyrolysis. In another case of the anionic exchange resins having quarternary ammonium groups as the ion-exchange groups, halogenic elements capable of reacting with the ammonium groups to form solid ammonium salts are deposited to the ion-exchange resins through ion-exchange reactions prior to the pyrolysis. As a result, the amount of the binders used can be reduced, and this method can be used in a relatively simple processing facility. (Horiuchi, T.)

  13. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  14. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    International Nuclear Information System (INIS)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan; Sangeetha, Dharmalingam

    2010-01-01

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and 1 H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10 -3 S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  15. Development of heat resistant ion exchange resin. First Report

    International Nuclear Information System (INIS)

    Onozuka, Teruo; Shindo, Manabu

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.)

  16. Development of heat resistant ion exchange resin. First Report

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Teruo; Shindo, Manabu [Tohoku Electric Power Co., Inc., Sendai (Japan)

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.).

  17. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  18. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  19. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Varcoe, J.R.; Atanassov, P.; Dekel, D.R.; Herring, A.M.; Hickner, M.A.; Kohl, P.A.; Kucernak, A. R.; Mustain, W.E.; Nijmeijer, K.; Scott, Keith; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current

  20. Evaluation of indigenous anion exchange resins for plutonium purification

    International Nuclear Information System (INIS)

    Kumaresan, R.; Sabharwal, K.N.; Srinivasan, T.G.; Vasudeva Rao, P.R.; Thite, B.S.; Ajithlal, R.T.; Sinalkar, Nitin; Dharampurikar, G.R.; Janardhanan, C.; Michael, K.M.; Vijayan, K.; Jambunathan, U.; Dey, P.K.

    2004-01-01

    Preliminary data with pure plutonium nitrate solution indicate that indigenous anion exchange resin can be used for the purification and concentration of plutonium. However, further studies are required to be conducted on larger scale with actual plant feed solutions before arriving to final conclusions. This includes repeated loading and elution cycles studies with the same bed and evaluation of the performance after each cycle

  1. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Bartsch, Richard A.; Barr, Mary E.

    2001-01-01

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  2. Ion exchange fiber by radiation grafting, 1

    International Nuclear Information System (INIS)

    Fujiwara, Kunio

    1990-01-01

    Radiation grafting is gaining attention as a method for producing high performance materials. This method can be applied to add functions to existing polymer plastics. The author participated in the research program on the production of ion exchange fiber by radiation grafting and its applicability at the Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment. Consequently, it was clarified that it was possible to introduce the cation exchange group, represented by sulfonic and carboxyl groups, and the anion exchange group, represented by the quarternary ammonium group, to polypropylene fiber available on the market. The ion exchange capacity was able to be controlled by the degree of grafting, i.e. approximately up to 3 meq/g in both strong acid and strong base and approximately up to 5 meq/g in weak acid were obtained. The adsorption performance of ammonia, a representative malodorous substance, was also studied using test cation exchange fiber. The adsorption rate of H type strong acid cation exchange fiber was great, due to the H type having neutral reaction, and the adsorption capacity matched the ion exchange capacity. Although the Cu and Ni types features coordinated adsorption and their adsorption rates were from 1/2 to 1/3 of that of the H type, their adsorption capacities showed increase along with the metal adsorbed. (author)

  3. A study of model systems in anionic exchange

    International Nuclear Information System (INIS)

    Haegele, R.; Boeyens, J.C.A.

    1977-01-01

    Preliminary experiments are reported on the preparation and characterization of anionic sulphate and chloride complexes of UO 2+ 2 and iron(III), benzyl-trimethylammonium cation being used as a model substance for the simulation of positive sites in an anionic-exchange resin. The structure of (BTMA) 4 [UO 2 CL 3 -O 2 -CL 3 UO 2 ], a binuclear uranyl-peroxocomplex that has not been reported in the literature, was elucidated by single-crystal x-ray examination, and is described and discussed [af

  4. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  5. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  6. Polyvinyl alcohol (PVA) and sulfonated polyetheretherketone (SPEEK) anion exchange membrane for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available less than proton exchange membrane systems using alcohol as fuel. Many anion exchange membranes based on quaternised polymers have been developed and studied for AMFC3-5. The quaternary ammonium functional groups are the anion conductors...

  7. Ion exchange : principles and applications

    International Nuclear Information System (INIS)

    Bank, Nader; Majumdar, A.S.

    1975-01-01

    An attempt is made to provide a brief state-of-the-art review of the basic principles underlying the unit operation of ion exchange and its numerous and diverse commercial applications. A selective bibliography is provided for the benefit of the reader interested in pursuing any specific aspect of ion exchange. (author)

  8. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  9. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  10. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  11. A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Vinodh, Rajangam; Ilakkiya, Arjunan; Elamathi, Swaminathan [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India); Sangeetha, Dharmalingam, E-mail: sangeetha@annauniv.ed [Department of Chemistry, Anna University Chennai, Sardar Patel Road, Chennai 600025, Tamil Nadu (India)

    2010-02-25

    We look forward for an eco-friendly hydrocarbon polymer with higher molecular weight for the preparation of an anion exchange membrane. Polystyrene ethylene butylene polystyrene (PSEBS) was chosen as the polymer matrix. The anion exchange membrane was prepared from PSEBS tri-block co-polymer and then the properties were characterized for alkaline fuel cell application. The preparation of anion exchange polymer involved two steps namely chloromethylation and quaternization. The anion exchange membrane with high conductivity has been prepared by introducing quaternary ammonium groups in to the polymer. Finally, the membrane was prepared using solution casting method. The solution casting method yields highly hydrophilic membranes with uniform structure that were suitable for electrochemical applications. The efficiency of the entrapment was monitored by swelling ratio, chemical stability and ion exchange measurement. The characteristic structural properties of the membrane were investigated by FT-IR spectroscopy and {sup 1}H NMR spectroscopy. The thermal stability of the membrane was characterized by TGA, DSC and DMA (dynamic mechanical analysis). The prepared uniform electrolyte membrane in this study has high thermal and chemical stability. The surface morphology and elemental composition of the quaternized PSEBS was determined by SEM-EDXA techniques, respectively. The measured hydroxyl ion conductivity of the synthesized alkaline PSEBS polymer electrolyte membrane showed ionic conductivity in the range of 10{sup -3} S/cm in deionized water at room temperature. It was found that the substitution provided a flexible, chemically and thermally stable membrane. Hence, the membrane will have potential application in the alkaline fuel cell.

  12. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  13. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  14. Selective preconcentration of iodide in presence of iodate using a plasticized anion-exchange membrane

    International Nuclear Information System (INIS)

    Bhagat, Preeti; Rajurkar, N.S.; Acharya, R.; Pandey, A.K.; Nair, A.G.C.; Reddy, A.V.R.

    2006-01-01

    In the present work, the hydrophobic anion-exchange membranes were prepared by physical immobilization of Aliquat-336 (AL) in the cellulose triacetate (CTA) matrix plasticized with dioctyl phthalate (DOP). The uptake of I - in this membrane was examined in aqueous sample in the presence of IO 3 - ions in varying concentrations. In order to provide better discrimination between I - and IO 3 - ions, the uptake studies were carried out using three different counterions (CL - , Br - and NO 3 - ) in the membrane. The results of these studies are described in this paper

  15. Determination of Pb-210 and actinides by extraction chromatography and anion exchange chromatography

    International Nuclear Information System (INIS)

    Kalmykov, St.N.; Sapozhnikov, Yu.A.

    1997-01-01

    This work is devoted to the determination of Pb-210 and actinides (Pu-238, Pu-239, Am-241, U-235, U-238, Th-232) by means of highly selective chromatographic resins and anion exchangers. The special interest was paid to the analysis of large quantities of samples with high concentration of competitive ions like ocean sediments, bone ash and others.The commercially available TRU-Spec chromatographic resins was used for separation of actinides from the matrix. Then U, Th, Am, and Pu were separated from other using anion exchange chromatography with AG-1X4 anionite in Cl - form, electro-deposed and α-counted.Pb-21- and Bi-210 were determined by liquid scintillation counting. The developed procedure is rather express, effective and could be adopted for the determination of radionuclides like Ba-133, Ra, Np-239

  16. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Co divinylbenzene and Their Use in Water Treatment

    International Nuclear Information System (INIS)

    Ezzeldin, H.A.; Apblett, A.; Foutch, G.L.

    2010-01-01

    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to co polymerize vinylbenzyl chloride with divinylbenzene to generate the necessary Vb-Dvb. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads

  17. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Codivinylbenzene and Their Use in Water Treatment

    Directory of Open Access Journals (Sweden)

    Hesham A. Ezzeldin

    2010-01-01

    Full Text Available Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads.

  18. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  19. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  20. Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Khan

    2016-05-01

    Full Text Available Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs from brominated poly(2,6-dimethyl-1,6-phenylene oxide (BPPO and methyl(diphenylphosphine (MDPP for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC 1.09–1.52 mmol/g, water uptake (WR 17.14%–21.77%, linear expansion ratio (LER 7.96%–11.86%, tensile strength (TS 16.66–23.97 MPa and elongation at break (Eb 485.57%–647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.

  1. Microsystems for anion exchange separation of radionuclides in nitric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Losno, M.; Brennetot, R.; Mariet, C. [DEN/Service d' Etudes Analytiques et de Reactivite des Surfaces - SEARS, CEA, Centre de Saclay, Universite Paris-Saclay, F-91191, Gif sur Yvette (France); Ferrante, I.; Descroix, S. [MMBM Group, Institut Curie Research Center, CNRS UMR 168, Paris (France)

    2016-07-01

    An efficient and reproducible photo-polymerized poly(ethylene glycol methacrylate methacrylate-co- allyl methacrylate) monolith was synthesized and a photo-grafting process based on the ene-thiol click-chemistry has been performed to give anion exchange properties to the monolith. Since their introduction in the early 1990's polymethacrylate monoliths have emerged as a powerful alternative for microscale separations or sample treatment. Their relatively simple implementation in columns with small internal diameters makes them particularly attractive for the new chromatographic challenges of complex matrices analysis and on-chip separations. Despite their relatively poor ion-exchange capacity due to their highly porous structure, their use as anion exchangers is of large interest for nuclear analysis as numerous separations are based on this process. This paper presents a systematic study of the synthesis of the polymeric porous monolith and the versatile and robust functionalization method developed for the specific strong acidic media used in radiochemical procedures. The robustness of the stationary phase was tested in concentrated nitric acid. It appears that the C-S bond formed via thiol-ene chemistry is strong enough to be used to graft function of interest for separation in strong nitric acid medium. The photo-grafted anion exchanger, a quaternary ammonium, presents sufficient resistance to be used for radionuclide separation in [HNO{sub 3}]=5 mol.L{sup -1}so the next step is its integration in the cyclo olefin copolymer (COC) micro-system.

  2. Studies on resin degradation products encountered during purification of plutonium by anion exchange

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dhumwad, R.K.

    1991-01-01

    Among the methods available for the purification of plutonium in Purex process, anion exchange method offers several advantages. However, on repeated use, the resin gets degraded due to thermal, radiolytic and chemical attacks resulting in chemical as well as physical damage. Frequently, plutonium product eluted from such resin contains significant quantities of white precipitates. A few anion exchange resins were leached with 8 M HNO 3 at 60-80degC and the resin degradation products (RDP) in the leach-extract were found to give similar precipitates with tetravalent metal ions like Pu(IV), Th(IV) etc. Tetra propyl ammonium hydroxide in 8 M HNO 3 (TPAN) also gave a white precipitate with plutonium similar to the one found in the elution streams. The results indicate that delinked quaternary ammonium functional groups might be responsible for the formation of precipitate. The characteristics of precipitates Th-RDP, Th-TPAN and that isolated from elution stream have been investigated. In a separate study a tentative formula for Th-RDP compound is proposed. The influence of RDP on the extraction of plutonium and other components in Purex process was studied and it was found that RDP complexes metal ions thus marginally affecting the kd values. A spectrophotometric method has been standardised to monitor the extent of degradation of anion exchange resins which is based on the ability of RDP to reduce the colour intensity of Th-thoron complex. This technique can be used to study the stability of the anion exchange resins. (author). 8 refs., 8 tabs., 5 figs.,

  3. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    International Nuclear Information System (INIS)

    Singare, P.U.

    2015-01-01

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using 131 I and 82 Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  4. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  5. Organic decontamination by ion exchange

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    This study has successfully identified ion exchanger media suitable for decontaminating the 5500-gallon organic layer in Tank 241-C-103. Decontamination of radionuclides is necessary to meet shipping, incinerator site storage, and incineration feed requirements. The exchanger media were identified through a literature search and experiments at the Russian Institute for Physical Chemistry. The principal radionuclides addressed are Cs-137 and Sr-90. Recommendations for an experimental program plan conclude the discussion. The experimental program would provide the data necessary for plant design specifications for a column and for ion exchange media to be used in decontaminating the organic layer

  6. Electron exchange reaction in anion exchangers as observed in uranium isotope separation

    International Nuclear Information System (INIS)

    Obanawa, Heiichiro; Takeda, Kunihiko; Seko, Maomi

    1991-01-01

    The mechanism of electron exchange in an ion exchanger, as occurring between U 4+ and UO 2 2+ in uranium isotope separation, was investigated. The height of the separation unit (H q ) in the presence of metal ion catalysts, as obtained from the separation experiments, was found to be almost coincident with the theoretical value of H q as calculated on the basis of the intrasolution acceleration mechanism of the metal ion, suggesting that the electron exchange mechanism in the ion-exchanger is essentially the same as that in the solution when metal ion catalysts are present. Separation experiments with no metal ion catalyst, on the other hand, showed the electron exchange reaction in the ion exchanger to be substantially higher than that in the solution, suggesting an acceleration of the electron exchange reaction by the ion-exchanger which is due to the close existence of higher order Cl - complexes of UO 2 2+ and U 4+ in the vicinity of the ion-exchange group. (author)

  7. Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Khoiruddin

    2016-02-01

    Full Text Available Mixed matrix anion exchange membranes (AEMs were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc solutions of polysulfone (PSf. Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 mS.cm-1. This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt, these properties decreased (to 1.9 and 1.4 mS.cm-1 respectively, which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction and membrane functional group addition (provides hydroxyl groups.

  8. DEVELOPMENT AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE - IMIDAZOLIUM FUNCTIONALIZED POLYSULFONE BLEND ANION EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. VELU

    2015-09-01

    Full Text Available Anion exchange membrane (AEM is one of the core components of an alkaline fuel cell influencing the fuel cell’s performance, durability and stability. Out of the many anion exchange membranes reported so far, imidazolium functionalized polysulfone (PSf-ImOH membrane has been identified to have high hydroxide ionic conductivity, reaching up to 50 mS cm-1 at 20oC. However, at high levels of ion exchange capacity, the membrane’s water uptake and swelling ratio increases significantly with temperature thus destabilizing it and making it unfit for potential use in high temperature alkaline fuel cells. This limitation of PSf-ImOH membranes has been overcome by blending it with polyvinylidene fluoride (PVDF polymer, which is a thermally stable and highly hydrophobic polymer. PSf-ImOH membrane with a high degree of chloromethylation (180% was synthesized and blended with PVDF at different weight ratios (PVDF / PSf-ImOH: 30/70, 50/50 and 70/30 to create a series of novel anion exchange membranes. The prepared membranes were characterized to study their structure, water uptake, swelling ratio, solubility in low boiling water soluble solvents, thermal stability, ion exchange capacity (IEC and ionic conductivity (IC at different temperatures. The 70% PVDF blend membrane demonstrated the better performance in terms of IEC, IC and water uptake properties compared to other membranes. Comparative studies on the water uptake and IC variation between the 70% PVDF blend membrane and pure PSfImOH membrane (having the same IEC as that of the blend membrane, clearly indicated the superiority and the promising use of the blend membrane in alkaline fuel cell especially for high temperature working condition.

  9. Regenerating ion-exchangers used in uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.; Espenscheid, W.F.

    1984-01-01

    The process claimed restores the ion exchange capacity of a strong base anion exchange resin used for recovering uranium from solutions used to leach uranium from subterranean formations. The resin is eluted with hydrochloric acid to remove uranium in the form of uranyl carbonate anions. It is then washed with a solution containing 0.5 to 100 g/l of sodium carbonate, sodium bicarbonate, or mixtures of both carbonate and bicarbonate until it is free of materials which are either soluble in the solution or react with the solution

  10. Ion chromatography for the analysis of salt splitting capacities of cation and anion resin in premixed resin sample

    International Nuclear Information System (INIS)

    Ghosh, Satinath; Kumar, Rakesh; Tripathy, M.K.; Dhole, K.; Sharma, R.S.; Varde, P.V.

    2017-01-01

    Mixed bed ion exchange resin is commonly used in various plants including nuclear reactors for the purpose of fine polishing. The analysis of ion exchange capacities of cation and anion resin in resin mixture is therefore an agenda in the context of purchasing of premixed resin from the manufacturer. An ion chromatographic method for assaying ion exchange capacities of pure as well as mixed resin has been optimized. The proposed method in contrast to the conventional ASTM method has been found to be quite encouraging to consider it as an alternate method for the analysis of premixed resin. (author)

  11. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  12. Advanced ion exchange resins for PWR condensate polishing

    International Nuclear Information System (INIS)

    Hoffman, B.; Tsuzuki, S.

    2002-01-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  13. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  14. Application of a weak base anion exchange resin for recovery of uranium at Uravan, Colorado, U.S.A

    International Nuclear Information System (INIS)

    Gardner, N.E.; Kunin, R.

    1976-01-01

    Resin ion-exchange technology has been used to recover uranium at the Uravan, Colorado plant for over 18 years; however, since the end of U.S. Atomic Energy Commission purchase of U 3 O 8 concentrate in 1970, it has become necessary to develop techniques for upgrading the product to meet the more stringent specifications of private sales. The standard gel type quaternary ammonium anion exchange resin had been used previously. The development of the tertiary amine anion exchange resin, Amberlite XE-299, led to an experimental program of laboratory and pilot plant work to evaluate the resin on actual plant solutions. General information on ion-exchange resin structure and chemistry is discussed. Summary data of specific test work on loading the resin, various elution schemes, resin regeneration and product purity from the pilot plant tests and comments on actual plant operation using Amberlite XE-299 resin are presented. (author)

  15. Isotope exchange of strontium and molybdate ions in strontium polymolybdates

    International Nuclear Information System (INIS)

    Atun, G.

    2002-01-01

    The heterogeneous isotopic exchange reactions in strontium polymolybdates of Sr 2+ and MoO 4 2- ions in the strontium nitrate and sodium molybdate solutions have been studied using 90 Sr and 99 Mo as tracers. Electrometric methods have been used to study the compositions of strontium molybdates obtained by adding strontium chloride to a progressively acidified solution of sodium molybdate. It has been found that the exchange fraction increases with increasing chain length of strontium polymolybdate. The exchange equilibrium constant (K ex ) has been calculated between 298 and 348 K as well as ΔG deg, ΔH deg and ΔS deg. The results indicate that Sr 2+ cations have a much higher affinity for exchangers than MoO 4 2- anions. By fitting the data to the Dubinin-Radushkevich (D-R) isotherm it has been shown that the exchange capacity (X m ) for both ions is affected by the ion adsorption process at low temperatures and by the ion exchange process at high temperatures. At high concentrations, the recrystallization process contributes to on the cation exchange but is ineffective on the anion exchange mechanism. (author)

  16. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  17. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  18. Treatment of Soil Decontamination Solution by the Cs{sup +} Ion Selective Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Gye Nam; Jung, Chung Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Occasionally, radioactively contaminated soils have been excavated and stored at the temporary storage facility. Cesium as a radionuclide is one of the most toxic elements and it has a long half decay life. During the operation of nuclear facility, soils near the facility would be contaminated with radioactive cesium and it will cause the deleterious effect to human body and environment. In this study, Cs{sup +} ion selective ion exchange resin was prepared by changing the functional group of commercial anion exchange resin for a ferrocyanide ion. Ion exchange capability of using the soil decontamination solution was investigated. We also performed the feasibility test of recycling the spent Cs ion selective ion exchange resin.

  19. Radio-iodide uptake by modified poly (glycidyl methacrylate) as anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Sameh H. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center; Atomic Energy Authority, Cairo (Egypt). Second Research Reactor; Elbarbary, Ahmed M. [Atomic Energy Authority, Cairo (Egypt). Radiation Research of Polymer Chemistry Dept.; Rashad, Ghada; Fasih, T.W. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories Center

    2017-03-01

    Poly(glycidyl methacrylate) (PGMA) microspheres were prepared by radiation induced polymerization of glycidyl methacrylate (GMA) monomer. The factors affecting the degree of polymerization and yield (%) of PGMA such as type of solvent, monomer concentration, and irradiation dose were investigated. It was found that the PGMA yield (%) increases with increasing monomer concentration up to 50% and absorbed dose of 5 kGy. The resulting PGMA containing the epoxy group was chemically modified by hydroxyl amine to act as anion-exchange resin for uptake of {sup 131}I{sup -} ions. The modified PGMA (MPGMA) was characterized by Fourier transform infrared (FT-IR) spectrophotometer, thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM). I-131 is produced from the fission of U-235 with low-enrichment uranium (LEU) targets in the Egyptian Second Research Reactor (ETRR-2). Separation of iodide from the radioactive solution by batchwise and column techniques was employed to determine the adsorption capacity of the MPGMA. Quality control of {sup 131}I product solution and radiochemical purity was examined by using the ascending paper chromatography method. The uptake behavior of MPGMA towards {sup 131}I{sup -} ions were studied at different experimental conditions and achieved by X-ray fluorescence (XRF). The synthesized MPGMA showed good results as anion-exchange and an effective adsorbent for uptaking {sup 131}I{sup -} ions.

  20. Effects of the anion salt nature on the rate constants of the aqueous proton exchange reactions.

    Science.gov (United States)

    Paredes, Jose M; Garzon, Andres; Crovetto, Luis; Orte, Angel; Lopez, Sergio G; Alvarez-Pez, Jose M

    2012-04-28

    The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction. This journal is © the Owner Societies 2012

  1. The next generation fuel cells: anion exchange membrane fuel cells (AEMFC)

    International Nuclear Information System (INIS)

    Tauqir, A.; Zahoor, S.

    2013-01-01

    Many environmentally friendly alternatives (solar, wind, hydroelectric, and geothermal power) can only be used in particular environments. In contrast, fuel cells can have near-zero emissions, are quiet and efficient, and can work in any environment where the temperature is lower than the cell's operating temperature. Among various types of fuel cells, the AEMFC is the most recent one and has advantages such as excellent performance compared to other candidate fuel cells due to its active O/sub 2/ electrode kinetics and flexibility to use a wide range of electro-catalysts such as silver and nickels contrary to expensive one (Platinum) required for proton exchange membrane fuel cell (PEMFC). Anion exchange membrane (AEM) is a crucial part in AEMFC, determining durability and electrochemical performances of membrane electrode assembly (MEA). The role of an AEM is to conduct hydroxyl ions from cathode to anode. If this conduction is not sufficiently high and selective, the corresponding fuel cell will not find any practical application. One of the major problems associated with AEMFC is much lower conductivities of anion compare to proton conductivity in PEMFCs, even upon similar working condition. Thus AEMs is only practical, if it is chemically and mechanically stable against severe basic operation conditions and highly hydroxyl ions conductive. The conventional AEMs based on animated aliphatic and aromatic hydrocarbon or even fluorinated polymers tend to be attacked by hydroxyl ions, causing the degradation during operation is strongly basic conditions. (author)

  2. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  3. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  4. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  5. Sulfur isotope separation by anion exchange chromatography: 34 S isotope enrichment

    International Nuclear Information System (INIS)

    Bendassolli, Jose Albertino; Trivelin, Paulo Cesar O.; Carneiro Junior, Francisco

    1995-01-01

    The 34 S isotope separation was carried out by isotopic exchange reactions between sulphurous acid in solution and bisulphite anions adsorbed on an ammonium quaternary (Dowex 1 x 8 and Dowex 2 x 8, 100-200 mesh) anion exchange resin packed in columns. Each resin column had 130 cm length and 2.2 cm diameter. The columns were connected in series during displacement of bisulphite bands. For the experiments, a band of bisulphite was fixed to the anion resin, initially in the hydroxyl ion form, and subsequently eluted with 0.2 0.3, 0.4 and 0.6 mol L -1 HCL solution. The hydrochloric acid solution was kept under a nitrogen atmosphere at 245 KPa of pressure, in order to prevent the evolution of gases and also the oxidation of the bisulphite. The experiments showed that the best results were obtained with the elution of bisulphite with 0.2 mol.L -1 HCL, with the Dowex 1 x 8 resin. Enrichments in 34 S of 17.33 atoms% were obtained using Dowex 1 x 8 resin, 0.2 mol.L -1 HCL solution and band displacement of 50 m. Replacing the depleted portion of the band with natural bisulphite, for each 10 m of band displacement, produced 6.79 mmol of sulphurous acid enriched with approximately 17% of 34 S, after 14 m of band dislocation. (author). 7 refs., 1 fig., 2 tabs

  6. Using solvent extraction to process nitrate anion exchange column effluents

    International Nuclear Information System (INIS)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses

  7. Using solvent extraction to process nitrate anion exchange column effluents

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  8. Separation of 99Tc from low level radioactive liquid waste using anion exchange resin

    International Nuclear Information System (INIS)

    Sonar, N.L.; Mittal, V.K.; Dhara, Amrita; Thakur, D.A.; Valsala, T.P.; Vishwaraj, I.

    2016-01-01

    Technetium-99 is one of the fission products with very high yield (∼6%) in thermal neutron induced fission of 235 U. 99 Tc exists as pertechnate ( 99 TcO 4 ) ion in reprocessing streams. The high solubility in water and high mobility of pertechnate ions, coupled with very high half life of 99 Tc (t1/2 = 2 × 105 y, âmax = 290 KeV) makes it a potential candidate for long term hazard to the environment. Major radionuclides present in the intermediate level waste (ILW) generated at reprocessing plant is conventionally treated by ion exchange method for removal of 137 Cs. The Low level effluent waste (LLW) from the IX column contains 99 Tc as a major isotope. Though the concentration of 99 Tc in the waste is in ppm level, the presence of molar level of competing nitrates makes its separation very difficult. Many efforts have been reported on selective separation of 99 Tc from various waste streams. In this paper, separation of 99 Tc from ion exchange column effluent waste stream using selected commercially available anion exchange resins has been detailed

  9. Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries

    Science.gov (United States)

    Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.

    2018-02-01

    A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.

  10. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  11. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  12. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  13. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    Science.gov (United States)

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  14. Removal of chromium (VI) from electroplating wastewater using an anion exchanger derived from rice straw.

    Science.gov (United States)

    Cao, Wei; Dang, Zhi; Yia, Xiao-Yun; Yang, Chen; Lu, Gui-Ning; Liu, Yun-Feng; Huang, Se-Yan; Zheng, Liu-Chun

    2013-01-01

    An anion exchanger from rice straw was used to remove Cr (VI) from synthetic wastewater and electroplating effluent. The exchanger was characterized using Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM), and it was found that the quaternary amino group and hydroxyl group are the main functional groups on the fibrous surface of the exchanger. The effect of contact time, initial concentration and pH on the removal of Cr (VI), and adsorption isotherms at different temperature, was investigated. The results showed that the removal of Cr (VI) was very rapid and was significantly affected by the initial pH of the solution. Although acidic conditions (pH = 2-6) facilitated Cr (VI) adsorption, the exchanger was effective in neutral solution and even under weak base conditions. The equilibrium data fitted well with Langmuir adsorption model, and the maximum Cr (VI) adsorption capacities at pH 6.4 were 0.35, 0.36 and 0.38 mmol/g for 15, 25 and 35 degrees C, respectively. The exchanger was finally tested with real electroplating wastewater, and at sorbent dosage of 10 g/L, the removal efficiencies for Cr (VI) and total Cr were 99.4% and 97.8%, respectively. In addition, the positive relationship between adsorbed Cr (VI) and desorbed Cl- suggested that Cr (VI) was mainly removed by ion exchange with chlorine.

  15. Preparation and performance evaluation of novel alkaline stable anion exchange membranes

    Science.gov (United States)

    Irfan, Muhammad; Bakangura, Erigene; Afsar, Noor Ul; Hossain, Md. Masem; Ran, Jin; Xu, Tongwen

    2017-07-01

    Novel alkaline stable anion exchange membranes are prepared from various amounts of N-methyl dipicolylamine (MDPA) and brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO). The dipicolylamine and MDPA are synthesized through condensation reaction and confirmed by 1H NMR spectroscopy. The morphologies of prepared membranes are investigated by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy and scanning electron microscopy (SEM). The electrochemical and physical properties of AEMs are tested comprising water uptake (WU), ion exchange capacity (IEC), alkaline stability, linear expansion ratio (LER), thermal stability and mechanical stability. The obtained hydroxide conductivity of MDPA-4 is 66.5 mS/cm at 80 °C. The MDPA-4 membrane shows good alkaline stability, high hydroxide conductivity, low methanol permeability (3.43 × 10-7 cm2/s), higher selectivity (8.26 × 107 mS s/cm3), less water uptake (41.1%) and lower linear expansion (11.1%) despite of high IEC value (1.62 mmol/g). The results prove that MDPA membranes have great potential application in anion exchange membrane fuel cell.

  16. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  17. 225-B ion exchange piping design documentation

    International Nuclear Information System (INIS)

    Prather, M.C.

    1996-02-01

    This document describes the interface between the planned permanent ion exchange piping system and the planned portable ion exchange system. This is part of the Waste Encapsulation and Storage Facility (WESF). In order to decouple this WESF from B-Plant and to improve recovery from a capsule leak, contaminated pool cell water will be recirculated through a portable ion exchange resin system

  18. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process

  19. Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell

    International Nuclear Information System (INIS)

    Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2011-01-01

    In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.

  20. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  1. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  2. Ion exchange nonwoven fabric chemical filter. 2

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki

    2000-01-01

    This report outlined the characteristics of EPIX filter and its complex with activated carbon to eliminate organic compounds from solvent. Elimination performance of this filter was determined using an ion chromatographic analyzer. EPIX filter showed high performance to eliminate trace amount of ionic compounds. The rate of elimination was both 99% or more for NH 3 and SO 2 in an early phase of filtration. Release of dust as well as impurities was significantly reduced by the use of EPIX filter. Gases once adsorbed on the filter were not released even at an elevated temperature of atmosphere. Combined use of non-woven fabrics was possible. For EPIX filter, there are three kinds; strong acid cation exchange filter and strong/weak basic anion filters. The weak basic anion filter has been applied to the conventional apparatus in wafer makers because the filter was very effective for selective boron trapping. When polyethyleneterephthalate was used as the base polymer, radical groups produced on the polymer were co-polymerized with monomer substances. The lifetime of filter was estimated on a base of gas concentration and wind velocity to determine the time to replace with a new one. Furthermore, the loss of pressure became less than a half when EPIX filter was used. (M.N.)

  3. Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites.

    Science.gov (United States)

    Razaq, Aamir; Mihranyan, Albert; Welch, Ken; Nyholm, Leif; Strømme, Maria

    2009-01-15

    The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.

  4. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed E.; Yakout, Amr A.; Osman, Maher M.

    2009-01-01

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g -1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  5. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  6. Recovery of tretrachloroaurate through ion exchange with Dowex 11 resin

    International Nuclear Information System (INIS)

    Alguacil, F.J.

    1998-01-01

    The recovery of the tretrachloroaurate complex by the anionic ion exchange resin Dowex 11 has been studied. The kinetics of gold adsorption were dependent of both gold and resin concentrations and temperature. The adsorption isotherm can be described by the expression Q=kC''n. The loaded resin could be eluted by an acidic thiourea solution at 20 degree centigree. After several adsorption-elution cycles there is not any apparent loss in the adsorption properties of the resin. (Author) 6 refs

  7. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    Science.gov (United States)

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  8. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  9. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Americium Separations from High-Salt Solutions Using Anion Exchange

    International Nuclear Information System (INIS)

    Barr, Mary E.; Jarvinen, Gordon D.; Stark, Peter C.; Chamberlin, Rebecca M.; Bartsch, Richard A.; Zhang, Z.Y.; Zhao, W.

    2001-01-01

    The aging of the US nuclear stockpile presents a number of challenges, including the increasing radioactivity of plutonium residues due to the ingrowth of 241 Am from the β-decay of 241 Pu. We investigated parameters that affect the sorption of Am onto anion-exchange resins from concentrated effluents derived from nitric acid processing of plutonium residues. These postevaporator wastes are nearly saturated solutions of acidic nitrate salts, and americium removal is complicated by physical factors, such as solution viscosity and particulates, as well as by the presence of large quantities of competing metals and acid. Single- and double-contact batch distribution coefficients for americium and neodymium from simple and complex surrogate solutions are presented. Varied parameters include the nitrate salt concentration and composition and the nitric acid concentration. We find that under these extremely concentrated conditions, Am(III) removal efficiencies can surpass 50% per contact. Distribution coefficients for both neodymium and americium are insensitive to solution acidity and appear to be driven primarily by low water activities of the solutions

  11. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Kutty, P.V.E.; Janaradanan, C.; Ramanujam, A.; Dhumwad, R.K.

    1989-01-01

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH - form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  12. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  13. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    Science.gov (United States)

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  15. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  16. System for processing ion exchange resin regeneration waste liquid in atomic power plant

    International Nuclear Information System (INIS)

    Onaka, Noriyuki; Tanno, Kazuo; Shoji, Saburo.

    1976-01-01

    Object: To reduce the quantity of radioactive waste to be solidified by recovering and repeatedly using sulfuric acid and sodium hydroxide which constitute the ion exchange resin regeneration waste liquid. Structure: Cation exchange resin regeneration waste liquid is supplied to an anion exchange film electrolytic dialyzer for recovering sulfuric acid through separation from impurity cations, while at the same time anion exchange resin regeneration waste liquid is supplied to a cation exchange film electrolytic dialyzer for recovering sodium hydroxide through separation from impurity anions. The sulfuric acid and sodium hydroxide thus recovered are condensed by a thermal condenser and then, after density adjustment, repeatedly used for the regeneration of the ion exchange resin. (Aizawa, K.)

  17. Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin.

    Science.gov (United States)

    Tan, Liang; Shuang, Chendong; Wang, Yunshu; Wang, Jun; Su, Yihong; Li, Aimin

    2018-01-01

    The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L -1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells.

    Science.gov (United States)

    Zhang, Yanmei; Fang, Jun; Wu, Yongbin; Xu, Hankun; Chi, Xianjun; Li, Wei; Yang, Yixu; Yan, Ge; Zhuang, Yongze

    2012-09-01

    A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Development of Preparation Methods for Alkaline Anion Exchange Membranes by Radiation

    International Nuclear Information System (INIS)

    Shin, Jun Hwa; Nho, Young Chang; Sohn, Joon Yong

    2010-01-01

    The objective of this project is to contribute to the environmentally friendly fuel cell system by developing a radiation grafting method for the preparation of anion exchange membranes for alkaline fuel cell and finally to the radiation technology industry. In this project, the preparation methods for the VBC-grafted fluoropolymer films using radiation have been developed and anion exchange membranes have been prepared via the reaction between the VBC-grafted fluoropolymer films and amines. The prepared anion exchange membranes were characterized and the performance of the membranes were evaluated

  20. Synthetic inorganic ion-exchange materials

    International Nuclear Information System (INIS)

    Abe, M.

    1979-01-01

    Exchange isotherms for hydrogen ion/alkali metal ions have been measured at 20 and 40 0 C, with a solution ionic strength of 0.1, in crystalline antimonic(V) acid as a cation-exchanger. The isotherms showed S-shaped curves for the systems of H + /Na + , H + /K + , H + /Rb + and H + /Cs + , but not for H + /Li + exchange. The selectivity coefficients (logarithm scale) vs equivalent fraction of alkali metal ions in the exchanger give linear functions for all systems studied. The selectivity sequences are shown. Overall and hypothetical (zero loading) thermodynamic equilibrium constants were evaluated for these ion-exchange reactions. (author)

  1. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  2. Acute and chronic influence of temperature on red blood cell anion exchange.

    Science.gov (United States)

    Jensen, F B; Wang, T; Brahm, J

    2001-01-01

    Unidirectional (36)Cl(-) efflux via the red blood cell anion exchanger was measured under Cl(-) self-exchange conditions (i.e. no net flow of anions) in rainbow trout Oncorhynchus mykiss and red-eared freshwater turtle Trachemys scripta to examine the effects of acute temperature changes and acclimation temperature on this process. We also evaluated the possible adaptation of anion exchange to different temperature regimes by including our previously published data on other animals. An acute temperature increase caused a significant increase in the rate constant (k) for unidirectional Cl(-) efflux in rainbow trout and freshwater turtle. After 3 weeks of temperature acclimation, 5 degrees C-acclimated rainbow trout showed only marginally higher Cl(-) transport rates than 15 degrees C-acclimated trout when compared at the same temperature. Apparent activation energies for red blood cell Cl(-) exchange in trout and turtle were lower than values reported in endothermic animals. The Q(10) for red blood cell anion exchange was 2.0 in trout and 2.3 in turtle, values close to those for CO(2) excretion, suggesting that, in ectothermic animals, the temperature sensitivity of band-3-mediated anion exchange matches the temperature sensitivity of CO(2) transport (where red blood cell Cl(-)/HCO(3)(-) exchange is a rate-limiting step). In endotherms, such as man and chicken, Q(10) values for red blood cell anion exchange are considerably higher but are no obstacle to CO(2) transport, because body temperature is normally kept constant at values at which anion exchange rates are high. When compared at constant temperature, red blood cell Cl(-) permeability shows large differences among species (trout, carp, eel, cod, turtle, alligator, chicken and man). Cl(-) permeabilities are, however, remarkable similar when compared at preferred body temperatures, suggesting an appropriate evolutionary adaptation of red blood cell anion exchange function to the different thermal niches occupied

  3. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  4. The reactivity of anion-exchange resins by applying OT-for-OH exchange reaction in the equilibrium state

    International Nuclear Information System (INIS)

    Kano, Naoki; Nihei, Makoto; Imaizumi, Hiroshi

    1996-01-01

    In order to reveal the behavior of hydroxyl group in isotope exchange reaction, OT-for-OH exchange reaction between each anion-exchange resin (OH - form) and tritiated water (abbreviated as HTO water below) was observed at 80degC under the equilibrium. Anion-exchange resins used were Amberlite IRA-400, IRA-410 (both strongly basic), and IRA-94S (weakly basic). It can be thought that an HTO molecule dissociates into H + +OT - (or T + +OH - ). The activity of each resin based on OT-for-OH exchange reaction was measured with a liquid scintillation counter. From the above-mentioned, the following five were found. Isotope exchange reaction as 'atomic group' occurred between the OH group in each anion-exchange resin and the OT group in HTO water. The reactivity of strongly basic anion-exchange resin is larger than that of weakly basic one. The ratio of the reactivity of these resins can roughly be expressed as follows: (IRA-410): (IRA-400): (IRA-94S)=42: 7: 1. The degree of OT-for-OH exchange reaction may be smaller than that of T-for-H exchange reaction. The method used and results obtained in this work may be helpful to obtain the data for the prevention of T-contamination, especially to obtain the data from certain atomic groups including T. (author)

  5. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  6. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  7. Influence of concentration and hydrodynamic factors in sorption of iodine by anion-exchangers of the mass-transfer rate

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Smirnov, N.N.

    1982-01-01

    An investigation of the joint influence of hydrodynamic and concentration factors in sorption of iodine by AV-17-8 and anion exchange resins on the mass-transfer coefficient is the subject of this report. The method of central composite rotatable experimental design was used for quantitative assessment and derivation of the appropriate equations. The investigation yielded the necessary regression equations satisfactorily describing the influence of all the factors in the mass-transfer coefficient. the optimal mass-transfer conditions were determined. On the basis of the values obtained, recommendations are made on the optimal hydrodynamic conditions of operation of equipment with pneumatic circulation of the ion-exchanger

  8. Separation of rare earth elements in monazite sand by anion exchange resin (pt. II)

    International Nuclear Information System (INIS)

    Cha, K.W.; Lee, J.H.; Yoon, S.H.; Ha, Y.G.

    1980-01-01

    An anion exchange method for separating Y, La, Ce, Pr, and Nd element in monazaites and into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 passed through the resin column of the various size and eluted with 0.0301 M EDTA as eluent at flow rate of 1 ml/min and 2 ml/min. The result of separation is good in the high column length rather than the low on using the resin of the same amount and the volume of eluent required in eluting all the rare earths at 2 ml/min flow rare is larger than that at 1 ml/min and the result of separation obtained here is unsatisfactory. (author)

  9. Ion exchange process: History, evolution and applications

    International Nuclear Information System (INIS)

    Mazzoldi, P.; Carturan, S.; Sada, C.; Quaranta, A.; Sglavo, V.M.

    2013-01-01

    The aim of this paper is to present a review on some aspects and applications of ion exchange process in glasses, ferroelectric and polymers in the fields of optics, nanotechnology, gas sensors and chemical strengthening. The formation of nanoparticles in ion-exchanged glasses, as effect of ion or laser irradiation, is discussed. A discussion on the potentialities of ion exchange process in comparison to ion implantation in optical devices and nanotechnology is also introduced. Analytical techniques applied to the study of the ion exchange process are illustrated. The studies of ion exchange process in “Natural materials” constitute the content of a specific paragraph, for applications in water cleaning. Some initial considerations on the “old age” of this technique are introduced.

  10. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    International Nuclear Information System (INIS)

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  11. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  12. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  13. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  14. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  15. Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments

    International Nuclear Information System (INIS)

    Williams, G.; McMurray, H.N.

    2012-01-01

    Highlights: ► Filiform corrosion (FFC) inhibition by various smart-release pigments was evaluated by SKP. ► Rare earth cation-containing pigments were ineffective at halting FFC propagation. ► Metal oxo-anions and organic copper-specific agents were exchanged into hydrotalcite. ► Effective inhibition of FFC was demonstrated by anions which stopped copper re-plating. - Abstract: In-coating cation and anion exchange pigments are studied with respect to their ability to inhibit chloride-induced filiform corrosion (FFC) on organic-coated AA2024-T3 aluminium alloy substrates. In-situ scanning Kelvin probe potentiometry is used to quantify both underfilm potentials associated with populations of propagating corrosion filaments and the kinetics of coating disbondment. Smart-release bentonite pigments containing exchangeable cerium (III) and yttrium (III) cations are shown to be largely ineffective in reducing rates of FFC propagation. The reasons for this are discussed in terms of the chemistry of the electrolyte-filled corrosion filament head. In contrast, anion-exchange hydrotalcite (HT) based pigments are highly effective inhibitors of FFC. A comparison of the extent of FFC observed for various inorganic exchangeable anions is made with as-received HT comprising carbonate anions. Of the anions evaluated, exchangeable chromate unsurprisingly provides the highest FFC inhibition efficiency. It is also demonstrated that exchanging the native carbonate ions for certain organic species which act as complexing agents for copper ions, gives rise to an equivalent level of FFC inhibition. The implication of these findings with respect to the mechanism of FFC on copper containing aluminium alloys is considered.

  16. Anion exchanger and the resistance against thermal haemolysis.

    Science.gov (United States)

    Ivanov, I T; Zheleva, A; Zlatanov, I

    2011-01-01

    4,4'-Diiso-thiocyanato stilbene-2,2'-disulphonic acid (DIDS) is a membrane-impermeable, highly specific covalent inhibitor and powerful thermal stabiliser of the anion exchanger (AE1), the major integral protein of erythrocyte membrane (EM). Suspensions of control and DIDS-treated (15 µM, pH 8.2) human erythrocytes were heated from 20° to 70°C using various but constant heating rates (1-8°C/min). The cellular electrolyte leakage exhibited a sigmoidal response to temperature as detected by conductometry. The critical midpoint temperature of leakage, T(mo), extrapolated to low heating rate (0.5°C/min) was used as a measure for EM thermostability. T(mo) was greater for DIDS-treated erythrocytes, 63.2° ± 0.3°C, than for intact erythrocytes, 60.7° ± 0.2°C. The time, t(1/2), for 50% haemolysis of erythrocytes, exposed to 53°C was used as a measure for the resistance of erythrocytes against thermal haemolysis. The t(1/2) was also greater for DIDS-treated erythrocytes, 63 ± 3 min, than for intact erythrocytes, 38 ± 2 min. The fluorescent label N-(3-pyrenyl)maleimide and EPR spin label 3-maleimido-proxyl, covalently bound to sulphydryl groups of major EM proteins, were used to monitor the changes in molecular motions during transient heating. Both labels reported an intensification of the motional dynamics at the denaturation temperatures of spectrin (50°C) and AE1 (67°C), and, surprisingly, immobilisation of a major EM protein, presumably the AE1, at T(mo). The above results are interpreted in favour of the possible involvement of a predenaturational rearrangement of AE1 copies in the EM thermostability and the resistance against thermal haemolysis.

  17. Anion exchange removal of Al3+ from Li+-Al3+ aqueous solution (originating from lithium recovery from brine

    Directory of Open Access Journals (Sweden)

    Anissa Somrani

    2014-06-01

    Full Text Available The purpose of this study is to separate aluminum(III ion from an aqueous solution containing Li+ at 25°C. Al3+ was transferred into [Al(C2O43]3- by means of complexation and removed by an anion exchange resin. This resin was anionic type Amberlite IRA 402 regenerated by sodium chloride. Hence, a theoretical study based on speciation diagrams was carried out to determine the best pH domain for separation. The complexation of aluminum ions by ammonium oxalate was studied. The motar ratio of Ox/Al and pH was investigated. Optimum values of these factors were found to be 3 and 4 respectively. In this case, the remaining lithium is 98.5%.

  18. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    Borai, E.H.; Hassan, R.S.; El- Dessouky, M.I.; Ghonem, A.

    2008-01-01

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  19. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  20. Dynamics of anion exchange of lanthanides in aqueous-organic complexing media

    International Nuclear Information System (INIS)

    Sheveleva, I.V.; Bogatyrev, I.O.

    1987-01-01

    Effect of organic solvents (ethanol, acetone, acetonitrile) on change in kinetic parameters of the anion exchange process (anion-exchange column chromatography) of r.e.e. (europium and gadolinium) in complexing nitric acid media has been studied. It is established that complex LnA 4 anion is the only sorbing form of europium and gadolinium on anionite. When the organic component content of the solution being the same, the dynamic parameters of lanthanide exchange have higher values in aqueous-acetonitrile and aqueous-acetone media in comparison with aqueous-enthanol solutions of nitric acid. Lesser mobility of complex lanthanide anions in aqueous-alcoholic solutions can be explained by stronger solvation in the presence of solvents with higher acceptor properties

  1. Formation of Aqueous MgUO2(CO3)32- Complex and Uranium Anion Exchange Mechanism onto an Exchange Resin

    International Nuclear Information System (INIS)

    Dong, Wenming; Brooks, Scott C

    2008-01-01

    The formation of and stability constants for aqueous Mg-UO2-CO3 complexes were determined using an anion exchange method. Magnesium concentration was varied (up to 20 mmol/L) at constant ionic strength (I = 0.101, 0.202, 0.304, 0.406, and 0.509 mol/kg NaNO3), pH = 8.1, total [U(VI)] = 10.4 mol/L under equilibrium with atmospheric CO2. The results indicate that only the MgUO2(CO3)32- complex is formed. The cumulative formation constant extrapolated to zero ionic strength is similar regardless of the activity correction convention used: log = 25.8 b 0.5 using Davies equation and = 25.02 b 0.08 using specific ion interaction theory (SIT). Uranium sorption onto the exchange resin decreased in the presence of Mg putatively due to the formation of MgUO2(CO3)32- that had a lower affinity for the resin than UO2(CO3)34-. Uranium sorption results are consistent with an equivalent anion exchange reaction between NO3- and UO2(CO3)34- species to retain charge neutrality regardless of Mg concentration. No Mg was associated with the anion exchange resin indicating that the MgUO2(CO3)32- complex did not sorb

  2. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  3. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  4. Chromate ion-exchange study for cooling water

    International Nuclear Information System (INIS)

    Sengupta, A.K.

    1985-01-01

    In spite of high chromate selectivity, the ion-exchange process for Cr(IV) recovery from cooling tower blowdown is yet to be commercially popular. Possible degradation of the ion-exchange resin by the oxidative action of Cr(IV) during ion exchange has been considered as the prime obstacle. Resins have been manufactured with fairly acceptable properties to withstand both physical attrition and chemical oxidation. Demonstrated during the course of this research is early, gradual Cr(VI) breakthrough during fixed-bed column runs at acidic pH in the presence of competing sulfate and chloride anions. The advantage of high chromate selectivity is essentially lost due to the early Cr(VI) breakthrough because the column runs are always terminated after a pre-determined level of Cr(VI) has appeared in the treated water. Experimental results provide sufficient evidence that this is not due to poor column kinetics or electrolyte penetration. The chromate ion-exchange mechanism has been investigated in order to explain the foregoing anomalies for the chromate-exchange process. The knowledge of chromate ion-exchange mechanism has been used to overcome the shortcoming of gradual Cr(VI) breakthrough. This study shows that: (a) a continuous counter-current ion-exchange system theoretically offers much higher Cr(VI) removal capacity compared to conventional single-unit fixed-bed system for any pre-determined level of Cr(VI) breakthrough; (b) by modifying the resin composition, the gradual Cr(VI) breakthrough can be greatly eliminated

  5. Fixation and separation of the elements thorium and uranium using anion exchange resins in nitrate solution

    International Nuclear Information System (INIS)

    Korgaonkar, V.

    1967-10-01

    The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO 3 ) 6 2- and UO 2 (NO 3 ) 4 2- in solution these elements are present in the form of complexes having the general formula: Th(NO 3 ) 6-n n-2 and UO 2 (NO 3 ) 4-n n-2 It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO 3 . From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author) [fr

  6. Ion exchange in the nuclear industry

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle

  7. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  8. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  9. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    Triolo, R.; Lietzke, M.H.

    1979-01-01

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  10. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D.M.; Bronckers, A.L.J.J.; Mulder, L.; Mardones, P.; Medina, J.F.; Kellokumpu, S.; Oude Elferink, R.P.J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl-. We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content

  11. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D. M.; Bronckers, A. L. J. J.; Mulder, L.; Mardones, P.; Medina, J. F.; Kellokumpu, S.; Oude Elferink, R. P. J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl(-). We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content

  12. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  13. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  14. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli

    2018-01-11

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact electrochemical performance. However, ion transport between the chambers will also impact performance, which is a factor not included in those calculations. To separate the impacts of pH and ion transport on MEC performance, a high molecular weight polymer buffer (PoB), which was retained in the catholyte due to its low AEM transport and cationic charge, was compared to PBS in MECs and abiotic electrochemical half cells (EHCs). In MECs, catholyte pH control was less important than ion transport. MEC tests using the PoB catholyte, which had a higher buffer capacity and thus maintained a lower catholye pH (<8), resulted in a 50% lower hydrogen production rate (HPR) than that obtained using PBS (HPR = 0.7 m3-H2 m−3 d−1) where the catholyte rapidly increased to pH = 12. The main reason for the decreased performance using PoB was a lack of hydroxide ion transfer into the anolyte to balance pH. The anolyte pH in MECs rapidly decreased to 5.8 due to a lack of hydroxide ion transport, which inhibited current generation by the anode, whereas the pH was maintained at 6.8 using PBS. In abiotic tests in ECHs, where the cathode potential was set at −1.2 V, the HPR was 133% higher using PoB than PBS due to catholyte pH control, as the anolyte pH was not a factor in the performance. These results show that maintaining charge transfer to control anolyte pH is more important than obtaining a more neutral pH catholyte.

  15. Decomposing method for ion exchange resin

    International Nuclear Information System (INIS)

    Sako, Takeshi; Sato, Shinshi; Akai, Yoshie; Moniwa, Shinobu; Yamada, Kazuo

    1998-01-01

    The present invention concerns a method of decomposing ion exchange resins generated in a nuclear power plant to carbon dioxide reliably in a short period of time. (1) The ion exchange resins are mixed with water, and then they are kept for a predetermined period of time in the presence of an inert gas at high temperature and high pressure exceeding the critical point of water to decompose the ion exchange resins. (2) The ion exchange resins is mixed with water, an oxidant is added and they are kept for a predetermined time in the presence of an inert gas at a high temperature and a high pressure exceeding a critical point of water of an inert gas at a high temperature to decompose the ion exchange resins. (3) An alkali or acid is added to ion exchange resins and water to control the hydrogen ion concentration in the solution and the ion exchange resins are decomposed in above-mentioned (1) or (2). Sodium hydroxide is used as the alkali and hydrochloric acid is used as the acid. In addition, oxygen, hydrogen peroxide or ozone is used as an oxidant. (I.S.)

  16. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  17. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  18. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  19. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.; Hickner, Michael A.; Logan, Bruce E.

    2013-01-01

    (sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend

  20. Ion exchange currents in vacuum accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-01-01

    Ion exchange currents (microdischarges) have been observed in short lengths of accelerator tube. The occurrence of these discharges can be related to the trajectories of ions in the tube. High-resolution mass spectra of the negative and positive ion components have been obtained. (author)

  1. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  2. Steady state and transient simulation of anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  3. Chemical uranium enrichment with ion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Onitsuka, Hatsuki; Obanawa, Heiichiro

    1991-01-01

    The uranium enrichment by using ion-exchange has been studied and developed since 1972. The ion-exchange rate has been improved approx. 3000 times and the electron exchange reaction, which occurs with ion-exchange reaction, was also accelerated with catalyst. Flow disturbance in a ion-exchange column has been fully studied and the value of turbulence has been reduced to 150μm. These results allowed us to design a very fine separation column, in which about 10000 stages can be obtained even when the column is more than 1 m in diameter. In the course of the development, a self-regenerating reaction between the redox agents was discovered and incorporated into the process, and has resulted in a reduction of 70 % in the separation energy requirement. (author)

  4. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  5. Ion exchange and hydrolysis reactions in zeolites

    International Nuclear Information System (INIS)

    Harjula, Risto.

    1993-09-01

    Among other uses, zeolites are efficient cation exchangers for aquatic pollution control. At present they they are mainly used in nuclear waste effluent treatment and in detergency. In the thesis, several ion exchange equilibria, important in these main fields of zeolite applications, were studied, with special emphasis on the formulation and calculation of the equilibria. The main interest was the development of thermodynamic formulations for the calculation of zeolite ion exchange equilibria in solutions of low or very low (trace) ion concentration, which are relevant for the removal of trace pollutants, such as radionuclides, from waste waters. Two groups of zeolite-cation systems were studied. First, binary Ca 2+ /Na + exchange in zeolites X and Y, which are of interest for detergency applications. Second, binary Cs + /Na + and Cs + /K + exchanges, and ternary Cs + /Na + /K + exchange in mordenite, which are important in nuclear waste effluent treatment. The thesis is based on five previous publications by author. (100 refs., 7 figs.)

  6. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  7. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    Science.gov (United States)

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  8. Pyrolysis of Spent Ion Exchange Resins

    International Nuclear Information System (INIS)

    Braehler, Georg; Slametschka, Rainer

    2012-09-01

    Ion exchangers (IEX in international language) are used to remove radionuclides from the primary coolant in all nuclear power stations with a water cooling circuit. This is done by continuously removing a volume of coolant from the primary circuit and passing it through coolers, filters and the ion exchange beds. Cation and anion exchangers, in the form of coarse-grained resin beads in pressurized-water reactors and as finely ground powdered resins in boiling water reactors, are used. The trend for new power stations is to exploit all the possibilities for avoiding the generation of contaminated liquids and then to clean, as far as possible, the solutions that are nevertheless generated using ion exchange for it to be possible to dispose of them as non-radioactive waste. This relieves the burden on evaporator facilities, or means that these can even be dispensed with entirely. Regeneration is possible in principle, but little use is made of it. As the regeneration usual in conventional technologies is not employed in nuclear power stations, it is necessary to dispose of this material as radioactive waste. On the international level, a great number of processes are offered that are intended to meet the relevant national regulations, and these will be discussed in brief with their advantages and disadvantages. The aim is then to find a process which reduces the volume, yields an inert or mineralized product, works at temperatures of no more than approximately 600 deg. C and can be run in a simple facility. Originally, the pyrolysis process was developed to treat liquid organic waste from reprocessing. A typical application is the decomposition of spent solvent (TBP, tributyl phosphate, mixed with kerosene). In this process TBP is pyrolyzed together with calcium hydroxide in a fluidized bed facility at temperatures of around 500 deg. C, the calcium hydroxide reacts with the phosphate groups directly to form calcium pyrophosphate which contains all the radioactivity

  9. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  10. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  11. Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites

    KAUST Repository

    Liu, Xiaolong

    2011-05-12

    Not everything changes: Charge-compensating anions can be exchanged in as-synthesized zeolite frameworks with changes in both the density of defect sites and of the hydrophobic character of the zeolite. The reversible transformation occurs without dissolution/recrystallization of the zeolite and preserves the size and shape of the crystals (see picture). Fluoride removal is not possible in all-silica D4R units, for which fluoride ions play a structure-directing role. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Crystalline silicotitanates -- novel commercial cesium ion exchangers

    International Nuclear Information System (INIS)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J.

    1996-01-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na + . The materials also showed excellent chemical and radiation stability. These CST properties made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia and UOP, under a Cooperative Research and Development Agreement (CRADA), developed CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by Sandia and Texas A ampersand M consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications such as batch waste processing. Data are also presented confirming the excellent stability of the commercial CSTs over a broad pH range and the high radiation stability of the exchangers. In addition, data are provided that demonstrate the high physical strength and attrition resistance of IONSIV reg-sign IE-911, critical properties for column ion exchange applications

  13. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  14. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  15. Rapid anion exchange separation of fermium with mineral acid-methyl alcohol mixed media

    International Nuclear Information System (INIS)

    Usuda, S.; Shinohara, N.; Ichikawa, S.; Suzuki, T.

    1987-01-01

    Anion exchange separation of 250 Fm (30 m) synthesized by the 12 C+ 242 Pu and 16 O+ 238 U reactions was investigated with mineral acid-methyl alcohol mixed media at elevated temperature. Fermium was chromatographically separated from the other transplutonium elements, the target materials and an Al catcher foil by anion exchange with mixtures of nitric acid and methyl alcohol. By use of the mixed media of hydrochloric acid and methyl alcohol, Fm together with Cf was separated from Al, Am, Cm, Pu, U and from major fission products. The separation systems are suitable for rapid separation and immediate alpha-counting source preparation of Fm. (author) 22 refs.; 4 figs

  16. Anion exchange of 58 elements in hydrobromic acid and in hydriodic acid

    International Nuclear Information System (INIS)

    Marsh, S.F.; Alarid, J.E.; Hammond, C.F.; McLeod, M.J.; Roensch, F.R.; Rein, J.E.

    1978-02-01

    Anion exchange distributions of 58 elements have been measured from 0.1-8.7M HBr and from 0.1-7.4M HI onto three strong-base resins, 8 and 4% cross-linked and macroporous. Data were obtained by 16- to 18-h dynamic batch contacts. Anion exchange in these media is compared to that in HCl. The effect of resin cross-linkage is considerably greater in HI media than in HBr and HCl media. Examples are presented of potentially useful separations using HBr and HI media alone and in combination with HCl

  17. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  18. Ion-exchange behaviour of hydrous zirconia in mixed solvents: capacity and kinetics of exchange

    International Nuclear Information System (INIS)

    Misak, N.Z.; Ghoneimy, H.F.

    1982-01-01

    The capacity of the Li + form of hydrous zirconia for Na + and Cs + increases in the presence of methanol. This may be due to the greater stability of Li + in methanol/water than in pure water and to dehydration of Na + and Cs + and their stronger interaction with the exchange sites, which may facilitate their replacing Li + . The ion-exchange capacity of zirconia for NO 3 - , Cl - and Br - is almost the same in aqueous solution and is not affected by addition of up to 90% (v/v) methanol, which probably shows that these anions are electrostatically bound in zirconia without specific interactions. The internal diffusion coefficients of the Na + /H + and Cl - /OH - systems decrease in the presence of alcohol: the decrease is highest with methanol and similar for ethanol and propan-2-ol. This is discussed in the light of ion solvation and alcohol penetration inside zirconia. (author)

  19. Recovery of boric acid from ion exchangers

    International Nuclear Information System (INIS)

    Pollock, C.W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of 10 B which may be found in some nuclear reactor coolant solutions. 10 claims

  20. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  1. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  2. Study on complexed lead and cadmium ions removal from aqueous solutions by means of ion exchange method

    International Nuclear Information System (INIS)

    Dudzinska, M.

    1992-01-01

    The possibility of simultaneous removal of heavy metal ions and organic chelates from waste water has been studied. The experimental work has been preceded by extensive theoretical considerations and calculations of physico-chemical parameters of the process for model and real waste water systems. The negative influence of the presence of sulfate anions on cadmium and lead complexes removal in ion exchange process has been experimentally proved. In the systems free of sulfate anions or when their concentrations were low, the purification process conducted on Amberlite IRA-68 was very effective for cadmium and lead complexes removal. 112 refs, 78 figs, 15 tabs

  3. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Science.gov (United States)

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    Science.gov (United States)

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  6. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  7. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en solution. La fixation d

  8. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic-pulsed a......Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  9. KOP ion exchange plant officially opened

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The KOP ion exchange plant, which was officially opened in February 1982, can be seen as an important milestone in the history of Klipfontein Organic Products. The plant, erected at a cost of R7 million, has enabled South Africa to achieve virtual self-sufficiency as far as resins are concerned. It will produce R5 million worth of resins per annum, and it has been estimated that it will save the country R3 million per annum in foreign exchange. The plant is the only of its kind in Africa, and will be able to meet 98% of the ion exchange resin requirements of the Republic

  10. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  11. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  12. Preparation of nuclear grade strongly basic anion exchange resin in hydroxide from

    International Nuclear Information System (INIS)

    Ke Weiqing

    1989-01-01

    The two-step transformation method was used to prepare 90 kg nuclear grade strongly basic anion exchange resins by using the industrial grade baking soda and caustic soda manufacutred by mercury-cathode electrolysis. The chloride and biscarbonate fraction on resin is 0.8% and 1.25% respectively, when the baking soda and caustic soda consumption is 8.6 and 13.7 times the total exchange capacity of the strongly basic resin

  13. Radiation stability of sodium titanate ion exchange materials

    International Nuclear Information System (INIS)

    Kenna, B.T.

    1980-02-01

    Sodium titanate and sodium titanate loaded macroreticular resin are being considered as ion exchangers to remove 90 Sr and actinides from the large volume of defense waste stored at Hanford Site in Washington. Preliminary studies to determine the radiation effect on Sr +2 and I - capacity of these ion-exchange materials were conducted. Samples of sodium titanate powder, sodium titanate loaded macroreticular resin, as well as the nitrate form of macroreticular anion resin were irradiated with up to 2 x 10 9 Rads of 60 Co gamma rays. Sodium titanate cation capacity decreased about 50% while the sodium titanate loaded macroeticular resin displayed a dramatic decrease in cation capacity when irradiated with 10 8 -10 9 Rad. The latter decrease is tentatively ascribed to radiation damage to the organic portion which subsequently inhibits interaction with the contained sodium titanate. The anion capacity of both macroreticular resin and sodium titanate loaded macroreticular resin exhibited significant decreases with increasing radiation exposure. These results suggest that consideration should be given to the potential effects of radiation degradation if column regeneration is to be used. 5 figures, 2 tables

  14. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  15. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  16. The importance of OH − transport through anion exchange membrane in microbial electrolysis cells

    KAUST Repository

    Ye, Yaoli; Logan, Bruce

    2018-01-01

    In two-chamber microbial electrolysis cells (MECs) with anion exchange membranes (AEMs), a phosphate buffer solution (PBS) is typically used to avoid increases in catholyte pH as Nernst equation calculations indicate that high pHs adversely impact

  17. Production and application of cation/anion exchange membranes of high performance

    International Nuclear Information System (INIS)

    Xu Zhili; Tan Chunhong; Yang Xiangmin

    1995-01-01

    A third affiliated factory of our university has been established for the production in batches of cation/anion exchange membranes of high performance, trade marks of which are HF-1 and HF-2. Membrane products have been applied in various fields (including industries and research institutions) with great success

  18. Synthesis and anion exchange reactions of a layered copper–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    replaced by Zn2+. Keywords. Copper–zinc hydroxides; Cu–Zn hydroxysalts; anion exchange. ... be broadly separated into two structural types, based on the structure of ... thermogravimetry (a lab-built system, heating rate. 5°C per minute) and ...

  19. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  20. Ion-exchange properties of natural mordenite

    International Nuclear Information System (INIS)

    Chelishchev, N.F.; Volodin, V.F.

    1977-01-01

    Ion exchange properties are studied of natural mordenite Si(Al=4.75) exhibiting adequate mechanical characteristics and sufficient resistance to high temperature acids. Consideration is given to the pattern of exchange ions distribution among mordenite and chloride solutions of K, Cs, Rb, Sr. Mordenite shows sharp selectivity towards large alkali metal cations, particularly Cs + . In these processes the exchange isotherms are characterized by the constant selectivity towards a counterion. For the Sr 2+ -2Na + exchange the isotherm shows a change of selectivity after a definite counterion concentration has been reached in the solution. Correlation between the exchange thermodynamic constants makes it possible to propose the following range of mordenite selectivity towards the cations under study: Cs>Rb>K>Na>Sr

  1. Ion-Exchange Chromatography: Basic Principles and Application.

    Science.gov (United States)

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  2. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Valsala, T.P., E-mail: tpvalsala@yahoo.co.in [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Roy, S.C. [PREFRE Division, Bhabha Atomic Research Centre, Tarapur 401 502 (India); Shah, J.G. [Back End Technology Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Gabriel, J.; Raj, Kanwar [Waste Management Division, Bhabha Atomic Research Centre, Trombay 400 085 (India); Venugopal, V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay 400 085 (India)

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l{sup -1} of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  3. Colloidal Nanocrystals of Lead-Free Double-Perovskite (Elpasolite) Semiconductors: Synthesis and Anion Exchange To Access New Materials.

    Science.gov (United States)

    Creutz, Sidney E; Crites, Evan N; De Siena, Michael C; Gamelin, Daniel R

    2018-02-14

    Concerns about the toxicity and instability of lead-halide perovskites have driven a recent surge in research toward alternative lead-free perovskite materials, including lead-free double perovskites with the elpasolite structure and visible bandgaps. Synthetic approaches to this class of materials remain limited, however, and no examples of heterometallic elpasolites as nanomaterials have been reported. Here, we report the synthesis and characterization of colloidal nanocrystals of Cs 2 AgBiX 6 (X = Cl, Br) elpasolites using a hot-injection approach. We further show that postsynthetic modification through anion exchange and cation extraction can be used to convert these nanocrystals to new materials including Cs 2 AgBiI 6 , which was previously unknown experimentally. Nanocrystals of Cs 2 AgBiI 6 , synthesized via a novel anion-exchange protocol using trimethylsilyl iodide, have strong absorption throughout the visible region, confirming theoretical predictions that this material could be a promising photovoltaic absorber. The synthetic methodologies presented here are expected to be broadly generalizable. This work demonstrates that nanocrystal ion-exchange reactivity can be used to discover and develop new lead-free halide perovskite materials that may be difficult or impossible to access through direct synthesis.

  4. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  5. Electrically switched cesium ion exchange. FY 1996 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified

  6. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions

    Science.gov (United States)

    2015-05-11

    little market penetration has been achieved. Proton exchange membrane fuel cells ( PEMFC ) have struggled primarily due to high cost, driven by the use...and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , Appl. Catal. B Environ. 56 (2005) 9–35. doi:10.1016/j.apcatb...resins for PEMFCs , Electrochim. Acta. 50 (2004) 571–575. doi:10.1016/j.electacta.2004.01.133. [89] S. Bhadra, N.H. Kim, J.S. Choi, K.Y. Rhee, J.H. Lee

  7. Desalination by electrodialysis with ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Jeong, Young Han; Ryoo, Jae Jeong; Lee, Kwang-Pill [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Ion-exchange membranes modified with triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3}H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly (GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM and XPS. The ion-exchange capacities of the cation- and anion-exchange membrane were 0.20 and 1.24mmol/g, respectively. The content of cation- and anion exchange group increased with increasing grafting yield (d.g.=100%). Electrical resistance of PNF modified with TEA and -PO{sub 3}H group decreased with increasing ion-exchange group capacities. Application of the graft-type ion-exchange membranes as separators for electrodialysis enabled use to reduce the time required to achieve 85.5% desalination of the 0.5M NaCl solution. (author)

  8. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  9. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    Science.gov (United States)

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  10. Ion exchange in ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Matthews, D.P.; Rees, L.V.C.

    1986-01-01

    The ion exchange properties of Na-ZSM5 have been studied using a number of univalent and divalent cations at 25degC and 65degC. All the univalent cations studied achieved 100 per cent exchange. The thermodynamic affinity sequence Cs > Rb=NH 4 =H 3 O>K>Na>Li was found at both temperatures for a sample with Si/Al=39. Standard enthalpies of exchange ΔH o were calculated using the van't' Hoff isochore and standard entropies of exchange were then calculated from ΔH o and ΔG o . Multivalent cations were unable to achieve 100 per cent exchange. The maximum exchange was found to increase through the series Ca 2+ cations ( 57 Fe enriched) on dehydration and rehydration following sorption and desorption of ethanol. At least 3 sites for Fe 2+ were observed in the dehydrated zeolite. (author)

  11. Analysing destruction channels of interstellar hydrocarbon anions with a 22pol ion-trap

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Eric; Lakhmanskaya, Olga; Best, Thorsten; Hauser, Daniel; Kumar, Sunil; Wester, Roland [Universitaet Innsbruck, Institut fuer Ionenphysik und Angewandte Physik (Austria)

    2014-07-01

    In the interstellar medium (ISM), ion-molecule reactions are considered to play a key role in the formation of complex molecules. The detection of the first interstellar anions, which happen to be carbon chain anions, has raised new interest in the quantitative composition of the ISM and the underlying reaction network. To understand the observed abundance of these carbon chain anions, a detailed analysis of the possible destruction channels is indispensable. A cryogenic 22-pol radio frequency ion trap is an ideal tool to observe reactions that take place slowly, such as carbon chain anions with molecular hydrogen. Furthermore, measurements over a large temperature scale are feasible. Longitudinal optical access to the trap also provides the possibility to make precise photodetachment measurements. Temperature dependent measurements of the reaction rates for the reaction between hydrocarbon chain anions and H{sub 2} are presented.

  12. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...... exchange protein has been expressed from the vector in both chicken embryo fibroblasts and QT6 cells and appears to function as an active, plasma membrane-based anion transporter. The ectopic expression of band 3 protein provides a visual marker for vector function in these cells....

  13. Optimization of determination of 126Sn by ion exchange chromatography method (presentation)

    International Nuclear Information System (INIS)

    Pasteka, L.; Dulanska, S.

    2013-01-01

    The aim of the work is to optimize the uptake of tin on anion exchange resins and application of this knowledge for the analysis of samples of radioactive waste from the device of Jaslovske Bohunice and Mochovce in determining of 126 Sn. First to be optimized a method for the separation of tin on ion exchange sorbent Anion Exchange Resin (1-X8, Chloride Form) from Eichrom Technologies. Model sample was prepared in 7 mol dm -3 HCl, because in that environment a sorbent effectively captures the tin, which is bounded complexly with chloride anions as SnCl 6 2- . The radiochemical separation yield was monitored by gamma spectrometric measurements on high purity germanium detector HPGe (E = 391 keV) by adding isotope 113 Sn to each model solution. The method of tin separation was optimized on model samples.

  14. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  15. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  16. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  17. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  18. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  19. Commercial Ion Exchange Resin Vitrification Studies

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A

    2002-01-01

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces

  20. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  1. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  2. Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.

    Science.gov (United States)

    Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori

    2013-01-01

    Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.

  3. Mark-18A Ion Exchange Raffinate Management Strategy & Processing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-21

    It is desired to recover Cm-244 through Cm-248 from dissolved Mark-18A targets following anion exchange processing to remove the Pu. The Cm will be sent to Oak Ridge National Laboratory (ORNL) for additional R&D. Approximately 5-8 L per quarter of a Mark-18A target will have undergone anion exchange treatment and will contain Cm. A significant portion of this volume of anion exchange raffinate solution is dissolved fission products not desired to be recovered which could be sent to waste. To reduce the amount of material being sent to ORNL, a waste and volume minimization strategy was developed and is described in this report.

  4. Determination of 129I in environmental samples by AMS and NAA using an anion exchange resin disk

    Science.gov (United States)

    Suzuki, Takashi; Banba, Shigeru; Kitamura, Toshikatsu; Kabuto, Shoji; Isogai, Keisuke; Amano, Hikaru

    2007-06-01

    We have developed a new extraction method for the measurement of 129I by accelerator mass spectrometry (AMS) utilizing an anion exchange resin disk. In comparison to traditional methods such as solvent extraction and ion exchange, this method provides for simple and quick sample handling. This extraction method was tested on soil, seaweed and milk samples, but because of disk clogging, the milk samples and some of the seaweed could not be applied successfully. Using this new extraction method to prepare samples for AMS analysis produced isotope ratios of iodine in good agreement with neutron activation analysis (NAA). The disk extraction method which take half an hour is faster than previous techniques, such as solvent extraction or ion exchange which take a few hours. The combination of the disk method and the AMS measurement is a powerful tool for the determination of 129I. Furthermore, these data will be available for the environmental monitoring before and during the operation of a new nuclear fuel reprocessing plant in Japan.

  5. Determination of 129I in environmental samples by AMS and NAA using an anion exchange resin disk

    International Nuclear Information System (INIS)

    Suzuki, Takashi; Banba, Shigeru; Kitamura, Toshikatsu; Kabuto, Shoji; Isogai, Keisuke; Amano, Hikaru

    2007-01-01

    We have developed a new extraction method for the measurement of 129 I by accelerator mass spectrometry (AMS) utilizing an anion exchange resin disk. In comparison to traditional methods such as solvent extraction and ion exchange, this method provides for simple and quick sample handling. This extraction method was tested on soil, seaweed and milk samples, but because of disk clogging, the milk samples and some of the seaweed could not be applied successfully. Using this new extraction method to prepare samples for AMS analysis produced isotope ratios of iodine in good agreement with neutron activation analysis (NAA). The disk extraction method which take half an hour is faster than previous techniques, such as solvent extraction or ion exchange which take a few hours. The combination of the disk method and the AMS measurement is a powerful tool for the determination of 129 I. Furthermore, these data will be available for the environmental monitoring before and during the operation of a new nuclear fuel reprocessing plant in Japan

  6. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  7. Separation of cesium by ion exchange columns

    International Nuclear Information System (INIS)

    Bonini, Alberto; Falcon, Marcelo F.; Devida, Claudio A.; Tadey, D.; Vaccaro, Jorge O.; Maset, Elvira

    2003-01-01

    Crystalline silico titanate (CST) has been tested as a selective inorganic ion exchanger to separate Cs 137 from the residual fission product s solution of the Mo 99 plant. The tests are described in detail and show decontamination factors higher than 6000 and a good elution yield

  8. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  9. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  10. Charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Bransden, B.H.

    1990-01-01

    Charge exchange reactions in which electrons are transferred from one ion (or atom) to another during a collision have been studied both as interesting examples of rearrangement collisions and because of important applications in plasma physics. This article reviews the modern theory developed for use at non-relativistic energies, but excluding the thermal and very low energy region. (author)

  11. Thermal Analysis of LANL Ion Exchange Column

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1999-01-01

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades

  12. Removing uranium from drinking water by metal hydroxides and anion-exchange resin

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1983-01-01

    Results of bench-scale testing on uranium removal from a natural water that was chosen as a good representative of uranium-bearing waters indicated that conventional coagulant and lime softening treatment removes more than 85 percent of dissolved uranium (83 μg U/L) when an optimum pH and dosage were provided. A strong base anion-exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  13. Anion exchange purification of plutonium at lower acidities (Preprint No. CT-6)

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Ravi, S.; Achuthan, P.V.; Das, S.K.; Madhusudan, A.; Janardhanan, C.; Rao, K.S.; Ramanujam, A.; Dhumwad, R.K.

    1988-02-01

    During concentration and purification of plutonium by anion exchange, 7.2 M HNO 3 is used as loading acidity for absorbing Pu(IV). In this study, the feasibility of utilizing lower acidities like 5.2 and 6.2 M has been investigated. The results indicate that lower acidities can be used in this step if reduced resin capacities are acceptable. (author)

  14. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Bellakhal, N.; Ghalloussi, R.; Dammak, L.

    2009-01-01

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the p orosity o f the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange

  15. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  16. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  17. Ion exchange for treatment of industrial effluents

    International Nuclear Information System (INIS)

    Moreno Daudinot, Aurora Maria; Ge Leyva, Midalis

    2016-01-01

    The acid leaching and ammoniacal carbonate technologies of laterite respectively, are responsible for the low quality of life of the local population, the big deforested areas due to the mining tilling, the elevated contents of solids in the air and waters, as well as the chemical contamination by metals presence, the acidity or basicity of the effluents of both industries, that arrive through the river and the bay to aquifer's mantle. The ion exchange resins allow ions separation contained in low concentrations in the solutions, where the separation of these elements for solvents, extraction or another chemical methods would be costly. Technological variants are proposed in order to reduce the impact produced on the flora and the fauna, by the liquid effluents of nickel industry, by means of ion exchange resins introduction as well as the recuperation of metals and their re incorporation to the productive process. (Author)

  18. A basic study for the boron thermal regeneration system using anion exchange resins

    International Nuclear Information System (INIS)

    Frantiesek, P.; Kotaka, Masahiro; Okamoto, Makoto; Kakihana, Hidetake.

    1979-01-01

    For the boron thermal regeneration system (BTRS), the basic characteristics of commercial anion exchange resin have been investigated on the swelling characteristics, absorption, desorption and temperature coefficient of exchange capacity for boric acid. The equilibrium capacity increases as decrease of temperature and depends strongly on the degrees of cross linking having a maximum point at about 7% of DVB. The temperature coefficient of equilibrium capacity of boric acid is also a function of the concentration of external solution and of the cross linking having a maximum point around 7% of DVB. (author)

  19. Development of a new generation of ion exchange resin for nuclear and fossil power plant

    International Nuclear Information System (INIS)

    Tsuzuki, Shintaro; Tagawa, Hidemi; Yamashita, Futoshi; Okamoto, Ryutaro

    2008-01-01

    It is required to maintain water quality supplied to steam generator to the water designed based on its water chemistry in order to keep the sound operation of nuclear power plants or fossil power plants. Condensate Polishing Plant (CPP) is installed for removing ions in the water which uses a mixed bed of cation exchange resin and anion exchange resin. We have developed new generation of CPP resin. The product is a unique combination of super high exchange capacity cation exchange resin and high fouling resistant anion exchange resin. The CPP resin has been used in many power plants. Amberjet 1006 was developed as a cation exchange resin with high oxidative stability, high operational capacity and New IRA900CP was developed as an anion exchange resin with high fouling resistant to leachables released out of cation exchange resin by oxidative degradation over the service period. The novel CPP resin was first used in 2000 and has now been used in many power plants in Japan. The CPP resin has been giving excellent quality of water. (author)

  20. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  1. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for alkaline membrane fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-03-01

    Full Text Available was prepared. The alkali doped poly(2,5-benzimidazole) membrane is a promising candidate as anion exchange membrane for fuel cell application. The alkali doped poly(2,5-benzimidazole) membrane reached an anion conductivity of 2.3×10-2 S cm-1 at room temperature...

  2. Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites

    KAUST Repository

    Liu, Xiaolong; Ravon, Ugo; Tuel, Alain

    2011-01-01

    Not everything changes: Charge-compensating anions can be exchanged in as-synthesized zeolite frameworks with changes in both the density of defect sites and of the hydrophobic character of the zeolite. The reversible transformation occurs without

  3. An Automated Anion-Exchange Method forthe Selective Sorption of five Groups ofTrace Elements in Neutron-IrradiatedBiological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1966-02-01

    An anion-exchange method based on fast selective sorption steps from mixtures of sulfuric, hydrobromic, and hydrochloric acid solutions has been developed for the separation of five different groups of radioactive trace elements in neutron-irradiated biological material. The separations are performed automatically with a simple proportioning pump apparatus. The apparatus allows the exact adjustment of influent solutions to the series of ion-exchange columns. The practical application of the method is described in detail. The successful use of the method is practically independent on the level of Na activity present in the sample

  4. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  5. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  6. Poster 29. Modelling of ion exchange processes in ultrapure water

    International Nuclear Information System (INIS)

    Berg, A.; Torstenfelt, B.; Fejes, P.; Foutch, G.L.

    1992-01-01

    The ion exchange process of the Reactor Water Clean-up (RWCU) system has been studied to better use the maximum possible exchange capacity of the ion exchange resin. Laboratory data have been correlated with computer simulations of the ion exchange process. Data were correlated using a mixed-bed ion exchange model for ultralow ionic concentrations developed at Oklahoma State University. Experimental results of the ion exchange column operation in the concentration range of 10 -3 M boric acid is compared with the simulated performance predicted by the computer model. The model is found to agree reasonably well with the data. (author)

  7. Charge exchange with ion excitation: asymptotic theory

    International Nuclear Information System (INIS)

    Ivakin, I.A.; Karbovanets, M.I.; Ostrovskii, V.N.

    1987-01-01

    There is developed an asymptotic (with respect to the large internuclear separation R) theory for computing the matrix element of the exchange interaction between states of quasimolecules, which is responsible for charge transfer with ion excitation: B + +A→B+A + *. A semiclassical approximation is used, which enables one to apply the theory to processes with the participation of multiply charged ions. The case of s--s transitions for excitation of the ion A + →A + *, where it is appropriate to take into account the distortion of the wave functions of the ion A + by the particle B, is treated separately. Calculations of cross sections and comparison with the results of experiments for He + --Cd and Ne + --Mg collisions at thermal energies are given. It is shown that it is impossible to explain the experimental data by the interaction of terms of the quasimolecules at large R only, and a possible mechanism for populating at small R is proposed

  8. Analysis of Ion-Exchange Resin Capability of the RSG-GAS Demineralized Water System (GCA01)

    International Nuclear Information System (INIS)

    Diyah Erlina Lestari; Setyo Budi Utomo; Harsono

    2012-01-01

    The Demineralized water system (GCA01) is a system which is function to process raw water to be demineralized water using ion exchange resin unit consisting of a column of cation exchange resins, anion exchange resin column and the column resin mix bed. After certain time the ion exchange resins to be saturated so that is needed regeneration. The RSG-GAS demineralized water system (GCA01) not operated continuously and indication of when does an ion exchange resin regeneration on The RSG-GAS demineralized water system (GCA01) is the water conductivity from anion exchange resin column output indicates ≥ 5μS/cm. Analysis of capability of the ion exchange resin demineralized water system (GCA01) line I has been performed. The analysis was done by comparing the time required in the system operating cycle of regeneration to the next regeneration during the period 2011 and 2012. From the results of the analysis showed the cycle regeneration time is varies. This shows that ion exchange resin capability of the RSG-GAS demineralized water system (GCA01) is varies depending on the raw water quality and success of the regeneration ion exchange resin. (author)

  9. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  10. Ion-exchanger ultraviolet spectrophotometry for uranium(VI)

    International Nuclear Information System (INIS)

    Waki, H.; Korkisch, J.

    1983-01-01

    A sensitive method based on solid-phase spectrophotometry has been developed for the microdetermination of uranium(VI) in water samples. Uranium is sorbed on the anion-exchanger QAE-Sephadex from thiocyanate solution and the absorbance of the exchanger is measured at 300 nm. This method is about 30 times more sensitive than solution spectrophotometry. Absorption spectra of various metals in the anion-exchanger phase are presented and their interferences discussed. A procedure for the cation-exchange separation of uranium from accompanying elements before spectral measurement of uranium is proposed. (author)

  11. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  12. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Soudek, A.; Jahnke, F.M.; Radke, C.J.

    1984-01-01

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10 -7 cm 2 /s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  13. NON DESTRUCTIVE APPLICATION OF RADIOACTIVE TRACER TECHNIQUE FOR CHARACTERIZATION OF INDUSTRIAL GRADE ANION EXCHANGE RESINS INDION GS-300 AND INDION-860

    Directory of Open Access Journals (Sweden)

    P.U. SINGARE

    2014-02-01

    Full Text Available The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, 131I and 82Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min−1, amount of iodide ion exchanged (mmol, initial rate of iodide ion exchange (mmol/min and log Kd were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

  14. Non Destructive Application of Radioactive Tracer Technique for Characterization of Industrial Grade Anion Exchange Resins Indio GS-300 and Indion-860

    International Nuclear Information System (INIS)

    Singare, P. U.

    2014-01-01

    The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, 131 I and 82 Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 .deg. C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins

  15. Charge exchange processes involving iron ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1985-01-01

    A review and evaluation is given of the experimental data which are available for charge exchange processes involving iron ions and neutral H, H 2 and He. Appropriate scaling laws are presented, and their accuracy estimated for these systems. A bibliography is given of available data sources, as well as of useful data compilations and review articles. A procedure is recommended for providing single approximate formulae to the fusion community to describe total cross sections for electron capture by partially-stripped Fe/sup q+/ ions in collisions with H, H 2 and He, based on the scaling relationships suggested by Janev and Hvelplund

  16. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke

    2014-12-01

    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  17. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under the...

  18. Formulation study on immobilization of spent ion exchange resins in polymer cement

    International Nuclear Information System (INIS)

    Xia Lili; Lin Meiqiong; Bao Liangjin; Fan Xianhua

    2006-01-01

    The aim of this study is to develop a formulation of cement-solidified spent radioactive ion exchange resin form. The solidified form consists of a sort of composite cement, epoxide resin emulsion, and spent ion exchange resins. The composite cement is made up of quick-setting sulphoaluminate cement, silica powder, zeolite, and fly ash in the proportion 1:0.05:0.10:0.05. Sixteen combinations of composite cement, epoxide resin emulsion and mixed anion-cation exchange resins are selected according to a three-factors-four-levels normal design table with the compression strength as the evaluation criterion. The resulted formulation is as follows: the mass ratio of polymer emulsion to composite cement is 0.55:1, the loading of mixed anion-cation exchange resins is 0.3, and the anionic-to-cationic exchange resins ratio is 2:1. The polymer cement solidified forms were tested after 28 d curing for Cs + and Sr 2+ leaching rates, pH and conductivity of the leaching water, and radiation-resistant property in addition to their compressive strength. The measurement results indicate that the performance of thus prepared solidified forms can meet the requirements of the National Standard GB14569.1-93 for near earth's surface disposal of low radioactive waste. (authors)

  19. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  20. PRTR ion exchange vault water removal

    International Nuclear Information System (INIS)

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination

  1. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    Science.gov (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Electrochemical ion-exchange for active liquid waste treatment

    International Nuclear Information System (INIS)

    Turner, A.D.; Bridger, N.J.; Jones, C.P.

    1992-10-01

    Electrochemical ion exchange (EIX) has been firmly established as an effective process for the treatment of a wide range of liquid radioactive wastes. Both organic (for low specific activity streams) and inorganic systems (for higher activity wastes) have been demonstrated. A low cost current feeder electrode has also been developed, with a projected lifetime of > 6 years. While cation EIX can be used for the treatment of low salt content streams, combination with anion EIX to control the pH can extend its range of application. At the same time, it is also able to remove activity complexed in an anionic form. AEIX has also demonstrated its ability to remove radionuclides with insoluble hydroxides (eg Co, U and Pu) from both high and low salt content streams. EIX has been successfully scaled-up form the bench-top scale by increasing electrode size by a factor of 11, and then by operating five units in parallel. An improvement in performance of by a factor 3 was observed over a simple increase in area, due to the minimization of edge effects in the larger units. The most significant advantage of EIX is its compactness -with plant sizes of 1000). (Author)

  3. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  4. Exchange of Th, U and Pu on macroporous ion exchange resins

    International Nuclear Information System (INIS)

    Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1977-01-01

    Absorption of Th, U and Pu on macroporous ion exchangers, Amberlyst 15 (cationic) and Amberlyst A-26 (anionic) were studied in nitric acid solutions and the results were found comparable with those on their microreticular counter parts, Dowex 50x8 and Dowex IX4. With a view to evalute the efficiency of Amberlyst A-26 for the final purification of plutonium from the purex process stream, detailed studies conducted to determine the breakthrough capacity of Pu(IV) from 7.2 M nitric acid, elution by 0.5 M nitric acid and the decontamination factors for uranium and zirconium-95. Because of its faster kinetics, Amberlyst A-26 exhibited a much more efficient elution of Pu(IV) by 0.5 M nitric acid than Dowex IX4. (author)

  5. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kukki; Lee, Kunjai [Nuclear Engineering Department Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Youngkyun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2002-04-15

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated.

  6. The study on the ion exchange behavior of metal ions using composite ion exchange resin

    International Nuclear Information System (INIS)

    Kim, Kukki; Lee, Kunjai; Kim, Youngkyun; Lee, Sangjin; Yang, Hoyeon; Ha, Jonghyun

    2002-01-01

    In this study, a series of stepwise procedures to prepare a new organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite was established, based upon wet-and-neutralization method for synthesizing iron ferrite and pearl-polymerization method for synthesizing rigid bead-type composite resin. And a separation of metal ions in the liquid radioactive waste have been performed using organic-inorganic composite magnetic resin with phenol sulphonic-formaldehyde and freshly formed iron ferrite. The PSF-F (phenol sulphonic formaldehyde-iron ferrite) composite resin prepared by the above method shows stably high removal efficiency to Co(II), Fe, Cs species from wastewater in a wide range of solution pH. The wide range of applicable solution pH (i. e. pH 4.0 to 10.3) implies that the PSF-F composite resin overcomes the limitations of the conventional ferrite process which is practically applicable only to alkaline conditions. The experiment proceeded using batch reactor in a constant temperature with water bath. The experiments divided into three parts. The first one is TG/DTA (Thermogravimetry / Differential Thermal Analysis) which can analyze the trend of pyrolysis of PSF-F ion exchanger. The Second one is equilibrium experiment in which the separation factor of metal ions and Langmuir, Freundlich isotherm was achieved. The last one is kinetics experiment in which the equilibrium reaction time and removal efficiency is estimated

  7. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Jixin, E-mail: jixin.qiao@risoe.d [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hou Xiaolin; Roos, Per [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Miro, Manuel [Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Carretera de Valldemossa km. 7.5, E-07122 Palma de Mallorca, Illes Balears (Spain)

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ({sup 239}Pu and {sup 240}Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-x4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10{sup 3} to 10{sup 4}. The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  8. Anion exchange behavior of Ti, Zr, Hf, Nb and Ta as homologues of Rf and Db in mixed HF-acetone solutions

    International Nuclear Information System (INIS)

    Aksenov, N.V.; Bozhikov, G.A.; Starodub, G.Ya.; Dmitriev, S.N.; Filosofov, D.V.; Jon Sun Jin; Radchenko, V.I.; Lebedev, N.A.; Novgorodov, A.F.

    2009-01-01

    We studied in detail the sorption behavior of Ti, Zr, Hf, Nb and Ta on AG 1 anion exchange resin in HF-acetone mixed solutions as a function of organic cosolvent and acid concentrations. Anion exchange behavior was found to be strongly acetone concentration dependent. The distribution coefficients of Ti, Zr, Hf and Nb increased and those of Ta decreased with increasing content of acetone in HF solutions. With increasing HF concentration, anion exchange equilibrium analysis indicated the formation of fluoride complexes of group-4 elements with charge -3 and Ta with charge -2. For Nb the slope of -2 increased up to -5. Optimal conditions for separation of the elements using AIX chromatography were found. Group-4 elements formed MF 7 3- (M = Ti, Zr, Hf) complexes whose sorption decreased Ti > Hf > Zr in reverse order of complex stability. This fact is of particular interest for studying ion exchange behavior of Rf compared to Ti. The advantages of studying chemical properties of Rf and Db in aqueous HF solutions mixed with organic solvents are briefly discussed

  9. Development of a High-Throughput Ion-Exchange Resin Characterization Workflow.

    Science.gov (United States)

    Liu, Chun; Dermody, Daniel; Harris, Keith; Boomgaard, Thomas; Sweeney, Jeff; Gisch, Daryl; Goltz, Bob

    2017-06-12

    A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO 3 - and NO 2 - in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg 2+ , Ca 2+ , and Ba 2+ from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.

  10. Influence of exchange reactions in salt melts on cathodic reduction of nitrate ion

    International Nuclear Information System (INIS)

    Prisyazhnyj, V.D.; Chernukhin, S.I.; Kirillov, S.A.; Safronova, I.M.; Zayats, A.D.

    1981-01-01

    Potentiodynamical method has been used to investigate the process of cathodic reduction of nitrate ion in the melts of ternary mutual systems K + , Li + /NO 3- , Dsup(n-) and K + , B 2 + /NO 3 , Dsup(n-) (where B 2 + -Ba 2 + , Sr 2 + , Ca 2 + , and Dsup(n-)-Fsup(-), Cl - , Br - , SO 4- ). The investigations show, that the anion reduction depends on nitrate ion centration of two-charge metals. Influence of the composition of the first and second spheres of the nitrate ion ionic environment on electrode process parameters according to the value of free exchange energy is shown

  11. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  12. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests.

    Science.gov (United States)

    Carlucci, Lucia; Ciani, Gianfranco; Maggini, Simona; Proserpio, Davide M; Visconti, Marco

    2010-11-02

    -48% of the cell volume and include the anions and many guest solvent molecules. The guest solvent molecules can be reversibly removed by thermal activation with retention of the framework structure, which proved to be stable up to about 270°C, as confirmed by TGA and powder XRD monitoring. The anions could be easily exchanged in single-crystal to single-crystal processes, thereby allowing the insertion of selected anions into the framework channels.

  13. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  14. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  15. Method of burning ion-exchange resin contaminated with radioactivity

    International Nuclear Information System (INIS)

    Suzuki, Shigenori.

    1986-01-01

    Purpose: To process spent ion exchange resins to reduce their volume, without increasing the load on a off-gas system and in a stable state and at the same time not leaving any uncombusted portions. Method: The water slurries of the ion exchange resins contaminated with radioactive materials is dehydrated or dry combusted to reduce the water content. A binder is then added to solidify the ion exchange resin. The solidified ion exchange resins are then combusted in a furnace. This prevents the ion exchange resin from being dispersed by air and combustion gases. Furthermore, the solidified ion exchange resins in the form of small pellets burn from the surface inwards. Moreover the binder is carbonized by the combustion heat and promotes combustion to convert the ion exchange resins into a solid mass, making sure that no uncombusted portion is left. (Takahashi, M.)

  16. Anion-exchange enrichment and spectrophotometric determination of uranium in sea-water

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Oguma, Koichi; Mukai, Noriko; Iwamoto, Masatoshi

    1987-01-01

    A method is proposed for the determination of uranium in sea-water. The uranium is strongly sorbed on a strongly basic anion-exchange resin (Cl - form) from acidified sea-water containing sodium azide (0.3M) and is easily eluted with 1M hydrochloric acid. Uranium in the effluent can be determined spectrophotometrically with Arsenazo III. The combined method allows easy and selective determination of uranium in sea-water without using a sophisticated adsorbent. The overall recovery and precision are satisfactory at the 3 μg/1. level. (author)

  17. Hydration effect on ion exchange resin irradiated by swift heavy ions and gamma rays

    Science.gov (United States)

    Boughattas, I.; Labed, V.; Gerenton, A.; Ngono-Ravache, Y.; Dannoux-Papin, A.

    2018-06-01

    Gamma radiolysis of ion exchange resins (IER) is widely studied since the sixties, as a function of different parameters (resin type, dose, atmosphere, water content …). However, to our knowledge, there are very few data concerning hydrogen emission from anionic and cationic resins irradiated at high Linear Energy Transfers (LET). In the present work, we focus on the influence of hydration on hydrogen emission, in anionic and cationic resins irradiated under inert atmosphere using Swift Heavy Ions (SHI) and gamma irradiations. The radiation chemical yield of molecular hydrogen is nonlinear with water content for both resins. The molecular hydrogen production depends first on the water form in IER (free or linked) and second on the solubility of degradation products. Three steps have been observed: at lower water content where G(H2) is stable, at 50%, G(H2) increases due to reactions between water radiolytic species and the resin functional groups and at high water content, G(H2) decreases probably due to its accumulation in water and its consumption by hydroxyl radicals in the supernatant.

  18. Anion exchange chromatography of 99mTc(Sn)-EHDP complexes: determination of the charge of the components and influence of pH and ligand concentration

    International Nuclear Information System (INIS)

    Huigen, Y.M.; Diender, M.; Gelsema, W.J.; De Ligny, C.L.

    1991-01-01

    The components of a 99m Tc(Sn)-EHDP complex mixture were separated by means of normal pressure and high-pressure anion exchange chromatography. Precautions were taken to prevent the dissociation of the complexes during chromatography. The charges of the components were determined according to the methods of Wilson and Pinkerton (1985) and Russell and Bischoff (1985). The values of the charges obtained with the two methods are not in agreement. Russell and Bischoff's method, in which a reference ion is used, must be preferred. However, even with this method the accuracy of the data obtained is probably limited, due to the difficulty of making corrections for activity coefficients of highly-charge ions at the rather high electrolyte concentrations that must be used in the ion exchange method. So, we think that it is only warranted to conclude that the mean charge of the components of 99m Tc(Sn)-EHDP is about -6 at pH 7, and that the charges of the individual components are in the range of -4 to -9. The influence of pH and ligand concentration in the reaction mixture was determined with high pressure anion exchange chromatography. It was found that a decrease in the pH of the reaction mixture favours the production of complexes with a long retention time, which leads to a slightly higher mean charge. The ligand concentration of the reaction mixture scarcely influenced the relative concentrations of the components. (author)

  19. Determination of anionic concentrations in ground water samples using ion chromatography

    International Nuclear Information System (INIS)

    Prathibha, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2011-01-01

    Ion chromatography is a powerful separation technique for the quantitative measurement of anions in aqueous samples as well as in soil, sediment and air particulate samples leached in aqueous solutions. Ion chromatographic technique is developed by making use of suppressed ion conductivity detection (Small et.al.,1975) and it is a rapid multi ion analysis technique. The time, processing and effort required for the analysis of anions is much less compared to other techniques available such as ion selective electrode technique. In the present paper ground water samples collected around New BARC campus, Visakhapatnam are analyzed for anions using Ion chromatograph. The data generated will establish the current baseline status of the ionic contaminants in the study area. Groundwater samples are collected at 13 locations around BARC Vizag campus covering 30 km radius in September, 2009, April and July, 2010. The water samples include samples from hand pump and open wells in villages. The water samples are analyzed for fluoride, chloride, nitrate and sulphate using Metrohm make Ion chromatograph. The fluoride concentration in samples varied from 0.22 to 1.26 ppm, chloride from 18.7 to 810.9, nitrate from 1.34 to 378.5 ppm and sulphate from 13.29 to 250.69 ppm. No significant seasonal variations are observed in the samples collected from various locations except chloride at two locations. Ions Chromatograph is found to be a useful tool for simultaneous analysis of environmental samples with good accuracy where the concentrations of anions vary within an order of magnitude among them themselves. (author)

  20. Ion exchange media testing for processing recyclable and nonrecyclable liquids at Diablo Canyon Power Plant

    International Nuclear Information System (INIS)

    James, K.L.; Miller, C.C.

    1989-01-01

    This paper reports on several ion exchange materials tested for processing nonrecyclable and recyclable liquid wastes at Diablo Canyon Power Plant. These ion exchange materials include inorganic Durasil media, natural and synthetic zeolites, and various organic resins. Additional tests were performed using a polyelectrolyte pretreatment technique to enhance processing of liquid wastes by ion exchange. A 9:1 ratio of cation to anion resin, consisting of IRN-77 and Sybron A-642 was effective in decontaminating cesium and cobalt radionuclides for low conductivity nonrecyclable liquids. A mixture of zeolite and Durasil media was most effective in removing cesium and cobalt from nonrecyclable high conductivity liquids. The experimental Dow resins achieved the best results in decontaminating recyclable liquids and minimized the effluent levels of chlorides, sulfates, and silica

  1. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  2. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L.; Thomas, Owen R. T.

    2004-01-01

    to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 muM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up...... was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO......) was achieved with some simultaneous binding of immunoglobulins (1g). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (less than or equal to0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e...

  3. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  4. Microbial treatment of ion exchange resins

    International Nuclear Information System (INIS)

    Kouznetsov, A.; Kniazev, O.

    2001-01-01

    A bioavailability of ion exchange resins to a microbial destruction as one of the alternative methods of compacting used ionites from the nuclear fuel manufacturing cycle enterprises has been investigated. The bio-destruction was studied after a preliminary chemical treatment or without it. A sensitivity of the ion exchange resins (including highly acidic cationite KU-2-8) to the microbial destruction by heterotrophic and chemo-litho-trophic microorganisms under aerobic conditions was shown in principle. The biodegradation of the original polymer is possible in the presence of the water soluble fraction of the resin obtained after its treatment by Fenton reagent and accelerated in the presence of Mn-ions in optimal concentration 1-2 g of Mn per liter of medium. Thus, the process of bio-destruction of ionite polymer by heterotrophic microorganisms can be compared with the bio-destruction of lignin or humic substances. The optimum parameters of bio-destruction and microorganisms used must be different for resins with different functional groups. (authors)

  5. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    Science.gov (United States)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  6. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    Science.gov (United States)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  7. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  8. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Ion-exchange membranes modified with the triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3} H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K{sup +}, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60 deg. C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO{sub 3} H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis. (author)

  9. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  10. Leaching studies on ion exchange resins immobilized in bitument matrix

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.; Villalobos, J.P.

    1987-01-01

    To study radionuclide leaching from bitumen waste forms, many samples of bitumen mixed with ion-exchange resin labelled with 134 Cs were prepared. The resins used in the tests were nuclear grade mixed cationic/anionic bead resins. Different bittumen types were assayed: two destilled and to oxidized bitumens. Laboratory to scale samples, with surface/volume ratio (S/V) = 1, were molded to 5 cm diameter and 10 cm height. The composition of the mixtures were: 30, 40, 50 and 60% by weight of dried resin with bitumen. The leachant was deionized water with a leachant volume to sample surface rario of about 8 cm. Leached fractions were collected according to the recommendation of ISO method, with complete exchange of leachant beckers after each sampling. The volume collected for analysis was one liter. Marinelli were used for counting in a Ge(Li) detector. Up to now, results of 250 days have been accumulated. Samples prepared with distilled bitumen have shown a diffusion coefficient of the order of 10 -14 cm 2 /sec and those prepared with oxidized bitumen yielded a diffusion coefficient of the order of 10 -12 cm 2 /sec. Mathematical models of transport phenomena applied to cylindrical geometry were employed to fit experimental data. (Author) [pt

  11. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  12. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    Science.gov (United States)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  13. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xiulian [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wei Qifeng, E-mail: weiqifeng163@163.com [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Hu Surong; Wei Sijie [College of Ocean, Harbin Institute of Technology at Weihai, Weihai 264209 (China)

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with {omega}{sup 1/2} ({omega}: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH{sub 4}Cl concentration was 53.46 g L{sup -1} and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min{sup -1}. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  14. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    Science.gov (United States)

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  15. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    Ren Xiulian; Wei Qifeng; Hu Surong; Wei Sijie

    2010-01-01

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω 1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH 4 Cl concentration was 53.46 g L -1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min -1 . Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  16. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  17. Ion Exchange Properties of Georgian Natural Zeolites

    Directory of Open Access Journals (Sweden)

    Vladimer Tsitsishvili

    2017-06-01

    Full Text Available Ion-exchange properties of natural zeolites of Georgia with a relatively low Si/Al ratio have been studied: analcimes are characterized by selectivity series: Na+>K+>Ag+>NH4+>Ca+2>Sr+2>Li+; for phillipsites selectivity sequences are different for calcium- and potassium forms; selectivity sequence for scolecite is: Sr+2>Ba+2>Rb+>Ca+2>Cs+>K+>NH4+>Na+>Mg+2>Li+>Cd+2>Cu+2> Mn+2> Zn+2>Co+2>Ni+2.

  18. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  19. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-09-01

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% ordinary Portland cement, 84% gg blast furnace slag, 6% microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This formulation was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the products' properties. (author)

  20. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337/degree/C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs

  1. Studies on the absorption of uranium and plutonium on macroporous anion-exchange resins from mixed solvent media

    International Nuclear Information System (INIS)

    Chetty, K.V.; Mapara, P.M.; Godbole, A.G.; Swarup, Rajendra

    1995-01-01

    The ion-exchange studies on uranium and plutonium using macroporous anion-exchange resins from an aqueous-organic solvent mixed media were carried out to develop a method for their separation. Out of the several water miscible organic solvents tried, methanol and acetone were found to be best suited. Distribution data for U(VI) and Pu(IV) for three macroporous resins Tulsion A-27(MP) (strong base), Amberlyst A-26(MP) (strong base) and Amberlite XE-270(MP) (weak base) as a function of (i) nitric acid concentration (ii) organic solvent concentration were obtained. Based on the data separation factors for Pu/U were calculated. Column experiments using Tulsion A-27(MP) from a synthetic feed (HNO 3 - methanol and HNO 3 - acetone) containing Pu and U in different ratios were carried out. Plutonium was recovered from the bulk of the actual solution generated during the dissolution of plutonium bearing fuels. The method has the advantage of loading plutonium from as low as 1M nitric acid in presence of methanol or acetone and could be used satisfactorily for its recovery from solutions containing plutonium and uranium. (author). 11 refs., 4 figs., 16 tabs

  2. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  3. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  4. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  5. Performance evaluation of anion exchange resins Purolite NRW-5050 and Duolite A-611 by application of radioisotopic techniques

    International Nuclear Information System (INIS)

    Singare, P.U.

    2014-01-01

    Radioanalytical techniques using 131 I and 82 Br as tracer isotopes were applied to study the kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external labeled ionic solution and the resin surface. The results indicate low values of specific reaction rate (min -1 ), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) for bromide ion-isotopic exchange reaction as compared to that obtained for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction performed at 35.0 C, 1 000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution, the values of specific reaction rate (min -1 ), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.340, 0.394, 0.134 and 20.2 respectively for Purolite NRW-5050 resin, which was higher than the respective values of 0.216, 0.290, 0.063 and 18.2 as that obtained by using Duolite A-611. The results of present investigation indicate that during the two ion-isotopic exchange reactions, for both the resins, there exists a strong positive linear correlation between amount of ions exchanged and concentration of ionic solution; and strong negative correlation between amount of ions exchanged and temperature of exchanging medium. From the results it appears that as compared to Duolite A-611 resins, Purolite NRW-5050 resins shows superior performance under identical experimental conditions.

  6. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  7. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  8. Polarographic investigation of complexing kinetics of polyacrylate anions with cadmium ions

    International Nuclear Information System (INIS)

    Avlyanov, Zh.K.; Kabanov, N.M.; Zezin, A.B.; Askarov, M.A.

    1990-01-01

    The processes which occur during the reduction of cadmium ions from polymer-metallic complexes (PMC) are studied for the purposes of polarographic investigation of complexing kinetics of polyacrylate anions (PAA) of different molecular masses with cadmium ions in KCl aqueous solutions. An expression is derived for establishing semiwave potential. PMC formation and dissociation reduction rate constants are calculated. It is shown that intramolecular reorderings required for the formation of a two-coordinate complex proceed much slower as compared to the diffusion of free ions

  9. Ion chromatography of anions in the primary and secondary circuit

    International Nuclear Information System (INIS)

    Brandt, F.; Trost, R.

    1984-01-01

    Ion chromatography - though based on the same, well-established basic principles as gas chromatography and high pressure fluid chromatography - has made an actual breakthrough only in recent years. The adaptability of the process permits the measurement of samples of different composition or concentration. Some of the experience which has been accumulated in the laboratory at Goesgen nuclear power station during the last two years, is reported. This relates particularly to the composition of the samples, the need to use extremely pure calibration samples, the choice of special laboratory accessories and the like. (orig.) [de

  10. Study on removing nitrate from uranium solution by ion-exchange method

    International Nuclear Information System (INIS)

    Zhou Genmao

    2004-01-01

    Nitrate of low concentration can interfere with adsorption of uranyl sulfate anion on anion-exchange resins because the anion-exchange resins have a stronger affinity for nitrate in uranium solution. Nitrate can be adsorbed with a high efficiency resin, then desorbed by sodium hydroxide. The nitrate concentration is about 60 g/L in eluate. The research results show that nitrate can be recovered from uranium solution with N-3 anion-exchange resin

  11. Ion exchange separation of rare earths. I

    International Nuclear Information System (INIS)

    Nghi, Nguyen danh; Matous, K.

    1977-01-01

    The optimal conditions of separating selected rare earths by two ion exchange chromatography using Ostion KS cation exchange resin were studied. The effect of acetic acid concentration in the sorption solution was investigated. The elution process was studied in dependence on the concentration of Na 2 H 2 EDTA, on the total concentration of EDTA 4- ion, on elution agent flow, and on temperature. The optimal conditions were determined by evaluating integral elution curves and changes in acid concentration for systems Y-Pr, La-Pr, Er-Pr, Eu-Pr as follows: The sorption solution requires the presence of Na 2 H 2 EDTA of 0.03M in concentration. The basic elution solution was prepared in the following way: 0.183M Na 2 Mg 2 EDTA, 9.6x10 -3 M Na 2 H 2 EDTA, 3.84x10 -3 M CH 3 COOH, 2.30x10 -2 M CH 3 COONH 4 , 2.30x10 -2 M (NH 4 ) 2 SO 4 . Approximate pH 5.7 to 6.0. The optimal elution solution was prepared by diluting the basic solution so that the total concentration of EDTA 4- equalled 0.075M. The optimal flow was determined to be 0.86 ml.cm -2 .min -1 at a temperature of 55 degC. (author)

  12. Multicomponent liquid ion exchange with chabazite zeolites

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent

  13. Radionuclide Leaching from Organic Ion Exchange Resin

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolitetrademark NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900trademark, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material

  14. Application to ion exchange study of an interferometry method

    International Nuclear Information System (INIS)

    Platzer, R.

    1960-01-01

    The numerous experiments carried out on ion exchange between clay suspensions and solutions have so far been done by studying the equilibrium between the two phases; by this method it is very difficult to obtain the kinetic properties of the exchange reactions. At method consisting of observation with an interferential microscope using polarised white light shows up the variations in concentration which take place during the ion exchange between an ionic solution and a montmorillonite slab as well as between an ionic solution and a grain of organic ion exchanger. By analysing the results it will be possible to compare the exchange constants of organic ion exchangers with those of mineral ion exchangers. (author) [fr

  15. The effects of anionic and cationic surfactants on the ion flotation of Cd2+

    International Nuclear Information System (INIS)

    Kobayashi, Koichi

    1975-01-01

    The ion flotation of Cd 2+ ions has been investigated from the surface chemical point of view in comparison with the case of Cu 2+ ions reported previously. The effects of the change in the pH, the anionic and cationic surfactants, and bentonite on the flotation rate have also been studied. Sodium α-sulfolaurate proved to be one of the best surfactants among the anionic surfactants used for removing Cd 2+ ions, showing as high as a 97% removal. About 97% of the Cd 2+ ions could be floated in the region of pH 11.3 when a cationic surfactant was used with bentonite, regardless of the exact surfactant used. The addition of bentonite reduced the foam formation and liquid hold-up, resulting in effective bubble flotation. This behavior was as a whole similar to that of Cu 2+ ions. However, in all the flotation systems tested, the flotation rate increased sharply at about pH 8, and the flotation rate vs. pH curve for Cd 2+ shifted towards a more alkaline region than that for Cu 2+ , because of the stronger basic nature of the former. Also, the flotation rate of Cd 2+ ions for the Cd 2+ -anionic surfactant systems attained a steady value after about 7 min, longer than the 2-min gas flow required in the case of Cu 2+ ion flotation. The adjustment of the pH using ammonia gave a lower rate of flotation than in the case of flotation using sodium hydroxide. (auth.)

  16. Ion exchange separation of low boric acid concentrations from water

    International Nuclear Information System (INIS)

    Kysela, J.; Brabec, J.; Peterka, F.

    1975-01-01

    Boric acid poisoning of the moderator of the TR-O experimental heavy water reactor was studied. The possibility is discussed of removing boric acid from heavy water by means of a strong basic anion exchanger, below the residual concentration of 0.01 mg B/l. Measurements of the usable capacities of the strong basic anion exchanger Zerollit FF showed that the penetration of boric acid during the sorption period does not exceed the value of 0.015 mg B/l. The dependence was found of capacity on the boric acid concentration in the solution. Analytical methods used to determine B in water are also described. (author)

  17. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  18. A review of the radiation stability of ion exchange materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1986-01-01

    A comprehensive literature survey on the radiation stability of synthetic organic ion exchangers was published in this journal (Vol. 97, No. 1.). This paper is a brief review of the major findings of this survey along with similar information on synthetic inorganic ion exchangers. The primary goal of this literature survey is to review present knowledge on the effects of ionizing radiations on synthetic ion exchange materials used in radiochemical processing. The information available in the literature shows some general trends in observed qualitative effects by different types of organic and inorganic ion exchange materials. (author)

  19. 309 plutonium recycle test reactor ion exchanger vault deactivitation report

    International Nuclear Information System (INIS)

    Griffin, P.W.

    1996-03-01

    This report documents the deactivation of the ion exchanger vault at the 309 Plutonium Recycle Test Reactor (PRTR) Facility in the 300 Area. The vault deactivation began in May 1995 and was completed in June 1995. The final site restoration and shipment of the low-level waste for disposal was finished in September 1995. The ion exchanger vault deactivation project involved the removal and disposal of twelve ion exchangers and decontaminating and fixing of residual smearable contamination on the ion exchanger vault concrete surfaces

  20. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  1. The Quantitative Ion Exchange Separation of Uranium from Impurities

    National Research Council Canada - National Science Library

    Narayanan, Usha

    1995-01-01

    .... This procedure involve adsorption of uranium onto Bio-Rad AG 1X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncomplexed or weakly complexed matrix ions with an 8 M HCl wash, and subsequent...

  2. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  3. Characterization and anion exchange removal of uranium from Hanford ground water

    International Nuclear Information System (INIS)

    Delegard, C.H.; Weiss, R.L.; Kimura, R.T.; Law, A.G.; Routson, R.C.

    1986-01-01

    In February 1985, uranium concentrations increased abruptly to 0.1 kgU/m/sup 3/ in ground waters underlying a retired liquid waste disposal facility in the United States Department of Energy-Richland Operations Hanford Site. Characterization tests showed the uranium was present as an anionic carbonate complex not sorbable by Hanford sediments. The uranium was mobilized by flow from a perched zone of water caused by recent nearby cooling water disposal above an impermeable sediment layer. In a unique demonstration of the concept of ''as low as reasonably achievable,'' efforts were immediately undertaken to minimize the spread of the plume and to reduce the amount of uranium in the ground water. An anion exchange-based uranium removal process flowsheet was rapidly developed and implemented. Operational for six months, the process has treated over 30,000 m/sup 3/ of ground water and collected 94% of the uranium while producing a treated effluent that meets criteria for discharge to the soil column

  4. Electrodeionization 2: the migration of nickel ions adsorbed in a flexible ion-exchange resin

    NARCIS (Netherlands)

    Spoor, P.B.; Veen, ter W.R.; Janssen, L.J.J.

    2001-01-01

    The removal of nickel ions from a low cross-linked ion-exchange resin using an applied electrical potential gradient was studied. The potential gradient across a bed of ion-exchange particles, in which nickel ions were absorbed, was varied by two methods. One involved a change of cell voltage across

  5. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    Science.gov (United States)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  6. Exchange scattering of quasiparticles by positive ion in He3

    International Nuclear Information System (INIS)

    Ehdel'shtejn, V.M.

    1983-01-01

    The difference in the mobility of negative and positive ions in normal 3 He at low temperatures is discussed. The mobility mechanisms for the ions of different sign are qualitatively different since the positive ion can exchange quasiparticles with the helium atoms from the ice-like shell surrounding the ion. A study of the mobility in a magnetic field may yield quantitative information on the magnitude of the exchange interaction. A calculation for the exchange scattering model is carried out and it is shown that a logarithmic contribution to the positive ion mobility μsub(+)(T) appears which is analogous to the Kondo effect

  7. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel

    Science.gov (United States)

    Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Schwarz, Simona

    2018-01-01

    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity. PMID:29510485

  8. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Kullberg, L.; Clearfield, A.

    1981-01-01

    An equilibrium study of the Na + -Cs + -H + exchange on crystalline α-zirconium phosphate has been carried out. Isotherms for the ion exchange have been determined and phases formed during the exchange have been identified. The surface groups of the exchanger were found to greatly prefer cesium to sodium. For exchange in the interior, cesium was found to be preferred to sodium for 0 to 50% of exchange, while sodium is slightly preferred to cesium for the second half of exchange. The influence of surface equilibria on the total exchange mechanism is discussed. (author)

  9. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...... capacities of 1.2 and 3.4 mg ml(-1) were recorded for prototype diethylaminoethyl-and polyethylene imine-linked adsorbents which were respectively 25 and 70 fold higher than those of equivalently derivatised commercial expanded bed materials. The prototype polyethylene imine-coupled material exhibited severe...

  10. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media

    International Nuclear Information System (INIS)

    Popov, L.

    2016-01-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. - Highlights: • The method allows cost-effective determination of U isotopes. • High amounts of environmental samples can be analyzed. • High chemical yields, energy resolution and decontamination factors were achieved. • Uranium isotope concentrations in mineral waters from Bulgaria are presented.

  11. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    Science.gov (United States)

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  12. Anion-exchange membranes derived from quaternized polysulfone and exfoliated layered double hydroxide for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Liang, Na; Peng, Pai; Qu, Rong; Chen, Dongzhi; Zhang, Hongwei, E-mail: hanqiujiang@163.com

    2017-02-15

    Layered double hydroxides (LDH) are prepared by controlling urea assisted homogeneous precipitation conditions. Morphology and crystallinity of LDHs are confirmed by X-ray diffraction and scanning electron microscope. After LDHs are incorporated into quaternized polysulfone membranes, transmission electron microscope is used to observe the exfoliated morphology of LDH sheets in the membranes. The properties of the nanocomposite membranes, including water uptake, swelling ratio, mechanical property and ionic conductivity are investigated. The nanocomposite membrane containing 5% LDH sheets shows more balanced performances, exhibiting an ionic conductivity of 2.36×10{sup −2} S cm{sup −1} at 60 °C. - Graphical abstract: Anion-exchange membrane based on quaternized polysulfone and exfoliated layered double hydroxide is optically transparent and has good ionic properties.

  13. Determination of carbohydrates using pulsed amperometric detection combined with anion exchange separations

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.T.; Pohl, C.A.; Rubin, R.

    1987-06-01

    Carbohydrates, including the monosaccharides commonly found in wood and wood pulp hydrolyzates, are separated by anion exchange chromatography using hydroxide and acetate eluants and are determined using pulsed amperometric detection. The detection method is based on oxidizing the sugars in a flow-through electrochemical cell equipped with a gold working electrode. A repeating cycle of three potentials is used: the first to oxidize the carbohydrates and measure the current generated, and two subsequent pulses to clean the electrode surface of oxidation products. The method is fast, sensitive, and requires no pre-column derivatization. It is applied to a sample of hydrolyzed wood pulp, which can be analyzed after minimal sample preparation. Detection limits are of the order of 1 mg/kg for monosaccharides in a 50 micro L injection. (Refs. 8).

  14. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    Pope, N.G.; Marsh, S.F.

    1987-06-01

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  15. Study on the process variables in the anion exchange plutonium separation process

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, D T

    1957-11-15

    This report discusses the study of the process variables in the Anion Exchange Process Pilot Plant for the separation of plutonium from irradiated uranium. Variables associated with the feed, wash and elution cycles were studied with the aim of improving the quality of the final plutonium product, reduce cycling time and reagent requirements, and also to obtain data for prediction of resin column behaviour under various feed conditions. A cation resin column and a silica gel column were installed in the system and these were studied for plutonium recovery and product quality. The product obtained from the plant was acceptable in all the impurities except the associated gamma activity which was too high for easy product handling. (author)

  16. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  17. Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.

    Science.gov (United States)

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław

    2017-11-01

    Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).

  18. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Ikladious, N.E.; Eskander, S.B.

    1981-01-01

    PMMA was studied with the aim to evaluate its usefulness as an incorporation medium for the final containment of spent ion-exchange resins. The study of the effect of water content (ranging from 25 to 100%) of the incorporated resin into PMMA on the compression strength of the final solid products shows that with the increasing water content the compression strength of the final products decreases sharply. Hardness of the final products follows nearly the same trend of compression strength. Increasing gamma irradiation doses, up to 7.77x10 7 rad, PMMA shows increase in compression strength and hardness for small doses and then decreases with increasing irradiation dose due to the increase in polymerization process and the degradation of the incorporation medium

  20. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    Science.gov (United States)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  1. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  2. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    International Nuclear Information System (INIS)

    Ramsey, A.A.; Thorson, M.R.

    2010-01-01

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  3. Waste treatment by selective mineral ion exchanger

    International Nuclear Information System (INIS)

    Polito, Aurelie

    2007-01-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  4. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    Science.gov (United States)

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  6. Poly(vinylbenzylchloride) Based Anion-Exchange Blend Membranes (AEBMs): Influence of PEG Additive on Conductivity and Stability.

    Science.gov (United States)

    Kerres, Jochen A; Krieg, Henning M

    2017-06-16

    In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM's composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications.

  7. The effect of organic ion-exchange resin on properties of heterogeneous ion-exchange membranes

    Czech Academy of Sciences Publication Activity Database

    Křivčík, J.; Vladařová, J.; Hadrava, J.; Černín, A.; Brožová, Libuše

    2010-01-01

    Roč. 14, - (2010), s. 179-184 ISSN 1944-3994. [Membrane Science and Technology Conference of Visegrad Countries /4./ PERMEA 2009, 07.07.2009-11.07.2009] R&D Projects: GA MPO FT-TA4/116 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous ion-exchange membrane * membrane modification * particle size of distribution Subject RIV: CG - Electrochemistry Impact factor: 0.752, year: 2010

  8. On the swelling of ion exchange resins used in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Nilsson, A.C.; Hoegfeldt, E.; Muhammed, M.

    1988-03-01

    Ion exchange resins are used in nuclear power plants for purification and decontamination of water. In some of the cases, the spent resins are solidified by drying at elevated temperatures and then molded together with bitumen before final disposal. The objective of the present work is to study the swelling behavior of such resins and describe it with a model that permits calculation of the water uptake into the bituminized resins and the external swelling pressure that might develop by the swelling resins under repository conditions. The experimental part of the study comprises the swelling of ion exchange resins upon their exposure to water vapour before and after thermal treatment under conditions simulating those used in the various solidification processes. Seven different resins were studied in different chemical forms; H + , N + and OH - , So 4 2- for the cation an anion exchangers respectively. For each resin, water uptake, density and volume were measured at different water activities at 25 degrees C. The swelling pressure for all resins studied was calculated. A slight increase in swelling pressure after thermal treatment could be observed, especially for anion exchangers. The apparent molar volume of water in the resin phase has been determined and the swelling free energies of swelling has been calculated from experimental data at 25 degrees C and estimated at 0 degrees C. (authors)

  9. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    International Nuclear Information System (INIS)

    Ham, J.E.

    1996-01-01

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building's Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal

  10. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  11. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  12. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  13. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  14. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters.

    Science.gov (United States)

    Wang, Qiongjie; Li, Aimin; Wang, Jinnan; Shuang, Chengdong

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water. The effect of water quality (pH, temperature, ionic strength, etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated. Among the four studied MAERs, the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time. The MAERs could also effectively remove inorganic matter such as sulfate, nitrate and fluoride. Because of the higher specific UV absorbance (SUVA) value, the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin. The temperature showed a weak influence on the removal of DOC from 6 to 26 degrees C, while a relatively strong one at 36 degrees C. The removal of DOM by NDMP was also affected to some extent by the pH value. Moreover, increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  15. Composite inorganic ion-exchangers and their applications

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.

    1998-01-01

    Composite inorganic ion exchangers are described containing modified polyacrylonitrile as the binding polymer. An overview of existing composite ion exchangers is presented, and the universality and assets of the developed procedure of treatment of inorganic ion exchanger powders are highlighted. Examples of applicability of the ion exchangers to the separation and concentration of radionuclides include in particular: wastes from the operation of nuclear power plants, contaminated surface waters and ground water, high level radioactive wastes from spent fuel reprocessing, and wastewaters from uranium ore mining and milling. In addition, composite ion exchangers find use in the monitoring of contamination of the hydrosphere and the environment and in the investigation of radionuclide migration in surface waters and ground water

  16. Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity.

    Science.gov (United States)

    Zhao, Haiyan; Leamer, Lauren A; Gabbaï, François P

    2013-06-21

    Stimulated by the growing importance and recognized toxicity of anions such as fluoride, cyanide and azides, we have, in the past few years, developed a family of Lewis acidic triarylboranes that can be used for the complexation of these anions in organic and protic solvents, including water. A central aspect of our approach lies in the decoration of the boranes with peripheral ammonium, phosphonium, sulfonium stibonium or telluronium groups. The presence of these cationic groups provides a Coulombic drive for the capture of the anion, leading to boranes that can be used in aqueous solutions where anion hydration and/or protonation are usually competitive. The anion affinity of these boranes can be markedly enhanced by narrowing the separation between the anion binding site (i.e. the boron atom) and the onium ion. In such systems, the latent Lewis acidity of the onium ion also plays a role as manifested by the formation of B-X→E (E = P, S, Sb, or Te; X = F, CN or N3) chelate motifs that provide additional stability to the resulting complexes. These effects, which are maximum in stibonium and telluronium boranes, show that the Lewis acidity of heavy onium ions can be exploited for anion coordination and capture. The significance of these advances is illustrated by the development of applications in anion sensing, fluorination chemistry and (18)F radiolabeling for positron emission tomography.

  17. Improved recovery of trace amounts of gold (III), palladium (II) and platinum (IV) from large amounts of associated base metals using anion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, I. [Lab. of Chemistry, Tokyo Women' s Medical Univ. (Japan); Takeda, Y.; Ishida, K. [Lab. of Chemistry, Nippon Medical School, Kawasaki-shi, Kanagawa-ken (Japan)

    2000-02-01

    The adsorption and desorption behaviors of gold (III), palladium (II) and platinum (IV) were surveyed in column chromatographic systems consisting of one of the conventional anion-exchange resins of large ion-exchange capacity and dilute thiourea solutions. The noble metals were strongly adsorbed on the anion-exchange resins from dilute hydrochloric acid, while most base metals did not show any marked adsorbability. These facts made it possible to separate the noble metals from a large quantity of base metals such as Ag (I), Al (III), Co (II), Cu (II), Fe (III), Mn (II), Ni (II), Pb (II), and Zn (II). Although it used to be very difficult to desorb the noble metals from the resins used, the difficulty was easily overcome by use of dilute thiourea solutions as an eluant. In the present study, as little as 1.00 {mu}g of the respective noble metals was quantitatively separated and recovered from as much as ca. 10 mg of a number of metals on a small column by elution with a small amount of dilute thiourea solution. The present systems should be applicable to the separation, concentration and recovery of traces of the noble metals from a number of base metals coexisting in a more extended range of amounts and ratios. (orig.)

  18. Study on actinoid isolation by antimonide ion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masamichi [Tokyo Inst. of Tech. (Japan). Faculty of Science; Kubota, Masumitsu; Yamagishi, Isao

    1996-01-01

    To establish a containment of long-life nuclides and an effective reduction of waste volume is important to reduce the loadings on the natural environment. Chemical isolation of radioactive nuclides from wastes was attempted by using inorganic ion exchanger with high specificity and thermal stability. In this study, titanium antimonide was used as an ion exchanger to investigate the adsorption of trivalent metallic ions according to Kielland plot curves. When the ionic equivalent fraction (X-bar{sub M}) was around 0.005, Kielland plot curve of either of 3-valent metallic ions was bent, suggesting the exchanger had two different adsorption sites. The slope of the curve became smaller as an elevation of temperature. These results show that the ion radius was decreased resulting from partial elimination of the hydrated water of ion and thus, the steric conditions around the exchange site might be improved. (M.N.)

  19. Raman spectroscopic study of the aging and nitration of actinide processing anion-exchange resins in concentrated nitric acid

    International Nuclear Information System (INIS)

    Buscher, C. T.; Donohoe, R. J.; Mecklenburg, S. L.; Berg, J. M.; Tait, C. D.; Huchton, K. M.; Morris, D. E.

    1999-01-01

    Degradation of two types of anion exchange resins, Dowex 11 and Reillex HPQ, from the action of concentrated nitric acid (4 to 12 M) and radiolysis [from depleted uranium as UO 2 2+ nitrate species and 239 Pu as Pu(IV) nitrate species] was followed as a function of time with Raman vibrational spectroscopy. Elevated temperatures (∼50 degree sign C) were used in the absence of actinide metal loading to simulate longer exposures of the resin to a HNO 3 process stream and waste storage conditions. In the absence of actinide loading, only minor changes in the Dowex resin at acid concentrations ≤10 M were observed, while at 12 M acid concentration, the emergence of a Raman peak at 1345 cm-1 indicates the addition of nitro functional groups to the resin. Similar studies with the Reillex resin show it to be more resistant to nitric acid attack at all acid concentrations. Incorporation of weakly radioactive depleted uranium as the UO 2 2+ nitrate species to the ion-exchange sites of Dowex 11 under differing nitric acid concentrations (6 to 12 M) at room temperature showed no Raman evidence of resin degradation or nitration, even after several hundred days of contact. In contrast, Raman spectra for Dowex 11 in the presence of 239 Pu as Pu(IV) nitrate species reveal numerous changes indicating resin alterations, including a new mode at 1345 cm-1 consistent with a Pu(IV)-nitrate catalyzed addition of nitro groups to the resin backbone. (c) 2000 Society for Applied Spectroscopy

  20. Thermodynamics of ion exchange equilibrium for some uni ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Indion FF-IP. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as ...

  1. Rod-shaped ion exchanger useful for purifying liquids or recovering components from liquids comprises a metal wire core surrounded by an ion-exchange resin

    NARCIS (Netherlands)

    Koopman, C.; Witkamp, G.J.

    2002-01-01

    Rod-shaped ion exchanger comprises a metal wire core surrounded by an ion-exchange resin. Independent claims are also included for: (1) a module comprising a housing with an inlet and outlet and one or more ion exchangers as above; (2) a process for producing an ion exchanger as above, comprising

  2. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  3. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    Science.gov (United States)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  4. Adsorption of phosphate in hydrocalumite-like layered double hydroxides: a comparison between memory effect and ion exchange processes

    International Nuclear Information System (INIS)

    Bernardo, M.P.; Moreira, F.K.V.; Ribeiro, C.

    2016-01-01

    Phosphorus is an essential element for agriculture, but the excessive use of this element has caused severe damages to the environment. Layered double hydroxide (LDHs) are excellent candidates to remove PO 4 3- anions through adsorption process. In this work, the phosphate adsorption on hydrocalumite-like (Ca-Al) LDHs was evaluated over the ion exchange and memory effect processes. X-ray diffraction measurements revealed formation of analogous crystalline phases from both process as the phosphate concentration was increased. However, the phosphate quantity adsorbed varied according to the process used. The ion exchange route is the most efficient process to remove phosphate from aqueous medium. (author)

  5. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  6. Inorganic ion exchange evaluation and design: Silicotitanate ion exchange waste conversion

    International Nuclear Information System (INIS)

    Balmer, M.L.; Bunker, B.C.

    1995-03-01

    Ion exchange materials are being evaluated for removing Cs, SR from tank waste. Thermal conversion of a variety of compositions within the Cs 2 O-TiO 2 -SiO 2 phase diagram yielded both glass and crystalline materials, some of which show low leach rates and negligible Cs losses during heat treatment. A new material, CsTiSi 2 0 6 , with a structure isomorphous to pollucite (CsAlSi 2 0 6 ) has been identified. This material represents a new class of crystalline zeolite materials which contain large amounts of titanium. Direct conversion of Cs loaded silicotitanate ion exchangers to CsTiSi 2 O 6 is an excellent alternative to dissolving the Cs-loaded or Cs-eluted exchangers in borosilicate glass because: CsTiSi 2 O 6 is formed using a simple, one step heat treatment. The unique crystalline pollucite-like structure of CsTiSi 2 O 6 traps Cs, and exhibits extremely low Cs leach rates. CsTiSi 2 O 6 is converted to solid waste at a low processing temperature of 700 to 800 C (nominal melter operating temperatures are 1150 C). CsTiSi 2 0 6 concentrates the waste, thus generating lower volumes of expensive HLW. Cs losses due to volatilization during processing of CsTiSi 2 O 6 are extremely low

  7. Uranium refining process using ion exchange membrane

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1977-01-01

    As for the method of refining uranium ore being carried out in Europe and America at present, uranium ore is roughly refined at the mine sites to yellow cake, then this is transported to refineries and refined by dry method. This method has the following faults, namely the number of processes is large, it requires expensive corrosion-resistant materials because of high temperature treatment, and the impurities in uranium tend to increase. On the other hand, in case of EXCER method, treatment is carried out at low temperature, and high purity uranium can be obtained, but the efficiency of electrolytic reduction process is extremely low, and economically infeasible. In the wet refining method called PNC process, uranium tetrafluoride is produced from uranium ore without making yellow cake, therefore the process is rationalized largely, and highly economical. The electrolytic reduction process in this method was developed by Asahi Chemical Industry Co., Ltd. by constructing the pilot plant in Ningyotoge Mine. The ion exchange membrane, the electrodes, and the problems concerning the process and the engineering for commercial plants were investigated. The electrolytic reduction process, the pilot plant, the development of the elements of electrolytic cells, the establishment of analytical process, the measurement of the electrolytic characteristics, the demonstration operation, and the life time of the electrolytic diaphragm are reported. (Kako, I.)

  8. Pyrolysis of spent ion-exchanger resins

    International Nuclear Information System (INIS)

    Slametschka, Rainer; Braehler, Georg

    2012-01-01

    Initial tests have shown that ion exchangers (IEX) can be decomposed by pyrolysis with very good results, yielding an inert and chemically resistant product. No additives are necessary. The main constituent of the product, the pyrolysis residues or ash, is carbon. It has been discovered that the entire radioactive inventory remains in the pyrolysis residues during pyrolysis of the IEX. This is achieved by relatively low process temperatures that prevent highly volatile nuclides such as the caesium nuclides from passing into the gaseous phase. Sintered metal filters in pyrolysis plant ensure that even the radioactivity bonded to the dust remains in the pyrolysis residues. In addition to the radionuclides, the main constituents of the residue are carbon from the original polystyrene matrix and sulphur from the functional groups. The pyrolysis residues form a flowable solid material and not a melt. It is thus easy to handle and can be compacted or cemented, depending on the requirements for interim and permanent storage. Any further constituents such as inorganic filter materials or even other organic materials do not interfere with the process, they are dried, calcined or also pyrolysed. (orig.)

  9. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2000-01-01

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc

  10. Radiation deterioration of ion-exchange Nafion N117CS membranes

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hiroki, Akihiro; Tamada, Masao; Isobe, Kanetsugu; Yamanishi, Toshihiko

    2010-01-01

    The cation-exchange Nafion N117 membranes swelling in electrolyte solution were irradiated with γ-rays or electron beams at various doses up to 1500 kGy in the temperature range from room temperature to 343 K to obtain detailed information on the effect of ion-exchange on the radiation deterioration in mechanical properties and ion-exchange capacity. Considerable deterioration in mechanical properties was observed when the Nafion membranes swelling in electrolyte solution were irradiated. A reason is the promotion of degradation with oxygen molecules produced by the irradiation of electrolyte solution. The concentration of electrolyte solution influenced strongly the radiation deterioration in mechanical properties. Keeping the concentration of metal ions to be negligible is important when electrolyzed highly radioactive solution in the light of the durability of polyperfluorosulfonic acid (PFSA) membrane. A sort of cation in electrolyte solution negligibly influenced radiation deterioration in mechanical properties. A sort of anion in electrolyte solution had negligible effect on radiation deterioration in mechanical properties and ion-exchange capacity. The discrepancy in the radiation deterioration in mechanical properties of Nafion membranes swelling in NaCl solution was observed between the specimens irradiated with γ-rays and electron beams. This discrepancy can be explained from the low diffusivity of oxygen from bulk into the membrane.

  11. Analysis of human milk oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Lie, Aleksander; Pedersen, Lars Haastrup

    ) and lacto-N-neotetraose (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), among others. High-performance anion-exchange chromatography (HPAE) with pulsed amperometric detection (PAD) is an analysis method highly suited for carbohydrates. HPAE with alkaline eluents results in retention of neutral carbohydrates depending...... on the number of charged group in the molecule, pH and concentration of competing anions, while the PAD has sensitivity for carbohydrates in the pmol-range (Lee 1990). As a basis for the development and optimisation of HPAE elution methods, the parameter space was investigated in terms of eluent concentrations...

  12. Separation of human milk oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Lie, Aleksander; Pedersen, Lars Haastrup

    individual mothers is considerable, ranging from as few as 23 and up to 130 different oligosaccharides. HMOs are known as beneficial for infant health and development, and have received increasing attention in recent years (Bode & Jantscher-Krenn 2012). High-performance anion-exchange chromatography (HPAE......) with pulsed amperometric detection (PAD) is an analysis method highly suited for carbohydrates. HPAE with alkaline eluents results in retention of neutral carbohydrates depending on the number of charged groups in the molecule, pH and concentration of competing anions, while PAD has sensitivity...

  13. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  14. Ion exchange fiber prepared by radiation grafting, (2)

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki; Fujiwara, Kunio; Fujii, Toshiaki; Takai, Takeshi; Kobayashi, Atsushi

    1991-01-01

    Ion exchange fiber prepared by radiation grafting has the capabilities for wide application as high performance materials. Extensive studies were made to evaluate the ion exchange fiber prepared by radiation grafting for removing some toxic or malodorous gases, continuing from the previous work (presented in Ebara Engng. Review, No. 146), in which the ability of removing ammonia with cation exchange fiber was investigated. The results of this study can be summarized by the following conclusions: (1) Methods of evaluating the ability of removing ammonia, acetaldehyde, and some lower fatty acids in low concentration were established, (2) Besides being effective for the removal of acidic or basic gases, neutral gas such as acetaldehyde can also be removed by adding some functional compounds to the ion exchange fiber, and (3) Ion exchange fiber prepared by radiation grafting is effective as a deodorizing filter. (author)

  15. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    Science.gov (United States)

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  16. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 4

    International Nuclear Information System (INIS)

    Stamberg, K.; Plicka, J.; Calibar, J.; Gosman, A.

    1985-01-01

    The kinetics of ion exchange in the Nasup(+)-Mgsup(2+)-strongly acidic cation exchanger system in a batch stirred reactor was studied. The samples of exchangers OSTION KS (containing DVB in the range of 1.5 - 12%) and AMBERLITE IR 120 for experimental work were used; the concentration of the aqueous nitrate solution was always 0.2M. The Nernst-Planck equation for description of diffusion of ions in a particle was used. The values of diffusion coefficients of magnesium ions in the exchangers and their dependence on the content of DVB were obtained by evaluating the experimental data and using the self-diffusion coefficients of sodium. (author)

  17. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  18. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  19. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Radiation effects on ion-exchange resins. Part II. Gamma irradiation of Dowex 1

    International Nuclear Information System (INIS)

    Kazanjian, A.R.; Horrell, D.R.

    1975-01-01

    The effects were determined of gamma radiation on the anion exchange resin, Dowex 1. Part I on Dowex 50W was reported May 10, 1974. The exchange capacity (both strong and weak base), moisture content, radiolysis products, and physical deterioration of the resin were analyzed after irradiation with doses up to 6.9 x 10 8 rads. The resin capacity decreased approximately 50 percent after a radiation dose of 4 x 10 8 rads. Resin irradiated, when air dried in the nitrate form, showed more stability than resin irradiated in 7N nitric acid (HNO 3 ), which in turn showed more stability than resin irradiated when air dried in the chloride form. Radiation decreased the strong base capacity to a greater extent than the total capacity. The result indicates that some of the quarternary ammonium groups were transformed to secondary and tertiary amine groups that have weak base ion-exchange capability. (U.S.)

  1. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  2. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  3. Rifampicin Induces Bicarbonate-Rich Choleresis in Rats: Involvement of Anion Exchanger 2.

    Science.gov (United States)

    Wang, Wei; Ren, Xiaofei; Cai, Yi; Chen, Lihong; Zhang, Weiping; Xu, Jianming

    2016-01-01

    Previous studies have shown that rifampicin induced choleresis, the mechanisms of which have not been described. The aim of this study was to investigate the mechanisms underlying in vivo rifampicin-induced choleresis. In one experimental set, rats were treated chronically with rifampicin on days 1, 3 and 7. Serum and biliary parameters were assayed, and mRNA and protein levels, as well as the locations of the hepatic export transporters were analyzed by real-time PCR, western blot and immunofluorescence. Ductular mass was evaluated immunohistochemically. In another experimental set, rats received an acute infusion of rifampicin. The amount of rifampicin in bile was detected using HPLC. Biliary parameters were monitored following intrabiliary retrograde fluxes of the Cl(-)/HCO3 (-) exchange inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) in the infused rats. Biliary bicarbonate output increased in parallel to the augmented bile flow in response to rifampicin, and this effect was abolished with intrabiliary administration of DIDS, but not NPPB. The biliary secretion of rifampicin with increases in bile flow and biliary rifampicin in response to different infused doses of the antibiotic show no significant correlations. After rifampicin treatment, the expression level of anion exchanger 2 (AE2) increased, while the location of hepatic transporters did not change. However, RIF treatment did not increase ductular mass significantly. These results indicate that the increase in bile flow induced by rifampicin is mainly due to increased HCO3 (-) excretion mediated by increased AE2 protein expression and activity.

  4. Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography.

    Science.gov (United States)

    Eglon, Marc N; Duffy, Aoife M; O'Brien, Timothy; Strappe, Padraig M

    2009-11-01

    Adenoviral vectors are used extensively in human gene therapy trials and in vaccine development. Large-scale GMP production requires a downstream purification process, and liquid chromatography is emerging as the most powerful mode of purification, enabling the production of vectors at a clinically relevant scale and quality. The present study describes the development of a two-step high-performance liquid chromatography (HPLC) process combining anion exchange (AIEX) and gel filtration (GF) in comparison with the caesium chloride density gradient method. HEK-293 cells were cultured in ten-layer CellStacks() and infected with 10 pfu/cell of adenoviral vector expressing green fluorescent protein (Ad5-GFP). Cell-bound virus was harvested and benzonase added to digest DNA, crude lysate was clarified by centrifugation and filtration prior to HPLC. Chromatography fractions were added to HEK-293 cells and GFP expression measured using a fluorescent plate reader. Using AIEX then GF resulted in an adenoviral vector with purity comparable to Ad5-GFP purified by CsCl, whereas the reverse process (GF-AIEX) showed a reduced purity by electrophoresis and required further buffer exchange of the product. The optimal process (AIEX-GF) resulted in a vector yield of 2.3 x 10(7) pfu/cm(2) of cell culture harvested compared to 3.3 x 10(7) pfu/cm(2) for CsCl. The process recovery for the HPLC process was 36% compared to 27.5% for CsCl and total virion to infectious particle ratios of 18 and 11, respectively, were measured. We present a simple two-step chromatography process that is capable of producing high-quality adenovirus at a titre suitable for scale-up and clinical translation.

  5. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    Energy Technology Data Exchange (ETDEWEB)

    Duangtum, Natapol [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Junking, Mutita; Sawasdee, Nunghathai [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Cheunsuchon, Boonyarit [Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai, E-mail: limjindaporn@yahoo.com [Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  6. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    International Nuclear Information System (INIS)

    Duangtum, Natapol; Junking, Mutita; Sawasdee, Nunghathai; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2011-01-01

    Highlights: → Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). → The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. → The co-localization between kAE and KIF3B was detected in human kidney tissues. → A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. → KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl - /HCO 3 - exchange and the failure of proton (H + ) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.

  7. A study on dry decontamination using ion exchange polymer

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of A study on dry decontamination using ion exchange polymer , the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs

  8. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  9. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  10. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    Science.gov (United States)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  11. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.; O' Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  13. The properties of anion-exchange resines in mixtures of organic solvents and water

    International Nuclear Information System (INIS)

    Naveh, J.

    1978-02-01

    The behaviour of anion-exchange resins in water and mixtures of organic solvents and water was studied with special reference to the swelling of the polymer and to the density and enthalpy changes accompanying the swelling. A linear dependence was found between the swelling of dry resin and 1/X (X being the nominal cross-linking percent of the polymer). This dependence is interpreted theoretically. The nominal cross-linking percent,defined by the quantity ratio of the components, is corrected for real cross-linking percent. For the swelling of the resin in dilute aqueous alcohols, a preference for the alcohol was found which is enhanced as the molecular weight of the alcohol increases. Moreover, for certain mole fractions, the preference of the perchlorate form of the resin is greater than that of the chloride form. The temperature dependence of the swelling was measured and the invasion of an electrolyte (LiCl), dissolved in the aqueous-organic phase, into the resine phase was determined. Contrary to what usually happens in pure aqueous phase, where the electrolyte is rejected in accordance with the Donnan law, an almost total invasion of the electrolyte into the resin phase occurs. (author)

  14. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  15. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  16. The determination of Plutonium content in urine using anion exchange resin method

    International Nuclear Information System (INIS)

    Mukh-Syaifudin

    1996-01-01

    The possibility of internal contamination by plutonium is usually determined through urine analysis. The technique involved the co-precipitation of plutonium with rhodizonic acid by the addition of sodium hydroxide, the re-extraction of Pu into concentrated HCl, dissolution of Pu in 8 N HCI + Cl 2 solution, and the purification of plutonium through AGI-X8 anion exchange resin in columns with a diameter of 4 and 7 mm. The eluent was evaporated and the residu was dissolved in 8 N HCI and then deposited directly onto a Lexan slide or electrodeposited onto a stainless steel disc and the alpha emission of Pu was counted by using alpha spectrometry. The results showed that the recoveries of Pu-242 tracer by using column 7 mm and direct deposition and electrodeposition methods were 28.783% and 16.444%, respectively. The recoveries of Pu-242 by using column 4 mm and direct deposition and electrodeposition methods were 64.834% and 55.661%, respectively. From the percentage of recovery, it can be concluded that the direct deposition method was relatively better than the electrodeposition method. The recovery of Pu-242 by using column of 4 mm in diameter was higher than that of column 7 mm

  17. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    Science.gov (United States)

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  18. The fluoride content of an anion exchange resin in the fluoride form

    International Nuclear Information System (INIS)

    Kleijn, J.P. de; Zanten, B. van

    1977-01-01

    The fluoride content of an anion exchange resin in the F - -form depends on the material of the equipment used for the preparation. If a glass equipment is used too much fluorine is introduced. The experimental results are explained by taking into account a competition of F - and SiF 6 2- for the hydroxyl positions of the resin (OH - ). Because SiF 6 2- is bivalent and has a lower hydration energy than F - , the resin has a much larger affinity for this species than for F - . If a higher concentration of SiF 6 2- is generated by an intensive contact of the HF solution with glass, two OH-groups may be replaced by one SiF 6 2- . This results in a resin with 3 times as much fluorine as calculated from the chloride capacity. If the formation of SiF 6 2- is impossible as for example in teflon equipment, the same capacity is obtained for chloride and fluoride. (T.G.)

  19. Radiochemical study of Re/W adsorption behavior on a strongly basic anion exchange resin

    International Nuclear Information System (INIS)

    Gott, Matthew D.; Missouri Univ., Columbia, MO; Ballard, Beau D.; Redman, Lindsay N.

    2014-01-01

    Rhenium-186g is a radionuclide with a high potential for therapeutic applications. It emits therapeutic β - particles accompanied by low energy γ-rays, which allows for in-vivo tracking of the radiolabeled compound and dosimetry estimates. The current reactor production pathway 185 Re(n,γ) 186g Re produces low specific activity 186g Re, thereby limiting its therapeutic application. Work is underway to develop an accelerator-based, charged particle induced production method for high specific activity 186g Re from targets of enriched 186 W. To optimize the chemical 186g Re recovery method, batch studies have been performed to characterize the adsorption behavior of Re and W on a strongly basic anion exchange resin. An in-depth physicochemical profile was developed for the interaction of Re with resin material, which showed the reaction to be endothermic and spontaneous. Basic (NaOH) and acidic (HNO 3 ) matrices were used to determine the equilibrium distribution coefficients for Re and W. The resin exhibits the best affinity for Re at slightly basic conditions and little affinity above moderately acidic concentrations. Tungsten has low affinity for the resin above moderately basic concentrations. A study was performed to examine the effect of W concentration on Re adsorption, which showed that even a high ionic WO 4 2- strength of up to 1.9 mol kg -1 does not significantly compromise ReO 4 - retention on the resin. (orig.)

  20. Expression of Anion Exchanger 1 Sequestrates p16 in the Cytoplasm in Gastric, Colonic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Wei Shen

    2007-10-01

    Full Text Available p16INK4A (p16 binds to cyclin-dependent kinase 4/6, negatively regulates cell growth. Recent studies have led to an understanding of additional biologic functions for p16; however, the detailed mechanisms involved are still elusive. In this article, we show an unexpected expression of anion exchanger 1 (AEi in the cytoplasm in poorly, moderately differentiated gastric, colonic adenocarcinoma cells, in its interaction with p16, thereby sequestrating the protein in the cytoplasm. Genetic alterations of p16, AEi were not detectable. Forced expression of AEi in these cells sequestrated more p16 in the cytoplasm, whereas small interfering RNA-mediated silencing of AEi in the cells induced the release of p16 from the cytoplasm to the nucleus, leading to cell death, growth inhibition of tumor cells. By analyzing tissue samples obtained from patients with gastric, colonic cancers, we found that 83.33% of gastric cancers, 56.52% of colonic cancers coexpressed AEi, p16 in the cytoplasm. We conclude that AEi plays a crucial role in the pathogenesis of gastric, colonic adenocarcinoma, that p16 dysfunction is a novel pathway of carcinogenesis.

  1. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism

    Science.gov (United States)

    Faraldo-Gómez, José D.

    2017-01-01

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. PMID:29167180

  2. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism.

    Science.gov (United States)

    Ficici, Emel; Faraldo-Gómez, José D; Jennings, Michael L; Forrest, Lucy R

    2017-12-04

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. © 2017 Ficici et al.

  3. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  4. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  5. Electrochemical analysis of ion-exchange membranes with respect to a possible use in electrodialytic decontamination of soil polluted with heavy metals

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Laursen, Søren

    1997-01-01

    Transport numbers in different metal chloride solutions were estimated using the emf method for two ion-exchange membranes: Ionics CR67 HMR412 (cation-exchange membrane) and Ionics AR204 SXRA 7639 (anion-exchange membrane). The cation-exchange membrane was found to work nearly ideally for Na...... experiments taken as a simplified simulation of the electrokinetic decontamination method showed that it was possible to remove all ions in the simulated soil volume, with a sharp increase in the potential difference over the soil volume as a result, and that it was possible to control the metal content...

  6. Disiloxanes and Functionalized Silica Gels: One Route, Two Complementary Outcomes-Guanidinium and Pyridinium Ion-Exchangers.

    Directory of Open Access Journals (Sweden)

    Łukasz Tabisz

    Full Text Available Five novel disiloxane compounds comprising guanidinium and pyridinium moieties were obtained with high yields and purity. The verified synthetic pathways were then applied for modification of pre-functionalized silica gel, producing materials with the analogous organic side-chains. These halide-containing compounds and materials were then compared as to their ion-exchange properties: two disiloxanes proved to be effective in leaching different anions (nitrate, benzoate and ascorbate from solid to organic phase, and pyridinium-functionalized silica gels showed selectivity towards perchlorate ion, removing it from methanolic solutions with preference to other singly charged anions. The results presented demonstrate that both compounds and materials containing silicon-carbon bonds can be produced using the same methodology, but offer strikingly different application opportunities. Comparison of their properties provides additional insight into the binding mode of different anions and hints at how the transition from a flexible siloxane bridge to immobilization on solid surface influences anion-binding selectivity. Additionally, one of the siloxane dipodands was found to form a crystalline and poorly soluble nitrate salt (1.316 g/L, water, although it was miscible with a wide range of solvents as a hydrochloride. A possible explanation is given with the help of semi-empirical calculations. A simple, time- and cost-efficient automated potentiometric titration methodology was used as a viable analytical tool for studying ion-exchange processes for both compounds and materials, in addition to standard NMR, FT-IR and ESI-MS methods.

  7. Adsorption behaviour and kinetics of exchange of Zn2+ and Eu3+ ions on a composite ion exchanger

    International Nuclear Information System (INIS)

    Morcos, T.N.

    2007-01-01

    Equilibria and kinetics of exchange of both Zn2+ and Eu3+ ions on a composite ion-exchanger, cobalt hexacyanocobaltate (III) (CoHCC) incorporated in polyacrylonitrile (PAN), has been studied. The apparent capacity of CoHCC-PAN for Zn2+ and Eu3+ was determined and found to be 0.353 and 0.69 meq/g, respectively. The higher capacity for Eu3+ ions than that for Zn2+ ions is due to the higher electrostatic interaction strength of the higher charge ion with the surface. Freundlich and Langmiur adsorption isotherms were used to investigate solute (Zn2+ or Eu3+) exchange phenomenon at the liquid/solid interface. The results indicated that both Langmuir and Freundlich isotherms fit well for both Zn2+ and Eu3+. Sorption data have been also treated with the Dubinin-Radushkevich equation. The kinetics of Zn2+ or Eu3+ sorption on the composite seems to show that the reaction was proceed via two steps. The first one was fast and probably due to adsorption followed by a slow exchange reaction. In view of the data obtained on the effect of particle size and metal ion concentrations on the rate of exchange reaction, it is concluded that the mechanism for both ions was chemical control. Generally, it seems that there are two exchange sites chemically equivalent but present in pores of different sizes which lead to different degrees of dehydration of the ions sorbed on the two sites

  8. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  9. Influence of column type and chromatographic conditions on the ion-exchange chromatography of immunoglobulins.

    Science.gov (United States)

    Yang, Y B; Harrison, K

    1996-08-30

    Immunoglobulins are often purified by affinity chromatography. However, this technique is costly, can result in poor resolution for subclasses (or is only group specific), and leads to possible leaching of contaminants into the purified products. Ion-exchange chromatography has shown great potential and has found an increased usage in the purification of immunoglobulins. The aim of this study is to further understand the separation mechanism with emphasis on the influence of column type and chromatographic conditions on the peak shape, selectivity and changes in the elution patterns. Included are strong cation-exchange, strong anion-exchange and weak anion-exchange columns. Five immunoglobulin G antibodies were used as test probes. Some sera and ascites were also used in the study. Among the chromatographic conditions examined were mobile phase pH, buffer type, buffer concentration, gradient rate, and column temperature. Significant differences in the chromatographic behavior (elution pattern, peak shape and selectivity) of the test samples are discussed in regard to the column type and the chromatographic conditions.

  10. Process and device for the extraction of ions from a clear liquid or one containing matter in suspension with a ion exchanger

    International Nuclear Information System (INIS)

    Capitani, Enzo; Teissie, Jean.

    1982-01-01

    Process for the continuous extraction of ions from a clear liquid or one containing matter in suspension by the use of a bed of ion exchange grains which is fluidized inside a column by circulation of the liquid, characterized by the fact that the said bed is subject to cyclic pulsations, in order to obtain sorting of the grains by density, the heavier grains having fixed the maximum ions. This invention can be applied for the continuous extraction of any type of anion or cation or exchangeable salt by means of resins or inorganic exchangers, to avoid clogging and abrasion problems, and to obtain maximum extraction rate and capacity. An example is given of the treatment of a suspension for the extraction of uranium [fr

  11. Fixation and separation of the elements thorium and uranium using anion exchange resins in nitrate solution; Fixation et separation des elements thorium et uranium par les resines echangeuses d'anions en milieu nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Korgaonkar, V. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO{sub 3}){sub 6}{sup 2-} and UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} in solution these elements are present in the form of complexes having the general formula: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO{sub 3}. From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author) [French] On etudie l'echange du thorium et de l'uranium entre une resine anion base forte et un solvant mixte eau + ethanol charge en ions nitrates. On a suppose que, dans la resine, le thorium et l'uranium sont fixes sous forme de complexes Th(NO{sub 3}){sub 6}{sup 2-} et UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} en solution, ces elements sont engages dans des complexes de formule generale: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} On a pu degager une loi de variation des coefficients de partage du thorium et de l'uranium en fonction des concentrations des diverses especes en solution et de l'anion complexant NO{sub 3}{sup -}. On en a deduit les conditions operatoires optimales necessaires pour separer les deux elements a partir de leurs melanges. Enfin, dans ces conditions, on a etudie l'influence de quelques elements genants: Ba, Bi, Ce, La, Mo, Pb, Zr. La methode preconisee peut etre

  12. Application of pressurized ion exchange to separations of transplutonium elements

    International Nuclear Information System (INIS)

    Campbell, D.O.

    1980-01-01

    High-pressure ion exchange chromatography, used first for nucleic acid separations, was applied to the production of the heavier actinides, particularly the transcurium elements. Its use at the TRU plant is described. Future developments are considered briefly

  13. Overview of technologies to reprocess ion-exchange resins

    International Nuclear Information System (INIS)

    Gavrish, V.M.; Chernikova, N.P.; Ivanets, V.G.

    2010-01-01

    The article deals with overview of technologies for reprocessing of ion-exchange resins and determining the most optimal solutions for Ukraine. The technologies for cementations, thermal reprocessing, bituminization and deep decontamination are considered.

  14. Preparation of anionic clay–birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    International Nuclear Information System (INIS)

    Arulraj, James; Rajamathi, Michael

    2013-01-01

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni 3 Zn 2 (OH) 8 (OAc) 2 ·2H 2 O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: ► Anionic and cationic layered solid composites prepared. ► Ni–Zn hydroxyoxalate reacted with KMnO 4 to deposit MnO 2 in the interlayer. ► Birnessite layers coexist with anionic clay layers in the composites. ► Birnessite/anionic clay ratio controlled by amount of KMnO 4 used and reaction time

  15. Preparation of anionic clay-birnessite manganese oxide composites by interlayer oxidation of oxalate ions by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Arulraj, James [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India); Rajamathi, Michael, E-mail: mikerajamathi@rediffmail.com [Materials Research Group, Department of Chemistry, St. Joseph' s College, 36 Langford Road, Bangalore 560 027 (India)

    2013-02-15

    Oxalate intercalated anionic clay-like nickel zinc hydroxysalt was obtained starting from nickel zinc hydroxyacetate, Ni{sub 3}Zn{sub 2}(OH){sub 8}(OAc){sub 2}{center_dot}2H{sub 2}O, by anion exchange. The intercalated oxalate species was reacted with potassium permanganate in such a way that the layered manganese oxide formed was within the interlayer region of the anionic clay resulting in a layered composite in which the negative charges on the birnessite type manganese oxide layers compensate the positive charges on the anionic clay layers. Birnessite to anionic clay ratio could be varied by varying the reaction time or the amount of potassium permanganate used. - Graphical abstract: Nickel zinc hydroxyoxalate was reacted with potassium permanganate to get nickel zinc hydroxide birnessite composites in which the positive charges on the hydroxide layers are neutralized by the negative charges on birnessite layers. Highlights: Black-Right-Pointing-Pointer Anionic and cationic layered solid composites prepared. Black-Right-Pointing-Pointer Ni-Zn hydroxyoxalate reacted with KMnO{sub 4} to deposit MnO{sub 2} in the interlayer. Black-Right-Pointing-Pointer Birnessite layers coexist with anionic clay layers in the composites. Black-Right-Pointing-Pointer Birnessite/anionic clay ratio controlled by amount of KMnO{sub 4} used and reaction time.

  16. An investigation of the sorption/desorption of organics from natural waters by solid adsorbents and anion exchangers

    International Nuclear Information System (INIS)

    Larin, B.M.; Sedlov, A.S.

    2006-01-01

    The results of laboratory and operational tests at thermal and nuclear power stations on anion exchangers and solid adsorbents of makeup water treatment plants with regard to the sorption/desorption of organic substances in natural water and condensate are presented. The resins Amberlite trademark IRA-67, IRA-900, IRA-958Cl, Purolite registered 2 A-500P, Dowex TM3 Marathon, and others were tested. Retention of up to 60-80% of the ''organic'' material on the anion exchangers and organic absorbers installed at different places in the technological scheme of the water processing unit was attained. The possibility of a partial ''poisoning'' of the resins and the degradation of the working characteristics over the first year of operation are discussed. (orig.)

  17. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-06-15

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent.

  18. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-06-01

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  19. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    Science.gov (United States)

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ion exchange separation of minor elements from iron for the analysis of S/G sludge

    International Nuclear Information System (INIS)

    Park, Kyoung Kyun; Choi, Kwang Soon; Kim, Jong Goo

    2005-01-01

    The chemical data of minor elements in steam generator sludge could give information about the contamination sources such as a system corrosion, an intrusion of chemicals, etc. The major component of sludge is iron. Iron of a high concentration in a measuring solution worsens the determination limit of the minor elements in a spectroscopic atom analysis. Moreover, iron has so many absorption or emission bands in a wide wavelength range that it has a spectroscopic interference on the atomic spectroscopy of various minor elements such as B, Pb, etc. Thus, the quantitative separation of minor elements from the iron matrix is essential for their determination. Gas sublimation, co-precipitation, solvent extraction and ion exchange are used for this separation. Ion exchange chromatography is applied to the separation of specific minor elements. Ion exchange method has an advantage from the point of experimental space, waste production, and number of elements when applyed to radioactive samples. This presentation describes the results of a separation of some minor elements(Al, B, Ba, Ca, Cd, Co, Cr, Cu, Gd, Mg, Mn, Mo, Nd, Ni, P, Pb, Si, Sn, Sr, Ti, V, Yb, Zn and Zr) from synthetic iron samples by anionic and cationic exchange methods for the purpose of analyzing them in the S/G sludge from a power plant