WorldWideScience

Sample records for anionic ion exchangers

  1. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    Science.gov (United States)

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  2. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    Bicarbonate Ion Transport in Alk Block 13: Supplementary Note © 2013 . Published in Journal of the Electrochemical Society , Vol. Ed. 0 160, (9) (2013...for public release; distribution is unlimited. ... 60325.7-CH-II F994 Journal of The Electrochemical Society , 160 (9) F994-F999 (2013) 0013-4651/2013...160(9)/F994/6/$31.00 © The Electrochemical Society Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes Andrew M. Kiss,a

  3. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    Science.gov (United States)

    2012-01-01

    Electrochemical Society , 2013. 2. Wilson K. S. Chiu, "Part 1. Role of the 3-D Electrode Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells; Part 2. Ion and Water Transport in Alkaline Anion Exchange Membranes," technical seminar for the Army Research Laboratory (host: Dr. Deryn Chu), Adelphi, MD, August 13, 2012. (c) Presentations Number of Presentations: 2.00 Non Peer-Reviewed Conference Proceeding publications (other than abstracts): Received Paper TOTAL: Number of Non Peer-Reviewed

  4. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  5. A novel silica based click lysine anion exchanger for ion exchange chromatography.

    Science.gov (United States)

    Guo, Hongyue; Chu, Changhu; Li, Yan; Yang, Bingcheng; Liang, Xinmiao

    2011-12-21

    Ion chromatography (IC) is one of the most powerful analysis technologies for the determination of charged compounds. A novel click lysine stationary phase was prepared via Cu(I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) and applied to the analysis of inorganic ions. The chromatographic evaluation demonstrated good performance (e.g. the plate number of thiocyanate is ∼50,000 plates m(-1)) and effective separation ability for the common inorganic anions with aqueous Na(2)SO(4) eluent. The separation mechanism was observed to be mainly dominated by ion exchange interaction. The retention of these analytes is highly dependent on the pH value of eluent. Compared with the lysine stationary phase prepared via the conventional manner, the click lysine exchanger demonstrated shorter retention time and better ion separation characteristics under the same chromatographic conditions, which is a great advantage for rapid separation and analysis of inorganic ions.

  6. Recent progress and applications of ion-exclusion/ion-exchange chromatography for simultaneous determination of inorganic anions and cations.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Tanaka, Kazuhiko

    2012-01-01

    One of the ultimate goals of ion chromatography is to determine both anions and cations found in samples with a single chromatographic run. In the present article, recent progress in ion-exclusion/ion-exchange chromatography for the simultaneous determinations of inorganic anions and cations are reviewed. Firstly, the principle and the control for the simultaneous separation and detection of analyte ions using ion-exclusion/cation-exchange chromatography with a weakly acidic cation-exchange column are outlined. Then, advanced chromatographic techniques in terms of analytical time, selectively and sensitivity are summarized. As a related method, ion-exclusion/anion-exchange chromatography with an anion-exchange column could be used for the simultaneous determination of inorganic nitrogen species, such as ammonium, nitrite and nitrate ions. Their usefulness and applications to water-quality monitoring and related techniques are also described.

  7. Simultaneous determination of NH4+, NO2(-) and NO3(-) by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH(-)-form with basic eluent has been developed. The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase. This system is useful for simultaneous separation and determination of ammonium ion (NH4+), nitrite ion (NO2(-)), and nitrate ion (NO3(-)) in water samples. The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column. In this study, several separation columns, which consisted of different particle sizes, different functional groups and different anion-exchange capacities, were compared. As the results, the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions. In the optimization of the basic eluent, lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L, considering the resolution of analyte ions and the whole retention times. In the optimal conditions, the relative standard deviations of the peak areas and the retention times of NH4+, NO2(-), and NO3(-) ranged 1.28% - 3.57% and 0.54% - 1.55%, respectively. The limits of detection at signal-to-noise of 3 were 4.10 micromol/L for NH4+, 1.87 micromol/L for NO2(-) and 2.83 micromol/L for NO3(-).

  8. DETERMINATION OF ION EXCHANGE EQUILIBRIUM CONSTANTS FOR THE WEAK ACID CATION AND THE WEAK BASE ANION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    TAOZuyi; WANGChangshou

    1992-01-01

    The general procedure based on the potentiometric titration has developed.According to the procedure,the rational equilibrium constants of the ion exchange reactions RH/Na,RH/Ca,RH/Sr,RH/Ba for the weak acid cation exchange resin D725 and ROH/Cl for the weak base anion exchange resin D705 have been determined.

  9. Evaluation of the thermal effect on separation selectivity in anion-exchange processes using superheated water ion-exchange chromatography.

    Science.gov (United States)

    Shibukawa, Masami; Taguchi, Akihiko; Suzuki, Yusuke; Saitoh, Kazunori; Hiaki, Toshihiko; Yarita, Takashi

    2012-07-07

    The thermal effect on retention and separation selectivity of inorganic anions and aromatic sulfonate ions in anion-exchange chromatography is studied on a quaternized styrene-divinylbenzene copolymer anion-exchange column in the temperature range of 40-120 °C using superheated water chromatography. The selectivity coefficient for a pair of identically charged anions approaches unity as temperature increases provided the ions have the same effective size, such that the retention of an analyte ion decreases with an increase in temperature when the analyte ion has stronger affinity for the ion-exchanger than that of the eluent counterion, whereas it increases when it has weaker affinity. The change in anion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions. At elevated temperatures, especially in superheated water, the electrostatic interaction or association of the ions with the fixed ion in the resin phase becomes a predominant factor resulting in a different separation selectivity from that obtained at ambient temperature.

  10. Adsorption Mechanisms of Heavy Metal Ions from Drinking Water by Weakly Basic Anion Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    赵璇; 何仕均; 杨磊

    2002-01-01

    Heavy metal micro-contaminants can be removed from water sources technologies. Weakly basic anion exchange resins offer the best ability to remove trace amounts of heavy metals with high selectivity. This paper discusses how weakly basic resins adsorb heavy metals using two different approaches. The removal of mercury, cadmium, and lead ions is based on the fundamental theory of coordination chemistry. The mechanism is not ion exchange but extractive adsorption of heavy metal salts. However, the marked preferential adsorption of chromate by weakly basic anion exchange can be explained using the traditional theory of ion exchange. A lab-scale study produced positive results for the removal of trace amounts of heavy metal ions from drinking water.

  11. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    Science.gov (United States)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  12. THE TESTS AND MECHANISM ABOUT SODIUM IONS FROM AN ANION EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    ZhuXingbao; YuJinchun; 等

    1996-01-01

    There exists a universal phenomena that sodium ions are leaked from the strong basic anion exdchanger in operation,which has been puzzling the researchers working in the field of water treatment for years.It is well known that the leakage of sodium ions will seriously affect the pruity of effluent.On the basis of lots of laboratory and industrial experiments,the mechanism of the sodium ions leaked from an anion exchanger has been preliminarily made out and some new chemical reaction equations as well as some improving measures have been put forward in this article.

  13. Simultaneous determination of NH4+, NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent%Simultaneous determination of NH4+,NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent

    Institute of Scientific and Technical Information of China (English)

    Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH--form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion ( NH4+ ),nitrite ion (NO2-),and nitrate ion (NO3-) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions,In the optimization of the basic eluent,lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH4+,NO2-,and NO3- ranged 1.28% - 3.57% and 0.54% - 1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH4+,1.87 μmol/L for NO2- and 2.83 μmol/L for NO3-.

  14. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review.

    Science.gov (United States)

    Zatirakha, A V; Smolenkov, A D; Shpigun, O A

    2016-01-21

    In the last decade the developments in the field of ion chromatography (IC) were aimed at increasing the efficiency, sensitivity and rapidity of analysis, as well as on improving separation selectivity. Since selectivity and efficiency to the large extent depend on the surface chemistry of the stationary phase, the development of novel anion exchangers remains one of the priority tasks in modern IC. The exact chemistry of commercially available resins is not known and not many literature data devoted to the procedures of preparing anion exchangers for IC have become available in the last 10-15 years. However, the knowledge about the surface chemistry of anion exchangers can provide understanding of the trends in selectivity and efficiency changes, as well as help with the choice of the stationary phase type suitable for solving a particular analytical task. The current review is devoted to the methods of preparing anion exchangers based on polystyrene-divinylbenzene (PS-DVB) and ethylvinylbenzene-divinylbenzene (EVB-DVB) for IC of inorganic and small organic anions and is aimed at demonstrating the improvement of their performance over the years, which was brought by the development of the new types of stationary phase architecture.

  15. Perchlorate Selectivity of Anion Exchange Resins as Evaluated Using Ion-Selective Electrodes.

    Science.gov (United States)

    Yamamoto, Kenji; Mitsuda, Shin'ya; Ohtake, Naomi; Murashige, Natsuki; Ohmuro, Satoshi; Yuchi, Akio

    2017-01-01

    The selectivity coefficients reported for perchlorate of the high selectivity on anion exchange resins (AXRs) have not been consistent with one another. Possible errors by the unique use of four parameters (concentrations of two anions in two phases) were experimentally verified. The concentrations of perchlorate buffered at low levels (10(-6) - 10(-4) mol L(-1)) by two forms of AXRs were successfully determined by potentiometry with a perchlorate ion-selective electrode. This gave reasonable coefficients. The coefficients for perchlorate on several AXRs were independent of the relative exchange (RE), in contrast to the previous reports. On the other hand, the coefficients for fluoride of the low selectivity that were examined for comparison decreased with an increase in RE, and the dependency was more remarkable for the resins of large exchange capacity.

  16. Ion exchange and intercalation properties of layered double hydroxides towards halide anions.

    Science.gov (United States)

    Costantino, Umberto; Vivani, Riccardo; Bastianini, Maria; Costantino, Ferdinando; Nocchetti, Morena

    2014-08-14

    A layered double hydroxide (LDH) obtained by the urea method, having an empirical formula [Zn(0.61)Al(0.39)(OH)2](CO3)(0.195)·0.50H2O, has been converted into the corresponding chloride form [Zn(0.61)Al(0.39)(OH)2]Cl(0.39)·0.47H2O by making the solid come into contact with a suitable HCl solution. The intercalation of the other halide anions (X(-) = F(-), Br(-), I(-)) via the Cl(-)/X(-) anion exchange has been attained and the respective anion exchange isotherms have been obtained with the batch method. The analysis of the isotherms indicates that the selectivity of LDH towards the halides decreases with the increase of the X(-) ionic radius, the selectivity order being F(-) > Cl(-)≥ Br(-) > I(-). The CO3(2-)/Cl(-) isotherm has also been reported to highlight the extraordinary selectivity of LDH towards carbonate anions. Samples taken from the isotherms at different exchange degrees were analyzed by X-ray diffraction, thermogravimetry and thermodiffractometry to obtain information about the ion exchange mechanism. The Cl(-)/Br(-) and the reverse Br(-)/Cl(-) exchanges occur with the formation of solid solutions, very likely because of the similar ionic radius of the exchanging anions. In contrast, in the Cl(-)/F(-) and Cl(-)/I(-) exchange, the co-existence of the Cl(-) and F(-) (or I(-)) phases in the same sample was detected, indicating the occurrence of a first order phase transition, in which the starting phase is transformed into the final phase, as the process goes on. The variation of the interlayer distances of ZnAl-X intercalation compounds with the hydration degree has been interpreted with a structural model based on the nesting of the guest species into the trigonal pockets of the brucite-like layer surface. Rietveld refinements of the phases with the maximum F(-), Br(-) and I(-) content were also performed and compared with the above model, giving indications of the arrangement and order/disorder of the halide anions in the interlayer region.

  17. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides.

    Science.gov (United States)

    Motoyama, Akira; Xu, Tao; Ruse, Cristian I; Wohlschlegel, James A; Yates, John R

    2007-05-15

    Shotgun proteomics typically uses multidimensional LC/MS/MS analysis of enzymatically digested proteins, where strong cation-exchange (SCX) and reversed-phase (RP) separations are coupled to increase the separation power and dynamic range of analysis. Here we report an on-line multidimensional LC method using an anion- and cation-exchange mixed bed for the first separation dimension. The mixed-bed ion-exchange resin improved peptide recovery over SCX resins alone and showed better orthogonality to RP separations in two-dimensional separations. The Donnan effect, which was enhanced by the introduction of fixed opposite charges in one column, is proposed as the mechanism responsible for improved peptide recovery by producing higher fluxes of salt cations and lower populations of salt anions proximal to the SCX phase. An increase in orthogonality was achieved by a combination of increased retention for acidic peptides and moderately reduced retention of neutral to basic peptides by the added anion-exchange resin. The combination of these effects led to approximately 100% increase in the number of identified peptides from an analysis of a tryptic digest of a yeast whole cell lysate. The application of the method to phosphopeptide-enriched samples increased by 94% phosphopeptide identifications over SCX alone. The lower pKa of phosphopeptides led to specific enrichment in a single salt step resolving acidic phosphopeptides from other phospho- and non-phosphopeptides. Unlike previous methods that use anion exchange to alter selectivity or enrich phosphopeptides, the proposed format is unique in that it works with typical acidic buffer systems used in electrospray ionization, making it feasible for online multidimensional LC/MS/MS applications.

  18. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Directory of Open Access Journals (Sweden)

    Wataru Aoyagi

    2016-06-01

    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  19. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    Science.gov (United States)

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture.

  20. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  1. High performance ion chromatography of haloacetic acids on macrocyclic cryptand anion exchanger.

    Science.gov (United States)

    Bruzzoniti, Maria Concetta; De Carlo, Rosa Maria; Horvath, Krisztian; Perrachon, Daniela; Prelle, Ambra; Tófalvi, Renáta; Sarzanini, Corrado; Hajós, Péter

    2008-04-11

    A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.

  2. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  3. Improved and selective platinum recovery from spent alpha-alumina supported catalysts using pretreated anionic ion exchange resin.

    Science.gov (United States)

    Shams, K; Goodarzi, F

    2006-04-17

    Improved and selective recovery of platinum from a spent dehydrogenation platinum alpha-alumina supported catalyst using a strong basic ion exchange resin is reported. Platinum and other precious metal group (PMG) complexes are leached using concentrated hydrochloric acid along with about 0.20 vol.% nitric acid as an oxidizing agent from de-coked and crushed spent catalyst. Effects of hydrochloric acid concentration, time, and temperature in leaching stage are investigated. The strong basic anionic resin is treated by sodium hydroxide solution to replace chloride anion by hydroxyl group ion. The supernatant of the leaching process is passed through a fixed column of hydroxylated strong base anionic resin. The treated resin on which the platinum complex is adsorbed is dried and burned in an oxidizing atmosphere at 750-800 degrees C. The recovered gray metallic powder is mainly platinum. Results compared with those obtained from untreated anionic resin show that adsorption of platinum complexes onto the treated anionic resin is more selective and the yield of separation is considerably improved. The breakthrough curves of the pretreated anion exchanger and that of untreated exchange resin reveals that the capacity of the hyroxilated resin is decreased by about 14%. These breakthrough curves can be used for calculation of height of a practical exchange plate (HPEP) for design purposes.

  4. Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for bio-electrochemic

  5. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  6. Anionic Gallium-Based Metal;#8722;Organic Framework and Its Sorption and Ion-Exchange Properties

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis; Kim, Sun Jin; Wu, Haohan; Xu, Wenqian; Borkowski, Lauren A.; Li, Jing; Parise, John B. (Kwangju); (Rutgers); (SBU)

    2012-04-30

    A gallium-based metal-organic framework Ga{sub 6}(C{sub 9}H{sub 3}O{sub 6}){sub 8} {center_dot} (C{sub 2}H{sub 8}N){sub 6}(C{sub 3}H{sub 7}NO){sub 3}(H{sub 2}O){sub 26} [1, Ga{sub 6}(1,3,5-BTC){sub 8} {center_dot} 6DMA {center_dot} 3DMF {center_dot} 26H{sub 2}O], GaMOF-1; BTC = benzenetricarboxylate/trimesic acid and DMA = dimethylamine, with space group I{bar 4}3d, a = 19.611(1) {angstrom}, and V = 7953.4(6) {angstrom}{sup 3}, was synthesized using solvothermal techniques and characterized by synchrotron-based X-ray microcrystal diffraction. Compound 1 contains isolated gallium tetrahedra connected by the organic linker (BTC) forming a 3,4-connected anionic porous network. Disordered positively charged ions and solvent molecules are present in the pore, compensating for the negative charge of the framework. These positively charged molecules could be exchanged with alkali-metal ions, as is evident by an ICP-MS study. The H{sub 2} storage capacity of the parent framework is moderate with a H{sub 2} storage capacity of {approx}0.5 wt % at 77 K and 1 atm.

  7. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    Science.gov (United States)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  8. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    Science.gov (United States)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  9. Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers.

    Science.gov (United States)

    Hubicki, Z; Wołowicz, A; Leszczyńska, M

    2008-11-30

    Palladium and its compounds find wide application in industry as a catalytic agent in different manufacture processes. Recovery of precious metals from industrial wastes is difficult and time consuming but in spite of these disadvantages it becomes profitable. Palladium(II) ions sorption from various chloride solutions of the composition: 0.1-6.0M HCl-0.00056 M Pd(II), 1.0M ZnCl(2)-0.1M HCl-0.00056 M Pd(II), 1.0M AlCl(3)-0.1M HCl-0.00056 M Pd(II) on the weakly and strongly basic anion exchangers (Varion ATM, Varion ADM and Varion ADAM) was discussed. The sorption research of Pd(II) ions on these resins was carried out by means of static and dynamic methods. The dynamic processes were applied in order to determine the breakthrough curves of Pd(II) ions. Moreover, the working ion-exchange capacities as well as the weight and bed distribution coefficients were determined from the Pd(II) breakthrough curves. The recovery factors of Pd(II) ions (% R) depending on the phase contact time were obtained by means of static methods. The highest ion-exchange capacities for the 0.1-6.0M HCl-0.00056 M Pd(II) systems were obtained for the weakly basic ion-exchange resin Varion ADAM.

  10. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  11. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Gas-phase hydrogen deuterium exchange (HDX), collision cross section (CCS) measurement, and molecular dynamics simulation (MDS) techniques were utilized to develop and compare three methods for estimating the relative surface area exposure of separate peptide chains within bovine insulin ions. Electrosprayed [M - 3H]3- and [M - 5H]5- insulin ions produced a single conformer type with respective collision cross sections of 528 ± 5 Å2 and 808 ± 2 Å2. [M - 4H]4- ions were comprised of more compact (Ω = 676 ± 3 Å2) and diffuse (i.e., more elongated, Ω = 779 ± 3 Å2) ion conformer types. Ions were subjected to HDX in the drift tube using D2O as the reagent gas. Collision-induced dissociation was used to fragment mobility-selected, isotopically labeled [M - 4H]4- and [M - 5H]5- ions into the protein subchains. Deuterium uptake levels of each chain can be explained by limited inter-chain isotopic scrambling upon collisional activation. Using nominal ion structures from MDS and a hydrogen accessibility model, the deuterium uptake for each chain was correlated to its exposed surface area. In separate experiments, the per-residue deuterium content for the protonated and deprotonated ions of the synthetic peptide KKDDDDDIIKIIK were compared. The differences in deuterium content indicated the regional HDX accessibility for cations versus anions. Using ions of similar conformational type, this comparison highlights the complementary nature of HDX data obtained from positive- and negative-ion analysis.

  12. Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column.

    Science.gov (United States)

    Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi

    2003-05-16

    This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system.

  13. Ion-exclusion chromatography with the direct UV detection of non-absorbing inorganic cations using an anion-exchange conversion column in the iodide-form.

    Science.gov (United States)

    Mori, Masanobu; Itabashi, Hideyuki; Ikedo, Mikaru; Tanaka, Kazuhiko

    2006-08-15

    An ion-exclusion chromatographic method for the direct UV detection of non-absorbing inorganic cations such as sodium (Na(+)), ammonium (NH(4)(+)) and hydrazine (N(2)H(5)(+)) ions was developed by connecting an anion-exchange column in the I(-)-form after the separation column. For example, NH(4)(+) is converted to a UV-absorbing molecule, NH(4)I, by the anion-exchange column in the I(-)-form after the ion-exclusion separation on anion-exchange column in the OH(-)-form with water eluent. As a result, the direct UV detection of Na(+), NH(4)(+) and N(2)H(5)(+) could be successfully obtained as well as the well-resolved separation. The calibration graphs of the analyte cations detected with UV at 230nm were linear in the range of 0.001-5.0mM. The detection limits at S/N=3 of the cations were below 0.1muM. This method was applied to real water analysis, the determination of NH(4)(+) in river and rain waters, or that of N(2)H(5)(+) in boiler water, with the satisfactory results. This could be applied also to low- or non-absorbing anions such as fluoride or hydrogencarbonate ions by the combination of a weakly acidic cation-exchange resin in the H(+)-form as the separation column and the anion-exchange conversion column.

  14. Adsorption of Zinc and Cyanide from Cyanide Effluents on Anionic Ion-exchange Resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-li; FANG Tao; YU Xian-jin

    2013-01-01

    The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system.Factors influencing the adsorption rates such as resin selection,resin amounts,contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy(SEM-EDS) was used in the analysis.The present study shows that the adsorption capacity of resin 201 ×7 is better than that of resin 301.The adsorption process was relatively fast and came to equilibrium after 60 min.The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well.The equilibrium data could also be described well by Langmuir isotherm model.Thermodynamic parameters such as enthalpy change(△H0),free energy change(△G0) and entropy change(△S0) were calculated and the adsorption process was spontaneous and endothermic.

  15. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cation- and anion-exchange resin columns using water eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Nakatani, Nobutake; Mori, Masanobu; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2012-07-01

    A unified ion-exclusion chromatography (IEC) system for monitoring anionic and cationic nutrients like NH4+, NO2-, NO3-, phosphate ion, silicate ion and HCO3- was developed and applied to several environmental waters. The IEC system consisted of four IEC methodologies, including the IEC with ultraviolet (UV) form connected with detection at 210 nm for determining NH4+ on anion-exchange separation column in OH anion-exchange UV-conversion column in I- form in tandem, the IEC with UV-detection at 210 nm for determining simultaneously NO3- and NO3- on cation-exchange separation column in H+ form, the IEC with UV-detection at 210 nm for determining HCO3- on cation-exchange separation column in H+ form connected with anion-exchange UV-conversion column in I- form in tandem, and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H+ form. These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients. Using this sequential water quality monitoring system, the analytical performances such as calibration linearity, reproducibility, detection limit and recovery were also tested under the optimized chromatographic conditions. This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  16. Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins

    Science.gov (United States)

    Jachuła, Justyna; Hubicki, Zbigniew

    2013-09-01

    The sorption of Cr(VI) and As(V) from the aqueous solutions with the polyacrylate anion exchangers of the strong base functional groups Amberlite IRA 458 and Amberlite IRA 958 was studied. The studies were carried out by the static-batch method. The concentration of Cr(VI) and As(V) ions in the aqueous solution was determined by the UV-VIS spectrophotometer. The influence of several parameters was studied with respect to sorption equilibrium. The phase contact time and the concentration affect the sorption process. The equilibrium state was established already after 15 min of phase contact time. Maximum uptake of Cr(VI) and As(V) occurred at pH 5 and 10, respectively. The determined kinetic parameters imply that the sorption process proceeds according to the equation type of pseudo second-order. Sorption equilibrium data were correlated with the Langmuir and Freundlich isotherms. Removal of As(V) ions on macroporous Amberlite IRA 900 decreased about 12 % in presence of other anions (Cl-, NO3 -, SO4 2-) in the solution. The sorption was temperature dependent.

  17. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  18. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties

    Science.gov (United States)

    Morawski, Markus; Reinert, Tilo; Meyer-Klaucke, Wolfram; Wagner, Friedrich E.; Tröger, Wolfgang; Reinert, Anja; Jäger, Carsten; Brückner, Gert; Arendt, Thomas

    2015-12-01

    Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4-0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components.

  19. Multi-modal applicability of a reversed-phase/weak-anion exchange material in reversed-phase, anion-exchange, ion-exclusion, hydrophilic interaction and hydrophobic interaction chromatography modes.

    Science.gov (United States)

    Lämmerhofer, Michael; Nogueira, Raquel; Lindner, Wolfgang

    2011-06-01

    We recently introduced a mixed-mode reversed-phase/weak anion-exchange type separation material based on silica particles which consisted of a hydrophobic alkyl strand with polar embedded groups (thioether and amide functionalities) and a terminal weak anion-exchange-type quinuclidine moiety. This stationary phase was designed to separate molecules by lipophilicity and charge differences and was mainly devised for peptide separations with hydroorganic reversed-phase type elution conditions. Herein, we demonstrate the extraordinary flexibility of this RP/WAX phase, in particular for peptide separations, by illustrating its applicability in various chromatographic modes. The column packed with this material can, depending on the solute character and employed elution conditions, exploit attractive or repulsive electrostatic interactions, and/or hydrophobic or hydrophilic interactions as retention and selectivity increments. As a consequence, the column can be operated in a reversed-phase mode (neutral compounds), anion-exchange mode (acidic compounds), ion-exclusion chromatography mode (cationic solutes), hydrophilic interaction chromatography mode (polar compounds), and hydrophobic interaction chromatography mode (e.g., hydrophobic peptides). Mixed-modes of these chromatographic retention principles may be materialized as well. This allows an exceptionally flexible adjustment of retention and selectivity by tuning experimental conditions. The distinct separation mechanisms will be outlined by selected examples of peptide separations in the different modes.

  20. Characterization of oligosaccharides with capillary high performance anion exchange chromatography hyphenated to pulsed amperometric detection and ion trap mass spectrometry : application to the analysis of human lysosomal disorders

    NARCIS (Netherlands)

    Bruggink, Cornelis

    2013-01-01

    The development of a capillary ion chromatograph is described together with a matching desalter. This desalter made it possible to use on-line a mass spectrometer. The mass spectrometer enables partly to characterize carbohydrates eluting from the anion exchange column. This separation technology is

  1. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  2. Characterization of phosphoantigens by high-performance anion-exchange chromatography-electrospray ionization ion trap mass spectrometry and nanoelectrospray ionization ion trap mass spectrometry.

    Science.gov (United States)

    Pont, F; Luciani, B; Belmant, C; Fournié, J J

    2001-08-01

    New phosphorylated microbial metabolites referred to as phosphoantigens activate immune responses in humans. Although these molecules have leading applications in medical research, no direct method allows their rapid and unambiguous structural identification. Here, we interfaced online HPAEC (high performance anion-exchange chromatography) with ESI-ITMS (electrospray ionization ion trap mass spectrometry) to identify such pyrophosphorylated molecules. A self-regenerating anion suppressor located upstream of electrospray ionization enabled the simultaneous detection of pyrophosphoester by conductimetry, UV and MS. By HPAEC-ITMS and HPAEC-ITMS2, a single run permitted characterization of reference phosphoantigens and of related structures. Although all compounds were resolved by HPAEC, MS enabled their detection and identification by [M-H]- and fragment ions. Isobaric phosphoantigen analogues were also separated by HPAEC and distinguished by MS2. The relevance of this device was demonstrated for phosphoantigens analysis in human urine and plasma. Furthermore, identification of natural phosphoantigens by automatically generated 2D mass spectra from nano-ESI-ITMS is presented. This last technique permits the simultaneous performance of molecular screening of natural phosphoantigen extracts and their identification.

  3. Water quality monitoring system for determination of ionic nutrients by ion-exclusion chromatography with spectrophotometric detection on cationand anion-exchange resin columns using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Nobutakc NAKATANI; Masanobu MORI; Nobukazu NAKAGOSHI; Kazuhiko TANAKA

    2012-01-01

    A unified ion-exclusion chromatography(IEC)system for monitoring anionic and cationic nutrients like NH+4,NO-2,NO-3,phosphate ion,silicate ion and HCO-3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV)detection at 210 nm for determining NH-4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I-form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO-2 and NO-3 on cation-exchange separation column in H+ form,the IEC with UV-detection at 210 nm for determining HCO-3 on cation-exchange separation column in H+ form connected with anionexchange UV-conversion column in I-form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.

  4. Effects of pH and Competing Anions on the Solution Speciation of Arsenic by Ion Exchange Resins

    Energy Technology Data Exchange (ETDEWEB)

    Impellitteri, Christopher A.; Ryan, JAmes A.; Al-Abed, Souhail R.; Scheckel, Kirk G.; Randall, Paul M.; Richardson, Collin A.

    2003-03-26

    Anion-exchange resins (AER) are used to differentiate As(V) and As(III) by retaining As(V) and allowing As(III) to pass through. AERs allow rapid speciation of As in the field which precludes the effects of sample preservation on As speciation. Aqueous environmental samples contain anions that may interfere with the speciation of As. This study compares the speciation of As by two commercially available AERs. A silica-based AER was selected for further study. As(V) and As(III) were passed through the AER in the presence of NO3 -, SO4 2-, HPO4 2-, Cl- and HCO3 - at pH 4, 6 and 8. Recoveries of As species in mixed systems range between 90 to 100%. Breakthrough curves for As(V) are presented which allow calculation of loading rates. HPO4 2- has the greatest effect on the speciation of As by AER.

  5. Adsorption properties of Ag(I), Au(III), Pd(II) and Pt(IV) ions on commercial 717 anion-exchange resin

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; LIU Guang-feng; CHEN Da-lin; CHENG Shao-yi; TANG Ning

    2009-01-01

    The adsorption properties of the four precious metal ions (Ag(Ⅰ),Au(Ⅲ),Pd(Ⅱ) and Pt(Ⅳ)) on the commercial Cl--form 717 strongly basic anion-exchange resin were studied in detail.The effects of the contact time,solution acidity,and concentrations of Cl~- and Pb~(2+) ions on the adsorption properties were studied by the batch method.Then,the column method was conducted under the optimized adsorption conditions (pH=3.0).The effects of the sample loading flow rate and the length-to-diameter ratios of the columns were investigated.The precious metal ions adsorbed could not be eluted completely after the saturated adsorption because the precious metal ions were found to be reduced to their metallic states during the adsorption process.So,it is recommended that the commercial Cl~--form 717 strongly basic anion-exchange resin should be decomposed directly to recovery the precious metals after the saturated adsorption.

  6. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.

    Science.gov (United States)

    Weiber, E Annika; Jannasch, Patric

    2014-09-01

    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells.

  7. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  8. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  9. Durability and Performance of Polystyrene-b-Poly(vinylbenzyl trimethylammonium) Diblock Copolymer and Equivalent Blend Anion Exchange Membranes

    Science.gov (United States)

    2015-01-01

    SECURITY CLASSIFICATION OF: Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study... Anion Exchange Membranes The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...Copolymer and Equivalent Blend Anion Exchange Membranes Report Title Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion

  10. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    Science.gov (United States)

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  11. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  12. Rapid simultaneous analysis of oxyhalides and inorganic anions in aqueous media by ion exchange chromatography with indirect UV detection

    Directory of Open Access Journals (Sweden)

    Mohammadine El Haddad

    2015-01-01

    Best separations have also occured between(Cl-/ClO3- and(Br-/BrO3- with good a resolution. Detections limits (S/N = 3 ofBrO3-,ClO3-andNO3- were 2 and 5 ppm for inorganic anions Cl−, Br− andSO42-. The method had a good linearity (r2 > 0.995 and high precision (relative standard deviation <4%. The main reason for the detector choice was that UV detectors are widespread in educational and low level equipment laboratories. Indirect photometric detection is an attractive and inexpensive approach and the system is versatile.

  13. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  14. Local structures of ions at ion-exchange resin/solution interface.

    Science.gov (United States)

    Harada, Makoto; Okada, Tetsuo

    2005-08-26

    The local structures of Cl- and Br- in anion-exchange resins have been studied by X-ray absorption fine structure (XAFS), and separation selectivity is discussed on the basis of results. When two different anion-exchange resins having trimethylammonium and dimethylammonium groups as anion-exchange groups are employed for ion-exchange experiments, slightly higher Br- selectivity has been obtained with the former. XAFS has indicated that the average hydration numbers for a given anion is not affected by the structure of the ion-exchange group, but that the extent of ion-association between the anion and the ion-exchange groups depends on the type of the ion-exchange group. Shorter interaction distance (and in turn stronger ion-association) has been confirmed for the dimethylammonium-type resin, and is consistent with lower Br- selectivity of this resin.

  15. Organic Ion Exchangers. Synthesis, Characterization and Applications

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan

    2005-01-01

    @@ 1Introduction Organic ion exchangers in beads form are the most widely utilized materials in the purification, concentration and separation processes of inorganic and organic ions in many fields of science and industry[1,2]. Some original contributions in the preparation and characterization of porous organic ion exchangers will be summarized first. The main types of synthetic ion exchangers were obtained by polymer-analogous reactions performed on porous styrene-divinylbenzene copolymers (S-DVB)[3,4] and porous acrylonitrile-DVB copolymers (AN-DVB) [5,6]. Porous S-DVB copolymers were used as substrate for the synthesis of weak and strong base anion exchangers by chloromethylation reaction followed by the reaction with secondary or tertiary amines.Different chloromethylation agents were employed. Weak base anion exchangers with tertiary or primary amine groups were prepared starting from AN-DVB copolymers by aminolyse-hydrolyse reaction with asymmetrical diamines or ethylenediamine (EDA), respectively. Strong base anion exchangers were obtained by quaternization reaction with alkyl halides of the tertiary amine groups. Chelating ion exchangers with iminodiacetic groups were prepared by the carboxymethylation reaction of the primary amine groups above mentioned and of those contained in a vinylamine-ethylacrylate-DVB copolymer, vinylamine units being generated by a Hofmann degradation reaction of the primary amide groups contained in the acrylamide-ethylacrylate-DVB copolymerp[7]. An amphoteric ion exchanger was prepared by the hydrolysis of the ester groups after the Hofmann degradation.

  16. Assessment of capillary anion exchange ion chromatography tandem mass spectrometry for the quantitative profiling of the phosphometabolome and organic acids in biological extracts.

    Science.gov (United States)

    Kvitvang, Hans F N; Kristiansen, Kåre A; Bruheim, Per

    2014-11-28

    Metabolic profiling has become an important tool in biological research, and the chromatographic separation of metabolites coupled with mass spectrometric detection is the most frequently used approach for such studies. The establishment of robust chromatographic methods for comprehensive coverage of the anionic metabolite pool is especially challenging. In this study, the development of a capillary ion exchange chromatography (capIC) - negative ESI tandem mass spectrometry (MS/MS) workflow for the quantitative profiling of the phosphometabolome (e.g., sugar phosphates and nucleotides) is presented. The chromatographic separation and MS/MS conditions were optimized, and the precision of repetitive injections and accuracy in terms of error percentage to true concentration were assessed. The precision is excellent for a capillary flow system with an average CV% of 8.5% for a 50-fmol standard injection and in the lower 2.4-4.4% range for higher concentrations (500-7,500 fmol). The limit of detection (LOD) ranges from 1 to 100 nM (5-500 fmol injected on column), and the limit of quantitation (LOQ) ranges from 1 to 500 nM (5-2,500 fmol injected on column). A fast gradient method with the injection of 50% methanol in water between analytical samples is needed to eliminate carry-over and ensure optimal re-equilibration of the column. Finally, the quantitative applicability of the system was tested on real biological matrices using the constant-volume standard addition method (SAM). Extracts of the human kidney Hek293 cell line were spiked with increasing concentrations of standards to determine the concentration of each metabolite in the sample. Forty-four metabolites were detected with an average uncertainty of 4.1%. Thus, the capIC-MS/MS method exhibits excellent selectivity, sensitivity and precision for the quantitative profiling of the phosphometabolome.

  17. Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gab-Jin; Bong, Soo-Yeon; Ryu, Cheol-Hwi [Hoseo University, Asan (Korea, Republic of); Lim, Soo-Gon [Energy and Machinery Korea Co., Ltd., Changwon (Korea, Republic of); Choi, Ho-Sang [Kyungil University, Gyeongsan (Korea, Republic of)

    2015-09-15

    An anion exchange membrane was prepared by the chloromethylation and the amination of polyvinyl chloride (PVC), as the base polymer. The membrane properties of the prepared anion exchange membrane, including ionic conductivity, ion exchange capacity, and water content were measured. The ionic conductivity of the prepared anion exchange membrane was in the range of 0.098x10{sup -2} -7.0x10{sup -2}S cm{sup -1}. The ranges of ion exchange capacity and water content were 1.9-3.7meq./g-dry-membrane and 35.1-63.1%, respectively. The chemical stability of the prepared anion exchange membrane was tested by soaking in 30 wt% KOH solution to determine its availability as a separator in the alkaline water electrolysis. The ionic conductivity during the chemical stability test largely did not change.

  18. Mechanism of Polysulfone-Based Anion Exchange Membranes Degradation in Vanadium Flow Battery.

    Science.gov (United States)

    Yuan, Zhizhang; Li, Xianfeng; Zhao, Yuyue; Zhang, Huamin

    2015-09-02

    The stability of hydrocarbon ion exchange membranes is one of the critical issues for a flow battery. However, the degradation mechanism of ion exchange membranes has been rarely investigated especially for anion exchange membranes. Here, the degradation mechanism of polysulfone based anion exchange membranes, carrying pyridine ion exchange groups, under vanadium flow battery (VFB) medium was investigated in detail. We find that sp(2) hybrid orbital interactions between pyridinic-nitrogen in 4,4'-bipyridine and benzylic carbon disrupt the charge state balance of pristine chloromethylated polysulfone. This difference in electronegativity inversely induces an electrophilic carbon center in the benzene ring, which can be attacked by the lone pair electron on the vanadium(V) oxygen species, further leading to the degradation of polymer backbone, while leaving the 4,4'-bipyridine ion exchange groups stable. This work represents a step toward design and construction of alternative type of chemically stable hydrocarbon ion exchange membranes for VFB.

  19. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  20. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  1. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  2. Effects of ionizing radiation on modern ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  3. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  4. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    Science.gov (United States)

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  5. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  6. Thin Robust Anion Exchange Membranes for Fuel Cell Applications

    Science.gov (United States)

    2014-01-01

    provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued to...in aqueous solution. Interestingly though, while the proton transfer events in the anion exchange membrane are more frequent as would be ECS...release; distribution is unlimited. (Invited) Thin Robust Anion Exchange Membranes for Fuel Cell Applications The views, opinions and/or findings

  7. Determination of trace inorganic anions in anionic surfactants by single-pump column-switching ion chromatography

    Institute of Scientific and Technical Information of China (English)

    Jia Jie Zhang; Hai Bao Zhu; Yan Zhu

    2012-01-01

    An ion chromatography method has been proposed for the determination of three common inorganic anions (chloride,nitrate and sulfate) in anionic surfactants using a single pump system.The new system consists of an ion exclusion column,a concentrator column,and an anion exchange column connected in series via two 6-ports valves in a Dionex ICS-2000 ion chromatograph.The valves were switched several times for removing surfactants,concentrating and separating the three anions.The chromatographic conditions were optimized.Detection limits (S/N =3) were in the range of 0.10-0.68 μg/L.The relative standard deviations (RSDs)of peak area were less than 4.6%.The recoveries were in the range of 84.1-112.6%.

  8. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    Science.gov (United States)

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  9. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ion...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  10. Tunable separation of anions and cations by column switching in ion chromatography.

    Science.gov (United States)

    Amin, Muhammad; Lim, Lee Wah; Takeuchi, Toyohide

    2007-03-15

    A convenient ion chromatography method has been proposed for the routine and simple determination of anions (Cl(-), SO(4)(2-) and NO(3)(-)) and/or cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) using a single pump, a single eluent and a single detector. The present system used cation-exchange and anion-exchange columns connected in series via two 6-port switching valves or a single 10-port valve. The connection order of the ion-exchange columns could be varied by switching the valve(s). The present system therefore allowed the separation of either cations or anions in a single chromatographic run. While one ion-exchange column is being operated, the other ion-exchange column is being conditioned, i.e., the columns are always ready for analysis at any time. When 2.4mM 5-sulfosalicylic acid was used as the eluent, the three anions and the five cations could be separated on the anion-exchange column and cation-exchange column, respectively. In order to obtain the separations of the target ions, the injection valve was placed between the two columns. Complete separations of the above anions or cations were demonstrated within 10min each. The detection limits at S/N=3 were 19-50ppb (mug/l) for cations and 10-14ppb for anions. The relative standard deviations of the analyte ions were less than 1.1, 2.9 and 2.8% for retention time, peak area and peak height, respectively. This proposed technique was applied to the determination of common anions and cations in river water samples.

  11. Optimized anion exchange membranes for vanadium redox flow batteries.

    Science.gov (United States)

    Chen, Dongyang; Hickner, Michael A; Agar, Ertan; Kumbur, E Caglan

    2013-08-14

    In order to understand the properties of low vanadium permeability anion exchange membranes for vanadium redox flow batteries (VRFBs), quaternary ammonium functionalized Radel (QA-Radel) membranes with three ion exchange capacities (IECs) from 1.7 to 2.4 mequiv g(-1) were synthesized and 55-60 μm thick membrane samples were evaluated for their transport properties and in-cell battery performance. The ionic conductivity and vanadium permeability of the membranes were investigated and correlated to the battery performance through measurements of Coulombic efficiency, voltage efficiency and energy efficiency in single cell tests, and capacity fade during cycling. Increasing the IEC of the QA-Radel membranes increased both the ionic conductivity and VO(2+) permeability. The 1.7 mequiv g(-1) IEC QA-Radel had the highest Coulombic efficiency and best cycling capacity maintenance in the VRFB, while the cell's voltage efficiency was limited by the membrane's low ionic conductivity. Increasing the IEC resulted in higher voltage efficiency for the 2.0 and 2.4 mequiv g(-1) samples, but the cells with these membranes displayed reduced Coulombic efficiency and faster capacity fade. The QA-Radel with an IEC of 2.0 mequiv g(-1) had the best balance of ionic conductivity and VO(2+) permeability, achieving a maximum power density of 218 mW cm(-2) which was higher than the maximum power density of a VRFB assembled with a Nafion N212 membrane in our system. While anion exchange membranes are under study for a variety of VRFB applications, this work demonstrates that the material parameters must be optimized to obtain the maximum cell performance.

  12. A new hybrid ion exchanger: Effect of system parameters on the adsorption of vanadium (V)

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Bong-Yeol [Nonwovens Cooperative Research Center, College of Textiles, North Carolina State University, Raleigh, NC 27695-8301 (United States); Lee, Chang-Soo [School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hwang, Taek-Sung, E-mail: tshwang@cnu.ac.kr [School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2009-07-15

    The hybrid ion exchanger consisted of PONF-g-GMA anion fibrous exchanger and IRA-96 bead-type anion exchanger was developed by combining different types of layers with hot-melt adhesive. Its ion exchange capacity and the pressure drop with flow rate of water were measured and the adsorption of vanadium (V) ions on the hybrid ion exchanger was evaluated with various process parameters such as pH, initial concentration, and temperature. It was observed that the adsorption kinetics of vanadium (V) ions on the hybrid ion exchanger could be analyzed with pseudo-second-order model.

  13. Macroreticular chelating ion-exchangers.

    Science.gov (United States)

    Hirsch, R F; E Gancher, R; Russo, F R

    1970-06-01

    Two macroreticular chelating ion-exchangers have been prepared and characterized. One contains the iminodiacetate group and the second contains the arsonate group as the ion-exchanging site. The macroreticular resins show selectivities among metal ions similar to those of the commercially available naicroreticular chelating resins. Chromatographie separations on the new resins are rapid and sharp.

  14. Interpretative optimization of the isocratic ion chromatographic separation of anions

    Directory of Open Access Journals (Sweden)

    Todorović Žaklina N.

    2016-01-01

    Full Text Available Interpretive retention modeling was utilized to optimize the isocratic ion chromatographic (IC separation of the nine anions (formate, fluoride, chloride, nitrite, bromide, nitrate, phosphate, sulfate, oxalate. The carbonate-bicarbonate eluent was used and separation was done on a Dionex AS14 ion-exchange column. The influence of combined effects of two mobile phase factors, the total eluent concentration (2 - 6 mM and the carbonate/bicaronate ratio from 1:9 to 9:1 (which corespondent to pH range 9.35 - 11.27, on the IC separation was studied. The multiple species analyte/eluent model that takes into account ion-exchange equilibria of the eluent and sample anions was used. In order to estimate the parameters in the model, a non-linear fitting of the retention data, obtained at two-factor three-level experimental design, was applied. To find the optimal conditions in the experimental design, the normalized resolution product as a chromatographic objective function was employed. This criterion includes both the individual peak resolution and the total analysis time. A good agreement between experimental and simulated chromatograms was obtained. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  15. Effects of ion-exchange treatment on bromate formation and oxidation efficiency during ozonation

    OpenAIRE

    Echigo, S.; Itoh, S.; Niwa, A

    2012-01-01

    Ion-exchange treatment is a promising technique for removing hydrophilic compounds during drinking water treatment. In this study, we applied several different ion exchangers (i.e., anion exchange resins and a hydrotalcite compound) to bromide removal to minimize bromate formation during ozonation. It was found that ion-exchange treatment affected ozone and hydroxyl radical concentration profiles as well as bromate ion concentration after ozonation. Selecting an appropriate ion exchanger is i...

  16. Effect of polyamine reagents on exchange capacity in ion exchangers

    Science.gov (United States)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  17. Determination of nitrate by anion exchange with ultraviolet detection

    Energy Technology Data Exchange (ETDEWEB)

    McComas, J.G.

    1976-01-01

    A weak base anion exchange resin is synthesized by surface bonding 3-aminopropyltriethoxysilane to silica gel. This silylated silica gel is used to separate nitrate from interferences. The nitrate is then determined by measuring its absorbance at 220 nm. An interference study was performed and no anions commonly found in potable water interferes. A comparison of this method was made with the brucine method on real samples and satisfactory agreement was obtained between the two methods.

  18. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  19. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data.

  20. Ionic Resistance and Permselectivity Tradeoffs in Anion Exchange Membranes

    KAUST Repository

    Geise, Geoffrey M.

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. © 2013 American Chemical Society.

  1. Polymethylmethacrylate open tubular ion exchange columns: nondestructive measurement of very small ion exchange capacities.

    Science.gov (United States)

    Zhang, Min; Yang, Bingcheng; Dasgupta, Purnendu K

    2013-08-20

    We describe an approach to prepare an open tubular ion exchange (OTIE) column by coating a monolayer of anion exchange nanoparticle to a 16-20 μm bore polymethylmethacrylate (PMMA) capillary. The latex nanoparticle was electrostatically attached to carboxylate groups on the inner wall of capillary, pretreated with strong base for hydrolyzing the ester. Several approaches to nondestructively measure ion exchange capacities (IEC) of the columns were examined: (a) adsorption-desorption of an intensely fluorescent ion, e.g. fluorescein, and off-line fluorometry, (b) loading a weakly retained ion (e.g., IO3(-)), frontal displacement by a strongly bound ion (e.g., Cl(-)), and online optical or conductometric boundary detection, and (c) similar to the above except displacement being accompanied by reaction (e.g., acid-base titration). To our knowledge, this is the first time on-column titration has been used to measure capacities. By using different pH displacer solutions, we demonstrate for the first time the possibility of pKa-differentiated ion exchange capacity measurements. The cation exchange capacity of bare PMMA capillaries was on the order of 1 pequiv/mm(2) with little dependence on time and temperature of hydrolysis conditions. After AS18 latex coating, the strong base anion exchange capacity was on the order of 10 pequiv/mm(2), very close to what would be estimated on the basis of monolayer coverage of the surface by individual latex particles. The latex used contained a significant, additional amount of weak base character, about the same as the strong base ion exchange capacity.

  2. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions.

    Science.gov (United States)

    Akkerman, Quinten A; D'Innocenzo, Valerio; Accornero, Sara; Scarpellini, Alice; Petrozza, Annamaria; Prato, Mirko; Manna, Liberato

    2015-08-19

    We demonstrate that, via controlled anion exchange reactions using a range of different halide precursors, we can finely tune the chemical composition and the optical properties of presynthesized colloidal cesium lead halide perovskite nanocrystals (NCs), from green emitting CsPbBr3 to bright emitters in any other region of the visible spectrum, and back, by displacement of Cl(-) or I(-) ions and reinsertion of Br(-) ions. This approach gives access to perovskite semiconductor NCs with both structural and optical qualities comparable to those of directly synthesized NCs. We also show that anion exchange is a dynamic process that takes place in solution between NCs. Therefore, by mixing solutions containing perovskite NCs emitting in different spectral ranges (due to different halide compositions) their mutual fast exchange dynamics leads to homogenization in their composition, resulting in NCs emitting in a narrow spectral region that is intermediate between those of the parent nanoparticles.

  3. Poly(2,6-dimethyl-1,4-phenylene oxide) Blended with Poly (vinylbenzyl chloride)-b-polystyrene for the Formation of Anion Exchange Membranes

    Science.gov (United States)

    2014-08-14

    documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Anion ...functionalization reached high conversion as characterized by ion exchange capacity (IEC) measurements. The PPO blend anion exchange membranes (AEMs...vinylbenzyl chloride)‑b‑polystyrene for the Formation of Anion Exchange Membranes Yifan Li,† Aaron C. Jackson,‡ Frederick L. Beyer,‡ and Daniel M

  4. Determination of arsenate in water by anion selective membrane electrode using polyurethane-silica gel fibrous anion exchanger composite.

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2014-01-15

    Polyurethane (PU)-silica (Si gel) based fibrous anion exchanger composites were prepared by solid-gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU-Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1×10(-8)M to 1×10(-1)M), response time (45s) and working pH range (5-8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO4(3-)) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  5. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH.

  6. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Antanassov, Plamen B.; Dekel, Dario R.; Herring, Andrew M.; Hickner, Michael A.; Kohl, Paul A.; Kucernak, Anthony R.; Mustain, William E.; Nijmeijer, Kitty; Scott, Keith; Varcoe, John R.; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current stat

  7. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.

    Science.gov (United States)

    Guler, Enver; Zhang, Yali; Saakes, Michel; Nijmeijer, Kitty

    2012-11-01

    Reverse electrodialysis (RED) or blue energy is a non-polluting, sustainable technology for generating power from the mixing of solutions with different salinity, that is, seawater and river water. A concentrated salt solution (e.g., seawater) and a diluted salt solution (e.g., river water) are brought into contact through an alternating series of polymeric anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs), which are either selective for anions or cations. Currently available ion-exchange membranes are not optimized for RED, whereas successful RED operation notably depends on the used ion-exchange membranes. We designed such ion-exchange membranes and for the first time we show the performance of tailor-made membranes in RED. More specifically, we focus on the development of AEMs because these are much more complex to prepare. Herein we propose a safe and more environmentally friendly method and use halogenated polyethers, such as polyepichlorohydrin (PECH) as the starting material. A tertiary diamine (1,4-diazabicyclo[2.2.2]octane, DABCO) was used to introduce the ion-exchange groups by amination and for simultaneous cross-linking of the polymer membrane. Area resistances of the series of membranes ranged from 0.82 to 2.05 Ω cm² and permselectivities from 87 to 90 %. For the first time we showed that tailor-made ion-exchange membranes can be applied in RED. Depending on the properties and especially membrane thickness, application of these membranes in RED resulted in a high power density of 1.27 W m⁻², which exceeds the power output obtained with the commercially available AMX membranes. This shows the potential of the design of ion-exchange membranes for a viable blue energy process.

  8. Utilization of a diol-stationary phase column in ion chromatographic separation of inorganic anions.

    Science.gov (United States)

    Arai, Kaori; Mori, Masanobu; Kozaki, Daisuke; Nakatani, Nobutake; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-12-28

    We describe the ion chromatographic separation of inorganic anions using a diol-stationary phase column (-CH(OH)CH(2)OH; diol-column) without charged functional groups. Anions were separated using acidic eluent as in typical anion-exchange chromatography. The retention volumes of anions on the diol-column increased with increasing H(+) concentration in the eluent. The anion-exchange capacities of diol-columns in the acidic eluent (pH 2.8) were larger than that of zwitterionic stationary phase column but smaller than that of an anion-exchange column. The separation of anions using the diol-column was strongly affected by the interaction of H(+) ions with the diol-functional groups and by the types of the eluents. In particular, the selection of the eluent was very important for controlling the retention time and resolution. Good separation was obtained using a diol-column (HILIC-10) with 5 mM phthalic acid as eluent. The limits of detection at a signal-to-noise ratio of 3 ranged from 1.2 to 2.7 μM with relative standard deviations (RSD, n=5) of 0.04-0.07% for the retention time and 0.4-2.0% for the peak areas. This method was successfully applied to the determination of H(2)PO(4)(-), Cl(-), and NO(3)(-) in a liquid fertilizer sample.

  9. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    Science.gov (United States)

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  10. Enhanced conductivity detection of common inorganic anions in electrostatic ion chromatography using water eluent

    Institute of Scientific and Technical Information of China (English)

    Daisuke KOZAKI; Chao-Hong SHI; Kazuhiko TANAKA; Nobutake NAKATANI

    2012-01-01

    To enhance the conductivity detection sensitivity of common anions (Na-anions) in electrostatic ion chromatography (EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane (ODS)-silica separation column modified with zwitterionic surfactant ( CHAPS:3- { ( 3-cholamidopropyl ) -dimethylammonio } propanesulfonate ) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO42-,Cl-,NO3-,I- and ClO4- and weak acid anions such as F-,NO2-,HCOO-,CH3COO- and HCO3-.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions (Na-anions) was enhanced acording to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear (r2 =0.99 - 1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.

  11. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    Science.gov (United States)

    2015-01-15

    capacities (IECs). Solution cast membranes were thermally cross- linked to form anion exchange membranes. Cross-linking was achieved by taking advantage...distribution is unlimited. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers The views...Box 12211 Research Triangle Park, NC 27709-2211 Anion Exchnage Membrane, Polymer synthesis, Morphology, Anion Conductivity REPORT DOCUMENTATION PAGE

  12. Cholangiocyte anion exchange and biliary bicarbonate excretion

    Institute of Scientific and Technical Information of China (English)

    Jesús M Banales; Jesús Prieto; Juan F Medina

    2006-01-01

    Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. Theexcretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3-exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.

  13. RECOVERY OF URANIURN FROM CARBONATE SOLUTIONS USING STRONGLY BASIC ANION EXCHANGER 3.THE MECHANISMS OF RECOVERY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    SongYinjie; ZhangHui; 等

    1997-01-01

    A moving boundary model under considering the volume change of spherical resin beads during ion exchange processes was employed to recognize the mechanisms of reecovering uranium from carbonate solutions using strongly basic anion exchanger.Two important factors,swelling and ion exchange,which directly affect the violume of ion exchangers were taken into account.An ion exchange mechanism has been found for the forward reaction PCl/[UO2(CO3)3]4-,and is partical diffusion governing at high concentration of the complex anion.The mechanism of RCl/U(VI) at pH 5.5-7.5 is a chemical reaction taking place at the moving boundary of the unreacted nucleus.For the reverse reaction RnU/NaCl,the uranyl tricarbonate complex anion in the resin phase is replaced by Cl- ions with an ion exchange mechanism alway determined by particle diffusion.The other forms of uranium in the solid phase loaded on the resin at pH5.5-7.5 should belong to non-exchangeable uranium.The mechanism of the reverse reaction RnU/HCl is always chemical reaction which is not restricted to the moving boundary of the unreacted core.

  14. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  15. Online eluent-switching technique coupled anion-exchange liquid chromatography–ion trap tandem mass spectrometry for analysis of non-steroidal anti-inflammatory drugs in pig serum.

    Science.gov (United States)

    Chang, Kai Chun; Lin, Jyh Shiun; Cheng, Cheanyeh

    2015-11-27

    A novel method for online extraction, pH-gradient separation, and analysis of nine non-steroidal anti-inflammatory drugs (NSAIDs) was developed by coupling online eluent-switching technique to single anion-exchange chromatographic column/ion trap mass spectrometer (MS) and used for monitoring NSAIDs residues in pig serum. A neutral eluent and a pH-gradient eluent were used for extraction and separation of NSAIDs, respectively. Each of nine NSAIDs has an MS precursor ion of either [M−H]− or [M−Na]−. The extracted ion chromatogram for a specific product ion of each NSAID was used for its quantitative analysis. The dynamic linear ranges of calibration curves were all 0–200 ng mL−1 (R2 > 0.9950). The analysis accuracies estimated by spiking standard concentrations at 20, 100, and 200 ng mL−1 were 80.5–99.9%. The corresponding intra-day and inter-day precisions (RSD%) were 2.5–14.5% and 2.9–15.2%, respectively. The limit of detection/limit of quantitation of NSAIDs were 1.3/4.3, 0.5/1.6, 0.2/0.5, 2.5/8.2, 1.5/4.9, 0.6/2.1, 0.6/2.0, 0.5/1.7, and 0.6/2.1 ng mL−1 for carprofen, diclofenac, flunixin, ibuprofen, ketoprofen, meclofenamic acid sodium, mefenamic acid, niflumic acid, and tolfenamic acid, respectively. After 1 h injection of a dose containing 2 mg kg−1 weight pig of flunixin and tolfenamic acid to the pigs, a residue amount of 3480 ± 36 ng mL−1 and 431 ± 13 ng mL−1, respectively, was reached for the incurred pig serum specimens and both residues were reduced to about 20 ng mL−1 at the time of 24 h.

  16. Incorporation of multi-walled carbon nanotubes in microspheres used as anion exchange resin via suspension polymerization

    Science.gov (United States)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2014-06-01

    Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB) copolymers is an effective method for preparation of anion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. These resulting anion-exchange polymers were characterized by a variety of techniques such as analytical titrations, transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads. Resins containing MWCNTs achieved anion exchange capacity value of 323.6 meq/100 g over than that of copolymer resins and that useful in water desalination or treatment.

  17. Study on Separation of Lanthanum from Praseodymium Complexes with IMDA by Gel and Macroporous Anion-Exchangers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    During our studies on separation of rare earth complexes with aminopolycarboxylic acids on anion-exchangers, it is found that the affinity series of these elements with IMDA (Ln3+:IMDA=1:2) for the anion-exchanger Dowex 1 in the acetate and IMDA forms is non-typical: Dy3+> Ho3+> Gd3+>Eu3+>Er3+>Y3+>Sm3+>Tm3+>Nd3+>Pr3+>>La3+. In the affinity series La3+ is characterised as the lowest affinity in omparison with other rare earth elements, which indicates possibility ofpurification of La3+ from all remaining lanthanides as well as Pr3+ in the macro-micro systems by the frontal analysis technique. In the investigations strongly basic gel anion-exchangers Dowex 1×8 (type 1) and Dowex 2×8 (type 2) and strongly basic and weakly basic macroporous anion-exchangers Dowex MSA-1 and Dowex MWA-1 were used. Macroporous ion-exchangers have a sponge-like matrix which contains pores larger than molecules in size and the exchange of large ions is faster. The studies indicate that both the gel and macroporous anion-exchangers are useful for purification of La3+ from Pr3+ complexes with iminodiacetic acid.

  18. Integrating tunable anion exchange with reverse osmosis for enhanced recovery during inland brackish water desalination.

    Science.gov (United States)

    Smith, Ryan C; SenGupta, Arup K

    2015-05-01

    For inland brackish water desalination by reverse osmosis or RO, concentrate or reject disposal poses a major challenge. However, enhanced recovery and consequent reduction in the reject volume using RO processes is limited by the solubility of ions present in the feedwater. One of the most common and stubborn precipitate formed during desalination is calcium sulfate. Reducing or eliminating the presence of sulfate would allow the process to operate at higher recoveries without threat to membrane scaling. In this research, this goal is accomplished by using an appropriate mixture of self-regenerating anion exchange resins that selectively remove and replace sulfate by chloride prior to the RO unit. Most importantly, the mixed bed of anion exchange resins is self-regenerated with the reject brine from the RO process, thus requiring no addition of external chemicals. The current work demonstrates the reversibility of the hybrid ion exchange and RO (HIX-RO) process with 80% recovery for a brackish water composition representative of groundwater in San Joaquin Valley in California containing approximately 5200 mg/L of total dissolved solids or TDS. Consequently, the reject volume can be reduced by 50% without the threat of sulfate scaling and use of antiscaling chemicals can be eliminated altogether. By appropriately designing or tuning the mixed bed of anion exchange resins, the process can be extended to nearly any composition of brackish water for enhanced recovery and consequent reduction in the reject volume.

  19. Study on the permselectivity of ion exchange membrane

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ion exchange membranes with high permselectivity (the character of separating cations from anions or anions from cations) and high selectivity (the character of separating cations or anions of different valencies) are important for electrodialysis process. The Donnan equilibrium theory, based on the equilibrium of ions and no electric field, can not exactly explain the permselectivity of ion exchange membrane for ED process, since it is impossible to set up a ion exchange equilibrium between membrane and solution and to neglect the influence of electrical driving force on ions during ED process. A novel model named "anti-electric potential " is established to interpret the permselectivity of ion exchange membrane, according to the determination of electric potential between membranes and the variation of elements content in solutions and membranes. The results of experiment prove that the "anti-electric potential" really exists within membranes. As for the selectivity, the results reveal that electric potential and hydration energy have great influence on the concentration and mobility of ions in membranes.

  20. Using ion exchange chromatography to purify a recombinantly expressed protein.

    Science.gov (United States)

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment.

  1. Controlled porosity monolithic material as permselective ion exchange membranes.

    Science.gov (United States)

    Huang, Xiaojia; Dasgupta, Purnendu K

    2011-03-18

    Ion exchange membranes (IEMs) are used in a variety of analytical devices, including suppressors, eluent generators and other components used in ion chromatography. Such membranes are flexible and undergo substantial dimensional changes on hydration. Presently the push to miniaturization continues; a resurgent interest in open tubular ion chromatography requires microscale adaptation of these components. Incorporating IEMs in microscale devices is difficult. Although both macroporous and microporous ion exchange materials have been made for use as chromatographic packing, ion exchange material used as membranes are porous only on a molecular scale. Because such pores have vicinal ion exchange sites, ions of the same charge sign as those of the fixed sites are excluded from the IEMs. Monolithic polymers, including ion exchangers derived therefrom, are presently extensively used. When used in a separation column, such a monolithic structure contains an extensively connected porous network. We show here that by controlling the amount of porogen added during the synthesis of monolithic polymers derived from ethylene dimethacrylate - glycidyl methacrylate, which are converted to an anion exchanger by treatment with trimethylamine, it is possible to obtain rigid ion exchange polymers that behave like IEMs and allow only one charge type of ions to pass through, i.e., are permselective. We demonstrate successful open tubular cation chromatography suppressor performance.

  2. Determination of traces of silver in waters by anion exchange and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Fishman, M. J.; Ball, J.W.

    1969-01-01

    A method has been developed for the accurate determination of 0.1-1 ??g of silver per liter of water. The method permits stabilization of silver in water without loss to container walls. Optimum conditions have been established for the complete recovery of silver from water with an anion-exchange column, for quantitative elution of silver from the resin, and for measurement of silver by atomic absorption spectrophotometry after chelation with ammonium pyrrolidine dithiocarbamate and extraction of the chelate with MIBK. Silver in the 1-10 ??g 1 range can be determined by extraction without pre-concentration on an ion-exchange resin. ?? 1969.

  3. Chromatographic separation of vanadium, tungsten and molybdenum with a liquid anion-exchanger.

    Science.gov (United States)

    Fritz, J S; Topping, J J

    1971-09-01

    In acidic solution only molybdenum(VI), tungsten(VI), vanadium(V), niobium(V) and tantalum(V) form stable, anionic complexes with dilute hydrogen peroxide. This fact has been used in developing an analytical method of separating molybdenum(VI), tungsten(VI) and vanadium(V) from other metal ions and from each other. Preliminary investigations using reversed-phase paper chromatography and solvent extraction led to a reversed-phase column Chromatographic separation technique. These metal-peroxy anions are retained by a column containing a liquid anion-exchanger (General Mills Aliquat 336) in a solid support. Then molybdenum(VI), tungsten(VI) and vanadium(V) are selectively eluted with aqueous solutions containing dilute hydrogen peroxide and varying concentrations of sulphuric acid.

  4. Advanced ion exchange resins for PWR condensate polishing

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, B. [Rohm and Haas Co. (United States); Tsuzuki, S. [Rohm and Haas Co. (Japan)

    2002-07-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  5. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography.

    Science.gov (United States)

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-06-14

    A tosylated-poly(ethylene oxide) (PEO) reagent was reacted with primary amino groups of an aminopropylsilica packing material (TSKgel NH2-60) in acetonitrile to form PEO-bonded stationary phase. The reaction was a single and simple step reaction. The prepared stationary phase was able to separate inorganic anions. The retention behavior of six common inorganic anions on the prepared stationary phase was examined under various eluent conditions in order to clarify its separation/retention mechanism. The elution order of the tested anions was iodate, bromate, bromide, nitrate, iodide, and thiocyanate, which was similar as observed in common ion chromatography. The retention of inorganic anions could be manipulated by ion exchange interaction which is expected that the eluent cation is coordinated among the PEO chains and it works as the anion-exchange site. Cations and anions of the eluent therefore affected the retention of sample anions. We demonstrated that the retention of the analyte anions decreased with increasing eluent concentration. The repeatability of retention time for the six anions was satisfactory on this column with relative standard deviation values from 1.1 to 4.3% when 10mM sodium chloride was used as the eluent. Compared with the unmodified TSKgel NH2-60, the prepared stationary phase retained inorganic anions more strongly and the selectivity was also improved. The present stationary phase was applied for the determination of inorganic anions contained in various water samples.

  6. Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P.U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2015-12-15

    Radio isotopic tracer technique as one of the versatile nondestructive technique is employed to evaluate the performance of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC. The evaluation was made on the basis of ion-isotopic exchange reaction kinetics by using {sup 131}I and {sup 82}Br radioactive tracer isotopes. It was observed that for both the resins, the values of specific reaction rate (min{sup -1}), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) were calculated to be lower for bromide ion-isotopic exchange reaction than that for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction under identical experimental conditions of 30.0 C, 1.000 g of ion exchange resins and 0.001 mol/L labeled iodide ion solution, the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were calculated as 0.377, 0.212, 0.080 and 15.5 respectively for Dowex SBR LC resin, which was higher than 0.215, 0.144, 0.031 and 14.1 respectively as that obtained for Tulsion A23 resins. Also at a constant temperature of 30.0 C, as the concentration of labeled iodide ion solution increases from 0.001 mol/L to 0.004 mol/L, the percentage of iodide ions exchanged increases from 84.75 % to 90.20 % for Dowex SBR LC resins which was higher than increases from 57.66 % to 62.38 % obtained for Tulsion A23 resins. The identical trend was observed for the two resins during bromide ion-isotopic exchange reaction. The overall results indicate superior performance of Dowex SBR LC over Tulsion A23 resins under identical experimental conditions.

  7. Synthesis and Properties of Anion Exchangers Derived from Chloromethyl Styrene Codivinylbenzene and Their Use in Water Treatment

    Directory of Open Access Journals (Sweden)

    Hesham A. Ezzeldin

    2010-01-01

    Full Text Available Amination of vinylbenzyl chloride-divinylbenzene (VBC-DVB copolymers is an effective method for preparation of ion-exchange resins. Conventionally, the starting polymer is produced by chloromethylation of a styrene-divinylbenzene copolymer that utilizes chloromethyl methyl ether, a known carcinogen. An alterative approach is to copolymerize vinylbenzyl chloride with divinylbenzene to generate the necessary VBC-DVB. This method provides precise control over the density of the ion-exchange groups. The regiochemistry of the vinylbenzyl chloride methods was realized using solvent-ion exchange groups. In this investigation, an improved solvent system was found for the preparation of anion exchange resins by the vinylbenzyl chloride route. The effectiveness of amination of the intermediate VBC-DVB polymers with a variety of trimethylamine reagents was investigated, and ethanolic trimethylamine produced the highest degree of amination. These resulting ion-exchange polymers were characterized by a variety of techniques such as analytical titrations, nitrogen analysis, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Testing of these copolymers for breakthrough was performed. The results indicate that these anion exchangers have a meaningful increase in thermal stability over commercial anionic exchange beads.

  8. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  9. Synthesis and Characterization of Stable Anion Exchange Membranes: The Addition of Electron-withdrawing Group

    Directory of Open Access Journals (Sweden)

    Gülşen ALBAYRAK ARI

    2016-10-01

    Full Text Available Anion exchange membranes (AEM based on poly(2,6-dimethyl-1,4-phenylene oxide (PPO were used as polymer electrolyte membrane for fuel cell applications. The membranes were prepared via bromination, quaternization and nitration reactions and their fuel cell-related properties (water uptake, ion exchange capacity, ionic conductivity were determined. Also, the structures and thermal properties were studied with Fourier transform infrared spectroscopy (FTIR, Size exclusion chromatography (SEC and Differential scanning calorimetry (DSC. Nitration of quaternized PPO (Q-PPO leaded to a decrease in water uptake and ion exchange capacity of the AEM. However, Q-PPO membrane treated with nitration reaction (NO2-Q-PPO exhibited a significant alkaline stability compared to quaternized PPO (Q-PPO.   The results indicated that the addition of electron-withdrawing group, such as nitro, into the structure in order to improve in alkaline stability is a promising new route for preparation alkaline stable AEM membranes.

  10. Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Khan

    2016-05-01

    Full Text Available Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs from brominated poly(2,6-dimethyl-1,6-phenylene oxide (BPPO and methyl(diphenylphosphine (MDPP for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC 1.09–1.52 mmol/g, water uptake (WR 17.14%–21.77%, linear expansion ratio (LER 7.96%–11.86%, tensile strength (TS 16.66–23.97 MPa and elongation at break (Eb 485.57%–647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.

  11. Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy

    KAUST Repository

    Geise, Geoffrey M.

    2013-09-17

    Many salinity gradient energy technologies such as reverse electrodialysis (RED) rely on highly selective anion transport through polymeric anion exchange membranes. While there is considerable interest in using thermolytic solutions such as ammonium bicarbonate (AmB) in RED processes for closed-loop conversion of heat energy to electricity, little is known about membrane performance in this electrolyte. The resistances of two commercially available cation exchange membranes in AmB were lower than their resistances in NaCl. However, the resistances of commercially available anion exchange membranes (AEMs) were much larger in AmB than in NaCl, which would adversely affect energy recovery. The properties of a series of quaternary ammonium-functionalized poly(phenylene oxide) and Radel-based AEMs were therefore examined to understand the reasons for increased resistance in AmB to overcome this performance penalty due to the lower mobility of bicarbonate, 4.59 × 10-4 cm2/(V s), compared to chloride, 7.90 × 10-4 cm2/(V s) (the dilute aqueous solution mobility ratio of HCO3 - to Cl- is 0.58). Most membrane resistances were generally consistent with the dilute solution mobilities of the anions. For a few key samples, however, increased water uptake in AmB solution reduced the ionic resistance of the polymer compared to its resistance in NaCl solution. This increased water uptake was attributed to the greater hydration of the bicarbonate ion compared to the chloride ion. The increased resistance due to the use of bicarbonate as opposed to chloride ions in AEMs can therefore be mitigated by designing polymers that swell more in AmB compared to NaCl solutions, enabling more efficient energy recovery using AmB thermolytic solutions in RED. © 2013 American Chemical Society.

  12. SYNTHESIS OF HYDROTALCITE Zn-Al-SO4 AS ANION EXCHANGER AND ITS APPLICATION TO TREAT OF POLLLUTANT CONTAINED HEXACYANOFERRAT(II)

    OpenAIRE

    Roto, Roto; Tahir, Iqmal; Sholikhah, Umi Nur

    2010-01-01

    Synthesis of Zn-Al-SO4 hydrotalcite and its application as anion exchanger for hexacyanoferrat (II) have been studied. Synthesis of Zn-Al-SO4 hydrotalcite was carried out by stoichiometric method and hydrothermal treatment. Sulphate in hydrotalcite interlayer was exchanged by hexacyanoferrat (II) that was assumed as pollutant. Kinetics of ion exchange was also investigated. The product of ion exchange was characterized by XRD, IR spectrophotometry and atomic absorption spectrometry. Zn-Al-SO4...

  13. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions

    Science.gov (United States)

    2015-05-11

    increasing ion exchange capacity (IEC) in alkaline exchange quaternary ammonia polysulfone membrane, “a trend that being almost the mirror of the... synthesized in small quantities and processed into films on the order of 10-100 microns thick. Standard tensile tests does not allow for adequate testing of...membrane synthesized from a commercial pentablock copolymer platform was explored. Viscosity and the structure of polymer solutions were investigated

  14. Anionic Forensic Signatures for Sample Matching of Potassium Cyanide Using High Performance Ion Chromatography and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Carlos G.; Farmer, Orville T.; Carman, April J.

    2011-01-30

    Potassium cyanide, a known poison, was used a model compound to determine the feasibility of using anionic impurities as a forensic signature for matching KCN samples back to their source. In this study, portions of eight KCN stocks originating from four countries were separately dissolved in water and analyzed by high performance ion chromatography (HPIC) using an anion exchange column and conductivity detection. Sixty KCN aqueous samples were produced from the eight stocks and analyzed for 11anionic impurities. Hierarchal cluster analysis and principal component analysis were used to demonstrate that KCN samples cluster according to source based on the concentrations of their anionic impurities. The F-ratio method and degree-of-class separation (DCS) were used for feature selection on a training set of KCN samples in order to optimize sample clustering. The optimal subset of anions needed for sample classification was determined to be sulfate, oxalate, phosphate, and an unknown anion named unk5. Using K-nearest neighbors (KNN) and the optimal subset of anions, KCN test samples from different KCN stocks were correctly determined to be manufactured in the United States. In addition, KCN samples from stocks manufactured in Belgium, Germany, and the Czech Republic were all correctly matched back to their original stocks because each stock had a unique anionic impurity profile. The application of the F-ratio method and DCS for feature selection improved the accuracy and confidence of sample classification by KNN.

  15. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles.

    Science.gov (United States)

    Pan, Bingcai; Xu, Jingsheng; Wu, Bing; Li, Zhigang; Liu, Xitong

    2013-08-20

    Here we fabricated a novel nanocomposite HZO-201, an encapsulated nanosized hydrous zirconium oxide (HZO) within a commercial porous polystyrene anion exchanger D201, for highly efficient defluoridation of water. HZO-201 exhibited much higher preference than activated alumina and D201 toward fluoride removal when competing anions (chloride, sulfate, nitrate, and bicarbonate) coexisted at relatively high levels. Fixed column adsorption indicated that the effective treatable volume of water with HZO-201 was about 7-14 times as much as with D201 irrespective of whether synthetic solution or groundwater was the feeding solution. In addition, HZO-201 could treat >3000 BV of the acidic effluent (around 3.5 mg F(-)/L) per run at pH 3.5, compared to only ∼4 BV with D201. The exhausted HZO-201 could be regenerated by NaOH solution for repeated use without any significant capacity loss. Such attractive performance of HZO-201 resulted from its specific hybrid structure, that is, the host anion exchanger D201 favors the preconcentration of fluoride ions inside the polymer based on the Donnan principle, and the encapsulated nanosized HZO exhibits preferable sequestration of fluoride through specific interaction, as further demonstrated by XPS spectra. The influence of solution pH, competitive anions, and contact time was also examined. The results suggested that HZO-201 has a great potential in efficient defluoridation of groundwater and acidic mine drainage.

  16. Microcalorimetric study of the adsorption of native and mono-PEGylated bovine serum albumin on anion-exchangers.

    Science.gov (United States)

    Blaschke, Tim; Werner, Albert; Hasse, Hans

    2013-02-15

    The adsorption of native bovine serum albumin (BSA) and 12 kDa-PEG-BSA on 12 different commercially available strong and weak anion-exchange resins is studied at 25 °C and pH 7. The resins differ in their base matrix material, their functional groups and the type of polymer modification. A combination of equilibrium measurements and microcalorimetric experiments is used to determine the specific enthalpy of adsorption of the proteins. From these data, the entropic contributions to the specific Gibbs energy of adsorption are determined. The results strongly differ for different resins. They also depend on the loadings. The adsorption of BSA on strong (Q) anion-exchangers is exothermic and enthalpy-driven. The adsorption of BSA on weak (DEAE) anion-exchangers is endothermic and entropy-driven. The adsorption of PEG-BSA on strong (Q) anion-exchangers is exothermic or endothermic, depending on the resin, while the adsorption of PEG-BSA on weak (DEAE) anion-exchangers is exothermic for all studied resins. The present study provides a large body of new experimental data that contribute to the understanding of the nature of protein adsorption on ion exchange resins and the influence of the resin properties and polymer modification of the proteins on this process.

  17. Ion Exchange and Liquid Column Chromatography.

    Science.gov (United States)

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  18. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  19. Scintillating 99Tc Selective Ion Exchange Resins

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  20. Analysis of anions in geological brines using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  1. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  2. Pharmaceutical Applications of Ion-Exchange Resins

    Science.gov (United States)

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  3. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification

  4. Electrically controlled cesium ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  5. Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates

    Institute of Scientific and Technical Information of China (English)

    XU Xianzhu; SONG Jiangwei; LI Defeng; XIAO Fengshou

    2004-01-01

    Inorganic-organic hybrid materials have been obtained at room temperature in aqueous solution without using the templates of surfactants. The materials are care fully characterized by anion-exchange measurement, elements analysis, X-ray diffraction, and infrared spectroscopy. Notably, the anion-exchange capacity of the samples (3.9 Interestingly, both small and large anions could be easily exchanged into the samples due to the plasticity of the sam pies, along with the phase transition.

  6. Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent.

    Science.gov (United States)

    Lira, Rafael A; Minim, Luis A; Bonomo, Renata C F; Minim, Valéria P R; da Silva, Luis H M; da Silva, Maria C H

    2009-05-15

    The adsorption of glycomacropeptide (GMP) from cheese whey on an anion-exchange adsorbent was investigated using isothermal titration microcalorimetry to measure thermodynamic information regarding such processes. Isotherms data were measured at temperatures of 25 and 45 degrees C, pH 8.2 and various ionic strengths (0-0.08 molL(-1) NaCl). The equilibrium data were fit using the Langmuir model and the process was observed to be reversible. Temperature was observed to positively affect the interaction of the protein and adsorbent. Microcalorimetric studies indicated endothermic adsorption enthalpy in all cases, except at 45 degrees C and 0.0 molL(-1) NaCl. The adsorption process was observed to be entropically driven at all conditions studied. It was concluded that the increase in entropy, attributed to the release of hydration waters as well as bounded ions from the adsorbent and protein surface due to interactions of the protein and adsorbent, was a major driving force for the adsorption of GMP on the anion-exchange adsorbent. These results could allow for design of more effective ion-exchange separation processes for proteins.

  7. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger

    Institute of Scientific and Technical Information of China (English)

    Vanik GHOULIPOUR; Moharram SAFARI

    2014-01-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous,organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor(Rf)values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationary phase in thin layer chromatography.

  8. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger.

    Science.gov (United States)

    Ghoulipour, Vanik; Safari, Moharram

    2014-12-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous, organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor (Rf) values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationaiy phase in thin layer chromatography.

  9. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano

    2014-09-15

    Lately, the functionalization of industrial minerals with high technological properties, such as natural zeolites, is shaping as a promising approach in environmental sphere. In fact, under the specific conditions, the surface functionalization via adsorption of cationic surfactants reverses the surface charge of the mineral, enabling zeolites to simultaneously interact either with organic contaminants or inorganic anions. This aspect allows zeolites to be used in the remediation of contaminated fluids. The present research shed new light on some still not fully understood aspects concerning exchange kinetics such as anion-exchange mechanisms and selectivity of surface modified minerals. For this purpose the mineralogical characterization and the surface properties evaluation (X Ray Powder Diffraction, chemical analysis, thermal analysis, ECEC and AEC) of a clinoptilolite-rich tuff were performed, and the anion exchange isotherms of the sample, modified with hexadecyltrimethylammonium chloride or bromide (HDTMA-Cl/-Br), were determined. Ion-exchange equilibrium data of uni-uni valent reaction were obtained by solutions containing Br(-), Cl(-), NO3(-) or ClO4(-). Liquid phase was analysed via high performance liquid chromatography. Thermodynamic quantities (Ka and ΔG(0)) were determined and compared with the Hofmeister series. The value of the ECEC, calculated in batch conditions, was about 137 mmol/kg, in good agreement with that evaluated in dynamic conditions, while the AEC data were different for the SMNZ-Br and -Cl samples, amounting to 137 and 106 mmol/kg, respectively, thus indicating a different compactness of the bilayer formed in the two cases. Moreover, the anion isotherm results and the mathematical evaluation of the thermodynamic parameters, demonstrated the good affinity of SMNZ-Br towards chloride, nitrate and perchlorate, and of SMNZ-Cl for nitrate and perchlorate, also endorsing the possibility of using the same thermodynamic approach developed to

  10. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, TiH5- and VH6- as well as hyperhalogen anions, BH4-y(BH4)y-(y = 1 to 4). Our density functional calculations show that Li-salts of these complex anions possess similar characteristics as those of electrolytic salts in LIBs. Note that they all are halogen free and hence, non-toxic and safer than LiBF4, LiPF6 etc. In particular, LiB4H13 and LiB5H16 are two potential candidates for electrolytic salt due to their smaller Li-dissociation energy ({\\Delta}E) than those of LiBF4, LiPF6 etc. We have also noticed that {\\Delta}E of Li...

  11. 离子交换型缓蚀填料在防腐蚀涂层中的应用Ⅱ阴离子交换型填料%Application of Ion-exchange Compounds as Corrosion Inhibiting Pigments to Organic Anticorrosion Coatings Ⅱ Anion-exchange Pigments

    Institute of Scientific and Technical Information of China (English)

    吴俊升; 肖葵; 李欣荣; 董超芳; 李晓刚

    2011-01-01

    铬酸盐等重金属类缓蚀性颜填料会对环境造成严重的污染,未来该类有害物质在防腐蚀涂层中的应用将被禁止.新型的离子交换型填料因其具有可同时释放缓蚀性离子和吸附固定侵蚀性离子(H+、Cl-、SO2-4等)的双重功效,被认为是替代传统重金属类颜填料的理想材料.本文对[V10O28]6-、MoO2-4等缓蚀性阴离子改性水滑石类层状新型离子交换型缓蚀填料在有机防腐蚀涂层中的应用进行综述.%It is well documented that chromate pigments and other heavy metal compounds must be eliminated from organic anticorrosion coatings due to their toxic nature and carcinogenic effects in the future. The novel ion-exchange pigments can play a double role of absorbing the harmful ions such as H+ , Cl- , SO2-4 and releasing the inhibiting ions on contact with aggressive electrolyte invading the coating. The released inhibitors can provide active corrosion protection to the defects in the coating and substrate. On the other hand, the uptake of harmful ions decreases the aggressiveness of the corrosive medium, and thereby reduces the rate of corrosion processes. Therefore, such new inhibiting compounds have been developed as the potential alternate materials of the traditional toxic pigments, and have attracted a lot of attention. In this paper, the application of anion-exchange pigments, such as [V10O28]6- , MoO2-4 exchanged hydrotalcite, in organic anticorrosion coatings is reviewed.

  12. INTERACTION OF AMINO ACID WITH ION EXCHANGE RESIN Ⅲ.FURTHER INVESTIGA TION OF SUPEREQUIVALENT ADSORPTION MECHANISM OF AMINO ACID ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; SHAOTong; 等

    1994-01-01

    The adsorption isotherms of glycine,alanine and oxidized glutathion on strong acid cation and strong base anion exchange resins from aqueous solutions were measured and the superequivalent adsorptions of glycine and alanine observed.The infrared spectra of glycine adsorbed on the cation and the anion exchange resins,001×7 and 201×7,were measured.From these results,it is concluded that the amino acid adsorption on the ion exchange resin proceeds not only through ion exchange and proton transfer mechanisms,but also through aminecarboxylate interaction between the adsorbed amino acid molecules,and the formation of second layer of amino acid molecules is the mechanism of superequivalent adsorption of amino acid,the carboxylate or amine groups of the first layer of amino acid molecules on the ion exchange resin act as the exchange sites for the second layer of amino acid molecules.

  13. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles.

    Science.gov (United States)

    Vajda, Judith; Weber, Dennis; Stefaniak, Sabine; Hundt, Boris; Rathfelder, Tanja; Müller, Egbert

    2016-05-27

    Different ions typically used in downstream processing of biologicals are evaluated for their potential in anion exchange chromatography of an industrially produced, pandemic influenza H1N1 virus. Capacity, selectivity and recovery are investigated based on single step elution parallel chromatography experiments. The inactivated H1N1 feedstream is produced in Madin-Darby Bovine Kidney cells. Interesting effects are found for sodium phosphate and sodium citrate. Both anions are triprotic kosmotropes. Anion exchange chromatography generally offers high scalability to satisfy sudden demands for vaccines, which may occur in case of an emerging influenza outbreak. Appropriate pH conditions for H1N1 adsorption are determined by Zeta potential measurements. The dynamic binding capacity of a salt tolerant polyamine-type resin is up to 6.4 times greater than the capacity of a grafted Q-type resin. Pseudo-affinity interactions of polyamines with the M2 protein of influenza may contribute to the obtained capacity increase. Both resins achieve greater capacity in sodium phosphate buffer compared to Tris/HCl. A recovery of 67% and DNA clearance close to 100% without DNAse treatment are achieved for the Q-type resin. Recovery of the virus from the salt tolerant resin requires the use of polyprotic acids in the elution buffer. 85% of the DNA and 60% of the proteins can be removed by the salt tolerant resin. The presence of sodium phosphate during anion exchange chromatography seems to support stability of the H1N1 particles in presence of hydrophobic cations.

  14. Liquid anion-exchange separation of vanadium from malonate media

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R.R.; Khopkar, S.M. (Indian Inst. of Technology, Dept. of Chemistry, Bombay (India))

    1992-06-01

    Vanadium (IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within {+-}5% and the detection limit of the method for vanadium is 0.5 mg/kg. (orig.).

  15. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  16. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.

    Science.gov (United States)

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-11-25

    The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC - strong anion exchange, Thermo Fisher Scientific IonPac CS10--strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed logP values of 0.38-0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18

  17. Determination of inorganic anions in papermaking waters by ion chromatography

    Directory of Open Access Journals (Sweden)

    DARJA ŽARKOVIĆ

    2009-03-01

    Full Text Available A suppressed ion chromatography (IC method for the determination of inorganic anions in process water from paperboard production was developed and validated. Common inorganic anions (Cl-, NO3-, PO43- and SO42- were detected in fresh and process water samples collected from a paperboard production system at 16 characteristic points. It was shown that the use of an IonPac®-AS14 column under isocratic conditions with Na2CO3/NaHCO3 as the eluent and a suppression device proved to be a reliable analytical solution for the separation of the inorganic anions present in papermaking waters. This IC method is quite satisfactory concerning selectivity and sensitivity, and enables the determination of several inorganic anions over a wide concentration range. According to the obtained results, the total amount of analyzed inorganic anions was below 0.1 g/L, i.e., below the critical value which may trigger operational problems in paper production.

  18. Trace adsorption of positively charged proteins onto Sepharose FF and Sepharose FF-based anion exchangers.

    Science.gov (United States)

    Yu, Lin-Ling; Sun, Yan

    2012-08-31

    Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 μg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 μg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses.

  19. Potentiometric response and mechanism of anionic recognition of heterocalixarene-based ion selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shishkanova, T.V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)]. E-mail: tatiana.shishkanova@vscht.cz; Sykora, D. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Sessler, J.L. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-0615 (United States); Kral, V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2007-03-28

    The ion selective electrode (ISE)-based potentiometric approach is shown to be an effective means of characterizing the anion recognition sites in the molecular receptor calix[2]pyridino[2]pyrrole (CPP). In particular, potentiometric pH-measurements involving the use of experimental PVC-membranes based on CPP revealed the existence of both mono- and diprotonated forms of the receptor under readily accessible conditions. Based on these analyses, apparent surface protonation constants for this heterocalixarene were found to lie between 8.5-8.9 (pK {sub B1}) and 3.3-3.8 (pK {sub B2}). CPP was found to interact with targeted anionic analytes based on both coulombic and hydrogen bond interactions, as inferred from varying the kinds of ionic sites present within the membrane phase. Potentiometric selectivity studies revealed that CPP preferred 'Y-shaped' anions (e.g. acetate, lactate, benzoate) over spherical anions (e.g. fluoride and chloride), fluoride over chloride within the set of spherical anions, and the ortho-isomer over the corresponding meta- and para-isomers in the case of hydroxybenzoate (salicylate and congeners). In the context of this study, the advantages of potentiometric determinations of acetylsalicylic acid using optimized PVC-membranes based on CPP relative to more conventional PVC-membrane ISEs based on traditional anion exchanger were also demonstrated.

  20. Ionic polymer-metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes.

    Science.gov (United States)

    Park, Jong Hyuk; Han, Man Jae; Song, Dae Seock; Jho, Jae Young

    2014-12-24

    Two series of ionic polymer-metal composites (IPMCs), one cationic and one anionic, are designed and prepared from radiation-grafted ion-exchange membranes. Through examination of the properties of the membranes synthesized from the two grafting monomers and the two base polymers, acrylic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) and quarternized 4-vinylpyridine-grafted poly(ethylene-co-tetrafluoroethylene) with the appropriate amount of ionic groups are employed for the fabrication of cation and anion IPMCs, respectively. The bending displacement of the cation IPMC is comparable to Nafion-based IPMC under direct- and alternating-current voltage, but back-relaxation is not observed. The actuation performance of the anion IPMC is highly improved over those reported earlier in the literature for the other anion IPMCs.

  1. Application of cellulose anion-exchangers to separation of palladium from platinum or iridium with glycine as complexing agent and atomic-absorption spectrometry for detection.

    Science.gov (United States)

    Brajter, K; Słonawska, K

    1983-07-01

    The use of glycine as complexing agent for chromatographie separation of palladium from platinum, or palladium from iridium, on cellulose anion-exchangers has been investigated and found possible over a wide range of concentration ratios. The method can be used for analysis of Pd-Ir alloys. The nature of the complexes taking part in the ion-exchange has been identified.

  2. Comparison among three anion exchange chromatographic supports to capture erythropoietin from cell culture supernatant

    Institute of Scientific and Technical Information of China (English)

    Lourdes HERNNDEZ; Diobel STEWART; Lourdes ZUMALACRREGUI; Daniel AMARO

    2015-01-01

    Affinity and ion exchange conventional chromatography have been used to capture erythropoietin ( EPO)from mammalian cell culture supernatant. Currently,chromatographic adsorbent perfusion is available, however a limited number of applications have been found in the literature. In this work,three anion exchange chromatographic supports( gel,membrane and monolithic)were evaluated in the capture step of the recombi-nant erythropoietin purification process. The influences of load and flow rate on each support performance were analyzed. Also the purity of the EPO molecules was determined. A productivity analysis,as a decision tool for larger scale implementation,was done. As a conclusion,the evaluated supports are technically suitable to cap-ture EPO with adequate recovery and good purity. However,the monolithic column admits high operating velocity,showing the highest adsorption capacity and productivity.

  3. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  4. Application of the new thermodynamic approach to the description of superequivalent sorption by ion exchangers

    Science.gov (United States)

    Khokhlova, O. N.

    2014-08-01

    Using the example of sorption systems with the participation of amino acids, it is shown that the novel thermodynamic approach to describing superequivalent sorption as a combination of ion exchange and nonexchangeable absorption allows us to adequately describe such equilibria. Results from calculating the activity coefficients of components of a sorbent phase and the thermodynamic constants of ion exchange equilibrium and the superequivalent absorption of phenylalanine by AV-17-8 anion exchange resin are presented.

  5. Overloading ion-exchange membranes as a purification step for monoclonal antibodies

    OpenAIRE

    Brown, Arick; Bill, Jerome; Tully, Timothy; Radhamohan, Asha; Dowd, Chris

    2010-01-01

    The present study examined the overloading of ion-exchange membrane adsorbers, a form of frontal chromatography, as the final purification step in the production of mAbs (monoclonal antibodies) produced from CHO (Chinese-hamster ovary) cells. Preferential binding of impurities over antibody product was exploited using commercially available cation- and anion-exchange membranes. Three different antibody feedstreams previously purified over Protein A and ion-exchange column chromatography were ...

  6. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  7. Preparation of Anion-exchange Polymer-based Monolithic Column and Its Application in Ion Chromatography%阴离子交换聚合物整体柱的制备及其在离子色谱中的应用

    Institute of Scientific and Technical Information of China (English)

    李晶; 周琰春; 张嘉捷; 朱岩

    2012-01-01

    An anion-exchange monolithic column was prepared by a polymerization inside a stainless steel tube( 150 mm x 4. 6 i. d. mm) , taking glycidyl methacrylate( GMA) as functional monomer, ethylene dimethacrylate ( EDMA) as cross-linking agent and in the presence of 1, 4-butanediol, 1 -propanol and water as the porogen solvents and azobisisobutyronitrile ( AIBN) as a suitable initiator. Introduction of anion-exchange sites were achieved by reacting with tirmethylamine. Under the optimized reaction conditions and the modified conditions, the chromatographic characteristics of the prepared anion-exchange columns were further studied, and the separation of 5 common anions ( such as, acetate, bromate, nitrite, bromide, nitrate) on the prepared anion-exchange column was investigated. The prepared column exhibits more advantages such as simple preparation and low cost, and could be coupled with a commercial ion chromatography system directly, which will be favorable for more applications and investigations.%以偶氮二异丁腈( AIBN)为自由基引发剂,将甲基丙烯酸缩水甘油酯(GMA)单体和亚乙基二甲基丙烯酸酯(EDMA)交联剂通过原位聚合的方法,在不锈钢管柱(150 mm ×4.6 i.d.mm)中合成为具有一定机械性能和一定孔径结构的聚合物整体色谱柱;利用三甲胺动态修饰反应将整体柱改性为具有阴离子交换功能的整体型离子色谱分离柱.实验优化了制备条件和改性修饰条件,考察了相关离子交换容量、流体动力学参数和色谱性能等.采用直接紫外检测的方法,在205 nm检测波长下,常规阴离子乙酸根、溴酸根、亚硝酸根、溴离子、硝酸根均能得到较好的分离检测.结果表明,该阴离子交换整体色谱柱制备方法简便,成本较低,可以方便地与常规色谱系统进行联用,具有一定分析实用价值和较大的开发前景.

  8. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  9. The Drosophila Anion Exchanger (DAE lacks a detectable interaction with the spectrin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Base Christine

    2010-06-01

    Full Text Available Abstract Background Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1 was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE as a marker for studies of the downstream effects of spectrin cytoskeleton mutations. Results Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in Drosophila S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in Drosophila. Conclusions Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in Drosophila. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in Drosophila.

  10. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    Science.gov (United States)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  11. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    Science.gov (United States)

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density.

  12. Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell.

    Science.gov (United States)

    Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia

    2013-10-01

    Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness.

  13. Improved immunoadsorption procedure with anion-exchange bacterial cell columns.

    Science.gov (United States)

    McKinney, R M; Thacker, L; Wong, M C; Hebert, G A

    1978-01-01

    Bacterial cell columns for immunoadsorption were prepared with Streptococcus cells and triethylaminoethyl cellulose (Cellex-T) matrix material as a model system. Good column flow properties and satisfactory retention of the cells were obtained with ratios as high as 2 ml of packed cells/3 g dry weight of cellulose. Anion-exchange fractionation of whole serum by the Cellex-T was prevented by using 0.25 M NaCl in the developing buffer. Antibodies were adsorbed directly from whole serum and recovered in high yield by desorption at pH 2.3. Pre-exposing bacterial cells to formalin and washing them with acetone was necessary to ensure that they remained on the columns. One strain of Streptococcus salivarius (SS 908) was satisfactorily retained on a column only after cells were labeled with fluorescein isothiocyanate and washed with acetone. The means by which Cellex-T retains bacterial cells appears to be a combination of electronic attraction and physical entrapment.

  14. Evaluation of Alternate Ion Exchange Designs for CST Non-Elutable Ion Exchange Process

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.N.; Pike, J.A.; Jacobs, R.A.; Poirier, M.R.; Sahawneh, B.M.; Leugemors, R.K.

    2001-06-27

    A study of alternative column designs was initiated in late 2000 to explore ion exchange column design concepts outside of the baseline case. The study, which is discussed in detail in the report, has identified two promising commercially proven ion-exchange column designs as candidates to be developed further for application to CST ion-exchange technology.

  15. Development of ion chromatography methods for the determination of trace anions in ultra pure water from power plants

    Directory of Open Access Journals (Sweden)

    DRAGANA CICKARIC

    2005-07-01

    Full Text Available A suppressed ion chromatography (IC technique, using a carbonate/hydrogen carbonate or a hydroxide eluent, has been evaluated as a monitoring tool for the detection ofmajor anions (F-, Cl-, NO3-, PO4 3- and SO4 2- in ultra pure water and condensed steam from thermal power plants. An electrical conductivity detector with an anion-exchange column (IonPac AS14, an auto self-regenerating suppressor (ASRS, and an isocratic high-pressure pump system were used for the detection of low concentrations of inorganic anions. It was shown that the suppressed IC technique provides a suitable means for preventing possible damage to generating equipment in power plants. The detection limits of the method for the anions of interest were < 0.3 mg/L.

  16. Ion exchange in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  17. Ion exchange in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  18. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  19. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry.

    Science.gov (United States)

    Deng, Shubo; Yu, Qiang; Huang, Jun; Yu, Gang

    2010-10-01

    Perfluorooctane sulfonate (PFOS) is a new persistent organic pollutant of substantial environmental concern, and its removal from industrial wastewater is critical to eliminate its release into water environment. In this paper, six anion exchange resins with different polymer matrix, porosity, and functional group were evaluated for PFOS removal from simulated wastewater. Resin matrix displayed significant effect on the sorption kinetics and capacity of PFOS, and the polyacrylic resins including IRA67 and IRA958 exhibited faster sorption and higher sorption capacity for PFOS than the polystyrene resins due to the hydrophilic matrix. Sorption isotherms illustrated that the sorption capacity of PFOS on IRA67 and IRA958 was up to 4-5 mmol/g, and the amount of PFOS sorbed on the resins was more than chloride released from resins, indicating that other interactions besides anion exchange were involved in the sorption. Solution pH had little impact on the sorption of PFOS on IRA958, but displayed significant effect on IRA67 at pH above 10 due to the deprotonation of amine groups. The coexisting sulfate and hexavalent chromium in wastewater interfered with the sorption of PFOS because of their competitive sorption on the exchange sites. The spent resins were successfully regenerated using the mixture of NaCl and methanol solution. This work provided an understanding of sorption behavior and mechanism of PFOS on different anion exchange resins, and should result in more effective applications of ion exchange for PFOS removal from industrial wastewater.

  20. Anion exchange purification of plasmid DNA using expanded bed adsorption.

    Science.gov (United States)

    Ferreira, G N; Cabral, J M; Prazeres, D M

    2000-01-01

    Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH = 8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36 +/- 1 fold, 26 +/- 0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed-values of 35 +/- 2 and 5 +/- 0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step.

  1. Synthesis of porous carbon fibers with strong anion exchange functional groups.

    Science.gov (United States)

    Zheng, Weihua; Hu, Jingtian; Han, Zheshen; Wang, Zixing; Zheng, Zhen; Langer, James; Economy, James

    2015-06-18

    Hybrid porous carbon fibers with strong anion-exchangeable functional groups (HACAX) were synthesized by alkylation of pyrolyzed polyacrylonitrile. HACAX exhibits generic stable positively charged functional groups. This expands the applications of porous carbon media for interacting with anions without adjusting pH, such as Cr(vi) adsorption at natural pH.

  2. Transesterification of propylene glycol methyl ether in chromatographic reactors using anion exchange resin as a catalyst.

    Science.gov (United States)

    Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki

    2016-09-30

    Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested.

  3. Adsorption characteristics of thorium on silica-based anion exchange resins

    Institute of Scientific and Technical Information of China (English)

    陈彦良; 赵龙; 韦悦周; 何林锋; 唐方东

    2015-01-01

    To isolate and separate thorium from nitric acid solutions, three silica-based anion exchange resins were synthesized. Batch experiments were carried out to investigate adsorption behavior of thorium in nitric acid solutions. Adsorption at different concentrations of nitric acid and thorium, influence of contact time and coex-isting metal ions, and effect of NO–3 were investigated in detail. It was found that at high HNO3 concentrations, the resins exhibited higher adsorption capacity and better affinity towards thorium. The adsorption kinetics could be described by the pseudo-second order model equation, while the adsorption isotherms were well cor-related by the Langmuir model. The maximum capacity towards thorium species on SiPyR-N4 was evaluated at 27–28 mg/g-resin. The thermodynamic parameters indicated the adsorption was an exothermic reaction. The presence of NO–3 was found to promote the retention of the thorium species.

  4. SORPTION OF PHENOL AND P-NITROPHENOL ONTO A WEAKLY ANION EXCHANGER: XPS ANALYSIS AND MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    X-ray photoelectron spectroscopy (XPS ) was adopted to elucidate sorption mechanism of phenol and p-nitrophenol onto a weakly anion exchanger D301. The distribution of specific forms of tertiary amino group on D301 was obtained and effect of free tertiary amino group on phenol sorption onto D301 was discussed. The result indicated that the percent of the protonated tertiary amine group on polymeric matrix was much lower than the reference compound N,N-dimethylbenzylamine at an identical pH value in solution due to the much lower activity degree of hydrogen ion in inner resin phase than in the external solution. Less free amino group on D301 results in less sorption capacity of phenol and p-nitrophenol in an acidic solution. Under the experimental conditions both phenol sorption onto D301 can be explained as solid extraction and the distribution coefficient varies linearly with the content of free amino group on D301.

  5. Controllable Synthesis of Mn6+ Doped Nanoparticles by a Facile Anion Exchange Method

    Science.gov (United States)

    Zhang, Xiaowen; Li, Yang; Liao, Chenxing; Chen, Zhi; Qiu, Jianrong

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1400 nm) is attracting extensive attention. Mn6+ doped BaSO4 with broadband emission from 900 nm to 1400 nm is emerging as a new class of NIR phosphor for fluorescence imaging. Manganese has diverse valence states, thus it is difficult to prevent valence change of Mn6+ during traditional synthesis process. In this work, BaSO4:Mn6+ nanoparticles with uniform size and morphology were first successfully prepared through a fast liquid-solid solution route at room temperature. The nanoparticles exhibit broadband NIR emission from Mn6+ when excited by 808 nm lasers. This convenient strategy, based on an efficient anion exchange reaction, is proved effective for synthesizing nano-sized materials. The results reveal that our strategy has great potential in fabricating special valence state ion doped nanomaterials.

  6. Determination of effective capacities of ion-exchangeable materials by measuring the equilibrium conductivity.

    Science.gov (United States)

    Okabe, Toshiaki; Yokoyama, Yukio

    2010-01-01

    The effective ion-exchange capacities of ion-exchange materials were determined by measuring the change in the equilibrium conductivity of a column packed with analyte. The developed instrumental method can provide effective ion-exchange capacities for both cation and anion exchangers with simple operations. The cation-exchange capacity of a weak-acid cation-exchange resin (TSKgel SuperIC-Cation column) depended on the conditioning pH and the molar concentration of the conditioning agent. Plots of effective cation-exchange capacities over the conditioning pH exhibited three inflection points, suggesting the presence of two carboxy groups and one phenolic OH group in the resin, probably due to the inherent base polymer. This method was applied to several commercial analytical columns for ion chromatography, and could provide scientifically useful results for characterizing the resin properties.

  7. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange.

    Science.gov (United States)

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; Mawatari, Yasuteru; Tabata, Masayoshi

    2006-08-15

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO(3)) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminum nitrates with pH increasing from 3 to 10. The precipitate obtained with method B was contaminated with aluminum hydroxide and the crystallinity of the product was low, possibly because aluminum hydroxide precipitates at pH 4 or 5 and remains even after HT-NO(3) forms at pH above 8. With method A, however, the precipitate was pure HT-NO(3) with increased crystallinity, since the solubility of aluminum hydroxide at pH above and around 10 is high as dissolved aluminate anions are stable in this high pH region, and there was no aluminum hydroxide contamination. The formed HT-NO(3) had a composition of [Mg(0.71)Al(0.29)(OH)(2)](NO(3))(0.29).0.58H(2)O. To intercalate ATP anions into the HT-NO(3), HT-NO(3) was dispersed in an ATP solution at pH 7. It was found that the interlayer nitrate ions were completely exchanged with ATP anions by ion exchange, and the interlayer distance expanded almost twice with a free space distance of 1.2 nm. The composition of HT-ATP was established as [Mg(0.68)Al(0.32)(OH)(2)](ATP)(0.080)0.88H(2)O. The increased distance could be explained with a calculated molecular configuration of the ATP as follows: An ATP molecule is bound to an interlayer surface with the triphosphate group, the adenosine group bends owing to its bond angles and projects into the interlayer to a height of 1 nm, and the adenosine groups aligned in the interlayer support the interlayer distance.

  8. Anions Analysis in Ground and Tap Waters by Sequential Chemical and CO2-Suppressed Ion Chromatography

    Directory of Open Access Journals (Sweden)

    Glen Andrew D. De Vera

    2011-06-01

    Full Text Available An ion chromatographic method using conductivity detection with sequential chemical and CO2 suppression was optimized for the simultaneous determination of fluoride, chloride, bromide, nitrate,phosphate and sulfate in ground and tap water. The separation was done using an anion exchange column with an eluent of 3.2 mM Na2CO3 and 3.2 mM NaHCO3 mixture. The method was linear in the concentration range of 5 to 300 μg/L with correlation coefficients greater than 0.99 for the six inorganic anions. The method was also shown to be applicable in trace anions analysis as given by the low method detection limits (MDL. The MDL was 1μg/L for both fluoride and chloride. Bromide, nitrate, phosphate and sulfate had MDLs of 7 μg/L, 10 μg/L, 9 μg/L and 2 μg/L, respectively. Good precision was obtained as shown in the relative standard deviation of 0.1 to 12% for peak area and 0.1 to 0.3% for retention time. The sensitivity of the method improved with the addition of CO2 suppressor to chemical suppression as shown in the lower background conductivity and detection limits. The recoveries of the anions spiked in water at 300 μg/L level ranged from 100 to 104%. The method was demonstrated to be sensitive, accurate and precise for trace analysis of the six anions and was applied in the anions analysis in ground and tap waters in Malolos, Bulacan. The water samples were found to contain high concentrations of chloride of up to 476 mg/L followed by sulfate (38 mg/L, bromide (1 mg/L, phosphate (0.4 mg/L, fluoride (0.2 mg/L and nitrate (0.1 mg/L.

  9. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  10. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  11. Ion Exchange in Glass-Ceramics

    Science.gov (United States)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  12. Anion exchange removal of Al3+ from Li+-Al3+ aqueous solution (originating from lithium recovery from brine

    Directory of Open Access Journals (Sweden)

    Anissa Somrani

    2014-06-01

    Full Text Available The purpose of this study is to separate aluminum(III ion from an aqueous solution containing Li+ at 25°C. Al3+ was transferred into [Al(C2O43]3- by means of complexation and removed by an anion exchange resin. This resin was anionic type Amberlite IRA 402 regenerated by sodium chloride. Hence, a theoretical study based on speciation diagrams was carried out to determine the best pH domain for separation. The complexation of aluminum ions by ammonium oxalate was studied. The motar ratio of Ox/Al and pH was investigated. Optimum values of these factors were found to be 3 and 4 respectively. In this case, the remaining lithium is 98.5%.

  13. Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions.

    Science.gov (United States)

    Han, Cuiping; Su, Haiyan; Sun, Zhongyue; Wen, Long; Tian, Demei; Xu, Kai; Hu, Junfeng; Wang, Aming; Li, Haibing; Jiang, Lei

    2013-07-08

    A novel biomimetic ion-responsive multi-nanochannel system is constructed by covalently immobilizing a metal-chelating ligand, 2,2'-dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA-modified multi-nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc-ion-chelated nanochannels can be used as secondary sensors for HPO4(2-) anions. The immobilized DPA molecules act as specific-receptor binding sites for zinc ions, which leads to the highly selective zinc-ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO4(2-) anions, thereby fabricating a sensing nanodevice for HPO4(2-) anions. The success of the DPA immobilization and ion-responsive events is confirmed by measurement of the X-ray photoelectron spectroscopy (XPS), contact angle (CA), and current-voltage (I-V) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.

  14. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Energy Technology Data Exchange (ETDEWEB)

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: simonetta.fornarini@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  15. Electrical Resistance and Transport Numbers of Ion-Exchange Membranes Used in Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    causes damage to the membrane. This work presents the result from transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc. CR67 HMR412 cation-exchange membranes and Ionics, Inc. AR204 SXZR anion-exchange membranes), which have been used in four......Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to know if this contact with the soil...... different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new...

  16. The anion exchanger Ae2 is required for enamel maturation in mouse teeth

    NARCIS (Netherlands)

    Lyaruu, D.M.; Bronckers, A.L.J.J.; Mulder, L.; Mardones, P.; Medina, J.F.; Kellokumpu, S.; Oude Elferink, R.P.J.; Everts, V.

    2008-01-01

    One of the mechanisms by which epithelial cells regulate intracellular pH is exchanging bicarbonate for Cl-. We tested the hypothesis that in ameloblasts the anion exchanger-2 (Ae2) is involved in pH regulation during maturation stage amelogenesis. Quantitative X-ray microprobe mineral content analy

  17. Preparation of a weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography stationary phase for protein separation using click chemistry.

    Science.gov (United States)

    Zhao, Kailou; Yang, Fan; Xia, Hongjun; Wang, Fei; Song, Qingguo; Bai, Quan

    2015-03-01

    In this study, 3-diethylamino-1-propyne was covalently bonded to the azide-silica by a click reaction to obtain a novel dual-function mixed-mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high-salt-concentration mobile phase and weak anion exchange character in a low-salt-concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual-function mixed-mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed-mode chromatography stationary phase, a new off-line two-dimensional liquid chromatography technology using only a single dual-function mixed-mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.

  18. Application of monodispersive anion exchangers in sorption and separation of y3+ from Nd3+ and Sm3+ complexes with dcta

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolody(n)ska

    2008-01-01

    Rare earth complexes with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA) of the Ln(dcta)- ype exhibited an unusual sequence of affinity on the polystyrene anion exchangers: pm3+>Nd3+>Sm3+>pr3+>Ce3+>Eu3+>Gd3+>La3+>Sc3+>Tb3+>Dy3+>Ho3+>y3+>Er3+>Tm3+>yb3+>Lu3+[1]. Taking into account the position of Y3+, Sm3+, and Nd3+ in this affinity series, for the monodispersive polystyrene anion exchangers, Lewafit MonoPlus M 500, Lewatit MonoPlus M 600, Lewatit MonoPlus MP 500, Lewatit MonoPlus MP 64,and for the heterodispersive anion exchanger, Lewatit MP 62, the weight (Dg,) and bed (Dv) distribution coefficients of these complexes and working ion exchange capacities (Cw) were determined. Based on these values, purifications of Y3+ from Nd3+ and y3+ from Sm3+ in the macro-micro component system on these anion exchangers were studied. The application potential of this method was highlighted for the separation of yz3+ in the presence of Nd3+ and Sm3+. With 1 L of monodispersive and strongly basic polystyrene gel anion exchanger Lewatit MonoPlus M 500 in the acetate form, it is possible to obtain approximately 79 g Y2O3 purified from Nd2O3 and 70 g Y2O3 purified from Sm2O3 in the same process condition.

  19. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    Science.gov (United States)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  20. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  1. Polystyrene-divinylbenzene stationary phases agglomerated with quaternized multi-walled carbon nanotubes for anion exchange chromatography.

    Science.gov (United States)

    Huang, Zhongping; Wu, Hongwei; Wang, Fengli; Yan, Wenwu; Guo, Weiqiang; Zhu, Yan

    2013-06-14

    This work explores the potential of multi-walled carbon nanotubes as an agglomerated material for ion chromatography stationary phases for the separation of inorganic anions. Polyelectrolytes with quaternary ammonium groups were introduced onto the carbon nanotube surface, based on condensation polymerization of 1,4-butanediol diglycidyl ether (BDDE) and methylamine (MA). Quaternized multi-walled carbon nanotubes (Q-MWCNTs) were electrostatically adsorbed onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to generate the anion exchanger, which were confirmed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). A 100mm×4.0mm i.d. column was packed with Q-MWCNTs agglomerated PS-DVB particles, with a capacity of 56μequiv./column. Separation of inorganic anions, such as F(-), Cl(-), NO2(-), Br(-), NO3(-), SO4(2-) and PO4(3-) were performed. The stationary phase was rigid, chemically stable and showed good ion-exchange characteristics.

  2. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  3. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  4. L(+-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins

    Directory of Open Access Journals (Sweden)

    Rojan P. John

    2008-12-01

    Full Text Available The properties of the ion exchange resins, Amberlite IRA 402, a strong anion exchange resin and IRA 67, a weak anion exchange resin were determined to evaluate their comparative suitability for lactic acid recovery from fermented cassava bagasse. Data on binding capacities and recovery proved that weak base resin in chloride form was the most favourable ones for lactic acid recovery from aqueous solutions and fermentation media. Fermented media obtained through simultaneous saccharification and fermentation of cassava bagasse starch hydrolysate based medium were used for lactic acid recovery study using weak base resin column. Amberlite IRA 67 had much more efficiency than Amberlite IRA 402 to recover lactic acid. Like in other reports, due to the presence of nutrients and ions other than lactate, the binding capacity was slightly lesser while using fermented media (~93% instead of aqueous lactic acid solutions (~98%.As propriedades das resinas de troca iônica, da Amberlite IRA 402, uma resina de troca aniônica forte, e da IRA 67, uma resina de troca aniônica fraca, foram determinadas para se avaliar a adequabilidade comparativa delas à obtenção de ácido lático de bagaço de mandioca fermentado. Dados sobre a capacidade de ligação e sobre a obtenção provaram que a resina de base fraca na forma de cloreto era a mais adequada para a obtenção de ácido lático em soluções aquosas e meios de fermentação. Os meios de fermentação obtidos da sacarificação e da fermentação simultâneas de meios baseados hidrolisados de fécula de bagaço de mandioca foram usados para o estudo da obtenção de ácido lático usando uma coluna de resina de base fraca. A Amberlite IRA 67 mostrou-se muito mais eficaz do que a Amberlite IRA 402 para a obtenção de ácido lático. Como em outros relatórios, devido à presença de nutrientes e íons que não lactatos, a capacidade de ligação foi ligeiramente inferior enquanto se utilizavam meios

  5. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  6. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils.

    Science.gov (United States)

    Hyun, Seunghun; Lee, Linda S; Rao, P Suresh C

    2003-01-01

    Sorption data and subsequent predictive models for evaluating acidic pesticide behavior on variable-charge soils are needed to improve pesticide management and environmental stewardship. Previous work demonstrated that sorption of pentachlorophenol (PCP), a model organic acid, was adequately modeled by accounting for pH-and pKa-dependent chemical speciation and using two organic carbon-normalized sorption coefficients; one each for the neutral and anionic species. Such models do not account for organic anion interaction to positively charged surface sites, which can be significant for variable-charge minerals present in weathered soils typical of tropical and subtropical regions. The role of anion exchange in sorption of ionizable chemicals by variable-charge soils was assessed by measuring sorption of PCP by several variable-charge soils from aqueous solutions of CaCl2, CaSO4, Ca(H2PO4)2 as a function of pH. Differences in sorption from phosphate and chloride electrolyte solutions were attributed to pentachlorophenolate interactions with anion exchange sites. Suppression of PCP sorption by phosphate ranged from negligible in a soil with essentially no positively charge sites, as measured by negligible anion exchange capacity, to as much as 69% for variable-charge soils. Pentachlorophenolate exchange correlated well with the ratio of pH-dependent anion exchange capacity to net surface charge. Sorption reversibility of PCP by both CaCl2 and Ca(H2PO4)2 solutions was also demonstrated. Results for PCP clearly demonstrate that sorption to anion exchange sites in variable-charge soils should be considered in assessing pesticide mobility and that phosphate fertilizer application may increase the mobility of acidic pesticides.

  7. INTERACTION MECHANISM OF ORGANIC MATTER WITH GEL TYPE POLYSTYRENE STROUGLY BASIC ANION EXCHANGE RESIN AND REGENERATION OF THE ORGANISM FOULED RESIN I.The interreaction mechanism be

    Institute of Scientific and Technical Information of China (English)

    ZhuXingbao; WangZhansen; 等

    1995-01-01

    It was generally considered that contamination of the gel type polystyrene strong basic anion exchange resin by or ganic matter in natural water is the result of ion exchange and Van der waal′s adsorption on it.On the basis of laboratory and industrial experiments,this paper confirmed that the interreaction between organic matter and resin polymer matrix is primarily controled by a Van der waal′s adsorption.

  8. Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.

    Science.gov (United States)

    Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E

    2015-12-01

    Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants.

  9. Anion formation in sputter ion sources by neutral resonant ionization

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. S., E-mail: johnsvogel@yahoo.com [University of California, 8300 Feliz Creek Dr., Ukiah, California 95482 (United States)

    2016-02-15

    Focused Cs{sup +} beams in sputter ion sources create mm-diameter pits supporting small plasmas that control anionization efficiencies. Sputtering produces overwhelmingly neutral products that the plasma can ionize as in a charge-change vapor. Electron capture between neutral atoms rises as the inverse square of the difference between the ionization potential of the Cs state and the electron affinity of the sputtered atom, allowing resonant ionization at very low energies. A plasma collision-radiation model followed electronic excitation up to Cs(7d). High modeled Cs(7d) in a 0.5 mm recess explains the 80 μA/mm{sup 2} C{sup −} current density compared to the 20 μA/mm{sup 2} from a 1 mm recess.

  10. Poly(phenyl sulfone) anion exchange membranes with pyridinium groups for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Enlei; Wang, Guosheng; Yu, Ping; Zhao, Qiuxia; Yao, Fangbo

    2015-05-01

    To develop high performance and cost-effective membranes with low permeability of vanadium ions for vanadium redox flow battery (VRFB) application, poly(phenyl sulfone) anion exchange membranes with pyridinium groups (PyPPSU) are prepared and first investigated for VRFB application. PyPPSU membranes show much lower vanadium ions permeability (0.07 × 10-7-0.15 × 10-7 cm2 min-1) than that of Nafion 117 membrane (31.3 × 10-7 cm2 min-1). As a result, the self-discharge duration of the VRFB cell with PyPPSU membrane (418 h) is about four times longer than that of VRFB cell with Nafion 117 membrane (110 h). Furthermore, the VRFB cell with PyPPSU membrane exhibits higher battery efficiency (coulombic efficiency of 97.8% and energy efficiency of 80.2%) compare with that of VRFB cell with Nafion 117 membrane (coulombic efficiency of 96.1% and energy efficiency of 77.2%) at a high current density of 100 mA cm-2. In addition, PyPPSU membrane exhibits stable performance in 100-cycle test. The results indicate that PyPPSU membrane is high performance and low-cost alternative membrane for VRFB application.

  11. Characterization of Cr ion exchange with hydrotalcite.

    Science.gov (United States)

    Terry, Patricia A

    2004-11-01

    Experiments were performed to characterize the removal of chromium from water with uncalcined hydrotalcite, a clay mineral ion exchange media. The process was characterized as a function of pH, temperature, contact time, and both Cr and hydrotalcite concentrations. A Freundlich isotherm, used to describe adsorption equilibria, was used as a model and Freundlich constants were determined. The kinetics of the ion exchange reaction were also modeled using a pseudo-first order reaction rate. Finally, an equilibrium stage process was modeled with sequential batch separations to determine if hydrotalcite ion exchange could reduce aqueous Cr levels to below the EPA limit of 0.1mgl(-1). It was shown that the process is highly pH dependent, only yielding significant removals at pH levels between 2.0 and 2.1. While hydrotalcite concentration, Cr concentration, and time did effect the ion exchange, temperature was not found to be a factor. Under optimal conditions, maximum removals of greater than 95% were achieved. Finally, sequential batch tests performed on initial Cr solutions ranging from 5mgl(-1) to 40mgl(-1), demonstrated that the water could be purified to a level that was not statistically different than the EPA limit, thus demonstrating the applicability of hydrotalcite ion exchange.

  12. Ion-Exchange Chromatography: Basic Principles and Application.

    Science.gov (United States)

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  13. Preparation and application of a novel magnetic anion exchange resin for selective nitrate removal

    Institute of Scientific and Technical Information of China (English)

    Yang Zhou; Chen Dong Shuang; Qing Zhou; Man Cheng Zhang; Peng Hui Li; Ai Min Li

    2012-01-01

    A novel magnetic anion exchange resin NDM-1 was prepared through suspension polymerization and then functionalized with ammonolysis and alkylating agents.Its application for selective removal of nitrate was performed in comparison with MIEX(R).The results demonstrated that NDM-1 achieved higher efficiency in nitrate removal than MIEX(R) did,with or without the existence of competing anion SO42-ascribed to its longer alkyl chains on exchange sites.Combined with the advantage of easy separation due to γ-Fe2O3 implanted,the magnetic anion exchange resin NDM-1 was considered to be superior to MIEX(R) for nitrate removal in practical application.

  14. Evidence for F-/SiO- anion exchange in the framework of As-synthesized all-silica zeolites

    KAUST Repository

    Liu, Xiaolong

    2011-05-12

    Not everything changes: Charge-compensating anions can be exchanged in as-synthesized zeolite frameworks with changes in both the density of defect sites and of the hydrophobic character of the zeolite. The reversible transformation occurs without dissolution/recrystallization of the zeolite and preserves the size and shape of the crystals (see picture). Fluoride removal is not possible in all-silica D4R units, for which fluoride ions play a structure-directing role. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New Inorganic Ion-exchange Material for the Selective Removal of Fluoride from Potable Water Using Ion-selective Electrode

    Directory of Open Access Journals (Sweden)

    Rasheed M.A.Q. Jamhour

    2005-01-01

    Full Text Available An ion-exchange procedure involving the selective retention of fluoride ions from aqueous solutions containing 1, 5, 10, 20 and 50 mg F- L-1 using a new inorganic ion exchanger zirconium(IV oxide-ethanolamine ZrO-EA and its application to fluoride removal from potable water has been described. A column equilibrium studies, batch process and different analytical parameters such as concentration, pH and temperature for the quantitative recoveries of F- ion using ZrO-EA exchanger were investigated and determined by an ion selective electrode. The effect of some other anions that might be present with the analyte was also examined. The column experiments showed a quantitative collection of fluoride at low concentration in water samples with more than 96% recovery.

  16. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  17. Development of a Direct Ethanol Fuel Cell System with Anion Exchange Membranes

    Science.gov (United States)

    2015-01-15

    Fuel Cell System with Anion Exchange Membranes Report Title Based on the Phase I research results, we identified that carbon supported Pd-based catalysts...Report 22-0ct-2012- 21-Jan-2013 4. 1ITLE AND SUBTITLE 5a CONTRACT NUMBER Development of a Direct Ethanol Fuel Cell System with Anion Exchange...14. ABSTRACT Based on the Phase I research results, we identified that carbon supported Pd-based catalysts, such as Pd/C and PdRu!C, had better

  18. Anion Exchanger 2 Regulates Dectin-1-Dependent Phagocytosis and Killing of Candida albicans.

    Directory of Open Access Journals (Sweden)

    Katia Urso

    Full Text Available Anion exchanger 2 (Ae2; gene symbol, Slc4a2 is a plasma membrane Cl-/HCO3- exchanger expressed in the gastrointestinal tract, kidney and bone. We have previously shown that Ae2 is required for the function of osteoclasts, bone resorbing cells of the macrophage lineage, to maintain homeostatic cytoplasmic pH and electroneutrality during acid secretion. Macrophages require endosomal acidification for pathogen killing during the process known as phagocytosis. Chloride is thought to be the principal ion responsible for maintaining electroneutrality during organelle acidification, but whether Cl-/HCO3- exchangers such as Ae2 contribute to macrophage function is not known. In this study we investigated the role of Ae2 in primary macrophages during phagocytosis. We find that Ae2 is expressed in macrophages where it regulates intracellular pH and the binding of Zymosan, a fungal cell wall derivative. Surprisingly, the transcription and surface expression of Dectin-1, the major phagocytic receptor for Candida albicans (C. albicans and Zymosan, is reduced in the absence of Ae2. As a consequence, Zymosan-induced Tnfα expression is also impaired in Ae2-deficient macrophages. Similar to Ae2 deficiency, pharmacological alkalinization of lysosomal pH with bafilomycin A decreases both Dectin-1 mRNA and cell surface expression. Finally, Ae2-deficient macrophages demonstrate defective phagocytosis and killing of the human pathogenic fungus C. albicans. Our results strongly suggest that Ae2 is a critical factor in the innate response to C. albicans. This study represents an important contribution to a better understanding of how Dectin-1 expression and fungal clearance is regulated.

  19. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor.

    Science.gov (United States)

    Venkatesan, Arjun K; Sharbatmaleki, Mohamadali; Batista, Jacimaria R

    2010-05-15

    Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture. In this research, feasibility of the bioregeneration of perchlorate-laden gel-type anion-exchange resin was investigated. Bench-scale bioregeneration experiments, using a fluidized bed reactor and a bioreactor, were performed to evaluate the feasibility of the process and to gain insight into potential mechanisms that control the process. The results of the bioregeneration tests suggested that the initial phase of the bioregeneration process might be controlled by kinetics, while the later phase seems to be controlled by diffusion. Feasibility study showed that direct bioregeneration of gel-type resin was effective in a fluidized-bed reactor, and that the resin could be defouled, reused, and repeatedly regenerated using the method applied in this research.

  20. Bioregeneration of perchlorate-laden gel-type anion-exchange resin in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Sharbatmaleki, Mohamadali [Department of Civil and Environmental Engineering, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015 (United States); Batista, Jacimaria R., E-mail: jaci@ce.unlv.edu [Department of Civil and Environmental Engineering, University of Nevada Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, NV 89154-4015 (United States)

    2010-05-15

    Selective ion-exchange resins are very effective to remove perchlorate from contaminated waters. However, these resins are currently incinerated after one time use, making the ion-exchange process incomplete and unsustainable for perchlorate removal. Resin bioregeneration is a new concept that combines ion-exchange with biological reduction by directly contacting perchlorate-laden resins with a perchlorate-reducing bacterial culture. In this research, feasibility of the bioregeneration of perchlorate-laden gel-type anion-exchange resin was investigated. Bench-scale bioregeneration experiments, using a fluidized bed reactor and a bioreactor, were performed to evaluate the feasibility of the process and to gain insight into potential mechanisms that control the process. The results of the bioregeneration tests suggested that the initial phase of the bioregeneration process might be controlled by kinetics, while the later phase seems to be controlled by diffusion. Feasibility study showed that direct bioregeneration of gel-type resin was effective in a fluidized-bed reactor, and that the resin could be defouled, reused, and repeatedly regenerated using the method applied in this research.

  1. Ion exchange tempering of glass ophthalmic lenses.

    Science.gov (United States)

    Keeney, A H; Duerson, H L

    1975-08-01

    We performed low velocity drop-ball tests using 5/8-, 7/8-, and 1-inch diameter steel balls on ophthalmic crown glass lenses chemically tempered by the ion exchange process. Four representative dioptric strengths (+ 2.50 spherical, - 2.50 spherical, -2.50 cylindrical, and plano) were studied with the isolated lenses mounted, convex side up, on the American National Standards Institute Z80 test block. New ion exchange lenses exhibited a 100 to 350% greater capacity for attenuation of energy from low velocity, large size missiles than matched lenses of similar strength prepared by the conventional heat-treating and air-quenching process.

  2. STATE OF WATER SORBED ON ION EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    VenkataramaniB

    1994-01-01

    Water sorption isotherms available in the literatures of Na+-from of Dowex 50W×4 and×8,BioRex-70,Amberlyst-15,Nafion-117,hydrous titanium oxide,crystalline zirconium phosphate and zinc hexacyanoferrate(Ⅱ),have been analysed by the D′Arcy and Watt equation.Hydration of Na+ in the ion exchangers is the predominant interaction of sorbed water.The correlation between the hydration numbers and those obtained for electrolyte solution is found in this paper.Qualitative implications of the state of sorbed water in the ion exchangers on its various characteristic quantities like selectivity,are briefly discussed.

  3. 3-Methyltrimethylammonium poly(2,6-dimethyl-1,4-phenylene oxide) based anion exchange membrane for alkaline polymer electrolyte fuel cells

    Indian Academy of Sciences (India)

    K Hari Gopi; S Gouse Peera; S D Bhat; P Sridhar; S Pitchumani

    2014-06-01

    Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl substitution and homogeneously quaternized to form an anion exchange membrane (AEM). 1H NMR and FT–IR studies reveal successful incorporation of the above groups in the polymer backbone. The membrane is characterized for its ion exchange capacity and water uptake. The membrane formed by these processes show good ionic conductivity and when used in fuel cell exhibited an enhanced performance in comparison with the state-of-the-art commercial AHA membrane. A peak power density of 111 mW/cm2 at a load current density of 250 mA/cm2 is obtained for PPO based membrane in APEFCs at 30 °C.

  4. Gold Loading on Ion Exchange Resins in Non-Ammoniacal Resin-Solution Systems

    OpenAIRE

    Abrar Muslim

    2010-01-01

    The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution (NARS) systems has been studied. The loading of gold onto ion exchange resins is affected by polythionate concentration, and trithionate can be used as the baseline in the system. The results also show that resin capacity on gold loading increases due to the increase in the equilibrium thiosulfate concentration in the NARS system. Gold loading performances show the need of optimization the equilibrium co...

  5. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin; Fixation de complexes metalliques sulfosalicylate dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Cahuzac, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO{sub 2}{sup 2+}. By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni{sup 2+} - Co{sup 2+}; Ni{sup 2+} - Co{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Fe{sup 3+}; UO{sub 2}{sup 2+} - Cr{sup 3+}; UO{sub 2}{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Ni{sup 2

  6. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  7. Determination of UV active inorganic anions in potable and high salinity water by ion pair reversed phase liquid chromatography.

    Science.gov (United States)

    Sadiq Khan, Sadaf; Riaz, M

    2014-05-01

    Reversed phase column was dynamically modified into anion exchange column using various types of tetraalkylammonium salts as ion pair reagents (IPRs) for the separation and quantification of toxic anions such as nitrite, bromate, bromide and nitrate in potable and high salinity water. Various chromatographic parameters such as types and concentration of IPRs, concentration of organic modifier, phosphate buffer and mobile phase pH were optimized for the base-line separation of anions. The lowest detection limits (LDLs) were 0.2 for nitrate and nitrite, 0.6 µg ml(-1)for bromate and bromide respectively for potable water samples. NaCl and Na₂SO₄ were incorporated in the mobile phase for the analysis of high salinity water samples to minimize matrix interferences. This has resulted in change in elution order of anions, better tolerance of matrix anions such as chloride and sulphate. The developed method was successfully utilized for analysis of anions in potable, high salinity and sea water samples.

  8. pH-gradient ion-exchange chromatography: An analytical tool for design and optimization of protein separations

    NARCIS (Netherlands)

    Ahamed, T.; Nfor, B.; Verhaert, P.; Deden, van G.; Wielen, van der L.

    2007-01-01

    This work demonstrates that a highly linear, controllable and wide-ranged pH-gradient can be generated through an ion-exchange chromatography (IEC) column. Such a pH-gradient anion-exchange chromatography was evaluated with 17 model proteins and found that acidic (pI <6) and basic (pI > 8) pro

  9. Anion exchange kinetics of nanodimensional layered metal hydroxides: use of isoconversional analysis.

    Science.gov (United States)

    Majoni, Stephen; Hossenlopp, Jeanne M

    2010-12-16

    Anion exchange reactions of nanodimensional layered metal hydroxide compounds are utilized to create materials with targeted physical and chemical properties and also as a means for controlled release of intercalated anions. The kinetics of this important class of reaction are generally characterized by model-based approaches. In this work, a different approach based on isothermal, isoconversional analysis was utilized to determine effective activation energies with respect to extent of reaction. Two different layered metal hydroxide materials were chosen for reaction with chloride anions, using a temperature range of 30-60 °C. The concentrations of anions released into solution and the changes in polycrystalline solid phases were evaluated using model-based (Avrami-Erofe'ev nucleation-growth model) and model-free (integral isoconversional) methods. The results demonstrate the utility of the isoconversional approach for identifying when fitting to a single model is not appropriate, particularly for characterizing the temperature dependence of the reaction kinetics.

  10. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  11. Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  12. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    Science.gov (United States)

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  13. Rapid detection of malto-oligosaccharide-forming bacterial amylases by high performance anion-exchange chromatography

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Larsen, K. L.; Zimmermann, W.

    2000-01-01

    High performance anion-exchange chromatography with pulsed amperometric detection was applied for the rapid analysis of malto-oligosaccharides formed by extracellular enzyme preparations from 49 starch-degrading bacterial strains isolated from soil and compost samples. Malto-oligosaccharide-formi...

  14. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  15. Purification of Fission 99Mo by AG1-X8 Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LIANG; Ji-xin; WU; Yu-xuan; YU; Ning-wen; SHEN; Yi-jia; WANG; Qing-gui; GUO; Shu

    2015-01-01

    For the development of 99Mo production procedure,both of recovery yield of 99Mo and the removal of other impurities should be taken into account.Anion exchange chromatography is usually employed for purification of 99Mo from fission products.AG1-X8resin is a kind of strong

  16. Preparation of Anion Exchange Membrane Based on Imidazolium Functionalized Poly(arylene ether ketone)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hao; ZHANG Na; MA Wen-jia; ZHAO Cheng-ji; NA Hui

    2013-01-01

    The authors presented a novel synthetic route for the imidazolium functionalized poly(arylene ether ketone)s,derived from an engineering plastics polymer,a poly(arylene ether ketone) with 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl moiety(PAEK-TM).The preparation of anion exchange membranes comprised converting benzylic methyl groups to bromomethyl groups by a radical reaction,followed by the functionalization of bromomethylated PAEK with alkyl imidazoles,i.e.,methyl,butyl or vinyl imidazole.The structure of imidazolium functionalized PAEK was proved by 1H NMR spectra.A class of flexible and tough membranes was then achieved by subsequent film-forming and anion exchange processes.The water uptake and hydroxide conductivities of membranes are comparable or superior to those of quaternary ammonium(QA) anion exchange membranes.This work demonstrated a new route for non-QA anion exchange membrane design,avoiding the chloromethylation reagent and precisely controlling the degree and location of imidazolium groups.

  17. Effect of formaldehyde on Cu(II) removal from synthetic complexed solutions by ion exchange.

    Science.gov (United States)

    Juang, Ruey-Shin; Lin, Su-Hsia; Kao, Hsiang-Chien; Theng, Ming-Huei

    2005-06-01

    The effect of formaldehyde (HCHO) on the ion exchange of Cu(II) from an equimolar EDTA (ethylenediaminetetraacetic acid, H(4)L) solution with a strong-base Amberlite IRA-400 resin was studied. Experiments were conducted as a function of the initial concentration of Cu(II) (0.5-10 mM), solution pH (1.0-6.0), HCHO concentration (0-6 vol%), and temperature (15-35 degrees C). It was shown that the amount of exchange of Cu(II), which exists in the form of complexed anions CuL(2-), increased with increasing solution pH and reached a plateau at an equilibrium pH (pH(e)) of 3.5. However, the amount of exchange decreased with increasing HCHO concentration up to 3 vol% but then slightly decreased with a further increase in HCHO concentration. Such effect of added HCHO was determined by the following two factors: the competitive exchange of HCOO(-) anions and the enhanced exchange of Cu(I) in the form of complexed anions CuL(3-). The exchange isotherm obtained at a fixed pH(e) could be well described by the Langmuir equation. The isosteric enthalpy change for the present ion exchange process was also evaluated and discussed.

  18. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    Science.gov (United States)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  19. Study on the Retention Behavior of Aromatic Carboxylic and Sulfonic acid on a New Anion Exchange Column

    Institute of Scientific and Technical Information of China (English)

    SHI,Ya-Li; CAI,Ya-Qi; MOU,Shi-Fen

    2008-01-01

    Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution.IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron-containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide-selective columns,IonPac AS11-HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics.Among them 4-chlorobenzene sulfonic acid, 3,5-dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π-π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron-containing substituents.So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion-exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its

  20. Fixing of metallic acetates on an anion-exchange resin; Fixation d'acetates metalliques dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Brigaudeau-Vaissiere, M. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etude Nucleaires

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc{sub 3}{sup -} complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [French] Apres avoir rappele les principes theoriques de la fixation des complexes anioniques des elements metalliques dans une resine echangeuse d'anions, nous avons etudie tout particulierement le cas de l'acetate d'uranyle. Le trace des courbes de partage nous a permis de calculer les constantes d'echange dans la resine. L'etude des variations du logarithme du coefficient limite de partage avec le logarithme de la concentration des ions acetate libres nous a conduits aux calculs des constantes de dissociation des complexes en

  1. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  2. A new anion-exchange/hydrophobic monolith as stationary phase for nano liquid chromatography of small organic molecules and inorganic anions.

    Science.gov (United States)

    Aydoğan, Cemil

    2015-05-01

    In this study, an anion-exchange/hydrophobic polymethacrylate-based stationary phase was prepared for nano-liquid chromatography of small organic molecules and inorganic anions. The stationary phase was synthesized by in situ polymerization of 3-chloro-2-hydroxypropylmethacrylate and ethylene dimethacrylate inside silanized 100 μm i.d. fused silica capillary. The porogen mixture consisted of toluene and dodecanol. The pore size distrubution profiles of the resulting monolith were determined by mercury intrusion porosimetry and the morphology of the prepared monolith was investigated by scanning electron microscope. Good permeability, stability and column efficiency were observed on the monolithic column with nano flow. The produced monolithic column, which contains reactive chloro groups, was then modified by reaction with N,N-dimethyl-N-dodecylamine to obtain an anion-exchange/hydrophobic monolithic stationary phase. The functionalized monolith contained ionizable amine groups and hydrophobic groups that are useful of anion-exchange/hydrophobic mixed-mode chromatography. The final monolithic column performance with respect to anion-exchange and hydrophobic interactions was assesed by the separation of alkylbenzene derivatives, phenolic compounds and inorganic anions, respectively. Theoretical plate numbers up to 23,000 plates/m were successfully achieved in the separation of inorganic anions.

  3. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    Science.gov (United States)

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-07-16

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  4. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    Science.gov (United States)

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  5. Influence of montmorillonites exchange capacity on the basal spacing of cation–anion organo-montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Sanqin, Wu [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Zepeng, Zhang, E-mail: unite508@163.com [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Yunhua, Wang [Zhejiang Fenghong New Material Co., Ltd. (China); Libing, Liao [School of Materials Sciences and Technology, China University of Geosciences, No. 29 Xueyuan Road, Beijing, 100083 (China); Jiansheng, Zhang [Tangshan College, Tangshan 063000 (China)

    2014-11-15

    Graphical abstract: This picture shows the distribution of organic modifier (CTAB and SDS) in Mt interlayer and the basal spacing changes of Mt modified by CTAB and SDS. Organic modifier molecule in Mt interlayer is more and more orderly. The basal spacing of Mt is from 1.5 nm to 5 nm as modifier added. - Highlights: • The d{sub 001} of Ca-Mt, R-Na-Mt, Na-Mt modified by CTAB and SDS can reach 5 nm. • It is easier to get cation–anion OMt with greater d{sub 001} if CEC is lower. • The organic molecules distribution in cation–anion OMt was analyzed. • The influence mechanism of Ca-Mt CEC on the d{sub 001} was discussed. - Abstract: With cationic and anionic surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (SDS) as modifiers, Ca-montmorillonites (Ca-Mt), artificial Na-montmorillonites (R-Na-Mt) and natural Na-montmorillonites (Na-Mt) with different cation exchange capacity (CEC) were modified by solution intercalation method, respectively. Then cation–anion organo-montmorillonites (OMt) were prepared. The influence of CEC on the basal spacing of cation–anion OMt and the influence mechanism were discussed by X-ray diffraction (XRD) and zeta potential testing. The results indicate that the basal spacing of cation–anion OMt is related to CEC. For the same type montmorillonites, the basal spacing of cation–anion OMt decreases with the increase of CEC and it is easier to get cation–anion OMt with greater basal spacing when CEC is lower. Moreover, the CEC of Na-Mt has the greatest influence on the basal spacing of cation–anion OMt.

  6. Study of Sorption Properties of Anion Exchangers with Long-Chained Cross-Linking Agents for Tungsten Hydrometallurgy

    Institute of Scientific and Technical Information of China (English)

    O.N.Kononova; S.V.Kachin; O.P.Kalyakina; G.L.Pashkov; A.G.Kholmogorov

    2000-01-01

    The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions. The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy. The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene, therefore they can be used for selective tungsten recovery from comulex salt solutions.

  7. SPEEDUP{trademark} ion exchange column model

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.

  8. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  9. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  10. THE KINETICS OF FILM-DIFFUSION-LIMITED ION-EXCHANGE

    NARCIS (Netherlands)

    KRAAIJEVELD, G; WESSELINGH, JA

    1993-01-01

    The film-diffusion-limited ion exchange kinetics for the HCl-NaCl and HCl-CaCl2 systems on a Lewatit S100 ion exchanger are investigated. The ion exchange processes are modelled using the Maxwell-Stefan transport equations. The model uses only one fitting parameter. the film thickness, the Maxwell-S

  11. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.;

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  12. PRTR ion exchange vault water removal

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  13. Cesium and strontium ion specific exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  14. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Gula, M.; Harvey, J.

    1996-12-31

    Shortcomings of chelating resins have been addressed by a new class of ion exchange resins called dual mechanism bifunctional polymers (DMBPs). DMBPs use hydrophilic cation exchange ligands with rapid uptake kinetics and use chelating ligands for selectivity for one or more metals; result is a resin that quickly recognizes and removes targeted metals from waste, remediation, and process streams. Eichrom`s Diphonix {reg_sign} resin is the first DMBP to be widely released as a commercial product; it is polystyrene based. Objective of this work is to synthesize commercial quantities of a silica-based ion exchange resin with the same or better metal ion selectivity, metal uptake kinetics, and acid stability as Diphonix. Feasibility was determined, however the process needs to be optimized. Studies at Eichrom and ANL of the performance of Diphonix resin over a broad range of HNO3 and HCl conditions and inorganic salt loadings are discussed together with the proposed method of incorporating similar characteristics into a silica-based resin. The new, silica-based resin functionalized with diphosphonic acid ligands can be used in environmental restoration and waste management situations involving processing of low-level, transuranic, and high-level radioactive wastes; it can also be used for processing liquid mixed waste including wastes contaminated with organic compounds.

  15. Synthesis and anion exchange reactions of a layered copper-zinc hydroxy double salt, Cu1×6Zn0×4(OH)3(OAc)×H2O

    Indian Academy of Sciences (India)

    Jacqueline Therese Rajamathi; Sylvia Britto; Michael Rajamathi

    2005-11-01

    A mixed-metal hydroxysalt of formula Cu1.6Zn0.4(OH)3(OAc)$\\cdot$H2O has been synthesized by an acetate hydrolysis route. Acetate ions can be exchanged with simple inorganic anions such as chloride and nitrate, and organic anions such as benzoate and large surfactant anions such as dodecyl sulphate. Structures of these hydroxysalts are derived from that of Cu2(OH)3NO3$\\cdot$H2O with some of the Cu2+ ions being replaced by Zn2+.

  16. Ultrasensitive anion detection by NMR spectroscopy: a supramolecular strategy based on modulation of chemical exchange rate.

    Science.gov (United States)

    Perruchoud, Loïse H; Hadzovic, Alen; Zhang, Xiao-An

    2015-06-08

    NMR spectroscopy is a powerful tool for monitoring molecular interactions and is widely used to characterize supramolecular systems at the atomic level. NMR is limited for sensing purposes, however, due to low sensitivity. Dynamic processes such as conformational changes or binding events can induce drastic effects on NMR spectra in response to variations in chemical exchange (CE) rate, which can lead to new strategies in the design of supramolecular sensors through the control and monitoring of CE rate. Here, we present an indirect NMR anion sensing technique in which increased CE rate, due to anion-induced conformational flexibility of a relatively rigid structure of a novel sensor, allows ultrasensitive anion detection as low as 120 nM.

  17. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  18. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column.

    Science.gov (United States)

    Arai, Kaori; Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-04-01

    A combination of hydrophilic interaction chromatographic (HILIC) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography (IC). Firstly, the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions. The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10). When using tartaric acid as the eluent, the HILIC columns indicated strong retentions for anions, based on ion-pair interaction. Especially, HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I(-) > NO3(-) > Br(-) > Cl(-) > H2PO4(-). However, since HILIC-10 could not separate analyte cations, a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series. The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+, NH4+, K+, Mg2+, Ca2+, H2PO4(-), Cl(-), Br(-), NO3(-) and I(-)) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6. The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections. The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 micromol/L for the cations and 0.31 - 1.2 micromol/L for the anions. This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  19. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    Science.gov (United States)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  20. Ion-exchange chromatographic protein refolding.

    Science.gov (United States)

    Freydell, Esteban J; van der Wielen, Luuk; Eppink, Michel; Ottens, Marcel

    2010-11-12

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process intensification, represented by the possibility of performing protein refolding, product purification and product concentration, in one unit operation. Besides its high degree of process intensification, IExR offers an additional set of key advantages including: spatial isolation of the bound protein molecules and the controllable change in chemical composition using gradients. Despite of the acknowledgement of the former advantages, the lack of mechanistic understanding on how they influence the process performance of the ion-exchange refolding reactor, limits the ability to exploit them in order to optimize the performance of the unit. This paper presents a quantitative analysis that assesses the effect that the spatial isolation and the urea gradient, have on the IExR performance, judged on the basis of the refolding yield (Y(N)) and the fractional mass recovery (f(Prot,Rec)). Additionally, this work discusses the effect of the protein load, the protein loading state (i.e., native, denatured, denatured and reduced (D&R)) and the adsorbent type on f(Prot,Rec). The presented work shows: (1) that the protein load has a direct effect on f(Prot,Rec), and the magnitude of this effect depends on the loading state of the protein solution and the adsorbent type; (2) that irrespectively of the type of adsorbent used, the saturation capacity of a denatured protein is less than the native protein and that this difference can be linked to differences in accessible binding surface area; (3) that there is a clear correlation between fractional surface coverage (θ) and f(Prot,Rec), indicating that the former could serve as a good descriptor to assess spatial isolation, and (4) that the urea

  1. Effects of Polar Organic Solvent on Separation of Y(edta)-/Nd(edta)- Complexes on Polyacrylic Anion Exchangers

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolodynska

    2005-01-01

    The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H2O-methanol and H2O-ethanol systems. In most cases the determined distribution coefficients of Ln3+ complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water media.

  2. Cross-linked comb-shaped anion exchange membranes with high base stability

    Energy Technology Data Exchange (ETDEWEB)

    Li, NW; Wang, LZ; Hickner, M

    2014-01-01

    A unique one-step cross-linking strategy that connects quaternary ammonium centers using Grubbs II-catalyzed olefin metathesis was developed. The cross-linked anion exchange membranes showed swelling ratios of less than 10% and hydroxide conductivities of 18 to 40 mS cm(- 1). Cross-linking improved the membranes' stability to hydroxide degradation compared to their non-cross-linked analogues.

  3. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    OpenAIRE

    Zabolotskiy V. I.; Sharafan M. V.; Chermit R. H.; Vasilieva V. I.

    2014-01-01

    The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia) and AMX (Tokuyama Soda, Japan) under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser...

  4. Anion-exchange purification of recombinant factor IX from cell culture supernatant using different chromatography supports.

    Science.gov (United States)

    Ribeiro, Daniel A; Passos, Douglas F; Ferraz, Helen C; Castilho, Leda R

    2013-11-01

    Both recombinant and plasma-derived factor IX concentrates are used in replacement therapies for the treatment of haemophilia B. In the present work, the capture step for a recombinant FIX (rFIX) purification process was investigated. Different strong anion-exchange chromatography media (the resins Q Sepharose(®) FF and Fractogel(®) TMAE, the monolith CIM(®) QA and the membrane adsorber Sartobind(®) Q) were tested for their rFIX binding capacity under dynamic conditions. In these experiments, crude supernatant from CHO cells was used, thus in the presence of supernatant contaminants and mimicking process conditions. The highest dynamic binding capacity was obtained for the monolith, which was then further investigated. To study pseudoaffinity elution of functional rFIX with Ca(2+) ions, a design of experiments to evaluate the effects of pH, NaCl and CaCl2 on yield and purification factor was carried out. The effect of pH was not statistically significant, and a combination of no NaCl and 45mM CaCl2 yielded a good purification factor combined with a high yield of active rFIX. Under these conditions, activity yield of rFIX was higher than the mass yield, confirming selective elution of functional, γ-carboxylated rFIX. Scaling-up of this process 8 fold resulted in very similar process performance. Monitoring of the undesired activated FIX (FIXa) revealed that the FIXa/FIX ratio (1.94%) was higher in the eluate than in the loaded sample, but was still within an acceptable range. HCP and DNA clearances were high (1256 and 7182 fold, respectively), indicating that the proposed process is adequate for the intended rFIX capture step.

  5. Sequence-dpenedent DNA separation by anion-exchange high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Hisashi; Higashino, Ken-ich; Ohara, Osamu [Kazusa DNA Research Inst., Chiba (Japan)

    1996-09-05

    High-performance liquid chromatography (HPLC) system with a new nonporous anion-exchange resin, DNA-NPR, made it possible to rapidly separate DNA fragments up to 20 kbp with high resolution. In order to further characterize this chromatographic DNA separation system, we prepared a mixtures of double-stranded DNAs of constant length carrying a fully degenerated 50-bp region and analyzed their chromatographic behavior on the DNA-NPR column. The results indicated that the separation of DNA fragments on the anion-exchange HPLC was governed not only by size, but also by nucleotide sequence: even DNA fragments with the same size and the same base content could be separated on this column. Taking advantage of this characteristic feature of the anion-exchange HPLC, we could readily fractionate human cDNAs with practically acceptable recovery and high resolution. Furthermore, the combination of HPLC and gel electrophoresis realized separation of a mixture of DNA fragments in a two-dimensional pattern. 22 refs., 5 figs., 1 tab.

  6. Ion exchange properties of humus acids

    Science.gov (United States)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  7. Poly-anion production in Penning and RFQ ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bandelow, Steffi; Martinez, Franklin; Marx, Gerrit; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt University, 17487 Greifswald (Germany)

    2014-07-01

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Au{sup n-1}, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  8. Microbial treatment of ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Kouznetsov, A.; Kniazev, O. [D. Mendeleyev University of Chemical Technology of Russia, Dept. Biotechnology, Mocow (Russian Federation)

    2001-07-01

    A bioavailability of ion exchange resins to a microbial destruction as one of the alternative methods of compacting used ionites from the nuclear fuel manufacturing cycle enterprises has been investigated. The bio-destruction was studied after a preliminary chemical treatment or without it. A sensitivity of the ion exchange resins (including highly acidic cationite KU-2-8) to the microbial destruction by heterotrophic and chemo-litho-trophic microorganisms under aerobic conditions was shown in principle. The biodegradation of the original polymer is possible in the presence of the water soluble fraction of the resin obtained after its treatment by Fenton reagent and accelerated in the presence of Mn-ions in optimal concentration 1-2 g of Mn per liter of medium. Thus, the process of bio-destruction of ionite polymer by heterotrophic microorganisms can be compared with the bio-destruction of lignin or humic substances. The optimum parameters of bio-destruction and microorganisms used must be different for resins with different functional groups. (authors)

  9. Sodium-Zinc Exchange Selectivity on Wyoming Montmorillonite in Different Background Anion Solutions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of background anion on cation exchange reactions, such as Na-Ca and Na-Cu exchange reac-tions, on montmorillonites has been studied, but the results are not always clear and discrepancies exist inthe literature. In this study, the exchange of zinc (Zn2+) for sodium (Na+) on Wyoming montmorillonitewas investigated at 298 .K using Cl-, ClO4-, NO-3, OAc-, and SO42- solution media at a constant totalmetal charge concentration of 0.0200 molc L-1. Results indicated that the clay CEC values were essentialsimilar for Cl-, ClO-4, NO-3 and SO42- solution media with an average CEC of 0.856 ±0.008 molc kg-1; inan OAc- solution the clay CEC was much higher than that in other anion media. The specific adsorption ofZn (SAZn), as defined by the extraction of Zn using 0.05 mol L-1 Na2-EDTA, was different in the variousbackground solutions. The highest value for SAZn was 0.359±0.0350 molc kg-1, which occurred in OAc-solution. There was essentially no difference in the total apparent adsorbed metals (the sum of adsorbedequivalents of Na and Zn per kilogram of clay, Q) among the various background solutions. The average Q forall anion media was 0.807±0.011 mole kg-1 and was independent of exchanger composition. Experimentalresults indicated that there were no significant monovalent cation complexes such as ZnCl+ or ZnNO3+ thatwere adsorbed by montmorillonite. The Na-Zn exchange isotherms indicated that there was an adsorptionpreference for Zn over Na on Wyoming montmorillonite.

  10. DIFFUSIVITY OF ARRE EARTH ION IN POROUS ION EXCHANGE RESINS

    Institute of Scientific and Technical Information of China (English)

    LingDaren; LiuYucheng; 等

    1997-01-01

    The self-diffusion of Eu3+ ion in porous resins D72 and D751 was studied by isotope exchange reaction.Applying Kataoka's bidisperse pore model,the intraparticle effective diffusivity De were resolved into a solid diffusivity Dg and a macropore diffusivity Dp.The experiments show that De.Dp and Dg all increase with the increase of reaction temperature;the response Dp and Dg of D751 resin is smaller than that of D72 resin;the diffusivity of Eu3+ ion in solution is larger than Dp,which leads to the conclusion that the diffusion of ion in the pore of resin can not completely be equal to that in solution.

  11. Simulation of an anion in water: effect of ion polarizability

    Science.gov (United States)

    Karim, Omar A.

    1991-10-01

    A polarizable-polar water model is used to study the structure of wate near a chloride ion. A semi-classical description of ion polarizability is included. Significant changes in the solute-solvent distribution functions are observed. When compared with a simulation without ion polarizability, it is found that the hydration number is further decreased when ion polarizability is present.

  12. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    Science.gov (United States)

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  13. Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenjun, E-mail: wjzhang@hebut.edu.cn; Gan, Jie

    2016-05-30

    Highlights: • GQD/PS-AER was prepared as a solid fluorescent sensor with millimeter size. • The GQD/PS-AER sensor could detect Fe{sup 3+} ions selectively. • The GQD/PS-AER sensor could be reusable. • This method is simple and economical. - Abstract: A novel solid fluorescent sensor with millimeter size, based on graphene quantum dots/polystyrenic anion-exchange resin (GQDs/PS-AER) was obtained for the detection of Fe{sup 3+}. The linear response range of Fe{sup 3+} was obtained from 1 μM to 7 μM and the detection limit was as low as 0.65 μM. In addition, the sensor could be regenerated by adding complexing agent EDTA and be separated by using simple filtration.

  14. Non Destructive Application of Radioactive Tracer Technique for Characterization of Industrial Grade Anion Exchange Resins Indio GS-300 and Indion-860

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P. U. [Bhavan' s College, Mumbai (India)

    2014-02-15

    The paper deals with the application of radio isotopic non-destructive technique in the characterization of two industrial grade anion exchange resins Indion GS-300 and Indion-860. For the characterization of the two resins, {sup 131}I and {sup 82}Br were used as tracer isotopes to trace the kinetics of iodide and bromide ion-isotopic exchange reactions. It was observed that the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were calculated as 0.328, 0.577, 0.189 and 19.7 respectively for Indion GS-300 resin, which was higher than the respective values of 0.180, 0.386, 0.070 and 17.0 calculated for Indion-860 resins when measured under identical experimental conditions. Also at a constant temperature of 40.0 .deg. C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 75.16 % to 78.36 % for Indion GS-300 resins, which was higher than the increases from 49.65 % to 52.36 % compared to that obtained for Indion-860 resins. The overall results indicate that under identical experimental conditions, Indion GS-300 resins show superior performance over Indion-860 resins.

  15. Novel quaternized poly(arylene ether sulfone)/Nano-ZrO₂ composite anion exchange membranes for alkaline fuel cells.

    Science.gov (United States)

    Li, Xiuhua; Yu, Yingfeng; Meng, Yuezhong

    2013-02-01

    A series of composite anion exchange membranes based on novel quaternized poly(arylene ether sulfone)/nanozirconia (QPAES/nano-ZrO₂) composites are prepared using a solution casting method. The QPAES/nano-ZrO₂ composite membranes are characterized by FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). The ion exchange capacity (IEC), water uptake, swelling ratio, hydroxide ion conductivity, mechanical properties, thermal stability, and chemical stability of the composite membranes are measured to evaluate their applicability in fuel cells. The introduction of nano-ZrO₂ induces the crystallization of the matrix and enhances the IEC of the composite membranes. The modification with nano-ZrO₂ improves water uptake, dimension stability, hydroxide ion conductivity, mechanical properties, and thermal and chemical stabilities of the composite membranes. The QPAES/nano-ZrO₂ composite membranes show hydroxide ion conductivities over 25.7 mS cm⁻¹ at a temperature above 60 °C. Especially, the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 7.5% display hydroxide ion conductivities over 41.4 mS cm⁻¹ at 80 °C. The E(a) values of the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 5% are lower than 11.05 kJ mol⁻¹. The QPAES/7.5% nano-ZrO₂ composite membrane displays the lowest E(a) value and the best comprehensive properties and constitutes a good potential candidate for alkaline fuel cells.

  16. "Anion clamp" allows flexible protein to impose coordination geometry on metal ions.

    Science.gov (United States)

    Wang, Minji; Lai, Tsz Pui; Wang, Li; Zhang, Hongmin; Yang, Nan; Sadler, Peter J; Sun, Hongzhe

    2015-05-01

    X-ray crystal structures of human serum transferrin (77 kDa) with Yb(III) or Fe(III) bound to the C-lobe and malonate as the synergistic anion show that the large Yb(III) ion causes the expansion of the metal binding pocket while octahedral metal coordination geometry is preserved, an unusual geometry for a lanthanide ion.

  17. Synthesis and Anion Recognition of Novel Molecular Tweezer Receptors Based on Carbonyl Thiosemicarbazide for Fluoride Ions

    Institute of Scientific and Technical Information of China (English)

    WEI,Wei; ZHANG,You-Ming; WEI,Tai-Bao

    2008-01-01

    Three title compounds have been designed and synthesized in high yields as novel anion receptors, which show a higher selectivity for F- than other halide ions. The binding properties for fluoride ions of the receptors have been examined by UV-Vis and 1H NMR spectroscopy, indicating that a 1 : 1 stoichiometry complex is formed between the receptors and fluoride ions through hydrogen bonding interactions in DMSO solution. In addition, because these receptors have more binding points, they have better binding properties for anions than the molecular tweezer receptors based on thiourea we reported last time.

  18. ELECTRIC REGENERATION METHOD OF ION EXCHANGE RESIN IN THE MIXED BED

    Institute of Scientific and Technical Information of China (English)

    WangFang

    1998-01-01

    In this paper,the self-regeneration process of the mixed resins consisting of cation and anion ion exchangers in the electrolialyser of the packed bed is analyzed,and an electric regeneration method is put forward to supply the desalinated water by mixed bed.The electric regeneration technology is a new one used for regeneration of the exhausted ion exchangers in the mixed bed,instead of the traditional regenerating process by using acid and alkali liquor.Electric energy is consumed to regenerate the ion exchangers loaded by salts from water treatment without any chemicals-acid and alkali.The advantage of the electric regeneration process exhibited convenient operation,no discharge any waste,and therefore no pollution to the receiving water body and the environmental ground.

  19. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  20. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, K.D.

    1999-10-01

    The effect of anodic surface treatment of activated carbon on adsorption and ion exchange characteristics was investigated in the condition of 35 wt% NaOH electrolyte for 60 s. The acid and base values were determined by a titration technique, and surface and pore structures were studied in terms of BET volumetric measurement with N{sub 2} adsorption. The ion exchange capacity of the anodized activated carbons was characterized by a dry weight capacity technique. It was observed that an increase in current intensity leads to an increase in the surface functional groups of activated carbons, resulting in increasing pH, acid-base values, and anion-cation exchange capacities, without significant change of surface and pore structures (i.e., specific surface area, total pore volume, micropore volume, and average pore diameter). Also, anodically treated activated carbons are more effectively evaluated on the base value or cation exchange capacity than on the oppose properties in this electrolytic system.

  1. Cation- and anion-exchanges induce multiple distinct rearrangements within metallosupramolecular architectures.

    Science.gov (United States)

    Riddell, Imogen A; Ronson, Tanya K; Clegg, Jack K; Wood, Christopher S; Bilbeisi, Rana A; Nitschke, Jonathan R

    2014-07-01

    Different anionic templates act to give rise to four distinct Cd(II)-based architectures: a Cd2L3 helicate, a Cd8L12 distorted cuboid, a Cd10L15 pentagonal prism, and a Cd12L18 hexagonal prism, which respond to both anionic and cationic components. Interconversions between architectures are driven by the addition of anions that bind more strongly within a given product framework. The addition of Fe(II) prompted metal exchange and transformation to a Fe4L6 tetrahedron or a Fe10L15 pentagonal prism, depending on the anionic templates present. The equilibrium between the Cd12L18 prism and the Cd2L3 triple helicate displayed concentration dependence, with higher concentrations favoring the prism. The Cd12L18 structure serves as an intermediate en route to a hexafluoroarsenate-templated Cd10L15 complex, whereby the structural features of the hexagonal prism preorganize the system to form the structurally related pentagonal prism. In addition to the interconversion pathways investigated, we also report the single-crystal X-ray structure of bifluoride encapsulated within a Cd10L15 complex and report solution state data for J-coupling through a CH···F(-) hydrogen bond indicating the strength of these interactions in solution.

  2. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    Science.gov (United States)

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  3. Multicomponent liquid ion exchange with chabazite zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  4. Simultaneous clarification of Escherichia coli culture and purification of extracellularly produced penicillin G acylase using tangential flow filtration and anion-exchange membrane chromatography (TFF-AEMC).

    Science.gov (United States)

    Orr, Valerie; Scharer, Jeno; Moo-Young, Murray; Honeyman, C Howie; Fenner, Drew; Crossley, Lisa; Suen, Shing-Yi; Chou, C Perry

    2012-07-01

    Downstream purification often represents the most cost-intensive step in the manufacturing of recombinant proteins since conventional purification processes are lengthy, technically complicated, and time-consuming. To address this issue, herein we demonstrated the simultaneous clarification and purification of the extracellularly produced recombinant protein by Escherichia coli using an integrated system of tangential flow filtration and anion exchange membrane chromatography (TFF-AEMC). After cultivation in a bench-top bioreactor with 1L working volume using the developed host/vector system for high-level expression and effective secretion of recombinant penicillin G acylase (PAC), the whole culture broth was applied directly to the established system. One-step purification of recombinant PAC was achieved based on the dual nature of membrane chromatography (i.e. microfiltration-sized pores and anion-exchange chemistry) and cross-flow operations. Most contaminant proteins in the extracellular medium were captured by the anion-exchange membrane and cells remained in the retentate, whereas extracellular PAC was purified and collected in the filtrate. The batch time for both cultivation and purification was less than 24h and recombinant PAC with high purity (19 U/mg), yield (72% recovery), and productivity (41 mg of purified PAC per liter of culture) was obtained. Due to the nature of the non-selective protein secretion system and the versatility of ion-exchange membrane chromatography, the developed system can be widely applied for effective production and purification of recombinant proteins.

  5. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Jixin, E-mail: jixin.qiao@risoe.d [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Hou Xiaolin; Roos, Per [Radiation Research Division, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Miro, Manuel [Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, Carretera de Valldemossa km. 7.5, E-07122 Palma de Mallorca, Illes Balears (Spain)

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ({sup 239}Pu and {sup 240}Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-x4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10{sup 3} to 10{sup 4}. The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  6. Rapid isolation of plutonium in environmental solid samples using sequential injection anion exchange chromatography followed by detection with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2011-01-31

    This paper reports an automated analytical method for rapid determination of plutonium isotopes ((239)Pu and (240)Pu) in environmental solid extracts. Anion exchange chromatographic columns were incorporated in a sequential injection (SI) system to undertake the automated separation of plutonium from matrix and interfering elements. The analytical results most distinctly demonstrated that the crosslinkage of the anion exchanger is a key parameter controlling the separation efficiency. AG 1-×4 type resin was selected as the most suitable sorbent material for analyte separation. Investigation of column size effect upon the separation efficiency revealed that small-sized (2 mL) columns sufficed to handle up to 50 g of environmental soil samples. Under the optimum conditions, chemical yields of plutonium exceeded 90% and the decontamination factors for uranium, thorium and lead ranged from 10(3) to 10(4). The determination of plutonium isotopes in three standard/certified reference materials (IAEA-375 soil, IAEA-135 sediment and NIST-4359 seaweed) and two reference samples (Irish Sea sediment and Danish soil) revealed a good agreement with reference/certified values. The SI column-separation method is straightforward and less labor intensive as compared with batch-wise anion exchange chromatographic procedures. Besides, the automated method features low consumption of ion-exchanger and reagents for column washing and elution, with the consequent decrease in the generation of acidic waste, thus bearing green chemical credentials.

  7. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    2000-01-01

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  8. Adsorption of Ce(Ⅳ) Anionic Nitrato Complexes onto Anion Exchangers and Its Application for Ce(Ⅳ) Separation from Rare Earths(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ce(Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quaternized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L-1) and temperature (278~318 K) on Ce(Ⅳ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce(Ⅳ) species resulting in Ce(Ⅲ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce(Ⅳ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce(Ⅳ) from La(Ⅲ) and Y(Ⅲ) was carried out from 6 mol·L-1 nitric acid with PVP based anion exchanger. Reasonable Ce(Ⅳ) breakthrough capacity (0.7 mol·kg-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce(Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L-1 nitric acid was successful (recovery 100%±4%) and Ce solution of high purity (>99.97%) with respect to La and Y content was gained.

  9. Recovery of tetrachloroaurate through ion exchange with Dowex 11 resin

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    1998-05-01

    Full Text Available The recovery of the tetrachloroaurate complex by the anionic ion exchange resin Dowex 11 has been studied. The kinetics of gold adsorption were dependent of both gold and resin concentrations and temperature. The adsorption isotherm can be described by the expression Q = kCn. The loaded resin could be eluted by an acidic thiourea solution at 20°C. After several adsorption-elution cycles there is not any apparent loss in the adsorption properties of the resin.

    Se estudia la recuperación del ion tetracloroaurato mediante la resina aniónica Dowex 11. La extracción de oro depende tanto de las concentraciones del metal y la resina como de la temperatura. La isoterma de adsorción responde a la ecuación Q = kCn. La resina cargada con oro puede ser eluida con una disolución acida de tiourea a 20°C. Después de varios ciclos de adsorción-desorción no hay pérdida de carga por parte de la resina.

  10. Selective removal of nitrate by using a novel macroporous acrylic anion exchange resin

    Institute of Scientific and Technical Information of China (English)

    Hai Ou Song; Yang Zhou; Ai Min Li; Sandra Mueller

    2012-01-01

    An anion exchange resin NDP-5 has been prepared successfully and applied on the selective removal of nit-ate from SO42-/NO3- binary co-existence system.The composition and morphology of NDP-5 were confirmed by FT-IR and SEM.The NDP-5 resin exhibits the completely different behavior on the adsorption capacity,adsorption kinetic and the effect of the completing anion in the absence or presence of sulfate,compared to D213.And,the resultants of kinetic are well fitted by the pseudo-first-order and pseudo-second-order models.These results are very important to develop novel resins with great features.

  11. Hybrid Anion Exchange Hollow Fiber Membrane for Delivery of Ionic Drugs

    Directory of Open Access Journals (Sweden)

    Na Wang

    2012-01-01

    Full Text Available Hybrid anion exchange hollow fiber membranes (HAEHFMs based on bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide (BPPO are proposed as potential drug carriers for four anionic model drugs, including the sodium salts of benzoate (NaBS, salicylate (NaSA, meta-amino salicylate (NaMAS, and loxoprofen (NaLS. The results of the static loading and release experiments suggest that electrostatic interaction, hydrogen bonding, and hydrophobic interaction are the main interaction patterns between the membrane and the drugs. And they are directly influenced by the external phase conditions and the drug physicochemical characteristics, such as structure, molecular weight, dissociation (pKa, and hydrogen bonding capability. Among the four different drugs, NaSA and NaMAS appear to be the most suitable for controlled release by the HAEHFM due to their excellent adsorption/release behaviors.

  12. [Development of metal ions analysis by ion chromatography].

    Science.gov (United States)

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  13. Separation of Y(dcta– complexes from Nd(dcta– and Sm(dcta– complexes on polyacrylate anion-exchangers

    Directory of Open Access Journals (Sweden)

    DOROTA KOLODYNSKA

    2003-03-01

    Full Text Available The formation of anion rare earth element complexes with aminopolycarboxylic acids gives new possibilities for the separation of these elements on anion-exchangers. The higher affinity of the Nd(dcta- and Sm(dcta- complexes for the anion-exchangers compared to Y(dcta- complexes indicates the possibility of yttrium purification as a macrocomponent from the former by frontal analysis. The weakly basic polyacrylate gel anion-exchanger Amberlite IRA 68 was more effective in the purification of Y(III from Nd(III and Sm(III complexes with DCTA than the strongly basic anion-exchangers of this type.

  14. Birefringence control for ion-exchanged channel glass waveguides.

    Science.gov (United States)

    Ayräs, P; Conti, G N; Honkanen, S; Peyghambarian, N

    1998-12-20

    We show that at 1.55-mum wavelength the waveguide birefringence of ion-exchanged channel waveguides in glass can be broadly tuned by a potassium and silver double-ion exchange. Two different potassium and silver double-ion-exchange processes are used to make surface waveguides with negligible waveguide birefringence. This process is crucially important in the manufacture of devices for dense wavelength-division multiplexing systems. The dependence of the waveguide birefringence on the channel width is also reported.

  15. Mineral Separation in a CELSS by Ion-exchange Chromatography

    Science.gov (United States)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  16. Removal of Anionic Metal Ions from Wastewater by Hydroxide-type Adsorbents

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Generally speaking, anionic metal concentrations in wastewater from industries and mineral processing plants are well above the allowed limits for effluent set by the Ministry of Environment of Japan. Nowadays, the removal of anionic ions has been considered difficult and development of new process is desperately needed. In this paper, we report the development of three hydroxide-type adsorbents, illustrating their adsorption efficiency in removing As, Se, Mo and Sb ions from aqueous solutions. The main finding of this work was that the adsorption behavior was influenced very much by both the pH and the adsorbent concentration. Nevertheless, the newly developed hydroxide-type adsorbents were very effective in reducing the concentration of those anionic ions.

  17. STUDIES ON THE POLYMERIZATION OF ACRYLONITRILE INITIATED BY METAVANADATE- CONTAINING ANION EXCHANGER-THIOUREA REDOX SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YANG Chaoxiong; WU Jinyuan; WU Yuxian

    1991-01-01

    The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20- 40 ℃. has been investigated. The overall rate of polymerization (Rp) is given by Rp= 1.92 × 104 e -6,860/RT [AN]1.2[PV]0.44[TU]1.0[HNO3]1.0 The kinetic parameters differed from those of V5+-TU system indicated that the generation of the primary radicals is mainly a difffusion-controlled reaction . The effect of macromolecular field arisen from the polymer matrix exerts a great influence on the polymerization process.

  18. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Søndergaard, M.; Thomas, Owen R. T.

    2001-01-01

    In this study we detail the rational design of new chromatographic adsorbents tailored for the capture of plasmid DNA. Features present on current chromatographic supports that can significantly enhance plasmid binding capacity have been identified in packed bed chromatography experiments...... and blueprints for improved expanded bed adsorbents have been put forward. The characterisation and testing of small (20-40 mum) high density (>3.7 g cm(-3)) pellicular expanded bed materials functionalised with various anion exchange structures is presented. In studies with calf thymus DNA, dynamic binding...

  19. ELECTROCHEMICAL STABILITY OF STRONG BASIC ANION EXCHANGE MEMBRANES IN CONDITIONS OF HIGH INTENSIVE ELECTRODIALYSIS PROCESS

    Directory of Open Access Journals (Sweden)

    Zabolotskiy V. I.

    2014-12-01

    Full Text Available The stability of strongly basic anion-exchange membranes MA-41-2P (JSC "Schekino-Nitrogen", Russia and AMX (Tokuyama Soda, Japan under intensive current regimes was investigated in the current study. The process of water molecules dissociation at current densities above the limiting one in 0.01 M sodium chloride solution was studied in detail. The length of the electroconvective instability at the membrane / solution interface at currents exceeding the limiting current was measured by laser interferometry

  20. Determination of petroleum sulfonates in crude oil by column-switching anion-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Liang Zhao; Xu Long Cao; Hong Yan Wang; Xia Liu; Sheng Xiang Jiang

    2008-01-01

    A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS)and petroleum disulfonates (PDS)in crude oil that was simply diluted with the dichloromethane/methanol (60140).The high performance liquid chromatography (HPLC)system consisted of a clean-up column and an analytical column,which were connected with two six-port switching valves.Detection of petroleum sulfonates was available and repeatable.This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.

  1. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance,which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.

  2. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  3. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.

    Science.gov (United States)

    Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo

    2014-08-08

    Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers.

  4. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  5. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Cong, Jie; Toyoda, Hirotaka; Nagatsu, Masaaki; Meng, Yuedong

    2011-05-01

    Plasma grafting is employed to prepare alkaline anion-exchange membranes in this study. The attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis demonstrate that the benzyltrimethylammonium cationic groups are successfully introduced into the polyvinyl chloride matrix via plasma grafting, quaternization and alkalization. The plasma-grafted alkaline anion-exchange membrane exhibits a satisfactory ionic exchange capacity (1.01 mmol g-1), thermal stability, mechanical property, ionic conductivity (0.0145 S cm-1) and methanol permeability (9.59 × 10-12 m2 s-1), suggesting a great potential for application in direct alcohol fuel cells. The open circuit voltage of air-breathing ADAFC using plasma-grafted alkaline anion-exchange membrane is 0.796 V with 1 M EtOH solution at ambient temperature.

  6. Exchange of interlayer terephthalate anions from a Mg Al layered double hydroxide: formation of intermediate interstratified phases

    Science.gov (United States)

    Kaneyoshi, Masami; Jones, William

    1998-10-01

    The exchange of interlayer terephthalate (TA) anions from a Mg-Al layered double hydroxide (LDH) by carbonate, sulfate, chloride and nitrate anions is reported. It is shown that TA is readily exchanged by CO 32- and SO 42- but only partly by Cl - and NO 3-. We demonstrate that during the exchange process interstratified phases are observed. Such interstratification has previously been reported only for directly synthesised materials. The origin of the interstratification is believed to be associated with two preferred orientations of TA anions within the layers, i.e. vertical or horizontal to the clay sheets. Two models for the possible exchange mechanism which is operating in these systems are proposed.

  7. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  8. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    Science.gov (United States)

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-01-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields.

  9. Ion Exchange Extraction of Boron from Aqueous Fluids by Amberlite IRA 743 Resin

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 廖步勇; 刘卫国; 肖云; SWIHART,GeorgeH.

    2003-01-01

    The ion exchange characteristics d Amherlite IRA 743 resin for extracting boron from aqueous fluids have been investigated in detail. The results show that AmherHte IRA 743 resin, a boron specific ion exchange resin, can quantitatively extract boron as the B (OH)4- spedes from weakly basle solution. Some exchangeable anions such as CI- and SO42- are present, resulting in an increase in pH value of the loeded solution within the nan, and the boron in natural aqueous fluids with low nH is also extracted by Amberlite IRA 743 resin. However, the voiume of loaded solution must be restricted. The maximum voiume of loaded solution giving quantitative extraction of boron decreases for sample soh.,tiom of lower pH value. Warm HCI solution is more effective than room temperature HCI solution for eluting boron from Amberllte IRA 743 resin.

  10. ANION EXCHANGE CAPACITY OF CHROMATE ON MODIFIED ZEOLITE CLINOPTILOLITE WITH HDTMA-Br AND ITS REGENERATION

    Directory of Open Access Journals (Sweden)

    Widajanti Wibowo

    2011-04-01

    Full Text Available Zeolite Clinoptilolite from Lampung, located in South of Sumatra, had been modified with surfactanthexadecyltrimethylammonium bromide (HDTMA-Br as chromate anion exchanger. Surfactant modified zeolite (SMZClinoptilolite in particle size range of 1.5 - 2.0 mm, which contained 196.7 mmol HDTMA-Br/kg zeolite, was used foranion exchange of chromate at neutral pH. This experiment was conducted in a glass column filled with 5 gram SMZ.The breakthrough chromate exchange capacity was found 1.262 mg/g SMZ, while the total capacity was found 2.107mg/g SMZ. The regeneration of SMZ saturated with chromate was conducted using a mixed solutions of 0.28 MNa2CO3 and 0.5 M NaOH, compared with using a solution of 0.01 M Na2S2O4. The desorption of chromate achieved92% with the mixed solutions of Na2CO3 and NaOH and 90% with the Na2S2O4 solution. The regenerated SMZ withNa2CO3-NaOH solutions was prior washed with HCl solution to remove the carbonate from SMZ, before being used forchromate sorption again. Its breakthrough capacity was reduced to 1.074 mg/g SMZ, and to 0.724 mg/g SMZ whenregenerated with Na2S2O4 solution. These results indicated that regeneration of SMZ affected its exchange capacity foranion chromate. However, it is still could be acceptable, when Na2CO3/NaOH solutions were used for the regenerationof SMZ saturated with anion chromate.

  11. Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2.

    Science.gov (United States)

    Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B

    2016-05-01

    The anilide anion (m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion (m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion (m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.

  12. Performance evaluation of anion exchange resins Purolite NRW-5050 and Duolite A-611 by application of radioisotopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Singare, P.U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2014-12-15

    Radioanalytical techniques using {sup 131}I and {sup 82}Br as tracer isotopes were applied to study the kinetics of iodide and bromide ion-isotopic exchange reactions taking place between the external labeled ionic solution and the resin surface. The results indicate low values of specific reaction rate (min{sup -1}), amount of ion exchanged (mmol) and initial rate of ion exchange (mmol/min) for bromide ion-isotopic exchange reaction as compared to that obtained for iodide ion-isotopic exchange reaction. It was observed that for iodide ion-isotopic exchange reaction performed at 35.0 C, 1 000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution, the values of specific reaction rate (min{sup -1}), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K{sub d} were 0.340, 0.394, 0.134 and 20.2 respectively for Purolite NRW-5050 resin, which was higher than the respective values of 0.216, 0.290, 0.063 and 18.2 as that obtained by using Duolite A-611. The results of present investigation indicate that during the two ion-isotopic exchange reactions, for both the resins, there exists a strong positive linear correlation between amount of ions exchanged and concentration of ionic solution; and strong negative correlation between amount of ions exchanged and temperature of exchanging medium. From the results it appears that as compared to Duolite A-611 resins, Purolite NRW-5050 resins shows superior performance under identical experimental conditions.

  13. Qualification of Reillex{trademark} HPQ anion exchange resin for use in SRS processes

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, W.J. III

    2000-05-18

    The Phase 2 portion of the HB-Line facility was built in the early 1980's to process plutonium and neptunium from nitric acid solutions into oxide suitable for storage in a vault. Although the other portions of HB-Line were started up in the mid 1980's and have operated since that time, the anion exchange and precipitation processes in Phase 2 were never started up. As part of the material stabilization efforts, Phase 2 is currently being started up. A new anion exchange resin is needed because the resins that were proposed for use 10 years ago are limited by performance characteristics, disposal requirements, or are no longer commercially available. SRTC is responsible for qualifying all resins prior to their use in Nuclear Materials Stabilization and Storage (NMSS) processes. Qualification consists of both process suitability and thermal stability with nitric acid. This report describes the thermal stability qualification of Reillex{trademark} HPQ, the new resin proposed for processing plutonium and neptunium in the HB Line facility.

  14. Hydrolysis of fish oil by hyperactivated Rhizomucor miehei lipase immobilized by multipoint anion exchange.

    Science.gov (United States)

    Filice, Marco; Marciello, Marzia; Betancor, Lorena; Carrascosa, Alfonso V; Guisan, Jose M; Fernandez-Lorente, Gloria

    2011-07-01

    Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20- to 25-fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide-activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl-Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents.

  15. Use of Anion Exchange Resins for One-Step Processing of Algae from Harvest to Biofuel

    Directory of Open Access Journals (Sweden)

    Martin Poenie

    2012-07-01

    Full Text Available Some microalgae are particularly attractive as a renewable feedstock for biodiesel production due to their rapid growth, high content of triacylglycerols, and ability to be grown on non-arable land. Unfortunately, obtaining oil from algae is currently cost prohibitive in part due to the need to pump and process large volumes of dilute algal suspensions. In an effort to circumvent this problem, we have explored the use of anion exchange resins for simplifying the processing of algae to biofuel. Anion exchange resins can bind and accumulate the algal cells out of suspension to form a dewatered concentrate. Treatment of the resin-bound algae with sulfuric acid/methanol elutes the algae and regenerates the resin while converting algal lipids to biodiesel. Hydrophobic polymers can remove biodiesel from the sulfuric acid/methanol, allowing the transesterification reagent to be reused. We show that in situ transesterification of algal lipids can efficiently convert algal lipids to fatty acid methyl esters while allowing the resin and transesterification reagent to be recycled numerous times without loss of effectiveness.

  16. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins.

    Science.gov (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew

    2009-05-30

    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  17. Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site.

    Science.gov (United States)

    Stucker, Valerie; Ranville, James; Newman, Mark; Peacock, Aaron; Cho, Jaehyun; Hatfield, Kirk

    2011-10-15

    Laboratory tests and a field validation experiment were performed to evaluate anion exchange resins for uranium sorption and desorption in order to develop a uranium passive flux meter (PFM). The mass of uranium sorbed to the resin and corresponding masses of alcohol tracers eluted over the duration of groundwater installation are then used to determine the groundwater and uranium contaminant fluxes. Laboratory based batch experiments were performed using Purolite A500, Dowex 21K and 21K XLT, Lewatit S6328 A resins and silver impregnated activated carbon to examine uranium sorption and extraction for each material. The Dowex resins had the highest uranium sorption, followed by Lewatit, Purolite and the activated carbon. Recoveries from all ion exchange resins were in the range of 94-99% for aqueous uranium in the environmentally relevant concentration range studied (0.01-200 ppb). Due to the lower price and well-characterized tracer capacity, Lewatit S6328 A was used for field-testing of PFMs at the DOE UMTRA site in Rifle, CO. The effect on the flux measurements of extractant (nitric acid)/resin ratio, and uranium loading were investigated. Higher cumulative uranium fluxes (as seen with concentrations>1 ug U/gram resin) yielded more homogeneous resin samples versus lower cumulative fluxes (uranium. Resin homogenization and larger volume extractions yield reproducible results for all levels of uranium fluxes. Although PFM design can be improved to measure flux and groundwater flow direction, the current methodology can be applied to uranium transport studies.

  18. Detection of anionic energetic material residues in enhanced fingermarks on porous and non-porous surfaces using ion chromatography.

    Science.gov (United States)

    Love, Catherine; Gilchrist, Elizabeth; Smith, Norman; Barron, Leon

    2013-09-10

    The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.

  19. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  20. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    Science.gov (United States)

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  1. STUDIES ON INOSINE EXTRACTION BY ION EXCHANGE METHOD

    Institute of Scientific and Technical Information of China (English)

    HuangXiwen; ShiFang; 等

    1998-01-01

    The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different pH,resin type are investigated.Besides,the desorption conditions are studied under different temperature.The adsorption and desorption mechanism are described to obtain the optimum technological condition of inosine extraction.

  2. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  3. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  4. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  5. Study on actinoid isolation by antimonide ion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masamichi [Tokyo Inst. of Tech. (Japan). Faculty of Science; Kubota, Masumitsu; Yamagishi, Isao

    1996-01-01

    To establish a containment of long-life nuclides and an effective reduction of waste volume is important to reduce the loadings on the natural environment. Chemical isolation of radioactive nuclides from wastes was attempted by using inorganic ion exchanger with high specificity and thermal stability. In this study, titanium antimonide was used as an ion exchanger to investigate the adsorption of trivalent metallic ions according to Kielland plot curves. When the ionic equivalent fraction (X-bar{sub M}) was around 0.005, Kielland plot curve of either of 3-valent metallic ions was bent, suggesting the exchanger had two different adsorption sites. The slope of the curve became smaller as an elevation of temperature. These results show that the ion radius was decreased resulting from partial elimination of the hydrated water of ion and thus, the steric conditions around the exchange site might be improved. (M.N.)

  6. Design of high efficiency fibers for ion exchange and heavy metal removal

    Science.gov (United States)

    Dominguez, Lourdes

    Ion exchange materials coated on glass fiber substrates have a number of advantages over the conventional ion exchange beads. These include simplification of the overall synthesis including faster more efficient functionalization and elimination of toxic solvents. Other benefits include the ability to be fabricated in the form of felts, papers, or fabrics, improving media contact efficiency and enhancing both the rates of reaction and regeneration. In addition, physical and mechanical requirements of strength and dimensional stability are achieved by use of glass fiber substrates. Investigations were focused on design of: (1) polymeric cationic exchange fibers and their application for lead and mercury removal, (2) polymeric anionic exchange fibers and their application for arsenate removal, (3) enhancement of anionic fiber selectivity for monovalent ions over divalent ions through bulkier triaklylamine functional groups, and (4) polymeric mercaptyl fibers for the application of arsenite removal. The design and characterization of a cationic exchange fiber is described. Dynamic mode (breakthrough) experiments for calcium, lead, and mercury ion solutions are also presented. The second system consists of the preparation and characterization of anionic exchange fibers with equilibrium adsorption isotherms and dynamic mode kinetic experiments for arsenate removal. Modification of the resin with bulkier functional groups (trimethylamine, triethylamine, tripropylamine, tributylanmine), thereby effecting a change in the selectivity from divalent species to monovalent species, is considered in the separation of nitrates from sulfates. The ability of a thiol group to bind to the highly toxic arsenite ion (as is done in proteins and enzymes) provided the model used to chemically modify and characterize a polyvinyl alcohol mercaptyl fibrous system, coated on a fiberglass substrate, for the purpose of arsenite (As3+) removal from water. Physical/chemical aspects of naturally

  7. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion.

  8. Boron Separation by the Two-step Ion-Exchange for the Isotopic Measurement of Boron

    Institute of Scientific and Technical Information of China (English)

    WANG,Qing-Zhong(王庆忠); XIAO,Ying-Kai(肖应凯); WANG,Yun-Hui(王蕴惠); ZHANG,Chong-Geng(张崇耿); WEI,Hai-Zhen(魏海珍)

    2002-01-01

    An improved procedure for extraction and purification of boron from natural samples is presented. The separation and purification of boron was carried out using a boron-specific resin, Amberlite IRA743, and a mixed ion exchange resin,Dowex 50W × 8 and Ion Exchanger Ⅱ resin. Using the mixed ion exchange resin which adsorbs all cations and anions except boron, the HCl and other cations and anions left in eluant from the Amberlite IRA 743 were removed effectively. In this case, boron loss can be avoided because the boron-bearing solution does not have to be evaporated to reach dryness to dislodge HCl. The boron recovery ranged from 97.6% to 102% in this study. The isotopic fractionation of boron can be negligible within the precision of the isotopic measurement. The results show that boron separation for the isotopic measurement by using both Amberlite IRA 743 resin and the mixed rein is more effective than that using Amberlite IRA 743 resin alone. The boron in samples of brine, seawater, rock, coral and foraminifer were separated by this procedure. Boron isotopic compositions of these samples were measured by thermal ionization mass spectrometry in this study.

  9. Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins.

    Science.gov (United States)

    Fernandes, D L A; Silva, C M; Xavier, A M R B; Evtuguin, D V

    2012-12-31

    Sulphite spent liquor (SSL) is a side product from acidic sulphite pulping of wood, which organic counterpart is composed mainly by lignosulphonates (LS) and sugars. The last are a prominent substrate for the bioprocessing although a previous purification step is necessary to eliminate microbial inhibitors. In this study a fractionation of hardwood SSL (HSSL) has been accomplished employing ion exchange resins in order to separate sugars fraction from concomitant inhibitors: LS, acetic acid, furan derivatives, phenolics, acetic acid and excess of inorganic salts. The fractionation of HSSL has been carried out using two fixed-bed ion exchangers in series (cationic+anionic). The first cation exchange column packed with Dowex 50WX2 resin was able to eliminate free cations and partially separate sugars from high molecular weight LS and furan derivatives. The second anion exchange column packed with Amberlite IRA-96 sorbed remaining LS, phenolics and acetic acid. Overall, the series arrangement under investigation has removed 99.99% of Mg(2+), 99.0% of Ca(2+), 99.6% of LS, and 100% of acetic acid, whereas the yield of recovered sugars was at least 72% of their total amount in HSSL.

  10. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    OpenAIRE

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis co...

  11. Electron attachment to anionic clusters in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Franklin, E-mail: franklin.martinez@uni-rostock.de [University of Rostock, Institute of Physics (Germany); Bandelow, Steffi; Marx, Gerrit; Schweikhard, Lutz; Vass, Albert [Ernst-Moritz-Arndt University, Institute of Physics (Germany)

    2015-11-15

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.

  12. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    Science.gov (United States)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  13. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column

    Institute of Scientific and Technical Information of China (English)

    Kaori ARAI; Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Kazuhiko TANAKA

    2012-01-01

    A combination of hydrophilic interaction chromatographic ( HILIC ) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography ( IC ).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetainezwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I- > NO3- > Br- > Cl- >H2PO4-.However,since HILIC-10 could not separate analyte cations,a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+,NH4+,K+,Mg2+,Ca2+,H2PO4-,Cl-,Br-,NO3- and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 μmol/L for the cations and 0.31 - 1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  14. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples.

  15. Simultaneous quantification of sinigrin, sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography.

    Science.gov (United States)

    Popova, Inna E; Morra, Matthew J

    2014-11-01

    Although mustards such as Sinapis alba and Brassica juncea contain glucosinolates (sinalbin and sinigrin, respectively) that hydrolyze to form biopesticidal products, routine quality control methods to measure active ingredients in seed and seed meals are lacking. We present a simple and fast ion chromatography method for the simultaneous quantification of sinigrin, sinalbin, and anionic hydrolysis products in mustard seed to assess biological potency. Optimum conditions include isocratic elution with 100 mM NaOH at a flow rate of 0.9 mL/min on a 4 × 210 mm hydroxide-selective anion-exchange column. All anion analytes including sinigrin, sinalbin, SO4(2-), and SCN(-) yielded recoveries ranging from 83 to 102% and limits of detection ≤0.04 mM, with samples displaying little interference from plant matrix components. Sample preparation is minimized and analysis times are shortened to <90 min as compared with previous methods that took days and multiple instruments.

  16. Process for ion exchange resins from radioactive materials reprocessing plants. Procede d'immobilisation de resines echangeuses d'ions provenant des centres de retraitement des produits radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Magnin, G.; Magnin, M.F.; Aubert, V.; Jaouen, C.

    1989-06-23

    Prior to encapsulation in cement spent ion exchange resins are treated with an aqueous solution containing NO{sub 3}{sup -} and Na{sup +} ions. Nitrate ion amount is determined for saturation of all resin sites as if all the resins were anionic and sodium ion amount for on the one hand a basic pH of the medium and on the other hand the saturation of all cationic resin sites.

  17. Ion exchange model for α phase proton exchange waveguide in LiNbO3

    DEFF Research Database (Denmark)

    Veng, Torben Erik; Skettrup, Torben

    1998-01-01

    An H+/Li+ exchange model is found to be applicable to describe the diffusion of protons when optical waveguides are formed in LiNbO3 by proton exchange methods where the proton doped crystal structure stays in the pure α phase. The H + and Li+ self-diffusion coefficients in the ion exchange model...

  18. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers.

    Science.gov (United States)

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K; Walker, Douglas I

    2014-06-01

    A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration.

  19. ION EXCHANGE MECHANISM OF Cr+3 ON NATURALLY OCCURRING CLINOPTILOLITE

    Directory of Open Access Journals (Sweden)

    M.A.S.D. de Barros

    1997-09-01

    Full Text Available Ion exchange isotherms are very important tools to achieve a better comprehension of cation removal by means of zeolite treatment. In this work, three isotherms were obtained (at 298K, at 313K and at 333K from natural pretreated Na+ clinoptilolite. The ion exchange was carried out with Cr+3 ions. The isotherms’ shape is similar to the classical type "b" isotherm, according to the arrangement proposed by Breck (1984. Mathematical fitting was applied to the experimental points (Table Curve software to obtain a representative curve thereof. From such fittings, points were simulated and then used to construct the Kielland plots, whose shape was associated with an ion exchange mechanism. Straight lines were obtained as an indication that, although the zeolite used is of natural occurrence and presents impurities such as mordenite and clays, only one site is involved in the ion exchange process

  20. NASA Li/CF(x) cell problem analysis: Anion exchange chromatography analysis

    Science.gov (United States)

    Bytella, Joseph

    1991-05-01

    An analysis was made of wiper samples used to wipe down lithium/chlorine fluorine battery components and production equipment. These components and equipment were potentially exposed to thionyl chloride vapors. In the presence of moisture, thionyl chloride decomposes to sulfur dioxide and hydrogen chloride. The wiper samples were analyzed for soluble chlorides and fluorides by anion exchange chromatography. During the examination of the test chromatographs, fluoride contamination was discovered in wiper samples from the test equipment. An analytical method to determine fluoride was developed. The first 3 extracts from the potentially exposed and clean wiper samples were tested, and the total fluoride from both groups determined. A comparison of the results from both groups was made to determine the extent of fluoride contamination.

  1. Polystyrene-type resin used for peptide synthesis: application for anion-exchange and affinity chromatography.

    Science.gov (United States)

    Carvalho, Regina S H; Ianzer, Danielle A; Malavolta, Luciana; Rodrigues, Mauricio M; Cilli, Eduardo M; Nakaie, Clovis R

    2005-03-25

    This paper deals with an unusual application for a copolymer of styrene-1% divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)3-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence.

  2. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  3. The direct formate fuel cell with an alkaline anion exchange membrane

    Science.gov (United States)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  4. REMOVAL OF GLUCORAPHENIN FROM THE EXTRACT OF RADISH PIGMENT BY ANION EXCHANGE RESIN 201×7

    Institute of Scientific and Technical Information of China (English)

    ZhouXiaohua; ChenQi

    1998-01-01

    A method for removimg glucoraphenin from the extract of Radish pigment by anion exchange resin 201×7 was studied.The adsorption capacity of 201×7 resin for glucoraphenin was 72.8mg/ml resin,the equilibrium time 55 minutes,and the optinum pH5.5.All glucoraphenin that had been adsorbed on 201×7 resin was eluted by 1.5BV.hr-1, eluent in whinc concentration of NaOH was 0.05mol·L-1 at the flow rate of 1.5BV/h.Extracting solution of deglucoraphenin was enriched by vacuum and spray drying.A powder product of Radish pigment was obtained and E1cm1%=4.30.

  5. Nanostructured cupric oxide electrode: An alternative to amperometric detection of carbohydrates in anion-exchange chromatography.

    Science.gov (United States)

    Barragan, José T C; Kubota, Lauro T

    2016-02-01

    In this paper, a new and low cost copper/cupric oxide nanostructured electrode is presented as an alternative to the amperometric detection of carbohydrates in high-performance anion exchange chromatography. The modified copper electrodes were prepared by a simple and fast method which resulted in the obtainment of homogeneously distributed nanostructures adhered to the surface with controlled chemical nature. The results, when compared to conventional copper electrodes, exhibited considerable improvements in analytical results, including: 1) Better repeatability in consecutive glucose detections, in which the percent relative standard deviation improved from 15.1% to 0.279%. 2) Significant improvements in the stability of the baseline and a decrease of the stabilization time, going from several hours to approximately 15 min. 3) Considerable increase in the sensitivity towards glucose, from 5.02 nA min mg L(-1) to 25.5 nA min mg L(-1). 4) Improvements in the detectability with limits as low as 1.09 pmol. 5) Wide working range of concentrations (1 × 10(-2) to 1 × 10(4) mg L(-1)). 6) Good linearity with correlation coefficients greater than 0.998. 7) Possibility of detecting different molecules of carbohydrates (lactose, maltose, sucrose cellobiose, sorbitol, fructose, glucose, galactose, manose, arabitol, xylose, ribose and arabnose). In comparison to the electrode that is more employed for this type of application (gold electrode), the low cost, the possibility of detection at constant potential and the equivalent detection limits presented by the new electrode material introduced in this work emerge as characteristics that make this material a powerful alternative considering the detection of carbohydrates in anion exchange chromatography.

  6. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger.

    Science.gov (United States)

    Cai, Jianguo; Zhang, Yanyang; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2016-10-01

    Water decontamination from fluoride is still a challenging task of global concern. Recently, Al-based layered double hydroxides (LDHs) have been extensively studied for specific fluoride adsorption from water. Unfortunately, they cannot be readily applied in scaled-up application due to their ultrafine particles as well as the regeneration issues caused by their poor stability at alkaline pHs. Here, we developed a novel (LDH)-based hybrid adsorbent, i.e., LALDH-201, by impregnating nanocrystalline Li/Al LDHs (LADLH) inside a commercial polystyrene anion exchanger D201. TEM image and XRD spectra of the resultant nanocomposite confirmed that the LDHs particles were nanosized inside the pores of D201 of highly crystalline nature and well-ordered layer structure. After impregnation, the chemical and mechanical stability of LALDH were significantly improved against pH variation, facilitating its application at a wide pH range (3.5-12). Fluoride adsorption onto LALDH-201 was compared to D201 and activated alumina, evidencing the preferable removal fluoride of LALDH-201. Fluoride adsorption onto LALDH-201 followed pseudo-second-order model, with the maximum capacity (62.5 mg/g from the Sips model) much higher than the other two adsorbents. Fixed-bed adsorption run indicated the qualified treatable volume of the fluoride contaminated groundwater (4.1 mg/L initially) with LALDH-201 was about 11 times as much as with the anion exchanger D201 when the breakthrough point was set as 1.5 mg/L. The capacity of LALDH-201 could be effectively refreshed for continuous column operation without observable loss by using the mixed solution of 0.01 M NaOH + 1 M NaCl. The above results suggested that the hybrid adsorbent LALDH-201 is very promising for water defluoridation in scaled-up application.

  7. Sers-Active Silver Nanoparticles in Ion-Exchanged Glass

    Science.gov (United States)

    Chen, Ya; Jaakola, Janne; Säynätjoki, Antti; Tervonen, Ari; Honkanen, Seppo

    We study synthesis and SERS activity of glass-embedded ion-exchanged silver nanoparticles formed by two different methods. Silver-sodium ion-exchange process with heat treatment was utilized on commercial microscope slides, while masked ion-exchange technique was performed on glass Corning 0211. The distribution of particles was studied by absorption spectroscopy and atomic force microscopy. After etching the glass surface to expose the particles, SERS performance of these particles was investigated with micro-Raman spectroscopy using Rhodamine 6G as the analyte.

  8. Ion-exchanged glass waveguide technology: a review

    Science.gov (United States)

    Tervonen, Ari; West, Brian R.; Honkanen, Seppo

    2011-07-01

    We review the history and current status of ion exchanged glass waveguide technology. The background of ion exchange in glass and key developments in the first years of research are briefly described. An overview of fabrication, characterization and modeling of waveguides is given and the most important waveguide devices and their applications are discussed. Ion exchanged waveguide technology has served as an available platform for studies of general waveguide properties, integrated optics structures and devices, as well as applications. It is also a commercial fabrication technology for both passive and active wave-guide components.

  9. A study on dry decontamination using ion exchange polymer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of {sup A} study on dry decontamination using ion exchange polymer{sup ,} the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs.

  10. Superheated water ion-exchange chromatography: an experimental approach for interpretation of separation selectivity in ion-exchange processes.

    Science.gov (United States)

    Shibukawa, Masami; Shimasaki, Tomomi; Saito, Shingo; Yarita, Takashi

    2009-10-01

    Cation-exchange selectivity for alkali and alkaline-earth metal ions and tetraalkylammonium ions on a strongly acidic sulfonic acid cation-exchange resin has been investigated in the temperature range of 40-175 degrees C using superheated water chromatography. Dependence of the distribution coefficient (ln KD) on the reciprocal of temperature (1/T) is not linear for most of the ions studied, and the selectivity coefficient for a pair of alkali metal ions or that of alkaline-earth metal ions approaches unity as temperature increases. On the other hand, the retention order of tetraalkylammonium ions is reversed at 160 degrees C or above when eluted with Na2SO4 aqueous solution and the larger ions are eluted faster than the smaller ones contrary to the retention order obtained at ambient temperature. The change in ion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions and specific adsorption or distribution of ionic species between the external solution and ion-exchange resin. In superheated water, the electrostatic interaction or association of the ions with the fixed ion becomes a predominant mechanism resulting in different separation selectivity from that obtained at ambient temperature.

  11. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions.

    Science.gov (United States)

    Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P

    2015-03-20

    There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  12. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    Science.gov (United States)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  13. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.

    Science.gov (United States)

    Jiang, Bo; Ponnuchamy, Veerapandian; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-09-15

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li(+)-bound and Li(+)-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li(+) is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li(+) directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li(+) ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.

  14. Tc-99 Ion Exchange Resin Testing

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  15. Electrochemical analysis of ion-exchange membranes with respect to a possible use in electrodialytic decontamination of soil polluted with heavy metals

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Laursen, Søren;

    1997-01-01

    Transport numbers in different metal chloride solutions were estimated using the emf method for two ion-exchange membranes: Ionics CR67 HMR412 (cation-exchange membrane) and Ionics AR204 SXRA 7639 (anion-exchange membrane). The cation-exchange membrane was found to work nearly ideally for Na......Cl and CaCl2 solutions even at high concentrations, whereas deviation from ideality was seen for ZnCl2 and CuCl2 solutions. The anion-exchange membrane showed transport numbers for the anion around 0.95 for NaCl, CaCl2 and ZnCl2 solutions for the concentration range investigated. Electrodialytic desalting...

  16. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths.

  17. Pyrolysis of spent ion exchange resins; Die Pyrolyse von verbrauchten Ionentauscherharzen

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, Georg; Slametschka, Rainer [NUKEM Technologies GmbH, Alzenau (Germany)

    2011-07-15

    Ion exchangers are employed in all nuclear power plants with water loops to remove radionuclides from the primary coolant. Cation and anion exchangers are used as coarse-grained spherical resins in pressurized water reactors and as finely ground powder resins in boiling water reactors. In new plants there is a trend to exploit all possibilities of avoiding contaminated liquids and, should solutions occur nevertheless, clean them by ion exchange to such an extent that they can be disposed of as non-radioactive waste. This means less use of evaporator facilities or even giving them up altogether. Regeneration, which is possible in principle, is hardly employed at all. As a rule, ion exchangers consist of cross-linked polystyrene. As no use is made of regeneration in nuclear power plants, unlike conventional technology, the material must be disposed of as radioactive waste. In this connection, it is important to bear in mind that spent ion exchangers are too moist for direct disposal and are made up of inorganic matter. Consequently, a process is needed which reduces volume, produces an inert or mineralized product, works at temperatures not exceeding approx. 600 C, and can be run in a simple plant. NUKEM further developed a pyrolysis technique known from other technical applications. These ion exchangers can be decomposed by pyrolysis very effectively; the product is inert and chemically resistant. No additives are needed. The entire radioactivity inventory remains in the pyrolysate. The pyrolysate is a flowable solid. This makes it easy to handle and allows it to be compacted or cemented, depending on interim and repository storage conditions and on the activity inventory. (orig.)

  18. A dication cross-linked composite anion-exchange membrane for all-vanadium flow battery applications.

    Science.gov (United States)

    Zhang, Fengxiang; Zhang, Huamin; Qu, Chao

    2013-12-01

    We report the fabrication and properties of a high-performance, inexpensive, composite, anion-exchange membrane (AEM) for an all-vanadium flow battery (VFB) application. The AEM was fabricated by dication cross-linking without the involvement of trimethylamine, and shows well-balanced anion conductivity and robustness due to imidazolium and imidazolium-ammonium functionalities, as well as a concomitantly achieved semi-interpenetrating network structure. The VFB single cell yielded a Coulombic efficiency of 99 % and an energy efficiency of 84 % at 80 mA cm(-2) , and operated for over 900 charge/discharge cycles. This work demonstrates the combined use of several favorable AEM design rationales, such as incorporating abundant and efficient anion-exchange groups, constructing a swelling- and oxidation-resistant structure, and facile fabrication; it provides an effective way of developing high-performance, low-cost AEMs for VFB applications.

  19. Magnetic cellulose ionomer/layered double hydroxide: An efficient anion exchange platform with enhanced diclofenac adsorption property.

    Science.gov (United States)

    Hossein Beyki, Mostafa; Mohammadirad, Mosleh; Shemirani, Farzaneh; Saboury, Ali Akbar

    2017-02-10

    Polymeric ionomers with anion exchange capability are considered to be classes of environmentally friendly compounds as combination of them with anionic layered hydroxides constitute emerging advance materials. Biosorption by polymeric ionomer - layered double hydroxide (LDH) hybrid material exhibits an attractive green, low cost and low toxic - clean way. As a result, a novel anion exchange platform has been developed by the reaction of CaAl - LDH with Fe(2+), cellulose solution, epichlorohydrin and pyridine. Magnetite cellulose - LDH (MCL) and the ionomer were used for efficient biosorption of diclofenac sodium (DF). Results showed that ionomer has more efficiency for DF adsorption relative to MCL. Magnetite ionomer showed fast equilibrium time (2min) with maximum uptake of 268mgg(-1). Isotherm and Kinetic models were also studied. Regeneration of the sorbent was performed with a mixture of methanol -NaOH (2.0molL(-1)) solution.

  20. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Zhou, Jun; Row, Kyung Ho

    2011-01-15

    Three anion-exchangeable, silica-confined ionic liquids were synthesized for solid phase extraction of lactic acid from fermentation broth, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of lactic acid on different silica-confined ionic liquids, interactions between the lactic acid and sorbents were investigated. The adsorbed amounts were then fitted into different adsorption isotherm equations; finally, the Langmuir equation was selected. Then the imidazolium silica with the highest adsorption capacity of lactic acid was packed into a cartridge for solid phase extraction. The loading volume of the cartridge was optimized by the Langmuir equation and geometry. After washing with distilled water and eluting with 0.25 mol L(-1) of an HCl solution, the lactic acid was separated from interference with a recovery yield of 91.9%. Furthermore, this kind of anion-exchangeable material exhibited potential for industrial applications and separation of other anionic bioactive compounds.

  1. An easy method for the preparation of anion exchange membranes: Graft-polymerization of ionic liquids in porous supports

    NARCIS (Netherlands)

    Merle, Geraldine; Chairuna, Annisa; Ven, van de Erik; Nijmeijer, Kitty

    2013-01-01

    A novel way for anion exchange membrane (AEM) preparation has been investigated, avoiding the use of expensive and toxic chemicals. This new synthetic approach to prepare AEMs was based on the use of a porous polybenzylimidazole membrane as support in which functionalized ILs were introduced and sub

  2. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    Science.gov (United States)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.

    2008-02-01

    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).

  3. Separation processes in biotechnology. Ion-exchange processes.

    Science.gov (United States)

    Shuey, C D

    1990-01-01

    Through the use of several differentiating mechanisms, ion exchangers can separate ionic and nonionic materials, solutions containing only ionic species, and even completely nonionic mixtures. Although the mechanisms are distinct in their mode of operation, the resin characteristics that influence the results are largely the same. A practical understanding of the resin properties involved is all that is necessary to begin to use ion-exchange resins successfully. Ion exchange owes most of its history to water treatment, which has provided the economic and technological driving force in the past for the development of improved resins. However, specialty applications such as those in biotechnology are steadily becoming major factors in industry, perhaps not in shear volumes of resin used, but certainly in the value added by the process. The field of biotechnology no doubt holds many of the exciting new applications for ion exchange.

  4. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  5. Selection of magnetic anion exchange resins for the removal of dissolved organic and inorganic matters

    Institute of Scientific and Technical Information of China (English)

    Qiongjie Wang; Aimin Li; Jinnan Wang; Chengdong Shuang

    2012-01-01

    Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water.The effect of water quality (pH,temperature,ionic strength,etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also investigated.Among the four studied MAERs,the strong base resin named NDMP-1 with high water content and enhanced exchange capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances (82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time.The MAERs could also effectively remove inorganic matter such as sulfate,nitrate and fluoride.Because of the higher specific UV absorbance (SUVA) value,the DOM in the raw water was found to be removed more effectively than that in the clarified water by NDMP resin.The temperature showed a weak influence on the removal of DOC from 6 to 26℃,while a relatively strong one at 36℃.The removal of DOM by NDMP was also affected to some extent by the pH value.Moreover,increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and UV-absorbing substances.

  6. Modeling radial flow ion exchange performance for condensate polisher conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shallcross, D. [University of Melbourne, Melbourne, VIC (Australia). Department of Chemical Engineering; Renouf, P.

    2001-11-01

    A theoretical model is developed which simulates ion exchange performance within an annular resin bed. Flow within the mixed ion exchange bed is diverging, with the solution flowing outwards away from the bed's axis. The model is used to simulate performance of a mixed annular bed operating under condensate polisher conditions. The simulation predictions are used to develop design envelope curves for practical radial flow beds and to estimate potential cost savings flowing from less expensive polisher vessels. (orig.)

  7. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    Science.gov (United States)

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    Science.gov (United States)

    Binitha, N. N.; Silija, P. P.; Suraj, V.; Yaakob, Z.; Sugunan, S.

    2011-02-01

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Brønsted acidity is confirmed from high selectivity to benzene.

  9. Samarium Ion Exchanged Montmorillonite for High Temperature Cumene Cracking Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Binitha, N N; Silija, P P; Yaakob, Z [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia); School of Materials Engineering, Universiti Malaysia Perlis, Taman Muhibah, 02600, Jejawi, Perlis (Malaysia); Suraj, V [Department of Applied Chemistry, CUSAT, Cochin 22, Kerala (India); Sugunan, S, E-mail: binithann@yahoo.co.in [National Institute of Technology, Calicut, Kerala (India)

    2011-02-15

    Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using Temperature Programmed Desorption (TPD) of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Broensted acidity is confirmed from high selectivity to benzene.

  10. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  11. Flow-injection Chemiluminescence Sensor for the Determination of Gallic Acid by Immobilizing Luminol and Periodate on Anion-exchange Resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Si-Chun(张四纯); ZHOU,Guo-Jun(周国俊); JU,Huang-Xian(鞠熀先)

    2002-01-01

    A novel chemihuminescence (CL) sensor for the determination of gallic acid combined with flow injection analysis was developed by electrostatically immobilizing luminol and periodate on anion-exchange resins respectively. Gallic acid was sensed by its enhancing effect on the weak CL reaction between luminol and periodate, which were eluted from the ion exchang ecolumn.The possible reaction mechanism of the CL system was suggested and discussed. The response of the sensor to gallic acid concentration was linear over the range of 8.0 × 10-9-1.0 × 10-6 mol/L with a detection limit of 6.5 × 10-9 mol/L (3σσ). The relative standard deviation (RSD) for 7 repetitive determinations of gallic acid (1.0 × 10-7 moL/L) was 1.8%. The sensor could be used for over 400 times determination with a good reproducibility.

  12. Recent advances in polymer monoliths for ion-exchange chromatography.

    Science.gov (United States)

    Nordborg, Anna; Hilder, Emily F

    2009-05-01

    The use of polymeric materials in ion-exchange chromatography applications is advantageous because of their typically high mechanical stability and tolerance of a wide range of pH conditions. The possibility of using polymeric monoliths in ion-exchange chromatography is therefore obvious and many of the same strategies developed for polymeric particles have been adapted for use with polymeric monoliths. In this review different strategies for the synthesis of polymeric monoliths with ion-exchange functionality are discussed. The incorporation of ion-exchange functionality by co-polymerization is included, as also are different post-polymerization alterations to the monolith surface such as grafting. The formulations and strategies presented include materials intended for use in analytical separations in ion-exchange chromatography, sample pre-treatment or enrichment applications, and materials for capillary electrochromatography. Finally, examples of the use of polymeric monoliths in ion-exchange chromatography applications are included with examples published in the years 2003 to 2008.

  13. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  14. Overloading ion-exchange membranes as a purification step for monoclonal antibodies.

    Science.gov (United States)

    Brown, Arick; Bill, Jerome; Tully, Timothy; Radhamohan, Asha; Dowd, Chris

    2010-06-11

    The present study examined the overloading of ion-exchange membrane adsorbers, a form of frontal chromatography, as the final purification step in the production of mAbs (monoclonal antibodies) produced from CHO (Chinese-hamster ovary) cells. Preferential binding of impurities over antibody product was exploited using commercially available cation- and anion-exchange membranes. Three different antibody feedstreams previously purified over Protein A and ion-exchange column chromatography were tested. Feedstream conductivity and pH were adjusted to induce product and impurity adsorption. Membranes were then overloaded in a normal flow mode, resulting in retention of impurities and breakthrough of purified antibody. Although some amount of the product also binds to the membranes (usually or =99% were achieved by marginalizing the losses, typically by loading more than 3 kg mAb/l membrane. Analyses of the purified pools show consistent removal of impurities despite strong mAb-ligand interactions and high membrane loadings. The clearance of host cell proteins was affected by pH and conductivity, but was unaffected by flow rate, membrane properties or scale. The importance of the present study lies in our demonstration of an alternative use of ion-exchange membranes for fast, effective and high yielding purification of mAbs.

  15. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction

    Science.gov (United States)

    Wandschneider, F. T.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.

    2014-12-01

    Membranes are an important part of vanadium redox flow battery cells. Most cell designs use Nafion®-type membranes which are cation exchange membranes. Anion exchange membranes are reported to improve cell performance. A model for a vanadium redox flow battery with an anion exchange membrane is developed. The model is then used to calculate terminal voltages for open circuit and charge-discharge conditions. The results are compared to measured data from a laboratory test cell with 40 cm2 active membrane area. For higher charge and discharge currents, an empirical correction for the terminal voltage is proposed. The model geometry comprises the porous electrodes and the connected pipes, allowing a study of the flow in the entrance region for different state-of-charges.

  16. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bertoletti, Laura; Regazzoni, Luca; Aldini, Giancarlo; Colombo, Raffaella; Abballe, Franco; Caccialanza, Gabriele; De Lorenzi, Ersilia

    2013-04-10

    In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC-UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25°C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC-MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC-MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate.

  17. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    Science.gov (United States)

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins.

  18. Disiloxanes and Functionalized Silica Gels: One Route, Two Complementary Outcomes-Guanidinium and Pyridinium Ion-Exchangers.

    Directory of Open Access Journals (Sweden)

    Łukasz Tabisz

    Full Text Available Five novel disiloxane compounds comprising guanidinium and pyridinium moieties were obtained with high yields and purity. The verified synthetic pathways were then applied for modification of pre-functionalized silica gel, producing materials with the analogous organic side-chains. These halide-containing compounds and materials were then compared as to their ion-exchange properties: two disiloxanes proved to be effective in leaching different anions (nitrate, benzoate and ascorbate from solid to organic phase, and pyridinium-functionalized silica gels showed selectivity towards perchlorate ion, removing it from methanolic solutions with preference to other singly charged anions. The results presented demonstrate that both compounds and materials containing silicon-carbon bonds can be produced using the same methodology, but offer strikingly different application opportunities. Comparison of their properties provides additional insight into the binding mode of different anions and hints at how the transition from a flexible siloxane bridge to immobilization on solid surface influences anion-binding selectivity. Additionally, one of the siloxane dipodands was found to form a crystalline and poorly soluble nitrate salt (1.316 g/L, water, although it was miscible with a wide range of solvents as a hydrochloride. A possible explanation is given with the help of semi-empirical calculations. A simple, time- and cost-efficient automated potentiometric titration methodology was used as a viable analytical tool for studying ion-exchange processes for both compounds and materials, in addition to standard NMR, FT-IR and ESI-MS methods.

  19. Anion stripping as a general method to create cationic porous framework with mobile anions.

    Science.gov (United States)

    Mao, Chengyu; Kudla, Ryan A; Zuo, Fan; Zhao, Xiang; Mueller, Leonard J; Bu, Xianhui; Feng, Pingyun

    2014-05-28

    Metal-organic frameworks (MOFs) with cationic frameworks and mobile anions have many applications from sensing, anion exchange and separation, to fast ion conductivity. Despite recent progress, the vast majority of MOFs have neutral frameworks. A common mechanism for the formation of neutral frameworks is the attachment of anionic species such as F(-) or OH(-) to the framework metal sites, neutralizing an otherwise cationic scaffolding. Here, we report a general method capable of converting such neutral frameworks directly into cationic ones with concurrent generation of mobile anions. Our method is based on the differential affinity between distinct metal ions with framework anionic species. Specifically, Al(3+) is used to strip F(-) anions away from framework Cr(3+) sites, leading to cationic frameworks with mobile Cl(-) anions. The subsequent anion exchange with OH(-) further leads to a porous network with mobile OH(-) anions. New materials prepared by anion stripping can undergo ion exchange with anionic organic dyes and also exhibit much improved ionic conductivity compared to the original unmodified MOFs.

  20. EXPLORING THE MAXWELL-STEFAN DESCRIPTION OF ION-EXCHANGE

    NARCIS (Netherlands)

    WESSELINGH, JA; VONK, P; KRAAIJEVELD, G

    1995-01-01

    In ion exchange, water and several ions diffuse simultaneously, with different velocities. They are driven by activity, electrical and pressure gradients. We describe these complicated processes with the Maxwell-Stefan equation. This equation for multicomponent diffusion requires one diffusivity or

  1. Indirect UV detection-ion-exclusion/cation-exchange chromatography of common inorganic ions with sulfosalicylic acid eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Mori, Masanobu; Nakatani, Nobutake; Arai, Kaori; Masuno, Tomoe; Koseki, Masakazu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2013-01-01

    Herein, we describe indirect UV detection-ion-exclusion/cation-exchange chromatography (IEC/CEC) on a weakly acidic cation-exchange resin in the H(+)-form (TSKgel Super IC-A/C) using sulfosalicylic acid as the eluent. The goal of the study was to characterize the peaks detected by UV detector. The peak directions of analyte ions in UV at 315 nm were negative because the molar absorbance coefficients of analyte anions and cations were lower than that of the sulfosalicylic acid eluent. Good chromatographic resolution and high signal-to-noise ratios of analyte ions were obtained for the separations performed using 1.1 mM sulfosalicylic acid and 1.5 mM 18-crown-6 as the eluent. The relative standard deviations (RSDs) of the peak areas ranged from 0.6 to 4.9%. Lower detection limits of the analytes were achieved using indirect UV detection at 315 nm (0.23 - 0.98 μM) than those obtained with conductometric detection (CD) (0.61 - 2.1 μM) under the optimized elution conditions. The calibration curves were linear in the range from 0.01 to 1.0 mM except for Cl(-), which was from 0.02 to 2.0 mM. The present method was successfully applied to determine common inorganic ions in a pond water sample.

  2. Rate theory on water exchange in aqueous uranyl ion

    Science.gov (United States)

    Dang, Liem X.; Vo, Quynh N.; Nilsson, Mikael; Nguyen, Hung D.

    2017-03-01

    We report a classical rate theory approach to predict the exchange mechanism that occurs between water and aqueous uranyl ion. Using our water and ion-water polarizable force field and molecular dynamics techniques, we computed the potentials of mean force for the uranyl ion-water pair as a function of different pressures at ambient temperature. These potentials of mean force were used to calculate rate constants using transition rate theory; the transmission coefficients also were examined using the reactive flux method and Grote-Hynes approach. The computed activation volumes are positive; thus, the mechanism of this particular water-exchange is a dissociative process.

  3. Determination of Sc by Ion-exchanger Colorimetry

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ion-exchanger colorimetry for scandium in the form of ternary color system "Sc(Ⅲ)-CPA-pc-Ac" was developed. The influences of types and grain sizes of resin, adsorption modes and the acidity on the determination were studied systematically, and the optimum operating conditions and the allowable amounts of foreign ions were determined. In comparison with the ordinary solution colorimetry, both of the sensitivity and the selectivity of this ion-exchanger colorimetry are improved obviously. The preliminary uses of this method to the determination of Sc(Ⅲ) in two synthetic samples were satisfied.

  4. Negative Joule Heating in Ion-Exchange Membranes

    OpenAIRE

    Biesheuvel, P. M.; D. Brogioli; Hamelers, H. V. M.

    2014-01-01

    In ion-exchange membrane processes, ions and water flow under the influence of gradients in hydrostatic pressure, ion chemical potential, and electrical potential (voltage), leading to solvent flow, ionic fluxes and ionic current. At the outer surfaces of the membranes, electrical double layers (EDLs) are formed (Donnan layers). When a current flows through the membrane, we argue that besides the positive Joule heating in the bulk of the membrane and in the electrolyte outside the membrane, t...

  5. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).

  6. Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate.

    Science.gov (United States)

    Freel, Robert W; Whittamore, Jonathan M; Hatch, Marguerite

    2013-10-01

    Active transcellular oxalate transport in the mammalian intestine contributes to the homeostasis of this important lithogenic anion. Several members of the Slc26a gene family of anion exchangers have a measurable oxalate affinity and are expressed along the gut, apically and basolaterally. Mouse Slc26a6 (PAT1) targets to the apical membrane of enterocytes in the small intestine, and its deletion results in net oxalate absorption and hyperoxaluria. Apical exchangers of the Slc26a family that mediate oxalate absorption have not been established, yet the Slc26a3 [downregulated in adenoma (DRA)] protein is a candidate mediator of oxalate uptake. We evaluated the role of DRA in intestinal oxalate and Cl(-) transport by comparing unidirectional and net ion fluxes across short-circuited segments of small (ileum) and large (cecum and distal colon) intestine from wild-type (WT) and DRA knockout (KO) mice. In WT mice, all segments demonstrated net oxalate and Cl(-) absorption to varying degrees. In KO mice, however, all segments exhibited net anion secretion, which was consistently, and solely, due to a significant reduction in the absorptive unidirectional fluxes. In KO mice, daily urinary oxalate excretion was reduced 66% compared with that in WT mice, while urinary creatinine excretion was unchanged. We conclude that DRA mediates a predominance of the apical uptake of oxalate and Cl(-) absorbed in the small and large intestine of mice under short-circuit conditions. The large reductions in urinary oxalate excretion underscore the importance of transcellular intestinal oxalate absorption, in general, and, more specifically, the importance of the DRA exchanger in oxalate homeostasis.

  7. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    Energy Technology Data Exchange (ETDEWEB)

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  8. Ion-exchange chromatographic analysis of peroxynitric acid.

    Science.gov (United States)

    Nakashima, Yoichi; Ikawa, Satoshi; Tani, Atsushi; Kitano, Katsuhisa

    2016-01-29

    Ion-exchange chromatographic analysis of peroxynitric acid (O2NOOH) was performed by combining an acidic eluate with an UV-vis detector and immersing the separation column in an ice-water bath. The decomposition behavior of peroxynitric acid in the solution was also studied using this system. The fraction for the peroxynitric acid peak was collected. Ion-exchange chromatographic analysis of this fraction, after standing at room temperature for 24h, showed that the decomposition products were mainly nitrate ions with a very small amount of nitrous acid. The peroxynitric acid peak area correlated perfectly with the total amount of decomposition products. The ion-exchange chromatographic isolation allowed us to evaluate the molar extinction coefficient of peroxynitric acid precisely in a wider wavelength range than previous reports. The value decreases monotonically from 1729±26M(-1)cm(-1) at 200nm to 12.0±0.5M(-1)cm(-1) at 290nm.

  9. BINARY AND TERNARY ION EXCHANGE KINETICS SO42——Cl——NO3——201×7SYSTEM

    Institute of Scientific and Technical Information of China (English)

    TAOZuyi; ZHOUHaimei; 等

    1993-01-01

    Kinetics of chloride/sulfate,chloride/nitrate and nitrate/sulfate forward exchanges and reverse exchanges at solution concentrations of 1N,0.2N and 0.02 N on 201×7 strong base anion exchange resin,respectively,have been examined at 25℃.It is found that the forward and the reverse exchange rates of the two given ions at low solution concentration,respectively,under identical conditions can be controlled by different mechanisms,while those at high solution concentration are all controlled by particle diffusion.The ternary exchange rates of sulfate/(chloride+nitrate) and nitrate/(chloride+sulfate)have also been examined.

  10. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-09-01

    The gas-phase oxidation of doubly protonated peptides containing neutral basic residues to various products, including [M + H + O]+, [M - H]+, and [M - H - NH3]+, is demonstrated here via ion/ion reactions with periodate. It was previously demonstrated that periodate anions are capable of oxidizing disulfide bonds and methionine, tryptophan, and S-alkyl cysteine residues. However, in the absence of these easily oxidized sites, we show here that systems containing neutral basic residues can undergo oxidation. Furthermore, we show that these neutral basic residues primarily undergo different types of oxidation (e.g., hydrogen abstraction) reactions than those observed previously (i.e., oxygen transfer to yield the [M + H + O]+ species) upon gas-phase ion/ion reactions with periodate anions. This chemistry is illustrated with a variety of systems, including a series of model peptides, a cell-penetrating peptide containing a large number of unprotonated basic sites, and ubiquitin, a roughly 8.6 kDa protein.

  11. Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction

    Institute of Scientific and Technical Information of China (English)

    ZHONG Fu-jin; CHEN Xiao-qing; ZHANG Shu-chao; LI Yue-ping

    2007-01-01

    A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate,glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.

  12. Kilogram-scale purification of americium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E. J.

    1979-01-01

    Sequential anion and cation exchange processes have been used for the final purification of /sup 241/Am recovered during the reprocessing of aged plutonium metallurgical scrap. Plutonium was removed by absorption of Dowex 1, X-3.5 (30 to 50 mesh) anion exchange resin from 6.5 to 7.5 M HNO/sub 3/ feed solution. Following a water dilution to 0.75 to 1.0 M HNO/sub 3/, americium was absorbed on Dowex 50W, X-8 (50 to 100 mesh) cation exchange resion. Final purification was accomplished by elution of the absorbed band down 3 to 4 successive beds of the same resin, preloaded with Zn/sup 2 +/, with an NH/sub 4/OH buffered chelating agent. The recovery of mixed /sup 241/Am-/sup 243/Am from power reactor reprocessing waste has been demonstrated. Solvent extraction was used to recover a HNO/sub 3/ solution of mixed lanthanides and actinides from waste generated by the reprocessng of 13.5 tons of Shippingport Power Reactor blanket fuel. Sequential cation exchange band-displacement processes were then used to separate americium and curium from the lanthanides and then to separate approx. 60 g of /sup 244/Cm from 1000 g of mixed /sup 241/Am-/sup 243/Am.

  13. Human kidney anion exchanger 1 interacts with kinesin family member 3B (KIF3B)

    Energy Technology Data Exchange (ETDEWEB)

    Duangtum, Natapol [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Junking, Mutita; Sawasdee, Nunghathai [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Cheunsuchon, Boonyarit [Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Limjindaporn, Thawornchai, E-mail: limjindaporn@yahoo.com [Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Medical Molecular Biology Unit, Office for Research and Development Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand)

    2011-09-16

    Highlights: {yields} Impaired trafficking of kAE1 causes distal renal tubular acidosis (dRTA). {yields} The interaction between kAE1 and kinesin family member 3B (KIF3B) is reported. {yields} The co-localization between kAE and KIF3B was detected in human kidney tissues. {yields} A marked reduction of kAE1 on the cell membrane was observed when KIF3B was knockdown. {yields} KFI3B plays an important role in trafficking of kAE1 to the plasma membrane. -- Abstract: Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of {alpha}-intercalated cells of the kidney collecting duct leads to the defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange and the failure of proton (H{sup +}) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney {alpha}-intercalated cells.

  14. Determination of trace anions in liquefied petroleum gas using liquid absorption and electrokinetic migration for enrichment followed by ion chromatography.

    Science.gov (United States)

    Li, Meilan; Yang, Jianmin; Li, Hai-Fang; Lin, Jin-Ming

    2012-06-01

    A simple sample enrichment technique, electrokinetic migration enrichment in single phase using a designed device, coupled with ion chromatography is presented for the determination of four anions (H(2)PO(4)(-), Cl(-), NO(3)(-), and SO(4)(2-)) in liquefied petroleum gas by liquid adsorption. The electrokinetic migration enrichment is based on the phenomenon of ion electrokinetic migration to the opposite electrode. When the anions migrated to the anode in a smaller volume chamber under the electric field, the concentration was realized. The main parameters affecting enrichment efficiency of applied voltage and enrichment time were investigated. The ion chromatography condition for anions separation was also studied. Under the optimal electrokinetic migration enrichment and ion chromatography conditions, the four anions were detected simultaneously with good linear relationship (r(2) = 0.9908-0.9968) and high precisions (less than 5% of the relative standard deviations of peak areas). The limits of detection of anions (S/N of 3) were in the range of 8-600 μg L(-1). The enrichment factors of the four anions ranged from 3.1 to 5.8. The established method was successfully applied to the analysis of the trace anions in liquefied petroleum gas by liquid adsorption with satisfactory results. The advantages of this method are simple operation and low cost.

  15. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.; O' Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  16. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  17. Iron-mediated induction of sister-chromatid exchanges by hydrogen peroxide and superoxide anion.

    Science.gov (United States)

    Larramendy, M; Mello-Filho, A C; Martins, E A; Meneghini, R

    1987-05-01

    When Chinese hamster fibroblasts were exposed to hydrogen peroxide or to a system consisting of xanthine oxidase and hypoxanthine, which generates superoxide anion plus hydrogen peroxide, sister-chromatid exchanges (SCEs) were formed in a dose-dependent manner. When the iron-complexing agent o-phenanthroline was present in the medium, however, the production of these SCEs was completely inhibited. This fact indicates that the Fenton reaction: Fe2+ + H2O2----OH0 + OH- + Fe3+ is responsible for the production of SCEs. When O2- and H2O2 were generated inside the cell by incubation with menadione, the production of SCE was prevented by co-incubation with copper diisopropylsalicylate, a superoxide dismutase mimetic agent. The most likely role of O2- is as a reducing agent of Fe3+: O2- + Fe3+----Fe2+ + O2, so that the sum of this and the Fenton reaction, i.e., the iron-catalyzed Haber-Weiss reaction, provides an explanation for the active oxygen species-induced SCE: H2O2 + O2(-)----OH- + OH0 + O2. According to this view, the OH radical thus produced is the agent which ultimately causes SCE. These results are discussed in comparison with other mechanisms previously proposed for induction of SCE by active oxygen species.

  18. Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene.

    Science.gov (United States)

    Wang, Jilin; He, Ronghuan; Che, Quantong

    2011-09-01

    Anion exchange membranes with semi-interpenetrating polymer network (semi-IPN) were prepared based on quaternized chitosan (QCS) and polystyrene (PS). The PS was synthesized by polymerization of styrene monomers in the emulsion of the QCS in an acetic acid aqueous solution under nitrogen atmosphere at elevated temperatures. The semi-IPN system was formed by post-cross-linking of the QCS. A hydroxyl ionic conductivity of 2.80×10(-2) S cm(-1) at 80°C and a tensile stress at break of 20.0 MPa at room temperature were reached, respectively, by the semi-IPN membrane containing 21 wt.% of the PS. The durability of the semi-IPN membrane in alkaline solutions was tested by monitoring the variation of the conductivity and the mechanical strength. The degradation of the conductivity at 80°C was about 5% by immersing the membrane in a 1 mol L(-1) KOH solution at room temperature for 72 h and at 60°C for 50 h, respectively. The tensile stress at break at room temperature could maintain about 20.0 MPa for the membrane soaking in a 10 mol L(-1) KOH solution at ambient temperature for more than 70 h. The water swelling of the semi-IPN membranes was discussed based on the stress relaxation model of polymer chains, and it obeyed the Schott's second-order swelling kinetics.

  19. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  20. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.

    Science.gov (United States)

    Iskra, Timothy; Sacramo, Ashley; Gallo, Chris; Godavarti, Ranga; Chen, Shuang; Lute, Scott; Brorson, Kurt

    2015-01-01

    Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow-rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach.

  1. Expression of Anion Exchanger 1 Sequestrates p16 in the Cytoplasm in Gastric, Colonic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Wei-Wei Shen

    2007-10-01

    Full Text Available p16INK4A (p16 binds to cyclin-dependent kinase 4/6, negatively regulates cell growth. Recent studies have led to an understanding of additional biologic functions for p16; however, the detailed mechanisms involved are still elusive. In this article, we show an unexpected expression of anion exchanger 1 (AEi in the cytoplasm in poorly, moderately differentiated gastric, colonic adenocarcinoma cells, in its interaction with p16, thereby sequestrating the protein in the cytoplasm. Genetic alterations of p16, AEi were not detectable. Forced expression of AEi in these cells sequestrated more p16 in the cytoplasm, whereas small interfering RNA-mediated silencing of AEi in the cells induced the release of p16 from the cytoplasm to the nucleus, leading to cell death, growth inhibition of tumor cells. By analyzing tissue samples obtained from patients with gastric, colonic cancers, we found that 83.33% of gastric cancers, 56.52% of colonic cancers coexpressed AEi, p16 in the cytoplasm. We conclude that AEi plays a crucial role in the pathogenesis of gastric, colonic adenocarcinoma, that p16 dysfunction is a novel pathway of carcinogenesis.

  2. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    Science.gov (United States)

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS.

  3. Carbon Supported Ag Nanoparticles as High Performance Cathode Catalyst for Anion Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Le eXin

    2013-09-01

    Full Text Available A solution phase-based nanocapsule method was successfully developed to synthesize non-precious metal catalyst - carbon supported Ag nanoparticles (Ag/C. XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm and narrow size distribution (2-9 nm are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR on the Ag/C and commercial Pt/C were investigated using rotating ring disc electrode (RRDE tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80 oC.

  4. Functional rescue of a kidney anion exchanger 1 trafficking mutant in renal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carmen Y S Chu

    Full Text Available Mutations in the SLC4A1 gene encoding the anion exchanger 1 (AE1 can cause distal renal tubular acidosis (dRTA, a disease often due to mis-trafficking of the mutant protein. In this study, we investigated whether trafficking of a Golgi-retained dRTA mutant, G701D kAE1, or two dRTA mutants retained in the endoplasmic reticulum, C479W and R589H kAE1, could be functionally rescued to the plasma membrane of Madin-Darby Canine Kidney (MDCK cells. Treatments with DMSO, glycerol, the corrector VX-809, or low temperature incubations restored the basolateral trafficking of G701D kAE1 mutant. These treatments had no significant rescuing effect on trafficking of the mis-folded C479W or R589H kAE1 mutants. DMSO was the only treatment that partially restored G701D kAE1 function in the plasma membrane of MDCK cells. Our experiments show that trafficking of intracellularly retained dRTA kAE1 mutants can be partially restored, and that one chemical treatment rescued both trafficking and function of a dRTA mutant. These studies provide an opportunity to develop alternative therapeutic solutions for dRTA patients.

  5. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  6. Cementation of residue ion exchange resins at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  7. Ion exchange performance of commercial crystalline silicotitanates for cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J. [and others

    1996-03-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A&M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na{sup +}. The materials also showed excellent chemical and radiation stability. Together, the high selectivity and stability of the CSTs made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia National Laboratories and UOP have teamed under a Cooperative Research and Development Agreement (CRADA) to develop CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by the Sandia and Texas A&M team consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications.

  8. The Anion Effect on Li+ Ion Coordination Structure in Ethylene Carbonate Solutions

    CERN Document Server

    Jiang, Bo; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-01-01

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li+-bound and Li+-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li+ is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, all...

  9. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  10. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    Science.gov (United States)

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  11. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    Science.gov (United States)

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  12. Boron removal from aqueous solutions by ion-exchange resin: column sorption-elution studies.

    Science.gov (United States)

    Köse, T Ennil; Oztürk, Neşe

    2008-04-01

    A column sorption-elution study was carried out by using a strong base anion-exchange resin (Dowex 2 x 8) for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of feed flow rate and the total and breakthrough capacity values of the resin were calculated. The boron on the resin was quantitatively eluted with 0.5M HCl solution at different flow rates. Three consecutive sorption-elution-washing-regeneration-washing cycles were applied to the resin in order to investigate the reusability of the ion-exchange resin. Total capacity values remained almost the same after three sorption-elution-regeneration cycles. The Thomas and the Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the characteristic column parameters required for process design. The results proved that the models would describe the breakthrough curves well.

  13. Preparation and Performance of Bipolar Membranes with Liquid Ion-Exchange Medium

    Institute of Scientific and Technical Information of China (English)

    苏静; 余立新; 郝继华

    2003-01-01

    The current density is rather low in solid bipolar membranes, because the water transfer rate is relatively slow across solid bipolar membranes made of solid ion-exchange materials. This paper describes the use of polymer solutions, such as phosphatic poly(vinyl alcohol) solution, poly(acrylic acid) solution and poly(vinyl alcohol) solutions with dispersed cation/anion-exchange resin particles to prepare bipolar membranes. The 0.1 mol/L NaOH and the 0.05 mol/L H2SO4 were used to test the performance of the bipolar membranes. For a fixed liquid layer thickness, both the current density and the selectivity increase with the concentration increase of a polyelectrolyte solution. The maximum current density measured in the experiment was 1497 A/m2 with a selectivity of 96.8%.

  14. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    Science.gov (United States)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  15. Eu(III) complexes as anion-responsive luminescent sensors and paramagnetic chemical exchange saturation transfer agents.

    Science.gov (United States)

    Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R

    2011-06-06

    The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the (1)H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate, and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate, and carbonate. These anions have weak dissociation constants that range from 19 to 38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate, and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at p

  16. Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction.

    Science.gov (United States)

    Taviot-Guého, Christine; Feng, Yongjun; Faour, Azzam; Leroux, Fabrice

    2010-07-14

    Using time-resolved, in situ energy-dispersive X-ray diffraction (EDXRD), the formation of interstratified LDH structures, with alternate interlayer spaces occupied by different anions, have been demonstrated during anion exchange reactions. Novel hybrid LDH nanostructures can thus be prepared, combining the physicochemical properties of two intercalated anions plus those of the LDH host. A general trend is that inorganic-inorganic anion exchange reactions occur in a one-step process while inorganic-organic exchanges may proceed via a second-stage intermediate, suggesting that staging occurs partly as a result of organic-inorganic separation. Yet, other influencing parameters must be considered such as LDH host composition, LDH affinity for different anions and LDH particle size as well as extrinsic parameters like the reaction temperature. Hence, a correlation between the occurrence of staging phenomenon and the difficulty of the exchange of the initial anion is observed, suggesting that staging is needed to overcome the energy barrier in the case of the exchange by organic anions. Notwithstanding the LiAl(2) system, staging has mainly been observed with Zn(2)Cr LDH host so far, a peculiar LDH composition with a unique Zn/Cr ratio of two and a local order of the cations within the hydroxide layers. The formation of a higher order-staged intermediate than stage two, observed during the exchange reaction of CO(3)(2-) or SO(4)(2-) anions with Zn(2)Cr-tartrate, is in favour of a Daumas-Herold model although this model implies a bending of LDH layers. The analysis of the X-ray powder diffraction pattern of Zn(2)Cr-Cl/tartrate second-stage intermediate, isolated almost as a pure phase during the exchange of Cl(-) with tartrate anions in Zn(2)Cr LDH, indicates a disorder in the stacking sequence and a relative proportion of the two kinds of interlayers slightly different from 50/50. Besides, the microstructural analysis of the XRD pattern reveals a great reduction of the

  17. Phosphorus-contained polycondensation type ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Tulkun Tursunov

    2012-06-01

    Full Text Available This work describes synthesis and research of new polycondensation type phosphorus-contained ion-exchange polymers by phosphorylation of polymers received through the interaction of furfural (accessible and cheap product of hydrolytic and cotton scraping industry of Uzbekistan with benzyl bromide (chloride. Furfural and its derivatives possess high reactionary ability thanks to presence of carbonyl groups, and presence of a heterocyclic cycle gives to the received polymers high thermal and chemical stability. Polycondensation reaction kinetics of furfural and benzyl bromide, and phosphorylation reaction of the received benzyl bromide-furfural polymer were studied. Sorption, kinetic and thermo-chemical properties of received ion-exchange resins were studied using physico-chemical and chemical analyses to find out specific objects of practical application. Particularly, sorption and selective properties of received ion-exchange resins to ions of such metals as copper, nickel, calcium, magnesium, and uranyl ion were studied. Received results support the application of the investigated ion-exchange resins in processes of clearing of industrial and waste waters of hydrometallurgical manufactures.

  18. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  19. Selective Anion Exchange Resins for the Removal of Perchlorate [(CIO{sub 4}{sup -})] from Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    1999-05-20

    The primary objective of this project was to evaluate a novel bifunctional anion exchange resin for the cost-effective, in situ treatment of groundwater contaminated with perchlorate (ClO{sub 4}{sup -}). Both laboratory and field studies were performed to determine the selectivity and capacity of the bifunctional synthetic resins to sorb ClO{sub 4}{sup -} from simulated or actual contaminated groundwater. A number of synthetic bifunctional resins, including two commercial versions made by Purolite International and three commercially available, mono-functional resins, were tested. Initial laboratory batch and column breakthrough studies determined the best synthetic resins and the optimal conditions for the field experiment. Laboratory results indicated that the bifunctional synthetic resins, D-3696 and RO-02-119 were highly selective toward ClO{sub 4}{sup -} and performed {approx}5 times better than the best commercial nitrate resin (Purolite{reg_sign} A-520E) and more than an order of magnitude better than some nonselective commercial resins (e.g. Amberlite{reg_sign} IRA-900). The bifunctional resins were particularly effective in removing trace quantities of ClO{sub 4}{sup -} in groundwater to below the detection limit ({approx} 3 {micro}g/L). A field trial demonstrated that the bifunctional resin (D-3696) was able to treat {approx} 110,000 bed volumes of groundwater before a 10% breakthrough of ClO{sub 4}{sup -} occurred under the column flow-through conditions (running at {approx} 2 bed volumes per minute). On the other hand, the Purolite{reg_sign} A-520E resin was able to treat {approx} 23,000 bed volumes of groundwater under the same experimental conditions. No pretreatment was needed to remove either dissolved organic matter or other competing anions (such as SO{sub 4}{sup 2-} or NO{sub 3}{sup -}) in the groundwater, and the treatment process did not alter the water quality by removing or adding secondary by-products because of the high selectivity of the

  20. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    Energy Technology Data Exchange (ETDEWEB)

    Gloe, Karsten [Technischen Universität Dresden; Tasker, Peter A [ORNL; Oshima, Tatsuya [University of Miyazaki; Watarai, Hitoshi [Institute for NanoScience Design at Osaka University; Nilsson, Mikael [University of California, Irvine

    2013-01-01

    inverse micelles swollen with water molecules. Extraction systems involving long-chain cations such as alkylammonium species or long-chain anions such as sulfonates or carboxylates proved especially prone to extensive aggregate formation. The related phenomenon of third-phase formation in SX systems, long misunderstood, is now yielding to spectroscopic and scattering techniques showing extensive long-range organization. Over the last 50 years, tools for studying the structure and thermodynamics of aggregation have grown increasingly sophisticated, leading to a rich and detailed understanding of what we can now recognize as SC phenomena in SX. In the 1970s and 1980s, the rapid growth of SC elicited a paradigm shift in SX. The influence of SC principles had two major effects on the course of SX research. First, it provided a framework for understanding the supramolecular behavior that was already well appreciated in the field of SX, though earlier without the SC terminology. Second, it provided the conceptual tools to control supramolecular behavior in SX, direct it for intended functionality, and to simplify it. Extraction by designed reagents has been steadily progressing ever since, with commercial applications emerging to successfully validate this approach. With the discovery of crown ethers in the late 1960s, the advancement of extractant design has fruitfully employed the concept of inclusion. While considerable initial progress occurred with such molecules, especially because of their affinity and selectivity for alkali and alkaline earth metals, other molecular platforms such as calixarenes have proven more versatile. Multidentate receptors for partial to full inclusion of cations, anions, ion pairs, as well as neutral species, have now become commonplace for selective extraction. This volume of Ion Exchange and Solvent Extraction examines how the principles of SC are being employed both in advancing the design of new highly selective SX systems and in

  1. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  2. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  3. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  4. Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs.

    Science.gov (United States)

    Benedetto, A; Bodo, E; Gontrani, L; Ballone, P; Caminiti, R

    2014-03-06

    The combination of amino acids in their deprotonated and thus anionic form with a choline cation gives origin to a new and potentially important class of organic ionic compounds. A series of such neutral ion pairs has been investigated by first principle methods. The results reveal intriguing structural motives as well as regular patterns in the charge distribution and predict a number of vibrational and optical properties that could guide the experimental investigation of these compounds. The replacement of choline with its phosphocholine analogue causes the spontaneous reciprocal neutralization of cations and anions, taking place through the transfer of a proton between the two ions. Systems of this kind, therefore, provide a wide and easily accessible playground to probe the ionic/polar transition in organic systems, while the easy transfer of H(+) among neutral and ionic species points to their potential application as proton conductors. The analysis of the ab initio data highlights similarities as well as discrepancies from the rigid-ions force-field picture and suggests directions for the improvement of empirical models.

  5. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  6. Instrumentation: Ion Chromatography.

    Science.gov (United States)

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  7. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    Science.gov (United States)

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM.

  8. Fast and simple anion-exchange chromatography for large-scale purification of self-complementary oligonucleotides.

    Science.gov (United States)

    Banerjee, A; Bose, H S; Roy, K B

    1991-11-01

    A fast and simple anion-exchange chromatography method is described for large-scale purification of synthetic oligonucleotides. Using a single matrix and aqueous solvent system, the two-step chromatographic procedure can handle complex separation problems of self-complementary or G-rich sequences without the use of urea or formaldehyde. The work also demonstrates the complication encountered, possibly due to hairpin formation, in one of the oligomers.

  9. Nondestructive radio isotopic technique for performance evaluation of industrial grade anion exchange resins Amberlite IRN78 and Indion NSSR

    Energy Technology Data Exchange (ETDEWEB)

    Singare, Pravin U. [Bhavan' s College, Mumbai (India). Dept. of Chemistry

    2016-01-15

    The present study deals with the application of radiotracers 131I and 82Br as a non-destructive tool to evaluate the performance of Amberlite IRN78 (nuclear grade) and Indion NSSR (non-nuclear grade) anion exchange resins. In general based on radiotracer applications it was observed that Amberlite IRN78 resins show superior performance over Indion NSSR resins under identical operational parameters.

  10. [Investigation of mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of ion-exchange resins and fiber].

    Science.gov (United States)

    Holyavka, M G; Kovaleva, T A; Karpov, S I; Seredin, P V; Artyukhov, V G

    2014-01-01

    It is established that ion exchange resins AV-17-2P, KU-2, AV-16-GS, AM 21A, IMAC-HP, PUROLITE and fiber VION KN-1 can be applied as carriers for inulinase immobilization. The analysis of IR spectra for an enzyme, carriers and heterogeneous enzyme preparations showed that inulinase binding to matrices of various carriers occurs in general through electrostatic interactions. It is assumed that the mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of cation- and anion exchange polymers differ essentially from each other: different sites of protein molecule take part in adsorption that causes various conformational reorganizations in an enzyme molecule.

  11. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  12. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  13. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    Science.gov (United States)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  14. Radioactive ion exchange resin pretreatment and treatment system and corresponding process. Systemes de pre-traitement et de traitement de resines echangeuses d'ions radioactives et procede de traitement correspondant

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, G.; Ranc, R.

    1989-05-12

    Spent organic ion exchange resins contain Li (cationic resins) and B (amionic resins) which interfere with cement after encapsulation. Radioactive anionic and cationic resins or their mixture are treated by a soluble aluminum salt for precipitation of insoluble lithium aluminate, then neutralized and mixed with the cement containing calcium oxide for precipitation of boron.

  15. Anion Transport in a Chemically Stable, Sterically Bulky alpha-C Modified Imidazolium Functionalized Anion Exchange Membrane

    Science.gov (United States)

    2014-06-24

    perceived advantages of alkaline electrolytes (e.g., KOH solution) used in AFCs include the applications of nonprecious metal catalysts and increased... nitrate for 48 h under room temperature to release Cl− ions. The mixed solution was titrated by standard AgNO3 using K2CrO4 as a colorimetric indicator...microscopy measurement. ■ REFERENCES (1) Spendelow, J. S.; Wieckowski, A. Electrocatalysis of Oxygen Reduction and Small Alcohol Oxidation in Alkaline

  16. Rupture loop annex ion exchange RLAIX vault deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  17. Ion-exchanged Tm3+:glass channel waveguide laser.

    Science.gov (United States)

    Choudhary, Amol; Kannan, Pradeesh; Mackenzie, Jacob I; Feng, Xian; Shepherd, David P

    2013-04-01

    Continuous wave laser action around 1.9 μm has been demonstrated in a Tm(3+)-doped germanate glass channel waveguide laser fabricated by ion-exchange. Laser action was observed with an absorbed power threshold of only 44 mW and a slope efficiency of up to 6.8% was achieved. Propagation loss at the lasing wavelength was measured to be 0.3 dB/cm. We believe this to be the first ion-exchanged Tm(3+)-doped glass waveguide laser.

  18. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  19. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  20. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E. A.; King, W. D.

    2012-07-31

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  1. HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.

    2012-04-25

    Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

  2. Adsorption of polyethylene-glycolated bovine serum albumin on macroporous and polymer-grafted anion exchangers.

    Science.gov (United States)

    Zhu, Mimi; Carta, Giorgio

    2014-01-24

    The chromatographic and adsorptive properties of BSA and BSA conjugated with 10 and 30kDa PEG polymers are determined for a macroporous anion exchanger (UNOsphere™ Diol Q) and for a polymer-grafted material having the same backbone matrix (Nuvia Q™). Chromatographic retention, adsorption capacity, and adsorption kinetics are enhanced in the polymer-grafted resin for both BSA and 10kDa PEG-BSA as a result of interactions with the grafted polymers. However, the difference between the two resins diminishes for 30kDa PEG-BSA indicating that size exclusion effects strongly affect binding in the polymer-grafted material for this larger conjugate. Images of intraparticle concentration profiles obtained by confocal scanning laser microscopy show that the transport mechanisms of both BSA and PEGylated BSA are very different in the two resins. The protein binding kinetics are dominated by ordinary pore diffusion and are essentially independent of the direction of transport for UNOsphere Diol Q as a result of its large pore size. Thus, for this material, displacement of PEGylated BSA by BSA is clearly evident at the intraparticle scale. On the other hand, the protein binding kinetics in Nuvia Q are consistent with a solid diffusion mechanism driven by the adsorbed protein concentration. For this material, protein transport is very fast for one component or two-component co-adsorption of BSA and PEGylated BSA but slows down dramatically for sequential adsorption of these species as a result of heightened diffusional hindrance when the two components counterdiffuse within the resin.

  3. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis.

    Science.gov (United States)

    Elian, Albert A; Hackett, Jeffery

    2011-12-01

    In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL.

  4. Strategies for developing design spaces for viral clearance by anion exchange chromatography during monoclonal antibody production.

    Science.gov (United States)

    Strauss, Daniel M; Cano, Tony; Cai, Nick; Delucchi, Heather; Plancarte, Magdalena; Coleman, Daniel; Blank, Gregory S; Chen, Qi; Yang, Bin

    2010-01-01

    The quality-by-design (QbD) regulatory initiative promotes the development of process design spaces describing the multidimensional effects and interactions of process variables on critical quality attributes of therapeutic products. However, because of the complex nature of production processes, strategies must be devised to provide for design space development with reasonable allocation of resources while maintaining highly dependable results. Here, we discuss strategies for the determination of design spaces for viral clearance by anion exchange chromatography (AEX) during purification of monoclonal antibodies. We developed a risk assessment for AEX using a formalized method and applying previous knowledge of the effects of certain variables and the mechanism of action for virus removal by this process. We then use design-of-experiments (DOE) concepts to perform a highly fractionated factorial experiment and show that varying many process parameters simultaneously over wide ranges does not affect the ability of the AEX process to remove endogenous retrovirus-like particles from CHO-cell derived feedstocks. Finally, we performed a full factorial design and observed that a high degree of viral clearance was obtained for three different model viruses when the most significant process parameters were varied over ranges relevant to typical manufacturing processes. These experiments indicate the robust nature of viral clearance by the AEX process as well as the design space where removal of viral impurities and contaminants can be assured. In addition, the concepts and methodology presented here provides a general approach for the development of design spaces to assure that quality of biotherapeutic products is maintained.

  5. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    Science.gov (United States)

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  6. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    Science.gov (United States)

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples.

  7. Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins.

    Science.gov (United States)

    Moldes, A B; Alonso, J L; Parajó, J C

    2003-07-01

    The physicochemical properties (capacity, kinetics and selectivity) of the ion exchange resins Amberlite IRA900, IRA400, IRA96 and IRA67 were determined to evaluate their comparative suitability for lactic acid recovery. Both the kinetics of lactic acid sorption from aqueous solutions and the equilibrium were assessed using mathematical models, which provided a close interpretation of the experimental results. The best resins (Amberlite IRA96 and IRA67) were employed in further fixed-bed operation using aqueous lactic acid solutions as feed. In this set of experiments, parameters such as capacity, regenerant consumption, percentage of lactic acid recovery and product concentration were measured. Amberlite IRA67, a weak base resin, was selected for lactic acid recovery from SSF (simultaneous saccharification and fermentation) broths. Owing to the presence of nutrients and ions other than lactate, a slightly decreased capacity was determined when using SSF media instead aqueous lactic acid solutions, but quantitative lactic acid recoveries at constant capacities were obtained in four sequential load/regeneration cycles.

  8. Preparing Surface Anion-imprinted Material Based on Ion Exchange and Surface-initiated Graft-polymerization and Studies on Its Recognition Character%基于离子交换和表面引发接枝聚合制备阴离子表面印迹材料及其识别特性研究

    Institute of Scientific and Technical Information of China (English)

    杜俊玫; 高保娇; 黄小卫; 张永奇; 王明娟

    2012-01-01

    建立了一种新的离子表面印迹(IIP)方法.使用偶联剂γ-氨丙基三甲氧基硅烷(AMPS)对微米级硅胶微粒进行表面改性,制得表面含有氨基的改性硅胶AMPS-SiO2.凭借离子交换作用,阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)结合在模板离子磷酸根周围;改性硅胶AMPS-SiO2表面的氨基与溶液中的过硫酸盐构成氧化还原引发体系,使DMC及交联剂N,N'-亚甲基双丙烯酰胺(MBA)在硅胶微粒表面发生接枝交联聚合,从而实现了磷酸根离子的表面印迹,制得了阴离子表面印迹材料IIP-PDMC/SiO2.采用静态与动态两种方法,考察研究了IIP-PDMC/SiO2对PO43-离子的识别特性与结合性能.研究结果表明,离子表面印迹材料IIP-PDMC/SiO2对PO43-离子具有特异的识别选择性与优良的结合亲和性,相对于对比离子高锰酸根离子,IIP-PDMC/SiO2对PO43-离子的识别选择性系数为9.58.%The molecularly imprinted polymers(MIPs) synthesized by conventional bulky imprinting methods suffer from several limitations,such as time-consuming preparation process,poor site accessibility to the target molecules and the lower binding capacity for the target molecules.To overcome these problems in bulking imprinting,in this work,a novel surface-ion imprinting method that not only is simple but also highly effective,is put forward and found.The coupling agent γ-aminopropyltrimethoxysilane(AMPS) was bond onto the surface of silica gel particles,and amino groups were introduced onto the surfaces of silica gel particles,obtaining the modified particles AMPS-SiO2.In aqueous solution,the molecules of the cationic monomer methacryloxyethyltrimethyl ammonium chloride(DMC) were first combined around the template ion,phosphate ion,by right of ion exchange action.A redox initiating system was constructed by the amino groups on AMPS-SiO2 and ammonium persulphate in the solution,and free radicals were produced on the

  9. Cleanup and analysis of sugar phosphates in biological extracts by using solid phase extraction and anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Smith, Hans Peter; Cohen, A.; Buttler, T.

    1998-01-01

    A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts of Sacch......A cleanup method based on anion-exchange solid-phase extraction (SPE) was developed to render biological extracts suitable for the analysis of hexose phosphates with a modified anion-exchange chromatography method and pulsed amperometric detection. The method was applied to cell extracts...... of Saccharomyces cerevisiae obtained by using cold methanol as quenching agent and chloroform as extraction solvent. It was shown that pretreatment of the cell extract with SPE markedly improved the quality of the liquid chromatography analysis with recoveries of the sugar phosphates close to 100%. Furthermore...

  10. Preparation of a Cation Exchanger from Cork Waste: Thermodynamic Study of the Ion Exchange Processes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ion exchanger was prepared by sulfonation of cork-waste chars. The exchange properties of the resultant materialwere characterized using Na+, Ca2+ or Fe3+ aqueous solutions, The content of metal ions in the solutions weredetermined by atomic absorption spectrometry. On the basis of the results obtained, the chemical equilibrium andits thermodynamic aspects related to the ion exchange process were studied. It was found that equilibrium constantK varies by the order: Na+<Ca2+<Fe3+, its value increasing with increasing temperature, and that △H°>0 and△S°>0, with -△G° following the sequence: Ca2+>Na+>Fe3+,

  11. Synthesis, characterization and ion exchange properties of zirconium(IV) tungstoiodophosphate, a new cation exchanger

    Indian Academy of Sciences (India)

    Weqar Ahmad Siddiqui; Shakeel Ahmad Khan

    2007-02-01

    Zirconium(IV) tungstoiodophosphate has been synthesized under a variety of conditions. The most chemically and thermally stable sample is prepared by adding a mixture of aqueous solutions of 0.5 mol L-1 sodium tungstate, potassium iodate and 1 mol L-1 orthophosphoric acid to aqueous solution of 0.1 mol L-1 zirconium(IV) oxychloride. Its ion exchange capacity for Na+ and K+ was found to be 2.20 and 2.35 meq g-1 dry exchanger, respectively. The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the exchange capacity of drying the exchanger at different temperatures has been studied. The analytical importance of the material has been established by quantitative separation of Pb2+ from other metal ions.

  12. Ae4 (Slc4a9) Anion Exchanger Drives Cl- Uptake-dependent Fluid Secretion by Mouse Submandibular Gland Acinar Cells.

    Science.gov (United States)

    Peña-Münzenmayer, Gaspar; Catalán, Marcelo A; Kondo, Yusuke; Jaramillo, Yasna; Liu, Frances; Shull, Gary E; Melvin, James E

    2015-04-24

    Transcellular Cl(-) movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na(+)-K(+)-2Cl(-) cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl(-) above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl(-) uptake pathway concentrates Cl(-) ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl(-)/HCO3 (-) exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2(-/-) mice. In contrast, saliva secretion was reduced by 35% in Ae4(-/-) mice. The decrease in salivation was not related to loss of Na(+)-K(+)-2Cl(-) cotransporter or Na(+)/H(+) exchanger activity in Ae4(-/-) mice but correlated with reduced Cl(-) uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl(-)/HCO3 (-) exchanger activity revealed that HCO3 (-)-dependent Cl(-) uptake was reduced in the acinar cells of Ae2(-/-) and Ae4(-/-) mice. Moreover, Cl(-)/HCO3 (-) exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl(-)/HCO3 (-) exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.

  13. Ion exchange membranes in seawater applications : processes and characteristics

    NARCIS (Netherlands)

    Galama, A.H.

    2015-01-01

    Officiële titel ENG: Ion exchange membranes in seawater applications. Processes and characteristics Officiële titel NL: Ionwisselende membranen in zeewatertoepassingen. Processen en eigenschappen Auteur: A.H.Galama Jaar: 2015 ISBN: 978-94-6257-225-6 Samenvatting Zeewaterontzouting stelt me

  14. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    Science.gov (United States)

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  15. Stydy on the Model of Ion Exchange Kinetics

    Institute of Scientific and Technical Information of China (English)

    ChenFengrong; JiangZhixin

    1994-01-01

    In this paper, a macrokinetics model equation describing the characteristics of the solid-liquid mass transfer has been proposed.The qualitative analysis and experimental verification have been done for this mode equation.The model equation can explain the ion exchange process considerably well.

  16. Thermal Analysis for Ion-Exchange Column System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  17. Ion exchange liquid chromatography method for the direct determination of small ribonucleic acids.

    Science.gov (United States)

    McGinnis, A Cary; Cummings, Brian S; Bartlett, Michael G

    2013-10-17

    Bioanalysis of siRNAs is challenging due to their size (5-14 kDa) and negative charge across the backbone, which complicates both sample preparation and chromatography. We present here a one step sample preparation combined with non-denaturing anion exchange chromatography with UV detection for the quantitation of siRNA and its chain shortened metabolites. The sample preparation uses a novel lysis buffer with proteinase K to effectively isolate siRNA from cells and formulated media with greater than 95% recovery. The ion exchange chromatography allows for a lower limit of quantitation of 6 ng mL(-1) in cells and media equivalent to 6 ng/200,000 cells. This method is applied to study the uptake of siRNA in prostate cancer cells and the disappearance in the media and siRNA metabolism. siRNA metabolites are identified by matching the retention time of standards to metabolite peaks. Identification is further confirmed by mass spectrometry. To our knowledge this is the first ion exchange method reported for the quantitation of siRNA from a biological matrix. It is also the first non-denaturing chromatographic method reported for siRNA quantitation.

  18. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    Science.gov (United States)

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods.

  19. Characterization of magnetic ion-exchange composites for protein separation from biosuspensions.

    Science.gov (United States)

    Käppler, Tobias E; Hickstein, Birgit; Peuker, Urs A; Posten, Clemens

    2008-06-01

    Downstream processing is a major issue in biotechnological production. A multitude of unit operations with nonsatisfying yield are often used to reach the desired product purity. Direct recovery technologies such as high-gradient magnetic fishing (HGMF) are advantageous because of their ability to separate the desired product in early stages from crude cultivation broths. However, the use of magnetic particles to capture valuable biotechnological products is often linked to the drawback that support particles are expensive and not available in greater quantities. This current work presents new composite magnetic particles that can be used in biotechnology. They are manufactured by a spray drying process. During this process, the nanosized magnetite particles as well as functional ion-exchange nanoparticles are integrated into one particle in which they are linked by a matrix polymer. The production procedure is flexible, scalable, and therefore economical. These particles have good adsorption capacities of up to 85 mg/g adsorbed protein and good binding kinetics. They are resistant to harsh conditions such as short ultrasonic treatment or extreme pHs. In order to test their usefulness in biosuspensions, model proteins were separated using these particles. The anion and cation exchanger particles separated lysozyme (LZ) or BSA from cultivation suspensions. The selectivity of recovery was dependent on other proteins present as is usual for ion-exchange binding mechanisms.

  20. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  1. Photowritten gratings in ion-exchanged glass waveguides.

    Science.gov (United States)

    Roman, J E; Winick, K A

    1993-05-15

    The fabrication of an ion-exchanged waveguide beam deflector containing a photowritten grating is described. The planar waveguide was fabricated by thermal K(+) exchange in a borosilicate glass. The grating was written by photobleaching an absorption defect centered at 330 am, which was created by gamma-ray irradiation of the glass. The bleaching was accomplished with the 351-nm line from an argon laser. The device achieved 35% deflection efficiency at 633 nm, which corresponded to a grating with a photoinduced index change of 2.6 x 10(-5). This is to our knowledge the first demonstration of an ion-exchanged glass waveguide device containing a permanent photowritten grating.

  2. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.

    Science.gov (United States)

    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen

    2016-01-15

    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%.

  3. Chromate (CrO(4)(2-)) and copper (Cu2+) adsorption by dual-functional ion exchange resins made from agricultural by-products.

    Science.gov (United States)

    Marshall, Wayne E; Wartelle, Lynda H

    2006-07-01

    Ion exchange resins commonly have a single functionality for either cations or anions. Resins that have a dual functionality for both cations and anions are uncommon. The objective of this study was to create dual-functional ion exchange resins derived from soybean hulls, sugarcane bagasse and corn stover. Dual-functional resins were prepared by two separate two-step processes. In the first two-step process, by-products were reacted with a solution of citric acid in order to impart additional negative charge, and then reacted with the cross-linking reagent dimethyloldihydroxyethylene urea (DMDHEU) and a quaternary amine (choline chloride) to add positive charge to the lignocellulosic material. In the second two-step process, the order of reaction was reversed, with positive charge added first, followed by the addition of negative charge. These combined reactions added both cationic and anionic character to the by-products as evidenced by the increased removal from solution of copper (Cu(2+)) cation and the chromate (CrO(4)(2-)) anion compared to unmodified by-products. The order of reaction appeared to slightly favor the functionality that was added last. That is, if negative charge was added last, the resulting resin sequestered more copper ion than a comparable resin where the negative charge was added first and vice-versa. Cu(2+) and CrO(4)(2-) were used as marker ions in a solution that contained both competing cations and anions. The dual-functional resins adsorbed as much as or more of the marker ions compared to commercial cation or anion exchange resins used for comparison. None of the commercial resins exhibited dual-functional properties to the same extent as the by-product-based resins.

  4. Systematics of heavy-ion charge-exchange straggling

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  5. Generation of mouse anti-human urate anion exchanger antibody by genetic immunization and its identification

    Institute of Scientific and Technical Information of China (English)

    XU Guo-shuang; WU Di; CHEN Xiang-mei; SHI Suo-zhu; HONG Quan; ZHANG Ping; LU Yang

    2005-01-01

    Background Human urate anion exchanger (hURAT1) as a major urate transporter expressed on renal tubular epithelial cells regulates blood urate level by reabsorbing uric acid. Antibody is an important tool to study hURAT1. This study aimed, by genetic immunization, to produce mouse anti-hURAT1 polyclonal antibody with high throughput and high specificity and to detect the location of hURAT1 in human kidney.Methods Human renal total RNA was isolated and the entire cDNA of hURAT1 was amplified by RT-PCR. The sequence of intracellular high antigenicity fragment (A280 to R349) was chosen by prediction software of protein antigenicity, and its cDNA was amplified from cDNA of hURAT1, and then cloned into pBQAP-TT vector to construct recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization. Mice were inoculated with this recombinant plasmid and two other adjuvant plasmids, pCMVi-GMCSF and pCMVi-Flt3L, which helped to enhance the antibody’s generation. After four weeks, the mice were sacrificed to obtain the anti-hURAT1 antibody from serum. The antibody was identified by western blot analysis and immunohistochemistry. At the same time, rabbit anti-hURAT1 antibody was produced by protein immunization. The specificity and efficiency between the rabbit and mouse anti-hURAT1 antibody were compared by western blot analysis and immunohistochemistry.Results The entire cDNA of hURAT1 and cDNA of its intracellular high immunogenic fragment were amplified successfully. Recombinant plasmid pBQAP-TT-hURAT1-210 for genetic immunization was confirmed by restriction digestion and sequencing. Both the mouse anti-hURAT1 antibody and rabbit anti-hURAT1 antibody recognized 58kD hURAT1 and 64kD glycosylated hURAT1 protein bands in western blot. Immunohistochemically, hURAT1 was located at the brush border membrane of renal proximal tubular cells. In addition, the throughput and specificity of the mouse anti-hURAT1 antibody were higher than those of the rabbit anti-hURAT1 antibody

  6. Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique

    Science.gov (United States)

    Zanjanchi, M. A.; Ebrahimian, A.

    2004-05-01

    The coordination of Ni 2+ ions in the dehydrated nickel-exchanged zeolites was investigated from the analysis of diffuse reflectance spectra. Solid-state ion exchange method was used to prepare nickel-containing mordenite, Y, L and mazzite zeolites. In the dehydrated mordenite and zeolite Y, nickel cations are presented in both forms of tetrahedral and distorted tetrahedral symmetries. The relative amount of tetrahedral and distorted tetrahedral nickel species are related to the heating temperature and heating time used for calcinations. In the dehydrated zeolite L and mazzite, Ni 2+ ions are mainly in the distorted octahedral symmetries.

  7. Hydrolysis of Aluminum Ions in Kaolinite and Oxisol Suspensions as Influenced by Organic Anions

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; XIAO Shuang-Cheng; LI Jiu-Yu; D. TIWARI; JI Guo-Liang

    2007-01-01

    To evaluate the role of kaolinite and variable charge soils on the hydrolytic reaction of Al, the hydrolysis of Al ions in suspensions of a kaolinite and an Oxisol influenced by organic anions was investigated using changes of pH, Al adsorption, and desorption of pre-adsorbed Al. Kaolinite and the Oxisol promoted the hydrolytic reaction of Al above a certain initial Al concentration (0.1 mmol L-1 for kaolinite and 0.3 mmol L-1 for the Oxisol). The Al hydrolysis accelerated by kaolinite and the Oxisol increased with an increase in initial concentration of Al and was observed in the range of pH from 3.7 to 4.7 for kaolinite and 3.9 to 4.9 for the Oxisol. The acceleration of Al hydrolysis also increased with the increase of solution pH, reached a maximum value at pH 4.5, and then decreased sharply. Al hydrolysis was promoted mainly through selective adsorption for hydroxy-Al. Soil free iron oxides compensated a portion of the soil negative charge or masked some soil surface negative sites leading to a decrease in Al adsorption, which retarded acceleration to some extent. For the Oxisol organic anions increased the proportion of adsorbed Al3+ in total adsorbed Al with the increase in soil negative surface charge and eliminated or reduced the acceleration of Al hydrolysis. Different organic anions inhibited the hydrolysis of Al in the order:citrate > oxalate > acetate (under initial pH of 4.5). The formation of Al-organic complexes in solution also inhibited the hydrolysis of Al.

  8. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  9. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes

    Science.gov (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre

    2010-08-01

    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  10. High-speed ion-exclusion chromatography of dissolved carbon dioxide on a small weakly acidic cation-exchange resin column with ion-exchange enhancement columns of conductivity detection.

    Science.gov (United States)

    Mori, Masanobu; Ikedo, Mikaru; Hu, Wenzhi; Helaleh, Murad I H; Xu, Qun; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2005-10-28

    The high-speed ion-exclusion chromatographic determination of dissolved carbon dioxide, i.e., carbonic acid, hydrogencarbonate or carbonate, with conductivity detection was obtained using a small column packed with a weakly acidic cation-exchange resin in the H+-form (40 mm long x 4.6 mm i.d., 3 microm-particle and 0.1 meq./ml-capacity). Two different ion-exchange resin columns, which were a strongly acidic cation-exchange resin in the K+-form and a strongly basic anion-exchange resin in the OH- -form, were connected after the separation column. The sequence of columns could convert dissolved carbon dioxide to KOH having high conductivity response. The enhancement effect for dissolved carbon dioxide could retain even on the vast chromatographic runs, by using the enhancement columns with high ion-exchange capacity above 1.0 meq./ml. The retention time was in 60 s at flow-rate of 1.2 ml/min. The calibration graph of dissolved carbon dioxide estimated as H2CO3- was linear in the range of 0.005-10 mM. The detection limit at signal to noise of 3 was 0.15 microM as H2CO3-. This method was applicable to several rainwater and tap water samples.

  11. High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials.

    Science.gov (United States)

    Lu, Jibao; Jacobson, Liam C; Perez Sirkin, Yamila A; Molinero, Valeria

    2017-01-10

    Molecular simulations provide a versatile tool to study the structure, anion conductivity, and stability of anion-exchange membrane (AEM) materials and can provide a fundamental understanding of the relation between structure and property of membranes that is key for their use in fuel cells and other applications. The quest for large spatial and temporal scales required to model the multiscale structure and transport processes in the polymer electrolyte membranes, however, cannot be met with fully atomistic models, and the available coarse-grained (CG) models suffer from several challenges associated with their low-resolution. Here, we develop a high-resolution CG force field for hydrated polyphenylene oxide/trimethylamine chloride (PPO/TMACl) membranes compatible with the mW water model using a hierarchical parametrization approach based on Uncertainty Quantification and reference atomistic simulations modeled with the Generalized Amber Force Field (GAFF) and TIP4P/2005 water. The parametrization weighs multiple properties, including coordination numbers, radial distribution functions (RDFs), self-diffusion coefficients of water and ions, relative vapor pressure of water in the solution, hydration enthalpy of the tetramethylammonium chloride (TMACl) salt, and cohesive energy of its aqueous solutions. We analyze the interdependence between properties and address how to compromise between the accuracies of the properties to achieve an overall best representability. Our optimized CG model FFcomp quantitatively reproduces the diffusivities and RDFs of the reference atomistic model and qualitatively reproduces the experimental relative vapor pressure of water in solutions of tetramethylammonium chloride. These properties are of utmost relevance for the design and operation of fuel cell membranes. To our knowledge, this is the first CG model that includes explicitly each water and ion and accounts for hydrophobic, ionic, and intramolecular interactions explicitly

  12. Production of 61Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin.

    Science.gov (United States)

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna; Das, Malay Kanti

    2012-02-01

    (61)Cu was produced by (nat)Co(α, xn)(61)Cu reaction. (61)Cu production yield was 89.5 MBq/μAh (2.42 mCi/μAh) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of (61)Cu was >99% 1 h after EOI. Final product was suitable for making complex with N(2)S(2) type of ligands.

  13. Refolding with Simultaneous Purification of Recombinant Human Granulocyte Colony-stimulating Factor from Escherichia coli Using Strong Anion Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Chao Zhan WANG; Jiang Feng LIU; Xin Du GENG

    2005-01-01

    The urea denatured recombinant human granulocyte colony-stimulating factor (rhGCSF) which was expressed in Escheriachia coli (E. coli) was refolded with simultaneous purification by strong anion exchange chromatography (SAX) in the presence of low concentration of urea. The effect of urea concentration on this refolding process was investigated. The obtained refolded rhG-CSF has a high specific activity of 2.3×108 U/mg, demonstrating that the proteins were completely refolded during the chromatographic process. With only one step by SAX in 40 min, purity and mass recovery of the refolded and purified rhG-CSF were 97% and43%, respectively.

  14. Separation of alditols of interest in food products by high-performance anion-exchange chromatography with pulsed amperometric detection.

    Science.gov (United States)

    Corradini, C; Canali, G; Cogliandro, E; Nicoletti, I

    1997-12-12

    High-performance anion-exchange chromatography (HPAEC)-pulsed amperometric detection (PAD) employing a CarboPac MA 1 column was investigated with respect to mobile phase composition, linear response characteristics, repeatability, reproducibility and sensitivity with different alditols used as sugar substitutes in food and confectionery products. The energy-reduced bulk sweeteners isomalt and maltitol were well resolved in less than 25 min by isocratic elution with 600 mM sodium hydroxide solution. HPAEC-PAD was also successfully applied to the determination of alditols in sugar-free products and a low-calorie sweetener containing sorbitol, mannitol and fructose at different levels.

  15. Ion exchange synthesis and thermal characteristics of some $[\\text{N}^{+}_{2222}]$ based ionic liquids

    Indian Academy of Sciences (India)

    Vasishta D Bhatt; Kuldip Gohil

    2013-11-01

    Eight salts were obtained by reacting tetraethylammonium cation $[\\text{N}^{+}_{2222}]$ with inorganic anions like BF$^{-}_{4}$, NO$^{-}_{3}$, NO$^{-}_{2}$, SCN-, BrO$^{-}_{3}$, IO$^{-}_{3}$, PF$^{-}_{6}$ and HCO$^{-}_{3}$ using ion exchange method. These ionic liquids (ILs) were characterized using thermal methods, infrared spectroscopy and densitometry. Thermophysical properties such as density, coefficient of volume expansion, heat of fusion, heat capacity and thermal energy storage capacity were determined. Thermal conductivity of the samples was determined both in solid and liquid phases. Owing to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under investigation were recommended as materials for thermal energy storage (TES) as well as heat transfer applications.

  16. Ion exchange at the critical point of solution.

    Science.gov (United States)

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached.

  17. Optimization of ion exchange in polishers at PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.D. [Pedro Point Technology, Inc., Pacifica, CA (United States); Fruzzetti, K. [Electric Power Research Inst., Palo Alto, CA (United States)

    2004-08-01

    Blowdown polishers are indispensable components in the secondary systems of pressurized water reactors. The application of advanced amines to reduce iron levels in final steam generator feedwater influences the resin selection for and operation of condensate polishers. There are many opportunities to optimize blowdown polisher performance. This paper summarizes the work currently underway to optimally use resin properties such as ion selectivity and capacity and operational parameters to maximize water quality while minimizing cost. It is shown that the best amine for a given power plant is a complex function of amine properties, ion exchange resin choice, purification systems and other plant design and operational parameters. (orig.)

  18. Thermal annealing of K(+)-Na(+) ion-exchanged waveguides.

    Science.gov (United States)

    Giorgetti, E; Grando, D; Palchetti, L; Sottini, S

    1995-06-15

    The process of thermal annealing of K(+)(-)Na(+) ion-exchanged waveguides in soda lime glass is characterized and compared with a simple theoretical model. The discrepancies between theory and experiments in the case of initially thick guides disappear if the existence of a stress-induced contribution to the refractive index is assumed that is not proportional to the concentration of the doping ions. The results obtained for initially thin guides are exploited for the design of annealed single-mode channel waveguides: 0.4-dB coupling losses with commercial single-mode fibers at lambda = 1.321 microm were measured.

  19. ION EXCHANGE RESINS: AN APPROACH TOWARDS TASTE MASKING OF BITTER DRUGS AND SUSTAINED RELEASE FORMULATIONS WITH THEIR PATENTS

    Directory of Open Access Journals (Sweden)

    Ajay Bilandi

    2013-08-01

    Full Text Available The purpose of this review is to cover various aspects related with the use of ion exchange resins for taste masking of bitter drugs and for formulating sustained release dosage form. Ion exchange resins are water insoluble cross-linked polymers containing a salt-forming group at repeating positions on the polymer chain and have the ability to exchange counter-ions within aqueous solutions surrounding them. The bitterness of pharmaceutical medicines plays a critical role in patient compliance, as the oral administration of bitter drugs is often hampered by their unpleasant taste which leads to non-compliance and further worsening of diseased condition. One of the popular approaches in the taste masking of bitter drugs is based on IER. For taste masking purpose weak cation exchange or weak anion exchange resins are used, depending on the nature of drug. The drug resin complex is absolutely tasteless with no after taste, and at the same time, its bioavailability is not affected. Sustained release dosage forms are designed to release a drug at a pre determined rate in order to maintain a constant drug concentration for a specific period of time with minimum side effects. The usage of IER during the development of sustained release formulations plays a significant role because of their drug retarding properties. In this review also incorporates various patents related to taste masking and sustained release formulations using IER.

  20. Diffusion kinetics of the ion exchange of benzocaine on sulfocationites

    Science.gov (United States)

    Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.

    2016-06-01

    The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.

  1. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    Science.gov (United States)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  2. Determination of ammonium ion in biological nitrification-denitrification process water by ion exclusion chromatography with ion exchange enhancement of conductivity detection.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三; Fritz, James S.

    1988-01-01

    Ammonium ion in biological nitrification-denitrification process with batchwise treatment was determined by ion exclusion chromatography using water as an eluent with ion exchange enhancement of conductivity. Ammonium ion was selectively separated by ion exclusion from alkali metal and alkaline earth metal cations. The detection sensitivity of the ammonium ion was improved about 11-fold with two ion exchange enhancement columns inserted in series between the separation column packed with OH--...

  3. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. III. An anion-exchange resin technique for sampling and preservation of sulfoxyanions in natural waters

    Directory of Open Access Journals (Sweden)

    Ball James W

    2003-06-01

    Full Text Available A sampling protocol for the retention, extraction, and analysis of sulfoxyanions in hydrothermal waters has been developed in the laboratory and tested at Yellowstone National Park and Green Lake, NY. Initial laboratory testing of the anion-exchange resin Bio-Rad™ AG1-X8 indicated that the resin was well suited for the sampling, preservation, and extraction of sulfate and thiosulfate. Synthetic solutions containing sulfate and thiosulfate were passed through AG1-X8 resin columns and eluted with 1 and 3 M KCl, respectively. Recovery ranged from 89 to 100%. Comparison of results for water samples collected from five pools in Yellowstone National Park between on-site IC analysis (U.S. Geological Survey mobile lab and IC analysis of resin-stored sample at SUNY-Stony Brook indicates 96 to 100% agreement for three pools (Cinder, Cistern, and an unnamed pool near Cistern and 76 and 63% agreement for two pools (Sulfur Dust and Frying Pan. Attempts to extract polythionates from the AG1-X8 resin were made using HCl solutions, but were unsuccessful. Bio-Rad™ AG2-X8, an anion-exchange resin with weaker binding sites than the AG1-X8 resin, is better suited for polythionate extraction. Sulfate and thiosulfate extraction with this resin has been accomplished with KCl solutions of 0.1 and 0.5 M, respectively. Trithionate and tetrathionate can be extracted with 4 M KCl. Higher polythionates can be extracted with 9 M hydrochloric acid. Polythionate concentrations can then be determined directly using ion chromatographic methods, and laboratory results indicate recovery of up to 90% for synthetic polythionate solutions using AG2-X8 resin columns.

  4. Separation of organic ion exchange resins from sludge -- engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  5. Dimerisation of isobutene on acidic ion-exchange resins

    OpenAIRE

    Honkela, Maija

    2005-01-01

    Dimerisation of isobutene produces diisobutenes that can be hydrogenated to isooctane (2,2,4-trimethyl pentane). Isooctane can be used as a high octane gasoline component. The aim of this work was to study the selective production of diisobutenes through the dimerisation of isobutene on ion-exchange resin catalysts and to construct kinetic models for the reactions in the system for reactor design purposes. High selectivities for diisobutenes were obtained in the presence of polar componen...

  6. Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wu

    2016-10-01

    Full Text Available The recovery of tungsten (W from a honeycomb-type spent selective catalytic reduction (SCR catalyst using an alkaline leaching–ion exchange method was investigated. Spent SCR catalyst mainly consists of TiO2 and other oxides (6.37% W, 1.57% vanadium (V, and 2.81% silicon (Si, etc.. The ground catalyst was leached at the optimal conditions, as follows: NaOH concentration of 0.3 kg/kg of catalyst, pulp density of 3%, leaching temperature of 70 °C, particle size of −74 μm, and leaching time of 30 min. In this study, the leaching rate values of V and W under the above conditions were 87 wt %, and 91 wt %, respectively. The pregnant solution was then passed through a strong base anion exchange resin (Amberlite IRA900. At high pH conditions, the use of strong base anion exchange resin led to selective loading of divalent WO42− from the solution, because the fraction of two adjacent positively-charged sites on the IRA900 resin was higher and separate from the coexisting VO43−. The adsorbed W could then be eluted with 1 M NaCl + 0.5 M NaOH. The final concentrated W solution had 8.4 g/L of W with 98% purity. The application of this process in industry is expected to have an important impact on the recovery of W from secondary sources of these metals.

  7. Quantitatively measured photorefractive sensitivity of proton-exchanged lithium niobate, proton-exchanged magnesium oxide-doped lithium niobate, and ion-exchanged potassium titanyl phosphate waveguides.

    Science.gov (United States)

    Kondo, Y; Miyaguchi, S; Onoe, A; Fujii, Y

    1994-06-01

    The photorefractive sensitivities of proton-exchanged lithium niobate waveguides and Rb-ion-exchanged potassium titanyl phosphate waveguides are quantitatively measured, and their influence on waveguide applications is estimated.

  8. Preparation and characterization of zirconium (IV) molybdo tungsto vanado silicate as a novel inorganic ion exchanger in sorption of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Zonoz, F. Mohammadi [Faculty of Chemistry, Damghan University of Basic Science, Damghan (Iran, Islamic Republic of); Ahmadi, S.J., E-mail: sjahmadi@aeoi.org.ir [Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of); Nosrati, S. Attar [Faculty of Chemistry, Damghan University of Basic Science, Damghan (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of); Maragheh, M. Ghannadi [Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of)

    2009-09-30

    A new mixed metal heteropoly anion-based cation exchanger Zr(IV) molybdo tungsto vanado silicate (ZMTVS) was prepared under varying conditions. The material was characterized by FTIR, X-ray diffraction, TGA-DTA and SEM techniques. Its ion exchange capacity (IEC) for K{sup +} was found to be 0.86 meq g{sup -1}. Distribution coefficients (K{sub d}) values for 10 metal ions and three radioisotopes were determined. On the basis of K{sub d} values, two important and analytically difficult quantitative binary separations viz. Ni(II)-Co(II) and Ni(II)-Pb(II) were achieved on its column. Decontamination of aqueous nuclear waste solution was also studied.

  9. Facile modification of multi-walled carbon nanotubes-polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange.

    Science.gov (United States)

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2015-05-08

    In situ anion exchange has been proved to be an efficient method for facile modification of polymeric ionic liquids (PILs)-based stationary phases. In this work, an on-fiber anion exchange process was utilized to tune the extraction performance of a multi-walled carbon nanotubes (MWCNTs)-poly(1-vinyl-3-octylimidazolium bromide) (poly(VOIm(+)Br(-)))-coated solid-phase microextraction (SPME) fiber. MWCNTs were first coated onto the stainless steel wire through a layer-by-layer fabrication method and then the PILs were coated onto the MWCNTs physically. Anion of the MWCNTs-poly(VOIm(+)Br(-)) fiber was changed into bis(triflroromethanesulfonyl)imide (NTf2(-)) and 2-naphthalene-sulfonate (NapSO3(-)) by on-fiber anion exchange. Coupled to gas chromatography, the MWCNTs-poly(VOIm(+)Br(-)) fiber showed acceptable extraction efficiency for hydrophilic and hydrogen-bonding-donating alcohols, with limits of detection (LODs) in the range of 0.005-0.05μgmL(-1); after the anion exchange with NTf2(-), the obtained MWCNTs-poly(VOIm(+)NTf2(-)) fiber brought wide linear ranges for hydrophobic n-alkanes with correlation coefficient (R) ranging from 0.994 to 0.997; aromatic property of the fiber was enhanced by aromatic NapSO3(-) anions to get sufficient extraction capacity for phthalate esters and halogenated aromatic hydrocarbons. The MWCNTs-poly(VOIm(+)NapSO3(-)) fiber was finally applied to determine several halogenated aromatic hydrocarbons in groundwater of industrial park.

  10. Characterization of ion-exchange membrane materials: properties vs structure.

    Science.gov (United States)

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  11. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.

    Science.gov (United States)

    Rahman, A; Giarola, M; Cattaruzza, E; Gonella, F; Mardegan, M; Trave, E; Quaranta, A; Mariotto, G

    2012-11-01

    The ion-exchange process is widely used to dope silicate glass layers with silver, aimed at controlling the Ag state in view of possible applications, ranging from light waveguide fabrication to nanostructured composite glass synthesis. The silver doped glass structure as well as its prescribed properties depend on both the preparation parameters and the subsequent treatments. Several structural aspects are still open with regard either to the modification of the glass incorporating the dopant, or to clustering phenomena silver undergoes as a function of its local concentration and state, which are in turn strongly dependent on the preparation route. Systematic characterizations of these systems are mandatory to address the role of the various synthesis parameters in giving rise to the observed features, thus pointing out the effective methodologies for the fabrication of silicate glass layers with the desired properties. In this work, the results of micro-Raman, optical absorption and photoluminescence characterizations are presented for soda-lime glass slides doped with silver by Ag(+)-Na+ exchange and subsequent thermal treatments in air. In particular, a cross-section profiling analysis by Raman micro-spectroscopy was performed on Ag ion-exchanged samples after treatment at some different temperatures. The experimental findings allow to elucidate the role of the treatment temperature in the clustering process related to the local Ag concentration inside the exchanged glass layer.

  12. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia

    2014-12-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow effect. These spacers can be relatively thick compared to the membrane, and thus they increase internal stack resistance due to high solution (ohmic) resistance associated with a thick spacer. New types of patterned anion and cation exchange membranes were developed by casting membranes to create hemispherical protrusions on the membranes, enabling fluid flow between the membranes without the need for a non-conductive spacer. The use of the patterned membrane decreased the MRC stack resistance by ∼22 Ω, resulting in a 38% increase in power density from 2.50 ± 0.04 W m-2 (non-patterned membrane with a non-conductive spacer) to 3.44 ± 0.02 W m-2 (patterned membrane). The COD removal rate, coulombic efficiency, and energy efficiency of the MRC also increased using the patterned membranes compared to the non-patterned membranes. These results demonstrate that these patterned ion exchange membranes can be used to improve performance of an MRC. © 2014 Elsevier B.V. All rights reserved.

  13. Ion exchange properties of titanic fiber of layered structure

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Yoshinori; Komatsu, Yu; Sasaki, Takayoshi

    1986-12-01

    Usually, titanic acid is produced by hydrolyzing titanium tetrachloride, titanium sulfate or titanium alkoxide and is obtained in the form of precipitate in an amorphous gel state. The present authors have synthesized two types of titanic fibers of a layered crystaline structure to provide new ion exchangers. Three synthetic techniques, namely, flux process, annealing baking process and melt process, have been developed. This report deals with the structure and properties of these materials. In the flux process, a mixture of TiO/sub 2/, K/sub 2/CO/sub 3/ and K/sub 2/MoO/sub 4/ (flux) is melted at 1150 deg C and annealed at about 950 deg C to provide a K/sub 2/Ti/sub 4/O/sub 3/ fiber of a layered structure, which is subsequently converted into H/sub 2/Ti/sub 4/O/sub 9/ center dot nH/sub 2/O fiber. In the melt process, a mixture of materials is heate up to 1100 deg C to produce molten K/sub 2/Ti/sub 2/O/sub 5/, which is quenched to form K/sub 2/Ti/sub 2/O/sub 5/ fiber of a layered structure. Then it is converted into H/sub 2/Ti/sub 2/O/sub 5/ center dot nH/sub 2/O fiber. The annealing baking process provides K/sub 2/Ti/sub 4/O/sub 9/, which is converted into K/sub 2/Ti/sub 2/O/sub 5/ fiber. In this report, the crystal structure of H/sub 2/Ti/sub 4/O/sub 9/ center dot nH/sub 2/O is discussed and the ion exchanging properties are analized. Examination is made on the ion exchanging reactions involving potassium, alkali metal ions, alkaline earth metal ions and divalent transition metal ions. Various ion exchangers, including the present ones, are compared in terms of the partition coefficient and separation factor. (Nogami, K.).

  14. PGE Anion Production from the Sputtering of Natural Insulating Samples: "Lessons in Ion Sourcery"

    Science.gov (United States)

    Krestow, Jennifer Sarah Anne

    The goal of this research was to devise a new analytical technique, using Accelerator Mass Spectrometry (AMS), to measure Platinum Group Element (PGE) concentrations to the sup-ppb levels in natural, insulating, samples. The challenges were threefold. First, a method of sputtering an insulating sample to successfully produce a stable beam of anions needed to be devised. Second, a suitable standard of known PGE concentrations had to be found and third, spectral analysis of the beam had to verify any claims of PGE abundance. The first challenge was met by employing a modified high intensity negative ion source flooded with neutral caesium that successfully sputtered insulators to produce a beam of negative ions. The second challenge, that of finding a suitable standard, was fraught with difficulties, as no synthesized standards available were found to be appropriate for this work. As a result, direction is provided for future production of standards by ion implantation. The third challenge, successful spectral analysis, was accomplished using a newly designed gas ionization detector which allowed for resolution of the interfering molecular fragment from the PGE ions. Coupled with the use of the SRIM computer programme, positive identification of all peaks in the spectra of the analyzed samples was accomplished. The success of the first and third challenges lead to the qualitative analyses of geological samples for sub-ppb levels of PGE by AMS. Quantitative analyses await only for the appropriate standards and with those will come a whole new range of research possibilities for measuring sub-ppb levels of PGE in insulating samples by AMS.

  15. Multiple transport pathways for mediating intracellular pH homeostasis: the contribution of H+/ion exchangers

    Directory of Open Access Journals (Sweden)

    Jon ePittman

    2012-01-01

    Full Text Available Intracellular pH homeostasis is an essential process in all plant cells. The transport of H+ into intracellular compartments is critical for providing pH regulation. The maintenance of correct luminal pH in the vacuole and in compartments of the secretory/endocytic pathway is important for a variety of cellular functions including protein modification, sorting and trafficking. It is becoming increasingly evident that coordination between primary H+ pumps, most notably the V-ATPase, and secondary ion/H+ exchangers allows this endomembrane pH maintenance to occur. This article describes some of the recent insights from the studies of plant cation/H+ exchangers and anion/H+ exchangers that demonstrate the fundamental roles of these transporters in pH homeostasis within intracellular compartments.

  16. STRUCTURAL FEATURE AND EXCHANGE KINETICS OF CARBOXYLATED POLYPROPYLENE ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    WU Chinyung; YANG Chaoshiung; YANG Chong

    1987-01-01

    The present article deals with the exchange process of bivalent metal ions, such as Zn2 +, Cd2 + and Hg2+, etc., taken up by non-crosslinked carboxylated polypropylene (CPP) resin. The control factor of the exchange rate deduced from the kinetic data is governed basically by the chemical reaction rather than the mass transfer effect particle diffusion and/or liquid film diffusion. In solution, all the graft chains in the outer shell ofa CPP resin could form a "quasi-macromolecular solution" domain. This opinion further demonstrates the structural pattern of CPP resin proposed in earlier paper[1].

  17. Production of {sup 61}Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India); Das, Malay Kanti, E-mail: mkdas@vecc.gov.in [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India)

    2012-02-15

    {sup 61}Cu was produced by {sup nat}Co({alpha}, xn){sup 61}Cu reaction. {sup 61}Cu production yield was 89.5 MBq/{mu}Ah (2.42 mCi/{mu}Ah) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of {sup 61}Cu was >99% 1 h after EOI. Final product was suitable for making complex with N{sub 2}S{sub 2} type of ligands. - Highlights: Black-Right-Pointing-Pointer High purity, no-carrier added {sup 61}Cu produced from natural cobalt target. Black-Right-Pointing-Pointer {sup 61}Cu separated from impurities using anion exchange resin and ascorbic acid. Black-Right-Pointing-Pointer {sup 61}Cu preparation was successfully used to label N{sub 2}S{sub 2}-type of ligand.

  18. Stable and selective scintillating anion-exchange sensors for quantification of 99TcO4- in natural freshwaters.

    Science.gov (United States)

    Seliman, Ayman F; Helariutta, Kerttuli; Wiktorowicz, Szymon J; Tenhu, Heikki; Harjula, Risto

    2013-12-01

    New dual functionality scintillating anion-exchange resins were developed for selective determination of (99)TcO4(-) in various natural freshwater samples. Stable scintillating particles were formed by preparing the vinyl monomer 2-[4-(4'-vinylbiphenylyl)]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (vPBD), starting with the commercial organic flour TBut-PBD and its subsequent copolymerization with styrene, divinylbenzene, and p-chloromethylstyrene mixture. To integrate the radiochemical separation and radiometric detection steps within the same bead, the chloromethyl groups of the scintillating resins were subjected to amination reactions with dioctylamine (DOA) and trioctylamine (TOA). On-line quantification of (99)TcO4(-) was achieved by packing the scintillating anion-exchange resin into Teflon tubing for quantification by a flow scintillation analyzer (FSA). The two functionalized resins were selective for pertechnetate over the common anions in natural freshwaters, especially Cl(-) and SO4(2-) with up to 1000 ppm and with up to 10 ppm I(-) and Cr2O7(2-). The uptake efficiency of the TOA sensor decreased from 97.88% to 85.08% in well water and river water, respectively, while the counting efficiency was almost constant (69.50%). The DOA performance showed lower efficiency in the two water types relative to TOA. On the other hand, the DOA sensor could be regenerated by 5 M HNO3 for reuse at least four times without losing its chemical or optical performance. The detection limit was 1.45 Bq which could be achieved by loading 45 mL from well and tap water containing the maximum contaminant level (MCL) of (99)Tc (33 Bq/L).

  19. Negative Joule Heating in Ion-Exchange Membranes

    CERN Document Server

    Biesheuvel, P M; Hamelers, H V M

    2014-01-01

    In ion-exchange membrane processes, ions and water flow under the influence of gradients in hydrostatic pressure, ion chemical potential, and electrical potential (voltage), leading to solvent flow, ionic fluxes and ionic current. At the outer surfaces of the membranes, electrical double layers (EDLs) are formed (Donnan layers). When a current flows through the membrane, we argue that besides the positive Joule heating in the bulk of the membrane and in the electrolyte outside the membrane, there is also negative Joule heating in one of the EDLs. We define Joule heating as the inner product of the two vectors current and field strength. Also when fluid flows through a charged membrane, at one side of the membrane there is pressure-related cooling, due to the osmotic and hydrostatic pressure differences across the EDLs.

  20. Determination of sulfur anions by ion chromatography-postcolumn derivation and UV detection

    Institute of Scientific and Technical Information of China (English)

    Mei Lan Chen; Ming Li Ye; Xue Ling Zeng; Yun Chang Fan; Zhu Yan

    2009-01-01

    A novel method for determination of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate in foodstuffs by ion chromatography separation with postcolumn derivation and UV detection has been developed. All species are separated at Dionex IonPac AG22A and AS22Awith mobile phase of a mixture of 4.5 mmol/L sodium carbonate and 0.8 mmol/L sodium bicarbonate at a flow-rate of 1.0 mL/min. The postcolumn derivation solution was 0.24% iodine in 0.2% phosphate acid and the detection wavelength was set at 288 nm. The detection limits (LOD, signal-to-noise ratio of 3) of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate were 0.004, 0.006, 0.006, and 0.007 mg/L, respectively. Within-day relative standard deviations (RSD, n = 10) of formaldehyde sulfoxylate, sulfite, thiocyanate, and thiosulfate were 3.24%, 3.76%, 2.68%, and 2.07%, respectively. The recoveries of the four anions were in the range of 67.2-116.5%.

  1. Hydrous Tantalum Phosphates for Ion Exchange Purposes: A Systematic Study

    Directory of Open Access Journals (Sweden)

    M.L.C.P.da Silva

    2002-03-01

    Full Text Available This work describes two methods of preparation of hydrous tantalum phosphates and their characterization as ion exchangers. The hydrous metallic phosphate compounds were chemically and physically characterized by thermal gravimetric analysis, X-ray diffractometry and surface area measurements. By the first method, tantalum phosphate was prepared by alkaline fusion of Ta2O5 with an excess of K2CO3, followed by lixiviation of the tantalate fusion product with hot water, and precipitation with diluted H3PO4. Preparation II was performed using metallic Ta dissolved in concentrated HF/HNO3 acidic mixture followed by hydrolysis of fluortantalic acid intermediary and precipitation with diluted H3PO4. Both freshly prepared materials (I and II were exaustively refluxed with concentrated H3PO4, in its boiling point temperature, resulting respectively in Ta2O5. 2.1 H2O, (IR and Ta2O5. 1.3 H2O, (IIR. Characterization of the prepared products have presented the following values: surface area of 108.27 ± 2.80; 220.14 ± 2.67; 117.07 ± 5.25 and 141.61 ± 0.27 m².g-1 respectively for I, IR, II and IIR. All these materials were amorphous. The ion exchange behavior for all four hydrous tantalum phosphates was studied using Na+, K+ and Ba+2 as the exchanged species. The values for typical ion exchange capacity were 1.64; 1.23; 1.47 and 1.01 miliequivalent.g-1, respectively for I, IR, II and IIR products.

  2. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    Science.gov (United States)

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks.

  3. Binary ion exchange of metal ions in Y and X zeolites

    Directory of Open Access Journals (Sweden)

    M.A.S.D. Barros

    2003-10-01

    Full Text Available The ion exchange of Na for Cr/K, Cr/Mg and Cr/Ca in Y and X zeolites was studied using breakthrough curves. It was observed that Cr3+ ions were able to remove some competitive ions that had already been exchanged at the zeolitic sites, producing a sequential ion exchange. Some mass transfer parameters such as length of unused bed, overall mass transfer coefficient, operational ratio and dimensionless variance were studied. Chromium uptake was influenced much more by the competing ion in the NaX zeolite columns. The dimensionless variance indicated that Cr/K solution produced a greater axial dispersion than the Cr/Mg and Cr/Ca systems, probably due to some interaction between Cr3+ and K+ ions. The order of dynamic selectivity, provided by the cation uptake, was Cr3+ > Ca2+, Cr3+ > Mg2+ and Cr3+ > K+ for NaY zeolite and Ca2+ ~Cr3+, Mg2+ > Cr3+ and Cr3+ > K+ for NaX zeolite. Due to the more favorable mass transfer parameters and higher affinity for Cr3+, it was concluded that NaY zeolite was more efficient at chromium uptake in competitive systems.

  4. Modified PPO anion exchange membrane for vanadium redox battery application%聚苯醚阴离子膜的改性及在钒电池中的性能

    Institute of Scientific and Technical Information of China (English)

    鲁丹; 黄可龙; 刘素琴; 汪南方

    2012-01-01

    Anion exchange membranes have the low vanadium ions permeability for its application in vanadium redox system (VRB), but its low chemical stability and poor cell performance of the membrane is a crucial obstacle. In this study, a low cost commercially available polyphenylene oxide (PPO) anion exchange membrane was selected to modify with different methods. The anion exchange membrane introduced strong cation-exchange groups after modification. The performance tests with different membranes indicate that the basic characteristics and electrochemical properties with modified membrane are improved. The perfluorinated sulfonic acid solution (PFSA) is higher. Due to low vanadium ions permeability, the columbic efficiency and energy efficiency of the VRB employing modified membrane with the perfluorinated sulfonic acid solution (PFSA) is increased by 6.7 % and 3.2 %, respectively.%阴离子交换膜具有优异的阻钒性能,但是其电化学性能和化学稳定性低于阳离子交换膜,阻碍了其在全钒氧化还原电池中的应用.选用国内商业化聚苯醚(PPO)阴离子膜作为基膜,采用了两种不同的方法在阴离子交换基膜中引入阳离子交换基团成为两性离子交换膜.结果表明,二种改性方法均能提高膜的IEC、电导率等基本性能和电化学性能.由于全氟磺酸溶液( PFSA)改性后隔膜的阻钒离子能力显著提高,该膜组装的电池的能量效率和电流效率分别提高3.2%和6.7%.

  5. Paired-ion electrospray ionization--triple quadrupole tandem mass spectrometry for quantification of anionic surfactants in waters.

    Science.gov (United States)

    Santos, Inês C; Guo, Hongyue; Mesquita, Raquel B R; Rangel, António O S S; Armstrong, Daniel W; Schug, Kevin A

    2015-10-01

    A new paired ion electrospray ionization tandem mass spectrometry method for determination of anionic surfactants in water samples was developed. In this method, dicationic ion-pairing reagents were complexed with monoanionic analytes to facilitate analyte detection in positive mode electrospray ionization - mass spectrometry. Single ion monitoring and selected reaction monitoring on a triple quadrupole instrument were performed and compared. Four dicationic reagents were tested for the determination of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBS), and stearic acid (SA), among other common anions. The obtained limits of detection were compared with those from previous literature. Solid phase extraction using a C18 cartridge was performed in order to eliminate matrix interferences. A literature review was compiled for the methods published between 2010 and 2015 for determination of anionic surfactants. The optimized method was more sensitive than previously developed methods with LOD values of 2.35, 35.4, 37.0, 1.68, and 0.675 pg for SDS, SA, DBS, PFOS, and PFOA, respectively. The developed method was effectively applied for the determination of anionic surfactants in different water samples such as bottled drinking water, cooking water, tap water, and wastewater.

  6. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing (UTSMC)

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  7. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    Science.gov (United States)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  8. Advantages of ion-exchange chromatography for oligonucleotide analysis.

    Science.gov (United States)

    Cook, Ken; Thayer, Jim

    2011-05-01

    The rapid development of therapeutic oligonucleotides (ONs) has created a need for in-depth characterization of ONs, beyond previous requirements. The natural migration to LC-MS requires the use of chromatography with MS-compatible eluents to introduce the large, highly charged biopolymers into the mass spectrometer. Most frequently this employs ion-pair reversed-phase liquid chromatography, which may leave gaps in the characterization, but these can be filled with the use of high-resolution ion-exchange chromatography. Several classes of isobaric isomers are among the impurities that will require further separation prior to MS analysis. This review shows how the use of ion exchange as an additional orthogonal analytical method can be used as standalone or interfaced with MS to achieve the highest possible analytical coverage in the characterization and quantification of impurities present in single- and double-stranded ON formulations. Some of these techniques have been in use for some time and the importance of others is just being recognized.

  9. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  10. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Molenkamp, R.J.; Buisman, C.J.N.

    2007-01-01

    In this paper hydrogen production through biocatalyzed electrolysis was studied for the first time in a single chamber configuration. Single chamber biocatalyzed electrolysis was tested in two configurations: (i) with a cation exchange membrane (CEM) and (ii) with an anion exchange membrane (AEM). B

  11. The influence of retention on the plate height in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    2004-01-01

    The plate heights for the amino acid tyrosine (anion exchange) and the polypeptide aprotinin (cation exchange) were determined on a porous media (Resource 15) and a get filled media (HyperD 20) at salt concentrations ranging from weak to strong retention. At a constant velocity, measurements show...

  12. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.

    Science.gov (United States)

    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J

    2013-08-23

    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  13. Nitrate and Perchlorate removal from groundwater by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Burge, S; Halden, R

    1999-09-15

    This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO{sub 3}{sup -} before breakthrough occurred. The unit contained 2.5 ft{sup 3} of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO{sub 3}{sup -}, which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO{sub 3}{sup -} and 40 {micro}g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be $0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40 {micro}g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme

  14. The Role of Anion Exchanger on Pulmonary Vascular Response to Sustained Alveolar Hypoxia in the Isolated Perfused Rabbit Lung

    Directory of Open Access Journals (Sweden)

    Farzaneh Ketabchi

    2015-05-01

    Full Text Available Background: Some respiratory diseases may induce alveolar hypoxia thereby hypoxic pulmonary vasoconstriction (HPV. However, the mechanisms of this physiologic phenomenon are not fully understood. This study was the first to investigate the role of anion exchanger in sustained HPV. Methods: Experiments were performed in the isolated perfused rabbit lung. After preparation, the lungs were divided into six groups: two DIDS (4,4-diisothiocyanostilbene 2,2-disulfonic acid, anion exchanger inhibitor-treated [200 µM (n=5 or 400 µM (n=3] hypoxic groups, two HCO3- free hypoxic groups, one control hypoxic group (n=7 and one control normoxic group (n=4. DIDS were added to the perfusate at 10 minutes before starting the experiments. In the HCO3- free groups, HEPES (4-(2-Hydroxyethylpiperazine-1-ethanesulfonic acid were added to the perfusate instead of bicarbonate. Furthermore, in the HEPES1 (n=4 and HEPES2 (n=4 groups, the lungs were ventilated with hypoxic gas with or without CO2, respectively. Results: Ventilation of the lungs with hypoxic gas resulted in biphasic HPV, the acute (0-20 minutes and sustained (20-60 minutes phases. No alteration in both phases of HPV was detected by DIDS (200 µM. However, DIDS (400 µM, extended the ascending part of acute HPV until min 24. Both phases of HPV were decreased in the HEPES1 group. However, in the HEPES 2 group, HPV tended to increase during the rising part of the acute phase of HPV. Conclusions: Since DIDS (400 µM extended acute phase of HPV, and HCO3- free perfusate buffer enhanced rising phase of it, therefore it can be suggested that anion exchanger may modulate HPV especially during the acute phase. The abstract of this article was presented as a poster in the congress of European Respiratory Society (ERS on Monday, 08 September 2014, Munich, Germany and was published in the ERJ September 1, 2014 vol. 44 no. Suppl 58 P2343.

  15. Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters.

    Science.gov (United States)

    Lämmerhofer, M; Tobler, E; Lindner, W

    2000-07-28

    Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and

  16. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  17. Analysis of oxyhalide disinfection by-products and other anions of interest in drinking water by ion chromatography.

    Science.gov (United States)

    Hautman, D P; Bolyard, M

    1992-06-01

    The US Environmental Protection Agency is developing regulations for various drinking water disinfection by-products (DBPs). This effort involves developing analytical methods for the DBPs formed as a result of different disinfection treatments and collecting occurrence data for these species. Ion chromatography is one method being used to analyze drinking water samples for the following inorganic DBPs: chlorite, chlorate and bromate. These anions, however, are difficult to separate from common interfering anions of chloride, carbonate and nitrate. A method is therefore presented by which tetraborate/boric acid is used to separate these anions. Method detection limits of the order of 10 micrograms/l, using conductivity and UV detection were obtained. Stability studies of chlorite showing the effectiveness of ethylenediamine as a preservative and summary data for an occurrence of nitrite, nitrate and the DBP precursor bromide are presented.

  18. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  19. Ion Exchange Testing with SRF Resin FY2012

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  20. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    Science.gov (United States)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.