WorldWideScience

Sample records for anionic gold clusters

  1. Accurate ionization potential of gold anionic clusters from density functional theory and many-body perturbation theory

    CERN Document Server

    Tanwar, A; Trevisanutto, P E; Chiodo, L; Della Sala, F; 10.1140/epjb/e2013-40016-5

    2013-01-01

    We present a theoretical study of the ionization potential in small anionic gold clusters, using density functional theory, with and without exact-exchange, and many body perturbation theory, namely the G0W0 approach. We find that G0W0 is the best approach and correctly describes the first ionization potential with an accuracy of about 0.1 eV.

  2. Vanadogermanate cluster anions.

    Science.gov (United States)

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  3. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg

    2009-01-01

    We present a density functional theory study of the energetics of isolated Aun+ (n = 5-10) and Aun- (n = 8-13) gold clusters. We compare our results to both theoretical and experimental values from the literature and find the use of meta-generalized gradient approximation (MGGA) functionals, in...

  4. The chemistry of gold as an anion.

    Science.gov (United States)

    Jansen, Martin

    2008-09-01

    Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties. PMID:18762832

  5. Probing the Structures and Electronic Properties of Dual-Phosphorus-Doped Gold Cluster Anions (AunP-2, n = 1–8): A Density functional Theory Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong; Jiang, Shuai; Zhang, Yang; Lv, Yu-Zhou; Gai, Yan-Bo; Huang, Wei

    2015-07-29

    The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. The higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.

  6. 密度泛函理论研究CO与Aun Mg-1、Au-1n(n=1~8)团簇的相互作用%Density Functional Study of Interaction of CO with Anion Mg-Doped Gold Clusters and Anion Gold Clusters

    Institute of Scientific and Technical Information of China (English)

    王必利; 王慧; 张明; 何曼丽

    2014-01-01

    采用密度泛函理论对CO在阴离子团簇AunMg-1、Au-1n (n=1~8)表面的吸附做了系统研究。结果表明, Aun MgCO-1、Aun CO-1团簇的最稳定结构是在团簇Aun Mg-1、Au-1n 最低能量结构的基础上吸附CO形成,CO的吸附没有改变团簇Aun Mg-1、Au-1n 的最低能量结构;吸附后的CO键长变长,表明CO分子被活化;n取值相同时, Aun MgCO-1的吸附能较低,表明Aun CO-1团簇掺杂Mg后稳定性降低;HOMO-LOMO能隙结果表明Aun MgCO-1、Aun CO-1团簇能隙都具有奇偶振荡的现象。%The adsorption of CO on anion Mg-doped Gold clusters and anion Gold clusters surfaces has been systematically investigated by density functional theory. The result indicates that the most stable structures of AunMgCO-1,AunCO-1(n=1-8) are generated with CO being adsorbed on the lowest energy structures of Aun Mg-1 , Au-1n , and the most stable structures of Aun Mg-1 , Au-1n clusters are not changed by adsorbing CO molecule. The increased CO bond length demonstrates the activation of the CO molecule. The adsorption energy of Aun MgCO-1 is lower indicates the stability of Aun CO-1 is enhanced by Mg-doped. The HOMO-LUMO energy gaps of Aun Mg-1 and Au-1n clusters exhibit an odd-even oscillatory behavior.

  7. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes

    OpenAIRE

    Kitching, H; Kenyon, A. J.; Parkin, I. P.

    2014-01-01

    We describe the synthesis of charge-stabilised gold and silver nanoparticles by a modified Turkevich method and their interaction with a selection of cationic and anionic dyes. It was found that gold nanoparticles interact strongly with cationic dyes and in some cases enhanced absorption was observed by UV-visible spectroscopy. It is also shown that addition of cationic dyes to gold nanoparticles triggers aggregation of the nanoparticles into large, micrometre-scale clusters. Simultaneous fra...

  8. Orientations of polyoxometalate anions on gold nanoparticles.

    Science.gov (United States)

    Sharet, Shelly; Sandars, Ella; Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Meshi, Louisa; Weinstock, Ira A

    2012-09-01

    Cryogenic transmission electron microscopy of polyoxometalate-protected gold nanoparticles reveals that the Preyssler ion, [NaP(5)W(30)O(110)](14-), lies "face down" with its C(5) axis perpendicular to the gold surface, while the Finke-Droege ion, [P(4)W(30)Zn(4)(H(2)O)(2)O(112)](16-), is "tilted", with its long axis close to 60° from the normal to the surface. PMID:22510818

  9. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  10. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R.

    1999-12-16

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying {sup 2}{Sigma} and {sup 2}{Pi} states of C{sub 2n}H (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C{sub 2}H and C{sub 4}H. Other radicals studied include NCN and I{sub 3}. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I{sub 3} revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  11. Aluminum Zintl anion moieties within sodium aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

    2014-02-07

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup −}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

  12. Reaction of tungsten anion clusters with molecular and atomic nitrogen

    OpenAIRE

    Kim, Young Dok; Stolcic, Davor; Fischer, Matthias; Ganteför, Gerd

    2003-01-01

    Ultraviolet photoelectron spectra for WnN-2 (n=1 8) clusters produced by addition of atomic and molecular nitrogen on W anion clusters are presented. Evidence is provided that molecular chemisorption of N2 is more stable than the dissociative one on tungsten anion clusters consisting of eight atoms or less, which is completely different from the results on tungsten bulk surfaces. A general tendency toward molecular chemisorption for small clusters can be explained by reduced charge transfer f...

  13. Electronic structure calculations of acetonitrile cluster anions: Stabilization mechanism of molecular radical anions by solvation

    International Nuclear Information System (INIS)

    Systematic electronic structure calculations have been performed for (CH3CN)n-(n=2-10) anion clusters with the hybrid B3LYP and non-hybrid PW91 density-functional methods in order to understand the stabilization mechanism of an acetonitrile dimer radical anion core by solvent molecules. Since the excess negative charge is mainly localized on N atoms in the dimer anion core, solvent acetonitrile molecules are bound to the N atoms by C-H...Nδ- hydrogen-bond-like attractive interaction with the binding energy per bond being about 10-13kcal/mol. Due to this stabilization mechanism, the anion cluster for n>=4-6 is stable with respect to the electron autodetachment. Geometry optimization was also carried out for the (CH3CN)6- anion cluster where an excess electron was internally trapped. The size dependence of the stabilization energy and vertical detachment energy for the (CH3CN)n- anion clusters is discussed

  14. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  15. Strengthening gold-gold bonds by complexing gold clusters with noble gases

    OpenAIRE

    Ghiringhelli, Luca M.; Levchenko, Sergey V.

    2015-01-01

    We report an unexpectedly strong and complex chemical bonding of rare-gas atoms to neutral gold clusters. The bonding features are consistently reproduced at different levels of approximation within density-functional theory and beyond: from GGA, through hybrid and double-hybrid functionals, up to renormalized second-order perturbation theory. The main finding is that the adsorption of Ar, Kr, and Xe reduces electron-electron repulsion within gold dimer, causing strengthening of the Au-Au bon...

  16. Carbon nanotube anions for the preparation of gold nanoparticle-nanocarbon hybrids.

    Science.gov (United States)

    Bayazit, Mustafa K; Hodge, Stephen A; Clancy, Adam J; Menzel, Robert; Chen, Shu; Shaffer, Milo S P

    2016-01-31

    Gold nanoparticles (AuNPs) can be evenly deposited on single-walled carbon nanotubes (SWCNTs) via the reduction of the highly stable complex, chloro(triphenylphosphine) gold(I), with SWCNT anions ('nanotubides'). This methodology highlights the unusual chemistry of nanotubides and provides a blueprint for the generation of many other hybrid nanomaterials. PMID:26679693

  17. Chemical and heating treatments of ionic monolayer-protected clusters (IMPCs) with different surface counter anions.

    Science.gov (United States)

    Choo, Hosun; Isaacs, Steven R; Small, Adam; Parmley, Seth; Shon, Young-Seok

    2007-12-01

    This paper shows an in-depth study on the chemical and thermal responses of two ionic monolayer-protected gold clusters (Oct(4)N(+-)Br- and Oct(4)N(+-)O(3)SS-IMPCs). Two IMPCs displayed completely different phase-transfer behaviors when the solutions were in contact with the aqueous solution containing N-(2-mercaptopropionyl)glycine (tiopronin). Not Oct(4)N(+-)O(3)SS-IMPCs but Oct(4)N(+-)Br-IMPCs experienced a facile phase transfer from the organic layer to the aqueous layer, which was resulted from the displacement of ionic ligands by tiopronin monolayers on the gold nanoparticle surface. When the toluene solution containing Oct(4)N(+-)Br-IMPCs was treated with the aqueous solution containing NaCl salts, the UV-vis spectrum of the solution containing Oct(4)N(+-)Br-IMPCs undertook a fast spectral evolution caused by decomposition/agglomeration of IMPCs. In contrast, Oct(4)N(+-)O(3)SS-IMPCs exhibited much higher stability against the NaCl treatments. The Oct(4)N(+-)O(3)SS-IMPCs also displayed a superior thermal stability at relatively high temperature of approximately 110 degrees C. Core size evolutions of Oct(4)N(+-)O(3)SS-IMPCs without a fast decomposition or aggregation of clusters were also observed during solid-state heating treatments at approximately 150 and approximately 200 degrees C. These results support that the presence of different anions clearly affect the overall stability of ionic nanoparticles. The stronger binding property of thiosulfate anions compared to bromide anions with gold nanoparticle surfaces makes Oct(4)N(+-)O(3)SS-IMPCs chemically more inert and thermally more stable. PMID:17719060

  18. Beyond Clusters: Supramolecular Networks Self-Assembled from Nanosized Silver Clusters and Inorganic Anions.

    Science.gov (United States)

    Wang, Zhi; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Feng, Zhen-Yu; Tung, Chen-Ho; Sun, Di

    2016-05-10

    Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster-based metal-organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion-templated silver clusters, CO3 @Ag20 and SO4 @Ag22 , were ingeniously incorporated into a 2D sql lattice (1, [CO3 @Ag20 (iPrS)10 (NO3 )8 (DMF)2 ]n ) and an unprecedented 3D two-fold interpenetrated dia network (2, [SO4 @Ag22 (iPrS)12 (NO3 )6 ⋅2 NO3 ]n ), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single-crystal X-ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum-like CO3 @Ag20 cluster is extended by twelve NO3 (-) ions to form the 2D sql lattice of 1, whereas each ball-shaped SO4 @Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6 (NO3 )3 ] triangular prisms to form the 3D interpenetrated dia network of 2. Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail. PMID:27006096

  19. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  20. A theoretical study on interaction of proline with gold cluster

    Indian Academy of Sciences (India)

    Sandhya Rai; N V Suresh Kumar; Harjinder Singh

    2012-06-01

    Interaction of proline with gold cluster was studied using density functional theory (DFT). Two types of mixed basis sets UB3LYP/6-311++G ∪ LANL2MB and UB3LYP/6-311++G ∪ LANL2DZ were used for optimization of complex structures. Proline interacts with gold cluster either through one anchor bond, N–Au or an anchor bond O–Au associated with a non-conventional O–H…Au hydrogen bond. Among these interactions, higher tendency for interaction is seen with Au cluster through amide terminal. Natural bond orbital analysis (NBO) is used to substantiate the results.

  1. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  2. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  3. Structures of 38-atom gold-platinum nanoalloy clusters

    International Nuclear Information System (INIS)

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, AunPt38−n (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature

  4. Geometry, chemical reactivity and Raman spectra of gold clusters

    Directory of Open Access Journals (Sweden)

    Ngangbam Bedamani Singh

    2015-12-01

    Full Text Available Structures, stability, and chemical reactivity of Aun (n = 2-10 clusters are investigated using density functional theory (DFT. We have studied the reactivity parameters of the clusters in terms of relevant electronic structure principles. It is observed that stability and properties are strongly dependent on the cluster size. Clusters with an even number of atoms are found to be energetically and chemically more stable than odd-numbered clusters. Electronic structure of clusters has been investigated using partial density of states (PDOS. PDOS analysis clearly shows that energy states of highest occupied molecular orbital and lowest unoccupied molecular orbital are predominantly contributed by s orbital. From time-dependent DFT calculations, it is shown that absorption spectra of even-numbered clusters are more intense and are observed at lower wavelength region than the odd-sized gold clusters.

  5. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  6. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    Science.gov (United States)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  7. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    Science.gov (United States)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-04-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]-block-(N-isopropylacrylamide) (PMMPImB-b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB-b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB-b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB- (CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  8. The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-03-28

    Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup −} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup −}, did the aluminum moieties exhibit Zintl anion-like characteristics.

  9. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  10. Observation of Electronic Shells and Characteristic Products from Mass Abundance Spectra of Al Cluster and Al-C Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    LIU Bing-Chen; ZHAI Hua-Jin; ZHOU Ru-Fang; NI Guo-Quan; XU Zhi-Zhan

    2000-01-01

    Using a laser vaporization/pulsed molecular beam cluster source, Al cluster anions and Al-C mixed cluster anions are produced and recorded by a time of flight mass spectrometer. Mass abundance spectra of the Al cluster anions in the size range from Al2 to Al42 show that Al-13, Al23, Al35, and slightly, Al37 are local maxima, as predicted by the electronic jellium model. Mixed clusters Aln C- and Aln C2 are also shown, among which the most abundant species are Al3 C2 , Al6 C2 , Al7 C- and Al7 C2 in the small size range. The formation mechanism of these products is discussed.

  11. Near-Threshold Photodetachment Cross Section of (SF6)(n)(-) Cluster Anions: The Ion Core Structure.

    Science.gov (United States)

    Luzon, Itamar; Nagler, Maoz; Chandrasekaran, Vijayanand; Heber, Oded; Strasser, Daniel

    2016-01-21

    Photodetachment cross sections as a function of photon energy are measured for cold (SF6)n(-) cluster anions stored in an electrostatic ion beam trap. Absolute photodetachment cross sections near the adiabatic limit are reported. The strong dependence of the SF6(-) absolute photodetachment cross section on the anion equilibrium bond length leads to the conclusion that the excess charge is localized on a SF6(-) ion core that is only subtly perturbed by the neighboring cluster units. PMID:26667587

  12. Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle.

    Science.gov (United States)

    Wang, Yifeng; Neyman, Alevtina; Arkhangelsky, Elizabeth; Gitis, Vitaly; Meshi, Louisa; Weinstock, Ira A

    2009-12-01

    Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; alpha-X(n+)W(12)O(40)((8-n)-), X(n+) = Al(3+) and "2H(+)", and alpha-X(n+)W(11)O(39)((12-n)-), X(n+) = P(5+), Si(4+), and Al(3+)) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of alpha-AlW(11)O(39)(9-) (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (kappa(-1) = 1.0 nm), which indicate that approximately 99% of the 2970 K(+) counter cations lie within ca. 1.5 nm (approximately 3 hydrated K(+) ion diameters) from the outer surface of the POM shell. Energetic analysis of

  13. Determination of gold in low grade ores and concentratrs by anion exchange separation followed by neutron activation

    International Nuclear Information System (INIS)

    The benefication of tailings fror Kolar Gold Mines involves the flotation of sulphides. Appreciable amounts of arsenic and antimony are expected to accompany gold in this process. The activation analysis of gold in these samples is facilitated by a preseparation of gold from arsenic and antimony. The present paper describes a method for the rapid analysis of gold in the concentration range 0.5 to 50 ppm using a simple pre-irradiation separation, with the recovery of gold being evaluated by an isotope dilution technique using 198Au tracer. The method is based on the absorption of the AuCl4- complex on anion-exchange resin in conjuction with isotope dilution technicque to evaluate the recovery of gold. The resin is then irradiated and counted along with a reference standard similarly prepared. (T.G.)

  14. The application of Guided Ion Beam Tandem Mass Spectrometer; Bond dissociation energies of bare and ligated copper group cluster anions

    International Nuclear Information System (INIS)

    Threshold energies, fragmentation patterns, and integral cross sections for the reactions of collision induced dissociations of bare and ligated copper group cluster anions are determined using a Guided Ion Beam Tandem Mass Spectrometer (GIB-MS). The bond breaking patterns for the copper cluster anions show dramatic even/odd tendencies, e.g., all copper group anions generate as the predominant reaction product, Carbon monoxide is weakly bound to copper group cluster anions. Cohesive energies of the bare copper and silver cluster anions are determined and exhibit a good correspondence with estimate cohesive energies by the model of Miedema.

  15. Clustering effects on discontinuous gold film NanoCells.

    Science.gov (United States)

    Seminario, Jorge M; Ma, Yuefei; Agapito, Luis A; Yan, Liuming; Araujo, Roy A; Bingi, Sridhar; Vadlamani, Nagendra S; Chagarlamudi, Krishna; Sudarshan, Tangali S; Myrick, Michael L; Colavita, Paula E; Franzon, Paul D; Nackashi, David P; Cheng, Long; Yao, Yuxing; Tour, James M

    2004-09-01

    Reproducible negative differential resistance (NDR)-like switching behavior is observed in NanoCells. This behavior is attributed to the formation of filaments and clusters between the discontinuous gold films. Control experiments are performed by self-assembly of insulating molecules between the gold islands and conducting molecules on these islands. Additional control experiments are performed by removing the filaments and clusters between islands using a piranha bath. The results are consistent with theoretical predictions and extend the domain of molecular electronics based in organic molecules to include nanosized clusters as active units. This facilitates a scenario where synthetically accessible organic molecules, with defined characteristics, can be adjusted by metallic nanoclusters as an in situ fine-tuning element, able to compensate for the lack of addressing in the nanosize regime. PMID:15570981

  16. Cage Clusters of Gold and Tin: Golden Buckyballs and Stannaspherene

    Science.gov (United States)

    Wang, Lai-Sheng

    2008-03-01

    Photoelectron spectroscopy (PES) yields direct electronic structure information for size-selected clusters. Combining PES with theoretical calculations has become an effective approach to obtain structural information for small and medium-sized clusters. We present recent discoveries of two classes of cage clusters in gold and tin. Negatively charged gold clusters (Aun^-) have been shown to exhibit a remarkable structural diversity from 2D structures for n = 4-12 and the pyramidal structure for n = 20. Using PES and DFT calculations, we have found that gold clusters with n = 16-18 possess unprecedented hollow cage structures. We have been able to successfully dope a variety of transition-metal atoms into the empty spaces in the golden cages, confirming their structural robustness, as well as demonstrating chemical tuning of their electronic, magnetic, and catalytic properties. Unlike carbon, the heavier congeners of the group 14 elements are not known to form hollow cage structures similar to the fullerenes. In PES studies of tin clusters, we noted that the spectrum of Sn12^- is distinctly different from that of its neighbors or its Si/Ge counterpart. This observation led to our discovery of a highly symmetric and stable icosahedral Sn12^2- cage, for which we coined a name ``stannaspherene'' to describe its high symmetry and spherical pi bonding. We have also shown that all transition metals including the f-block elements can be doped inside Sn12^2- to form a whole class of endohedral stannaspherenes, which may be used as potential building blocks for new cluster-assembled materials. In a preliminary experiment to synthesize stannaspherene in the bulk, a new cluster, Pd2@Sn18^4-, was crystallized and characterized, suggesting all stannaspherene and endohedral stannasphernes may be fabricated in the bulk under suitable conditions.

  17. Mammographic calcification cluster detection and threshold gold thickness measurements

    Science.gov (United States)

    Warren, L. M.; Mackenzie, A.; Cooke, J.; Given-Wilson, R.; Wallis, M. G.; Chakraborty, D. P.; Dance, D. R.; Young, K. C.

    2012-03-01

    European Guidelines for quality control in digital mammography specify acceptable and achievable standards of image quality (IQ) in terms of threshold gold thickness using the CDMAM test object. However, there is little evidence relating such measurements to cancer detection. This work investigated the relationship between calcification detection and threshold gold thickness. An observer study was performed using a set of 162 amorphous selenium direct digital (DR) detector images (81 no cancer and 81 with 1-3 inserted calcification clusters). From these images four additional IQs were simulated: different digital detectors (computed radiography (CR) and DR) and dose levels. Seven observers marked and rated the locations of suspicious regions. DBM analysis of variances was performed on the JAFROC figure of merit (FoM) yielding 95% confidence intervals for IQ pairs. Automated threshold gold thickness (Tg) analysis was performed for the 0.25mm gold disc diameter on CDMAM images at the same IQs (16 images per IQ). Tg was plotted against FoM and a power law fitted to the data. There was a significant reduction in FoM for calcification detection for CR images compared with DR; FoM decreased from 0.83 to 0.63 (pIQ. Since the majority of threshold gold thicknesses for the various IQs were above the acceptable standard despite large variations in calcification detection by radiologists, current EU guidelines may need revising.

  18. Electron attachment to anionic clusters in ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Franklin, E-mail: franklin.martinez@uni-rostock.de [University of Rostock, Institute of Physics (Germany); Bandelow, Steffi; Marx, Gerrit; Schweikhard, Lutz; Vass, Albert [Ernst-Moritz-Arndt University, Institute of Physics (Germany)

    2015-11-15

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.

  19. Electron attachment to anionic clusters in ion traps

    International Nuclear Information System (INIS)

    Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented

  20. Ab initio search for global minimum structures of neutral and anionic hydrogenated Li5 clusters

    International Nuclear Information System (INIS)

    Highlights: • Stochastic search method is used to obtain global minimum of hydrogenated clusters. • The anionic hydrogenated Li5 clusters are firstly studied. • The fragmentation channels and energies of H atom and H2 dimer are investigated. • In hydrogenated Li5 clusters are easier to fragmentation the H2 dimer than H atom. • Li5Hn clusters is too high for the reversible hydrogen storage systems. - Abstract: The structure and some electronic properties of neutral and anionic Li5Hn (n = 0–6) clusters have been studied by using the stochastic search method with the B3LYP/6-31G level of theory. After searching possible isomers, first few isomers with the lowest energy have been recalculated by the B3LYP/6-311G++(2d,2p) and CCSD(T)/6-311G++(2d,2p) level of theory. The method used in this study has been compared with the previously reported ab initio calculations, and its reliability has been confirmed. The anionic Li5Hn (n = 0–6) clusters are reported in this study for the first time. Our results show that in general, stability increases with increasing number of hydrogen atoms. The fragmentation energies of hydrogenated Li5 clusters are easier to fragmentation the two hydrogen atoms than one hydrogen atom in hydrogenated clusters, and it is too high for the reversible hydrogen storage systems

  1. Impact of slow gold clusters on various solids

    International Nuclear Information System (INIS)

    A liquid metal ion source has been installed on a pulsed ion gun. The time of flight (TOF) spectra of the pulsed beam were recorded. With the gold source several cluster ions (up to 10 atoms in the cluster) and doubly charged ions were identified in the ion beam TOF spectra. With a second pulsation, single cluster ions can be selected as projectiles for secondary ion TOF mass spectrometry. The secondary ion emission induced by cluster impact from a variety of targets (organic, CsI, metallic) was studied. A large enhancement of yield is observed by comparison to single atomic ion impact (e.g., a factor of 30 between Au3+ and Au+). The secondary ion yields increase nonlinearly with the number of constituents in the cluster. A comparison with other types of clusters and also fission fragments of 252Cf has been performed. The rate of secondary emission stimulated by cluster is similar to the secondary ion yield induced by fission fragments. (author) 47 refs., 18 figs., 5 tabs

  2. More Magic Numbers in Anionic Titanium-carbon Mixed Clusters

    Institute of Scientific and Technical Information of China (English)

    ZHAU Huajin; LIU Bingchen; ZHOU Rufang; NI Guoquan

    2000-01-01

    @@ Met-Cars[1] and related transition metal-carbon clusters represent a latest breakthrough in gas phase cluster research following the discovery and macroscopic synthesis of fullerenes. Different kinds of structural growth patterns (SGPs) have been proposed to analyze the observed magic numbers of these transition metal-carbon mixed clusters, including the multicage SGP[2], the nanocrystal SGP[3], and the recent layered SGP[4]. Recording larger magic numbers will be of great help to test and distinguish between the various SGPs.

  3. Ab initio search for global minimum structures of neutral and anionic B4H4 clusters

    International Nuclear Information System (INIS)

    Graphical abstract: Low-lying isomers of the B4H4 cluster found by sampling potential energy surface with the Coalescence Kick method. Research highlights: → B4H4 has a planar rather than a tetrahedral global minimum structure. → The B4H4- anion global minimum is a distorted tetrahedral structure. → Theoretical vertical detachment energies included here can help interpret future photoelectron spectroscopic study of the B4H4- anion. → Bonding analysis using AdNDP reveals 4-center bonding in B4H4 and B4H4- clusters. - Abstract: Potential energy surfaces of neutral and anionic B4H4 clusters were sampled using a Coalescence Kick method. A diverse set of global minimum structures and low-lying isomers was found for the studied clusters. Theoretical vertical electron detachment energies were calculated for the two lowest isomers of B4H4-, which could help to assign them in the future experimentally observed photoelectron spectra of the anion. Chemical bonding analysis for the global minimum structures and low-lying isomers of B4H4 and B4H4- was performed using the Adaptive Natural Density Partitioning method.

  4. Density functional study on structural and electronic properties of bimetallic gold-yttrium clusters: comparison with pure gold and yttrium clusters

    Institute of Scientific and Technical Information of China (English)

    Mao Hua-Ping; Wang Hong-Yan; Sheng Yong

    2008-01-01

    Employing first-principles methods, based on the density functional theory, this paper investigates the ground state geometric and electronic properties of pure gold clusters, pure yttrium clusters and gold clusters doped each with one yttrium atom. It is shown that the average bond lengths in the Aun-lY(n ≤9) bimetallic clusters are shorter than those in the corresponding pure gold and yttrium clusters. The most stable isomers of the yttrium-doped gold clusters tend to equally delocalize valence s, p and d electrons of the constituent atoms over the entire structure. The Y atom has maximum number of neighbouring Au atom, which tends to be energetically favourable in the lowest-energy equilibrium structures, because the Au-Y bond is stronger than the Au-Au bond. The three-dimensional isomers of Aun-1Y structures are found in an early appearance starting at n=5 (Au4Y). Calculated vertical ionization potential and electron affinities as a function of the cluster size show odd-even oscillatory behaviour, and resemble pure gold clusters. However, one of the most striking feature of pure yttrium clusters is the absence of odd-even alternation, in agreement with mass spectrometric observations. The HOMO-LUMO gap of Au3Y is the biggest in all the doped Aun-1Y(n≤9) bimetallic clusters.

  5. The Turn Over of the Odd-even Pattern in Mass Spectra of Carbon Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    NI Guoquan; LIU Bingchen; ZHAI Huajin

    2000-01-01

    @@ Although investigations by many authorsd on the properties of carbon cluster anions by mass spectrometry and photoelectron spectroscopy last more than a decade[1~3], a general conclusion concerning the various features of the carbon clusters generated most commonly in laser vaporization/molecular beam sources has not yet been reached. In this Letter we report that the turn-over of the odd-even patter in relative abundance in the mass spectra of carbon clusters and the "manipulation" of the pattern can be realized in a controlled way by altering the vaporizing laser intensity, the backing pressure and the conductance of carries gas.

  6. Photoelectron spectroscopy of boron-gold alloy clusters and boron boronyl clusters: B3Au(n)(-) and B3(BO)n(-) (n = 1, 2).

    Science.gov (United States)

    Chen, Qiang; Bai, Hui; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2013-07-28

    Photoelectron spectroscopy and density-functional theory are combined to study the structures and chemical bonding in boron-gold alloy clusters and boron boronyl clusters: B3Au(n)(-) and B3(BO)n(-) (n = 1, 2). Vibrationally resolved photoelectron spectra are obtained for all four species and the B-Au and B-BO clusters exhibit similar spectral patterns, with the latter species having higher electron binding energies. The electron affinities of B3Au, B3Au2, B3(BO), and B3(BO)2 are determined to be 2.29 ± 0.02, 3.17 ± 0.03, 2.71 ± 0.02, and 4.44 ± 0.02 eV, respectively. The anion and neutral clusters turn out to be isostructural and isovalent to the B3H(n)(-)∕B3H(n) (n = 1, 2) species, which are similar in bonding owing to the fact that Au, BO, and H are monovalent σ ligands. All B3Au(n)(-) and B3(BO)n(-) (n = 1, 2) clusters are aromatic with 2π electrons. The current results provide new examples for the Au∕H and BO∕H isolobal analogy and enrich the chemistry of boronyl and gold. PMID:23901981

  7. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    International Nuclear Information System (INIS)

    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters

  8. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell

    2014-01-01

    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  9. Alkynyl-functionalized gold NHC complexes and their coinage metal clusters

    OpenAIRE

    Kiefe, Claude; Bestgen, Sebastian; Gamer, Michael T.; Lebedkin, Sergei; Kappes, Manfred M.; Roesky, Peter W.

    2015-01-01

    Phenylpropynyl-functionalized imidazolium salts, as well as their gold complexes, were prepared in excellent yields affording suitable starting materials for metal cluster synthesis. The reactions of these gold complexes with coinage metal phenylacetylides [M(CCPh)]x (M = Cu, Ag) resulted in the formation of novel heterometallic hexanuclear clusters which exhibit mixed metallophillic interactions and intense white photoluminescence at low temperature.

  10. Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells

    Directory of Open Access Journals (Sweden)

    Park SE

    2015-09-01

    Full Text Available Sang-Eun Park,1,* Jaewon Lee,2,* Taeksu Lee,2 Saet-Byeol Bae,1 Byunghoon Kang,2 Yong-Min Huh,3 Sang-Wha Lee,1 Seungjoo Haam,2 1Department of Chemical and Biochemical Engineering, Gachon University, Gyeonggi-Do, Republic of Korea; 2Department of Chemical Engineering, Yonsei University, Seoul, Republic of Korea; 3Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Silica–gold nanoshell (SGNS, which is a silica core surrounded by a gold layer, was synthesized by seed-mediated coalescence of gold clusters in an electroless plating solution. SGNS variations with different surface coverage of gold clusters were prepared by adjusting the amounts of gold salts in the presence of formaldehyde-reducing agents. Fully covered SGNS (f-SGNS with connected gold clusters exhibited stronger intensity and more redshift of plasmon bands located around 820 nm than those of partially covered SGNS (p-SGNS with disconnected gold clusters. Upon irradiation with near-infrared light (30 W/cm2, 700–800 nm, f-SGNS caused a larger hyperthermia effect, generating a large temperature change (ΔT =42°C, as compared to the relatively small temperature change (ΔT =24°C caused by p-SGNS. The therapeutic antibody, Erbitux™ (ERB, was further conjugated to SGNS for specific tumor cell targeting. The f-ERB-SGNS showed excellent therapeutic efficacy based on the combined effect of both the therapeutic antibody and the full hyperthermia dose under near-infrared irradiation. Thus, SGNS with well-controlled surface morphology of gold shells may be applicable for near-infrared-induced hyperthermia therapy with tunable optical properties. Keywords: gold nanoshell, plasmon resonance, Erbitux, human epithelial cancer, hyperthermia

  11. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O{sub 3}{sup {minus}}. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO{sub 2}, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO{sub 2} molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO{sub 2} reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C{sub 2}{sup {minus}} {minus} C{sub 11}{sup {minus}}), and van der Waals clusters (X{sup {minus}}(CO{sub 2}){sub n}, X = I, Br, Cl; n {le} 13 and I{sup {minus}} (N{sub 2}O){sub n=1--11}). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X{sup {minus}}(CO{sub 2})n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  12. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n ≤ 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  13. Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters

    OpenAIRE

    Le, Hai Thuy; Lang, Sandra M; de Haeck, Jorg; Lievens, Peter; Janssens, Ewald

    2012-01-01

    The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed o...

  14. Infrared spectroscopic studies on the cluster size dependence of charge carrier structure in nitrous oxide cluster anions

    Science.gov (United States)

    Thompson, Michael C.; Weber, J. Mathias

    2016-03-01

    We report infrared photodissociation spectra of nitrous oxide cluster anions of the form (N2O)nO- (n = 1-12) and (N2O)n- (n = 7-15) in the region 800-1600 cm-1. The charge carriers in these ions are NNO2- and O- for (N2O)nO- clusters with a solvation induced core ion switch, and N2O- for (N2O)n- clusters. The N-N and N-O stretching vibrations of N2O- (solvated by N2O) are reported for the first time, and they are found at (1595 ± 3) cm-1 and (894 ± 5) cm-1, respectively. We interpret our infrared spectra by comparison with the existing photoelectron spectroscopy data and with computational data in the framework of density functional theory.

  15. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (Cn- n=2-12), aluminium (Aln- n=2-7) and silver clusters (Agn- n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and silver

  16. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  17. First spectroscopic observation of gold(i) butadiynylide: Photodetachment velocity map imaging of the AuC4H anion.

    Science.gov (United States)

    Visser, Bradley R; Addicoat, Matthew A; Gascooke, Jason R; Lawrance, Warren D; Metha, Gregory F

    2016-07-28

    The velocity map imaging technique was used in the investigation of gold(i) butadiynylide, AuC4H(-), with images recorded at two excitation wavelengths. The resultant photodetachment spectra show a well defined vibrational progression in the neutral with an energy spacing of 343 ± 3 cm(-1). The adiabatic electron affinity was determined to be 1.775 ± 0.005 eV and assigned to the X(1)Σ(+)←X(2)Σ(+) transition between the anionic and neutral ground states. Franck-Condon simulations performed on density functional theory optimized geometries assisted the assignment of linear geometries to the neutral and anion and the observed vibrational progression to that of the Au-C4H stretch. PMID:27475374

  18. Anion Photoelectron Spectroscopy of Mo-V Binary Transition Metal Suboxide Clusters

    Science.gov (United States)

    Jarrold, Caroline Chick; Mann, Jennifer E.; Waller, Sarah E.; Rothgeb, David W.

    2010-06-01

    Vibrationally-resolved photoelectron spectra of molybdenum vanadium oxo cluster anions with 2 to 5 oxygen atoms and measured using 2.33 eV, 3.49 eV and 4.66 eV photon energies generally exhibit broad and overlapping electronic states. The adiabatic electron affinities for the series are 1.68(3) eV, 1.73(3) eV, 2.89(1) eV, and 3.4(1) eV for two through five oxygen atoms, respectively. Vibrational structure observed in the spectra can be reconciled with the lowest energy structural isomers of the anions determined in DFT calculations: The lowest energy isomers have low symmetry, with the Mo center in a higher oxidation state than the V center, and high spin states are favored.

  19. Photoelectron spectroscopic and computational study of the PtMgH3,5(-) cluster anions.

    Science.gov (United States)

    Zhang, Xinxing; Ganteför, Gerd; Alexandrova, Anastassia N; Bowen, Kit

    2016-07-28

    The two cluster anions, PtMgH3(-) and PtMgH5(-), were studied by photoelectron spectroscopy and theoretical calculations. Experimentally-determined electron affinity (EA) and vertical detachment energy (VDE) values were compared with those predicted by our computations; excellent agreement was found. The calculated structures of PtMgH3(-) and PtMgH3 both exhibit η2-bonded H2 moieties. Activation of these H2 moieties is implied by the elongation of their bond lengths relative to the bond length of free H2. The calculated structures of PtMgH5(-) and PtMgH5 both exhibit all-hydrogen, five-member, σ-aromatic rings. These attributes are responsible for this anion's special stability. PMID:27373793

  20. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    Science.gov (United States)

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  1. Infrared Spectroscopy of (N_2O)_n^- and (N_2O)mO^- Cluster Anions

    Science.gov (United States)

    Thompson, Michael C.; Weber, J. Mathias

    2015-06-01

    We report infrared photodissociation spectra of nitrous oxide cluster anions, (N_2O)_n^- (n=7-11) and (N_2O)mO^- (m=1-13). Structural changes of the charge carrier in the clusters are driven by increasing levels of solvation. The spectra are interpreted by comparison with quantum chemical calculations.

  2. Lipid Reconstitution-Enabled Formation of Gold Nanoparticle Clusters for Mimetic Cellular Membrane

    OpenAIRE

    Jiyoung Nam; Yong-Tae Kim; Aeyeon Kang; Kook-Han Kim; KyoRee Lee; Wan Soo Yun; Yong Ho Kim

    2016-01-01

    Gold nanoparticles (AuNPs) encapsulated within reconstituted phospholipid bilayers have been utilized in various bioapplications due to their improved cellular uptake without compromising their advantages. Studies have proved that clustering AuNPs can enhance the efficacy of theranostic effects, but controllable aggregation or oligomerization of AuNPs within lipid membranes is still challenging. Here, we successfully demonstrate the formation of gold nanoparticle clusters (AuCLs), supported b...

  3. Probing the early stages of salt nucleation—Experimental and theoretical investigations of sodium/potassium thiocyanate cluster anions

    Science.gov (United States)

    Deng, S. H. M.; Kong, Xiang-Yu; Wang, Xue-Bin

    2015-01-01

    Due to the fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford the formation of supersaturated droplets and generation of various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle, witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged M x (SCN)x + 1 - , doubly charged M y (SCN)y + 2 2 - (M = Na, K), and triply charged K z (SCN)z + 3 3 - anion clusters (x, y, and z stand for the number of alkali atoms in the singly, doubly, and triply charged clusters, respectively) were produced via electrospray of the corresponding salt solutions and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for the sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions M x (SCN)x + 1 - (M = Na and K) demonstrate that they are superhalogen anions. The existence of doubly charged anions M y (SCN)y + 2 2 - (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions K z (SCN)z + 3 3 - (z = 3x, x ≥ 6) was initially discovered from the photoelectron spectra for those singly charged anions of M x (SCN)x + 1 - with the same mass-to-charge ratio (m/z), and later independently confirmed by the observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply charged clusters were found to become preferred, but at higher temperatures, those multiply charged

  4. Probing the early stages of salt nucleation—Experimental and theoretical investigations of sodium/potassium thiocyanate cluster anions

    International Nuclear Information System (INIS)

    Due to the fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford the formation of supersaturated droplets and generation of various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle, witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged Mx(SCN)x+1−, doubly charged My(SCN)y+22− (M = Na, K), and triply charged Kz(SCN)z+33− anion clusters (x, y, and z stand for the number of alkali atoms in the singly, doubly, and triply charged clusters, respectively) were produced via electrospray of the corresponding salt solutions and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for the sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions Mx(SCN)x+1− (M = Na and K) demonstrate that they are superhalogen anions. The existence of doubly charged anions My(SCN)y+22− (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions Kz(SCN)z+33− (z = 3x, x ≥ 6) was initially discovered from the photoelectron spectra for those singly charged anions of Mx(SCN)x+1− with the same mass-to-charge ratio (m/z), and later independently confirmed by the observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply charged clusters were found to become preferred, but at higher temperatures, those multiply charged clusters were suppressed

  5. Probing the early stages of salt nucleation—Experimental and theoretical investigations of sodium/potassium thiocyanate cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S. H. M.; Kong, Xiang-Yu; Wang, Xue-Bin, E-mail: xuebin.wang@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MS K8-88, Richland, Washington 99352 (United States)

    2015-01-14

    Due to the fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford the formation of supersaturated droplets and generation of various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle, witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged M{sub x}(SCN){sub x+1}{sup −}, doubly charged M{sub y}(SCN){sub y+2}{sup 2−} (M = Na, K), and triply charged K{sub z}(SCN){sub z+3}{sup 3−} anion clusters (x, y, and z stand for the number of alkali atoms in the singly, doubly, and triply charged clusters, respectively) were produced via electrospray of the corresponding salt solutions and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for the sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions M{sub x}(SCN){sub x+1}{sup −} (M = Na and K) demonstrate that they are superhalogen anions. The existence of doubly charged anions M{sub y}(SCN){sub y+2}{sup 2−} (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions K{sub z}(SCN){sub z+3}{sup 3−} (z = 3x, x ≥ 6) was initially discovered from the photoelectron spectra for those singly charged anions of M{sub x}(SCN){sub x+1}{sup −} with the same mass-to-charge ratio (m/z), and later independently confirmed by the observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply

  6. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hao-Bo [ORNL; Liang, Liyuan [ORNL; Parks, Jerry M [ORNL; Smith, Jeremy C [ORNL; Riccardi, Demian M [ORNL; Gu, Baohua [ORNL

    2013-01-01

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn2+, Cd2+, and Hg2+) together with Cu2+ and the anions OH , SH , Cl , and F . A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different contributions yield the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and ten for the metal cations, yielding a STDEV of 2.3 kcal/mol and MSE of 0.9 kcal/mol between theoretical to experimental hydration free energies, which range from -72.4 kcal/mol for SH to -505.9 kcal/mol for Cu2+. Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol 1 and MSE of 1.6 kcal/mol, to which adding MP2 corrections from smaller divalent metal ion water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations also yields reasonable agreement with experiment

  7. Structural, electronic and magnetic properties of neutral and anionic Fe2(BO2)n (n=1–3) clusters

    International Nuclear Information System (INIS)

    Using Fe2 dimer as a prototype of transition-metal cluster calculations based on density functional theory have been carried out to study the effect of ligand and charge states on the geometry, bonding feature and magnetic coupling of neutral and anionic Fe2(BO2)n (n=1–3) clusters. For neutral Fe2(BO2)n clusters the spin multiplicity of the complex changes from 7 to 8 when n goes from 0 to 1, 2, and 3. With increasing number of ligands the Fe–Fe distance increases, the magnetic coupling between Fe–Fe changes from direct exchange to super exchange, and 3d–2p hybridization between Fe and O atoms becomes predominant. For anionic Fe2(BO2)n (n=1–3) clusters, the corresponding total magnetic moment is 0, 7 and 6μB, respectively. Compared with neutral clusters the HOMO–LUMO gaps of anionic species increase rapidly as more BO2 units are introduced. This study sheds light on the potential of superhalogens to tune electronic and magnetic properties of Fe clusters. - Highlights: • Charge states have significant effect on the geometry of Fe2(BO2)n clusters. • Electronic properties change with increasing BO2 in neutral and anionic Fe2(BO2)n. • The magnetic coupling between Fe atoms in Fe2 can be effectively tuned by BO2. • Fe2 coupling changes from direct exchange to super exchange with increasing BO2

  8. Geometry, chemical reactivity and Raman spectra of gold clusters

    OpenAIRE

    Ngangbam Bedamani Singh; Utpal Sarkar

    2015-01-01

    Structures, stability, and chemical reactivity of Aun (n = 2-10) clusters are investigated using density functional theory (DFT). We have studied the reactivity parameters of the clusters in terms of relevant electronic structure principles. It is observed that stability and properties are strongly dependent on the cluster size. Clusters with an even number of atoms are found to be energetically and chemically more stable than odd-numbered clusters. Electronic structure of clusters has been i...

  9. Pb 4f photoelectron spectroscopy on mass-selected anionic lead clusters at FLASH

    International Nuclear Information System (INIS)

    4f core level photoelectron spectroscopy has been performed on negatively charged lead clusters, in the size range of 10-90 atoms. We deploy 4.7 nm radiation from the free-electron laser FLASH, yielding sufficiently high photon flux to investigate mass-selected systems in a beam. A new photoelectron detection system based on a hemispherical spectrometer and a time-resolving delayline detector makes it possible to assign electron signals to each micro-pulse of FLASH. The resulting 4f binding energies show good agreement with the metallic sphere model, giving evidence for a fast screening of the 4f core holes. By comparing the present work with previous 5d and valence region data, the paper presents a comprehensive overview of the energetics of lead clusters, from atoms to bulk. Special care is taken to discuss the differences of the valence- and core-level anion cluster photoionizations. Whereas in the valence case the escaping photoelectron interacts with a neutral system near its ground state, core-level ionization leads to transiently highly excited neutral clusters. Thus, the photoelectron signal might carry information on the relaxation dynamics. (paper)

  10. Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold–phosphine cluster complex as the gold precursor

    International Nuclear Information System (INIS)

    The use of a molecular gold organometallic cluster in chemical vapour deposition is reported, and it is utilized, together with a tungsten oxide precursor, for the single-step co-deposition of (nanostructured) tungsten oxide supported gold nanoparticles (NPs). The deposited gold-NP and tungsten oxide supported gold-NP are highly active catalysts for benzyl alcohol oxidation; both show higher activity than SiO2 supported gold-NP synthesized via a solution-phase method, and tungsten oxide supported gold-NP show excellent selectivity for conversion to benzaldehyde. (paper)

  11. Theoretical study of the thermally induced structural fluctuations in sub-nanometre size gold clusters

    Science.gov (United States)

    Cabrera-Trujillo, José Manuel; Martín Montejano-Carrizales, Juan; Aguilera-Granja, Faustino; Posada-Amarillas, Álvaro

    2015-07-01

    A reactive potential model and the classical molecular dynamics method (RMD) have been used to study the structure and energetics of sub-nanometre size gold clusters through well-known structural models reported in the literature for AuN, with N = 19, 20 and 21 atoms. After several simulated-annealing simulations for temperatures up to 1500 K, the AuN clusters clearly evolve to well-defined structures at room temperature. For the studied gold clusters, the low-lying structures are single- and double-icosahedra with mobile atoms on the surface, in agreement with experimental results on sub-nanometre size gold clusters exhibiting shape oscillations at room temperature and also with those involved in the design of molecules based on gold superatoms [J.-I. Nishigaki, K. Koyasu, T. Tsukuda, Chem. Rec. 14, 897 (2014)]. The evolution of the structural stability of the AuN clusters under exceptional thermal conditions is analysed by comparing the size and temperature variations of the centrosymmetry parameter and the potential energy. A key understanding of the various possible structural changes undergone by these tiny particles is thus developed. The usefulness of the RMD to study nanometre or sub-nanometre size gold clusters is shown.

  12. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  13. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    International Nuclear Information System (INIS)

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters

  14. Femtosecond-laser photoemission and photodesorption from magnesia supported gold clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vaida, Mihai E.; Gleitsmann, Tobias; Tchitnga, Robert; Bernhardt, Thorsten M. [Institute of Surface Chemistry and Catalysis, University of Ulm (Germany)

    2010-05-15

    Nanosize gold clusters were grown by thermal evaporation on ultrathin magnesia films on Mo(100) and investigated by femtosecond (fs)-laser photoemission spectroscopy. The surface work function in this system was found to increase with increasing nominal gold coverage. Methyl bromide (CH{sub 3}Br) molecules adsorb molecularly on the magnesia surface as well as on the gold clusters. At sub-monolayer coverage the CH{sub 3}Br molecules were, however, considerably stronger bound to the gold particles than to the magnesia surface as revealed by temperature programmed desorption spectroscopy. To investigate the photoreaction dynamics of the adsorbate molecules fs-laser pump-probe mass spectrometry was applied. In this new approach the methyl fragment appearance was monitored after photoexcitation of the adsorbed CH{sub 3}Br with fs time resolution. The transient methyl data revealed that the CH{sub 3}Br dissociation and subsequent methyl desorption proceeded in less than one picosecond. Most interestingly, a part of the transient signal could be unambiguously assigned to the dynamics of methyl desorption from the gold clusters. The appearance of this signal at about 270 fs after photoexcitation illustrates the massive distortion of the CH{sub 3}Br electronic level structure due to the strong interaction with the gold clusters compared to the bare magnesia surface. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pd ( = 1-6) clusters

    Indian Academy of Sciences (India)

    Shamoon Ahmad Siddiqui; Nadir Bouarissa

    2013-11-01

    Density functional theory (DFT)-based calculations have been performed so as to study the interaction of elemental mercury (Hg) with small neutral, cationic and anionic palladium clusters (Pd, = 1-6). Results of these calculations clearly indicate that frontier molecular orbital (FMO) theory is a useful method to predict the selectivity of Hg adsorption. Binding energies of Hg on cationic Pd clusters are generally found to be greater than those on neutral and anionic clusters. Results of natural bond orbital (NBO) analysis show that the flow of electrons in the neutral and charged complexes is mainly due to s orbitals of Hg. NBO analysis also indicates that, in most of the cases, the binding energies of Hg with Pdn clusters are directly proportional to charge transfer, i.e., greater the charge transfer, higher is the binding energy.

  16. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  17. Optical absorption by magnesia-supported gold clusters and nanocatalysts: effects from the support, cluster and adsorbants

    CERN Document Server

    Walter, M; Walter, Michael; H\\"akkinen, Hannu

    2005-01-01

    Polarization-resolved optical spectra of magnesia-supported gold clusters Au$_N$/MgO (N=1,2,4,8), bound at a surface color center $F_s$ of the MgO(100) face, are calculated from the time-dependent density functional theory. The optical lines for n=1,2 are dominated by transitions that involve strong hybridization between gold and $F_s$ states whereas for n=4,8 intracluster transitions dominate. The theoretical optical spectra are sensitive to cluster structure and adsorbants (here CO and O$_2$ molecules on Au$_8$/MgO) which suggests polarization-resolved optical spectroscopy as a powerful tool to investigate structures and functions of chemically active, supported clusters.

  18. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    Science.gov (United States)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  19. Sputtering of clusters from copper-gold alloys

    International Nuclear Information System (INIS)

    Polycrystalline Cu, Cu20Au80, Cu40Au60, Cu80Au20 and Au samples were bombarded with 15 keV Ar+, and the resulting secondary neutral yield distribution was studied by non-resonant laser post-ionisation mass spectrometry. Neutral clusters containing up to 15 atoms were observed for the targets. The yield of neutral clusters, CumAun-m, containing n atoms, Yn, was found to follow a power in n, i.e. Yn∝n-δ, where the exponent δ varied from 5.2 to 10.1. For a fixed n, the cluster yields showed a variation with number of copper atoms, m, much greater than expected for a binomial distribution suggesting that the clusters are not formed randomly above the surface and a component of preformed cluster emission occurs. In addition, the cluster compositions from the sputtered alloys were indicative of sputtering from a copper rich surface.

  20. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    Science.gov (United States)

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  1. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    Science.gov (United States)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  2. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O)n- and (NH3)n-

    International Nuclear Information System (INIS)

    The photodetachment spectra of (H2O)-n=2-69 and (NH3)-n=41-1100 have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n-1/3, extrapolating to a VDE (n = ∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons. (orig.)

  3. An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster.

    Science.gov (United States)

    Nair, Lakshmi V; Nair, Resmi V; Jayasree, Ramapurath S

    2016-07-28

    In this study, gold quantum clusters with distinct fluorescence properties were developed and their structural and physical behaviour was evaluated. The clusters were prepared by etching gold nanoparticles with glutathione. Three different Au33 clusters with emission profiles in the NIR region and one blue emitting cluster, Au8 were developed by varying the geometrical arrangement of atoms within the cluster. These clusters having sizes in the range of 0.7 to 2 nm were synthesized by choosing different reaction temperatures from 0 °C to 70 °C and pH between 1.5 and 10. In the three cases, formation of self assembled atoms within the cluster and the corresponding changes in optical properties were observed. A detailed evaluation of the number of atoms and the core-ligand ratio using MALDI-MS and a change in the binding energy as seen in the XPS study confirmed this finding. The study demonstrates that the self assembly of atoms and their arrangement is an important factor in determining the characteristics of the cluster. In this communication, we put forward a new concept where the number of atoms and their arrangement within the clusters play a crucial role in tuning their optical properties. PMID:27356966

  4. Anion-, Solvent-, Temperature-, and Mechano-Responsive Photoluminescence in Gold(I) Diphosphine-Based Dimers.

    Science.gov (United States)

    Deák, Andrea; Jobbágy, Csaba; Marsi, Gábor; Molnár, Miklós; Szakács, Zoltán; Baranyai, Péter

    2015-08-01

    A series of [Au2 (nixantphos)2](X)2 (nixantphos=4,6-bis(diphenylphosphino)-phenoxazine; X=NO3, 1; CF3 COO, 2; CF3 SO3, 3; [Au(CN)2], 4; and BF4, 5) complexes that exhibit intriguing anion-switchable and stimuli-responsive luminescent photophysical properties have been synthesized and characterized. Depending on their anions, these complexes display yellow (3), orange (4 and 5), and red (1 and 2) emission colors. They exhibit reversible thermo-, mechano-, and vapochromic luminescence changes readily perceivable by the naked eye. Single-crystal X-ray studies show that the [Au2 (nixantphos)2](2+) cations with short intramolecular Au⋅⋅⋅Au interactions are involved as donors in an infinite N-H⋅⋅⋅X (X=O and N) hydrogen-bonded chain formation with CF3 COO(-) (2 C) and aurophilically linked [Au(CN)2](-) counterions (4 C). Both crystals show thermochromic luminescence; their room temperature red (2 C) and orange (4 C) emission turns into yellow upon cooling to 77 K. They also exhibit reversible mechanochromic luminescence by changing their emission color from red to dark (2 C), and orange to red (4 C). Compounds 1-5 also display reversible mechanochromic luminescence, altering their emission colors between orange (1) or red (2) to dark, as well as between yellow (3) or orange (4 and 5) to red. Detailed photophysical investigations and correlation with solid-state structural data established the significant role of NH⋅⋅⋅X interactions in the stimuli-responsive luminescent behavior. PMID:26119910

  5. Preparation of multi-coloured different sized fluorescent gold clusters from blue to NIR, structural analysis of the blue emitting Au7 cluster, and cell-imaging by the NIR gold cluster

    Science.gov (United States)

    Roy, Subhasish; Baral, Abhishek; Bhattacharjee, Rameswar; Jana, Batakrishna; Datta, Ayan; Ghosh, Surajit; Banerjee, Arindam

    2015-01-01

    Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several structural parameters, including the mode of interaction of ligand molecules with Au atoms in the Au7 cluster. Interestingly, it has been found that NIR emitting gold quantum cluster can easily be internalized into the adenocarcinomic human alveolar basal epithelial cell line (A549 cell line). Moreover, a MTT assay indicates that our NIR emitting gold quantum cluster show very low cytotoxicy to A549 cancer cells.Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several

  6. Structures, stabilities, and electronic properties for rare-earth lanthanum doped gold clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ya-Ru [Baoji University of Arts and Sciences (China). Dept. of Physics and Information Technology

    2015-07-01

    The structures, stabilities, and electronic properties of rare-earth lanthanum doped gold La{sub 2}Au{sub n} (n = 1-9) and pure gold Au{sub n} (n ≤ 11) clusters have been investigated by using density functional theory. The optimized geometries show that the lowest energy structures of La{sub 2}Au{sub n} clusters favour the 3D structure at n ≥ 3. The lanthanum atoms can strongly enhance the stabilities of gold clusters and tend to occupy the most highly coordinated position. By analysing the gap, vertical ionization potential, and chemical hardness, it is found that the La{sub 2}Au{sub 6} isomer possesses higher stability for small-sized La{sub 2}Au{sub n} clusters (n = 1-9). The charges in the La{sub 2}Au{sub n} clusters transfer from La atoms to the Au{sub n} host. In addition, Wiberg bond indices analysis reveals that the intensity of different bonds of La{sub 2}Au{sub n} clusters exhibits a sequence of La-La bond > La-Au bond > Au-Au bond.

  7. The RedGOLD cluster detection algorithm and its cluster candidate catalogue for the CFHT-LS W1

    Science.gov (United States)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik

    2016-01-01

    We present RedGOLD (Red-sequence Galaxy Overdensity cLuster Detector), a new optical/NIR galaxy cluster detection algorithm, and apply it to the CFHT-LS W1 field. RedGOLD searches for red-sequence galaxy overdensities while minimizing contamination from dusty star-forming galaxies. It imposes an Navarro-Frenk-White profile and calculates cluster detection significance and richness. We optimize these latter two parameters using both simulations and X-ray-detected cluster catalogues, and obtain a catalogue ˜80 per cent pure up to z ˜ 1, and ˜100 per cent (˜70 per cent) complete at z ≤ 0.6 (z ≲ 1) for galaxy clusters with M ≳ 1014 M⊙ at the CFHT-LS Wide depth. In the CFHT-LS W1, we detect 11 cluster candidates per deg2 out to z ˜ 1.1. When we optimize both completeness and purity, RedGOLD obtains a cluster catalogue with higher completeness and purity than other public catalogues, obtained using CFHT-LS W1 observations, for M ≳ 1014 M⊙. We use X-ray-detected cluster samples to extend the study of the X-ray temperature-optical richness relation to a lower mass threshold, and find a mass scatter at fixed richness of σlnM|λ = 0.39 ± 0.07 and σlnM|λ = 0.30 ± 0.13 for the Gozaliasl et al. and Mehrtens et al. samples. When considering similar mass ranges as previous work, we recover a smaller scatter in mass at fixed richness. We recover 93 per cent of the redMaPPer detections, and find that its richness estimates is on average ˜40-50 per cent larger than ours at z > 0.3. RedGOLD recovers X-ray cluster spectroscopic redshifts at better than 5 per cent up to z ˜ 1, and the centres within a few tens of arcseconds.

  8. Gold-cluster ranges in aluminium, silicon and copper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H.H. E-mail: nimb@fys.ku.dk; Johansen, A.; Olsen, M.; Touboltsev, V

    2003-12-01

    Single atom Au and Au{sub 2}, Au{sub 3} and Au{sub 7} clusters with energies of 10-100 keV/atom have been implanted at low fluence into Al, Si and Cu targets, the Au{sub 7} clusters only at 44.3 keV/atom into Si. The range distributions were analyzed by oblique (15 deg. ) incidence RBS. In no case was the range found to be different for the cluster implant from that of the atomic implant at equal velocity, implying the nuclear stopping to be identical, but the 10 keV/atom implant in Cu showed the cluster distributions to be substantially broader than those of the atomic implants. The energies were thus too high to observe a possible 'clearing the way' effect, but the Cu results hint at a 'within spike' diffusion mechanism.

  9. Moessbauer studies of non-linear excitations and gold cluster compounds

    International Nuclear Information System (INIS)

    Moessbauer effect spectroscopy has been applied to the study of three polynuclear gold cluster compounds. The resulting information on the local vibrational density of states has been compared to several models which take the finite size of the particles into consideration. 188 refs.; 34 figs.; 103 schemes; 8 tabs

  10. Sputtering of clusters from copper-gold alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, B.V. [University of Newcastle, School of Mathematical and Physical Sciences, Callaghan 2308, NSW (Australia)], E-mail: bruce.king@newcastle.edu.au; Moore, J.F. [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States); MassThink LLC, Naperville, IL 60565 (United States); Zinoviev, A.V.; Veryovkin, I.V.; Pellin, M.J. [Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2009-08-15

    Polycrystalline Cu, Cu{sub 20}Au{sub 80}, Cu{sub 40}Au{sub 60}, Cu{sub 80}Au{sub 20} and Au samples were bombarded with 15 keV Ar{sup +}, and the resulting secondary neutral yield distribution was studied by non-resonant laser post-ionisation mass spectrometry. Neutral clusters containing up to 15 atoms were observed for the targets. The yield of neutral clusters, Cu{sub m}Au{sub n-m}, containing n atoms, Y{sub n}, was found to follow a power in n, i.e. Y{sub n}{proportional_to}n{sup -{delta}}, where the exponent {delta} varied from 5.2 to 10.1. For a fixed n, the cluster yields showed a variation with number of copper atoms, m, much greater than expected for a binomial distribution suggesting that the clusters are not formed randomly above the surface and a component of preformed cluster emission occurs. In addition, the cluster compositions from the sputtered alloys were indicative of sputtering from a copper rich surface.

  11. Exploration of the electrophoretic behaviour of borane cluster anions and of the capability of capillary electrophoresis to separate them chirally.

    Science.gov (United States)

    Slavícek, Viktor; Grüner, Bohumír; Vespalec, Radim

    2003-01-10

    Mobilities of investigated boron cluster compounds in 3-(N-morpholino)propanesulfonic and phosphate buffers adjusted to pH 7 either with sodium hydroxide or with tris(hydroxymethyl)aminomethane depend on both buffer ions. The zone width and zone asymmetry, which are usually markedly higher than those of organic or common inorganic ions of comparable size, depend on the type of the borane cluster anion. Unusual shapes of zones of two investigated compounds have been found in tris phosphate buffer. Acetonitrile was superior to methanol as an organic additive to separation systems from the viewpoint of the zone symmetry and separation speed. Narrow trigonal zones, typical of organic ions non-interacting with the capillary wall, have been observed for some bridged sandwich cobalt complexes in run buffers with the addition of acetonitrile. The interaction of borane cluster anions with beta-cyclodextrin cavity is excessively strong in purely aqueous solutions. Methanol and acetonitrile, which generally weaken the interaction, sometimes affect the separation enantioselectivity of various compounds in different ways in addition to the weakening effect. Chiral discrimination was reached for all ten investigated anions, which belong to four different structural types of cluster boranes. Stability constants estimated for some analyte-beta-cyclodextrin complexes range between 100 and 1800 l/mol in acceptable separations. The relative difference of the constants was from 3 to 20%. PMID:12564682

  12. Theoretical Investigations of Nonlinear Optical Properties of Transition Metal Cluster Anions

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; SA Rong-Jian; MANG Chao-Yong; LI Qiao-Hong; LI Fu-Jun; WU Ke-Chen

    2008-01-01

    In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuelear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]2-(M = Mo, W; Ch = S, Se; M' = Cu, Ag) have been systemically investigated at both cases of gas phase and DMF solution. The obtained electronic absorption spectra reveal that the element replacements of metals M and ligands Ch have significant influence on the absorptions, especially on the low-lying ones. In addition, the transitions of μ-Ch→M are dominant for the low-lying excitations, whereas the transitions of M'→M as well as Ch→M are mainly responsible for the higher excitations. The calculated molecular first and second hyper- polarizabilities present the remarkable element substitution and solvent effects. The analyses show that the transitions involving μ-Ch→M charge transfer make the critical contributions to the first hyperpolarizability β, and that the charge transfers from the moieties of MCh4 to M'CN as well as those of β-Ch→M and M'→M are responsible for the second hyperpolarizability γ. Moreover, the introduction of solvent leads to the results that the transitions within the moieties of MCh4 and M'CN make larger contributions to the hyperpolafizability, especially to γ.

  13. Immunosorbent assay using gold colloid cluster technology for determination of IgEs in patients’ sera

    Directory of Open Access Journals (Sweden)

    Haifa Al-Dubai

    2010-10-01

    Full Text Available Haifa Al-Dubai1, Irene Lichtscheidl2, Martina Strobl1, Gisela Pittner1, Fritz Pittner11Department of Biochemistry, Max F Perutz Laboratories, University of Vienna, Vienna, Austria; 2Institute of Cell Imaging and Ultrastructure Research, Vienna, AustriaAbstract: This study focuses on the development of a sensitive and simple cluster-linked immunosorbent assay (CLISA using gold colloidal cluster labeling for determination of proteins such as antigens (Ags or antibodies (Abs. Abs for detection can be labeled with gold colloid clusters (GCCs. The Fc domain of the Abs binds to the clusters, and the Fab domain to the Ag on a nitrocellulose membrane or a microtiter plate as a support for dot-blotting. The signal of positive interaction between GCC-labeled Abs and its dotted Ag is detectable by the naked eye and can be quantified by comparison to a color scale prepared from a dilution series of known sample concentrations. The colored reaction product is stable for prolonged periods and does not fade, making this method a simple, fast, and convenient means for detection of Ag or Ab biorecognitions and an alternative to enzyme-linked immunosorbent assay. Several interactions between different Ags or Abs (eg, ß-lactoglobulin and solutions avoiding gold colloidal cluster flocculation (eg, using protein G were studied. CLISA was tested for other analytical purposes such as detection of IgEs in patients’ sera.Keywords: ELISA, allergen, patient sera, CLISA, immunoassay, ß-lactoglobulin

  14. Magnetic Moments of Chromium-Doped Gold Clusters: The Anderson Impurity Model in Finite Systems

    CERN Document Server

    Hirsch, K; Langenberg, A; Niemeyer, M; Langbehn, B; Möller, T; Terasaki, A; Issendorff, B v; Lau, J T

    2013-01-01

    The magnetic moment of a single impurity atom in a finite free electron gas is studied in a combined x-ray magnetic circular dichroism spectroscopy and density functional theory study of size-selected free chromium-doped gold clusters. The observed size-dependence of the local magnetic moment can essentially be understood in terms of the Anderson impurity model. Electronic shell closure in the host metal minimizes the interaction of localized impurity states with the confined free electron gas and preserves the full magnetic moment of $\\unit[5]{\\mu_B}$ in $\\mathrm{CrAu}_{2}^{+}$ and $\\mathrm{CrAu}_{6}^{+}$ clusters. Even for open-shell species, large local moments are observed that scale with the energy gap of the gold cluster. This indicates that an energy gap in the free electron gas generally stabilizes the local magnetic moment of the impurity.

  15. Photoelectron anisotropy and channel branching ratios in the detachment of solvated iodide cluster anions

    International Nuclear Information System (INIS)

    Photoelectron spectra and angular distributions in 267 nm detachment of the I-·Ar, I-·H2O, I-·CH3I, and I-·CH3CN cluster anions are examined in comparison with bare I- using velocity-map photoelectron imaging. In all cases, features are observed that correlate to two channels producing either I(2P3/2) or I(2P1/2). In the photodetachment of I- and I-·Ar, the branching ratios of the 2P1/2 and 2P3/2 channels are observed to be ≅0.4, in both cases falling short of the statistical ratio of 0.5. For I-·H2O and I-·CH3I, the 2P1/2 to 2P3/2 branching ratios are greater by a factor of 1.6 compared to the bare iodide case. The relative enhancement of the 2P1/2 channel is attributed to dipole effects on the final-state continuum wave function in the presence of polar solvents. For I-·CH3CN the 2P1/2 to 2P3/2 ratio falls again, most likely due to the proximity of the detachment threshold in the excited spin-orbit channel. The photoelectron angular distributions in the photodetachment of I-, I-·Ar, I-·H2O, and I-·CH3CN are understood within the framework of direct detachment from I-. Hence, the corresponding anisotropy parameters are modeled using variants of the Cooper-Zare central-potential model for atomic-anion photodetachment. In contrast, I-·CH3I yields nearly isotropic photoelectron angular distributions in both detachment channels. The implications of this anomalous behavior are discussed with reference to alternative mechanisms, affording the solvent molecule an active role in the electron ejection process

  16. Growth of fluorescence gold clusters using photo-chemically activated ligands

    Science.gov (United States)

    Mishra, Dinesh; Aldeek, Fadi; Michael, Serge; Palui, Goutam; Mattoussi, Hedi

    2016-03-01

    Ligands made of lipoic acid (LA) appended with a polyethylene glycol (PEG) chain have been used in the aqueous phase growth of luminescent gold clusters with distinct emission from yellow to near-IR, using two different routes. In the first route, the gold-ligand complex was chemically reduced using sodium borohydride in alkaline medium, which gave near- IR luminescent gold clusters with maximum emission around 745 nm. In the second method, LA-PEG ligand was photochemically modified to a mixture of thiols, oligomers and oxygenated species under UV-irradiation, which was then used as both reducing agent and stabilizing ligand. By adjusting the pH, temperature, and time of the reaction, we were able to obtain clusters with two distinct emission properties. Refluxing the gold-ligand complex in alkaline medium in the presence of excess ligand gave yellow emission within the first two hours and the emission shifted to red after overnight reaction. Mass spectrometry and chemical assay were used to understand the photo-chemical transformation of Lipoic Acid (LA). Mass spectroscopic studies showed the photo-irradiated product contains thiols, oligomers (dimers, trimers and tetramers) as well as oxygenated species. The amount of thiol formed under different conditions of irradiation was estimated using Ellman's assay.

  17. Geometries, stabilities, and electronic properties of Be-doped gold clusters: a density functional theory study

    International Nuclear Information System (INIS)

    We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, ..., 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd—even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4. (atomic and molecular physics)

  18. Geometries, stabilities, and electronic properties of Be-doped gold clusters: a density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Chen Dong-Dong; Kuang Xiao-Yu; Zhao Ya-Ru; Shao Peng; Li Yan-Fang

    2011-01-01

    We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, ..., 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation,manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.

  19. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  20. Peptide protected gold clusters: chemical synthesis and biomedical applications

    Science.gov (United States)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  1. High-resolution studies of (SF6)q− (q = 1–3) cluster anion formation in low-energy electron collisions with (SF6)N clusters (N ≥ 2)

    International Nuclear Information System (INIS)

    Using two variants of the laser photoelectron attachment method, we have investigated the formation of cluster anions in low-energy electron attachment (E = 2–700 meV) to molecular clusters of sulfurhexafluoride (SF6) at high electron energy resolution (energy width ≤20 meV). Only homogeneous cluster anions (SF6)q− (q ≥ 1) are found with energy dependences which monotonically decrease towards higher electron energies E in a way which somewhat varies with q. Photodissociation of neutral clusters (SF6)N (N ≥ 2), transversely excited by lines of a continuous CO2 laser (920–980 cm−1) at intensities up to about 250 W cm−2, yields information on the size N of the neutral clusters from which the detected (SF6)q− (q = 1–4) anions are formed by electron capture and evaporative processes. For each q, the effective precursor size 〈N〉q of the neutral cluster is larger than q by at least 2. By comparing the experimental yields for anion formation with Vogt–Wannier cross sections for the primary electron capture step, information is obtained on the energy-dependent probability for the evaporative stabilization of the initial temporary anion (SF6)N−*, thus yielding the detected cluster anion (SF6)q− (q 6)N (N = 1–4) clusters, using a multi-centre zero-range potential method (E = 1–200 meV) and adopting simple cluster structures. (paper)

  2. Gold

    International Nuclear Information System (INIS)

    Present article is devoted to gold content in fluorite. In order to obtain the comprehensive view on gold distribution in fluorite the fluorite formations of various geologic deposits and ores of Kazakhstan, Uzbekistan, Tajikistan, Mongolia, Moldova and some geologic deposits of Russia were studied. The gold content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  3. Non-linear sputtering effects induced by MeV energy gold clusters

    International Nuclear Information System (INIS)

    Gold clusters Aun+ with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab

  4. Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2011-01-01

    This chapter has two main objectives. First, to review a number of examples illustrating the application of the FDTD approach to the modeling of some typical light scattering configurations that could be associated with flow cytometry. Second, to provide a thorough discussion of these new develop...... from OPCM imaging of single biological cells in conditions of controlled refractive index matching (RIM) and labeling by diffused and clustered gold NPs. The chapter concludes with a discussion and suggestions for future research....

  5. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry

    Science.gov (United States)

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-01

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1+ cations and TinO2n- anions were predominantly observed at high injection energies, in addition to TinO2n+ for cations and TinO2n+1- for anions. Collision cross sections of TinO2n+ and TinO2n+1- for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n+ and TinO2n+1- by collisions were also explained by analysis of spin density distributions.

  6. Two Types of Mass Abundance Distributions for Anionic Carbon Clusters Investigated by Laser Vaporization and Pulsed Molecular Beam Techniques

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hua-Jin; LIU Bing-Chen; NI Guo-Quan; XUZhi-Zhan

    2000-01-01

    Two types of mass spectra for anionic carbon clusters Cn- have been revealed using laser vaporization and pulsed molecular beam techniques. The less structured mass spectrum characteristic of the magic-numbers at n = 5, 8,11, 15, and 17 is established at the early stage of the cluster formation process, namely, in the laser vaporization process. The more structured one is featured for a regular odd-even alternation and the magic numbers at n =10, 12, 16, 18, 22, and 28, and has been developed only after extensive clustering and qnenching processes, where low-energy electron attachment plays a vital role. Transition between these two types of mass spectra can be realized by controlling either the strength of the pulsed gas flow or the synchronism between the gas flow and the laser vaporization.

  7. Molybdenum iodide cluster anion Mo4I112-. A new cluster type structurally related to the Mo6I84+ octahedral cluster

    International Nuclear Information System (INIS)

    Crystalline [(n-Bu)4N]2Mo4I11 has been prepared in high yield. Synthesis is described elsewhere. From data obtained at -750C with MoK α-radiation, the cell parameters are a = 19.99(3), b = 12.49(3), c = 23.67(2)A; α = 89.89(6), β = 105.80(5), and γ = 90.27(8)A; z = 4, P1-. The structure is described from two perspectives. (1) It is viewed as a severely distorted tetrahedral cluster of molybdenum atoms bridged on two faces by triply bridging iodine atoms, and on five edges by doubly bridging iodine atoms. The coordination sphere of each Mo atom is completed by one bond attached to a terminal I atom so that each metal atom attains the coordination number 8- by bonding to five I atoms and three Mo atoms. The anion has approximate C/sub 2v/ symmetry. Bond lengths and bond angles are included. (2) The structure may also be considered to be a fragment of the octahedral cluster Mo6X84+ by removing two adjacent Mo atoms from the Mo6 octahedron and one I atom from the I8 cube. The I atom remaining on the cube edge adjacent to the positions of the two removed Mo atoms is then shifted to the midpoint of that edge, and becomes the unique atom which bridges the long Mo-Mo bond. Bond lengths are compared with compounds which exhibit similar structure

  8. Non-linear optical properties of gold quantum clusters. The smaller the better.

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Vojkovic, Marin; Rayane, Driss; Salmon, Estelle; Jonin, Christian; Dugourd, Philippe; Antoine, Rodolphe; Brevet, Pierre-François

    2014-11-21

    By developing a new method for synthesizing atomically monodisperse Au15 nanoclusters stabilized with glutathione molecules and using the current state-of-the-art methods for synthesizing monodisperse protected Au25 nanoclusters, we investigated their nonlinear optical (NLO) properties after two-photon absorption. The two-photon emission spectra and the first hyperpolarizabilities of these particles were obtained using, in particular, a hyper-Rayleigh scattering technique. The influence on NLO of the excitation wavelength, the size as well as the nature of the ligands is also explored and discussed. Au15, the smallest stable thiolated gold nanocluster, presents remarkable nonlinear properties with respect to two-photon processes. The two-photon absorption cross-section at 780 nm for Au15 is ∼65,700 GM. This experimental cross-section value points to a quantum yield for two-photon emission of about 3 × 10(-7) at 475 nm for Au15. The first hyperpolarizability β for Au15 clusters (509 × 10(-30) esu), as compared to Au25 clusters (128 × 10(-30) esu), is larger considering the difference in the number of gold atoms. Also, 10(30) β per atom values reported for Au15 and Au25 clusters are more than two orders of magnitude larger than the values reported for Au NPs in the size range 10-50 nm, outlining the quantum cluster regime. PMID:25268982

  9. Interaction of small vacancy clusters with (1 1 4) twin-boundary in gold

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Fayyaz [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63120 (Pakistan); Hayat, Sardar Sikandar, E-mail: sikandariub@yahoo.co [Department of Physics and Astronomy, Hazara University, Mansehra 21300 (Pakistan); Imran, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63120 (Pakistan)

    2011-03-01

    The molecular dynamics simulation technique with many-body and semi-empirical potentials is used to calculate the (1 1 4) twin-boundary in gold at different temperatures. Relaxations are found on both sides of the interface with the same magnitude and the phenomenon of coalescence is observed near the interface. The interactions of single-, di- and tri-vacancies with twin-interface at 300 K on mirror and off-mirror sites are calculated. Off-mirror arrangements are favorable for all vacancy clusters, except for the single-vacancy cluster, which is less repulsive on the mirror site. Vacancy clusters energetically prefer to lie at planes closest to the (1 1 4) interface rather than away from it. The effect of temperature on interaction behavior is also calculated.

  10. Electrical properties of thin YBa2Cu3O7-x films with embedded gold nano clusters

    International Nuclear Information System (INIS)

    High temperature superconducting devices such as magnetometers or gradiometers are usually made from a single thin film, although each part of the device needs to fulfill special requirements. These are for example a low flux noise in antenna structures and a low contact resistance to the bonding pads. These requirements can be achieved by embedding gold nano clusters in thin films of YBa2Cu3O7-x (YBCO), since they can act as flux pinning centers and they increase contact area to the film. We present studies on the formation of gold nano clusters during the pulsed laser deposition of thin YBCO films in dependence on the gold film thickness. We verified the high crystalline quality of the films by measuring Rocking curve widths. Size and distribution of the gold clusters were determined from AFM measurements. We compare the superconducting and noise properties of bridge structures and gradiometers with devices made of conventional YBCO films

  11. Poly-anion production in Penning and RFQ ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Bandelow, Steffi; Martinez, Franklin; Marx, Gerrit; Schweikhard, Lutz [Institute for Physics, Ernst-Moritz-Arndt University, 17487 Greifswald (Germany)

    2014-07-01

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Au{sup n-1}, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  12. Poly-anion production in Penning and RFQ ion traps

    International Nuclear Information System (INIS)

    The poly-anion production is being investigated in Penning and linear radio-frequency quadrupole (RFQ) traps at the ClusterTrap setup. The range of anionic charge states produced with the electron-bath technique in a Penning trap is restricted by the upper mass limit of this trap. By installation of a cylindrical Penning trap with a 12-Tesla superconducting magnet, the mass and thus cluster-size range is enhanced by a factor of 20 compared to the previously used hyperbolic 5-Tesla Penning trap. For first experimental tests with the 12-Tesla cylindrical Penning trap, gold cluster mono-anions Aun-1, n=330-350, have been exposed to an electron bath. As a result, higher negative charge states up to hexa-anionic clusters have been observed for the first time. In a parallel effort, di- and tri-anionic gold clusters have been produced in an RFQ-trap. To this end, an electron beam is guided through the RFQ-trap, which is operated by 2- or 3-state digital driving voltages. In addition, both polyanion-production techniques have been combined by pre-charging clusters in the RFQ-trap, transferring the resulting dianions into the Penning trap and applying the electron-bath technique to produce higher charge states.

  13. Elucidation of the Au-S bond in a passivated gold cluster through density functional theory calculations (abstract only)

    International Nuclear Information System (INIS)

    Gold clusters are of increasing interest due to a number of already established as well as new potential applications in different fields of nanotechnology. The use of gold nanoparticles can be significantly extended by surface modifications, sulfidation being the most popular. The identifications of preferred adsorption geometries, bond formation, and binding energies are helpful tools for understanding the properties of these particles. This study is focused on a 38-atom gold cluster passivated with 3-hydroxypropanthiolate linkers. Starting from the re-optimized global minimum structure of a bare 38-atom gold cluster (Doye and Wales 1998 New J. Chem. 22 733-44) and aiming at a description of the passivated particle, density functional theory calculations (within the framework of the Amsterdam density functional calculation package ADF 2006.01 (ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com)) were performed at the level of the generalized gradient approximation of Perdew and Wang from 1991, with triple-zeta Slater basis sets plus p- and f-polarization functions (TZ2P) for the 33 outermost electrons of each gold atom, and considering scalar relativistic effects. Using this methodology, the space around the gold cluster (with the distance of the S of the thiolate from the gold cluster surface in the range 2.3-2.6 A) was examined to identify the most favourable absorption site for the thiolate linker. As a result, a 3D map was created and low energy areas corresponding to the potentially most favourable site for one 3-hydroxypropanthiolate linker on the gold cluster localized. Structures representing these areas were further optimized and consequently analysed using Mulliken population analysis to compare charge distribution over the tested structures, Mayer bond order analysis, as well as electron localization function/indicator bond formation analysis. The results obtained will be presented in comparison

  14. Elucidation of the Au-S bond in a passivated gold cluster through density functional theory calculations (abstract only)

    Energy Technology Data Exchange (ETDEWEB)

    Sihelnikova, L; Tvaroska, I [Institute of Chemistry, Slovak Academy of Sciences, Bratislava (Slovakia)

    2008-02-13

    Gold clusters are of increasing interest due to a number of already established as well as new potential applications in different fields of nanotechnology. The use of gold nanoparticles can be significantly extended by surface modifications, sulfidation being the most popular. The identifications of preferred adsorption geometries, bond formation, and binding energies are helpful tools for understanding the properties of these particles. This study is focused on a 38-atom gold cluster passivated with 3-hydroxypropanthiolate linkers. Starting from the re-optimized global minimum structure of a bare 38-atom gold cluster (Doye and Wales 1998 New J. Chem. 22 733-44) and aiming at a description of the passivated particle, density functional theory calculations (within the framework of the Amsterdam density functional calculation package ADF 2006.01 (ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com)) were performed at the level of the generalized gradient approximation of Perdew and Wang from 1991, with triple-zeta Slater basis sets plus p- and f-polarization functions (TZ2P) for the 33 outermost electrons of each gold atom, and considering scalar relativistic effects. Using this methodology, the space around the gold cluster (with the distance of the S of the thiolate from the gold cluster surface in the range 2.3-2.6 A) was examined to identify the most favourable absorption site for the thiolate linker. As a result, a 3D map was created and low energy areas corresponding to the potentially most favourable site for one 3-hydroxypropanthiolate linker on the gold cluster localized. Structures representing these areas were further optimized and consequently analysed using Mulliken population analysis to compare charge distribution over the tested structures, Mayer bond order analysis, as well as electron localization function/indicator bond formation analysis. The results obtained will be presented in comparison

  15. Elucidation of the Au S bond in a passivated gold cluster through density functional theory calculations (abstract only)

    Science.gov (United States)

    Sihelniková, L.; Tvaroška, I.

    2008-02-01

    Gold clusters are of increasing interest due to a number of already established as well as new potential applications in different fields of nanotechnology. The use of gold nanoparticles can be significantly extended by surface modifications, sulfidation being the most popular. The identifications of preferred adsorption geometries, bond formation, and binding energies are helpful tools for understanding the properties of these particles. This study is focused on a 38-atom gold cluster passivated with 3-hydroxypropanthiolate linkers. Starting from the re-optimized global minimum structure of a bare 38-atom gold cluster (Doye and Wales 1998 New J. Chem. 22 733-44) and aiming at a description of the passivated particle, density functional theory calculations (within the framework of the Amsterdam density functional calculation package ADF 2006.01 (ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com)) were performed at the level of the generalized gradient approximation of Perdew and Wang from 1991, with triple-zeta Slater basis sets plus p- and f-polarization functions (TZ2P) for the 33 outermost electrons of each gold atom, and considering scalar relativistic effects. Using this methodology, the space around the gold cluster (with the distance of the S of the thiolate from the gold cluster surface in the range 2.3-2.6 Å) was examined to identify the most favourable absorption site for the thiolate linker. As a result, a 3D map was created and low energy areas corresponding to the potentially most favourable site for one 3-hydroxypropanthiolate linker on the gold cluster localized. Structures representing these areas were further optimized and consequently analysed using Mulliken population analysis to compare charge distribution over the tested structures, Mayer bond order analysis, as well as electron localization function/indicator bond formation analysis. The results obtained will be presented in comparison

  16. Elucidation of the Au-S bond in a passivated gold cluster through density functional theory calculations (abstract only).

    Science.gov (United States)

    Sihelniková, L; Tvaroška, I

    2008-02-13

    Gold clusters are of increasing interest due to a number of already established as well as new potential applications in different fields of nanotechnology. The use of gold nanoparticles can be significantly extended by surface modifications, sulfidation being the most popular. The identifications of preferred adsorption geometries, bond formation, and binding energies are helpful tools for understanding the properties of these particles. This study is focused on a 38-atom gold cluster passivated with 3-hydroxypropanthiolate linkers. Starting from the re-optimized global minimum structure of a bare 38-atom gold cluster (Doye and Wales 1998 New J. Chem. 22 733-44) and aiming at a description of the passivated particle, density functional theory calculations (within the framework of the Amsterdam density functional calculation package ADF 2006.01 (ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com)) were performed at the level of the generalized gradient approximation of Perdew and Wang from 1991, with triple-zeta Slater basis sets plus p- and f-polarization functions (TZ2P) for the 33 outermost electrons of each gold atom, and considering scalar relativistic effects. Using this methodology, the space around the gold cluster (with the distance of the S of the thiolate from the gold cluster surface in the range 2.3-2.6 Å) was examined to identify the most favourable absorption site for the thiolate linker. As a result, a 3D map was created and low energy areas corresponding to the potentially most favourable site for one 3-hydroxypropanthiolate linker on the gold cluster localized. Structures representing these areas were further optimized and consequently analysed using Mulliken population analysis to compare charge distribution over the tested structures, Mayer bond order analysis, as well as electron localization function/indicator bond formation analysis. The results obtained will be presented in

  17. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET

    Science.gov (United States)

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Verma, Pramod Kumar; Pal, Samir Kumar; Pradeep, Thalappil

    2010-12-01

    We report the synthesis of highly luminescent, water soluble quantum clusters (QCs) of gold, which are stabilized by an iron binding transferrin family protein, lactoferrin (Lf). The synthesized AuQC@Lfclusters were characterized using UV-Visiblespectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence (PL), matrix assisted laser desorption ionizationmass spectrometry (MALDI-MS), FTIR spectroscopy and circular dichroism (CD) spectroscopy along with picosecond-resolved lifetime measurements. Detailed investigations with FTIR and CD spectroscopy have revealed changes in the secondary structure of the protein in the cluster. We have also studied Förster resonance energy transfer (FRET) occurring between the protein and the cluster. The ability of the clusters to sense cupric ions selectively at ppm concentrations was tested. The stability of clusters in widely varying pH conditions and their continued luminescence make it feasible for them to be used for intracellular imaging and molecular delivery, particularly in view of Lf protection.We report the synthesis of highly luminescent, water soluble quantum clusters (QCs) of gold, which are stabilized by an iron binding transferrin family protein, lactoferrin (Lf). The synthesized AuQC@Lfclusters were characterized using UV-Visiblespectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence (PL), matrix assisted laser desorption ionizationmass spectrometry (MALDI-MS), FTIR spectroscopy and circular dichroism (CD) spectroscopy along with picosecond-resolved lifetime measurements. Detailed investigations with FTIR and CD spectroscopy have revealed changes in the secondary structure of the protein in the cluster. We have also studied Förster resonance energy transfer (FRET) occurring between the protein and the cluster. The ability of the clusters to sense cupric ions selectively at ppm concentrations was tested. The

  18. Two highly proton-conductive molecular hybrids based on ionized water clusters and poly-Keggin-anion chains

    International Nuclear Information System (INIS)

    Two proton-conductive molecular hybrid complexes, {[Zn(H2O)8][H(H2O)2](HINO)4(PMo12O40)}n (1) and {[Mn(H2O)8][H(H2O)2.5](HINO)4(PMo12O40)}n (2), were constructed by introducing protonated water clusters, transition metal ionized water clusters and [PMo12O40]3- anions in the gallery of H-bonding networks based on isonicotinic acid N-oxide (HINO). Single-crystal X-ray diffraction analyses at 293 K revealed that both complexes presented exactly the same three-dimensional (3D) hydrogen-bonded networks with large one-dimensional (1D) channels. Interestingly, [PMo12O40]3- anions just filled in the 1D channels and self-assembled into poly-Keggin-anion chains. Thermogravimetric analyses both show no weight loss in the temperature range of 20-100 deg. C, indicating that all water molecules in the unit structure are not easily lost below 100 deg. C. Surprisingly, the proton conductivities of 1 and 2 in the temperature range of 85-100 deg. C under 98% RH conditions reached high proton conductivities of 10-3 S cm-1. A possible mechanism of the proton conduction was proposed according to the experimental results. - Graphical abstract: Two molecular hybrids constructed by ionized water clusters and poly-Keggin-anion chains showed high proton conductivities of 10-3 S cm-1 in the temperature range of 85-100 deg. C under 98% relative humidity. Highlights: → Proton conductors have interested us from the point of its applications in fuel cells. → Heteropolyacids have suitable characteristics to be used as excellent proton conductors. → Two new supramolecular complexes based on [PMo12O40]3- and isonicotinic acid N-oxide was constructed. → The structure was determined by using single-crystal X-ray diffraction data. → Both complexes showed good proton conductivities of 10-3 S cm-1 in the temperature range of 85-100 deg. C.

  19. Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates

    Science.gov (United States)

    Yamazoe, Seiji; Takano, Shinjiro; Kurashige, Wataru; Yokoyama, Toshihiko; Nitta, Kiyofumi; Negishi, Yuichi; Tsukuda, Tatsuya

    2016-01-01

    Unique thermal properties of metal clusters are believed to originate from the hierarchy of the bonding. However, an atomic-level understanding of how the bond stiffnesses are affected by the atomic packing of a metal cluster and the interfacial structure with the surrounding environment has not been attained to date. Here we elucidate the hierarchy in the bond stiffness in thiolate-protected, icosahedral-based gold clusters Au25(SC2H4Ph)18, Au38(SC2H4Ph)24 and Au144(SC2H4Ph)60 by analysing Au L3-edge extended X-ray absorption fine structure data. The Au-Au bonds have different stiffnesses depending on their lengths. The long Au-Au bonds, which are more flexible than those in the bulk metal, are located at the icosahedral-based gold core surface. The short Au-Au bonds, which are stiffer than those in the bulk metal, are mainly distributed along the radial direction and form a cyclic structural backbone with the rigid Au-SR oligomers.

  20. Influence of the photothermal effect of a gold nanorod cluster on biofilm disinfection

    International Nuclear Information System (INIS)

    We evaluate a method for biofilm disinfection by raising biofilm temperature using the photothermal effect of a gold nanorod cluster. Gold nanorods (GNRs) are capable of generating enough heat to lyse bacteria by heating biofilm via laser irradiation. To test this, GNRs are synthesized using wet chemistry and a single GNR cluster is fabricated using photo-lithography technique. The GNR cluster is directly applied to the biofilm and its effects on bacteria are measured before and after laser irradiation. The photothermal effect of GNRs on the biofilm structure results in a considerable reduction of cell viability and biofilm thickness. Several quantitative measurements of bacterial mortality and biofilm destruction show an increase in efficacy with increasing durations of laser irradiation. Scanning electron microscopy images of the irradiated bacteria show obvious morphological damage such as rupture or collapse of the bacterial cell membrane in the biofilm. These results indicate that GNRs are useful and a potential material for use in photothermal treatments, particularly biofilm disinfection. (paper)

  1. Au(n)Hg(m) clusters: mercury aurides, gold amalgams, or van der Waals aggregates?

    Science.gov (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka

    2009-11-12

    The class of bimetallic clusters, Au(n)M(m) (M = Zn, Cd, Hg), is calculated at the ab initio level using the DFT, RI-MP2, and CCSD(T) methods. For the triatomic Au2M (M = Zn, Cd), the auride-type linear Au-M-Au structures are preferred; for Au2Hg, the linear Au-Au-Hg "amalgam" is preferred. The mixed cation [HgAuHg]+, an analog of the known solid-state species Hg32+, is predicted. For larger Au(n)Hg(m) clusters, the results are similar to the isoelectronic Au(n)M- anions. Several local minima and transition states are identified. All are found to be planar. PMID:19228004

  2. AunHgm Clusters: Mercury Aurides, Gold Amalgams, or van der Waals Aggregates?

    Science.gov (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka

    2009-02-01

    The class of bimetallic clusters, AunMm (M = Zn, Cd, Hg), is calculated at the ab initio level using the DFT, RI-MP2, and CCSD(T) methods. For the triatomic Au2M (M = Zn, Cd), the auride-type linear Au-M-Au structures are preferred; for Au2Hg, the linear Au-Au-Hg "amalgam" is preferred. The mixed cation [HgAuHg]+, an analog of the known solid-state species Hg32+, is predicted. For larger AunHgm clusters, the results are similar to the isoelectronic AunM- anions. Several local minima and transition states are identified. All are found to be planar.

  3. Interaction of vanadium oxide cluster anions with water: an experimental and theoretical study on reactivity and mechanism.

    Science.gov (United States)

    Li, Xiao-Na; Xu, Bo; Ding, Xun-Lei; He, Sheng-Gui

    2012-05-14

    Vanadium oxide cluster anions (V(x)O(y)(-), x = 2-3; y = 3-7) are produced by laser ablation and reacted with water in a fast flow reactor. A time-of-flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reaction channels of molecular hydrogen elimination (for V(2,3)O(3)(-)), water association (for V(2)O(5)(-) and V(3)O(6,7)(-)) and the coexistence of both channels (for V(2)O(4)(-) and V(3)O(4,5)(-)) are observed. V(2)O(6)(-) and V(3)O(8)(-) are nearly inert toward water. Density functional theory (DFT) calculations are performed to study the reaction mechanism of V(2)O(3)(-) in different spin states with water and the results support the experimental observation. The reaction mechanism of V(2)O(3)(+) with water is also studied, which is in agreement with the experimental report in previous literature [Eur. J. Inorg. Chem., 2008, 4961] that molecular hydrogen elimination is a minor reaction channel for V(2)O(3)(+) + H(2)O. The influence of cluster charge states and oxidation states of vanadium atoms on the cluster reactivity are presented based on the experimental and theoretical studies. PMID:22415418

  4. In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces

    Science.gov (United States)

    Metois, J. J.; Heinemann, K.; Poppa, H.

    1976-01-01

    The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.

  5. Theoretical study of the electronic states of Nb4, Nb5 clusters and their anions (Nb4?, Nb5?)

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, K; Majumdar, D

    2004-05-06

    Geometries and energy separations of the various low-lying electronic states of Nb{sub n} and Nb{sub n}{sup -} (n = 4, 5) clusters with various structural arrangements have been investigated. The complete active space multi-configuration self-consistent field (CASMCSCF) method followed by multi-reference singles and doubles configuration interaction (MRSDCI) calculations that included up to 52 million configuration spin functions have been used to compute several electronic states of these clusters. The ground states of both Nb{sub 4} ({sup 1}A', pyramidal) and Nb{sub 4}{sup -} ({sup 2}B{sub 3g}, rhombus) are low-spin states at the MRSDCI level. The ground state of Nb{sub 5} cluster is a doublet with a distorted trigonal bipyramid (DTB) structure. The anionic cluster of Nb{sub 5} has two competitive ground states with singlet and triplet multiplicities (DTB). The low-lying electronic states of these clusters have been found to be distorted due to Jahn-Teller effect. On the basis of the energy separations of our computed electronic states of Nb{sub 4} and Nb{sub 5}, we have assigned the observed photoelectron spectrum of Nb{sub n}{sup -}(n = 4, 5) clusters. We have also compared our MRSDCI results with density functional calculations. The electron affinity, ionization potential, dissociation and atomization energies of Nb{sub 4} and Nb{sub 5} have been calculated and the results have been found to be in excellent agreement with the experiment.

  6. Dissociation energies of gold clusters AuN+, N=7-27

    International Nuclear Information System (INIS)

    Unimolecular decay rates and monomer-dimer branching ratios of gold clusters AuN+ (N=7-27) have been measured as a function of excitation energy in photodissociation experiments on size-selected clusters stored in a Penning trap. Part of the data set has previously been used to extract model-free values of dissociation energies [Vogel et al., Phys. Rev. Lett. 87, 013401 (2001)]. Other parts of the data set do not allow this analysis. We use these data to extract tentative dissociation energies, based on the systematics of deviations between an Arrhenius analysis and the model-free values. The observed systematics also allows an estimate of the true frequency factor which often is much higher than the Arrhenius value but in good agreement with the expected detailed balance value. The data are also reanalyzed including radiative cooling which may explain part of the discrepancy between model-free and Arrhenius dissociation-energy values

  7. Design, Synthesis, and Characterization of Novel Thiol-Derivatized Ibuprofen Monolayer Protected Gold Clusters

    International Nuclear Information System (INIS)

    A series of new thiol-derivatized ibuprofen monolayer protected gold clusters have been prepared by amidation of ibuprofen with alkyl alcohol or aminophenol affording the carboxamide, N-hydroxyalkyl amide 2, and N-hydroxyphenyl amide 6, which were then tosylate with p-toluenesulfonyl chloride at hydroxyl group to give 3 and 7. Reactions of 3 and 7 with NaSH afforded the mercapto derivatives 4 and 8. Conducting Brust’s reaction with a 3:1 mole ratio of thiolate ibuprofen/ AuCl4- yielded polydisperse thiol-derivatized ibuprofen-MPCs 5 and 9. All compounds have been identified by NMR, MS, UV, and IR spectroscopies. Compounds 4 and 8 and the MPCs 5 and 9 have been investigated by using the method of 1H NMR spectroscopy. The broadening of the signals from 0.8 to 2.0 ppm in 1H NMR spectrum of MPCs 5 and 9 confirmed the success of the conjugation of thiol-containing derivatives with nano gold cluster.

  8. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol

    Czech Academy of Sciences Publication Activity Database

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-01-01

    Roč. 1338, APR 2014 (2014), s. 174-183. ISSN 0021-9673 Institutional support: RVO:68081707 Keywords : Boron cluster * Capillary electrophoresis * Indirect photometry Subject RIV: BO - Biophysics Impact factor: 4.169, year: 2014

  9. Plane-wave Density Functional Theory Study of the Electronic and Structural Properties of Ionized and Neutral Small Gold Clusters

    OpenAIRE

    Min, Byeong June; Shin, Won Chul; Park, Jae Ik

    2016-01-01

    We studied the structural and the electronic properties of ionized and neutral small Au clusters via plane wave pseudopotential calculations. All except the anionic heptamer favor one-dimensional zigzag structures or two-dimensional arrangements of triangles. The HOMO-LUMO (highest occupied molecular orbital - lowest unoccupied molecular orbital) gap, the ionization energy, and the electronic affinity exhibit even-odd variation as a function of the cluster size.

  10. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals.

    Science.gov (United States)

    Wang, Yifeng; Zeiri, Offer; Meshi, Louisa; Stellacci, Francesco; Weinstock, Ira A

    2012-10-01

    Electrostatically stabilized monolayer shells of metal-oxide cluster anions (polyoxometalates, or POMs) on the surfaces of ca. 8 nm tetrahedral and octahedral gold nanocrystals regioselectively direct water-soluble alkanethiolate ligands to the corners and edges of the gold polyhedra. PMID:22918232

  11. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O2 to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O2 and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O2 adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions

  12. Assembly of gold composite thin films by spontaneous reduction of subphase chloroaurate anions beneath vitamin E Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Department of Chemistry-Biology, Suzhou College, Suzhou 234000 (China); Shen, Y.H. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)], E-mail: s_yuhua@163.com; Xie, A.J.; Li, S.K.; Qiu, L.G.; Li, Y.M. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2007-09-15

    Gold composite thin films were generated by the spontaneous reduction of chloroaurate (AuCl{sub 4}{sup -}) ions beneath vitamin E (VE) Langmuir monolayer. The monolayer and gold nanocomposite LB films were then characterized by surface pressure-area ({pi}-A) isotherms, ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD), respectively. The results showed that the limiting area/VE molecule on the HAuCl{sub 4} solution subphase was larger than that on the pure water subphase, and it increased with reaction time. The morphologies of Au particles such as spherical-like, triangular and multiply-twinned particles (MTPs) could be observed. The XRD pattern indicated that the gold particles in LB films were face-centered cubic (fcc) polycrystalline. The plasmon absorption intensities of gold composite LB films increased with the film thickness, which suggested that the monolayer containing gold particles could be transferred successfully onto the substrates.

  13. Spectroscopic and Computational Investigations of Stable Radical Anions of Triosmium Benzoheterocycle Clusters

    Czech Academy of Sciences Publication Activity Database

    Nervi, C.; Gobetto, R.; Milone, L.; Viale, A.; Rosenberg, E.; Rokhsana, D.; Fiedler, Jan

    2003-01-01

    Roč. 9, - (2003), s. 5749-5756. ISSN 0947-6539 R&D Projects: GA MŠk OC D15.10; GA ČR GA203/03/0821 Institutional research plan: CEZ:AV0Z4040901 Keywords : cluster compounds * electron transfer * osmium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.353, year: 2003

  14. Chiral separability of hydrophobic boron cluster anions with native cyclodextrins in water-methanol background electrolytes

    Czech Academy of Sciences Publication Activity Database

    Horáková, Hana; Vespalec, Radim

    2007-01-01

    Roč. 28, č. 20 (2007), s. 3639-3649. ISSN 0173-0835 R&D Projects: GA AV ČR IAA400310613 Institutional research plan: CEZ:AV0Z40310501 Keywords : boron cluster compound * capillary electrophoresis * chiral separation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.609, year: 2007

  15. Photon to thermal response of a single patterned gold nanorod cluster under near-infrared laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wonjin; Kim, Min Jun [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Freedman, Kevin; Bose, Ranjita K; Lau, Kenneth K S [Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Yi, Dong Kee [Gachon BioNano Research Institute, Kyungwon University, Sungnam 461-701 (Korea, Republic of); Solomon, Sally D, E-mail: mkim@coe.drexel.edu [Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2011-03-15

    The potential applications of the photon to thermal conversion technique by gold nanorods has attracted attention for biomedical applications since they show an intense absorption spectrum in the near-infrared region, and therefore, penetrate more deeply into biological tissues. The goal in this study is to assess a local heating phenomenon with a single patterned cluster of gold nanorods that are prepared as a wet chemically synthesized gold nanorod solution and mixed with aqueous 1% alginate and 0.1 M calcium chloride. In particular, we utilized the initiated chemical vapor deposition method to coat the cluster with poly(2-hydroxyethyl methacrylate) to enhance its high temperature resistance in the solution. The influence of the thermal energy on the surroundings is studied by measuring the surface temperature of the single patterned gold nanorod cluster as a function of laser irradiation time. The experimental results were compared with numerical simulation results. The results showed that the irradiated gold nanorods could rapidly heat to maximum surface temperatures of over 60 {sup 0}C within 120 s. Furthermore, the temperature remained almost constant (i.e. reached a steady state) under continuous laser irradiation and rapidly cooled to the initial temperature within 90 s when the laser was turned off.

  16. Structural, electronic and magnetic properties of neutral and anionic Fe{sub 2}(BO{sub 2}){sub n} (n=1–3) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Min; Lin, Xia [Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044 (China); Li, Yawei [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Qian [Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2014-08-14

    Using Fe{sub 2} dimer as a prototype of transition-metal cluster calculations based on density functional theory have been carried out to study the effect of ligand and charge states on the geometry, bonding feature and magnetic coupling of neutral and anionic Fe{sub 2}(BO{sub 2}){sub n} (n=1–3) clusters. For neutral Fe{sub 2}(BO{sub 2}){sub n} clusters the spin multiplicity of the complex changes from 7 to 8 when n goes from 0 to 1, 2, and 3. With increasing number of ligands the Fe–Fe distance increases, the magnetic coupling between Fe–Fe changes from direct exchange to super exchange, and 3d–2p hybridization between Fe and O atoms becomes predominant. For anionic Fe{sub 2}(BO{sub 2}){sub n} (n=1–3) clusters, the corresponding total magnetic moment is 0, 7 and 6μ{sub B}, respectively. Compared with neutral clusters the HOMO–LUMO gaps of anionic species increase rapidly as more BO{sub 2} units are introduced. This study sheds light on the potential of superhalogens to tune electronic and magnetic properties of Fe clusters. - Highlights: • Charge states have significant effect on the geometry of Fe{sub 2}(BO{sub 2}){sub n} clusters. • Electronic properties change with increasing BO{sub 2} in neutral and anionic Fe{sub 2}(BO{sub 2}){sub n}. • The magnetic coupling between Fe atoms in Fe{sub 2} can be effectively tuned by BO{sub 2}. • Fe{sub 2} coupling changes from direct exchange to super exchange with increasing BO{sub 2}.

  17. Chemisorption of atomic and molecular oxygen on Au and Ag cluster anions : discrimination of different isomers

    OpenAIRE

    Kim, Young Dok; Ganteför, Gerd; Sun, Qiang; Jena, Purusottam

    2004-01-01

    Structures of coinage metal clusters reacted with atomic and molecular oxygen were studied using Ultraviolet Photoelectron Spectroscopy and Density Functional Theory calculations. We show that O2 partially dissociates on Ag-2, and this dissociative chemisorption is a kinetically hindered step. For Au4O-2, in addition to the previously observed molecularly adsorbed oxygen, we are now able to synthesize a second isomer using atomic oxygen reagents, in which oxygen adsorbs dissociatively. We dem...

  18. Photoelectron Spectroscopy of Transition Metal Hydride Cluster Anions and Their Roles in Hydrogenation Reactions

    Science.gov (United States)

    Zhang, Xinxing; Bowen, Kit

    The interaction between transition metals and hydrogen has been an intriguing research topic for such applications as hydrogen storage and catalysis of hydrogenation and dehydrogenation. Special bonding features between TM and hydrogen are interesting not only because they are scarcely reported but also because they could help to discover and understand the nature of chemical bonding. Very recently, we discovered a PtZnH5- cluster which possessed an unprecedented planar pentagonal coordination between the H5- moiety and Pt, and exhibited special σ-aromaticity. The H5-kernel as a whole can be viewed as a η5-H5 ligand for Pt. As the second example, an H2 molecule was found to act as a ligand in the PdH3-cluster, in which two H atoms form a η2-H2 type of ligation to Pd. These transition metal hydride clusters were considered to be good hydrogen sources for hydrogenation. The reactions between PtHn- and CO2 were investigated. We observed formate in the final product H2Pt(HCO2)- .

  19. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti

    2011-12-01

    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  20. Global minimization of gold clusters by combining neural network potentials and the basin-hopping method

    Science.gov (United States)

    Ouyang, Runhai; Xie, Yu; Jiang, De-En

    2015-09-01

    Neural network potentials trained by first-principles density functional theory total energies were applied to search for global minima of gold nanoclusters within the basin-hopping method. Using Au58 as an example, we found a new putative global minimum which has a core-shell structure of Au10@Au48 and C4 symmetry. This new structure of Au58 is 0.24 eV per formula more stable than the best previous model that has C1 symmetry. This work demonstrates that neural network potentials combined with the basin-hopping method could be very useful in global minimization for medium-sized metal clusters which might be computationally prohibitive for first principles density functional theory.Neural network potentials trained by first-principles density functional theory total energies were applied to search for global minima of gold nanoclusters within the basin-hopping method. Using Au58 as an example, we found a new putative global minimum which has a core-shell structure of Au10@Au48 and C4 symmetry. This new structure of Au58 is 0.24 eV per formula more stable than the best previous model that has C1 symmetry. This work demonstrates that neural network potentials combined with the basin-hopping method could be very useful in global minimization for medium-sized metal clusters which might be computationally prohibitive for first principles density functional theory. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03903g

  1. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  2. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  3. Design, Synthesis, and Characterization of Novel Thiol-Derivatized Ibuprofen Monolayer Protected Gold Clusters

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2013-01-01

    Full Text Available A series of new thiol-derivatized ibuprofen monolayer protected gold clusters have been prepared by amidation of ibuprofen with alkyl alcohol or aminophenol affording the carboxamides, N-hydroxyalkyl amide 2, and N-hydroxyphenyl amide 6, which were then tosylated with p-toluenesulfonyl chloride at hydroxyl group to give 3 and 7. Reactions of 3 and 7 with NaSH afforded the mercapto derivatives 4 and 8. Conducting Brust’s reaction with a 3 : 1 mole ratio of thiolate ibuprofen/AuCl4- yielded polydisperse thiol-derivatized ibuprofen-MPCs 5 and 9. All compounds have been identified by NMR, MS, UV, and IR spectroscopies. Compounds 4 and 8 and the MPCs 5 and 9 have been investigated by using the method of 1H NMR spectroscopy. The broadening of the signals from 0.8 to 2.0 ppm in 1H NMR spectrum of MPCs 5 and 9 confirmed the success of the conjugation of thiol-containing derivatives with nanogold cluster.

  4. Plasmonic Non-linear Conversion of Continuous Wave Light by Gold Nanoparticle Clusters withFluorescent Protein Loaded Gaps

    CERN Document Server

    Salakhutdinov, Ildar; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Tasgin, Mehmet Emre; Lazzarino, Marco; Bek, Alpan

    2014-01-01

    We propose and demonstrate a method which is feasible for deterministic activation of few molecules. Our method relies on non-linear optical excitation of few enhanced yellow fluorescent protein molecules that are sandwiched between gaps of asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that as infrared photons, which cannot get absorbed by fluorescent molecules, are converted through efficient second harmonic generation activity of gold nanoparticles to visible photons, the molecules absorb them and fluoresce. Our numerical simulations demonstrate that observation of SHG with cw laser becomes possible owing to the cooperative action of conversion enhancement through Fano resonance, hybridization in the plasmon absorption spectrum and the size asymmetry of nanoparticle dimers.

  5. Ultrafast photoinduced enhancement of nonlinear optical response in 15-atom gold clusters on indium tin oxide conducting film.

    Science.gov (United States)

    Kumar, Sunil; Shibu, E S; Pradeep, T; Sood, A K

    2013-04-01

    We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is ~3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites. PMID:23571938

  6. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: ► SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. ► The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. ► The biosensor showed excellent analytical performance for O2·− real-time analysis. - Abstract: A novel superoxide anion (O2·−) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O2·−, the developed biosensor exhibited a fast amperometric response (3 nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O2·−. The proposed method is promising for estimating quantitatively the dynamic changes of O2·− in biological systems.

  7. Implications of hydrogen/halogen-bond in the stabilization of confined water and anion-water clusters by a cationic receptor

    Science.gov (United States)

    Hoque, Md. Najbul; Das, Gopal

    2016-03-01

    Anion complexation of benzene capped flexible tripodal receptor and solid state stabilization of discrete hybrid anion-water or infinite water clusters by various supramolecular interactions are reported here. The crystal structure of the receptor in protonated states shows all the three arms projected in one direction. We structurally demonstrate discrete fluoride-water cluster [F2-H2O]2- and square shaped chloride-water cluster [Cl2-(H2O)2]2- inside the cationic channel of the receptor. Structural analysis also reveals that these clusters are stabilized inside the channel through active participation of N/C/Ow‧H⋯Ow, N/C/Ow‧H⋯X- (X- = F-, Cl- and I-) H-bonds and electrostatic interactions. Moreover, C-H⋯π and π⋯π types weak intermolecular interactions appear to play crucial role in supramolecular assembly of receptor. Additionally, on treatment with hydroiodic acid (HI) L resulted zwitterionic iodide complex. Crystal structure reveals the presence of S···I halogen bonded dimer, I2···I halogen bond, 1D infinite water chain and neutral iodine molecules. It is comprehensible that ligand basal structure (benzene capped and N-bridge head in two tripodal) play crucial roles in the formation of diverse halide-water cluster. All structures were well examined by different techniques such as NMR, IR, TGA, DSC, PXRD and XRD.

  8. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Kenichi; Nobusada, Katsuyuki [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan); Boero, Mauro [Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, University of Strasbourg and CNRS, 23 rue du Loess, F-67034 Strasbourg (France)

    2015-12-31

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  9. Fine-tuned h-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe.

    Science.gov (United States)

    Sun, Cuiji; Yuan, Yi; Xu, Zhonghe; Ji, Tianjiao; Tian, Yanhua; Wu, Shan; Lei, Jianlin; Li, Jingyuan; Gao, Ning; Nie, Guangjun

    2015-02-18

    When stabilized and functionalized by biomolecules, noble metal (such as gold and silver) cluster-based hybrid nanocomposites have shown great promise for biomedical applications, due to their unique physiochemical properties originating from the inorganic elements and specific functionality and biocompatibility from their biological components. Although certain promise for bioimaging, biosensing, and biomimetic catalysis has been demonstrated, it is still a great challenge to integrate the defined functionality of the biomolecules with enhanced or novel physiochemical properties of the metal clusters, under control at the molecular level. Herein, based on molecular dynamics simulation of a gold (Au) cluster assembly, we designed near-infrared (NIR) fluorescent hybrid nanocomposites with multiple Au clusters within an apo H-ferritin (HFt) nanocage. The fluorescence quantum yield of near-infrared (NIR) Au-HFt is about 63.4% and the emission peak is 810 nm. The NIR Au-HFt is one of the first native protein-guided Au cluster-based nanomaterials for in vivo biowindow imaging. In vivo fluorescent imaging and quantification of Au element confirmed that Au-HFt not only retained the kidney targeting properties of HFt well (about 10 times higher Au concentration in kidney than in liver and spleen, the most common organs for nanoparticle accumulation), but also gained strong NIR imaging capability for live animals. The NIR Au-HFt showed powerful tissue penetrating ability, strong fluorescent efficiency, and excellent kidney targeting specificity. These results thus open new opportunities for kidney disease imaging and theranostic applications. PMID:25594844

  10. Theoretical study of structural and optical properties of small silver and gold clusters at defect centers of MgO

    Energy Technology Data Exchange (ETDEWEB)

    Buergel, Christian; Bonacic-Koutecky, Vlasta [Department of Chemistry, Humboldt-Universitaet zu Berlin (Germany); Mitric, Roland [Fachbereich Physik, Freie Universitaet Berlin (Germany)

    2010-05-15

    In this contribution we present the structural and optical properties of small noble-metal clusters at the F{sub S}-center defect of the MgO (100) support. We focus on comparing absorption and emission properties of supported silver and gold clusters. It will be shown that the leading absorption features in the low energy regime are similar for supported silver and gold clusters of the same size, in spite of the direct involvement of d electrons from Au atoms due to strong relativistic effects. Molecular dynamics (MD) simulations in the excited electronic states allow us to unravel relaxation mechanism and to propose the smallest noble-metal clusters at the F{sub S}-center defect, Ag{sub 2,4} rate at F{sub 5c} and Au{sub 2,4} rate at F{sub 5c}, as good candidates for emissive centers. In contrast, larger supported Ag{sub 8} rate at {sub 5c} and Au{sub 8} rate at F{sub 5c} clusters are unlikely to fluoresce. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals

    Science.gov (United States)

    Starodubov, S. S.; Nechaev, I. V.; Vvedenskii, A. V.

    2016-01-01

    Gas-phase adsorption of formaldehyde and gas- and liquid-phase adsorption of the methanediol anion on the (111) face of copper, silver, and gold was modeled in terms of the density functional theory and the cluster model of the metal single-crystal surface. In the gas phase, formaldehyde was found to be physically adsorbed on the metals, while the methanediol anion was found to be chemisorbed. It exists on the surface in two different stable states. In aqueous solution, the H3CO 2 - anion can spontaneously dissociate into the formate ion and two hydrogen atoms.

  12. Emergence of large chiroptical responses by ligand exchange cross-linking of monolayer-protected gold clusters with chiral dithiol.

    Science.gov (United States)

    Yao, Hiroshi; Yaomura, Shota

    2013-05-28

    We here present a study of cross-linking chemistry of optically inactive monothiol-protected gold clusters by chiral bidentate dithiol with two stereogenic centers, (2R,3R)-1,4-dimercapto-2,3-butanediol (L-dithiothreitol; L-DTT), and explore the impacts of the cross-linking on their chiroptical responses. The pristine protective ligand is racemic penicillamine (rac-Pen), and the products of the ligand exchange reactions include clusters containing both rac-Pen and L-DTT (partial exchange). Electrophoresis using polyacrylamide gel with a very low gel concentration (3%) can make the products separable into two components, each of which has the similar mean core diameter of 0.78 and 0.83 nm, so the difference in the relative mobility is mainly ascribed to the size of the cluster assembly. In addition, very large optical activity with the maximum anisotropy factors of about 1.0 × 10(-3) is found for the assemblies. In comparison with chiral 1,3-dithiol protection incapable of cross-linking between gold clusters, we propose that the observed optical activity is due to surface intrinsic handedness caused by a cyclic cross-linking with at least two L-DTT molecules. PMID:23635318

  13. Inductive effects of 10 and 12-vertex closo-carborane anions: cluster size and charge make a difference.

    Science.gov (United States)

    Estrada, Jess; Lugo, Christopher A; McArthur, Scott G; Lavallo, Vincent

    2016-01-31

    A phosphine containing a 10-vertex carborane anion substituent and its subsequent ligation to a Rh(I) carbonyl complex is reported. The complex is characterized by NMR spectroscopy and a single crystal X-ray diffraction study. In addition, the inductive effects of both 10 and 12 vertex C-functionalized closo-carborane anions are elucidated via I.R. analysis of the CO stretching frequencies of two Rh carbonyl complexes. Unlike C-functionalized neutral o-carborane the 10 and 12-vertex carborane anions are both strong electron donor substituents. PMID:26671630

  14. Probing the structures of gold-aluminum alloy clusters AuxAly(-): a joint experimental and theoretical study.

    Science.gov (United States)

    Khetrapal, Navneet Singh; Jian, Tian; Pal, Rhitankar; Lopez, Gary V; Pande, Seema; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-05-01

    Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly(-) (x + y = 7,8), with various compositions (x = 1-3; y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y ≥ 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6(-) in the AuxAly(-) clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6(-) square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6(-) square bi-pyramid motif, whereas the Au component tends to be either "adsorbed" onto the Al6(-) square bi-pyramid motif if y ≥ 6, or stays away from one another if x < y < 6. PMID:27119726

  15. A novel amperometric biosensor for superoxide anion based on superoxide dismutase immobilized on gold nanoparticle-chitosan-ionic liquid biocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu; Wen Wei; Xiong Huayu; Zhang Xiuhua; Gu Haoshuang [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang Shengfu, E-mail: wangsf@hubu.edu.cn [Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China)

    2013-01-03

    Graphical abstract: Schematic representation of the assembly process of SOD/GNPs-CS-IL/GCE. Highlights: Black-Right-Pointing-Pointer SOD was immobilized in gold nanoparticles-chitosan-ionic liquid (GNPs-CS-IL) film. Black-Right-Pointing-Pointer The biosensor was constructed by one-step ultrasonic electrodeposition of GNPs-CS-IL onto GCE. Black-Right-Pointing-Pointer The biosensor showed excellent analytical performance for O{sub 2}{center_dot}{sup -} real-time analysis. - Abstract: A novel superoxide anion (O{sub 2}{center_dot}{sup -}) biosensor is proposed based on the immobilization of copper-zinc superoxide dismutase (SOD) in a gold nanoparticle-chitosan-ionic liquid (GNPs-CS-IL) biocomposite film. The SOD-based biosensor was constructed by one-step ultrasonic electrodeposition of GNP-CS-IL composite onto glassy carbon electrode (GCE), followed by immobilization of SOD on the modified electrode. Surface morphologies of a set of representative films were characterized by scanning electron microscopy. The electrochemical performance of the biosensor was evaluated by cyclic voltammetry and chronoamperometry. A pair of quasi-reversible redox peaks of SOD with a formal potential of 0.257 V was observed at SOD/GNPs-CS-IL/GCE in phosphate buffer solution (PBS, 0.1 M, pH 7.0). The effects of varying test conditions on the electrochemical behavior of the biosensor were investigated. Furthermore, several electrochemical parameters were calculated in detail. Based on the biomolecule recognition of the specific reactivity of SOD toward O{sub 2}{center_dot}{sup -}, the developed biosensor exhibited a fast amperometric response (<5 s), wide linear range (5.6-2.7 Multiplication-Sign 10{sup 3} nM), low detection limit (1.7 nM), and excellent selectivity for the real-time measurement of O{sub 2}{center_dot}{sup -}. The proposed method is promising for estimating quantitatively the dynamic changes of O{sub 2}{center_dot}{sup -} in biological systems.

  16. The [(AI2O3)2]- Anion Cluster: Electron Localization-Delocalization Isomerism

    Energy Technology Data Exchange (ETDEWEB)

    Sierka, Marek; Dobler, Jens; Sauer, Joachim; Zhai, Hua Jin; Wang, Lai S

    2009-10-05

    Three-dimensional bulk alumina and its two-dimensional thin films show great structural diversity, posing considerable challenges to their experimental structural characterization and computational modeling. Recently, structural diversity has also been demonstrated for zerodimensional gas phase aluminum oxide clusters. Mass-selected clusters not only make systematic studies of the structural and electronic properties as a function of size possible, but lately have also emerged as powerful molecular models of complex surfaces and solid catalysts. In particular, the [(Al2O3)3-5]+ clusters were the first example of polynuclear maingroup metal oxide cluster that are able to thermally activate CH4. Over the past decades gas phase aluminum oxide clusters have been extensively studied both experimentally and computationally, but definitive structural assignments were made for only a handful of them: the planar [Al3O3]- and [Al5O4]- cluster anions, and the [(Al2O3)1-4(AlO)]+ cluster cations. For stoichiometric clusters only the atomic structures of [(Al2O3)4]+/0 have been nambiguously resolved. Here we report on the structures of the [(Al2O3)2]-/0 clusters combining photoelectron spectroscopy (PES) and quantum chemical calculations employing a genetic algorithm as a global optimization technique. The [(Al2O3)2]- cluster anion show energetically close lying but structurally distinct cage and sheet-like isomers which differ by delocalization/localization of the extra electron. The experimental results are crucial for benchmarking the different computational methods applied with respect to a proper description of electron localization and the relative energies for the isomers which

  17. Effect of the Keggin anions on assembly of CuI-bis(tetrazole) thioether complexes containing multinuclear CuI-cluster

    International Nuclear Information System (INIS)

    In order to investigate the effect of polyoxometalate (POM) on the assembly of transition metal-bis(tetrazole) thioether complexes, three new complexes based on different Keggin anions and multinuclear CuI-cluster [CuI12(bmtr)9(HSiMo12O40)4] (1), [CuI3(bmtr)3(PM12O40)] (M=W for 2; Mo for 3) (bmtr=1,3-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)propane), have been hydrothermally synthesized and characterized by routine physical methods and single crystal X-ray diffraction. In compound 1, two kinds of nanometer-scale tetranuclear subunits linked by [SiMo12O40]4− polyanions assemble a (3, 4)-connected three-dimensional (3D) self-penetrating framework. Compounds 2 and 3 are isostructural, exhibiting a 1D chain with [PW12O40]3−/[PMo12O40]3− polyanions and trinuclear clusters arranging alternately. The distinct structural differences between these POM-based CuI-bmtr complexes of 1 and 2/3 maybe rest on the contrast of Keggin-type polyoxometalate with different central heteroatoms, which have been discussed in detail. In addition, the electrochemical properties of the title complexes have been investigated. - Graphical abstract: Three new complexes based on different Keggin anions and multinuclear CuI-cluster have been synthesized under hydrothermal conditions. The Keggin polyanions with different central heteroatoms play a key role. Highlights: ► The flexible bis(tetrazole)-based thioether ligand with some advantages have been used. ► The effect of Keggin anions with different central heteroatoms has been discussed in detail. ► The electrochemical behaviors and electrocatalysis property have been investigated.

  18. Macrocluster desorption effect caused by single MCI: charges of gold clusters (2-20 nm) desorbed due to electronic processes induced by fission fragment bombardment in nanodispersed gold targets

    International Nuclear Information System (INIS)

    In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed

  19. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.

    Science.gov (United States)

    Weiber, E Annika; Jannasch, Patric

    2014-09-01

    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. PMID:25044778

  20. A comparative study between all-electron scalar relativistic calculation and all-electron calculation on the adsorption of hydrogen molecule onto small gold clusters

    Indian Academy of Sciences (India)

    Xiang-Jun Kuang; Xin-Qiang Wang; Gao-Bin Liu

    2013-03-01

    A comparative study between all-electron relativistic (AER) calculation and all-electron (AE) calculation on the H2 molecule adsorption onto small gold clusters has been performed. Compared with the corresponding AuH2 cluster obtained by AE method, the AuH2 cluster obtained by AER method has much shorter Au-H bond-length, much longer H-H distance, larger binding energy and adsorption energy, higher vertical ionization potentials (VIP), greater charge transfer, higher vibrational frequency of Au-H mode and lower vibrational frequency of H-H mode. The delocalization of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for AuH2 cluster obtained by AER method is obvious. All these characteristics suggest that the scalar relativistic effect might strengthen the Au-H bond and weaken the H-H bond. It is believed that the scalar relativistic effect is favourable to the H2 molecule adsorption onto small gold cluster and the reactivity enhancement of H2 molecule. It may be one of the reasons why the dissociative adsorptions take place in some AuH2 clusters. With increasing size of AuH2 clusters, the influence of scalar relativistic effect becomes more significant. Some further studies focused on the influence of scalar relativistic effect on the adsorption behaviour of other small molecules onto gold clusters are necessary in the future.

  1. Probing the structures of gold-aluminum alloy clusters AuxAly-: a joint experimental and theoretical study

    Science.gov (United States)

    Khetrapal, Navneet Singh; Jian, Tian; Pal, Rhitankar; Lopez, Gary V.; Pande, Seema; Wang, Lai-Sheng; Zeng, Xiao Cheng

    2016-05-01

    Besides the size and structure, compositions can also dramatically affect the properties of alloy nanoclusters. Due to the added degrees of freedom, determination of the global minimum structures for multi-component nanoclusters poses even greater challenges, both experimentally and theoretically. Here we report a systematic and joint experimental/theoretical study of a series of gold-aluminum alloy clusters, AuxAly- (x + y = 7,8), with various compositions (x = 1-3 y = 4-7). Well-resolved photoelectron spectra have been obtained for these clusters at different photon energies. Basin-hopping global searches, coupled with density functional theory calculations, are used to identify low-lying structures of the bimetallic clusters. By comparing computed electronic densities of states of the low-lying isomers with the experimental photoelectron spectra, the global minima are determined. It is found that for y >= 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6- in the AuxAly- clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic-number Al6- square bi-pyramid motif is present, suggesting that in the small-sized mixed clusters, Al and Au components do not completely mix with one another. Overall, the Al component appears to play a more dominant role due to the high robustness of the magic-number Al6- square bi-pyramid motif, whereas the Au component tends to be either ``adsorbed'' onto the Al6- square bi-pyramid motif if y >= 6, or stays away from one another if x = 6 there is a strong tendency to form the magic-number square bi-pyramid motif of Al6- in the AuxAly- clusters, suggesting that the Al-Al interaction dominates the Au-Au interaction in the mixed clusters. A closely related trend is that for x > 1, the gold atoms tend to be separated by Al atoms unless only the magic

  2. Computational Study of the Anion Photoelectron Spectra of FeXn (X=O, S and n=3, 4) Clusters

    OpenAIRE

    Tran Van, Tan

    2013-01-01

    In thisthesis, the structural and electronic properties of FeXn-/0,( X = O, S and n = 3, 4) clusters are studied by using various computationalquantum chemical methods. These clusters are relevant to various processes in industrial catalysis, medicine, biologicalstorage and transport. Because of the complicated electronic structureof this kind of clusters, which is usually the case for the transition metalcompounds, a combination of different electron correlation methods such as DFT,CASPT2 an...

  3. Cluster self-assembly of di[gold(I)]halonium cations

    OpenAIRE

    Schmidbaur, Hubert; Hamel, Armin; Mitzel, Norbert W.; Schier, Annette; Nogai, Stefan

    2002-01-01

    Treatment of gold(I) halide complexes of the type L-Au-X [where L = PPh3, PEt3 with X = Cl, Br, I, or L = 2,6-(MeO)2C6H3PPh2 with X = Cl] with AgSbF6 in the molar ratio 2:1 in dichloromethane/tetrahydrofuran at −78°C affords high yields of di[gold(I)]halonium salts of the formula {X[Au(PR3)]2}+ SbF\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrs...

  4. Gold clusters on WO{sub 3} nanoneedles grown via AACVD: XPS and TEM studies

    Energy Technology Data Exchange (ETDEWEB)

    Navio, Cristina [Laboratory of Interaction Chemistry on Plasma Surfaces, University of Mons (Belgium); Vallejos, Stella [MINOS, EMaS, Departament d' Enginyeria Electronica, Universitat Rovira i Virgili, Tarragona (Spain); Department of Chemistry, University College London, London, WC1H 0AJ (United Kingdom); Stoycheva, Toni; Llobet, Eduard; Correig, Xavier [MINOS, EMaS, Departament d' Enginyeria Electronica, Universitat Rovira i Virgili, Tarragona (Spain); Snyders, Rony [Laboratory of Interaction Chemistry on Plasma Surfaces, University of Mons (Belgium); Blackman, Christopher [Department of Chemistry, University College London, London, WC1H 0AJ (United Kingdom); Umek, Polona [Solid State Physcis Department Jozef Stefan Institute, Jamov cesta 39, 1000 Ljubljana (Slovenia); Ke Xiaoxing; Van Tendeloo, Gustaaf [Electron Microscopy for Material Science, University of Antwerp, Antwerp (Belgium); Bittencourt, Carla, E-mail: carla.bittencourt@umons.ac.be [Electron Microscopy for Material Science, University of Antwerp, Antwerp (Belgium)

    2012-06-15

    We have prepared tungsten oxide films decorated with gold particles on Si substrates by aerosol assisted chemical vapor deposition (AACVD) and characterized them using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM shows that the films are composed of needle-like structures and TEM shows that both the needles and the gold particles are crystalline. XPS indicates the presence of oxygen vacancies, i.e. the films are WO{sub 3-x}, and hence the deposited material is composed of semiconducting nanostructures and that the interaction between the gold particles and the WO{sub 3} needles surface is weak. The synthesis of semiconducting tungsten oxide nanostructures decorated with metal particles represents an important step towards the development of sensing devices with optimal properties. - Highlights: Black-Right-Pointing-Pointer Characterization of WO{sub 3} needle-like structures decorated with gold nanoparticles. Black-Right-Pointing-Pointer WO{sub 3} needle-like structures are crystalline. Black-Right-Pointing-Pointer WO{sub 3} needle-like structures are semiconducting.

  5. Atomic-scale observation of dynamical fluctuation and three-dimensional structure of gold clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junjie [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (China); Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yin, Deqiang [School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610064 (China); Chen, Chunlin; Lin, Liyang; Wang, Zhongchang, E-mail: zcwang@wpi-aimr.tohoku.ac.jp [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Li, Qiang [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Sun, Rong [Institute of Engineering Innovation, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Huang, Sumei, E-mail: smhuang@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, North Zhongshan Road 3663, Shanghai 200062 (China)

    2015-02-28

    Unravelling three-dimensional structures and dynamical fluctuation of metal nanoclusters is critical to understanding reaction process and the origin of catalytic activity in many heterogeneous catalytic systems. We obtain three-dimensional structures of ultra-small Au clusters by combining aberration-corrected scanning transmission electron microscopy, density functional theory calculations, and imaging simulations. The configurations of unique Au clusters are revealed at the atomic scale and the corresponding electronic states are given. The sequential observations reveal a transition of ultra-small Au clusters with about 25 atoms from a near-square to an elongated structure. We also find a transition from two dimensions to three dimensions for the Au clusters. The obtained three-dimensional geometry and associated electronic states help to clarify atomistic mechanism of shape- and number-dependent catalytic activities of Au clusters.

  6. Effect of the Keggin anions on assembly of Cu{sup I}-bis(tetrazole) thioether complexes containing multinuclear Cu{sup I}-cluster

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiuli, E-mail: wangxiuli@bhu.edu.cn [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China); Gao Qiang; Tian Aixiang; Hu Hailiang; Liu Guocheng [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China)

    2012-03-15

    In order to investigate the effect of polyoxometalate (POM) on the assembly of transition metal-bis(tetrazole) thioether complexes, three new complexes based on different Keggin anions and multinuclear Cu{sup I}-cluster [Cu{sup I}{sub 12}(bmtr){sub 9}(HSiMo{sub 12}O{sub 40}){sub 4}] (1), [Cu{sup I}{sub 3}(bmtr){sub 3}(PM{sub 12}O{sub 40})] (M=W for 2; Mo for 3) (bmtr=1,3-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)propane), have been hydrothermally synthesized and characterized by routine physical methods and single crystal X-ray diffraction. In compound 1, two kinds of nanometer-scale tetranuclear subunits linked by [SiMo{sub 12}O{sub 40}]{sup 4-} polyanions assemble a (3, 4)-connected three-dimensional (3D) self-penetrating framework. Compounds 2 and 3 are isostructural, exhibiting a 1D chain with [PW{sub 12}O{sub 40}]{sup 3-}/[PMo{sub 12}O{sub 40}]{sup 3-} polyanions and trinuclear clusters arranging alternately. The distinct structural differences between these POM-based Cu{sup I}-bmtr complexes of 1 and 2/3 maybe rest on the contrast of Keggin-type polyoxometalate with different central heteroatoms, which have been discussed in detail. In addition, the electrochemical properties of the title complexes have been investigated. - Graphical abstract: Three new complexes based on different Keggin anions and multinuclear Cu{sup I}-cluster have been synthesized under hydrothermal conditions. The Keggin polyanions with different central heteroatoms play a key role. Highlights: Black-Right-Pointing-Pointer The flexible bis(tetrazole)-based thioether ligand with some advantages have been used. Black-Right-Pointing-Pointer The effect of Keggin anions with different central heteroatoms has been discussed in detail. Black-Right-Pointing-Pointer The electrochemical behaviors and electrocatalysis property have been investigated.

  7. Spectroscopic Properties of Novel Aromatic Metal Clusters: NaM4 (M=Al, Ga, In) and their Cations and Anions

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, K; Zhao, C

    2004-03-17

    The ground and several excited states of metal aromatic clusters, namely NaM4 and NaM{sub 4}{sup {+-}} (M=Al, Ga, In) clusters have been investigated by employing complete activespace self-consistent-field (CASSCF) followed by Multi-reference singles and doubles configuration interaction (MRSDCI) computations that included up to 10 million configurations and other methods. The ground states NaM{sub 4}{sup -} of aromatic anions are found to be symmetric C{sub 4v} ({sup 1}A{sub 1}) electronic states with ideal square pyramid geometries. While the ground state of NaIn4 is also predicted to be a symmetric C{sub 4v} ({sup 2}A{sub 1}) square pyramid, the ground state of the NaAl4 cluster is found to have a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rhombus base and the ground state of NaGa{sub 4} possesses a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rectangle base. In general these structures exhibit 2 competing geometries, viz., an ideal C{sub 4v} structure and a distorted rhomboidal or rectangular pyramid structure (C{sub 2v}). All of the ground states of the NaM{sub 4}{sup +} (M= Al, Ga, In) cations are computed to be C{sub 2v} ({sup 3}A{sub 2}) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM{sub 4} (M=Al, Ga, In) and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al{sub 4}Na{sup -} reported by Li et al. The X state can be assigned to a C{sub 2v} ({sup 2}A{sub 1}) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ({sup 2}B{sub 1}) of the neutral NaAl{sub 4} with the C{sub 4v} symmetry. The assignments of the excited states are consistent with

  8. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  9. Formation of gold clusters on La-Ni mixed oxides and its catalytic performance for isomerization of allylic alcohols to saturated aldehydes

    International Nuclear Information System (INIS)

    Au/NiO catalyzed the isomerization of allylic alcohols to afford saturated aldehydes. La-Ni mixed oxide could stabilize Au(III) and afford gold clusters smaller than 1 nm by H2 reduction. The resulting Au clusters on La-Ni-O exhibited superior catalytic performance to Au/NiO for the isomerization of internal allylic alcohol, 2-octen-1-ol to octanal. (author)

  10. Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics

    Science.gov (United States)

    van Steerteghem, Nick; van Cleuvenbergen, Stijn; Deckers, Steven; Kumara, Chanaka; Dass, Amala; Häkkinen, Hannu; Clays, Koen; Verbiest, Thierry; Knoppe, Stefan

    2016-06-01

    The first hyperpolarizabilities of [Au25(SR)18]-1/0 and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18]-1/0, protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics.The first hyperpolarizabilities of [Au25(SR)18]-1/0 and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18]-1/0, protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics. Electronic supplementary information (ESI) available: Synthesis and characterization of the clusters, details on HRS measurements and DFT calculations. See DOI: 10.1039/c6nr02251k

  11. Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics.

    Science.gov (United States)

    Van Steerteghem, Nick; Van Cleuvenbergen, Stijn; Deckers, Steven; Kumara, Chanaka; Dass, Amala; Häkkinen, Hannu; Clays, Koen; Verbiest, Thierry; Knoppe, Stefan

    2016-06-16

    The first hyperpolarizabilities of [Au25(SR)18](-1/0) and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18](-1/0), protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics. PMID:27264025

  12. Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs

    Science.gov (United States)

    Iodice, Carmen; Cervadoro, Antonio; Palange, AnnaLisa; Key, Jaehong; Aryal, Santosh; Ramirez, Maricela R.; Mattu, Clara; Ciardelli, Gianluca; O'Neill, Brian E.; Decuzzi, Paolo

    2016-01-01

    Gold nanoparticles (AuNPs) have been proposed as agents for enhancing photothermal therapy in cancer and cardiovascular diseases. Different geometrical configurations have been used, ranging from spheres to rods and more complex star shapes, to modulate optical and ablating properties. In this work, multiple, ultra-small 6 nm AuNPs are encapsulated into larger spherical polymeric nanoconstructs (SPNs), made out of a poly(lactic acid-co-glycol acid) (PLGA) core stabilized by a superficial lipid-PEG monolayer. The optical and photothermal properties of the resulting nanoconstructs (Au-SPNs) are modulated by varying the initial loading input of AuNPs, ranging between 25 and 150 μgAu. Au-SPNs exhibit a hydrodynamic diameter varying from ~100 to 180 nm, growing with the gold content, and manifest up to 2-fold increase in thermal energy production per unit mass of gold for an initial input of 100 μgAu. Au-SPNs are stable under physiological conditions up to 7 days and have direct cytotoxic effect on tumor cells. The superior photothermal performance of Au-SPNs is assessed in vitro on monolayers of breast cancer cells (SUM-159) and tumor spheroids of glioblastoma multiforme cells (U87-MG). The encapsulation of small AuNPs into larger spherical nanoconstructs enhances photothermal ablation and could favor tumor accumulation.

  13. Molecular structures and vibrations of neutral and anionic CuOx (x = 1-3,6) clusters

    CERN Document Server

    Baruah, T; Pederson, M R; Zhou, Yunkai; Baruah, Tunna; Zope, Rajendra R.; Pederson, Mark R.

    2004-01-01

    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a -shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries. ~

  14. Molecular structures and vibrations of neutral and anionic CuOx (x=1-3,6) clusters

    International Nuclear Information System (INIS)

    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO6-1 clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a Y-shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO6-1 clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries

  15. Molecular structures and vibrations of neutral and anionic CuOx (x=1 3,6) clusters

    Science.gov (United States)

    Baruah, Tunna; Zope, Rajendra R.; Pederson, Mark R.

    2004-02-01

    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO-16 clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a Y-shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO-16 clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries.

  16. Molecular structures and vibrations of neutral and anionic CuOx (x = 1-3,6) clusters

    OpenAIRE

    Baruah, Tunna; Zope, Rajendra R.; Pederson, Mark R.

    2004-01-01

    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a -shaped structure with C2v symm...

  17. Adsorption of a single gold or silver atom on vanadium oxide clusters.

    Science.gov (United States)

    Ding, Xun-Lei; Wang, Dan; Li, Rui-Jie; Liao, Heng-Lu; Zhang, Yan; Zhang, Hua-Yong

    2016-03-30

    The bonding properties between a single atom and its support have a close relationship with the stability and reactivity of single-atom catalysts. As a model system, the structural and electronic properties of bimetallic oxide clusters MV3Oy(q) (M = Au or Ag, q = 0, ±1, and y = 6-8) are systematically studied using density functional theory. The single noble metal atom Au or Ag tends to be adsorbed on the periphery of the V oxide clusters. Au prefers V sites for oxygen-poor clusters and O sites for oxygen-rich clusters, while Ag prefers O sites for most cases. According to natural population analysis, Au may possess positive or negative charges in the bimetallic oxide clusters, while Ag usually possesses positive charges. The bonding between Au and V has relatively high covalent character according to the bond order analysis. This work may provide some clues for understanding the bonding properties of single noble metal atoms on the support in practical single-atom catalysts, and serve as a starting point for further theoretical studies on the reaction mechanisms of related catalytic systems. PMID:26984782

  18. Macropolyhedral boron-containing cluster chemistry [S2B16H17](-). A new eighteen-vertex thiaborane anion

    Czech Academy of Sciences Publication Activity Database

    Carr, MJ.; Clegg, W.; Kennedy, J.D.; Londesborough, Michael Geoffrey Stephen; Kilner, C. A.

    2010-01-01

    Roč. 75, č. 8 (2010), s. 807-812. ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40320502 Keywords : borane cluster * thiaborane * macropolyhedral Subject RIV: CA - Inorganic Chemistry Impact factor: 0.853, year: 2010

  19. Experimental and theoretical studies of the structural and electronic properties of vanadium–benzene sandwich clusters and their anions: VnBzn0/− (n = 1–5) and VnBzn−10/− (n = 2–5)

    International Nuclear Information System (INIS)

    One end open VnBzn− (n = 1–5; Bz = benzene) and both ends open VnBzn−1− (n = 2–5) vanadium–benzene cluster anions were studied using anion photoelectron spectroscopy and density functional calculations. The smaller (n ≤ 3) VnBzn and VnBzn−1 clusters and corresponding anions were found to have structural isomers, whereas full-sandwiched VnBzn+1 clusters preferred to form multiple-decker sandwich structures. Several isomeric V2Bz2 structures were identified theoretically and the anion photoelectron spectra of V2Bz20/− were explained well by the coexistence of two isomeric structures: (1) a V2-core structure sandwiched between benzene molecules and (2) an alternating sandwich structure with the spin state strongly dependent on the structure. The adiabatic electron affinity of both VnBzn and VnBzn−1 was found to increase with the cluster size at larger sizes (n = 4 or 5) and approaches to that of VnBzn+1. The evolution of the structural and electronic properties of VnBzm and VnBzm− (m = n and n − 1) with size is discussed in comparison with VnBzn+1 and VnBzn+1−

  20. Hidden Components in Aqueous "Gold-144" Fractionated by PAGE: High-Resolution Orbitrap ESI-MS Identifies the Gold-102 and Higher All-Aromatic Au-pMBA Cluster Compounds.

    Science.gov (United States)

    Alvarez, Marcos M; Chen, Jenny; Plascencia-Villa, Germán; Black, David M; Griffith, Wendell P; Garzón, Ignacio L; José-Yacamán, Miguel; Demeler, Borries; Whetten, Robert L

    2016-07-01

    Experimental and theoretical evidence reveals the resilience and stability of the larger aqueous gold clusters protected with p-mercaptobenzoic acid ligands (pMBA) of composition Aun(pMBA)p or (n, p). The Au144(pMBA)60, (144, 60), or gold-144 aqueous gold cluster is considered special because of its high symmetry, abundance, and icosahedral structure as well as its many potential uses in material and biological sciences. Yet, to this date, direct confirmation of its precise composition and total structure remains elusive. Results presented here from characterization via high-resolution electrospray ionization mass spectrometry on an Orbitrap instrument confirm Au102(pMBA)44 at isotopic resolution. Further, what usually appears as a single band for (144, 60) in electrophoresis (PAGE) is shown to also contain the (130, 50), recently determined to have a truncated-decahedral structure, and a (137, 56) component in addition to the dominant (144, 60) compound of chiral-icosahedral structure. This finding is significant in that it reveals the existence of structures never before observed in all-aromatic water-soluble species while pointing out the path toward elucidation of the thermodynamic control of protected gold nanocrystal formation. PMID:27275518

  1. One-dimensional gold clusters in HP-Ce7Au13+xGe10-x

    International Nuclear Information System (INIS)

    Single crystals of the high-pressure phase Ce7Au13+xGe10-x were obtained by treating CeAuGe at 9.5 GPa and 1473-1523 K in a multi-anvil press. The structure of Ce7Au13.35Ge9.65 was refined on the basis of single-crystal X-ray diffractometer data: new type, Pbam, a = 1571.9(3), b = 1780.3(4), c = 443.58(9) pm, wR2 = 0.0470, 2017 F2 values, 96 variables. Two of the five germanium sites show a small degree of Ge/Au mixing. The gold and germanium atoms build up a complex three-dimensional, covalently bonded [Au13.35Ge9.65] network with Au-Ge distances ranging from 249 to 293 pm. The [Au13.35Ge9.65] network also exhibits a one-dimensional gold cluster with Au-Au distances of 275-301 pm and a weakly bonded germanium dumb-bell with a Ge4-Ge5 bond length of 271 pm. The four crystallographically independent cerium atoms fill cavities of coordination numbers 19 and 20 within the [Au13.35Ge9.65] network. These coordinations are known from other structure types. Consequently one can describe the [Au13.35Ge9.65] structure as an intergrowth variant of EuAuGe, HP-CeAuGe (TiNiSi), CeAu2Ge2 (CePt2Ge2), and Ce3Ag4Ge4 (Gd3Cu4Sn4) related slabs. (orig.)

  2. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    Science.gov (United States)

    Lemke, Kono H

    2014-05-01

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles. PMID:24643288

  3. Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study.

    Science.gov (United States)

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Anson, Christopher E; Gamer, Michael T; Powell, Annie K; Roesky, Peter W

    2013-10-01

    The synthesis and characterization of three chiral and one achiral amino acid anion ligated dysprosium hydroxo clusters [Dy5(OH)5(α-AA)4(Ph2acac)6] (α-AA = d-PhGly, l-Pro, l-Trp, Ph2Gly; Ph2acac = dibenzoylmethanide) are reported. The solid state structures were determined using single crystal X-ray diffraction and show that five Dy(iii) ions are arranged in a square-based pyramidal geometry with NO7-donor-sets for the basal and O8-donor-sets for the apical Dy atom. Both static (dc) and dynamic (ac) magnetic properties were investigated for all four compounds and show a slow relaxation of magnetization, indicative of single molecule magnet (SMM) behaviour below 10 K in all cases. The similar SMM behaviour observed for all four compounds suggests that the very similar coordination geometries seen for the dysprosium atoms in all members of this family, which are independent of the amino acid ligand used, play a decisive role in steering the contribution of the single ion anisotropies to the observed magnetic relaxation. PMID:23986134

  4. Large clusters of gold deposits and large-scale metallogene-sis in the Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)

    ZHAI; Mingguo

    2001-01-01

    [1]Tu, G. C., The unique nature in ore deposition, geological background and metallogenic mechanism of non-conventional superlarge ore deposits: A preliminary discussion, Science in China (in Chinese), Ser. D, 1998, 41 (sup.): 1-6.[2]Pei, R. F., Qiu, X. P., Yin, B. C. et al., The Explosive anomaly of ore-forming processes and super-accumulation of metals, Mineral Deposits (in Chinese), 1999, 18 (4): 333-340.[3]Zhai, Y. S., De, J., Li, X. B., Essentials of Metallogeny (in Chinese), Beijing: Geological Publishing House, 1999: 1-288.[4]Mao, J. W., Hua, R. M., Li, X. B., A preliminary study of large-scale metallogenesis and large clusters of mineral deposits, Mineral Deposits (in Chinese), 1999, 18(4): 291-298.[5]Zhang, C. H., Gu, D. L., Study on the microstructure and deformation mechanism of the sinistral slick ductile shear zone in the middle of the northern Jiaonan uplift, in Tectonic and Geological Evolution of the Northern Jiaonan Uplift (in Chi-nese) (eds. Gu, D. L., Zhang, C. H.), Beijing: China University of Geosciences Press, 1996, 96-104.[6]Zhai, M. G., Guo, J. H., Wang, Q. C. et al., Division of geological-tectonic units in the northern Sulu ultra-high pressure zone: An example of thick-skin thrust of crystalline units, Scientica Geologica Acta (in Chinese), 2000, 35(1): 16-26.[7]Zhai, M. G., Guo, J. H., Cong, B. L. et al., Sm-Nd geochronolgy and petrography of garnet pyroxene granulites in the northern Sulu region and their geotectonic implication, Scientica Geologica Acta (in Chinese), 1999, 34(3): 301-310.[8]Zhai, M. G., Cong, B., Guo, J., Sm-Nd geochronology and petrography of garnet pyroxene granulites in the northern Sulu region of China and their geotectonic implication, Lithos, 2000, 52: 23-33.[9]Jahn, B. M., Geochemical and isotopic study of UHP terrain in China (abstract), in First Workshop on UHP Metamor-phism and Tectonics, Stanford: Stanford University, 1994, A71-74.[10]Li, S. G., Jagoutz

  5. BIMETALLIC IRON-RHODIUM ANIONIC CARBONYL CLUSTERS - [FE2RH(CO)X]-(X=10 OR 11), [FERH4(CO)15]2-, [FE2RH4(CO)16]2-, AND [FERH5(CO)16]-

    OpenAIRE

    CERIOTTI, A; LONGONI, G; Della Pergola, R; HEATON, B; Smith, D.

    1983-01-01

    The synthesis and chemical behaviour of the new iron-rhodium anionic carbonyl clusters [Fe2Rh(CO)x]- ( x = 10 or 11) [FeRh4CO)15]2-, [Fe2Rh4(C0)16]2-, and [FeRh5(CO)16]- are reported. Low-temperature multinuclear n.m.r. studies (l3C, 13C-(103Rh}, and l03Rh) on the penta- and hexa-nuclear clusters allow their structures in solution to be unambiguously established and their fluxional behaviour has been investigated through variable-temperature measurements. None shows rearrangement of the...

  6. Electronic, magnetic and structural properties of neutral, cationic and anionic Fe{sub 2}S{sub 2}, Fe{sub 3}S{sub 4} and Fe{sub 4}S{sub 4} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tazibt, S; Bouarab, S; Ziane, A [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, BP No 17 RP, 15000 Tizi-Ouzou (Algeria); Parlebas, J C [Institut de Physique et Chimie des Materiaux de Strasbourg, UMR 7504 CNRS-UDS, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2 (France); Demangeat, C, E-mail: sbouarab_said@mail.ummto.d [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)

    2010-08-28

    This work reports density functional calculations of geometric, electronic and magnetic properties of freestanding iron-sulfur Fe{sub 2}S{sub 2}, Fe{sub 3}S{sub 4} and Fe{sub 4}S{sub 4} clusters which are the ones most frequently contained in proteins. We investigate neutral, anionic and cationic clusters using a method that employs linear combinations of atomic orbitals as basis sets, nonlocal norm-conserving pseudopotentials and a generalized gradient approximation to exchange and correlation. The results are discussed in connection with available experimental data. We mainly show that the ground-state geometries of these free clusters are consistent with their structures in core proteins and they are the same in the neutral, anionic and cationic states, but with small distortions. In all cases, an antiferromagnetic order between Fe atoms is always preferred to ferromagnetic and paramagnetic ones. The geometric distortions induced by magnetism decrease with cluster size and the maximum deviation between Fe-Fe distances is 11% in Fe{sub 2}S{sub 2}, but only 4% in Fe{sub 3}S{sub 4} and 3% in Fe{sub 4}S{sub 4} clusters.

  7. Organometallic Gold(Ⅲ)Derivatives with Anionic Oxygen Ligands-mononuclear Hydroxo,Alkoxo,and Acetato Complexes:Synthesis and Spectral Study

    Institute of Scientific and Technical Information of China (English)

    Prithwiraj Byabartta

    2008-01-01

    A variety of gold(Ⅲ) adducts having a-ligated oxygen-donor ligands have been prepared from [Au(ppy)Cl2](ppy·phenylpyridine)(1) either by partial or total replacement of the chloride ions.The new species comprise hydroxo-[Au(ppy)(OH)Cl](2),and[Au(ppy)(OH)2](3),oxo-[Au2(ppy)2(μ-O)2](4),acetate-[Au(ppy)(O2CMe2)] (5),and alkoxo complexes-[Au(ppy)(OR)Cl](6,7)and[Au(ppy)(OR)2](8-10)(R=Me,6 and 8;Et,7 and 9;Pri,10).The dihydroxo and the OXO complexes Can be interconverted by refluxing the former in anhydrous THF and the latter in water.The hydroxides 2 and 3 and the acetato complex 5 undergo σ-ligand metathesis in ROH solution(R=Me,Et or Pri) to give the corresponding alkoxides.

  8. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study.

    Science.gov (United States)

    Rampino, Sergio; Storchi, Loriano; Belpassi, Leonardo

    2015-07-14

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au7- and Au20-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au7 (planar) and Au20 (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au20-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis. PMID:26178105

  9. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study

    Science.gov (United States)

    Rampino, Sergio; Storchi, Loriano; Belpassi, Leonardo

    2015-07-01

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au7- and Au20-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au7 (planar) and Au20 (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au20-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  10. Electronic Structure and Bonding of Icosahedral Core-Shell Gold-Silver Nanoalloy Clusters Au_(144-x)Ag_x(SR)_60

    OpenAIRE

    Malola, Sami; Häkkinen, Hannu

    2011-01-01

    Atomically precise thiolate-stabilized gold nanoclusters are currently of interest for many cross-disciplinary applications in chemistry, physics and molecular biology. Very recently, synthesis and electronic properties of "nanoalloy" clusters Au_(144-x)Ag_x(SR)_60 were reported. Here, density functional theory is used for electronic structure and bonding in Au_(144-x)Ag_x(SR)_60 based on a structural model of the icosahedral Au_144(SR)_60 that features a 114-atom metal core with 60 symmetry-...

  11. O2 adsorption on AunRh n = 1-5 neutral and charged clusters

    Science.gov (United States)

    Buendía, Fernando; Beltrán, Marcela R.

    2016-04-01

    Theoretical evidence is presented for the molecular and dissociative adsorption of O2 on free AunRh neutral, anionic and cationic clusters with 1 to 5 gold atoms, indicating that the stabilization of the activated di-oxygen species is a key factor for the unusual catalytic activities of Au-based catalysts. The structure, stability, for both molecular and dissociative O2 adsorption on AunRh n = 1-5 clusters has been investigated using density-functional theory. To find the transition states, the minimum energy paths have been explored for a few clusters. In general, lower values for the activation energy have been found when compared with the barriers that occur on pure Aun based clusters. The higher binding energies in the AuRh mix favor oxygen dissociation among any other possible reaction paths. The anionic clusters being the most reactive of all. The molecular bonding mechanism to these complexes involves charge transfer to the oxygen molecule with a concomitant activation of the O-O bond to a superoxo-like state. The characteristic planar structures of both pure gold and AuRh clusters prevail for most of the cases here studied. The odd-even characteristic catalytic activation of pure gold clusters is not observed once even a single rhodium atom has been added to the cluster.

  12. Small gold species supported on alumina. A computational study of {alpha}-Al{sub 2}O{sub 3}(0001) and {gamma}-Al{sub 2}O{sub 3}(001) using an embedded-cluster approach

    Energy Technology Data Exchange (ETDEWEB)

    Nasluzov, Vladimir A. [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, Krasnoyarsk (Russian Federation); Siberian Federal University, Krasnoyarsk (Russian Federation); Shulimovich, Tatyana V.; Shor, Aleksey M. [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, Krasnoyarsk (Russian Federation); Bukhtiyarov, Valery I. [Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk (Russian Federation); Roesch, Notker [Department Chemie and Catalysis Research Center, Technische Universitaet Muenchen, Garching (Germany)

    2010-05-15

    We calculated the structures of and analyzed the bonding in adsorption complexes of small gold species Au{sub n} on {alpha}-Al{sub 2}O{sub 3}(0001), n=1-6, and {gamma}-Al{sub 2}O{sub 3}(001), n=1-5. We applied a scalar-relativistic gradient-corrected density functional (DF) method to cluster models of the support that were embedded in an extended elastic polarizable environment (EPE). The shortest Au-O distances, 204-211 pm, are consistent with extended X-ray adsorption fine structure (EXAFS) data for gold clusters on alumina surfaces. The calculated total adsorption energies increase with cluster nuclearity, up to n=4, but drop for larger adsorbed species. In the gas phase, these small gold clusters exhibit a planar structure which they keep, oriented parallel to the surface, as adsorbates on {alpha}-Al{sub 2}O{sub 3}(0001). Unfavorable energy contributions result for larger clusters as their planar shape is notably distorted by the interaction with the support which amounts to 0.5-1.5 eV. On {gamma}-Al{sub 2}O{sub 3}(001), also the larger gold clusters retain their intrinsic planar structure as they adsorb oriented perpendicular to the surface. The corresponding adsorption energies are slightly smaller, 0.3-1.2 eV. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging.

    Science.gov (United States)

    Croissant, Jonas G; Zhang, Dingyuan; Alsaiari, Shahad; Lu, Jie; Deng, Lin; Tamanoi, Fuyuhiko; AlMalik, Abdulaziz M; Zink, Jeffrey I; Khashab, Niveen M

    2016-05-10

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3(+)). The second drug, doxorubicin (DOX, 32wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3(+), affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments. PMID:27016140

  14. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.

    2016-03-23

    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  15. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  16. Macropolyhedral boron-containing cluster chemistry. The reversible disassembly and reassembly of the hexagonal pyramidal {B7} feature in the [S2B18H19]- anion.

    Science.gov (United States)

    Ormsby, Daniel L; Greatrex, Robert; Kennedy, John D

    2008-03-28

    The [S(2)B(18)H(19)](-) anion 1, from syn-B(18)H(22) 2 with NaH and elemental sulfur, has an unusual arachno-type eleven-vertex {SB(10)} subcluster that has an open hexagonal pyramidal {B(7)} structural feature. This is conjoined, with two boron atoms in common, to a second {SB(10)} subcluster of conventional nido eleven-vertex geometry. Protonation of 1 forms neutral [S(2)B(18)H(20)] 4. Subsequent deprotonation of 4 yields the fluxional [S(2)B(18)H(19)](-) anion 5, which is isomeric with 1. Neutral 4and anion 5 do not have the {B(7)} hexagonal pyramidal feature. Neutral 4 consists of conventional nido eleven-vertex {SB(10)} and arachno ten-vertex {SB(9)} subclusters conjoined with a single spiro boron atom in common. Anion 5 is closely related to 4, but with an additional inter-boron intercluster link. Anion 5 spontaneously reverts to anion 1 over a few hours at room temperature, remarkable in that the open {B(7)} hexagonal pyramid is regenerated. DFT B3LYP/6-31G* calculations suggest definitive structures for 4 and 5 that are substantiated by agreement between observed NMR delta((11)B) values and boron nuclear shielding as calculated by the GIAO approach on the DFT-calculated structures. Extension of this approach additionally defines transition states and intermediates for the fluxionality of 5, and also for the reassembly of the starting anion 1, together with its {B(7)} feature, from fluxional 5. The fluxionality of 5 involves the inter-subcluster transfer of a {BH} unit. The reassembly of 1 from 5 involves a DSD rearrangement and two successive hydrogen-atom hops. Confidence in the application of this method to these large macropolyhedral assemblies is afforded in the first instance by good agreement between delta((11)B)(OBS) and delta((11)B)(CALC) for the structurally characterised original anion 1, the only species amongst these to be crystallographically established. PMID:18335146

  17. Combined Experimental and Theoretical DFT Study of Molecular Nanowires Negative Differential Resistance and Interaction With Gold Clusters

    Czech Academy of Sciences Publication Activity Database

    Záliš, Stanislav; Kratochvílová, Irena; Zambova, A.; Mbindyo, J.; Mallouk, T. E.; Mayer, T. S.

    2005-01-01

    Roč. 18, č. 2 (2005), s. 201-206. ISSN 1292-8941 R&D Projects: GA AV ČR 1ET400400413; GA AV ČR IAA400400501 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : molecule/gold transport interfaces * single molecules * metal nanowires * junctions Subject RIV: CG - Electrochemistry Impact factor: 2.503, year: 2005

  18. Systematic Study of Au6 to Au12 Gold Clusters on MgO(100) F Centers Using Density-Functional Theory

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Hammer, Bjørk

    2012-01-01

    We present an optimized genetic algorithm used in conjunction with density-functional theory in the search for stable gold clusters and O2 adsorption ensembles in F centers at MgO(100). For Au8 the method recovers known structures and identifies several more stable ones. When O2 adsorption is...

  19. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    International Nuclear Information System (INIS)

    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N′-dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 ± 5 nm upon excitation at 345 ± 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV–vis absorption spectra, UV–vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  20. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker;

    2011-01-01

    An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...

  1. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker;

    2011-01-01

    An ab initio study of gaseous clusters of O-2(-) and O-3(-) with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...

  2. Bridging gold in electron-deficient Al2Au(n)(0/-) and BAlAu(n)(0/-) (n = 1-3) clusters.

    Science.gov (United States)

    Yao, Wen-Zhi; Liu, Bing-Tao; Lu, Zhang-Hui; Li, Si-Dian

    2013-06-20

    The geometrical and electronic structures of the electron-deficient dialuminum aurides Al2Aun(0/-) and hybrid boron-aluminum aurides BAlAun(0/-) (n = 1-3) are systematically investigated based on the density and wave function theories. Ab initio theoretical evidence strongly suggests that bridging gold atoms exist in the ground states of C2v Al2Au(-) ((3)B1), C2v Al2Au ((2)B1), C2v Al2Au2(-) ((2)A1), C2v Al2Au2 ((1)A1), Cs Al2Au3(-) ((1)A'), and D3h Al2Au3 ((2)A1), which prove to possess an Al-Au-Al τ bond. For BAlAun(0/-) (n = 1-3) mixed clusters, bridging B-Au-Al units only exist in Cs BAlAu3(-) ((1)A') and Cs BAlAu3 ((2)A'), whereas Cs BAlAu(-) ((3)A''), Cs BAlAu ((2)A''), Cs BAlAu2(-) ((2)A'), and Cs BAlAu2 ((1)A') do not possess a bridging gold, as demonstrated by the fact that B-Al and B-Au exhibit significantly stronger electronic interaction than Al-Au in the same clusters. Orbital analyses indicate that Au 6s contributes approximately 98%-99% to the Au-based orbital in these Al-Au-Al/B-Au-Al interactions, whereas Au 5d contributes 1%-2%. The adiabatic and vertical detachment energies of Al2Aun(-) (n = 1-3) are calculated to facilitate future experimental characterizations. The results obtained in this work establish an interesting τ bonding model (Al-Au-Al/B-Au-Al) for electron-deficient systems in which Au 6s plays a major factor. PMID:23718624

  3. Two-electron emission after photoexcitation of metal-cluster dianions

    International Nuclear Information System (INIS)

    Size-selected metal-cluster dianions of the elements gold, silver and copper have been photoexcited by nanosecond-pulse and continuous laser irradiation, which leads to electron emission and monomer evaporation. In addition to the observation of these competing decay pathways, there is a reduction of the total cluster-ion intensity, which indicates the neutralization of dianions, i.e. the loss of both surplus electrons. In contrast, the activation of singly charged anionic clusters of the same type results primarily in dissociation by monomer evaporation and not by electron emission. These decay processes as observed for doubly and singly charged cluster anions suggest that the dianions emit two electrons simultaneously, i.e. in a correlated fashion. A classical conducting-sphere approximation confirms that the Coulomb barrier for symmetric two-electron emission is lower than the Coulomb barrier for the emission of a single electron. (paper)

  4. Structural, electronic, and magnetic properties of boron cluster anions doped with aluminum:BnAlˉ (2 ≤ n ≤ 9)

    Institute of Scientific and Technical Information of China (English)

    Gu Jian-Bing; Yang Xiang-Dong; Wang Huai-Qian; Li Hui-Fang

    2012-01-01

    The geometrical structures,relative stabilities,electronic and magnetic properties of small BnAlˉ (2 ≤ n ≤ 9) clusters are systematically investigated by using the first-principles density functional theory.The results show that the Al atom prefers to reside either on the outer-side or above the surface,but not in the centre of the clusters in all of the most stable BnAlˉ (2 ≤ n ≤ 9) isomers and the one excess electron is strong enough to modify the geometries of some specific sizes of the neutral clusters.All the results of the analysis for the fragmentation energies,the second-order difference of energies,and the highest occupied-lowest unoccupied molecular orbital energy gaps show that B4Alˉ and B8Alˉ clusters each have a higher relative stability.Especially,the B8Alˉ cluster has the most enhanced chemical stability.Furthermore,both the local magnetic moments and the total magnetic moments display a pronounced oddeven oscillation with the number of boron atoms,and the magnetic effects arise mainly from the boron atoms except for the B7Alˉ and B9Alˉ clusters.

  5. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    International Nuclear Information System (INIS)

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples

  6. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Science.gov (United States)

    Koide, T.; Saitoh, Y.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2014-05-01

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  7. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    Energy Technology Data Exchange (ETDEWEB)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  8. Fluorescent or not? Size-dependent fluorescence switching for polymer-stabilized gold clusters in the 1.1-1.7 nm size range.

    Science.gov (United States)

    Schaeffer, Nicolas; Tan, Bien; Dickinson, Calum; Rosseinsky, Matthew J; Laromaine, Anna; McComb, David W; Stevens, Molly M; Wang, Yiqian; Petit, Laure; Barentin, Catherine; Spiller, David G; Cooper, Andrew I; Lévy, Raphaël

    2008-09-14

    The synthesis of fluorescent water-soluble gold nanoparticles by the reduction of a gold salt in the presence of a designed polymer ligand is described, the size and fluorescence of the particles being controlled by the polymer to gold ratio; the most fluorescent nanomaterial has a 3% quantum yield, a 1.1 nm gold core and a 6.9 nm hydrodynamic radius. PMID:18758601

  9. Electronic Structure and Bonding of Icosahedral Core-Shell Gold-Silver Nanoalloy Clusters Au_(144-x)Ag_x(SR)_60

    CERN Document Server

    Malola, Sami

    2011-01-01

    Atomically precise thiolate-stabilized gold nanoclusters are currently of interest for many cross-disciplinary applications in chemistry, physics and molecular biology. Very recently, synthesis and electronic properties of "nanoalloy" clusters Au_(144-x)Ag_x(SR)_60 were reported. Here, density functional theory is used for electronic structure and bonding in Au_(144-x)Ag_x(SR)_60 based on a structural model of the icosahedral Au_144(SR)_60 that features a 114-atom metal core with 60 symmetry-equivalent surface sites, and a protecting layer of 30 RSAuSR units. In the optimal configuration the 60 surface sites of the core are occupied by silver in Au_84Ag_60(SR)_60. Silver enhances the electron shell structure around the Fermi level in the metal core, which predicts a structured absorption spectrum around the onset (about 0.8 eV) of electronic metal-to-metal transitions. The calculations also imply element-dependent absorption edges for Au(5d) \\rightarrow Au(6sp) and Ag(4d) \\rightarrow Ag(5sp) interband transit...

  10. Assemblies based on the directing effect of non-classical W18 anionic clusters and the rod-like trans-1,2-di-(4-pyridyl)-ethylen (bpe)

    International Nuclear Information System (INIS)

    Two polyoxometalate (POM) supramolecular assemblies based on W18 clusters and the rigid organic trans-1,2-di-(4-pyridyl)-ethylen (bpe) have been synthesized and fully characterized, namely (H2bpe)3.5H2[SbW18O60].5H2O (1), and (H2bpe)5[Ni4(AsW9O34)2(H2O)2].3H2O (2). Compounds 1-2 are formed from organic bpe cations and different polytungstate anions: pseudo-Dawson-type [SbW18O60]9- in 1 and sandwich-type [Ni4(H2O)2(AsW9O34)2]10- in 2. Both of compounds 1-2 crystallize in a low-symmetrical space group of P-1 and consist of a complicated supramolecular network based on non-covalent intermolecular weak interactions, including hydrogen bonding and π...π stacking. The multipoint hydrogen bonding interactions constitute the structural feature in two supramolecular frameworks. The UV-vis, fluorescence and electrochemistry properties are also studied. -- Graphical abstract: Two polyoxometalate-based supramolecular assemblies built upon W18 clusters and the rigid organic trans-1,2-di-(4-pyridyl)-ethylen (bpe) have been synthesized and characterized. Research highlights: → Sb3+ has a larger ionic radius to prevent the formation of the sandwich-type polyoxometalate cluster. → Non-covalent interactions play important roles in the self-organization process. → Polyanion can structure the conjugated organic molecule into a parallel and ordered arrangement. → Polyanion-based hybrid is a potential candidate in the modified material for electrode.

  11. Synthesis and structure of frame coordination polymer on the basis of [Nb4OTe4(CN)12]6- cluster anion and MnII aquacomplexes

    International Nuclear Information System (INIS)

    Deep-brown lamellar crystals of the compound [Mn7(H2O)26{Nb4OTe4(CN)12}2](OH)2·11H2O (1) are prepared in the reaction of aqua-ammonium solution of the K6[Nb4OTe4(CN)12]·K2CO3·KOH·8H2O complex with manganese(II) nitrate in glycerin. Structure of the complex was established by X-ray structural analysis. Compound (1) has a polymer structure with four-type manganese atoms, at the same time nitrogen atoms of eight cyano-groups of four-nuclear niobium cluster are coordinated with manganese atoms with the formation of {2, 3, 8}-connected three-dimensional net

  12. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...

  13. Nonresonant chemical mechanism in surface-enhanced Raman scattering of pyridine on M@Au12 clusters

    Science.gov (United States)

    Chen, Lei; Gao, Yang; Cheng, Yingkun; Li, Haichao; Wang, Zhigang; Li, Zhengqiang; Zhang, Rui-Qin

    2016-02-01

    By employing density functional theory (DFT), this study presents a detailed analysis of nonresonant surface-enhanced Raman scattering (SERS) of pyridine on M@Au12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, and Re+)-the stable 13-atom neutral and charged gold buckyball clusters. Changing the core atom in M@Au12 enabled us to modulate the direct chemical interactions between pyridine and the metal cluster. The results of our calculations indicate that the ground-state chemical enhancement does not increase as the binding interaction strengthens or the transfer charge increases between pyridine and the cluster. Instead, the magnitude of the chemical enhancement is governed, to a large extent, by the charged properties of the metal clusters. Pyridine on M@Au12 anion clusters exhibits strong chemical enhancement of a factor of about 102, but the equivalent increase for pyridine adsorbed on M@Au12 neutral and cation clusters is no more than 10. Polarizability and deformation density analyses clearly show that compared with the neutral and cation clusters, the anion clusters have more delocalized electrons and occupy higher energy levels in the pyridine-metal complex. Accordingly, they produce larger polarizability, leading to a stronger nonresonant enhancement effect.By employing density functional theory (DFT), this study presents a detailed analysis of nonresonant surface-enhanced Raman scattering (SERS) of pyridine on M@Au12 (M = V-, Nb-, Ta-, Cr, Mo, W, Mn+, Tc+, and Re+)-the stable 13-atom neutral and charged gold buckyball clusters. Changing the core atom in M@Au12 enabled us to modulate the direct chemical interactions between pyridine and the metal cluster. The results of our calculations indicate that the ground-state chemical enhancement does not increase as the binding interaction strengthens or the transfer charge increases between pyridine and the cluster. Instead, the magnitude of the chemical enhancement is governed, to a large extent, by the charged

  14. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  15. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  16. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.;

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The...

  17. Experimental and theoretical studies of the structural and electronic properties of vanadium–benzene sandwich clusters and their anions: V{sub n}Bz{sub n}{sup 0/−} (n = 1–5) and V{sub n}Bz{sub n−1}{sup 0/−} (n = 2–5)

    Energy Technology Data Exchange (ETDEWEB)

    Masubuchi, Tsugunosuke [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Iwasa, Takeshi [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); JST, ERATO, Nakajima Designer Nanocluster Assembly Project, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); Nakajima, Atsushi, E-mail: nakajima@chem.keio.ac.jp [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); JST, ERATO, Nakajima Designer Nanocluster Assembly Project, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2014-12-07

    One end open V{sub n}Bz{sub n}{sup −} (n = 1–5; Bz = benzene) and both ends open V{sub n}Bz{sub n−1}{sup −} (n = 2–5) vanadium–benzene cluster anions were studied using anion photoelectron spectroscopy and density functional calculations. The smaller (n ≤ 3) V{sub n}Bz{sub n} and V{sub n}Bz{sub n−1} clusters and corresponding anions were found to have structural isomers, whereas full-sandwiched V{sub n}Bz{sub n+1} clusters preferred to form multiple-decker sandwich structures. Several isomeric V{sub 2}Bz{sub 2} structures were identified theoretically and the anion photoelectron spectra of V{sub 2}Bz{sub 2}{sup 0/−} were explained well by the coexistence of two isomeric structures: (1) a V{sub 2}-core structure sandwiched between benzene molecules and (2) an alternating sandwich structure with the spin state strongly dependent on the structure. The adiabatic electron affinity of both V{sub n}Bz{sub n} and V{sub n}Bz{sub n−1} was found to increase with the cluster size at larger sizes (n = 4 or 5) and approaches to that of V{sub n}Bz{sub n+1}. The evolution of the structural and electronic properties of V{sub n}Bz{sub m} and V{sub n}Bz{sub m}{sup −} (m = n and n − 1) with size is discussed in comparison with V{sub n}Bz{sub n+1} and V{sub n}Bz{sub n+1}{sup −}.

  18. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  19. Excited States of Gold(I) Compounds, Luminescence and Gold-Gold Bonding

    OpenAIRE

    Fackler, John P.Jr.; Assefa, Zerihun; Forward, Jennifer M.; Staples, Richard J.

    1994-01-01

    It has long been established by Khan that the superoxide anion, O2 -, generates singlet oxygen, O2 1Δg, during dismutation. Auranofin, gold-phosphine thiols, β-Carotene, and metal-sulfur compounds can rapidly quench singlet O2. The quenching of the O2 1Δg, which exists at 7752 cm-1 above the ground state triplet, may be due to the direct interaction of the singlet O2 with gold(I) or may require special ligands such as those containing sulfur coordinated to the metal. Thus we have been examini...

  20. Uso de Resina de Intercambio Aniónico para la Recuperación del Complejo Oro Tiosulfato desde Soluciones Acuosas Use of Anion Exchange Resin for the Recovery of the Complex Gold Thiosulfate from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Miriam E Chaparro

    2012-01-01

    Full Text Available Se estudió la adsorción de oro utilizando la resina AuRIX®100 en medio tiosulfato de amonio, evaluando algunas variables que afectan la cinética del proceso tales como: temperatura, velocidad de agitación, pH, concentración de tiosulfato de amonio (NH42S2O3 y concentración de oro. El estudio se llevó a cabo en un reactor batch y una columna de intercambio iónico. Las condiciones de operación que presentaron mejores resultados de extracción de oro a 25°C, fueron: pH=10.5, velocidad de agitación=500 rpm, [Au]=1 mg/l, [(NH42S2O3]=0.04 M, 5 gramos de resina. Los resultados indican que al aumentar [(NH42S2O3] favorece la adsorción en un 99% durante tres horas, siendo afectado notablemente por la presencia de amonio. Las condiciones con mejores resultados en la columna a 25°C fueron, pH= 10.5 y [Au] =1 mg/l.The adsorption and elution of gold in thiosulfate-ammonia media were studied using the resin AuRIX®100, evaluating some variables that affect the kinetico of the process, such as: temperature, stirring speed, pH, thiosulfate concentration (NH42S2O3 and gold concentration. The study was carried out in a batch reactor and an ion exchange column. The operation conditions that presented better results of gold extraction at 25°C were: pH=10.5, stirring opeed=500 rpm, [Au]=1 mg/l, [(NH42S2O3]=0.04 M, and 5 gramo of resin. The results indicate that by increasing [(NH42S2O3] favors the adsorption by 99% during three hours, being noticeably affected by the presence of ammonia. The conditions with results on the column at 25°C were, pH= 10.5, [Au]=1 mg/l.

  1. Assemblies of gold icosahedra

    OpenAIRE

    Bilalbegovic, G.

    2004-01-01

    Low-dimensional free-standing aggregates of bare gold clusters are studied by the molecular dynamics simulation. Icosahedra of 55 and 147 atoms are equilibrated at T=300 K. Then, their one- and two-dimensional assemblies are investigated. It is found that icosahedra do not coalescence into large drops, but stable amorphous nanostructures are formed: nanowires for one-dimensional and nanofilms for two-dimensional assemblies. The high-temperature stability of these nanostructures is also invest...

  2. Intrinsic anion oxidation potentials.

    Science.gov (United States)

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  3. The benzene radical anion: A computationally demanding prototype for aromatic anions

    International Nuclear Information System (INIS)

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examine the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C2 symmetry is located below one D2h stationary point on a C2h pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (Aiso) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ

  4. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  5. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  6. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  7. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  8. Gold Monetization and Gold Discipline

    OpenAIRE

    1980-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  9. Gold monetization and gold discipline

    OpenAIRE

    Flood, Robert P.; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  10. Anion Ordering in Bichalcogenides

    Directory of Open Access Journals (Sweden)

    Martin Valldor

    2016-07-01

    Full Text Available This review contains recent developments and new insights in the research on inorganic, crystalline compounds with two different chalcogenide ions (bichalcogenides. Anion ordering is used as a parameter to form structural dimensionalities as well as local- and global-electric polarities. The reason for the electric polarity is that, in the heterogeneous bichalcogenide lattice, the individual bond-lengths between cations and anions are different from those in a homogeneous anion lattice. It is also shown that heteroleptic tetrahedral and octahedral coordinations offer a multitude of new crystal fields and coordinations for involved cations. This coordination diversity in bichalcogenides seems to be one way to surpass electro-chemical redox potentials: three oxidation states of a single transition metal can be stabilized, e.g., Ba15V12S34O3. A new type of disproportionation, related to coordination, is presented and results from chemical pressure on the bichalcogenide lattices of (La,CeCrS2O, transforming doubly [CrS3/3S2/2O1/1]3− (5+1 into singly [CrS4/2S2/3]7/3− (6+0 and [CrS4/3O2/1]11/3− (4+2 coordinations. Also, magnetic anisotropy is imposed by the anion ordering in BaCoSO, where magnetic interactions via S or O occur along two different crystallographic directions. Further, the potential of the anion lattice is discussed as a parameter for future materials design.

  11. Microsolvation effects on the electron binding energies of halide anions

    Science.gov (United States)

    Dolgounitcheva, O.; Zakrzewski, V. G.; Streit, L.; Ortiz, J. V.

    2014-02-01

    Ab initio electron propagator calculations in the partial third order (P3) and P3+ approximations were performed to obtain vertical electron detachment energies (VEDEs) of fluoride and chloride clusters with one through three molecules of water. Larger clusters of F- and Cl- with six water molecules were also treated with and without the polarisable continuum model (PCM). For the smaller clusters, good agreement between calculated VEDEs and peak positions in photoelectron spectra is achieved. Large shifts in VEDEs are observed for both hexameric fluoride-water and chloride-water complexes when the PCM is applied. Significant changes in coordination geometries about the chloride anion also occur in this model. In all fluoride complexes, Dyson orbitals for the lowest VEDEs are delocalised over oxygen atoms. On the contrary, for the case of chloride-water clusters, the Dyson orbitals corresponding to the lowest VEDEs are localised on the anion.

  12. Modeling the interaction of nitrate anions with ozone and atmospheric moisture

    Institute of Scientific and Technical Information of China (English)

    A. Y. Galashev

    2015-01-01

    The molecular dynamics method is used to investigate the interaction between one–six nitrate anions and water clus-ters absorbing six ozone molecules. The infrared (IR) absorption and reflection spectra are reshaped significantly, and new peaks appear at Raman spectra due to the addition of ozone and nitrate anions to the disperse water system. After ozone and nitrate anions are captured, the average (in frequency) IR reflection coefficient of the water disperse system increased drastically and the absorption coefficient fell.

  13. BIMETALLIC IRON-RHODIUM ANIONIC CARBONYL CLUSTERS [FE2RH(CO)X]- (X = 10 OR 11), [FERH4(CO)15]2-, [FE2RH4(CO)16]2-, AND [FERH5(CO)16]-

    OpenAIRE

    CERIOTTI, A; LONGONI, G; M. Manassero; SANSONI, M; Della Pergola, R; HEATON, B; Smith, D.

    1982-01-01

    The syntheses and interconversions of mixed iron-rhodium carbonyl clusters are described; a combination of X-ray analysis and multinuclear n.m.r. measurements allowed the structural characterisation of [FeRh4(CO)15]2-, [FeRh5(CO)16]-, and [Fe2Rh4(C0)16]2- which can all be obtained from the unstable cluster, [Fe2Rh(CO)x]-

  14. World Gold Markets, Istanbul Gold Exchange and Gold Risk Management

    OpenAIRE

    Serdar Citak

    1999-01-01

    The establishment of Istanbul Gold Exchange (IGE) is the most important stage in the Turkish gold sector restructuring process. IGE has provided a competitive formation in prices and the price differential between Turkey and international markets has been cut dramatically. Today, Turkish investors can buy and sell gold in international prices in the IGE Precious Metals Market. Gold is accepted as a hedge tool against inflation and as a safe haven in economic crisis, world-wide. Gold is the on...

  15. Green Gold

    International Nuclear Information System (INIS)

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  16. Relative yields, mass distributions and energy spectra of cluster ions sputtered from niobium under keV atomic and polyatomic gold ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Belykh, S.F. E-mail: serbel@ariel.tashkent.su; Habets, B.; Rasulev, U.Kh.; Samartsev, A.V.; Stroev, L.V.; Veryovkin, I.V

    2000-04-01

    In the present work, the comparative studies of relative yields, mass distributions and kinetic energy spectra of secondary Nb{sub n}{sup +} ions (n=1-16) sputtered from niobium target by atomic and polyatomic Au{sub m}{sup -} projectiles (m=1-3) with the energy E{sub 0}=6-18 keV/atom have been carried out. The strong effect of anomalously high non-additivity of metal sputtering as positive large cluster ions under polyatomic ion bombardment was found. The comparison and discussion of the results obtained for Nb and for Ta are presented.

  17. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S.L.; Lenart, V.M., E-mail: sgomez@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)

    2015-10-01

    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  18. Photoelectron spectra and structure of the Mnn− anions (n = 2–16)

    International Nuclear Information System (INIS)

    Photoelectron spectra of the Mnn− anion clusters (n = 2–16) are obtained by anion photoelectron spectroscopy. The electronic and geometrical structures of the anions are computed using density functional theory with generalized gradient approximation and a basis set of triple-ζ quality. The electronic and geometrical structures of the neutral Mnn clusters have also been computed to estimate the adiabatic electron affinities. The average absolute difference between the computed and experimental vertical detachment energies of an extra electron is about 0.2 eV. Beginning with n = 6, all lowest total energy states of the Mnn− anions are ferrimagnetic with the spin multiplicities which do not exceed 8. The computed ionization energies of the neutral Mnn clusters are in good agreement with previously obtained experimental data. According to the results of our computations, the binding energies of Mn atoms are nearly independent on the cluster charge for n > 6 and possess prominent peaks at Mn13 and Mn13− in the neutral and anionic series, respectively. The density of states obtained from the results of our computations for the Mnn− anion clusters show the metallic character of the anion electronic structures

  19. Resonant spectra of quadrupolar anions

    CERN Document Server

    Fossez, K; Nazarewicz, W; Michel, N; Garrett, W R; Płoszajczak, M

    2016-01-01

    In quadrupole-bound anions, an extra electron is attached at a sufficiently large quadrupole moment of a neutral molecule, which is lacking a permanent dipole moment. The nature of the bound states and low-lying resonances of such anions is of interest for understanding the threshold behavior of open quantum systems in general. In this work, we investigate the properties of quadrupolar anions as extreme halo systems, the formation of rotational bands, and the transition from a subcritical to supercritical electric quadrupole moment. We solve the electron-plus-molecule problem using a non-adiabatic coupled-channel formalism by employing the Berggren ensemble, which explicitly contains bound states, narrow resonances, and the scattering continuum. We demonstrate that binding energies and radii of quadrupolar anions strictly follow the scaling laws for two-body halo systems. Contrary to the case of dipolar anions, ground-state band of quadrupolar anions smoothly extend into the continuum, and many rotational ban...

  20. Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Anderson-Type Polyoxometalate Clusters.

    Science.gov (United States)

    Li, Xin-Xiong; Wang, Yang-Xin; Wang, Rui-Hu; Cui, Cai-Yan; Tian, Chong-Bin; Yang, Guo-Yu

    2016-05-23

    A new approach to prepare heterometallic cluster organic frameworks has been developed. The method was employed to link Anderson-type polyoxometalate (POM) clusters and transition-metal clusters by using a designed rigid tris(alkoxo) ligand containing a pyridyl group to form a three-fold interpenetrated anionic diamondoid structure and a 2D anionic layer, respectively. This technique facilitates the integration of the unique inherent properties of Anderson-type POM clusters and cuprous iodide clusters into one cluster organic framework. PMID:27061042

  1. Bound anionic states of adenine

    OpenAIRE

    Harańczyk, Maciej; Gutowski, Maciej; Li, Xiang; Bowen, Kit H.

    2007-01-01

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine...

  2. Porating anion-responsive copolymeric gels.

    Science.gov (United States)

    England, Dustin; Yan, Feng; Texter, John

    2013-09-24

    A polymerizable ionic liquid surfactant, 1-(11-acryloyloxyundecyl)-3-methylimidiazolium bromide (ILBr), was copolymerized with methyl methacrylate (MMA) in aqueous microemulsions at 30% (ILBr w/w) and various water to MMA ratios. The ternary phase diagram of the ILBr/MMA/water system was constructed at 25 and 60 °C. Homopolymers and copolymers of ILBr and MMA were produced by thermally initiated chain radical microemulsion polymerization at various compositions in bicontinuous and reverse microemulsion subdomains. Microemulsion polymerization reaction products varied from being gel-like to solid, and these materials were analyzed by thermal and scanning electron microscopy methods. Microemulsion polymerized materials were insoluble in all solvents tested, consistent with light cross-linking. Ion exchange between Br(-) and PF6(-) in these copolymeric materials resulted in the formation of open-cell porous structures in some of these materials, as was confirmed by scanning electron microscopy (SEM). Several compositions illustrate the capture of prepolymerization nanoscale structure by thermally initiated polymerization, expanding the domain of compositions exhibiting this feat and yet to be demonstrated in any other system. Regular cylindrical pores in interpenetrating ILBr-co-MMA and PMMA networks are produced by anion exchange in the absence of templates. A percolating cluster/bicontinuous transition is "captured" by SEM after using anion exchange to visualize the mixed cluster/pore morphology. Some design principles for achieving this capture and for obtaining stimuli responsive solvogels are articulated, and the importance of producing solvogels in capturing the nanoscale is highlighted. PMID:23968242

  3. Anion photoelectron spectroscopy of germanium and tin clusters containing a transition- or lanthanide-metal atom; MGe(n)- (n = 8-20) and MSn(n)- (n = 15-17) (M = Sc-V, Y-Nb, and Lu-Ta).

    Science.gov (United States)

    Atobe, Junko; Koyasu, Kiichirou; Furuse, Shunsuke; Nakajima, Atsushi

    2012-07-14

    The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption. PMID:22333909

  4. Gold Loading on Ion Exchange Resins in Non-Ammoniacal Resin-Solution Systems

    Directory of Open Access Journals (Sweden)

    Abrar Muslim

    2010-12-01

    Full Text Available The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution (NARS systems has been studied. The loading of gold onto ion exchange resins is affected by polythionate concentration, and trithionate can be used as the baseline in the system. The results also show that resin capacity on gold loading increases due to the increase in the equilibrium thiosulfate concentration in the NARS system. Gold loading performances show the need of optimization the equilibrium concentrations of thiosulfate in the NARS system. Keywords: equilibrium, gold loading, resin capacity, thiosulfate, trithionate

  5. Going for Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    While the international gold price in February hit the highest point in 25 years at $541.20 per ounce for futures delivery, a new gold rush is sweeping across China. According to the World Gold Council, the London-based gold marketing organization funded by leading global gold mining firms, the purchase of gold products in China grew by 9 percent in the first nine

  6. Reversible multi polyelectrolyte layers on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Djoumessi Lekeufack, Diane; Brioude, Arnaud, E-mail: arnaud.brioude@univ-lyon1.fr [UMR CNRS 5615, Universite Claude Bernard Lyon 1, Laboratoire des Multimateriaux et Interfaces (LMI) (France); Lalatonne, Yoann; Motte, Laurence [UMR 7244 CNRS, Universite Paris 13, Laboratoire CSPBAT (France); Coleman, Anthony W.; Miele, Philippe [UMR CNRS 5615, Universite Claude Bernard Lyon 1, Laboratoire des Multimateriaux et Interfaces (LMI) (France)

    2012-06-15

    Gold nanoparticles surface can be easily modified by different molecules such as polyelectrolytes. In a typical multilayer system made of polyethyleneimine and poly(styrene sulfonate)sodium alternated layers around gold nanoparticles, we have evaluated the interactions between the different layers and the relative strength of interfacial properties. By means of UV-Visible and FTIR spectroscopies, we have shown that due to its amine functionalities, the bonding of polyethyleneimine to gold particles is stronger than the one implied with the sulfonate anion in the PSS inducing a clean removal of this latter after the last polyethyleneimine deposition. Considering that polyethyleneimine is cytotoxic and that only weak covalent bonds are concerned in polyelectrolyte multilayer, this last point is of main importance since external degradation thus exposing polyethyleneimine sub-layer of multilayer films to in vivo tissue cells can occur by many ways.

  7. Templating growth of gold nanostructures with a CdSe quantum dot array

    Science.gov (United States)

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V.; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-05-01

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ~7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  8. Chemical Modeling of Cometary Anions

    Science.gov (United States)

    Cordiner, Martin; Charnley, S. B.

    2009-09-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not previously been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydrodynamical model of Rodgers & Charnley (2002), we investigate the role of the hydrocarbon and nitrile anions Cn-, CnH- and CnN- in the coma. We calculate the effects of these anions on the charge balance and examine their impact on cometary coma chemistry. References: Chaizy, P. et al. 1991, Nature, 349, 393 Rodgers, S.D. & Charnley, S.B. 2002, MNRAS, 330, 660

  9. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  10. First-Principles Investigation of Ag-Doped Gold Nanoclusters

    OpenAIRE

    Fei-Yue Fan; Yi She; Qing-Fen Liu; Liang-An Zhang; Yuan-Ming Sun; Di Wu; Xiao-Dong Zhang; Pei-Xun Liu; Mei-Li Guo

    2011-01-01

    Gold nanoclusters have the tunable optical absorption property, and are promising for cancer cell imaging, photothermal therapy and radiotherapy. First-principle is a very powerful tool for design of novel materials. In the present work, structural properties, band gap engineering and tunable optical properties of Ag-doped gold clusters have been calculated using density functional theory. The electronic structure of a stable Au20 cluster can be modulated by incorporating Ag, and the HOMO–LUM...

  11. Anion Transport with Chalcogen Bonds.

    Science.gov (United States)

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  12. Gold in Modern Economy

    OpenAIRE

    Boryshkevych Olena V.

    2014-01-01

    The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in t...

  13. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  14. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl4]- solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl4]- anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  15. Density Functional Study of Electronic and Structural Properties of Gold-Cadmium Selenide/Telluride Nanoclusters

    Directory of Open Access Journals (Sweden)

    Shimeles T. Bulbula

    2015-01-01

    gold electrodes decrease as cluster size increases, whereas the binding energy shows a reverse relationship with the cluster size. However, a few clusters show special properties like AuCd2Se3 and AuCd2Te3 clusters.

  16. Colloidal gold--low density lipoprotein conjugates as membrane receptor probes.

    OpenAIRE

    Handley, D. A.; Arbeeny, C M; Witte, L D; Chien, S

    1981-01-01

    We have developed a method for conjugating low density lipoproteins (LDL) with colloidal gold. Conjugation, complete after 1 min, occurs by electrostatic adsorption of the LDL to the negatively charged gold particle. Each conjugate consists of approximately eight biologically active LDL molecules clustered around a central 19-nm gold granule. Acidic (pH 4), alkaline (pH 9), or high ionic (600 milliosmolar NaCl) environments do not dissociate the conjugate. Colloidal gold is an electron-dense,...

  17. Adsorption of small Au clusters on MgO and MgO/Mo: the role of oxygen vacancies and the Mo-support

    Science.gov (United States)

    Frondelius, P.; Häkkinen, H.; Honkala, K.

    2007-09-01

    We report a systematic density functional theory investigation of adsorption of small Aun (n =1-6) clusters on ideal and defected MgO(100) single crystal surfaces and Mo(100) supported thin MgO(100) films. As a model defect, we consider a neutral surface oxygen vacancy (Fs). Optimal adsorption geometries and energies, cluster formation energies and cluster charges are discussed and compared in detail over four different substrates. For a given cluster size, the adsorption energy among these substrates increases in the order MgO, Fs/MgO, MgO/Mo and Fs/MgO/Mo. While cluster growth by association of atoms from gas phase is exothermic on all the substrates, cluster growth by diffusion and aggregation of pre-adsorbed Au atoms is an endothermic process for Au1→Au2, Au3→Au4 and Au5→Au6 on MgO/Mo and Au2→Au3 and Au5→Au6 on Fs/MgO/Mo. The adsorbed clusters are close to neutral on MgO, but adopt a significant anionic charge on other supports with the increasing order: MgO/Mo, Fs/MgO and Fs/MgO/Mo. The adsorption strength thus correlates with the amount of negative charge transferred from the substrate to gold.

  18. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  19. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer;

    2011-01-01

    We use density functional theory (DFT) to investigate the electronic structure and chemical properties of gold nanoparticles. Different structural families of clusters are compared. For up to 60 atoms we optimize structures using DFT-based simulated annealing. Cluster geometries are found to...

  20. How many gold atoms make gold metal?

    OpenAIRE

    Häkkinen, Hannu; Malola, Sami

    2015-01-01

    It is well known that a piece of gold is an excellent metal: it conducts heat and electricity, it is malleable to work out for jewellery or thin coatings, and it has the characteristic golden colour. How do these everyday properties – familiar from our macroscopic world – change when a nanometre-size chunk of gold contains only 100, 200 or 300 atoms?

  1. Frontiers in Gold Chemistry

    OpenAIRE

    Mohamed, Ahmed A.

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  2. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Michael Rajamathi; Grace S Thomas; P Vishnu Kamath

    2001-10-01

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance for many modern applications. In this article, we discuss many different ways of making anionic clays and compare and contrast the rich diversity of this class of materials with the better-known cationic clays.

  3. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  4. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... structure, objectives of the manager, and convenience yield)....

  5. Hydrogen bonds in the nucleobase-gold complexes: Photoelectron spectroscopy and density functional calculations

    Science.gov (United States)

    Cao, Guo-Jin; Xu, Hong-Guang; Li, Ren-Zhong; Zheng, Weijun

    2012-01-01

    The nucleobase-gold complexes were studied with anion photoelectron spectroscopy and density functional calculations. The vertical detachment energies of uracil-Au-, thymine-Au-, cytosine-Au-, adenine-Au-, and guanine-Au- were estimated to be 3.37 ± 0.08 eV, 3.40 ± 0.08 eV, 3.23 ± 0.08 eV, 3.28 ± 0.08 eV, and 3.43 ± 0.08 eV, respectively, based on their photoelectron spectra. The combination of photoelectron spectroscopy experiments and density functional calculations reveals the presence of two or more isomers for these nucleobase-gold complexes. The major isomers detected in the experiments probably are formed by Au anion with the canonical tautomers of the nucleobases. The gold anion essentially interacts with the nucleobases through N-H...Au hydrogen bonds.

  6. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  7. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  8. IMPROVING OF ANION EXCHANGERES REGENERATION

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibrahim

    2013-05-01

    Full Text Available Inthis study, Different basis [NaOH and KOH] of variable concentration are usedto reactivate Anion exchangers employing different schemes .The Laboratoryresults showed large improvement in efficiency of these exchangers ( i.eoperating time was increased from 12 to 42 hours .The results of this work showed that the environmentalload (waste water can be reduced greatly when using the proposed regenerationscheme .

  9. Development and experimental application of a gold liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Davies, N.; Weibel, D.E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J.C

    2003-01-15

    A liquid metal ion source (LMIS) based upon a gold/germanium eutectic has been developed. The LMIS emits a variety of ions including monatomic gold and gold clusters. Gold ions have been utilised for SIMS analysis of the polypeptide gramicidin and the polymer poly(ethylene-terepthalate) (PET). It has been found that monatomic gold (Au{sup +}) increases secondary ion yields up to a factor of four compared to gallium, for both gramicidin and PET. The Au{sub 3}{sup +} cluster produces a strong non-linear increase in yield over monatomic gold, for both gramicidin and PET. This effect is greatest at high mass, the yield for the gramicidin molecular ion increasing by a factor of over 60. No evidence has been found to suggest increased fragmentation as a result of cluster ion bombardment. The LMIS also exhibits good static SIMS imaging capacity.

  10. Catalysis by gold

    CERN Document Server

    Bond, Geoffrey C; Thompson, David T

    2006-01-01

    Gold has traditionally been regarded as inactive as a catalytic metal. However, the advent of nanoparticulate gold on high surface area oxide supports has demonstrated its high catalytic activity in many chemical reactions. Gold is active as a heterogeneous catalyst in both gas and liquid phases, and complexes catalyse reactions homogeneously in solution. Many of the reactions being studied will lead to new application areas for catalysis by gold in pollution control, chemical processing, sensors and fuel cell technology. This book describes the properties of gold, the methods for preparing g

  11. Electronic shell structure and chemisorption on gold nanoparticles

    OpenAIRE

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer; Nørskov, J. K.; Jacobsen, Karsten Wedel

    2013-01-01

    We use density functional theory (DFT) to investigate the electronic structure and chemical properties of gold nanoparticles. Different structural families of clusters are compared. For up to 60 atoms we optimize structures using DFT-based simulated annealing. Cluster geometries are found to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All t...

  12. Processing of residual gold (III) solutions via ion exchange

    OpenAIRE

    Alguacil, Francisco José; Adeva, Paloma; Alonso Gámez, Manuel

    2005-01-01

    The processing of gold (III)-hydrochloric acid solutions by the anionic ion exchange Lewatit MP-64_resin has been investigated. The influence of several variables such as the temperature, the hydrochloric acid and metal concentrations in the aqueous solution and the variation of the amount of resin added has been studied. Moreover, a kinetic study performed in the uptake of gold (III) by Lewatit MP-64_shows that either the film-diffusion and the particle-diffusion models fit the adsorption pr...

  13. Efficient Amide Based Halogenide Anion Receptors

    Institute of Scientific and Technical Information of China (English)

    Hong Xing WU; Feng Hua LI; Hai LIN; Shou Rong ZHU; Hua Kuan LIN

    2005-01-01

    In this paper, we present the synthesis and anion recognition properties of the amide based phenanthroline derivatives 1, 2 and 3. In all cases 1:1 receptor: anion complexes were observed. The receptors were found to be selective for fluoride and chloride respectively over other putative anionic guest species.

  14. Electroless selective deposition of gold nano-array for silicon nanowires growth

    Directory of Open Access Journals (Sweden)

    Ruiz-Gomes E.

    2014-01-01

    Full Text Available Nanopatterns of gold clusters on a large surface of oriented Si(111 substrates, from the galvanic displacement of gold salt (via the spontaneous reduction of AuCl4 -, are demonstrated in this work. The Si substrate is patterned by Focused Ion Beam (FIB prior to being dipped in a gold solution. Here, we show that these patterns lead to successful control of the position and size of gold clusters. Sequential patterning reveals a powerful maskless alternative to surface preparation prior to Si nanowire growth

  15. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  16. Polymerization of anionic wormlike micelles.

    Science.gov (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  17. Anion Solvation in Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  18. Controlled Aspect Ratios of Gold Nanorods in Reduction-Limited Conditions

    Directory of Open Access Journals (Sweden)

    Jong-Yeob Kim

    2011-01-01

    Full Text Available Aspect ratios of gold nanorods have been finely modified in reduction-limited conditions via two electrochemical ways: by changing the amount of a growth solution containing small gold clusters in the presence of already prepared gold nanorods as seeds or by changing electrolysis time in the presence or absence of a silver plate. While the atomic molar ratio of gold in the growth solution to gold in the seed solution is critical in the former method, the relative molar ratio of gold ions to silver ions in the electrolytic solution is important in the latter way for the control of the aspect ratios of gold nanorods. The aspect ratios of gold nanorods decrease with an increase of electrolysis time in the absence of a silver plate, but they increase with an increase of electrolysis time in the presence of a silver plate.

  19. Preparation of gold nanocluster bioconjugates for electron microscopy.

    Science.gov (United States)

    Heinecke, Christine L; Ackerson, Christopher J

    2013-01-01

    In this chapter, we describe types of gold nanoparticle-biomolecule conjugates and their use in electron microscopy. Included are two detailed protocols for labeling an IgG antibody with gold monolayer protected clusters. The first approach is a direct bonding approach that utilizes the ligand place exchange reaction. The second approach describes NHS-EDC coupling of Au(144)(pMBA)(60) with IgG. Also included are various characterization techniques for determining labeling efficiency. PMID:23086882

  20. Gold Thione Complexes

    Directory of Open Access Journals (Sweden)

    Francesco Caddeo

    2014-08-01

    Full Text Available The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione with gold complexes leads to the dinuclear gold(I complexes [{Au(C6F5}2(Et4todit] and [Au(Et4todit]2(OTf2, which do not contain any gold-gold interactions, or to the gold(III derivative [{Au(C6F53}2(Et4todit]. The crystal structures have been established by X-ray diffraction studies and show that the gold centers coordinate to the sulfur atoms of the imidazoline-2-thione groups.

  1. Gold Thione Complexes

    OpenAIRE

    Francesco Caddeo; Vanesa Fernández-Moreira; Massimiliano Arca; Antonio Laguna; Vito Lippolis; M. Concepción Gimeno

    2014-01-01

    The reaction of the ligand Et4todit (4,5,6,7-Tetrathiocino-[1,2-b:3,4-b']-diimidazolyl-1,3,8,10-tetraethyl-2,9-dithione) with gold complexes leads to the dinuclear gold(I) complexes [{Au(C6F5)}2(Et4todit)] and [Au(Et4todit)]2(OTf)2, which do not contain any gold-gold interactions, or to the gold(III) derivative [{Au(C6F5)3}2(Et4todit)]. The crystal structures have been established by X-ray diffraction studies and show that the gold centers coordinate to the sulfur atoms of the imidazoline-2-t...

  2. Polymer Protected Gold Nanoparticles

    OpenAIRE

    Shan, Jun

    2006-01-01

    Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT)...

  3. Magic Gold Nanotubes

    OpenAIRE

    SENGER, R. Tuğrul; DAĞ, Sefa; ÇIRACI, Salim

    2005-01-01

    In recent ultra-high-vacuum transmission-electron-microscopy experiments evidence is found for the formation of suspended gold single-wall nanotubes (SWNTs) composed of five helical strands. Similar to carbon nanotubes, the (n,m) notation defines the structure of the gold SWNTs. Experimentally, only the (5,3) tube has been observed to form among several other possible alternatives. Using first-principles calculations we demonstrate that gold atoms can form both freestanding and tip-...

  4. Gold as an investment

    OpenAIRE

    Zemánek, Adam

    2015-01-01

    Bachelor thesis was created to understand investments in gold, to analyse the develop-ment of its price, discussing the reasons why people should invest in gold. Moreover, it introduces different forms of availability and possible earnings from investing in gold. First part is focused on describing important properties of this valuable commodity. Second part of the thesis analyses specific possibilities of investments and compares them with each other from the point of view of an investor.

  5. A Gold Bubble?

    OpenAIRE

    Dirk G Baur; Kristoffer Glover

    2012-01-01

    In this paper we use a test developed by Phillips et al. (2011) to identify a bubble in the gold market. We find that the price of gold followed an explosive price process between 2002 and 2012 interrupted only briefly by the subprime crisis in 2008. We also provide a theoretical foundation for such bubble tests based on a behavioural model of heterogeneous agents and demonstrate that periods of explosive price behaviour are consistent with increased chartist activity in the gold market. The ...

  6. Dynamics of excess electrons in atomic and molecular clusters

    OpenAIRE

    Young, Ryan Michael

    2011-01-01

    Femtosecond time-resolved photoelectron imaging (TRPEI) is applied to the study of excess electrons in clusters as well as to microsolvated anion species. This technique can be used to perform explicit time-resolved as well as one-color (single- or multiphoton) studies on gas phase species. The first part of this dissertation details time-resolved studies done on atomic clusters with an excess electron, the excited-state dynamics of solvated molecular anions, and charge-transfer dynamics to...

  7. Cesium Salt of Sodium 30-Tungstopentaphosphate: An Effective and Green Polyoxometalate for Synthesis of Gold Nanoparticles along with Decoration of Titanium Dioxide with Gold Nanoparticles for Bleaching of Malachite Green

    OpenAIRE

    Fatemeh Farrash Bamoharram; Afsaneh Moghadam Jafari; Ali Ayati; Bahareh Tanhaei; Mika Sillanpää

    2013-01-01

    For the first time, capability of the cesium salt of sodium 30-tungstopentaphosphate, the so-called Preyssler’s anion (CsP5), as a green and eco-friendly polyoxometalate was investigated in the synthesis of gold nanoparticles and decoration of titanium dioxide with gold nanoparticles. Gold nanoparticles and nanocomposites were characterized by TEM, XRD, UV, and FTIR. TEM images showed that the gold nanoparticles have tubular and spherical shapes and particle size ranges from 10 to 25 nm. For ...

  8. Colloidal gold: Pt. 1

    International Nuclear Information System (INIS)

    Two basic approaches are used in the preparation of colloidal gold solutions. One is the disintegration of metallic gold rods by an electric arc operating in a liquid medium. The other more general approach is the synthesis of particles from gold salts using either appropriate reducing agents or radiation. X-rays with the results from electron microscopy were used for size determination. The growth, nucleation and coagulation of the particles were studied. The morphology and structure charateristics of colloidal gold particles were investigated by means of electron microscopy and are also described

  9. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  10. Cluster Automorphisms

    OpenAIRE

    Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa

    2010-01-01

    In this article, we introduce the notion of cluster automorphism of a given cluster algebra as a $\\ZZ$-automorphism of the cluster algebra that sends a cluster to another and commutes with mutations. We study the group of cluster automorphisms in detail for acyclic cluster algebras and cluster algebras from surfaces, and we compute this group explicitly for the Dynkin types and the Euclidean types.

  11. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  12. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied withcyanide leaching liquor of gold ores, containing various kinds of ions. The adsorbed leaching liquorwas analyzed by atomic emission spectroscopy and colorimetric method. The contents of variouskinds of ions in ACFF were determined with X-ray photoctron spectroscopy. ACFF not onlyadsorbed gold but also adsorbed arsenic, nickel, zinc, calcium, sulphur, bismuth, copper, iron. silverand cyanide anion. Atomic percentage of C and those of O, N, Zr, Fe increase and decreaserespectively with the increase of the layer depth, while those of Ca, Au, Ag keep constant.

  13. The stabilization and targeting of surfactant-synthesized gold nanorods

    International Nuclear Information System (INIS)

    The strong cetyltrimethylammonium bromide (CTAB) surfactant responsible for the synthesis and stability of gold nanorod solutions complicates their biomedical applications. The critical parameter to maintain nanorod stability is the ratio of CTAB to nanorod concentration. The ratio is approximately 740 000 as determined by chloroform extraction of the CTAB from a nanorod solution. A comparison of nanorod stabilization by thiol-terminal PEG and by anionic polymers reveals that PEGylation results in higher yields and less aggregation upon removal of CTAB. A heterobifunctional PEG yields nanorods with exposed carboxyl groups for covalent conjugation to antibodies with the zero-length carbodiimide linker EDC. This conjugation strategy leads to approximately two functional antibodies per nanorod according to fluorimetry and ELISA assays. The nanorods specifically targeted cells in vitro and were visible with both two-photon and confocal reflectance microscopies. This covalent strategy should be generally applicable to other biomedical applications of gold nanorods as well as other gold nanoparticles synthesized with CTAB.

  14. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. PMID:26555960

  15. Gold in the investment portfolio

    OpenAIRE

    Demidova-Menzel, Nadeshda; Heidorn, Thomas

    2007-01-01

    The paper examines the key drivers of gold investment. Since 2000 the gold price has risen drastically, making gold an interesting add-on to a portfolio. As gold futures have negative roll returns, gold pool accounts are characterized by high credit risk and physical possession of gold means high transaction costs, Xetra-Gold might be the most efficient way to enter the market. Xetra-Gold is a product created by the Deutsche Börse in 2007, which is handled like a security but can be exchanged...

  16. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  17. Gold in the Books

    Institute of Scientific and Technical Information of China (English)

    江河

    2002-01-01

    In the present Chinese market, more and more businessmen turn to the profit-making trade. Even some counters in the bookstores are selling gold rings, necklaces, bracelets, etc. One day a school teacher asked a store assistant,“Why are you selling gold in your bookstore?”

  18. Gold in psoriatic arthopathy.

    OpenAIRE

    Richter, M B; Kinsella, P; Corbett, M

    1980-01-01

    It has been suggested that gold is not effective in psoriatic arthropathy. We did not agree and therefore did a retrospective study of 98 patients. Gold had been given to 27 and was effective in 22, 14 of whom are still receiving it. The incidence of side effects was low and comparable to those in rheumatoid arthritis.

  19. First-Principles Investigation of Ag-Doped Gold Nanoclusters

    Directory of Open Access Journals (Sweden)

    Fei-Yue Fan

    2011-05-01

    Full Text Available Gold nanoclusters have the tunable optical absorption property, and are promising for cancer cell imaging, photothermal therapy and radiotherapy. First-principle is a very powerful tool for design of novel materials. In the present work, structural properties, band gap engineering and tunable optical properties of Ag-doped gold clusters have been calculated using density functional theory. The electronic structure of a stable Au20 cluster can be modulated by incorporating Ag, and the HOMO–LUMO gap of Au20−nAgn clusters is modulated due to the incorporation of Ag electronic states in the HOMO and LUMO. Furthermore, the results of the imaginary part of the dielectric function indicate that the optical transition of gold clusters is concentration-dependent and the optical transition between HOMO and LUMO shifts to the low energy range as the Ag atom increases. These calculated results are helpful for the design of gold cluster-based biomaterials, and will be of interest in the fields of radiation medicine, biophysics and nanoscience.

  20. A novel method of supporting gold nanoparticles on MWCNTs: Synchrotron X-ray reduction

    Institute of Scientific and Technical Information of China (English)

    Kuan-Nan Lin; Tsung-Yeh Yang; Hong-Ming Lin; Yeu-Kuang Hwu; She-Huang Wu; Chung-Kwei Lin

    2007-01-01

    Gold nanoparticles decorating the surface of multiwalled carbon nanotubes (MWCNTs) are prepared by photochemical reduction. The gold clusters form different interesting geometrical faceted shapes in accordance to time duration of synchrotron X-ray irradiation. The shape of nanogold could be spherical, rod-like, or triangular. Carbon nanotubes serve as optimal templates for the heterogeneous nucleation of gold nanocrystals. These nanocrystal structures are characterized by transmission electron microscope (TEM) and element analysis by energy dispersive spectroscopy (EDS).

  1. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold.

    OpenAIRE

    Tinglu, G; Ghosh, A.; Ghosh, B K

    1984-01-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles...

  2. Hollow Gold Cages and Their Topological Relationship to Dual Fullerenes.

    Science.gov (United States)

    Trombach, Lukas; Rampino, Sergio; Wang, Lai-Sheng; Schwerdtfeger, Peter

    2016-06-20

    Golden fullerenes have recently been identified by photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.-S. Wang, X. C. Zeng, PNAS 2006, 103, 8326-8330]. These unique triangulations of a sphere are related to fullerene duals having exactly 12 vertices of degree five, and the icosahedral hollow gold cages previously postulated are related to the Goldberg-Coxeter transforms of C20 starting from a triangulated surface (hexagonal lattice, dual of a graphene sheet). This also relates topologically the (chiral) gold nanowires observed to the (chiral) carbon nanotubes. In fact, the Mackay icosahedra well known in gold cluster chemistry are related topologically to the dual halma transforms of the smallest possible fullerene C20 . The basic building block here is the (111) fcc sheet of bulk gold which is dual to graphene. Because of this interesting one-to-one relationship through Euler's polyhedral formula, there are as many golden fullerene isomers as there are fullerene isomers, with the number of isomers Niso increasing polynomially as O(Niso9 ). For the recently observed Au16- , Au17- , and Au18- we present simulated photoelectron spectra including all isomers. We also predict the photoelectron spectrum of Au32- . The stability of the golden fullerenes is discussed in relation with the more compact structures for the neutral and negatively charged Au12 to Au20 and Au32 clusters. As for the compact gold clusters we observe a clear trend in stability of the hollow gold cages towards the (111) fcc sheet. The high stability of the (111) fcc sheet of gold compared to the bulk 3D structure explains the unusual stability of these hollow gold cages. PMID:27244703

  3. Electron transfer in dinucleoside phosphate anions

    International Nuclear Information System (INIS)

    The electron transfer reaction within various dinucleoside phosphate radical anions has been investigated by ESR spectroscopy and pulse radiolysis. In the ESR work electrons are produced by photolysis of K4Fe(CN)6 in a 12 M LiCl glass at 770K. Upon photobleaching the electrons react with the dinucleoside phosphate to form the anion radical. The anions of the four DNA nucleosides were also produced and their ESR spectra were appropriately weighted and summed by computer to simulate the spectra found for the dinucleoside phosphate anions. From the analysis the relative amounts of each of the nucleoside anions in the dinucleoside phosphate anion were determined. Evidence suggests the electron affinity of the pyrimidine bases are greater than the purine bases; however, the results are not sufficient to distinguish between the individual purine or pyrimidine. When dinucleoside phosphate anions containing thymidine are warmed, protonation occurs only on thymine to produce the well known ''thymyl'' spectrum. Pulse radiolysis experiments on individual nucleotides (TMP, dAMP), mixtures of these nucleotides and the dinucleoside phosphate, TdA, in aqueous solution at room temperature show that in the TdA anion electron transfer occurs from adenine to thymine, whereas no electron transfer is found for mixtures of individual nucleotides. Protonation is found to occur only on thymine in the TdA anion in agreement with the ESR results

  4. Hunan Gold Corporation Visiting South America to Develop Gold Resources

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>On November 2nd,Hunan Gold Corporation signed a cooperation agreement to collaboratively exploit gold resources in South America.Gold Corporation has made its first"Step Out",initiating its overseas landscape layout of resources.Gold Corporation is a leading enterprise of nonferrous metals in Hunan Province,the

  5. Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars

    OpenAIRE

    Novikov, Sergey M.; Sánchez-Iglesias, Ana; Schmidt, Mikołaj K.; Chuvilin, Andrey; Aizpurua, Javier; Grzelczak, Marek; Liz-Marzán, Luis M.

    2013-01-01

    A new type of gold nanoparticle—called “spiky nanodumbbells”—is introduced. These particles combine the anisotropy of nanorods with sharp nanoscale features of nanostars, which are important for SERS applications. Both the morphology and the optical response of the particles are characterized in detail, and the experimental results are compared with FDTD simulations, showing good agreement.

  6. Computational studies of nonstoichiometric sodium auride clusters.

    Science.gov (United States)

    Lin, Ying-Chan; Sundholm, Dage

    2012-05-31

    The molecular structures of low-lying isomers of anionic and neutral sodium auride clusters have been studied computationally at the second-order Møller-Plesset perturbation theory level using quadruple-ζ basis sets augmented with a double set of polarization functions. The first vertical detachment energies were calculated at the Møller-Plesset level as the energy difference between the cluster anion and the corresponding neutral cluster. The photodetachment energies of higher-lying ionization channels were calculated by adding electronic excitation energies of the neutral clusters to the first vertical detachment energy. The excitation energies were calculated at the linear response approximate coupled-cluster singles and doubles level using the anionic cluster structures. The obtained ionization energies for NaAu(-), NaAu(2)(-), NaAu(3)(-), NaAu(4)(-), Na(2)Au(2)(-), Na(2)Au(3)(-), Na(3)Au(3)(-), and Na(2)Au(4)(-) were compared to values deduced from experimental photoelectron spectra. Comparison of the calculated photoelectron spectra for a few energetically low-lying isomers shows that the energetically lowest cluster structures obtained in the calculations do not always correspond to the clusters produced experimentally. Spin-component-scaled second-order Møller-Plesset perturbation theory calculations shift the order of the isomers such that the observed clusters more often correspond to the energetically lowest structure, whereas the spin-component-scaled approach does not improve the photodetachment energies of the sodium aurides. The potential energy surface of the sodium aurides is very soft, with several low-lying isomers requiring an accurate electron correlation treatment. The calculations show that merely the energetic criterion is not a reliable means to identify the structures of the observed sodium auride clusters; other experimental information is needed to ensure a correct assignment of the cluster structures. The cluster structures of

  7. Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts

    Science.gov (United States)

    Koppen, Jessica V.; Hapka, Michał; Modrzejewski, Marcin; Szcześniak, Małgorzata M.; Chałasiński, Grzegorz

    2014-06-01

    Donor-acceptor interactions are notoriously difficult and unpredictable for conventional density functional theory (DFT) methodologies. This work presents a reliable computational treatment of gold-ligand interactions of the donor-acceptor type within DFT. These interactions require a proper account of the ionization potential of the electron donor and electron affinity of the electron acceptor. This is accomplished in the Generalized Kohn Sham framework that allows one to relate these properties to the frontier orbitals in DFT via the tuning of range-separated functionals. A donor and an acceptor typically require different tuning schemes. This poses a problem when the binding energies are calculated using the supermolecular method. A two-parameter tuning for the monomer properties ensures that a common functional, optimal for both the donor and the acceptor, is found. A reliable DFT approach for these interactions also takes into account the dispersion contribution. The approach is validated using the water dimer and the (HAuPH3)2 aurophilic complex. Binding energies are computed for Au4 interacting with the following ligands: SCN-, benzenethiol, benzenethiolate anion, pyridine, and trimethylphosphine. The results agree for the right reasons with coupled-cluster reference values.

  8. Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts

    International Nuclear Information System (INIS)

    Donor-acceptor interactions are notoriously difficult and unpredictable for conventional density functional theory (DFT) methodologies. This work presents a reliable computational treatment of gold-ligand interactions of the donor-acceptor type within DFT. These interactions require a proper account of the ionization potential of the electron donor and electron affinity of the electron acceptor. This is accomplished in the Generalized Kohn Sham framework that allows one to relate these properties to the frontier orbitals in DFT via the tuning of range-separated functionals. A donor and an acceptor typically require different tuning schemes. This poses a problem when the binding energies are calculated using the supermolecular method. A two-parameter tuning for the monomer properties ensures that a common functional, optimal for both the donor and the acceptor, is found. A reliable DFT approach for these interactions also takes into account the dispersion contribution. The approach is validated using the water dimer and the (HAuPH3)2 aurophilic complex. Binding energies are computed for Au4 interacting with the following ligands: SCN−, benzenethiol, benzenethiolate anion, pyridine, and trimethylphosphine. The results agree for the right reasons with coupled-cluster reference values

  9. Anions dramatically enhance proton transfer through aqueous interfaces.

    Science.gov (United States)

    Mishra, Himanshu; Enami, Shinichi; Nielsen, Robert J; Hoffmann, Michael R; Goddard, William A; Colussi, Agustín J

    2012-06-26

    Proton transfer (PT) through and across aqueous interfaces is a fundamental process in chemistry and biology. Notwithstanding its importance, it is not generally realized that interfacial PT is quite different from conventional PT in bulk water. Here we show that, in contrast with the behavior of strong nitric acid in aqueous solution, gas-phase HNO(3) does not dissociate upon collision with the surface of water unless a few ions (> 1 per 10(6) H(2)O) are present. By applying online electrospray ionization mass spectrometry to monitor in situ the surface of aqueous jets exposed to HNO(3(g)) beams we found that NO(3)(-) production increases dramatically on > 30-μM inert electrolyte solutions. We also performed quantum mechanical calculations confirming that the sizable barrier hindering HNO(3) dissociation on the surface of small water clusters is drastically lowered in the presence of anions. Anions electrostatically assist in drawing the proton away from NO(3)(-) lingering outside the cluster, whose incorporation is hampered by the energetic cost of opening a cavity therein. Present results provide both direct experimental evidence and mechanistic insights on the counterintuitive slowness of PT at water-hydrophobe boundaries and its remarkable sensitivity to electrostatic effects. PMID:22689964

  10. Valence-bound and diffuse-bound anions of 5-azauracil.

    Science.gov (United States)

    Corzo, H H; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2014-08-28

    Structures, isomerization energies, and electron binding energies of 5-azauracil and its anions have been calculated ab initio with perturbative, coupled-cluster, and electron-propagator methods. Tautomeric structures, including those produced by proton transfer to a CH group, have been considered. Dyson orbitals and pole strengths from electron-propagator calculations validated a simple, molecular-orbital picture of anion formation. In one case, an electron may enter a delocalized π orbital, yielding a valence-bound (VB) anion with a puckered ring structure. The corresponding electron affinity is 0.27 eV; the vertical electron detachment energy (VEDE) of this anion 1.05 eV. An electron also may enter a molecular orbital that lies outside the nuclear framework, resulting in a diffuse-bound (DB) anion. In the latter case, the electron affinity is 0.06 eV and the VEDE of the DB anion is 0.09 eV. Another VB isomer that is only 0.02 eV more stable than the neutral molecule has a VEDE of 2.0 eV. PMID:25102270

  11. Ursodeoxycholic acid and superoxide anion

    Institute of Scientific and Technical Information of China (English)

    Predrag Ljubuncic; Omar Abu-Salach; Arieh Bomzon

    2005-01-01

    AIM: To investigate the ability of ursodeoxycholic acid (UDCA) to scavenge superoxide anion (O2-).METHODS: We assessed the ability of UDCA to scavenge (O2-) generated by xanthine-xanthine oxidase (X-XO) in a cell-free system and its effect on the rate of O2--induced ascorbic acid (AA) oxidation in hepatic post-mitochondrial supernatants.RESULTS: UDCA at a concentration as high as 1 mmol/Ldid not impair the ability of the X-XO system to generate O2-, but could scavenge O2- at concentrations of 0.5 and 1 mmol/L, and decrease the rate of AA oxidation at a concentration of 100 μmol/L.CONCLUSION: UDCA can scavenge O2-, an action that may be beneficial to patients with primary biliary cirrhosis.

  12. Gold und Peanuts

    OpenAIRE

    Hashmi, Stephen

    2003-01-01

    Die bisherigen Kenntnisse zur Gold-Katalyse lassen sich wie folgt zusammenfassen: 1. Gold-Katalysatoren reagieren rasch mit Kohlenstoff-Kohlenstoff-Mehrfachbindungen und sind somit besonders für einen Einsatz in der Organischen Chemie,der Chemie des Kohlenstoffs, geeignet. Dies lässt sich damit erklären, dass Gold und Kohlenstoff gemäß des Prinzips der harten und weichen Säuren und Basen („hard and soft acids and bases“, HSABPrinzip)beide als „weich“ klassifiziert werden und dieses Prinzi...

  13. Two gold return puzzles

    OpenAIRE

    Kolev, Gueorgui I.

    2013-01-01

    Since the dismantling of the Bretton Woods system, gold has delivered average return comparable to the average return delivered by the aggregate US stock market. This suggests that none of the growth and technological improvement gains accrued to the financiers. In the context of modern asset pricing models, say the CAPM model or the Fama-French three factor model, gold is a risk free asset, as it has no covariation with the risk factors. The large average gold return is a Jensen's alpha not ...

  14. A process for the simultaneous recovery of gold and uranium from South African ores

    International Nuclear Information System (INIS)

    Leaching tests carried out on run-of-mine ore from one of South Africa's gold-and-uranium mines show that gold and uranium dissolve simultaneously in an acidic solution containing ferric sulphate and thiocyanate ions, and that, under appropriate conditions, the recovery of both metals is similar to that achieved in conventional leaching. Moreover, since the gold and uranium are leached as anionic complexes, they can be extracted simultaneously from the leach liquor with an anion-exchange resin. The results presented indicate that it is technically feasible to recover the metals onto a strong-base resin, to strip them selectively from the resin, and to recover them in a marketable form from the strip liquors

  15. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    Science.gov (United States)

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. PMID:26452816

  16. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  17. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  18. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  19. Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamyar Khoshnevisan

    2011-01-01

    Full Text Available Introduction: The study and investigation of gold nanoparticles produced by amino acid is one of the interesting and applied issues in nanotechnology. In this study, amino acids were used to reduce gold cations as well as an agent to cap gold nanoparticles. In fact, strong bound of amino groups to amino acid and protein on the gold nanoparticles surface indicate the medical applications of these materials. Methods: In this study, gold nanoparticles were prepared and functionalized by using solution reduction containing gold cations with optimum concentration (0.005 M, and also prepared by using glutamic acid, phenylalanine and tryptophan with optimum concentration (0.025 M. Results: The investigation of optimum condition for gold solution and amino acids and also determination of gold nanoparticles were done by UV-Vis. The nanoparticles size were reported 5-20, 10-20 and 20-30 nm respectively by transmission electron microscopy and dynamic light scattering techniques, which is appropriate for biological activities. Conclusion: The comparison of the data from experimental and quantum calculations demonstrated that amino acids have strong band when they are conjugated by anion state. Free carboxylic groups of capped gold nanoparticles with glutamic acid are one of the suitable and capable beads for binding to biological agents.

  20. Counterintuitive interaction of anions with benzene derivatives

    Science.gov (United States)

    Quiñonero, David; Garau, Carolina; Frontera, Antonio; Ballester, Pau; Costa, Antonio; Deyà, Pere M.

    2002-06-01

    Ab initio calculations were carried out on complexes between 1,3,5-trinitrobenzene (TNB) and anions, where the anion is positioned over the ring along the C3 axis. This study combines crystallographic and computational evidences to demonstrate an attractive interaction between the anion and the π-cloud of TNB. This interaction is rationalized based on the important role of the quadrupole moment of TNB and the anion-induced polarization. In addition, this study has been extended to 1,3,5-trifluorobenzene (TFB), which possesses a very small quadrupole moment. As a result, minimum energy complexes have been found between TFB and both anions and cations due to the stabilization obtained from the ion-induced polarization.

  1. Chiseled Gold Ornament

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    According to some archaeological discoveries, people began to use gold to make ornaments during the Shang Dynasty, more than 3,000 years ago. This partfcular piece of chiseled gold ornament was unearthed in 1957 from the Ming Dynasty tomb of Wang Gui at You’anmen, Beijing. Wang Gui was a head of the Imperial Bodyguard in the Ming Dynasty. His eldest daughter was an imperial concubine of the Emperor Cheng Hua. Consequently, his family held a prominent position at the time. The gold ornament, 50.5 centimeters in length and 295 grams in weight, is composed of two parts. The upper part is shaped like lotus leaves, with fine double lines as the vein. To indicate auspiciousness, a pair of mandarin ducks with lotus flowers in their months sit on either side of the thick leaves. Seven long gold chains measuring 21 centimeters in length link the

  2. Paying twice for Gold

    OpenAIRE

    Ayris, P.

    2014-01-01

    EU governments seem to prefer gold in the debate on Open Access. The problem with ‘gold’ is that often subscription fees for universities persist while authors now pay too. The League of European Research Universities raises critical questions.

  3. Electrolytic refining of gold

    OpenAIRE

    Wohlwill, Emil

    2008-01-01

    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  4. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin;

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  5. Joining the Gold Rush

    Institute of Scientific and Technical Information of China (English)

    LIU BO

    2006-01-01

    @@ Flush with advanced technology and large amounts of capital, overseas mining firms are carving a place in the Chinese gold industry Dozens of Western mining companies, particularly those from Canada, are making the journey into the kind of remote corners in China that other overseas investors shy away from. What are they looking for? The answer is one of the most precious substances on the planet: gold.

  6. Gold induced enterocolitis.

    OpenAIRE

    Jackson, C W; Haboubi, N Y; Whorwell, P.J.; Schofield, P. F.

    1986-01-01

    A case of gold associated enterocolitis is described. A review of all 27 previously reported cases revealed that the syndrome induced has common characteristics. The reaction occurs within three months of instituting gold therapy, is characterised by profuse diarrhoea and vomiting with abdominal pain, fever, and sometimes eosinophilia. Petechial changes are prominent on endoscopy and the endoscopic and histological features of the gut lesion do not resemble inflammatory bowel disease. The ove...

  7. Gold prices and inflation

    OpenAIRE

    Tkacz, Greg

    2007-01-01

    Using data for 14 countries over the 1994 to 2005 period, we assess the leading indicator properties of gold at horizons ranging from 6 to 24 months. We find that gold contains significant information for future inflation for several countries, especially for those that have adopted formal inflation targets. This finding may arise from the manner in which inflation expectations are formed in these countries, which may result in more rapidly mean-reverting inflation rates. Compared to other in...

  8. Gold or Penicillamine?

    OpenAIRE

    Offer, R. C.

    1981-01-01

    The recent approval of penicillamine (Cupramine) for use in rheumatoid arthritis has given the physician another remission-inducing drug for this disease. A thorough understanding of penicillamine's administration and toxicity is necessary before the physician begins to use it. Although its efficacy is similar to gold, side effects are considerably more diverse, and longterm side effects require further assessment. This article reviews the clinical use of gold and penicillamine and the factor...

  9. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    International Nuclear Information System (INIS)

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4·3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  10. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4·3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  11. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  12. Cluster Headache

    OpenAIRE

    Frederick G Freitag

    1985-01-01

    Learning Objectives: Review the current understanding of the pathophysiology of cluster headache Be able to recognize the clinical features of cluster headache Be able to develop a strategy for treatment of cluster headache Cluster headache is divided into multiple subtypes under the IHC classification criteria. The vast majority of patients present with episodic cluster headache (3.1.1). This will be the focus of the presentation. The syndrome is characterized by repeated at...

  13. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  14. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters.

    Science.gov (United States)

    Ďorďovič, Vladimír; Tošner, Zdeněk; Uchman, Mariusz; Zhigunov, Alexander; Reza, Mehedi; Ruokolainen, Janne; Pramanik, Goutam; Cígler, Petr; Kalíková, Květa; Gradzielski, Michael; Matějíček, Pavel

    2016-07-01

    This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles. PMID:27287067

  15. Ab Initio Theoretical Investigation on the Geometrical and Electronic Structures of AlAun-/0 (n = 2-4) Clusters%Ab Initio Theoretical Investigation on the Geometrical and Electronic Structures of AlAun-/0 (n = 2-4) Clusters

    Institute of Scientific and Technical Information of China (English)

    YAO Wen-Zhi; YAO Jian-Bin; LI Si-Dian

    2012-01-01

    A systematic density functional theory and wave function theory investigation on the geometrical and electronic properties of A1Aun0/" (n = 2-4) clusters has been performed in this work. A1Aun- anions prove to possess ground states of the V-shaped C2v A1Au2, umbrella-shaped C3v A1Au3, and perfect tetrahedral Td A1Au4", while their neutrals favor the V-shaped CEv A1Au2, perfect planar triangular D3h A1Au3, and severely distorted Cs A1Au4, respectively. Aluminum aurides appear to be analogous to the corresponding aluminum hydrides, expect C~ A1Au4. Molecular orbitals (MOs) analyses also support this conclusion. Detailed orbital analyses indicate that Au 6s makes 94-96% and Au 5d makes 6-4% contribution to the Au-based orbitals in A1-Au bonds, which is smaller than the BAun0/- series, partially reflecting the relativistic effect of gold. The one-electron detachment energies of the anions and characteristic stretching vibrational frequencies of A1-Au bonds between 100-400 cm-1 have been calculated to facilitate future experimental characterization of these clusters.

  16. Selective anion sensing by a tris-amide CTV derivative: 1H NMR titration, self-assembled monolayers, and impedance spectroscopy.

    Science.gov (United States)

    Zhang, Sheng; Echegoyen, Luis

    2005-02-16

    A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces. PMID:15701037

  17. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  18. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    Science.gov (United States)

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-01

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  19. Molecular physiology of EAAT anion channels.

    Science.gov (United States)

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  20. Renal elimination of organic anions in cholestasis

    Institute of Scientific and Technical Information of China (English)

    Adriana Mónica Tortes

    2008-01-01

    The disposition of most drugs is highly dependent on specialized transporters.OAT1 and OAT3 are two organic anion transporters expressed in the basolateral membrane of renal proximal tubule cells,identified as contributors to xenobiotic and endogenous organic anion secretion.It is well known that cholestasis may cause renal damage.Impairment of kidney function produces modifications in the renal elimination of drugs.Recent studies have demonstrated that the renal abundance of OAT1 and OAT3 plays an important role in the renal elimination of organic anions in the presence of extrahepatic cholestasis.Time elapsed after obstructive cholestasis has an important impact on the regulation of both types of organic anion transporters.The renal expression of OAT1 and OAT3 should be taken into account in order to improve pharmacotherapeutic efficacy and to prevent drug toxicity during the onset of this hepatic disease.

  1. Electronic Structure Studies of Silicon Carbide Anionic Nanoclusters

    Science.gov (United States)

    Pradhan, Prachi

    2005-03-01

    As a continuation of our studies on the high stabilities and electronic structure properties of Si8C2 to Si14C2 clusters and Si60Cn (n=3-6) clusters,^1 we report here ab initio studies of small SimCn^- (1Gaussian03 suite of programs^2 with an all electron 6-311++G** basis set has been used. Complete geometry optimizations of different possible structures have been carried out. Carbon-rich and silicon rich species show distinctly different patterns with respect to the vertical detachment energies. For carbon-rich aggregates, the VDE's show an even odd alternation, similar to that of the carbon anions. We present results on binding energies, relative energies, fragmentation energies, vertical detachment energies, vibrational frequencies, and adiabatic electron affinities^3 for the optimized clusters. Detailed comparisons with published data in the literature will also be presented. * Work supported, in part, by the Welch Foundation, Houston, Texas (Grant No. Y-1525). ^1M. N. Huda and A. K. Ray, Phys. Rev. A (R) 69, 011201 (2004); Eur. Phys. J. D 31, 63 (2004). ^2 Gaussian03, Revision A.1, M. J. Frisch et al., Gaussian Inc., Pittsburgh, PA , 2003. ^3 P. Pradhan and A. K. Ray, J. Mol. Structure (Theochem), in press.

  2. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  3. Towards predictable transmembrane transport: QSAR analysis of anion binding and anion transport

    OpenAIRE

    Gale, Philip A.; Busschaert, Nathalie; Bradberry, Samuel J.; Wenzel, Marco; Haynes, Cally; Hiscock, Jennifer R.; Kirby, Isabelle; Karagiannidis, Louise E.; Moore, Stephen J.; Wells, Neil; Herniman, Julie; Langley, John; Horton, Peter; Mark E. Light; Marques, Igor

    2013-01-01

    The transport of anions across biological membranes by small molecules is a growing research field due to the potential therapeutic benefits of these compounds. However, little is known about the exact mechanism by which these drug-like molecules work and which molecular features make a good transporter. An extended series of 1-hexyl-3-phenylthioureas were synthesized, fully characterized (NMR, mass spectrometry, IR and single crystal diffraction) and their anion binding and anion transport p...

  4. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  5. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  6. GOLD AS AN INVESTMENT VEHICLE

    Directory of Open Access Journals (Sweden)

    Arti Chandani

    2014-04-01

    Full Text Available Gold has been used extensively for savings, investments and consumption since ages; however the importance of the gold as an investment instruments has been much talked in the recent times. This research paper intends to find various applications of gold portfolios as an alternate asset class: the benefits of including gold to an investment portfolio have been analyzed. The results indicate that gold has performed significantly better than other assets like debt and equity in both emerging and US markets. It was noted that addition of gold to portfolios helped reduce the volatility and increase overall returns during the period 2009-12. For example, in 2008, when the U.S. equity market plunged to 36.99%, gold in fact showed returns of 5.8%. It is also observed that the inverse correlation exists between the dollar index and the gold prices helped reduce the portfolio risk as a result of diversification.

  7. Studies of cluster-assembled materials: From gas phase to condensed phase

    Science.gov (United States)

    Gao, Lin

    . After being mass gated in a reflectron equipped time-of-flight mass spectrometer (TOF-MS) and deposited onto TEM grids, the resultant specimens can be loaded onto high-resolution TEM investigation via electron diffraction. In conclusion, soft-landing of mass selected clusters has been shown to be a successful approach to obtain structural information on Zr-Met-Car cluster-assembled materials collected from the gas phase. TEM images indicate the richness of the morphologies associated with these cluster crystals. However, passivation methods are expected to be examined further to overcome the limited stabilities of these novel clusters. From this initial study, it's shown the promising opportunity to study other Met-Cars species and more cluster-based materials. Experimental results of reactions run with a solvothermal synthesis method obtained while searching for new Zr-C cluster assembled materials, are reported. One unexpected product in single crystal form was isolated and tentatively identified by X-ray diffraction to be [Zr6i O(OH)O12·2(Bu)4], with space group P2 1/n and lattice parameters of a = 12.44 A, b = 22.06 A, c = 18.40 A, alpha = 90°, beta = 105°, gamma = 90°, V = 4875 A3 and R 1 = 3.15% for the total observed data (I ≥ 2 sigma I) and oR2 = 2.82%. This novel hexanuclear Zr(IV)-oxo-hydroxide cluster anion may be the first member in polyoxometalates class with metal atoms from the IVB group and having Oh symmetry. Alternatively, it may be the first member in {[(Zr6Z)X 12]X6}m- class with halides replaced by oxo- and hydroxyl groups and with an increased oxidation state of Zr. It is predicted to bear application potentials directed by both families. This work could suggest a direction in which the preparation of Zr-C cluster-assembled materials in a liquid environment may be eventually fulfilled. 1,3-Bis(diethylphosphino)propane (depp) protected small gold clusters are studied via multiple techniques, including Electrospray Ionization Mass Spectrometry

  8. Activated carbons and gold

    International Nuclear Information System (INIS)

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  9. Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films.

    Science.gov (United States)

    Tollan, Christopher M; Marcilla, Rebeca; Pomposo, Jose A; Rodriguez, Javier; Aizpurua, Javier; Molina, Jon; Mecerreyes, David

    2009-02-01

    The novel application of gold and silver nanorods as irreversible thermochromic dyes in polymeric ionic liquid (PIL) nanocomposites is proposed here. These materials have been synthesized by anion exchange of an imidazolium-based PIL in a solution that also contained gold nanorods. This resulted in the entrapment of the nanoobjects within a solid polymer precipitate. In this article, the effect of the temperature was studied in relation to the change of shape and, consequently, color of the gold or silver nanorods within the films. For the nanocomposites studied here, a maximum of two visual thermochromic transitions was observed for gold nanorods and up to three transitions were observed for silver nanorods. PMID:20353222

  10. Weighted Clustering

    OpenAIRE

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina; Loker, David

    2012-01-01

    We investigate a natural generalization of the classical clusteringproblem, considering clustering tasks in which differentinstances may have different weights.We conduct the firstextensive theoretical analysis on the influence of weighteddata on standard clustering algorithms in both the partitionaland hierarchical settings, characterizing the conditions underwhich algorithms react to weights. Extending a recent frameworkfor clustering algorithm selection, we propose intuitiveproperties that...

  11. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  12. Vibrational autodetachment spectroscopy of Au-6 : Image-charge-bound states of a gold ring

    International Nuclear Information System (INIS)

    Spectral experiments on mass-selected negative cluster ions of gold and silver were performed in the wavelength range near the threshold for one-photon photodetachment of the extra electron. The Au-6 cluster ion displayed a uniquely well resolved spectrum consisting of a progression in a single vibrational mode. Details of this threshold photodetachment spectrum and the associated photoelectron energy distribution suggest an explanation based on autodetachment from totally symmetric vibrational levels of very weakly bound excited electronic state (bound by image charge forces) of the Au-6 cluster in the form of a planar, six-fold symmetric, gold ring

  13. Colloidal Synthesis of Gold Semishells

    OpenAIRE

    Rodríguez-Fernández, Denis; Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M.; Liz-Marzán, Luis M.

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical proper...

  14. Nanocomposite gold-silk nanofibers

    OpenAIRE

    Cohen-Karni, Tzahi; Jeong, Kyung Jae; Tsui, Jonathan H.; Reznor, Gally; Mustata, Mirela; Wanunu, Meni; Graham, Adam; Marks, Carolyn; Bell, David C.; Langer, Robert S; Kohane, Daniel S.

    2012-01-01

    Cell-biomaterial interactions can be controlled by modifying the surface chemistry or nanotopography of the material, to induce cell proliferation and differentiation if desired. Here we combine both approaches in forming silk nanofibers (SNFs) containing gold nanoparticles (AuNPs) and subsequently chemically modifying the fibers. Silk fibroin mixed with gold seed nanoparticles was electrospun to form SNFs doped with gold seed nanoparticles (SNFseed). Following gold reduction, there was a two...

  15. A Photoelectron Spectroscopy and ab initio Study of B3- and B4- Anions and Their Neutrals

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Hua-Jin; Wang, Lai S.; Alexandrova, A N.; Boldyrev, Alexander I.; Zakrzewski, V G.

    2003-11-06

    The two smallest boron clusters (B3 and B4) in their neutral and anionic forms were studied by photoelectron spectroscopy and ab initio calculations. Vibrationally resolved photoelectron spectra were observed for B3- at three photon energies (355, 266, and 193 nm) and the electron affinity of B3 was measured to be+0.02 eV.

  16. Influence of α-amylase template concentration on systematic entrapment of highly stable and monodispersed colloidal gold nanoparticles

    OpenAIRE

    A. Nitthin Ananth; A. Nimrodh Ananth; Sujin P. Jose; Umapathy, S.; T. Mathavan

    2016-01-01

    Nano gold / α-amylase colloidal dispersions of profound stability were made using simple procedure with a conventional reducing agent. The surface plasmon resonance of the gold nanocrystals was used to quantify the extent of the dispersion stability and functionalization. It is found that the reduced gold nanoparticles were trapped into the protein network without denaturation the structure of α-amylase protein. This kind of entrapment of particles into the protein network prevents clustering...

  17. Efficiency of adsorption concentration of single-charged inorganic anions

    International Nuclear Information System (INIS)

    Results of adsorption concentration of inorganic anions Br-, I-, SCN- from diluted aqueous solutions using of N-alkylpyridinium chlorides (alkyl C13-C16) are presented. It is ascertained that interaction between extracted anion and surfactant cation, determining the efficiency of foam flotation of the anions investigated, increases with the decrease in anion hydration in the series Br-, I-, SCN-

  18. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same w

  19. Processing Gold Quarry refractory ores

    Science.gov (United States)

    Hausen, D. M.

    1989-04-01

    The Gold Quarry deposit is the largest sediment-hosted gold deposit yet discovered on the Carlin trend in northern Nevada. However, despite the locale's vast reserves, the gold is difficult to extract from portions of the deposit. Detailed, ongoing mineralogical analyses assure proper treatment of the ore.

  20. Gold extraction from flotation tailings

    International Nuclear Information System (INIS)

    The results of studies on cyanide leaching of gold comprising flotation tailings of antimony ore are given. The possibility to extract 50% of gold by cyanide leaching is shown. The dependence of gold extraction on leaching duration is studied. Influence of kerosine on cyanide leaching of flotation tailings is studied as well.

  1. Photoinduced conductivity of a porphyrin-gold composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Balatsky, Alexander [Los Alamos National Laboratory; Kilin, Dmitri S [UNIV OF FL; Prezhdo, Oleg [UNIV OF WASHINGTON; Tsemekhman, Kiril [NON LANL

    2009-01-01

    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  2. Optical properties of gold colloids formed in inverse micelles

    International Nuclear Information System (INIS)

    We discuss the formation of gold metal colloids in a variety of surfactant/solvent systems. Static and dynamic light scattering, small angle x-ray and neutron scattering, TEM analysis, and UV-visible absorbance are used to characterize the kinetics of formation and final colloid stability. These gold colloids exhibit a dramatic blueshift and broadening of the plasmon resonance with decreasing colloid size. Several types of reduction method are discussed and differences between micelle (water-free) or microemulsions as reaction media are compared. Use of inverse micelles allows smaller clusters to be formed with greater long-term stability

  3. Novel pseudo-delocalized anions for lithium battery electrolytes.

    Science.gov (United States)

    Jónsson, Erlendur; Armand, Michel; Johansson, Patrik

    2012-05-01

    A novel anion concept of pseudo-delocalized anions, anions with distinct positive and negative charge regions, has been studied by a computer aided synthesis using DFT calculations. With the aim to find safer and better performing lithium salts for lithium battery electrolytes two factors have been evaluated: the cation-anion interaction strength via the dissociation reaction LiAn ⇌ Li(+) + An(-) and the anion oxidative stability via a vertical ionisation from anion to radical. Based on our computational results some of these anions have shown promise to perform well as lithium salts for modern lithium batteries and should be interesting synthetic targets for future research. PMID:22441354

  4. Visibility graph network analysis of gold price time series

    Science.gov (United States)

    Long, Yu

    2013-08-01

    Mapping time series into a visibility graph network, the characteristics of the gold price time series and return temporal series, and the mechanism underlying the gold price fluctuation have been explored from the perspective of complex network theory. The network degree distribution characters, which change from power law to exponent law when the series was shuffled from original sequence, and the average path length characters, which change from L∼lnN into lnL∼lnN as the sequence was shuffled, demonstrate that price series and return series are both long-rang dependent fractal series. The relations of Hurst exponent to the power-law exponent of degree distribution demonstrate that the logarithmic price series is a fractal Brownian series and the logarithmic return series is a fractal Gaussian series. Power-law exponents of degree distribution in a time window changing with window moving demonstrates that a logarithmic gold price series is a multifractal series. The Power-law average clustering coefficient demonstrates that the gold price visibility graph is a hierarchy network. The hierarchy character, in light of the correspondence of graph to price fluctuation, means that gold price fluctuation is a hierarchy structure, which appears to be in agreement with Elliot’s experiential Wave Theory on stock price fluctuation, and the local-rule growth theory of a hierarchy network means that the hierarchy structure of gold price fluctuation originates from persistent, short term factors, such as short term speculation.

  5. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals, the...

  6. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  7. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  8. Aiming for Gold

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Twenty-three years ago he claimed China’s first Olympic gold medal,with a win in the 50-meter pistol shooting competition.Now Xu Haifeng is leading the country’s modern pentathlon team in its bid for success at the Beijing Games

  9. Gold Nanoslit Lenses

    OpenAIRE

    Ishii, Satoshi; Kildishev, Alexander V.; Shalaev, Vladimir M.; Chen, Kuo-Ping; Drachev, Vladimir P.

    2011-01-01

    We experimentally demonstrate the focusing properties of arrays of parallel subwavelength-wide nanoslits in a gold film. The lenses are designed to focus either TM- or TE-polarized light and diverge the light of the orthogonal polarization. (C) 2010 Optical Society of America

  10. Gold in Ophiolites

    OpenAIRE

    Castroviejo Bolibar, Ricardo

    2004-01-01

    Ophiolites, as a class, have been currently under-estimated as potential gold targets, although they have been the subject of major scientific research. Their resources have also attracted investors producing Cr, Cu (massive sulphides), Co, Ni (laterites), industrial rocks and minerals (serpentinites, emeralds), etc. They are also potential PGE sources.

  11. Gold trifluoromethyl complexes.

    Science.gov (United States)

    Gil-Rubio, Juan; Vicente, José

    2015-12-01

    This article reviews the synthesis, reactivity and applications of gold trifluoromethyl complexes, which are the only isolated perfluoroalkyl complexes of gold. The most reported examples are neutral Au(i) complexes of the type [Au(CF3)L], whereas only two Au(ii) trifluoromethyl complexes have been reported, both being diamagnetic and containing a strong Au-Au bond. A number of Au(iii) trifluoromethyl complexes have been prepared by oxidative addition of halogens or iodotrifluoromethane to Au(i) complexes or, in a few cases, by transmetallation reactions. Owing to the limitations of the available synthetic methods, a lower number of examples is known, particularly for the oxidation states (ii) and (iii). Gold trifluoromethyl complexes present singular characteristics, such as thermal stability, strong Au-C bonds and, in some cases, reactive α-C-F bonds. Some of the Au(iii) complexes reported, show unusually easy reductive elimination reactions of trifluoromethylated products which could be applied in the development of gold-catalyzed processes for the trifluoromethylation of organic compounds. PMID:26169553

  12. Studies of anions sorption on natural zeolites.

    Science.gov (United States)

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  13. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  14. Structures of Aln, its anions and cations up to n=34: A theoretical investigation

    International Nuclear Information System (INIS)

    A systematic density functional study has been performed for neutral and singly charged clusters of aluminum with up to 34 atoms. A thorough search for global minimum structures has been carried out for Aln employing genetic algorithm and basin-hopping procedures. For Aln this confirms results of previous investigations up to n=22; new global minima have been located for n=23-31, 33. Structures for singly charged cations and anions have been obtained by reoptimization of the pool of 40 low-energy structures of the neutral clusters. The global minima of charged and neutral clusters are always low-spin states with the possible exception of a triplet state of Al28, which is isoenergetic with a singlet. The cluster structures are mostly quite irregular and do not resemble fractions of the fcc bulk phase. High symmetries are found only for the global minimum of Al23 and the triplet state of Al28.

  15. Evidence of energy transfer from tryptophan to BSA/HSA protected gold nanoclusters

    International Nuclear Information System (INIS)

    This work reports on the chromophores interactions within protein-protected gold nanoclusters. We conducted spectroscopic studies of fluorescence emissions originated from gold nanoclusters and intrinsic tryptophan (Trp) in BSA or HSA proteins. Both steady state fluorescence and lifetime measurements showed a significant Forster Resonance Energy Transfer (FRET) from Trp to the gold nanocluster. Tryptophan lifetimes in the case of protein-protected gold nanoclusters are 2.6 ns and 2.3 ns for BSA and HSA Au clusters while 5.8 ns for native BSA and 5.6 for native HSA. The apparent distances from Trp to gold nanocluster emission center, we estimated as 24.75 Å for BSA and 23.80 Å for HSA. We also studied a potassium iodide (KI) quenching of protein-protected gold nanoclusters and compared with the quenching of BSA and HSA alone. The rates of Trp quenching were smaller in BSA-Au and HSA-Au nanoclusters than in the case of free proteins, which is consistent with shorter lifetime of quenched Trp(s) and lower accessibility for KI. While Trp residues were quenched by KI, the emissions originated from nanoclusters were practically unquenched. In summary, for BSA and HSA Au clusters, we found 55% and 59% energy transfer efficiency respectively from tryoptophan to gold clusters. We believe this interaction can be used to our advantage in terms of developing resonance energy transfer based sensing applications. (paper)

  16. Low-energy electron-induced dissociation in condensed-phase L-cysteine II: a comparative study on anion desorption from chemisorbed and physisorbed films

    Science.gov (United States)

    Alizadeh, Elahe; Massey, Sylvain; Sanche, Léon; Rowntree, Paul A.

    2016-04-01

    Due to its multifunctional structure, cysteine is becoming an ideal model molecule for investigating the complex interactions of proteins with metallic surfaces such as gold nanoparticles. We report herein the results of low-energy electron induced degradation of L-cysteine films, chemisorbed on a gold substrate via the thiol group or physisorbed into a clean gold surface. The data were recorded under ultra-high vacuum conditions at room temperature. Anion yields desorbed from these films by the impact of 0.5 to 19 eV electrons provide clear evidence of the efficient decomposition of this amino acid via dissociative electron attachment (i.e., from dissociation of intermediate transient anions located between 5 and 14 eV). The peaks in the desorbed-anion yield functions, associated with DEA, are superimposed on a continuously rising signal attributed to dipolar dissociation. Similar to the results previously observed from physisorbed films, light anionic species, with masses lower than 35 amu, have been detected. In addition, we measured for first time fragments at 14 amu (CH2-) and 15 amu (CH3-) desorbing from physisorbed films, as well as heavier fragments of mass 45 and 46 amu desorbing from chemisorbed films. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  17. Absorption, fluorescence and resonance Rayleigh scattering spectral characteristics of interaction of gold nanoparticle with safranine T

    Institute of Scientific and Technical Information of China (English)

    HE Youqiu; LIU Shaopu; LIU Qin; LIU Zhongfang; HU Xiaoli

    2005-01-01

    The interaction between gold nanoparticle and safranine T (ST) has been studied with resonance Rayleigh scattering (RRS) spectra, absorption and fluorescence spectra. In the pH 5 solution, citrate [(H2L)2-] self-assembles on the surface of positively-charged gold nanoparticle, which results in the [(Au)n(H2L)m]x- complex. In other words, one of carboxylate oxygens in (H2L)2- moves inward and combines with gold nanoparticle. The other carboxylate oxygens moves outward to form a supermolecular complex anion with x negative charges. Then by virtue of electrostatic attraction, hydrophobic force and charge transfer action, the complex anion binds with ST cation to form a new ion-association complex. Here (H2L)2- acts as a bridge. The formation of the complex results in the significant enhancement of RRS intensity, the appearance of new RRS spectrum, the red shift of plasma absorption band of gold nanoparticle as well as the decrease in the absorbance and fluorescence quenching for safranine T. In this work, the interaction between gold nanoparticle and ST on the RRS, absorption and fluorescence spectra has been investigated. The reason why RRS intensity increases greatly and the reaction mechanism have been inquired. The results show that RRS spectra can not only be used to study nanoparticle and reaction product, but also are a sensitive means to characterize and detect nanoparticles.

  18. The remarkable ability of anions to bind dihydrogen.

    Science.gov (United States)

    Della, Therese Davis; Suresh, Cherumuttathu H

    2016-05-25

    The structural features and hydrogen binding affinity of anions F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) have been explored at the CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) level of coupled cluster theory and the M06L/6-311++G(d,p) level of density functional theory along with a two-point extrapolation to the complete basis set limit and a benchmark study at CCSD(T) and MP2 levels. The coupled cluster, MP2 and DFT methods yield comparable results and show that anions have very high capacity to store hydrogen as the weight percent of H2 in the highest H2-coordinated state of F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-) is 56.0, 47.6, 33.5, 64.0, 65.4, 41.2, 55.4, and 40.0 wt%, respectively. The CCSD(T)/aug-cc-pVTZ//CCSD/6-311++G(d,p) results are presented for anions coordinated with up to nine or ten H2 molecules, while up to the entire first coordination shell is computed using the M06L method which revealed H2 coordination numbers of 12, 16, 20, 15, 15, 16, 16, and 17, respectively, for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-). An increase in the total interaction energy (Eint) and a decrease in the interaction energy per H2 molecule (Eint/H2) with an increase in the number of coordinated H2 molecules are observed. However, the decrease in Eint/H2 is very less and even in the highest coordinated anions, substantially good values of Eint/H2 are observed, viz. 4.24, 2.59, 2.09, 3.32, 3.07, 2.36, 2.31, and 2.63 kcal mol(-1) for F(-), Cl(-), Br(-), OH(-), NH2(-), NO2(-), CN(-), and ClO(-), respectively, which are comparable with the values obtained for complexes with lesser H2 coordination. The stability of the complexes is attributed to the formation of a large number of non-covalent X(-)H bonds as revealed by the identification of bond critical points in the quantum theory of atoms in molecules (QTAIM) analysis. Further, critical features of molecular electrostatic potential (MESP) have been used to correlate the

  19. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  20. Cluster Fusion: Face-Fused Nine-Atom Deltahedral Clusters in [Sn14 Ni(CO)](4.).

    Science.gov (United States)

    Perla, Luis G; Sevov, Slavi C

    2016-06-01

    The title anion was synthesized by heating dimethylformamide (DMF) solution of the known Ni-centered and Ni(CO)-capped tin clusters [Ni@Sn9 Ni(CO)](3-) . The new anion represents the first example of face-fused nine-atom molecular clusters. The two clusters are identical elongated tricapped trigonal prisms of nido-[Sn8 Ni(CO)](6-) with nickel at one of the capping positions. They are fused along a triangular face adjacent to a trigonal prismatic base and made of two Sn and one Ni atoms. The new anion is structurally characterized by single-crystal X-ray diffraction in the compound (K[222-crypt])4 [Sn14 Ni(CO)]⋅DMF. Its presence in solution is corroborated by electrospray mass spectrometry. PMID:27098199

  1. Growth mechanisms for doped clusters

    International Nuclear Information System (INIS)

    Structural growth mechanisms for metal doped nanoclusters are investigated in combined experimental and theoretical studies. In particular, silicon, copper and gold clusters incorporating a transition metal dopant atom are investigated: SinX (X=Cu, V), CunSc+ and AunY+ with n < 20. The doped clusters are produced with a dual-target dual-laser vaporization source. Structural information about the doped nanoclusters is provided by infrared multi-photon dissociation spectroscopy. Their size and composition dependent stability is studied with photofragmentation and mass spectrometry. A detailed understanding of the role of the dopant atom in the structural growth and in the electronic structure of the clusters is obtained by comparison with quantum chemical computations using density functional theory. (review)

  2. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  3. Recognition of anions by protonated methylazacalixpyridines

    Institute of Scientific and Technical Information of China (English)

    Han-yuan GONG; De-xian WANG; Zhi-tang HUANG; Mei-xiang WANG

    2009-01-01

    Methylazacalixpyridines are a unique kind of macro-cyclic molecules that are able to self-regulate their conformations to best fit the guests. They had shown good recognition to both neutral molecules such as diols and fullerenes and cations. After protonation, the conformation of methylazacalixpyridines became more flexible and could serve as receptors for anions.In the solution, the protonated methylazacalix[2]pyri-dine[2]arene formed complexes with halides yield-ing biding constants of 79(mol/L)-1 for chloride,10 (mol/L)-1 for bromide, and 79 (mol/L)-1 for iodide,respectively. The crystal structures of the complexes between protonated methylazaealix[4]pyridine (MACP-4), methylazacalix[2]pyridine[2] arene (MACP-2-A-2), and iodide anion showed a multiple interaction mode including electrostatic attraction,hydrogen bonding, and anion-π interactions.

  4. Electrocatalytic analysis of superoxide anion radical using nitrogen-doped graphene supported Prussian Blue as a biomimetic superoxide dismutase

    International Nuclear Information System (INIS)

    Graphical abstract: Prussian Blue (PB) cubes supported on nitrogen-doped graphene sheets (NGS) were synthesized using a simple and scalable method, and the utilization of the PB-NGS hybrid as an efficient superoxide dismutase mimic in the electrochemical sensing of O2·− was demonstrated. - Highlights: • Facile and scalable synthesis of Prussian Blue cubes supported on nitrogen-doped graphene; • Nitrogen-doped graphene supported Prussian Blue as an efficient biomimetic superoxide dismutase for the electrocatalytic sensing of superoxide anion; • Good sensitivity, excellent selectivity and attractive long-term stability for superoxide anion sensing. - Abstract: Considering the double-sided roles of superoxide anion radical, monitoring of its track in living systems is attracting increasing academic and practical interest. Here we synthesized Prussian Blue (PB) cubes that were supported on nitrogen-doped graphene sheets (NGS) using a facile and scalable method, and explored their potential utilization in the electrochemical sensing of superoxide anion. As an efficient superoxide dismutase mimic, direct electron transfer of the prepared PB-NGS hybrid immobilized on a screen-printed gold electrode was harvested in physiological media. With the bifunctional activities, the synthetic mimic could catalyze the dismutation of superoxide anion via the redox cycle of active iron. By capturing the electro-reduction amperometric responses of superoxide anion radical to hydrogen peroxide in the cathodic polarization, highly sensitive determination (a sensitivity of as high as 0.32 μA cm−2 μM−1) of the target was achieved, with no interference from common coexisting species including ascorbic acid, dopamine, and uric acid observed. Compared to natural superoxide dismutases, the artificial enzyme mimic exhibited favorable activity stability, indicating its promising applications in the in vivo long-term monitoring of superoxide anion

  5. Magnetic anisotropies of late transition metal atomic clusters

    OpenAIRE

    Fernández-Seivane, Lucas; Ferrer, Jaime

    2006-01-01

    We analyze the impact of the magnetic anisotropy on the geometric structure and magnetic ordering of small atomic clusters of palladium, iridium, platinum and gold, using Density Functional Theory. Our results highlight the absolute need to include self-consistently the spin orbit interaction in any simulation of the magnetic properties of small atomic clusters, and a complete lack of universality in the magnetic anisotropy of small-sized atomic clusters.

  6. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  7. The Financial Economics of Gold - a survey

    OpenAIRE

    O'Connor, Fergal; Lucey, Brian; Batten, Jonathan; Baur, Dirk

    2015-01-01

    We review the literature on gold as an investment. We summarize a wide variety of literature. We begin with a review of how the gold markets operate, including the under researched leasing market; we proceed to examine research on physical gold demand and supply, gold mine economics and move onto analyses of gold as an investment. Additional sections provide context on gold market efficiency, the issue of gold market bubbles, gold’s relation to inflation and interest rates, and the very na...

  8. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  9. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  10. Effect of cluster environment on the electron attachment to 2-nitrophenol*

    Science.gov (United States)

    Kočišek, Jaroslav; Grygoryeva, Kateryna; Lengyel, Jozef; Fárník, Michal; Fedor, Juraj

    2016-04-01

    Effect of cluster environment on the electron attachment to 2-nitrophenol (2NP) is studied in homogeneous 2NP clusters and heterogeneous clusters of 2NP, argon and water. The cluster environment significantly reduces fragmentation of 2NP after electron attachment. Parent cluster anions 2NPn- are primary reaction products in both, homogeneous and heterogeneous clusters. Non-dissociative electron attachment to homogeneous clusters proceeds at low energies web page at http://dx.doi.org/10.1140/epjd/e2016-70074-0

  11. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis.

    Science.gov (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco

    2016-07-14

    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction. PMID:27119994

  12. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  13. Gold ore sorting

    International Nuclear Information System (INIS)

    Apparatus for sorting lumps of gold-bearing ore according to their gold content is described. It includes means for irradiating the lumps of ore with neutrons, e.g. a neutron tube adapted to produce at least 1010 neutrons per second with an energy of less than 4.5 MeV. The resulting intensity of 297 keV gamma rays arising from the nuclear reaction 197Au(n,n'#betta#) 197Au is measured. The measured gamma ray intensity from a given lump of ore is used to sort that lump of ore from other lumps. The apparatus includes various cylinders and a vibrator for presenting the lumps of ore to the neutrons in a geometrical configuration such as to enable the lumps to be irradiated uniformly. (author)

  14. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  15. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention at the...... moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... a macrophage cell lines and automated image processing.   Results   Cell apoptosis study Three successful CSLM counters were constructed and one unsuccessful AMG counter were constructed for automated processing and counting. One successful sorting macro were also constructed for easy directory...

  16. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... more affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  17. Film Ace Takes Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    "Really, I never, never expected to win this," said Chinese director Jia Zhangke on hearing he had taken the top award for his movie Still Life (Sanxia Haoren) at the Venice Film Festival, on September 9. A surprise late entry, Still Life quickly emerged as the favorite and the Gold Lion was again hugged by Chinese. The well-known Chinese director Zhang Yimou won the same award back in 1999, for Not One Less-also a

  18. Multishelled Gold Nanowires

    OpenAIRE

    Bilalbegovic, G.

    1999-01-01

    The current miniaturization of electronic devices raises many questions about the properties of various materials at nanometre-scales. Recent molecular dynamics computer simulations have shown that small finite nanowires of gold exist as multishelled structures of lasting stability. These classical simulations are based on a well-tested embedded atom potential. Molecular dynamics simulation studies of metallic nanowires should help in developing methods for their fabrication, such as electron...

  19. Gold, Oil, and Stocks

    OpenAIRE

    Baruník, Jozef; Kočenda, Evžen; Vácha, Lukáš

    2014-01-01

    We employ a wavelet approach and conduct a time-frequency analysis of dynamic correlations between pairs of key traded assets (gold, oil, and stocks) covering the period from 1987 to 2012. The analysis is performed on both intra-day and daily data. We show that heterogeneity in correlations across a number of investment horizons between pairs of assets is a dominant feature during times of economic downturn and financial turbulence for all three pairs of the assets under research. Heterogenei...

  20. Gold based electro catalysts

    OpenAIRE

    Sivasubramaniam, Prabalini

    2011-01-01

    Gold electrocatalysts have been of growing interest in recent years owing to their reactivity for a variety of important reactions such as the oxygen reduction reaction. This activity has been shown to be dependent on the size of the supported electrocatalyst nanoparticles. In this thesis the effects of Au nanoparticle size are explored for the oxygen reduction, ethanol oxidation and carbon monoxide oxidation reactions (Chapter four). The results show the oxygen reduction and ethanol oxidatio...

  1. Electrocrystallization and characterization of nanostructured gold and gold alloys

    OpenAIRE

    Yevtushenko, Oleksandra

    2007-01-01

    The kinetics of electrocrystallization of nanostructured gold is investigated and the physical proper-ties of nanostructured materials such as thermal stability, surface roughness and hardness are improved. A new stable non-toxic electrolyte for the electrodeposition of gold and gold alloys is presented. Nanoscaling is achieved by pulse techniques. The possibility of controlling the crystallite size depending on physical and chemical process parameters such as pulse duration, current d...

  2. Seed-mediated biomineralizaton toward the high yield production of gold nanoprisms.

    Science.gov (United States)

    Geng, Xi; Roth, Kristina L; Freyman, Megan C; Liu, Jianzhao; Grove, Tijana Z

    2016-07-28

    Gold nanotriangles (Au NTs) with tunable edge length were synthesized via a green chemical route in the presence of the designed consensus sequence tetratricopeptide repeat (CTPR) protein, halide anions (Br(-)) and CTPR-stabilized Ag seeds. The well-defined morphologies, tailored plasmonic absorbance from visible-light to the near infrared (NIR) region, colloidal stability and biocompatibility are attributed to the synergistic action of CTPR, halide ions, and CTPR-stabilized Ag seeds. PMID:27424736

  3. Electron Photodetachment from Aqueous Anions. III. Dynamics of Geminate Pairs Derived from Photoexcitation of Mono- vs. Poly- atomic Anions

    CERN Document Server

    Lian, R; Crowell, R A; Shkrob, I A; Chen, X; Bradforth, S E; Lian, Rui; Oulianov, Dmitri A.; Crowell, Robert A.; Shkrob, Ilya A.; Bradforth, Stephen E.

    2005-01-01

    Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer. Here we contrast the behavior of halide anions with that of small polyatomic anions, such as pseudohalide anions (e.g., HS-) and common polyvalent anions (e.g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS-, CO32-, SO32-, and Fe(CN)64-) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy (225 nm or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions (including all polyvalent anions studied) the initial electron distributi...

  4. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  5. Photoelectron spectroscopy and theoretical studies of anion-π interactions: binding strength and anion specificity.

    Science.gov (United States)

    Zhang, Jian; Zhou, Bin; Sun, Zhen-Rong; Wang, Xue-Bin

    2015-02-01

    Proposed in theory and then their existence confirmed, anion-π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, anion-π interaction strengths that are free from complications of condensed-phase environments have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic, was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl(-), Br(-), I(-), linear thiocyanate SCN(-), trigonal planar nitrate NO3(-), pyramidic iodate IO3(-), and tetrahedral sulfate SO4(2-)). The binding energies of the resultant gaseous 1 : 1 complexes (1·Cl(-), 1·Br(-), 1·I(-), 1·SCN(-), 1·NO3(-), 1·IO3(-) and 1·SO4(2-)) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion-specific effects. The binding strengths of Cl(-), NO3(-), IO3(-) with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal mol(-1), but only about 40% of that between 1 and SO4(2-). Quantum chemical calculations reveal that all the anions reside in the center of the cavity of 1 with an anion-π binding motif in the complexes' optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and charge distribution analyses further support anion-π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work illustrates that size-selective photoelectron

  6. Electron stimulated desorption of anions from native and brominated single stranded oligonucleotide trimers

    Energy Technology Data Exchange (ETDEWEB)

    Polska, Katarzyna; Rak, Janusz [Department of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Bass, Andrew D.; Cloutier, Pierre; Sanche, Leon [Research Group in the Radiation Sciences, Faculty of Medicine, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-02-21

    We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H{sup -}, CH{sub 3}{sup -}/NH{sup -}, O{sup -}/NH{sub 2}{sup -}, OH{sup -}, CN{sup -}, and Br{sup -} was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN{sup -} desorption. An increase in the yields of OH{sup -} is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2{sup '}-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.

  7. Cancer Clusters

    Science.gov (United States)

    ... of cancer. Cancer clusters can help scientists identify cancer-causing substances in the environment. For example, in the early 1970s, a cluster ... the area and time period over which the cancers were diagnosed. They also ask about specific environmental hazards or concerns in the affected area. If ...

  8. Synthesis and Characterization of Gold Nanoparticles

    OpenAIRE

    Hedkvist, Olof

    2013-01-01

    This thesis is focused on the synthesis of three different shapes of gold nanoparticles; the gold nanosphere, the gold nanorod and the gold nanocube. These will be synthesized using wet chemistry methods and characterized using UV-Vis- NIR spectroscopy and dynamic light scattering. The results will be used to draw some conclusions as to what factors influence the growth of gold nanoparticles.

  9. Clustering processes

    CERN Document Server

    Ryabko, Daniil

    2010-01-01

    The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general non-parametric assumptions. The notion of consistency is as follows: two samples should be put into the same cluster if and only if they were generated by the same distribution. With this notion of consistency, clustering generalizes such classical statistical problems as homogeneity testing and process classification. We show that, for the case of a known number of clusters, consistency can be achieved under the only assumption that the joint distribution of the data is stationary ergodic (no parametric or Markovian assumptions, no assumptions of independence, neither between nor within the samples). If the number of clusters is unknown, consistency can be achieved under appropriate assumptions on the mixing rates of the processes. (again, no parametric ...

  10. Donnan Membrane Technique (DMT) for Anion Measurement

    NARCIS (Netherlands)

    Alonso Vega, M.F.; Weng, L.P.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2010-01-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl-, 1-2 days for NO3-, 1-4 days for SO42-

  11. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    intrinsic factors and solvent effects is the enhanced reactivity of α-nucleophiles – nucleophiles with a lone-pair adjacent to the attacking site – referred to as the α-effect. This thesis concerns the reactivity of microsolvated anions and in particular how the presence of a single solvent molecule affects...

  12. Molecular dynamics simulation of gas clusters impact on solid targets

    International Nuclear Information System (INIS)

    The interaction of a cluster of Arn (n=87-300) on a gold and silicon substrate was simulated by use of ordinary and Langevin Molecular Dynamics. The cluster was prepared by cutting out of a spherical f.c.c. block of Dynamics. The Buckingham potential was used for an interaction between the argon atoms. The excitation of the argon atoms due to high temperature and/or high pressure inside the cluster have been taken into account by use of a Monte-Carlo procedure. The N-body potential proposed by Rosato for gold and Axilrod-Teller 3-body potential for silicon was used, which describes well equilibrium properties of bulk material. The substrate was modeled using a b.c.c. lattice (for gold) and diamond (for silicon) of about 30000 atoms. These atoms were separated into three regions, depending on how near they are the impact zone. The atoms of central impact zone are being described by NM. The next zone consists of several semi-spherical layers of a thermal bath, for which the LMD was used. All the other atoms represent the movable (in radial direction) or rigid framework. The kinetic energy of the clusters is varied from 10 to 100 eV/atom. It has been shown that the impact of energetic Ar cluster with the kinetic energy of 100 eV/atom on a gold target sputters not only single atoms but also small gold clusters in the 10 atoms range. Lateral sputtering of gold target material has been predicted. Preliminary results for argon clusters implantation into the silicon (111) shows that this process seems to be quite small due to the very weak bond energy between argon and silicon atoms

  13. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe

    International Nuclear Information System (INIS)

    When gold nanoparticles were being prepared by sodium citrate reduction method, citrate anions self-assembled on the surface of gold nanoparticles to form supermolecular complex anions with negative charges, and protonated raloxifene (Ralo) was positively charged and could bind with the complex anions to form larger aggregates through electrostatic force and hydrophobic effects, which could result in the remarkable enhancement of the resonance Rayleigh scattering intensity (RRS), and the appearance of new RRS spectra. At the same time, the second-order scattering (SOS) and frequency-doubling scattering (FDS) intensities were also enhanced. The maximum wavelengths were located near 370 nm for RRS, 520 nm for SOS, and 350 nm for FDS, respectively. Among them, the RRS method had the highest sensitivity and the detection limit was 5.60 ng mL-1 for Ralo, and its linear range was 0.05-2.37 μg mL-1. A new RRS method for the determination of trace Ralo using gold nanoparticles probe was developed. The optimum conditions of the reaction and influencing factors were investigated. In addition, the reaction mechanism and the reasons for the enhancement of RRS were discussed

  14. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shaopu; He Youqiu; Liu Zhongfang; Kong Ling; Lu Qunmin [School of Chemistry and Chemical Engineering, Southwest China University, Chongqing 400715 (China)

    2007-08-29

    When gold nanoparticles were being prepared by sodium citrate reduction method, citrate anions self-assembled on the surface of gold nanoparticles to form supermolecular complex anions with negative charges, and protonated raloxifene (Ralo) was positively charged and could bind with the complex anions to form larger aggregates through electrostatic force and hydrophobic effects, which could result in the remarkable enhancement of the resonance Rayleigh scattering intensity (RRS), and the appearance of new RRS spectra. At the same time, the second-order scattering (SOS) and frequency-doubling scattering (FDS) intensities were also enhanced. The maximum wavelengths were located near 370 nm for RRS, 520 nm for SOS, and 350 nm for FDS, respectively. Among them, the RRS method had the highest sensitivity and the detection limit was 5.60 ng mL{sup -1} for Ralo, and its linear range was 0.05-2.37 {mu}g mL{sup -1}. A new RRS method for the determination of trace Ralo using gold nanoparticles probe was developed. The optimum conditions of the reaction and influencing factors were investigated. In addition, the reaction mechanism and the reasons for the enhancement of RRS were discussed.

  15. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, P. B., E-mail: p.pillai@sheffield.ac.uk, E-mail: m.desouza@sheffield.ac.uk; DeSouza, M., E-mail: p.pillai@sheffield.ac.uk, E-mail: m.desouza@sheffield.ac.uk [Semiconductor Materials and Device Group, Electronic and Electrical Engineering, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom); Narula, R.; Reich, S. [Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wong, L. Y.; Batten, T. [Renishaw, Old Town, Wotton-under-Edge, GL12 7DW Gloucestershire (United Kingdom); Pokorny, J. [Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S1 3JD Sheffield (United Kingdom); Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8 (Czech Republic)

    2015-05-14

    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and shows that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.

  16. Valence and diffuse-bound anions of noble-gas complexes with uracil

    Science.gov (United States)

    Streit, Lívia; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2012-11-01

    Valence-bound (VB) and diffuse-bound (DB) anions of noble-gas (Ar, Kr, and Xe) complexes with uracil have been studied with ab initio methods. MP2 optimizations revealed minima corresponding to anions of both kinds in each case. Coupled-cluster singles and doubles with perturbative triples, CCSD(T), and electron propagator single-point calculations were performed in order to assess vertical and adiabatic electron detachment energies of these complexes. Ab initio electron propagator calculations employed the outer valence Green's function and partial third-order approximations, and the algebraic diagrammatic construction in third order. Basis set effects have been systematically examined. DB anions of all three complexes were adiabatically bound, with calculated adiabatic electron attachment energies below 0.06 eV. Corresponding vertical electron detachment energies were below 0.1 eV. As to VB anions, only the Xe complex had a positive adiabatic electron detachment energy, of 0.01 eV, with a corresponding vertical electron detachment energy of 0.6 eV. These computational findings are consistent with the interpretation of results previously obtained experimentally by Hendricks et al.

  17. Green Synthesis of Gold Nanoparticles

    OpenAIRE

    Hamid Reza Ghorbani

    2015-01-01

    There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM), and dynamic light sca...

  18. Comparison And Assessment for Major Anions

    Directory of Open Access Journals (Sweden)

    Mayada Mohammed

    2013-05-01

    Full Text Available Four major anions (nitrate, phosphate, sulfate and chloride  are measured in Tigris river at Mosul in six locations since Sept.2005 to June 2006.  The same 4 anions are measured previously by researches or thesis, so their results are added to the former one for comparison. The variation of flow is also reported for the whole period in order to study the concentration-flow relationship. The nitrate and phosphate concentrations are increasing with the river flow increase and decreasing with its decrease for most periods, (reaching up to1.05mg/l at June for nitrate and 0.482mg/l at April for phosphate .The lowest concentrations are observed (as low as 0.285 mg/l at Dec. for nitrate and 0.07mg/l at Jan for phosphate. Sulfate and chloride concentration are varying oppositely to the river flow for most periods, both showing their peaks at Jan. and their lowest at June (reaching up to 170 mg/l for sulfate, and 33.4 mg/l for chloride while the minimum values are 68mg/l for sulfate, and 15.6 mg/l for chloride. The data of the previous years are not complete and data for only 8 years are available. It indicates that the anions concentrations variation corresponding to the river flow is similar to that of  the studied years. However the data with equal flow rate only are used for comparison purposes to achieve correct results. All of the studied anions are increasing since 1982-2006 in different percentages except the phosphate. The 4 major anions are lower than the standards and MCL for the recent and previous studies.

  19. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as...

  20. New Trends in Gold Catalysts

    OpenAIRE

    Leonarda F. Liotta

    2014-01-01

    Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growin...

  1. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.

    Science.gov (United States)

    Malola, Sami; Lehtovaara, Lauri; Enkovaara, Jussi; Häkkinen, Hannu

    2013-11-26

    Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.5 to 2.0 nm. A strong localized surface plasmon resonance (LSPR) develops at 540 nm (2.3 eV) in a cluster with a 2.0 nm metal core. The protecting molecular layer enhances the LSPR, while in a smaller cluster with 1.5 nm gold core, the plasmon-like resonance at 540 nm is confined in the metal core by the molecular layer. Our results demonstrate a threshold size for the emergence of LSPR in these systems and help to develop understanding of the effect of the molecular overlayer on plasmonic properties of MPCs enabling engineering of their properties for plasmonic applications. PMID:24107127

  2. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yudie [School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026 (China); Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Honglin, E-mail: hlliu@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Liangbao, E-mail: lbyang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Bai; Liu, Jinhuai [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  3. First-principles study of interaction between molecules and gold surface

    International Nuclear Information System (INIS)

    By using density functional theory, the authors have investigated the interaction between a thiol-phenyl molecule (4-4'-dimercapto-biphenyl) and a gold surface. The frontier orbit theory and the perturbation theory are also employed to determine quantitatively the constant of interaction energy. The results show that the bonding between the sulfur atom and the gold atoms corresponds mainly to the covalent bond and some molecular orbits are extended over the molecule and gold cluster which certainly give channels for the charge transport. While the other molecular orbits are localized, charge transport can take place by tunnel mechanism

  4. Real-Time Observation of Reactive Spreading of Gold on Silicon

    OpenAIRE

    Ferralis, Nicola; Gabaly, Farid El; Schmid, Andreas K.; Maboudian, Roya; Carraro, Carlo

    2009-01-01

    The spreading of a bilayer gold film propagating outward from gold clusters, which are pinned to clean Si(111), is imaged in real time by low energy electron microscopy. By monitoring the evolution of the boundary of the gold film at fixed temperature, a linear dependence of the spreading radius on time is found. The measured spreading velocities in the temperature range of 800 < T < 930 K varied from below 100 pm/s to 50 nm/s. We show that the spreading rate is limited by the reaction to for...

  5. Modeling the crystallization of gold nanoclusters-the effect of the potential energy function

    International Nuclear Information System (INIS)

    The crystallization dynamics of 5083 atom gold nanoclusters, which were quenched from the melt, were studied by molecular dynamics (MD) using the EAM 'Glue' and 'Force-matched' potentials to compare and contrast how the crystallization dynamics is affected by these potential energy functions. MD simulations from each potential showed the formation of gold nanoclusters of icosahedral morphology during the quenching process, which is in good agreement with the experimental studies of gold nanoclusters formed under vacuum. The effect of the potential on the evolution of cluster (surface and interior) morphology during the crystallization process is discussed.

  6. Bleaching of sol-gel glass film with embedded gold nanoparticles by thermal poling

    OpenAIRE

    Mezzapesa, Francesco P.; Carvalho, Isabel C. S.; Kazansky, Peter G.; Kawazu, Mitsuhiro; SAKAGUCHI, Koichi

    2006-01-01

    Gold clusters embedded in glass are expected to be hard to dissolve in the form of ions since gold is essentially a nonreactive metal. In spite of that, bleaching of Au-doped nanocomposite sol-gel glass film on a soda-lime glass substrate is demonstrated in which electric-field thermal poling is employed to effectively dissolve randomly distributed gold nanoparticles (15 nm in diameter) embedded in a low conductivity sol-gel glass film with a volume filling factor as small as 2.3%. The surfac...

  7. Use of near-infrared luminescent gold nanoclusters for detection of macrophages

    Science.gov (United States)

    Sapozhnikova, Veronika; Willsey, Brian; Asmis, Reto; Wang, Tianyi; Jenkins, James Travis; Mancuso, Jacob; Ma, Li Leo; Kuranov, Roman; Milner, Thomas E.; Johnston, Keith; Feldman, Marc D.

    2012-02-01

    We determined the effect of aggregation and coating thickness of gold on the luminescence of nanoparticles engulfed by macrophages and in gelatin phantoms. Thin gold-coated iron oxide nanoclusters (nanoroses) have been developed to target macrophages to provide contrast enhancement for near-infrared optical imaging applications. We compare the brightness of nanoroses luminescent emissions in response to 635 nm laser excitation to other nanoparticles including nanoshells, nanorods, and Cy5 conjugated iron oxide nanoparticles. Luminescent properties of all these nanoparticles were investigated in monomeric and aggregated form in gelatin phantoms and primary macrophage cell cultures using confocal microscopy. Aggregation of the gold nanoparticles increased luminescence emission and correlated with increased surface mass of gold per nanoparticle (nanoshells 37+/-14.30×10-3 brightness with 1.23×10-4 wt of gold (g)/nanoparticle versus original nanorose 1.45+/-0.37×10-3 with 2.10×10-16 wt of gold/nanoparticle, p<0.05). Nanoshells showed greater luminescent intensity than original nanoroses or Cy5 conjugated iron oxide nanoparticles when compared as nanoparticles per macrophage (38+/-10 versus 11+/-2.8 versus 17+/-6.5, p<0.05, respectively, ANOVA), but showed relatively poor macrophage uptake (1025+/-128 versus 7549+/-236 versus 96,000 nanoparticles/cell, p<0.05, student t-test nanoshells versus nanoroses). Enhancement of gold fluorescent emissions by nanoparticles can be achieved by reducing the thickness of the gold coating, by clustering the gold on the surface of the nanoparticles (nanoshells), and by clustering the gold nanoparticles themselves.

  8. Collagen peptide-based biomaterials for protein delivery and peptide-promoted self-assembly of gold nanoparticles

    Science.gov (United States)

    Ernenwein, Dawn M.

    2011-12-01

    Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an

  9. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    Science.gov (United States)

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  10. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  11. Clustering analysis

    International Nuclear Information System (INIS)

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K-mean method' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  12. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side. The...... algorithms for biological problems. © 2013 Springer-Verlag....... problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications of these...

  13. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  14. Anion Adsorption on an Au Colloid Monolayer Based Cysteamine-Modified Gold Electrode

    Institute of Scientific and Technical Information of China (English)

    HU; Xiao-ya

    2001-01-01

    [1]Faraday, M. , Philos. Trans. R. Soc. London, 147, 145(1857)[2]Haruta, M. , Yamada, N. , Kobayashi, T. et al. , J. Catal. , 115, 301(1989)[3]Martin, C. R. , Mitchell, D. T. , Anal. Chem. , 70, 322A(1998)[4]Dutton, T. , Van Wontergheim, B. , Saltiel, S. et al. , J. Phys. Chem. , 94, 1 100(1990)[5]Hache, F. , Ricard, D. , Flytzanis, C. et al. , Appl. Phys. A, 47, 347(1988)[6]Henglein, A. , J. Phys. Chem. , 97, 5 457(1993)[7]Weitz, D. A. , Lin, M. Y. , Sandroff, C. J. , Surf. Sci. , 158, 147(1985)[8]Chow, M. K. , Zukoski. C. F. , J. Colloid Interface Sci. , 165, 97(1994)[9]Lin, M. Y. , Lindsay, H. M. , Weitz, D. A. et al. , Nature, 339, 360(1989)[10]Brown, K. R., Fox, A. P., Natan, M. J., J. Am. Chem. Soc., 118, 1 154(1996)[11]Silva, F.,Sottomayor, M. J., Martins, A., J. Electroanal. Chem., 375, 395(1994)[12]Shi, Z., Lipkowski, J., J. Electroanal. Chem., 403, 225(1996)[13]Angerstein-Kozlowska, H., Conway, B. E., Hamelin, A. et al., J. Electroanal. Chem., 228, 429(1987)[14]Hamelin, A., J. Electroanal. Chem, 255, 281(1988)[15]Edens, G. J., Gao, X. P., Weaver, M. J., J. Electroanal. Chem. , 375, 357(1994)[16]Hamelin, A., Sottomayor, M. J., Silva, F. et al. , J. Electroanal. Chem., 295, 291(1990)[17]Horanyi, G. , Rizmayer, E. M. , J. Electroanal. Chem. , 176, 349(1984)[18]Piela, B. , Wrona, P. K. , J. Electroanal. Chem. , 388, 69(1995)[19]Smalley, J. F. , Geng, L., Feldberg, S. W. , J. Electroanal. Chem. , 356, 181(1993)[20]Nguyen Van Huong, G. , Hinnen, G. , Lecoeur, J. , J. Electroanal. Chem. , 106, 185(1980)[21]Tremiliosi-Filho, G., Dall' Antonia, L. H. , Jerkiewicz, G., J. Electroanal. Chem., 422, 149(1997)[22]Turkevich, J. , Stevenson, P. C. , Hillier, J. , Discuss. Faraday Soc. , 11, 55(1951)[23]Porter, M. D. , Bright, T. B. , Allara, D. L. et al. , J. Am. Chem. Soc. , 109, 3 559(1987)[24]Green, S. J. , Stokes, J. J. , Hostetler, M. J. et al. , J. Phys. Chem. B, 101, 2 663(1997)[25]Ingram, J. L. , Bowyer, W. J. , J. Electroanal. Chem. , 365, 79(1994)[26]Trasatti, S. , Petrii, O. A. , J. Electroanal. Chem., 327, 353(1992)[27]Schlereth, D. D., Schmidt, H. L. , J. Electroanal. Chem. , 380, 117(1995)[28]Katz, E., Schlereth, D. D., Schmidt, H. L., J. Electroanal. Chem., 367, 59(1994)[29]Grabar, K. C. , Freeman, R. G. , Hommer, M. B. et al. , Anal. Chem. , 67, 735(1995)[30]Hu, X. Y., Xiao, Y., Chen, H. Y. , J. Electroanal. Chem. 466, 26(1999)[31]Angerstein-Kozlowska, H. , Conway, B. E., Hamelin, A., J. Electroanal. Chem., 277, 233(1990)

  15. Spitzer Clusters

    Science.gov (United States)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  16. Gold phosphide complexes

    OpenAIRE

    2007-01-01

    The vast majority of gold complexes with five group-element donor ligands contain tertiary phosphines, although compounds with amine, arsine or stibine ligands are also known. Although phosphide ligands, which are formed by deprotonation of non-tertiary phosphines, are closely related to the former, they have been employed to a lesser extent, mainly due to their lower stability. Thus, the chemistry of phosphido-bridged derivatives of the main group elements1-3 or transition metals4-6 has been...

  17. Determining gold content

    International Nuclear Information System (INIS)

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179Au(nn') 179Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  18. Paper or Gold

    OpenAIRE

    Mukund Raj

    2003-01-01

    In our society today, money's value is measured by what it can buy—its purchasing power—not by its material worth, but it hasn't always been so. · My previous papers Impact of agriculture output on exchange rates and Currency competition-Survival of the fittest dealt with issues surrounding exchange rate and currency competitions. This paper- Paper or Gold discusses the validity of human society giving importance to paper money. · We all know that the human race always believes in experimenti...

  19. Reversible photochromism of an N-salicylidene aniline anion.

    Science.gov (United States)

    Jacquemin, Pierre-Loïc; Robeyns, Koen; Devillers, Michel; Garcia, Yann

    2014-01-21

    The first N-salicylidene aniline anion showing reversible solid state thermochromic and photochromic properties is described. The photo-isomerization involves a trans-keto form which is stabilized thanks to the local anion surrounding. This photochromic anion can be used as a guest for the preparation of hybrid materials by insertion into a cationic host matrix. PMID:24022381

  20. Two new polyoxovanadate clusters templated through cysteamine

    Indian Academy of Sciences (India)

    K Pavani; S Upreti; A Ramanan

    2006-03-01

    Two new fully oxidized polyoxovanadate cluster-based solids (C4N2S2H14)2[H2V10O28]$\\cdot$4H2O, 1 and (C4N2S2H14)5[H4V15O42]2.10H2O, 2 are crystallized under self-assembly process in the presence of cysteamine. In both 1 and 2, cysteamines are oxidized forming disulphide linkages and occur as counter cations. The organic cations assemble around V10O28 cluster anions in 1 whereas they aggregate around V15O42 clusters in 2. pH appears to be the structure determinant in the occurrence of decavanadate cluster in 1 and pentadecavanadate in 2, with the same counter cation.

  1. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Anne Harnisch

    2002-06-27

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  2. Identification of the Atomic Scale Structures of the Gold-Thiol Interfaces of Molecular Nanowires by Inelastic Tunneling Spectroscopy

    CERN Document Server

    Demir, Firuz

    2012-01-01

    We examine theoretically the effects of the bonding geometries at the gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate (PDT) molecules bridging gold electrodes and show that inelastic tunneling spectroscopy combined with theory can be used to determine these bonding geometries experimentally. With the help of density functional theory, we calculate the relaxed geometries and vibrational modes of extended molecules each consisting of one or two PDT molecules connecting two gold nanoclusters. We formulate a perturbative theory of inelastic tunneling through molecules bridging metal contacts in terms of elastic transmission amplitudes, and use this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold extended molecules. We consider PDT molecules with both trans and gauche conformations bound to the gold clusters at top, bridge and hollow bonding sites. Comparing our results with the experimental data of Hihath et al. [Nano Lett. 8, 1673 (2008)], we identify the mo...

  3. The relationship of Au55(PPh3)12Cl6 to colloidal gold

    International Nuclear Information System (INIS)

    The electronic (UV-visible) spectrum of the molecular cluster Au55(PPh3)12Cl6 shows features corresponding to the 520 nm plasma resonance and the shorter-wavelength interband transition of colloidal gold. These absorptions differ qualitatively from the simpler one-electron transitions of lower-nuclearity cluster molecules. Differential scanning calorimetry has been used to measure the enthalpy of decomposition of Au55(PPh3)12Cl6. The Au-Au bonding appears to be substantially stronger than in bulk gold. (orig.)

  4. Effect of morphology of thin DNA films on the electron stimulated desorption of anions

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Sanche, Léon

    2011-01-01

    We present a comparison between the electron stimulated desorption (ESD) of anions from DNA samples prepared by lyophilization (an example of poorly organized or nonuniform films) and molecular self-assembly (well-ordered films). The lyophilization (or freeze- drying) method is perhaps the most frequently employed technique for forming DNA films for studies of low-energy electron (LEE) interactions leading to DNA damage; however, this technique usually produces nonuniform films with considerable clustering which may affect DNA configuration and enhance sample charging when the film is irradiated. Our results confirm the general validity of ESD measurements obtained with lyophilized samples, but also reveal limitations of lyophilization for LEE studies on DNA films. Specifically we observe some modulation of structures, associated with dissociative electron attachment, in the anion yield functions from different types of DNA film, confirming that conformational factors play a role in the LEE induced damage to DNA.

  5. ADSORPTION CAPACITY OF ACTIVATED CARBON FIBER FABRIC IN CYANIDE LEACHING LIQUOR OF GOLD ORES

    Institute of Scientific and Technical Information of China (English)

    LIUXiaozhen

    2002-01-01

    Adsorption capacity of ACFF in cyanide leaching liquor of gold ores was studied with cyanide leaching liquor of gold ores,containing various kinds of ions.The adsorbed leaching liquor was analyzed by atomic emission spectroscopy and colorimetric method.The contents of various kinds. of ions in ACFF were determined with X-ray photoctron spectroscopy.ACFF not only adsorbed gold but also adsorbed arsenic,nickel,zinc,calcium,sulphur,bismuth,copper,iron,silver and cyanide,anion.Atomic percentage of C and those of O,N,Zn,Fe increase and decrease respectively with the increase of the layer depth,while those of Ca,Au,Ag keep constant.

  6. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas D.; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by th...

  7. Cluster Bulleticity

    OpenAIRE

    Massey, R; Kitching, T.; Nagai, D.

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  8. Cluster generator

    Science.gov (United States)

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  9. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads

  10. The PtAl{sup −} and PtAl{sub 2}{sup −} anions: Theoretical and photoelectron spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: ana@chem.ucla.edu [Departments of Chemistry and Materials Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Alexandrova, Anastassia N., E-mail: kbowen@jhu.edu, E-mail: ana@chem.ucla.edu [Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA and California NanoSystems Institute, 570 Westwood Plaza, Building 114, Los Angeles, California 90095 (United States)

    2014-04-28

    We report a joint photoelectron spectroscopic and theoretical study of the PtAl{sup −} and PtAl{sub 2}{sup −} anions. The ground state structures and electronic configurations of these species were identified to be C{sub ∞v}, {sup 1}Σ{sup +} for PtAl{sup −}, and C{sub 2v}, {sup 2}B{sub 1} for PtAl{sub 2}{sup −}. Structured anion photoelectron spectra of these clusters were recorded and interpreted using ab initio calculations. Good agreement between theory and experiment was found. All experimental features were successfully assigned to one-electron transitions from the ground state of the anions to the ground or excited states of the corresponding neutral species.

  11. Gold-induced lung disease.

    OpenAIRE

    Heyd, J.; Simmeran, A.

    1983-01-01

    A 70-year-old female with seronegative rheumatoid arthritis developed interstitial pneumonitis while on chrysotherapy. The reversibility of lung disease and favourable response to steroid treatment support the diagnosis of gold-induced lung disease and distinguish this entity from other forms of interstitial lung disease associated with rheumatoid arthritis. The relevant literature related to gold-induced lung disease is briefly reviewed.

  12. Slider Thickness Promotes Lubricity: from 2D Islands to 3D Clusters

    OpenAIRE

    Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea

    2016-01-01

    The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represent an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressiv...

  13. Specific anion effects in Artemia salina.

    Science.gov (United States)

    Lo Nostro, Pierandrea; Ninham, Barry W; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2015-09-01

    The specific anion effect on the vitality of Artemia salina was investigated by measuring the Lethal Time LT50 of the crustaceans in the presence of different sodium salts solutions at room temperature and at the same ionic strength as natural seawater. Fluoride, thiocyanate and perchlorate are the most toxic agents, while chloride, bromide and sulfate are well tolerated. The rates of oxygen consumption of brine shrimps were recorded in mixed NaCl+NaF or NaCl+NaSCN solutions as a function of time. The results are discussed in terms of the Hofmeister series, and suggest that, besides the biochemical processes that involve F(-), SCN(-) and ClO4(-), the different physico-chemical properties of the strong kosmotropic and chaotropic anions may contribute in determining their strong toxicity for A. salina. PMID:25978674

  14. Radiative capture reactions and spectroscopy of multipolar anions in the framework of Gamow Shell Model

    International Nuclear Information System (INIS)

    Small open quantum systems, whose properties are profoundly affected by the environment of continuum states, are intensely studied in various fields of Physics: nuclear physics, atomic and molecular physics, quantum optics, etc. These different many-body systems, in spite of their specific features, have generic properties which are common to all weakly bound or unbound systems close to the threshold. Coupling to the continuum is essential to describe the low-energy nuclear reactions of astrophysical interest, the formation of halo states in nuclei, atomic clusters and dipolar anions, or the near-threshold two neutron and alpha particle correlations (clustering). Recently, the open quantum system extension of the nuclear shell model, the Gamow shell model (GSM), based on the Berggren ensemble, has been applied successfully for the description of resonant states spectra in atomic nuclei. The coupled-channel formulation of the GSM (GSM-CC) allows to describe various low-energy nuclear reactions. In this work, the GSM-CC is formulated and applied for the description of proton/neutron radiative capture reactions of astrophysical interest, such as: 17F(p, γ)18Ne, 7Be(p, γ)8B and 7Li(n, γ)8Li. Moreover, for the first time, the GSM has been applied in atomic physics for the description of spectra of dipolar anions. Systematic investigation of the hydrogen cyanide dipolar anion (HCN-) allowed to identify the collective bands of states both in the strong coupling regime, for weakly bound halo states, and in the weak coupling regime above the dissociation threshold. In the strong coupling regime, KJ = 0 anion a rotational band has been found. Above the threshold, KJ quantum number is not conserved. Resonances in this regime form rotational bands according to the angular momentum of the rotating molecule, whereas the band head energies and the lifetimes depend predominantly on the external electron wave function. (author)

  15. The adjuvanticity of gold nanoparticles

    Science.gov (United States)

    Dykman, Lev A.; Bogatyrev, Vladimir A.; Staroverov, Sergey A.; Pristensky, Dmitry V.; Shchyogolev, Sergey Yu.; Khlebtsov, Nikolai G.

    2006-06-01

    A new variant of a technique for in vivo production of antibodies to various antigens with colloidal-gold nanoparticles as carrier is discussed. With this technique we obtained highly specific and relatively high-titre antibodies to different antigens. The antibodies were tested by an immunodot assay with gold nanoparticle markers. Our results provide the first demonstration that immunization of animals with colloidal gold complexed with either haptens or complete antigens gives rise to highly specific antibodies even without the use of complete Freund's adjuvant. These findings may attest to the adjuvanticity of gold nanoparticles itself. We provide also experimental results and discussion aimed at elucidation of possible mechanisms of the discovered colloidal-gold-adjuvanticity effect.

  16. Politseiuuringud kooskõlastamisele / Liivia Anion

    Index Scriptorium Estoniae

    Anion, Liivia

    2003-01-01

    1. aprillil 2003. a. moodustatud uurimistööde kooskõlastamise komisjoni tegevuse eesmärk on saada ülevaade kõrgkoolides õppivate töötajate poolt politseis korraldatavatest uurimustest, kasutada saadud infot politsei kasuks ja vältida teenistujate tööd segavate uurimuste tegemist. Komisjoni liige Liivia Anion teeb ülevaate komisjoni otsustuspädevuse valdkondadest ja töökorraldusest

  17. 'Methane oxidation on supported gold catalysts'

    DEFF Research Database (Denmark)

    Walther, Guido

    2008-01-01

    Methane (CH4), a major compound of natural gas, has been suggested as a future energy carrier. However, it is also known to be a strong greenhouse gas. The use of CH4 obtained from crude oil as an associated gas is often uneconomical, and it is thus burned off. Avoiding flaring and making the...... steady-state activity measurements were performed to obtain the reaction rates for CO and H2 oxidation. These reactions were studied on three different gold particle sizes using either O2 or N2O as oxidation agents. Using particle size distributions obtained from TEM analysis, it was found that the CO...... oxidation rates follow the d−3 relationship proposed in [Nano Today 2, 14 (2007)]. To corroborate the experimental findings, density functional theory (DFT) calculations on the Auf532g surface and a Au12 cluster, which model corner sites, were used in a microkinetic model. This model reproduced the apparent...

  18. Coalescence and Collisions of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez-Tijerina

    2011-01-01

    Full Text Available We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

  19. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S (058000); Gianotto, Anita K (057404); McIlwain, Michael E (051783); Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  20. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  1. Several hemicyanine dyes as fluorescence chemosensors for cyanide anions

    Science.gov (United States)

    Liang, Muhan; Wang, Kangnan; Guan, Ruifang; Liu, Zhiqiang; Cao, Duxia; Wu, Qianqian; Shan, Yanyan; Xu, Yongxiao

    2016-05-01

    Four hemicyanine dyes as chemosensors for cyanide anions were synthesized easily. Their photophysical properties and recognition properties for cyanide anions were investigated. The results indicate that all the dyes can recognize cyanide anions with obvious color, absorption and fluorescence change. The recognition mechanism analysis basing on in situ 1H NMR and Job plot data indicates that to the compounds with hydroxyl group, the recognition mechanism is intramolecular hydrogen bonding interaction. However, to the compounds without hydroxyl group, cyanide anion is bonded to carbon-carbon double bond in conjugated bridge and induces N+ CH3 to neutral NCH3. Fluorescence of the compounds is almost quenched upon the addition of cyanide anions.

  2. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    OpenAIRE

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size ...

  3. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  4. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens

    2007-01-01

    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches in...

  5. Denominators of cluster variables

    OpenAIRE

    Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun

    2007-01-01

    Associated to any acyclic cluster algebra is a corresponding triangulated category known as the cluster category. It is known that there is a one-to-one correspondence between cluster variables in the cluster algebra and exceptional indecomposable objects in the cluster category inducing a correspondence between clusters and cluster-tilting objects. Fix a cluster-tilting object T and a corresponding initial cluster. By the Laurent phenomenon, every cluster variable can be written as a Laurent...

  6. Dynamics of Ag clusters on complex surfaces: Molecular dynamics simulations

    Science.gov (United States)

    Alkis, S.; Krause, J. L.; Fry, J. N.; Cheng, H.-P.

    2009-03-01

    We study the diffusion of silver nanoparticles on self-assembled monolayers (SAMs). Silver clusters Agn of sizes n=55 , 147, and 1289 were evolved in contact with an alkanethiol (12 carbon, dodecanethiol) SAM deposited on a gold (111) surface. Analysis based on classical molecular dynamics simulations reveals that these systems exhibit a rich variety of behaviors, from superdiffusive for the lightest cluster to pinned for the heaviest, evolution self-similar in lengths and times for the lightest cluster but with characteristic time scales and directional anisotropies emerging for the heavier clusters.

  7. Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2.

    Science.gov (United States)

    Ndokoye, Pancras; Zhao, Qidong; Li, Xinyong; Li, Tingting; Tade, Moses O; Wang, Shaobin

    2016-09-01

    In this study, we demonstrate for the first time that highly branched gold nanostars (AuNSs) and silica-coated AuNSs (AuNSs@mSiO2) could potentially serve as efficient hydrogenation catalysts. The catalytic activity could be promoted by raising the number of tipped-branches of AuNSs, which reveals that the tips play an important role as active sites. The fabricated sharply-pointed AuNSs benefit the electron transfer from BH4 anions to 4-nitrophenol. Coating AuNSs with mesoporous silica (AuNSs@mSiO2) further enhanced the reduction rate and recyclability, and also contributed to reducing the induction period. The AuNSs@mSiO2 (50-100nm in diameter) are large enough to be catalytically inactive, but they consist of sharply-pointed tips with the radius of 2.6-3.6nm, which are rich in coordinately unsaturated sites similar to those of nanoparticles and clusters. Such features in structure and activity would also extend their application range in heterogeneous catalysis. PMID:27235790

  8. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk;

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed...... atomic configuration of a nanoparticle with a given number of atoms is calculated by first finding overall cluster shapes with low energy and approximately the right size, and then using Metropolis Monte Carlo simulations to identify the detailed atomic configuration. The equilibrium number of low...... in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but...

  9. Ab initio and DFT study of the geometric structures and static dipole (hyper)polarizabilities of aromatic anions.

    Science.gov (United States)

    Castellano, O; Bermúdez, Y; Giffard, M; Mabon, G; Cubillan, N; Sylla, M; Nguyen-Phu, X; Hinchliffe, A; Soscún, H

    2005-11-17

    The geometries and the static dipole (hyper)polarizabilities (alpha, beta, gamma) of a series of aromatic anions were investigated at the ab initio (HF, MP2, and MP4) and density functional theory DFT (B3LYP) levels of theory. The anions chosen for the present study are the benzenethiolate (Ph-S-), benzenecarboxylate (Ph-CO2-), benzenesulfinate (Ph-SO2-), benzenesulfonate (Ph-SO3-), and 1,3-benzenedicarboxylate (1,3-Ph-(CO2)2(2-)). For benzenethiolate anion, additional alpha, beta, and gamma calculations were performed at the coupled cluster CCSD level with MP2 optimized geometries. The standard diffuse and polarized 6-31+G(d,p) basis set was employed in conjunction to the ab initio and DFT methods. Additional HF calculations were performed with the 6-311++G(3d,3p) basis set for all the anions. The correlated electric properties were evaluated numerically within the formalism of finite field. The optimized geometries were analyzed in terms of the few reports about the phenolate and sulfonate ions. The results show that electron correlation effects on the polarizabilities are very important in all the anion series. Was found that Ph-SO2- is highly polarizable in terms of alpha and beta, and the Ph-S- is the highest second hyperpolarizable in the series. The results of alpha were rationalized in terms of the analysis of the polarization of charge based in Mulliken atomic population and the structural features of the optimized geometries of anions, whereas the large differences in the beta and gamma values in the series were respectively interpreted in terms of the bond length alternation BLA and the separation of charge in the aromatic ring by effects of the substitution. These results allowed us to suggest the benzenesulfinate and benzenethiolate anions as promising candidates that should be incorporated in ionic materials for second and third-order nonlinear optical devices. PMID:16833334

  10. Stealing the Gold

    International Nuclear Information System (INIS)

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  11. Cluster Bulleticity

    CERN Document Server

    Massey, Richard; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure a positive signal in hydrodynamical si...

  12. Synthesis of gold structures by gold-binding peptide governed by concentration of gold ion and peptide.

    Science.gov (United States)

    Kim, Jungok; Kim, Dong-Hun; Lee, Sylvia J; Rheem, Youngwoo; Myung, Nosang V; Hur, Hor-Gil

    2016-08-01

    Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 μm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions. PMID:27108675

  13. Supramolecular chemistry of selective anion recognition for anions of environmental relevance. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, K.; Wilson, G.S.; Kuczera, K. [Univ. of Kansas, Lawrence, KS (US); Moyer, B. [Oak Ridge National Lab., TN (US)

    1998-06-01

    'This project has as its focus the design and synthesis of polyammonium macrocyclic receptors for oxoanions of environmental importance. The basic research aspects of this project involve: (1) synthesis (and the search for improved synthetic methods); (2) solid state structure determination and thermodynamics studies (to ascertain structural criteria for and strength of anion binding); and (3) molecular dynamics simulations (to assess solution characteristics of the interactions between anions and their receptors). Applications-oriented goals include the fabrication of more selective anion-selective electrodes and the use of these compounds in liquid-liquid separations. The latter goal comprises the subcontract with Dr. Bruce Moyer at Oak Ridge National Laboratory. This report summarizes work after 1 year and 7 months of a 3-year project. To date, the authors have focussed on the design and synthesis of selective receptors for nitrate and phosphate.'

  14. Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions.

    Science.gov (United States)

    Zhang, Zhan; Kim, Dong Sub; Lin, Chung-Yon; Zhang, Huacheng; Lammer, Aaron D; Lynch, Vincent M; Popov, Ilya; Miljanić, Ognjen Š; Anslyn, Eric V; Sessler, Jonathan L

    2015-06-24

    Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions. PMID:25965790

  15. Positive Anharmonicities: The Oxonide Anion as an Example

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    An accurate ab initio quartic force field for the ozonide anion has been determined at the singles and doubles coupled-cluster level of theory that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), using the augmented valence triple-zeta correlation consistent one-particle basis set. Convergence of the harmonic frequencies with respect to the one-particle basis set has been demonstrated by computing quadratic force fields at the CCSD(T) level using augmented valence double-zeta and quadruple-zeta basis sets. Fundamental vibrational frequencies have been determined via second-order ro-vibrational perturbation theory and also using exact variational methods. Agreement is very good, and they both show that the antisymmetric O-O stretch, v 3, possesses a positive anharmonic correction (that is, the fundamental frequency is predicted to be higher in energy than the harmonic frequency). Comparison of the O_3 and O3 quartic force fields shows that the positive anharmonic correction is the result of a particularly large F3333 symmetry internal coordinate force constant. The reasonableness of this force constant has been tested by computing both F33 and F3333 at the CCSD, CCSD(T), and CASPT2 levels of theory. A discussion of known positive anharmonicities for stretching modes is presented.

  16. The ethylenedione anion: Elucidation of the intricate potential energy hypersurface

    International Nuclear Information System (INIS)

    Ab initio molecular orbital theory has been used to study the controversial potential energy surface of the ethylenedione anion C2O-2. Seven different basis sets, the largest being triple zeta plus two polarization functions and one set of higher angular momentum functions (TZ2Pf) in quality, were utilized in conjunction with five correlated methods, the highest-level being coupled-cluster theory including single, double, and perturbative triple excitations [CCSD(T)]. Equilibrium geometries and harmonic vibrational frequencies of the predicted 2Au trans-bent ground state are presented. The Renner--Teller potential energy surface resulting from the splitting of the doubly degenerate linear 2Πu transition state into the nondegenerate bent 2Au and linear 2Bu surfaces is also characterized by means of energy predictions for these three states. Several recent peak assignments in the experimental spectrum, as well as the isotopic shifts associated with them, are supported by theory. A correct description of the potential energy hypersurface is obtained only by application of large basis sets in conjunction with methods including high-level treatment of electron correlation effects. The TZP+/CCSD(T) methodology predicts the OCC bond angle to be 146.5 degree

  17. Investigation of thermally induced anion disorder in fluorites using neutron scattering techniques

    DEFF Research Database (Denmark)

    Hutchings, M T; Clausen, Kurt Nørgaard; Dickens, M H;

    1984-01-01

    the coherent diffuse quasielastic neutron scattering from single crystals of three such fluorite compounds PbF2, SrCl2 and CaF2, was investigated. The diffuse scattering intensity, and its energy width, increases with temperature into the fast-ion phase, and when integrated over energy transfer the...... intensity exhibits a characteristic variation with scattering vector, falling on an anisotropic shell in reciprocal space and peaking in certain directions. The diffuse intensity indicates that dynamic correlations exist between the defective anions in the fast-ion-phase. A model of short-lived clusters...

  18. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  19. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  20. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  1. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin

    2013-12-23

    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  2. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed...

  3. Chloride sublimation of gold-arsenic concentrates

    International Nuclear Information System (INIS)

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  4. Anionic complexes of Cu(I) with the closo-decaborate anion

    International Nuclear Information System (INIS)

    General procedures for synthesis of anionic Cu(I) complexes with the closo-decaborate anion were worked out; they make it possible to prepare coordination compounds with a wide set of organic cations. The interaction of onium closo-decaborates with [Cu2B10H10] in acetonitrile acidified with anhydrous trifluoroacetic acid was found to be the most effective synthetic method that secures high yield and quality of the obtained products. The structure of {(C2H5)3NH[CuB10H10]} was determined by X-ray diffraction analysis

  5. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  6. Protein-mediated autoreduction of gold salts to gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (United States)], E-mail: Mukherjee.Priyabrata@mayo.edu

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT-an anti-CD20 antibody) and Cetuximab (C225-anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  7. Organic superconductors with an incommensurate anion structure

    Directory of Open Access Journals (Sweden)

    Tadashi Kawamoto and Kazuo Takimiya

    2009-01-01

    Full Text Available Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF(AuI20.436 and (MDT-ST(I30.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene-1,3-diselena-4,6-dithiapentalene, and q is the reciprocal lattice vector of the anion lattice. The selection rule of the reconstructing vectors is associated with the magnitude of the incommensurate potential. The considerably large interlayer transfer integral and three-dimensional superconducting properties are due to the direct donor–donor interactions coming from the characteristic corrugated conducting sheet structure. The materials with high superconducting transition temperature, Tc, have large ratios of the observed cyclotron masses to the bare ones, which indicates that the strength of the many-body effect is the major determinant of Tc. (MDT-TS(AuI20.441 shows a metal–insulator transition at TMI=50 K, where MDT-TS is 5H-2-(1,3-diselenol-2-ylidene-1,3,4,6-tetrathiapentalene, and the insulating phase is an antiferromagnet with a high Néel temperature (TN=50 K and a high spin–flop field (Bsf=6.9 T. There is a possibility that this material is an incommensurate Mott insulator. Hydrostatic pressure suppresses the insulating state and induces superconductivity at Tc=3.2 K above 1.05 GPa, where Tc rises to the maximum, Tcmax=4.9 K at 1.27 GPa. This compound shows a usual temperature–pressure phase diagram, in which the superconducting phase borders on the antiferromagnetic insulating phase, despite the unusual band filling.

  8. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Groenewold; Anita K. Gianotto; Michael E. McIlwain; Michael J. Van Stipdonk; Michael Kullman; Travis J. Cooper; David T. Moore; Nick Polfer; Jos Oomens; Ivan Infante; Lucas Visscher; Bertrand Siboulet; Wibe A. de Jong

    2007-12-01

    The Free-Electron Laser for Infrared Experiments, FELIX, was used to study the wavelength-resolved multiphoton dissociation of discrete, gas phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The apparent uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide or acetate, S was water, ammonia, acetone or acetonitrile, and n = 0-2. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations using B3LYP predicted values that were 30 – 40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis set and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which resulted only very modest changes to the uranyl frequency, and did not universally shift values lower. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

  9. Infared Spectroscopy of Discrete Uranyl Anion Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-24

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30–40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity.

  10. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    International Nuclear Information System (INIS)

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  11. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones...

  12. Quotients of cluster categories

    OpenAIRE

    Jorgensen, Peter

    2007-01-01

    Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories are actually just quotients of cluster categories. The other half can be obtained as quotients of 2-cluster categories, the "lowest" type of higher cluster categories. Hence, in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not...

  13. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  14. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  15. Gold based bulk metallic glass

    International Nuclear Information System (INIS)

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system is ∼350 Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry

  16. Discovery of the Gold Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-six gold isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  17. A eutectic gold vapour laser

    Science.gov (United States)

    Tou, T. Y.; Cheak, K. E.; Low, K. S.

    This paper presents a eutectic gold vapour laser (EGVL) which uses the eutectic alloy of gold and silicon, Au/3.15Si, as the lasant. It was observed that, at low input power operation, the presence of the silicon vapour could increase the output of the 627.8 nm laser line by (50-60)% when compared with a gold vapour laser (GVL) which uses pure gold as the lasant. The improved laser output for the EGVL may be explained by an increased electron density, as a result of Penning ionization of silicon atoms. However, for higher input power operation, the EGVL showed a slower rate of increase in its laser output power and was overtaken by GVLs at a tube operating temperature of around 1650°C. This may be explained by a lowering of the electron temperature owing to increasing inelastic collisions between the electrons and silicon atoms which, although excited, may not produce additional electrons.

  18. Periodicity, Electronic Structures, and Bonding of Gold Tetrahalides [AuX4](-) (X = F, CI, Br, I, At, Uus)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wan-Lu; Li, Yong; Xu, Congqiao; Wang, Xue B.; Vorpagel, Erich R.; Li, Jun

    2015-12-07

    Systematic theoretical and experimental investigations have been performed to understand the periodicity and electronic structures of trivalent-gold halides using gold tetrahalides [AuX4]⁻ anions (X = F, Cl, Br, I, At, Uus). The [AuX4]⁻ (X = Cl, Br, I) anions were produced in gas phase and their negative-ion photoelectron spectra were obtained, which exhibited rich and well-resolved spectral peaks. We calculated the adiabatic as well as vertical electron detachment energies using density functional methods with scalar and spin-orbit coupling relativistic effects. The simulated photoelectron spectra based on these calculations are in good agreement with the experimental spectra. Our results show that the trivalent Au(III) oxidation state becomes progressively less stable while Au(I) is preferred when the halides become heavier along the Period Table. This trend reveals that the oxidation state of metals in complexes can be manipulated through ligand design

  19. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    International Nuclear Information System (INIS)

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia

  20. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Oni, Y. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Hao, K. [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dozie-Nwachukwu, S.; Odusanya, O. S. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO), Gwagwalada, Abuja, Federal Capital Territory (Nigeria); Obayemi, J.D. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Anuku, N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry and Chemical Technology, Bronx Community College, New York, New York 10453 (United States); Soboyejo, W. O. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria)

    2014-02-28

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia.