WorldWideScience

Sample records for anion channel-like activity

  1. An anion channel in Arabidopsis hypocotyls activated by blue light

    Science.gov (United States)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  2. Effect of ethyleneoxide groups of anionic surfactants on lipase activity.

    Science.gov (United States)

    Magalhães, Solange S; Alves, Luís; Sebastião, Marco; Medronho, Bruno; Almeida, Zaida L; Faria, Tiago Q; Brito, Rui M M; Moreno, Maria J; Antunes, Filipe E

    2016-09-01

    The use of enzymes in laundry and dish detergent products is growing. Such tendency implies dedicated studies to understand surfactant-enzyme interactions. The interactions between surfactants and enzymes and their impact on the catalytic efficiency represent a central problem and were here evaluated using circular dichroism, dynamic light scattering, and enzyme activity determinations. This work focuses on this key issue by evaluating the role of the ethyleneoxide (EO) groups of anionic surfactants on the structure and activity of a commercial lipase, and by focusing on the protein/surfactant interactions at a molecular level. The conformational changes and enzymatic activity of the protein were evaluated in the presence of sodium dodecyl sulfate (SDS also denoted as SLE 0 S) and of sodium lauryl ether sulfate with two EO units (SLE 2 S). The results strongly suggest that the presence of EO units in the surfactant polar headgroup determines the stability and the activity of the enzyme. While SDS promotes enzyme denaturation and consequent loss of activity, SLE 2 S preserves the enzyme structure and activity. The data further highlights that the electrostatic interactions among the protein groups are changed by the presence of the adsorbed anionic surfactants being such absorption mainly driven by hydrophobic interactions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1276-1282, 2016. © 2016 American Institute of Chemical Engineers.

  3. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    Science.gov (United States)

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs.

  4. Enhanced removal of organic dyes from porous channel-like SnO2 nanostructures

    Science.gov (United States)

    Chen, Haitao; Guo, Anqi; Huang, Shuhui; Zhu, Jun; Cheng, Liwen

    2017-05-01

    Porous SnO2 nanostructures with nanochannels are synthesized through anodic oxidation of tin foils in oxalic acid solution. The effect of varying the applied potentials on the morphologies and photocatalytic activities of the porous channel-like SnO2 are investigated. The enhancement of photocatalytic efficiency is exhibited with increasing the pore diameter and the complete removal of MO molecules is possible in 120 min under the irradiation. Photocatalytic efficiency of the porous channel-like SnO2 nanostructure for the photo-reduction of MO pollutants is much faster than that of simple SnO2 nanoparticles, which mainly attribute to the efficient anti-recombination of photogenerated electron-hole pairs for the introducing of porous nanochannel-like nanostructures. The structure would significantly extend its application not only in waste water remediation but also in other fields, such as supercapacitors and gas sensors.

  5. Superoxide anions in paraventricular nucleus modulate adipose afferent reflex and sympathetic activity in rats.

    Directory of Open Access Journals (Sweden)

    Lei Ding

    Full Text Available Adipose afferent reflex (AAR is a sympatho-excitatory reflex induced by chemical stimulation of white adipose tissue (WAT. Ionotropic glutamate receptors including NMDA receptors (NMDAR and non-NMDA receptors (non-NMDAR in paraventricular nucleus (PVN mediate the AAR. Enhanced AAR contributes to sympathetic activation and hypertension in obesity rats. This study was designed to investigate the role and mechanism of superoxide anions in PVN in modulating the AAR.Renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP were recorded in anesthetized rats. AAR was evaluated by the RSNA and MAP responses to injections of capsaicin into four sites of right inguinal WAT (8.0 nmol in 8.0 µl for each site. Microinjection of polyethylene glycol-superoxide dismutase (PEG-SOD, the superoxide anion scavenger tempol or the NAD(PH oxidase inhibitor apocynin into the PVN decreased the baseline RSNA and MAP, and attenuated the AAR. Unilateral WAT injection of capsaicin increased superoxide anions in bilateral PVN, which was prevented by the WAT denervation. WAT injection of capsaicin increased superoxide anion level and NAD(PH oxidase activity in the PVN, which was abolished by the PVN pretreatment with the combined NMDAR antagonist AP5 and non-NMDAR antagonist CNQX. Microinjection of the NMDAR agonist NMDA or the non-NMDAR agonist AMPA increased superoxide anion level and NAD(PH oxidase activity in the PVN.NAD(PH oxidase-derived superoxide anions in the PVN contributes to the tonic modulation of AAR. Activation of ionotropic glutamate receptors in the PVN is involved in the AAR-induced production of superoxide anions in the PVN.

  6. The transmembrane channel-like protein family and human papillomaviruses

    Science.gov (United States)

    Horton, Jaime S; Stokes, Alexander J

    2014-01-01

    Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 (TMC6 / EVER1) and 8 (TMC8 / EVER2) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells. PMID:24800179

  7. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle......-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude....

  8. Tonoplast anion channel activity modulation by pH in Chara corallina.

    Science.gov (United States)

    Berecki, G; Eijken, M; Van Iren, F; Van Duijn, B

    2001-11-15

    The patch-clamp technique was used to investigate regulation of anion channel activity in the tonoplast of Chara corallina in response to changing proton and calcium concentrations on both sides of the membrane. These channels are known to be Ca2+-dependent, with conductances in the range of 37 to 48 pS at pH 7.4. By using low pH at the vacuolar side (either pH(vac) 5.3 or 6.0) and a cytosolic pH (pH(cyt)) varying in a range of 4.3 to 9.0, anion channel activity and single-channel conductance could be reversibly modulated. In addition, Ca2+-sensitivity of the channels was markedly influenced by pH changes. At pH(cyt) values of 7.2 and 7.4 the half-maximal concentration (EC50) for calcium activation was 100-200 microm, whereas an EC(50) of about 5 microm was found at a pH(cyt) of 6.0. This suggests an improved binding of Ca2+ ions to the channel protein at more acidic cytoplasm. At low pH(cyt), anion channel activity and mean open times were voltage-dependent. At pipette potentials (V(p)) of +100 mV, channel activity was approximately 15-fold higher than activity at negative pipette potentials and the mean open time of the channel increased. In contrast, at pH(cyt) 7.2, anion channel activity and the opening behavior seemed to be independent of the applied V(p). The kinetics of the channel could be further controlled by the Ca2+ concentration at the cytosolic membrane side: the mean open time significantly increased in the presence of a high cytosolic Ca2+ concentration. These results show that tonoplast anion channels are maintained in a highly active state in a narrow pH range, below the resting pH(cyt). A putative physiological role of the pH-dependent modulation of these anion channels is discussed.

  9. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  10. Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah

    2018-05-01

    Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.

  11. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    Science.gov (United States)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  12. Glutamate transporters combine transporter- and channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate

  13. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  14. H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Schneider, Linda; Klausen, Thomas K; Stock, Christian

    2008-01-01

    The expression of the H-ras oncogene increases the migratory activity of many cell types and thereby contributes to the metastatic behavior of tumor cells. Other studies point to an involvement of volume-activated anion channels (VRAC) in (tumor) cell migration. In this paper, we tested whether...... 35%. Consistent with higher VRAC activity in H-ras than in wild-type fibroblasts, more VRAC blocker is needed to achieve a comparable degree of inhibition of migration. We suggest that H-ras modulates the volume set point of VRAC and thus facilitates transient changes of cell volume required...

  15. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  16. Inverse H/D isotope effects in benzene activation by cationic and anionic cobalt clusters.

    Science.gov (United States)

    Tombers, Matthias; Barzen, Lars; Niedner-Schatteburg, Gereon

    2013-02-14

    Reactions under single collision conditions with benzene C(6)H(6) and with benzene-d(6) C(6)D(6) of size selected cationic cobalt clusters Co(n)(+) and of anionic cobalt clusters Co(n)(-) in the cluster size range n = 3-28 revealed that dehydrogenation by cationic clusters is sparse, whereas it is ubiquitous in reactions by anionic clusters. Kinetic isotope effects (KIE) in total reaction rates are inverse and, in part, large. Dehydrogenation isotope effects (DIE) are normal. A multistep model of adsorption and stepwise dehydrogenation from the precursor adsorbate unravels a possible origin of the inverse KIE: Single step C-H bond activation is swift (no KIE in forward direction) and largely reversible (normal KIE backward) whereas H/D tunneling is likely to contribute (backward). DFT calculations of the structures and energetics along the reaction path in [Co(13)C(6)H(6)](+) lend support to the proposed multistep model. The observed effects on rates and KIEs of cluster charges and of cluster sizes are noted to elucidate further.

  17. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2.

    Science.gov (United States)

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L; Yoon, Juyoung

    2014-04-04

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features.

  18. Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance

    Directory of Open Access Journals (Sweden)

    Christopher B. Divito

    2017-05-01

    Full Text Available Excitatory amino acid transporters (EAATs are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3 and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or “leak” channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.

  19. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    Science.gov (United States)

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions.

  20. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark.

    Science.gov (United States)

    Sánchez, Janet Calero; García, Roberto Faure; Cors, Ma Teresa Mitjavila

    2010-09-01

    Rhizophora mangle (L.) produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Rhizophora mangle (L.) bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals scavenging. IC(50) for DPPH radical-scavenging activity was 6.7 µg tannins/mL for extract and 7.6 µg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P tannins/mL) than the extract (IC(50) = 31.9 µg tannins/mL). Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds.

  1. Removal of cationic and anionic dyes by immobilised titanium dioxide loaded activated carbon

    International Nuclear Information System (INIS)

    Chang, Sook Keng; Zukarnain Zainal; Abdul Halim Abdullah

    2008-01-01

    Combination of adsorption and photodegradation processes induces strong beneficial effects in dye removals. Adding high adsorption capacity activated carbon to photoactive titanium dioxide is an attractive solution due to their potential in removing dyes of diverse chemical characteristics. Recently, immobilisation has been an acceptable approach to overcome the drawbacks encountered with powder suspensions. The present study involves the removals of Victoria Blue R (VBR), a cationic dye and Indigo Carmine (IC), an anionic using approximately one gram of immobilised titanium dioxide (TiO 2 ), activated carbon (AC) and mixture titanium dioxide/ activated carbon (TiO 2 / AC) from 200 mL solution at the concentration of 20 ppm under UV illumination for 4 hours. Comparisons were made in terms of their removal efficiency by applying first-order kinetics model. Immobilised TiO 2 showed total removal of IC in 40 minutes whereas only 44 % of VBR was removed in 2 hours. On the other hand, in the case of immobilised AC, about 87 % of VBR and 6 % of IC were removed in 2 hours. The results obtained using immobilised TiO 2 / AC proved the prominence of this immobilised sample in dealing with VBR and IC by achieving 95 % and 62 % removal respectively in 2 hours. (author)

  2. Suppression of superoxide anion generation catalyzed by xanthine oxidase with alkyl caffeates and the scavenging activity.

    Science.gov (United States)

    Masuoka, Noriyoshi; Kubo, Isao

    2016-01-01

    Alkyl caffeates are strong antioxidants and inhibitors of xanthine oxidase. However, it is unclear about the effect of caffeic acid and alkyl caffeates on superoxide anion (O2(-)) generation catalyzed by xanthine oxidase. Effects of caffeic acid and alkyl caffeates on the uric acid formation and O2(-) generation catalyzed by xanthine oxidase were analyzed. The scavenging activities of 1,1-diphenyl-2-picryhydrazyl (DPPH) radical and O2(-) generated with phenazine methosulfate (PMS) and NADH were examined. Caffeic acid derivatives equally suppressed O2(-) generation, and the suppression is stronger than inhibition of xanthine oxidase. Scavenging activity of O2(-) is low compared to the suppression of O2(-) generation. Suppression of O2(-) generation catalyzed by xanthine oxidase with caffeic acid derivatives was not due to enzyme inhibition or O2(-) scavenging but due to the reduction of xanthine oxidase molecules. Alkyl caffeates are effective inhibitors of uric acid and O2(-) catalyzed by xanthine oxidase as well as antioxidants for edible oil.

  3. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic ...

    Indian Academy of Sciences (India)

    Unknown

    hydrotalcite anionic clay for Friedel–Crafts type benzylation reactions. VASANT R CHOUDHARY*, RANI JHA and PANKAJ A CHOUDHARI. Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411 008,. India.

  4. Potential Superoxide Anion Radical Scavenging Activity of Doum Palm ( Hyphaene thebaica L. Leaves Extract

    Directory of Open Access Journals (Sweden)

    Mohamed M. Al-Azizi

    2008-08-01

    Full Text Available The antioxidant activity of the aqueous ethanolic extract of Doum leaves, Hyphaene thebaica L. (Palmae, was studied. Data obtained showed that the extract scavenged superoxide anion radicals ( IC 50=1602 µg/ml in a dose dependant manner using xanthine/hypoxanthine oxidase assay. Four major flvonoidal compounds were identified by LC/SEI as; Quercetin glucoside , Kaempferol rhamnoglucoside, Dimethyoxyquercetin rhamnoglucoside . While , further in-depth phytochemical investigation of this extract lead to the isolation and identification of fourteen compounds ;their structures were elucidated based upon the interpretation of their spectral data(UV, 1H, 13C NMR and ESI/MS as; 8-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (vitexin 1, 6-C-β-D-glucopyranosyl-5, 7, 4`-trihydroxyflavone (iso-vitexin 2, quercetin 3-O-β- 4C 1-D-glucopyranoside 3, gallic acid 4, quercetin 7-O-β- 4C 1-D-glucoside 5, luteolin 7-O-β- 4C 1-D-glucoside 6, tricin 5 O-β- 4C 1-D-glucoside 7, 7, 3` dimethoxy quercetin 3-O-[6''-O-α-L-rhamnopyranosyl]-β-D-gluco-pyranoside (Rhamnazin 3-O-rutinoside 8, kaempferol-3-O-[6''-O-α- L-rhamnopyranosyl]-β- D-glucopyranoside (nicotiflorin 9, apigenin 10, luteolin 11, tricin 12, quercetin 13 and kaempferol 14

  5. Recoil chemistry in inorganic solids with simultaneous activation of anion and cation: indium iodate system [ Paper No. NC-14

    International Nuclear Information System (INIS)

    Recoil chemistry of indium iodate has been worked out along with that of indium sulphate and potassium iodate with a view to find out the role of hot atoms of cation and anion being activated simultaneously. The chemical identification and separation has been presented in this paper along with some preliminary results on retention and yield of different hot species produced under (n,γ) process. (author)

  6. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  7. Equilibrium studies on sorption of an anionic dye onto acid activated ...

    African Journals Online (AJOL)

    ISHIOMA

    (collected from the ponds) as adsorbent for the removal of anionic dye from its aqueous solutions. Batch studies were conducted to evaluate the adsorption capacity of the dye, Congo red on the sorbent with respect to the variations in initial pH, contact time and initial dye concentration and the adsorbent. The effective pH for ...

  8. Equilibrium studies on sorption of an anionic dye onto acid activated ...

    African Journals Online (AJOL)

    The inappropriate disposal of dyes in wastewater constitutes an environmental problem and can cause damage to the ecosystem. Present investigation deals with the utilization of water hyacinth roots (collected from the ponds) as adsorbent for the removal of anionic dye from its aqueous solutions. Batch studies were ...

  9. Determination of iridium in the Bering Sea and Arctic Ocean seawaters by anion exchange preconcentration-neutron activation analysis

    International Nuclear Information System (INIS)

    Li Shihong; Mao Xueying; Chai Zhifang

    2004-01-01

    Anion exchange method is investigated to separate and enrich iridium in seawater by radiotracer 192 Ir. The adsorption of Ir in the resin increases with the decreasing acidity in the 0.05-1.2 mol/L HCl media, The recovery of iridium in pH=1.5 seawater reaches 89% by a single anion-exchange column. The polyethylene container of acidity of pH=1.5 are suitable for storing trace Ir in seawater. An anion exchange preconcentration-neutron activation analysis procedure is developed to determine iridium in seawaters sampled from the Bering Sea and Arctic Ocean at different depth. The reagent blank value of the whole procedures is (0.18-0.20) x 10 -12 g Ir. The iridium concentrations in the Bering Sea and Arctic Ocean seawater samples are (0.85-3.58) x 10 -12 g/L (0-3504 m) and (1.26-1.97) x 10 -12 g/L (25-1900 m), respectively

  10. Nanosized silver?anionic clay matrix as nanostructured ensembles with antimicrobial activity

    OpenAIRE

    2009-01-01

    Abstract Nanostructured ensembles of silver nanoparticles/zinc-substituted anionic clay matrix (Ag/ZnLDH) were obtained by a simple synthetic route in which reconstruction of the layered clay, synthesis of the silver nanoparticles and their organisation on the clay surface took place in a single step at room temperature. The morphology, composition and phase structure of the prepared powders were characterised by X-ray diffraction, infrared spectroscopy, transmission electron micro...

  11. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  12. NADH oxidase activity of human xanthine oxidoreductase--generation of superoxide anion.

    Science.gov (United States)

    Sanders, S A; Eisenthal, R; Harrison, R

    1997-05-01

    Human xanthine oxidase was purified from breast milk. The dehydrogenase form of the enzyme, which predominates in most mammalian tissues, catalyses the oxidation of NADH by oxygen, generating superoxide anion significantly faster than does the oxidase form. The corresponding forms of bovine enzyme behave very similarly. The steady-state kinetics of NADH oxidation and superoxide production, including inhibition by NAD, by the dehydrogenase forms of both enzymes, are analysed in terms of a model involving two-stage recycling of oxidised enzyme. Established inhibitors of xanthine oxidoreductases (allopurinol oxypurinol, amflutizole and BOF 4272), which block all other reducing substrates, were ineffective in the case of NADH. Diphenyleneiodonium, on the other hand, was a powerful inhibitor of NADH oxidation. The potential involvement of reactive oxygen species arising from NADH oxidation by xanthine oxidoreductase in ischaemia-reperfusion injury and other disease states, as well as in normal signal transduction, is discusssed.

  13. Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon.

    Science.gov (United States)

    Kaji, Izumi; Akiba, Yasutada; Konno, Kohtarou; Watanabe, Masahiko; Kimura, Shunsuke; Iwanaga, Toshihiko; Kuri, Ayaka; Iwamoto, Ken-Ichi; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2016-06-15

    Luminal short-chain fatty acids (SCFAs) influence gut physiological function via SCFA receptors and transporters. The contribution of an SCFA receptor, free fatty acid receptor (FFA)3, to the enteric nervous system is unknown. FFA3 is expressed in enteric cholinergic neurons. Activation of neural FFA3 suppresses Cl(-) secretion induced by nicotinic ACh receptor activation via a Gi/o pathway. Neural FFA3 may have an anti-secretory function by modulating cholinergic neural reflexes in the enteric nervous system. The proximal colonic mucosa is constantly exposed to high concentrations of microbially-produced short-chain fatty acids (SCFAs). Although luminal SCFAs evoke electrogenic anion secretion and smooth muscle contractility via neural and non-neural cholinergic pathways in the colon, the involvement of the SCFA receptor free fatty acid receptor (FFA)3, one of the free fatty acid receptor family members, has not been clarified. We investigated the contribution of FFA3 to cholinergic-mediated secretory responses in rat proximal colon. FFA3 was immunolocalized to enteroendocrine cells and to the enteric neural plexuses. Most FFA3-immunoreactive nerve fibres and nerve endings were cholinergic, colocalized with protein gene product (PGP)9.5, the vesicular ACh transporter, and the high-affinity choline transporter CHT1. In Ussing chambered mucosa-submucosa preparations (including the submucosal plexus) of rat proximal colon, carbachol (CCh)-induced Cl(-) secretion was decreased by TTX, hexamethonium, and the serosal FFA3 agonists acetate or propionate, although not by an inactive analogue 3-chloropropionate. Serosal application of a selective FFA3 agonist (N-[2-methylphenyl]-[4-furan-3-yl]-2-methyl-5-oxo-1,4,5,6,7,8-hexahydro-quinoline-3-carboxamide; MQC) dose-dependently suppressed the response to CCh but not to forskolin, with an IC50 of 13 μm. Pretreatment with MQC inhibited nicotine-evoked but not bethanechol-evoked secretion. The inhibitory effect of MQC was

  14. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    Volume-regulated channels for anions (VRAC) / organic osmolytes (VSOAC) play essential roles in cell volume regulation and other cellular functions, e.g. proliferation, cell migration and apoptosis. LRRC8A, which belongs to the leucine rich-repeat containing protein family, was recently shown...... to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene......, encoding for ANO1, maps to a region on chromosome 11 (11q13) that is frequently amplified in cancer cells. Knockdown of ANO1 impairs cell proliferation and cell migration in several cancer cells. Below we summarize the basic biophysical properties of VRAC, VSOAC and ANO1 and their most important cellular...

  15. Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    Full Text Available When cells swell in hypo-osmotic solutions, chloride-selective ion channels (Cl(swell activate to reduce intracellular osmolality and prevent catastrophic cell rupture. Despite intensive efforts to assign a molecular identity to the mammalian Cl(swell channel, it remains unknown. In an unbiased genome-wide RNA interference (RNAi screen of Drosophila cells stably expressing an anion-sensitive fluorescent indicator, we identify Bestrophin 1 (dBest1 as the Drosophila Cl(swell channel. Of the 23 screen hits with mammalian homologs and predicted transmembrane domains, only RNAi specifically targeting dBest1 eliminated the Cl(swell current (I(Clswell. We further demonstrate the essential contribution of dBest1 to Drosophila I(Clswell with the introduction of a human Bestrophin disease-associated mutation (W94C. Overexpression of the W94C construct in Drosophila cells significantly reduced the endogenous I(Clswell. We confirm that exogenous expression of dBest1 alone in human embryonic kidney (HEK293 cells creates a clearly identifiable Drosophila-like I(Clswell. In contrast, activation of mouse Bestrophin 2 (mBest2, the closest mammalian ortholog of dBest1, is swell-insensitive. The first 64 residues of dBest1 conferred swell activation to mBest2. The chimera, however, maintains mBest2-like pore properties, strongly indicating that the Bestrophin protein forms the Cl(swell channel itself rather than functioning as an essential auxiliary subunit. dBest1 is an anion channel clearly responsive to swell; this activation depends upon its N-terminus.

  16. Anion-π catalysis.

    Science.gov (United States)

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  17. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  18. Impaired activity of bile bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat

    NARCIS (Netherlands)

    Koopen, NR; Wolters, H; Havinga, R; Vonk, RJ; Jansen, PLM; Muller, M; Kuipers, F

    To test the hypothesis that impaired activity of the bile canalicular organic anion transporting system mrp2 (cmoat) is a key event in the etiology of 17 alpha-ethinylestradiol (EE)-induced intrahepatic cholestasis in rats, EE (5 mg/kg subcutaneously daily) was administered to male normal Wistar

  19. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    Science.gov (United States)

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  20. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos

    International Nuclear Information System (INIS)

    Sultatos, L.G.; Kaushik, R.

    2008-01-01

    The peripheral anionic site of acetylcholinesterase, when occupied by a ligand, is known to modulate reaction rates at the active site of this important enzyme. The current report utilized the peripheral anionic site specific fluorogenic probe thioflavin t to determine if the organophosphates chlorpyrifos oxon and dichlorvos bind to the peripheral anionic site of human recombinant acetylcholinesterase, since certain organophosphates display concentration-dependent kinetics when inhibiting this enzyme. Incubation of 3 nM acetylcholinesterase active sites with 50 nM or 2000 nM inhibitor altered both the B max and K d for thioflavin t binding to the peripheral anionic site. However, these changes resulted from phosphorylation of Ser203 since increasing either inhibitor from 50 nM to 2000 nM did not alter further thioflavin t binding kinetics. Moreover, the organophosphate-induced decrease in B max did not represent an actual reduction in binding sites, but instead likely resulted from conformational interactions between the acylation and peripheral anionic sites that led to a decrease in the rigidity of bound thioflavin t. A drop in fluorescence quantum yield, leading to an apparent decrease in B max , would accompany the decreased rigidity of bound thioflavin t molecules. The organophosphate-induced alterations in K d represented changes in binding affinity of thioflavin t, with diethylphosphorylation of Ser203 increasing K d , and dimethylphosphorylation of Ser203 decreasing K d . These results indicate that chlorpyrifos oxon and dichlorvos do not bind directly to the peripheral anionic site of acetylcholinesterase, but can affect binding to that site through phosphorylation of Ser203

  1. Very Low Rate Constants of Bimolecular CO Adsorption on Anionic Gold Clusters: Implications for Catalytic Activity

    Czech Academy of Sciences Publication Activity Database

    Balteanu, I.; Balaj, O. P.; Fox, B. S.; Beyer, M. K.; Bastl, Zdeněk; Bondybey, V. E.

    2003-01-01

    Roč. 5, - (2003), s. 1213-1218 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z4040901 Keywords : bimolecular * adsorption * catalytic activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.959, year: 2003

  2. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    Science.gov (United States)

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  3. Novel anionic steroid inhibitors of phasically and tonically activated NMDA receptors

    Czech Academy of Sciences Publication Activity Database

    Kudová, Eva; Chodounská, Hana; Slavíková, Barbora; Vyklický, Vojtěch; Borovská, Jiřina; Krausová, Barbora; Vyklický ml., Ladislav

    2012-01-01

    Roč. 106, - (2012), s778-s778 ISSN 0009-2770. [EuCheMS Chemistry Congress /4./. 26.08.2012-30.08.2012, Prague] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50110509 Keywords : steroids * receptors * lipophilicity * structure-activity relationships Subject RIV: CC - Organic Chemistry

  4. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  5. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes.

    Science.gov (United States)

    Auta, M; Hameed, B H

    2013-05-01

    A renewable waste tea activated carbon (WTAC) was coalesced with chitosan to form composite adsorbent used for waste water treatment. Adsorptive capacities of crosslinked chitosan beads (CCB) and its composite (WTAC-CCB) for Methylene blue dye (MB) and Acid blue 29 (AB29) were evaluated through batch and fixed-bed studies. Langmuir, Freundlich and Temkin adsorption isotherms were tested for the adsorption process and the experimental data were best fitted by Langmuir model and least by Freundlich model; the suitability of fitness was adjudged by the Chi-square (χ(2)) and Marquadt's percent standard deviation error functions. Judging by the values of χ(2), pseudo-second-order reaction model best described the adsorption process than pseudo-first-order kinetic model for MB/AB29 on both adsorbents. After five cycles of adsorbents desorption test, more than 50% WTAC-CCB adsorption efficiency was retained while CCB had adsorption efficiency. The results of this study revealed that WTAC-CCB composite is a promising adsorbent for treatment of anionic and cationic dyes in effluent wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Hypotonicity induced K+ and anion conductive pathways activation in eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, M G; Giordano, M E; De Nuccio, F

    2005-01-01

    Control of cell volume is a fundamental and highly conserved physiological mechanism, essential for survival under varying environmental and metabolic conditions. Epithelia (such as intestine, renal tubule, gallbladder and gills) are tissues physiologically exposed to osmotic stress. Therefore......, the activation of 'emergency' systems of rapid cell volume regulation is fundamental in their physiology. The aim of the present work was to study the physiological response to hypotonic stress in a salt-transporting epithelium, the intestine of the euryhaline teleost Anguilla anguilla. Eel intestinal epithelium...

  7. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding.

    Directory of Open Access Journals (Sweden)

    Cung Hoa Thien Quach

    Full Text Available To fully understand the glycolytic behavior of cancer cells, it is important to recognize how it is linked to pH dynamics. Here, we evaluated the acute effects of mild acidification and alkalization on cancer cell glucose uptake and glycolytic flux and investigated the role of hexokinase (HK. Cancer cells exposed to buffers with graded pH were measured for 18F-fluorodeoxyglucose (FDG uptake, lactate production and HK activity. Subcellular localization of HK protein was assessed by western blots and confocal microscopy. The interior of T47D breast cancer cells was mildly alkalized to pH 7.5 by a buffer pH of 7.8, and this was accompanied by rapid increases of FDG uptake and lactate extrusion. This shift toward glycolytic flux led to the prompt recovery of a reversed pH gradient. In contrast, mild acidification rapidly reduced cellular FDG uptake and lactate production. Mild acidification decreased and mild alkalization increased mitochondrial HK translocation and enzyme activity. Cells transfected with specific siRNA against HK-1, HK-2 and voltage-dependent anion channel (VDAC1 displayed significant attenuation of pH-induced changes in FDG uptake. Confocal microscopy showed increased co-localization of HK-1 and HK-2 with VDAC1 by alkaline treatment. In isolated mitochondria, acidic pH increased and alkaline pH decreased release of free HK-1 and HK-2 from the mitochondrial pellet into the supernatant. Furthermore, experiments using purified proteins showed that alkaline pH promoted co-immunoprecipitation of HK with VDAC protein. These findings demonstrate that mild alkalization is sufficient to acutely trigger cancer cell glycolytic flux through enhanced activity of HK by promoting its mitochondrial translocation and VDAC binding. This process might serve as a mechanism through which cancer cells trigger the Warburg effect to maintain a dysregulated pH.

  8. Antioxidant activity of melatonin and glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    T. Y. Kuznetsova

    2017-12-01

    Full Text Available Based on the analysis of the results obtained by quantum chemical modeling of interaction between reduced glutathione (GSH and melatonin (MLT molecules with oxygen radicals (•OH and • OOˉ it was found that this interaction occured following the acid-base mechanism, where MLT and GSH acted as a base in respect of •OH, and as acid in respect of •OOˉ. We have carried out the correlation of the results of quantum chemical calculations (density redistribution, energetic characteristics under the interaction of MLT and GSH molecules with •OH and •OOˉ in changing macroscopic properties of the process of electroreduction of free oxygen radicals in the presence of antioxidants (potential and maximal current wave reduction waves. This was a direct experimental macroscale evidence of the results of theoretical modeling at the nanoscale level that pointed to a marked antioxidant activity of glutathione compared with melatonin.

  9. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.

    Directory of Open Access Journals (Sweden)

    Agnieszka Dyrda

    Full Text Available BACKGROUND: The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. METHODOLOGY/PRINCIPAL FINDINGS: The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+ and Cl(- currents were strictly dependent on the presence of Ca(2+. The Ca(2+-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+ permeability (PCa. These results indicate that local membrane deformations can transiently activate a Ca(2+ permeability pathway leading to increased [Ca(2+](i, secondary activation of Ca(2+-sensitive K(+ channels (Gardos channel, IK1, KCa3.1, and hyperpolarization-induced anion currents. CONCLUSIONS/SIGNIFICANCE: The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+-mediated effects observed during the normal aging process of red blood cells, and

  10. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3.

    Science.gov (United States)

    Pearce, Paul E; Perez, Arnaud J; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M; Van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g -1 . In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li 2 IrO 3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e - per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (M n+ ) and anionic (O 2 ) n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li 2 IrO 3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir 4+ at potentials as low as 3.4 V versus Li + /Li 0 , as equivalently observed in the layered α-Li 2 IrO 3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  11. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3

    Science.gov (United States)

    Pearce, Paul E.; Perez, Arnaud J.; Rousse, Gwenaelle; Saubanère, Mathieu; Batuk, Dmitry; Foix, Dominique; McCalla, Eric; Abakumov, Artem M.; van Tendeloo, Gustaaf; Doublet, Marie-Liesse; Tarascon, Jean-Marie

    2017-05-01

    Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

  12. An Anion-Exchange Method for the Separation of P-32 Activity in Neutron-Irradiated Biological Material

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-06-01

    Strong hydrochloric-acid solutions containing small amounts of orthophosphoric and citric acid and radioactive tracers of the elements Na, P, K, Ca, Se, Cr, Mn, Ni, Rb, Sr, Cs, Ba, La, and Ce were titrated with a water suspension of strongly basic anion-exchange resin in the hydroxide form. The titration was carried out to pH = 3.0. It was followed by filtration of the mixture on the top of a small anion-exchange column in the chloride form and a final washing with water. Phosphorus was quantitatively adsorbed by the resin and the scandium retention was better than 96 per cent. The remaining elements passed quantitatively into the effluent, with the exception of nickel, which was adsorbed to a very small extent

  13. Silver-free activation of ligated gold(I) chlorides: the use of [Me3NB12Cl11]- as a weakly coordinating anion in homogeneous gold catalysis.

    Science.gov (United States)

    Wegener, Michael; Huber, Florian; Bolli, Christoph; Jenne, Carsten; Kirsch, Stefan F

    2015-01-12

    Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    Science.gov (United States)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  15. Active Hydrophilic Components of the Medicinal Herb Salvia miltiorrhiza (Danshen Potently Inhibit Organic Anion Transporters 1 (Slc22a6 and 3 (Slc22a8

    Directory of Open Access Journals (Sweden)

    Li Wang

    2012-01-01

    Full Text Available Many active components of herbal products are small organic anions, and organic anion transporters were previously demonstrated to be a potential site of drug-drug interactions. In this study, we assessed the inhibitory effects of six hydrophilic components of the herbal medicine Danshen, lithospermic acid, protocatechuic acid, rosmarinic acid, salvianolic acid A, salvianolic acid B, and tanshinol, on the function of the murine organic anion transporters, mOat1 and mOat3. All of Danshen components significantly inhibited mOat1- and mOat3-mediated substrate uptake (<0.001 with lithospermic acid (LSA, protocatechuic acid, rosmarinic acid (RMA, and salvianolic acid A (SAA producing virtually complete inhibition under test conditions. Kinetic analysis demonstrated that LSA, RMA, and SAA were competitive inhibitors. As such, values were estimated as 14.9±4.9 μM for LSA, 5.5±2.2 μM for RMA, and 4.9±2.2 μM for SAA on mOat1-mediated transport, and as 31.1±7.0 μM for LSA, 4.3±0.2 μM for RMA, and 21.3±7.7 μM for SAA on mOat3-mediated transport. These data suggest that herb-drug interactions may occur in vivo on the human orthologs of these transporters in situations of polypharmacy involving Danshen and clinical therapeutics known to be organic anion transporter substrates.

  16. Anion conductance of the human red cell is carried by a maxi-anion channel

    DEFF Research Database (Denmark)

    Glogowska, Edyta; Dyrda, Agnieszka; Cueff, Anne

    2010-01-01

    Historically, the anion transport through the human red cell membrane has been perceived to be mediated by Band 3, in the two-component concept with the large electroneutral anion exchange accompanied by the conductance proper, which dominated the total membrane conductance. The status of anion...... that the diversity of anionic channel activities recorded in human erythrocytes corresponds to different kinetic modalities of a unique type of maxi-anion channel with multiple conductance levels and probably multiple gating properties and pharmacology, depending on conditions. It demonstrates the role of activator...... played by serum in the recruitment of multiple new conductance levels showing very complex kinetics and gating properties upon serum addition. These channels, which seem to be dormant under normal physiological conditions, are potentially activable and could confer a far higher anion conductance...

  17. Binding and removal of sulfate, phosphate, arsenate, tetrachloromercurate, and chromate in aqueous solution by means of an activated carbon functionalized with a pyrimidine-based anion receptor (HL). Crystal structures of [H3L(HgCl4)]·H2O and [H3L(HgBr4)]·H2O showing anion-π interactions.

    Science.gov (United States)

    Arranz, Paloma; Bianchi, Antonio; Cuesta, Rafael; Giorgi, Claudia; Godino, M Luz; Gutiérrez, M D; López, Rafael; Santiago, Antonio

    2010-10-18

    Binding of anions of great environmental concern such as SO(4)(2-), PO(4)(3-), AsO(4)(3-), HgCl(4)(2-), and CrO(4)(2-) by the protonated forms of a tren-like (tren = tris(2-aminoethyl)amine) ligand (HL) functionalized with a pyrimidine residue was studied by means of potentiometric measurements and isothermal titration calorimetry (ITC) affording log K, ΔH°, and TΔS° values for the formation of the relevant complexes. The complexes show high to very high stability due to the particular topology and electronic properties of the ligand which is able to use two separated coordination environments to host the anions, the protonated tren site where electrostatic and hydrogen bond interactions are operating, and the pyrimidine ring which may act via anion-π interaction. A contribution of -8.9 ± 0.4 kJ/mol for pyrimidine-anion interaction in water was derived for SO(4)(2-) binding. The crystal structures of [H(3)L(HgCl(4))]·H(2)O (1), [H(3)L(HgBr(4))]·H(2)O (2), and that previously reported for [H(3)L(CdI(4))], clearly show these binding features in the solid state. A hybrid AC-HL material obtained by adsorption of HL on commercial activated carbon (AC) was used to study the removal of these anions from water. AC-HL shows enhanced adsorption capacity toward all the anions studied with respect to AC. This behavior is ascribed to the stronger interaction of anions with the HL function of AC-HL than with the Cπ-H(3)O(+) sites of the unfunctionalized AC.

  18. Ion-Selective Electrode for Anionic Surfactants Using Hexadecyl Trimethyl Ammonium Bromide-Sodium Dodecylsulfate as an Active Ionophore

    Directory of Open Access Journals (Sweden)

    Junwei Wang

    2011-01-01

    Full Text Available The construction and characteristic performance of PVC membrane electrode responsive to sodium dodecylsulfate (SDS are described in this paper. The electrode is based on hexadecyl trimethyl ammonium bromide-Sodium dodecylsulfate (CTA+DS− ion pair as ionophore in PVC membrane, which displays a Nernstian slope of −58 ± 0.9 mV/decade in a 5.0 × 10−6 to 2.5 × 10−3 mol L−1 concentration range and a limit of detection of 2.9 × 10−6 mol L−1. The electrode can be used for 3 months without showing significant changes in the value of slope or working range. Also the electrode has wide pH range of application and short response time. The electrode shows a selective response to SDS and a poor response to common inorganic anions. The selective sequence found was SDS > HCO3 − > CH3COO− > Cl− > I− > NO3 −≈ Br− > F− > CO3 2− > C6H5O7 3− > C2O4 2− > SO4 2− > C4H4O6 2− > SO3 2− > PO4 3−. The potentiometric selectivity coefficients determined are indicating that common anions would not interfere in the SDS determination. The electrode has been utilized as an end point indicator electrode for potentiometric titration involving hyamine as titrant.

  19. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  20. Study And Molecular Investigation Of Transmembrane Channel-Like1 Gene Related Polymorphic Markers In Iranian Population

    Directory of Open Access Journals (Sweden)

    Samira Motamedi

    2015-08-01

    Full Text Available Transmembrane channel-like TMC gene has been already reported to cause nonsyndromic autosomal dominant and recessive hearing loss. Finding appropriate genetic Markers for mutation screening of the gene is crucial. The genetic information and population data for these STRs may be used not only in quantitative fluorescence-polymerase chain reaction assays but also in forensic studies and other genetic tests. In this study the identity and characteristics of three CA short tandem repeat STR markers including D9S1876 D9S1837 and D9S1799 related to this gene region were examined for further analysis in the Iranian population. Methods The loci were genotyped by fluorescent capillary electrophoresis DNA sequencing. Results Pair-wise linkage disequilibrium LD showed a considerable LD in paring markers Of D9S1876-D9S1837 and D9S1837-D9S1799. Based on haplotype analysis eleven Informative haplotypes within markers with more than 5 frequency were observed in Iranian population. Conclusion The introduced markers could be suggested as informative and reliable tools in Running linkage analysis of TMC1 gene mutations in the Iranian population.

  1. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  2. Male-dominant activation of rat renal organic anion transporter 1 (Oat1 and 3 (Oat3 expression by transcription factor BCL6.

    Directory of Open Access Journals (Sweden)

    Waja Wegner

    Full Text Available BACKGROUND: Organic anion transporters 1 (Oat1 and 3 (Oat3 mediate the transport of organic anions, including frequently prescribed drugs, across cell membranes in kidney proximal tubule cells. In rats, these transporters are known to be male-dominant and testosterone-dependently expressed. The molecular mechanisms that are involved in the sex-dependent expression are unknown. Our aim was to identify genes that show a sex-dependent expression and could be involved in male-dominant regulation of Oat1 and Oat3. METHODOLOGY/PRINCIPAL FINDINGS: Promoter activities of Oat1 and Oat3 were analyzed using luciferase assays. Expression profiling was done using a SurePrint G3 rat GE 8 × 60K microarray. RNA was isolated from renal cortical slices of four adult rats per sex. To filter the achieved microarray data for genes expressed in proximal tubule cells, transcription database alignment was carried out. We demonstrate that predicted androgen response elements in the promoters of Oat1 and Oat3 are not functional when the promoters were expressed in OK cells. Using microarray analyses we analyzed 17,406 different genes. Out of these genes, 56 exhibit a sex-dependent expression in rat proximal tubule cells. As genes potentially involved in the regulation of Oat1 and Oat3 expression, we identified, amongst others, the male-dominant hydroxysteroid (17-beta dehydrogenase 1 (Hsd17b1, B-cell CLL/lymphoma 6 (BCL6, and polymerase (RNA III (DNA directed polypeptide G (Polr3g. Moreover, our results revealed that the transcription factor BCL6 activates promoter constructs of Oat1 and Oat3. CONCLUSION: The results indicate that the male-dominant expression of both transporters, Oat1 and Oat3, is possibly not directly regulated by the classical androgen receptor mediated transcriptional pathway but appears to be regulated by the transcription factor BCL6.

  3. In-situ anion exchange fabrication of porous ZnO/ZnSe heterostructural microspheres with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hairui, E-mail: liuhairui1@126.com [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Hu, Yanchun [College of Physics & Electrics Engineering, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang 453007 (China); He, Xia [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); Jia, Husheng, E-mail: jia_husheng@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China); College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang; Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan, Shanxi, 030024 (China)

    2015-11-25

    Porous ZnO microspheres were fabricated by an ultrasonic irradiation technique. Subsequently, through a facile in-situ anion exchange reaction between the ZnO microsphere and sodium selenite, spherical ZnO/ZnSe heterostructures with different ratios of the two components were fabricated. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV–vis spectrometry. The results reveal that the secondary ZnSe nanoparticles are grown on the surface of pre-grown ZnO microspheres. Compared with pure ZnO microspheres, the ZnO/ZnSe hetero-microspheres show enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. Photoluminescent spectra further indicate that the ZnO/ZnSe heterostructures greatly suppress the charge recombination of photogenerated electron–hole pairs, which would be beneficial to improve their photocatalytic activity. Finally, the photocatalytic mechanism of the ZnO/ZnSe heterostructures is proposed. - Graphical abstract: Porous ZnO/ZnSe heterostructures with different ratios of the two components were fabricated and present enhance visible-light photocatalytic activity for degradation of methylene blue (MB) and 4-nitrophenol (4-NP). The enhanced photocatalytic performance is attributed to fast separation and transport of photogenerated electrons and holes derived from the coupling effect of ZnSe and ZnO heterostructure. - Highlights: • Spherical ZnO/ZnSe porous composites were fabricated by in-situ anion exchange. • ZnO/ZnSe composites exhibited enhanced visible-light photocatalytic activity. • The matching band gap improves the separation of

  4. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    International Nuclear Information System (INIS)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-01-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT 1 receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT 1 -dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT 1 receptor activation. ► Translocation of p

  5. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  6. Study of the surface-enhanced Raman spectroscopy of residual impurities in hydroxylamine-reduced silver colloid and the effects of anions on the colloid activity.

    Science.gov (United States)

    Dong, Xiao; Gu, Huaimin; Liu, Fangfang

    2012-03-01

    The paper investigated the residual ions in hydroxylamine-reduced silver colloid (HRSC) and the relationship between the condition of HRSC and the enhanced mechanisms of this colloid. We also detected the SERS of MB and studied the effects of anions on the Raman signal. In the case of HRSC, the bands of residual ions diminish while the bands of Ag-anions increase gradually with increasing the concentrations of Cl(-) and NO(3)(-). It means the affinity of residual ions on the silver surface is weaker than that of Cl(-) and NO(3)(-) and the residual ions are replaced gradually by the added Cl(-) or NO(3)(-). The Raman signal of residual ions can be detected by treatment with anions that do not bind strongly to the silver surface, such as SO(4)(2-). The most intense band of Ag-anions bonds can be also observed when adding weakly binding anions to the colloid. However, the anions which make up the Ag-anions bonds are residual Cl(-) and the effect of weakly binding anions is only to aggregate the silver particles. Residual Cl(-) can be replaced by I(-) which has the highest affinity. From the detection of methylene blue (MB), the effects of anions on the enhancement of Raman signal are discussed in detail, and these findings could make the conditions suitable for detecting analytes in high efficiency. This study will have a profound implication to SERS users about their interpretation of SERS spectra when obtaining these anomalous bands. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    Science.gov (United States)

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  8. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides' structure: implications for peptide toxicity and activity

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2006-01-01

    Molecular dynamics simulations of three related helical antimicrobial peptides have been carried out in zwitterionic diphosphocholine (DPC) micelles and anionic sodiumdodecylsulfate (SDS) micelles. These systems can be considered as model mammalian and bacterial membrane interfaces, respectively...

  9. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    We have previously shown that peptide amide hydrogens undergo extensive intramolecular migration (i.e., complete hydrogen scrambling) upon collisional activation of protonated peptides (Jørgensen et al. J. Am. Chem. Soc. 2005, 127, 2785-2793). The occurrence of hydrogen scrambling enforces severe...

  10. Voltage-Dependent Anion Channel 1 Interacts with Ribonucleoprotein Complexes To Enhance Infectious Bursal Disease Virus Polymerase Activity.

    Science.gov (United States)

    Han, Chunyan; Zeng, Xiangwei; Yao, Shuai; Gao, Li; Zhang, Lizhou; Qi, Xiaole; Duan, Yulu; Yang, Bo; Gao, Yulong; Liu, Changjun; Zhang, Yanping; Wang, Yongqiang; Wang, Xiaomei

    2017-08-15

    Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus. Segment A contains two overlapping open reading frames (ORFs), which encode viral proteins VP2, VP3, VP4, and VP5. Segment B contains one ORF and encodes the viral RNA-dependent RNA polymerase, VP1. IBDV ribonucleoprotein complexes are composed of VP1, VP3, and dsRNA and play a critical role in mediating viral replication and transcription during the virus life cycle. In the present study, we identified a cellular factor, VDAC1, which was upregulated during IBDV infection and found to mediate IBDV polymerase activity. VDAC1 senses IBDV infection by interacting with viral proteins VP1 and VP3. This association is caused by RNA bridging, and all three proteins colocalize in the cytoplasm. Furthermore, small interfering RNA (siRNA)-mediated downregulation of VDAC1 resulted in a reduction in viral polymerase activity and a subsequent decrease in viral yield. Moreover, overexpression of VDAC1 enhanced IBDV polymerase activity. We also found that the viral protein VP3 can replace segment A to execute polymerase activity. A previous study showed that mutations in the C terminus of VP3 directly influence the formation of VP1-VP3 complexes. Our immunoprecipitation experiments demonstrated that protein-protein interactions between VDAC1 and VP3 and between VDAC1 and VP1 play a role in stabilizing the interaction between VP3 and VP1, further promoting IBDV polymerase activity. IMPORTANCE The cellular factor VDAC1 controls the entry and exit of mitochondrial metabolites and plays a pivotal role during intrinsic apoptosis by mediating the release of many apoptogenic molecules. Here we identify a novel role of VDAC1, showing that VDAC1 interacts with IBDV ribonucleoproteins (RNPs) and facilitates IBDV replication by enhancing IBDV polymerase activity through its ability to stabilize interactions in RNP complexes. To our knowledge, this is the first report that VDAC1 is specifically involved in

  11. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    Science.gov (United States)

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Anionic Phospholipids and the Albino3 Translocase Activate Signal Recognition Particle-Receptor Interaction during Light-harvesting Chlorophyll a/b-binding Protein Targeting.

    Science.gov (United States)

    Chandrasekar, Sowmya; Shan, Shu-Ou

    2017-01-06

    The universally conserved signal recognition particle (SRP) co-translationally delivers newly synthesized membrane and secretory proteins to the target cellular membrane. The only exception is found in the chloroplast of green plants, where the chloroplast SRP (cpSRP) post-translationally targets light-harvesting chlorophyll a/b-binding proteins (LHCP) to the thylakoid membrane. The mechanism and regulation of this post-translational mode of targeting by cpSRP remain unclear. Using biochemical and biophysical methods, here we show that anionic phospholipids activate the cpSRP receptor cpFtsY to promote rapid and stable cpSRP54·cpFtsY complex assembly. Furthermore, the stromal domain of the Alb3 translocase binds with high affinity to and regulates GTP hydrolysis in the cpSRP54·cpFtsY complex, suggesting that cpFtsY is primarily responsible for initial recruitment of the targeting complex to Alb3. These results suggest a new model for the sequential recruitment, remodeling, and unloading of the targeting complex at membrane translocase sites in the post-translational cpSRP pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Differential modulation of the chaperone-like activity of HSP-1/2, a major protein of horse seminal plasma by anionic and cationic surfactants.

    Science.gov (United States)

    Kumar, C Sudheer; Swamy, Musti J

    2017-03-01

    The major protein of equine seminal plasma, HSP-1/2 exhibits chaperone-like activity (CLA) by protecting various target proteins against thermal, chemical and oxidative stress. Polydispersity and surface hydrophobicity of HSP-1/2 were found to be important for its CLA. Surfactants are known to alter certain properties of proteins, e.g. hydrophobicity, charge and conformation either by altering properties of the medium or by direct binding. In the current study, thermal aggregation of alcohol dehydrogenase (ADH) and enolase has been studied in the presence of HSP-1/2, different surfactants and their combinations. The results obtained show that anionic surfactants (SDS, sodium dodecyl benzene sulfate) and neutral surfactants (tween-20, triton X-100) increase the CLA of HSP-1/2 and also inhibit aggregation of the target proteins independently. On the other hand, cationic surfactants (CTAB, alanine palmityl ester) increased the thermal aggregation of ADH and enolase and also decreased the CLA of HSP-1/2. These results are of significant interest as they show that surfactants such as SDS and tween-20 can potentially be used as anti-aggregation agents to prevent thermal aggregation of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells

    DEFF Research Database (Denmark)

    Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna

    2010-01-01

    by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents......-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia....

  15. Anisotropy and effect of salinity in diffusion and activation energies of cations and anions in compacted bentonite

    International Nuclear Information System (INIS)

    Sato, Haruo

    2005-01-01

    The diffusion experiments for I - and Cs + in the parallel and perpendicular directions to the orientated direction of smectite particles were performed as a function of smectite's dry density, salinity and temperature. The anisotropies and the effect of salinity in the apparent diffusivities (D a ) and activation energies (ΔE a ) for both ions were additionally discussed. The D a -values for both ions showed a tendency to be higher in the parallel direction than in the perpendicular direction. The D a -values of I - in the parallel direction decreased with increasing salinity at low-dry density, but those of Cs + increased with increasing salinity for all conditions. Based on this, it is interpreted that I - mainly diffuses in interstitial pores and that Cs + diffuses in interlayer and interstitial pores. The ΔE a -values for I - , similar levels to that for the diffusivity in free water (D o ) at low-dry density, increased with increasing dry density. The ΔE a -values for Cs + , higher than that for D o even at low-dry density, increased with increasing dry density. Such high ΔE a -values for Cs + are considered to be due to the effects of ion exchange enthalpy (ΔH o ) between Cs + and Na + and the decrease in the activity of porewater. (author)

  16. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity

    International Nuclear Information System (INIS)

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-01-01

    Graphical abstract: - Highlights: • Two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion. • Effective interfacial heterojunction and high specific surface were observed. • Interstratified nanohybrid exhibits a superior photocatalytic activity. - Abstract: Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl–Ti 3 O 7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10 −2 min −1 , which is about 9 and 4 times higher than its precursors H 2 Ti 3 O 7 and ZnAl-LDH, respectively. Based on UV–vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior

  17. Potentiometric anion selective sensors

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1999-01-01

    In comparison with selective receptors (and sensors) for cationic species, work on the selective complexation and detection of anions is of more recent date. There are three important components for a sensor, a transducer element, a membrane material that separates the transducer element and the

  18. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  19. Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Regulates Steroidogenic Activity via Steroidogenic Acute Regulatory Protein (StAR)-Voltage-dependent Anion Channel 2 (VDAC2) Interaction*

    Science.gov (United States)

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J.; Bose, Mahuya; Whittal, Randy M.; Bose, Himangshu S.

    2015-01-01

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173

  20. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction.

    Science.gov (United States)

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S

    2015-01-30

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  2. Rational design of BINOL-based diimidazolyl ligands: homochiral channel-like mono-component organic frameworks by hydrogen-bond-directed self-assembly.

    Science.gov (United States)

    Yang, Li; Yang, Fei; Lan, Jingbo; Gao, Ge; You, Jingsong; Su, Xiaoyu

    2011-04-21

    We have developed a synthetic strategy to selectively incorporate the imidazole ring into the 1,1'-bi-2-naphthol (BINOL) skeleton at the different position. The resulting conformationally rigid BINOL-based diimidazolyl ligands bearing both hydrogen-bond-acceptors and -donators can self-assemble into homochiral channel-like mono-component organic frameworks via intermolecular O-H···N hydrogen bonds between the phenolic hydroxyl group and the N2 or N4 atom of the imidazole ring.

  3. Decreased anion gap associated with monoclonal and pseudomonoclonal gammopathy.

    Science.gov (United States)

    Frohlich, J.; Adam, W.; Golbey, M. J.; Bernstein, M.

    1976-01-01

    Nine patients with monoclonal and one with pseudomonoclonal gammopathy were found to have a decreased anion gap. Eight of the patients had multiple myeloma, one has plasma cell leukemia and one had chronic active hepatitis. In all of the the decreased anion gap was associated with an increased concentration of IgG greater than 5 g/dl. PMID:1032353

  4. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched

  5. A Systematic Structure-Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the Importance of a Special Oxo-Anion-Binding Motif for Gene Delivery.

    Science.gov (United States)

    Junghänel, Sandra; Karczewski, Sarah; Bäcker, Sandra; Knauer, Shirley K; Schmuck, Carsten

    2017-11-16

    We discovered a new class of artificial peptidic transfection vectors based on an artificial anion-binding motif, the guanidiniocarbonylpyrrole (GCP) cation. This new type of vector is surprisingly smaller than traditional systems, and our previous work suggested that the GCP group was important for promoting critical endosomal escape. We now present here a systematic comparison of similar DNA ligands featuring our GCP oxo-anion-binding motif with DNA ligands only consisting of naturally occurring amino acids. Structure-activity studies showed that the artificial binding motif clearly outperformed natural amino acids such as histidine, lysine, and arginine. It improved the ability to shuttle foreign genetic material into cells, yet successfully mediated endosomal escape. Also, plasmids that were complexed by our artificial ligands were stabilized against cytosolic degradation to some extent. This resulted in the successful expression of plasmid information (comparable to gold standards such as polyethyleneimine). Hence, our study clearly demonstrates the importance of the tailor-made GCP anion-binding site for efficient gene transfection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Unknown

    trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange properties together with surface basicity making them materials of importance ...

  7. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  8. Synthesis and characterization of two novel organic-inorganic compounds based on tetrahexyl and tetraheptyl ammonium ions and the Preyssler anion and their catalytic activities in the synthesis of 4-aminopyrazolo[3,4-d]- pyrimidines.

    Science.gov (United States)

    Bamoharram, Fatemeh Farrash

    2010-04-08

    Two novel organic-inorganic compounds based on tetrahexylammonium (THA) and tetraheptylammonium (THPA) ions and the Preyssler anion, [NaP5W30O110]14-, were synthesized and formulated as (THA)7.7H6.3 [NaP5W30O110] (A) and (THPA)7.5 H6.5[NaP5W30O110] (B). The synthesized compounds were characterized by IR, UV, and TGA and used for the catalytic synthesis of 4-aminopyrazolo[3,4,-d]pyrimidine derivatives 2a-2d. Our findings showed efficient catalytic activities for A and B.

  9. Pentaarylfullerenes as noncoordinating cyclopentadienyl anions

    NARCIS (Netherlands)

    Bouwkamp, Marco W.; Meetsma, Auke

    2009-01-01

    The first example of an early-transition-metal complex involving a pentaarylfullerene was prepared. Instead of half-sandwich complexes, solvent separated ion pairs were obtained in which the pentaarylfullerene moiety acts as noncoordinating cyclopentadienyl anion.

  10. Bound anionic states of adenine

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  11. Adsorption of inorganic anionic contaminants on surfactant modified minerals

    Directory of Open Access Journals (Sweden)

    MAGDALENA TOMASEVIC-CANOVIC

    2003-11-01

    Full Text Available Organo-mineral complexes were obtained by treatment of aluminosilicate minerals (zeolite, bentonite and diatomaceous earth with a primary amine (oleylamine and an alkyl ammonium salt (stearyldimethylbenzyl ammonium chloride. The modification of the zeolite surface was carried out in two steps. The first step was treatment of the zeolite with 2 M HCl. This acid treatment of the zeolite increased its affinity for neutral molecules such as surface-active amines. The second step of the modification was the adsorption of oleylamine on the acid treated zeolite. Four types of organo-mineral complexes were prepared and their anion adsorption properties were compared to those of organo-zeolite. The adsorption of sulphate, bichromate and dihydrogenphosphate anions on the organo-mineral complexes was investigated. The anion adsorption measurements showed that the most efficient adsorbent for anion water pollutants was the primary amine modified H+-form zeolite.

  12. Modulation of cyanoalanine synthase and O-acetylserine (thiol) lyases A and B activity by beta-substituted alanyl and anion inhibitors.

    Science.gov (United States)

    Warrilow, Andrew G S; Hawkesford, Malcolm J

    2002-03-01

    The reaction mechanisms of three enzymes belonging to a single gene family are compared: a cyanoalanine synthase and two isoforms of O-acetylserine (thiol) lyase (O-ASTL) isolated from spinach (Spinacea oleracea L. cv. Medina). O-ASTL represents a major regulatory point in the S-assimilatory pathway, and the related cyanoalanine synthase, which is specific to the mitochondrial compartment, has evolved an independent function of cyanide detoxification. All three enzymes catalysed both the cysteine synthesis and cyanoalanine synthesis reactions although with different efficiencies, and which may be explained by a single amino acid substitution in the substrate-binding pocket of the enzyme. Substituted alanine and nucleophillic inhibitors caused predominantly non-competitive inhibition, indicating binding to both E- and F-forms of the enzyme in a bi-bi ping-pong kinetic model. Michaelis-Menten kinetics were observed when the alanyl substrate was varied in the presence and absence of inhibitors. The use of alanyl inhibitors has shown that the alanyl half-cycle of both the cysteine synthesis and cyanoalanine synthesis reactions of cyanoalanine synthase and O-acetylserine (thiol) lyases are similar. This is in contrast to the results observed with nucleophillic inhibitors, which have shown that the mechanisms of anion binding and processing differ between cyanoalanine synthase and O-ASTLs.

  13. The glutamate aspartate transporter (GLAST) mediates L-glutamate-stimulated ascorbate-release via swelling-activated anion channels in cultured neonatal rodent astrocytes.

    Science.gov (United States)

    Lane, Darius J R; Lawen, Alfons

    2013-03-01

    Vitamin C (ascorbate) plays important neuroprotective and neuromodulatory roles in the mammalian brain. Astrocytes are crucially involved in brain ascorbate homeostasis and may assist in regenerating extracellular ascorbate from its oxidised forms. Ascorbate accumulated by astrocytes can be released rapidly by a process that is stimulated by the excitatory amino acid, L-glutamate. This process is thought to be neuroprotective against excitotoxicity. Although of potential clinical interest, the mechanism of this stimulated ascorbate-release remains unknown. Here, we report that primary cultures of mouse and rat astrocytes release ascorbate following initial uptake of dehydroascorbate and accumulation of intracellular ascorbate. Ascorbate-release was not due to cellular lysis, as assessed by cellular release of the cytosolic enzyme lactate dehydrogenase, and was stimulated by L-glutamate and L-aspartate, but not the non-excitatory amino acid L-glutamine. This stimulation was due to glutamate-induced cellular swelling, as it was both attenuated by hypertonic and emulated by hypotonic media. Glutamate-stimulated ascorbate-release was also sensitive to inhibitors of volume-sensitive anion channels, suggesting that the latter may provide the conduit for ascorbate efflux. Glutamate-stimulated ascorbate-release was not recapitulated by selective agonists of either ionotropic or group I metabotropic glutamate receptors, but was completely blocked by either of two compounds, TFB-TBOA and UCPH-101, which non-selectively and selectively inhibit the glial Na(+)-dependent excitatory amino acid transporter, GLAST, respectively. These results suggest that an impairment of astrocytic ascorbate-release may exacerbate neuronal dysfunction in neurodegenerative disorders and acute brain injury in which excitotoxicity and/or GLAST deregulation have been implicated.

  14. Extraction of monoclonal antibodies (IgG1) using anionic and anionic/nonionic reverse micelles.

    Science.gov (United States)

    George, Daliya A; Stuckey, David C

    2010-01-01

    Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid-liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2-ethyl-hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij-30, Tween-85, Span-85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij-30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween-85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40-45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of

  15. Calcium-tolerant anionic surfactants

    NARCIS (Netherlands)

    Kooreman, Alexander

    1995-01-01

    One of the problems of applying anionic surfactants in, for example, laundry detergents is the precipitation of calcium salts. Much effort has been directed towards avoiding precipitation. There are at least three ways for tackling the problem. The first involves the use of a large quantity of

  16. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  17. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  18. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  19. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  20. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Dithranol-Anion: UV/Vis-Spektrum und chemische Reaktivität

    OpenAIRE

    Retzow, A.; Wiegrebe, Wolfgang

    1985-01-01

    Dithranol and its monoacetate as well as aloin and 9-hydroxyanthracen show a bathochromically shifted band in their electronexcitation spectra, when they are taken in alkaline solutions. The spectrum of aloin-anion was correlated with the isomerisation of aloin B into aloin A. These results and the Diels-Alder-reactivity of dithranol-anion indicate that R a a b' s biochemically highly active species, derived from dithranol, is its anion.

  2. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  3. Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity.

    Science.gov (United States)

    Zarepour, Maryam; Kaspari, Katrin; Stagge, Stefan; Rethmeier, Ralf; Mendel, Ralf R; Bittner, Florian

    2010-02-01

    Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a key enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Electrons released from these substrates are either transferred to NAD(+) or to molecular oxygen, thereby yielding NADH or superoxide, respectively. By an alternative activity, AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD(+) and superoxide. Here we demonstrate that in comparison to the specific activity with xanthine as substrate, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15-times higher accompanied by a doubling in superoxide production. The observation that NAD(+) inhibits NADH oxidase activity of AtXDH1 while NADH suppresses NAD(+)-dependent xanthine oxidation indicates that both NAD(+) and NADH compete for the same binding-site and that both sub-activities are not expressed at the same time. Rather, each sub-activity is determined by specific conditions such as the availability of substrates and co-substrates, which allows regulation of superoxide production by AtXDH1. Since AtXDH1 exhibits the most pronounced NADH oxidase activity among all xanthine dehydrogenase proteins studied thus far, our results imply that in particular by its NADH oxidase activity AtXDH1 is an efficient producer of superoxide also in vivo.

  4. The anion-binding polyanion: a molecular cobalt vanadium oxide with anion-sensitive visual response.

    Science.gov (United States)

    Seliverstov, Andrey; Forster, Johannes; Heiland, Magdalena; Unfried, Johannes; Streb, Carsten

    2014-07-25

    An anionic molecular cobalt vanadium oxide cluster, (n-Bu4N)3[Co(AcO)V4O12] and its use as anion binding site is reported. Cluster formation is controlled by an anion-dependent dynamic solution equilibrium. Reversible anion binding in solution leads to significant spectral changes, allowing the ratiometric optical detection of the anion concentration in situ, even under harsh thermal conditions (T = 90 °C). Comparative studies showed that the spectral response is dependent on the type of anion so that carboxylates, weakly coordinating anions and halides can be distinguished.

  5. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  6. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  7. The effect of an anionic detergent on complex carbohydrates and enzyme activities in the epidermis of the catfish Heteropneustes fossilis (Bloch).

    Science.gov (United States)

    Zaccone, G; Lo Cascio, P; Fasulo, S; Licata, A

    1985-04-01

    The histochemistry of various oxidative enzymes and complex carbohydrates in the epidermis of the catfish Heteropneustes fossils was investigated after exposure to sublethal concentrations of the detergent sodium alkylbenzenesulphonate. It was found that the detergent treatment was accompanied by a marked increase in the number of mucous cells which produce histochemically detectable amounts of acidic glycoproteins with a shift towards the production of O-acetylated sialic acids. The activities of mitochondrial enzymes were lost in the superficial cell layers. In contrast the activities of glucose-6-phosphate and lactate dehydrogenase increased considerably. The rise in glucose-6-phosphate dehydrogenase was correlated with the metabolic requirements for the enhanced production of mucus under stress. The changes in both enzyme activities and in the chemical composition of mucus may provide a suitable experimental model for histochemical investigations of the effects of stress induced by pollutants on aquatic organisms.

  8. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  9. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  10. Decreased anion gap in polyclonal hypergammaglobulinemia.

    Science.gov (United States)

    Qujeq, Durdi; Mohiti, Javad

    2002-02-01

    The anion gap has proved a valuable tool in the diagnosis of various forms of acid-base disorders, although the importance of slight rises in the anion gap remains unclear. The concept of the anion gap is often misunderstood and misapplied. The relationship between gammaglobulins and the serum anion gap has not received much attention except for reports of a narrowing of the gap associated with certain monoclonal immunoglobulin G gammopathies. We present patients with polyclonal gammopathy, the magnitude of which correlated strongly and negatively with the anion gap. The anion gap can be readily calculated from routine laboratory data, and anion gap was calculated as ([Na] +[K])- ([Cl] + [HCO3]). Serum anion gaps were determined in 206 patients with polyclonal hypergammaglobulinemia and 63 healthy subjects. Serum sodium and potassium ions concentration were determined by flame photometry. Serum bicarbonate level was measured as total carbon dioxide content. Serum chloride level was determined by chlorimetric titration with silver ions. All patients with polyclonal hypergammaglobulinemia had a statistically significant reduction in their mean serum anion gaps (6.4 +/- 1.2 mmol/L) when compared with normal control volunteers (15.3 +/- 2.4 mmol/L), p anion gap and gammaglobulins concentration.

  11. From isolated 1H-pyrazole cryptand anion receptors to hybrid inorganic–organic 1D helical polymeric anion receptors

    OpenAIRE

    Pitarch-Jarque, Javier; Belda, Raquel; García-España, Laura; Llinares, José M.; Pan, Fangfang; Rissanen, Kari; Navarro, Pilar; García-España, Enrique

    2015-01-01

    We report on a novel 1-D helical coordination polymer formed by protonated polyamine 1H-pyrazole cryptands interconnected by Cu2+ metal ions able to encapsulate anionic species behaving as a multianion receptor. Switching from the monomeric to the polymeric receptor is activated by metal ions and pH.

  12. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Garland, T.R.; Cataldo, D.A.; Fellows, R.J.; Wildung, R.E.

    1987-01-01

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129 I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  13. Contribution of attendant anions on cadmium toxicity to soil enzymes.

    Science.gov (United States)

    Tian, Haixia; Kong, Long; Megharaj, Mallavarapu; He, Wenxiang

    2017-11-01

    Sorption and desorption are critical processes to control the mobility and biotoxicity of cadmium (Cd) in soils. It is known that attendant anion species of heavy metals could affect metal adsorption on soils and might further alter their biotoxicity. However, for Cd, the influence of attendant anions on its sorption in soils and subsequent toxicity on soil enzymes are still unknown. In this work, four Cd compounds with different salt anions (SO 4 2- , NO 3 - , Cl - , and Ac - ) were selected to investigate their impact of on the sorption, soil dehydrogenase activity (DHA) and alkaline phosphatase activity (ALP). Thus, a series of simulated Cd pollution batch experiments including measuring adsorption-desorption behavior of Cd on soils and soil enzyme activities were carried out. Results showed that CdSO 4 exhibited highest sorption capacity among the tested soils except in Hunan soil. The Cd sorption with NO 3 - displayed a similar behavior with Cl - on all tested soils. Compared with soil properties, all four kinds of anions on Cd sorption played a more significant role affecting Cd ecological toxicity to soil DHA and ALP. Cd in acetate or nitrate form appears more sensitive towards DHA than sulphate and chloride, while the later pair is more toxic towards ALP than the former. These results have important implications for evaluation of Cd contamination using soil enzyme as bioindicator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study.

    Science.gov (United States)

    Zimmermann, Tomáš; Leszczynski, Jerzy; Burda, Jaroslav V

    2011-09-01

    The thermodynamics of cisplatin and transplatin hydration is studied within the model of constant pH solution. Several implicit solvation models were chosen for the determination of pK(a) and pK constants of the hydration reactions. The polarizable dielectric model (DPCM), integral equation formalism polarizable model (IEFPCM), and polarizable conductor model (CPCM) were combined with the 'united atom model for Hartree-Fock' (UAHF) method for cavity construction and the B3LYP/6-31++G(2dp,2pd) level of calculations for the determination of electronic energies. The results were compared with the COSMO-RS and SM8 model developed by Truhlar (with M06 and MPWX functionals and the charge model CM4). The RMS difference between experimental and calculated pK(a) values of cis/transplatin, water, HCl, and NH (4) (+) was used to evaluate accuracy of calculations. The DPCM model was confirmed to perform the best. The predicted pK(a) constants were used in Legendre transformation for the estimation of the ΔG' energies in the constant-pH model. The dependence of the pK constant on pH is plotted and compared with experimental value at pH=7.4. The influence of various chloride concentrations on the molar fractions of dissolved forms of cisplatin is examined for the DPCM model. The increased ratio of cisplatin active aqua-forms is clearly visible for 4 mM chloride solution in comparison with 104 mM Cl(-) concentration.

  15. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    Science.gov (United States)

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems.

  16. Interstellar Anions: The Role of Quantum Chemistry.

    Science.gov (United States)

    Fortenberry, Ryan C

    2015-10-01

    Six anions have been conclusively detected in the interstellar medium (ISM). They all arrived within a five-year window ending five years ago. Why have no new anions been detected? It is likely a lack of laboratory data for novel anions. This work reviews the role that valence and dipole-bound excited states may play in the formation, detection, and lifetime of anions that may yet be observed in the ISM and how quantum chemistry enhances this understanding. The list of interstellar anions has certainly not been exhausted by any means, but electronic, spectroscopic, and structural data must be provided to aid in any future detections. Quantum chemistry has the flexibility and completeness to provide a full picture of these systems and has shown exceptional accuracies of late. The work reviewed herein gives an overview of what quantum chemical computations have produced and will continue to provide related to anions and how this will enhance both laboratory experiment and astronomical observation.

  17. Clinical usefulness of the serum anion gap.

    Science.gov (United States)

    Lee, Sik; Kang, Kyung Pyo; Kang, Sung Kyew

    2006-03-01

    The anion gap in the serum is useful in the interpretation of acid-base disorders and in the diagnosis of other conditions. In the early 1980s, ion-selective electrodes for specific ionic species were introduced for the measurement of serum electrolytes. This new method has caused a shift of the anion gap from 12±4 mEq/L down 6±3 mEq/L. It is worthy for clinicians to understand the range of normal anion gap and the measuring methods for serum sodium and chloride in the laboratories that support their practice. While an increase in the anion gap is almost always caused by retained unmeasured anions, a decrease in the anion gap can be generated by multiple mechanisms.

  18. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  19. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    Science.gov (United States)

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. The copper-catalysed Suzuki-Miyaura coupling of alkylboron reagents: disproportionation of anionic (alkyl)(alkoxy)borates to anionic dialkylborates prior to transmetalation.

    Science.gov (United States)

    Basnet, Prakash; Thapa, Surendra; Dickie, Diane A; Giri, Ramesh

    2016-09-25

    We report the first example of Cu(I)-catalysed coupling of alkylboron reagents with aryl and heteroaryl iodides that affords products in good to excellent yields. Preliminary mechanistic studies with alkylborates indicate that the anionic (alkoxy)(alkyl)borates, generated from alkyllithium and alkoxyboron reagents, undergo disproportionation to anionic dialkylborates and that both anionic alkylborates are active for transmetalation to a Cu(I)-catalyst. Results from a radical clock experiment and the Hammett plot imply that the reaction likely proceeds via a non-radical pathway.

  1. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    Directory of Open Access Journals (Sweden)

    Jens Kvist Madsen

    2015-04-01

    Full Text Available Biosurfactants (BS are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ, the phospholipase Lecitase Ultra® (LT and the α-amylase Stainzyme® (SZ. Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction towards the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the protein well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries to SZ. Furthermore all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant proteins. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  2. Determination of Anionic Detergent Concentration of Karasu Stream in Sinop (Turkey

    Directory of Open Access Journals (Sweden)

    Ayşe Gündoğdu

    2018-02-01

    Full Text Available The study was achieved between May 2014 and April 2015 at the Karasu Creek located in the province of Sinop. It was conducted to determine anionic detergent pollution and some physicochemical properties (pH, temperature, conductivity, salinity, dissolved oxygen, total hardness, chemical oxygen demand, phosphate PO4-3, total nitrogen. The anionic detergent concentration of the stations was determined on a monthly basis. Seasonally averaged values of the anionic detergent was measured as the highest value in the autumn season. The lowest values of anionic detergent were found in stations in winter and spring. The increase in the concentration of anionic detergent is caused by population growth in residential areas, increased agricultural activities and rains, and that chemicals move to riverbed from terrestrial areas with rain water.

  3. CO{sub 2} binding in the (quinoline-CO{sub 2}){sup −} anionic complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Jacob D.; Buytendyk, Allyson M.; Wang, Yi; Bowen, Kit H., E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kim, Seong K. [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-21

    We have studied the (quinoline-CO{sub 2}){sup −} anionic complex by a combination of mass spectrometry, anion photoelectron spectroscopy, and density functional theory calculations. The (quinoline-CO{sub 2}){sup −} anionic complex has much in common with previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes both in terms of geometric structure and covalent bonding character. Unlike the previously studied N-heterocycles, however, quinoline has a positive electron affinity, and this provided a pathway for determining the binding energy of CO{sub 2} in the (quinoline-CO{sub 2}){sup −} anionic complex. From the theoretical calculations, we found CO{sub 2} to be bound within the (quinoline-CO{sub 2}){sup −} anionic complex by 0.6 eV. We also showed that the excess electron is delocalized over the entire molecular framework. It is likely that the CO{sub 2} binding energies and excess electron delocalization profiles of the previously studied (N-heterocycle-CO{sub 2}){sup −} anionic complexes are quite similar to that of the (quinoline-CO{sub 2}){sup −} anionic complex. This class of complexes may have a role to play in CO{sub 2} activation and/or sequestration.

  4. ANIONS FUNCTIONS IN TRANSITION METALS COORDINATION COMPOUNDS

    Directory of Open Access Journals (Sweden)

    T. V. Koksharova

    2016-04-01

    Full Text Available The effect of anions on the structure and properties of coordination compounds of transition metals has been discussed. The examples of changes in the composition of the formed complexes by replacement of the anion are given: metal ratio to a neutral ligand, the composition of the inner sphere, the direction of template synthesis. Anions can determine the presence of isomers in complexes with different ligands. Examples of conformational, ionization isomerism, inner sphere bond isomerization are given. The nature of the coordination polyhedron is highly sensitive to the replacement of the anion too. Examples of coordination compounds where the anion change causes a change in coordination capacity of neutral ligands and the strength of their bonds with the metal, coordination number and geometry of the inner sphere, the organization of molecular structures (the structure of the hydrogen bond networks and the degree of polymerization, crystal packing. The anions significantly affect the binding of the solvent molecules, complexes magnetic and luminescent properties, they can change the compound color, the mechanisms of thermolysis. Anions make a very noticeable influence on possible redox processes following the complexation in some cases. Anions in the coordination sphere can change catalytic and biochemical processes as well as the ways of interaction of metal ions with drugs.

  5. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Unknown

    Indian Academy of Sciences. 671. The many ways of making anionic ... In all these cases, the negative charge is compensated for by the inclusion of positive ions in the interlayer region, by virtue ..... as anionic clays. Acknowledgements. The authors thank the Department of Science and Technology, New Delhi for financial.

  6. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  7. Hydrogen in anion vacancies of semiconductors

    Science.gov (United States)

    Du, Mao-Hua; Singh, David

    2009-03-01

    Hydrogen typically terminates the dangling bonds around vacancies in semiconductors, thereby, partially or completely passivating the vacancies. However, it has been shown recently that hydrogen in anion vacancies of many semiconductors, such as ZnO, MgO, InN, SnO2, and GaN, takes multi-coordinated structures and acts as shallow donors, providing n-type conductivity to the materials. We study the hydrogen in the anion vacancies of a series of II-VI and III-V semiconductors using density functional calculations. The results on these materials show that, in the anion vacancies of polar II-VI semiconductors, the hydrogen is usually anionic and is coordinated with more than one cation atoms as a result of the relatively high ionicity of the host materials. The hydrogen coordination number depends on the host anion size. On the other hand, in more covalent semiconductors such as some III-V semiconductors, the single cation-H bonding configuration may become most stable. In the anion vacancies of ZnX and CdX where X represents anions, hydrogen is typically amphoteric except for oxides, in which the small anion size prohibits the formation of the cation-cation bond that is required for the acceptor configuration.

  8. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...

  9. Experimental evidence for interactions between anions and electron-deficient aromatic rings.

    Science.gov (United States)

    Berryman, Orion B; Johnson, Darren W

    2009-06-14

    This feature article summarizes our research aimed at using electron-deficient aromatic rings to bind anions in the context of complementary research in this active field. Particular attention is paid to the different types of interactions exhibited between anions and electron-deficient arenes in solution. The 120+ references cited in this article underscore the flurry of recent activity by numerous researchers in this field, which was relatively nascent when our efforts began in 2005. While the interaction of anions with electron-deficient aromatic rings has recently garnered much attention by supramolecular chemists, the observation of these interactions is not a recent discovery. Therefore, we begin with a historical perspective on early examples of anions interacting with electron-deficient arenes. An introduction to recent (and not so recent) computational investigations concerning anions and electron-deficient aromatic rings as well as a brief structural survey of crystalline examples of this interaction are provided. Finally, the limited solution-based observations of anions interacting with electron-deficient aromatic rings are summarized to introduce our current investigations in this area. We highlight three different systems from our lab where anion-arene interactions have been investigated. First, we show that tandem hydrogen bonds and anion-arene interactions augment halide binding in solution. Second, a crystallographic and computational study highlights the multiple types of interactions possible between anions and electron-deficient arenes. Third, we summarize the first example of a class of designed receptors that emphasize the different types of anion-arene interactions possible in solution.

  10. pH triggered superior selective adsorption and separation of both cationic and anionic dyes and photocatalytic activity on a fully exfoliated titanate layer-natural polymer based nanocomposite.

    Science.gov (United States)

    Sarkar, Amit Kumar; Saha, Arka; Panda, Asit Baran; Pal, Sagar

    2015-11-18

    A fully exfoliated titanate layer-natural polymer amylopectin based nanocomposite, with pH responsive superior selective adsorption, separation of both cationic (MB: 599 mg g(-1) at pH 9) and anionic (MO: 558 mg g(-1) at pH 3) dyes and photodegradation properties, has been realized through simultaneous in situ layered titanate formation, exfoliation and polymerization.

  11. Fungal growth on anion surfactant medium.

    Science.gov (United States)

    Hamada, Nobuo; Abe, Niichiro

    2009-12-01

    Before the present study, no fungi using anion surfactant as a nutrient had been identified, although some fungi were known to use nonion surfactant. Washing water collected from 63 washing machines was inoculated onto 0.1% LAS (Sodium dodecyl benzenesulfonate) anion surfactant media to identify fungi that can feed on anion-surfactant. Small dark colonies of fungi were found on several of the Petri-dishes from 12 days after inoculation. These were identified as Cladophialophora boppii and Exophiala spinifera using morphological features and rDNA data. A number of the isolates of C. boppii specifically were recognized as using anion surfactant as a nutrient. The growth characteristics of the two fungal species were examined on surfactant media of three kinds. Apart from anion surfactant, the fungi were also able to grow on nonion surfactant and on soap. The application of these fungi for environmental cleansing after detergent pollution is also discussed.

  12. Closing the gap on unmeasured anions

    Science.gov (United States)

    Kellum, John A

    2003-01-01

    Many critically ill and injured patients, especially those with metabolic acidosis, have abnormally high levels of unmeasured anions in their blood. At the same time, such patients are prone to hypoalbuminemia, which makes the traditional anion gap calculation inaccurate. Thus, little is known about the epidemiology and clinical consequences of an excess in unmeasured anions in the blood. Indeed, even the etiology of these "missing ions" is often unclear. Unfortunately, more precise means of quantifying unmeasured anions, such as the strong ion gap (SIG), are cumbersome to use clinically. However, a simple means of correcting the anion gap can be used to estimate SIG and may provide additional insight into this common clinical problem. PMID:12793870

  13. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  14. Anionic and zwitterionic copper(I) complexes incorporating an anionic N-heterocyclic carbene decorated with a malonate backbone: synthesis, structure and catalytic applications.

    Science.gov (United States)

    César, Vincent; Barthes, Cécile; Farré, Yoann C; Cuisiat, Stéphane V; Vacher, Bernard Y; Brousses, Rémy; Lugan, Noël; Lavigne, Guy

    2013-05-28

    The anionic malonate-derived N-heterocyclic carbenes (maloNHCs) react cleanly and rapidly with copper chloride to generate the anionic complexes of type [(maloNHC)CuCl]·Li, which crystallize in the solid state either in an oligomeric trimer arrangement or in polymeric helixes depending on the substitution pattern and the solvent. Ten zwitterionic heteroleptic Cu(I) complexes combining the anionic maloNHC and a neutral imidazol-2-ylidene are also obtained in a very selective manner and fully characterized. Whereas the anionic complexes are relatively active catalysts for the hydrosilylation of carbonyl compounds, the zwitterionic complexes reveal to be efficient and extremely robust pre-catalysts for the intramolecular cyclopropanation reaction of a diazo ester and outperform the corresponding cationic Cu(i) complexes with classical imidazol-2-ylidenes.

  15. Clinical Usefulness of the Serum Anion Gap

    OpenAIRE

    Lee, Sik; Kang, Kyung Pyo; Kang, Sung Kyew

    2006-01-01

    The anion gap in the serum is useful in the interpretation of acid-base disorders and in the diagnosis of other conditions. In the early 1980s, ion-selective electrodes for specific ionic species were introduced for the measurement of serum electrolytes. This new method has caused a shift of the anion gap from 12±4 mEq/L down 6±3 mEq/L. It is worthy for clinicians to understand the range of normal anion gap and the measuring methods for serum sodium and chloride in the laboratories that suppo...

  16. MODERN TECHNOLOGY OF ANIONIC POLYMERIZATION MONOMERS

    Directory of Open Access Journals (Sweden)

    A. V. Tkachev

    2013-01-01

    Full Text Available The preconditions of use in the manufacture of automobile tyres of vulcanizates-based mortar butadienestyrene rubber with a high content of 1.2 links butadiene and statistical distribution of styrene are formulated. Set out scientific researches in the field of anionic co-polymerization of diene and vinyl aromatic monomers. Formulation of catalytic systems applied in processes of anionic copolymerization of monomers are given. The reasons of formation of gel in the process of anionic polymerization of monomers and terms of their elimination are considered.

  17. Analysis of anionic post-blast residues of low explosives from soil samples of forensic interest

    International Nuclear Information System (INIS)

    Umi Kalthom ahmad; Tze, O.S.

    2011-01-01

    The growing threats and terrorist activities in recent years have urged the need for rapid and accurate forensic investigation on post-blast samples. The analysis of explosives and their degradation products in soils are important to enable forensic scientist to identify the explosives used in the bombing and establish possible links to their likely origin. Anions of interest for post-blast identification of low explosives were detected and identified using ion chromatography (IC). IC separations of five anions (Cl - , NO 2 - , NO 3 - , SO 4 2- , SCN - ) employed a Metrosep Anion Dual 2 column with carbonate eluent. The anions were separated within 17 minutes. Sampling of post blast residues was carried out in Rompin, Pahang. The post-blast explosive residues were extracted from soil samples collected at the seat of three simulated explosion points. The homemade explosives comprised of black powder of various amounts (100 g, 150 g and 200 g) packed in small plastic sauce bottles. In black powder standard, three anions (Cl - , NO 3 - , SO 4 2- ) were identified. However, low amounts of nitrite (NO 2 - ) were found present in post-blast soil samples. The amounts of anions were generally found to be decreased with decreasing amount of black powder explosive used. The anions analysis was indicative that nitrates were being used as one of the black powder explosive ingredients. (author)

  18. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  19. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  20. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling.

    Science.gov (United States)

    Jicsinszky, László; Caporaso, Marina; Calcio Gaudino, Emanuela; Giovannoli, Cristina; Cravotto, Giancarlo

    2017-03-19

    A number of influencing factors mean that the random substitution of cyclodextrins (CD) in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent's hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS) with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  1. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

    Directory of Open Access Journals (Sweden)

    László Jicsinszky

    2017-03-01

    Full Text Available A number of influencing factors mean that the random substitution of cyclodextrins (CD in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent’s hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  2. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  3. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  4. Gallium based low-interaction anions

    Science.gov (United States)

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  5. Globins Scavenge Sulfur Trioxide Anion Radical*

    Science.gov (United States)

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  6. Calcium-regulated anion channels in the plasma membrane of Lilium longiflorum pollen protoplasts.

    Science.gov (United States)

    Tavares, Bárbara; Dias, Pedro Nuno; Domingos, Patrícia; Moura, Teresa Fonseca; Feijó, José Alberto; Bicho, Ana

    2011-10-01

    • Currents through anion channels in the plasma membrane of Lilium longiflorum pollen grain protoplasts were studied under conditions of symmetrical anionic concentrations by means of patch-clamp whole-cell configuration. • With Cl(-) -based intra- and extracellular solutions, three outward-rectifying anion conductances, I(Cl1) , I(Cl2) and I(Cl3) , were identified. These three activities were discriminated by differential rundown behaviour and sensitivity to 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), which could not be attributed to one or more channel types. All shared strong outward rectification, activated instantaneously and displayed a slow time-dependent activation for positive potentials. All showed modulation by intracellular calcium ([Ca(2+) ](in) ), increasing intensity from 6.04 nM up to 0.5 mM (I(Cl1) ), or reaching a maximum value with 8.50 μM (I(Cl2) and I(Cl3) ). • After rundown, the anionic currents measured using NO(3) (-) -based solutions were indistinguishable, indicating that the permeabilities of the channels for Cl(-) and NO(3) (-) are similar. Additionally, unitary anionic currents were measured from outside-out excised patches, confirming the presence of individual anionic channels. • This study shows for the first time the presence of a large anionic conductance across the membrane of pollen protoplasts, resulting from the presence of Ca(2+) -regulated channels. A similar conductance was also found in germinated pollen. We hypothesize that these putative channels may be responsible for the large anionic fluxes previously detected by means of self-referencing vibrating probes. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. Cellulose Anionic Hydrogels Based on Cellulose Nanofibers As Natural Stimulants for Seed Germination and Seedling Growth.

    Science.gov (United States)

    Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping

    2017-05-17

    Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.

  8. Correction of the anion gap for albumin in order to detect occult tissue anions in shock.

    Science.gov (United States)

    Hatherill, M; Waggie, Z; Purves, L; Reynolds, L; Argent, A

    2002-12-01

    It is believed that hypoalbuminaemia confounds interpretation of the anion gap (AG) unless corrected for serum albumin in critically ill children with shock. To compare the ability of the AG and the albumin corrected anion gap (CAG) to detect the presence of occult tissue anions. Prospective observational study in children with shock in a 22 bed multidisciplinary paediatric intensive care unit of a university childrenrsquo;s hospital. Blood was sampled at admission and at 24 hours, for acid-base parameters, serum albumin, and electrolytes. Occult tissue anions (lactate + truly "unmeasured" anions) were calculated from the strong ion gap. The anion gap ((Na + K) - (Cl + bicarbonate)) was corrected for serum albumin using the equation of Figge: AG + (0.25 x (44 - albumin)). Occult tissue anions (TA) predicted by the anion gap were calculated by (anion gap - 15 mEq/l). Optimal cut off values of anion gap were compared by means of receiver operating characteristic (ROC) curves. Ninety three sets of data from 55 children (median age 7 months, median weight 4.9 kg) were analysed. Data are expressed as mean (SD), and mean bias (limits of agreement). The incidence of hypoalbuminaemia was 76% (n = 42/55). Mean serum albumin was 25 g/l (SD 8). Mean AG was 15.0 mEq/l (SD 6.1), compared to the CAG of 19.9 mEq/l (SD 6.6). Mean TA was 10.2 mmol/l (SD 6.3). The AG underestimated TA with mean bias 10.2 mmol/l (4.1-16.1), compared to the CAG, mean bias 5.3 mmol/l (0.4-10.2). A clinically significant increase of TA >5 mmol/l was present in 83% (n = 77/93) of samples, of which the AG detected 48% (n = 36/77), and the CAG 87% (n = 67/77). Post hoc ROC analysis revealed optimal cut off values for detection of TA >5 mmol/l to be AG >10 mEq/l, and CAG >15.5 mEq/l. Hypoalbuminaemia is common in critically ill children with shock, and is associated with a low observed anion gap that may fail to detect clinically significant amounts of lactate and other occult tissue anions. We suggest that

  9. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  10. Photoemission from tin and lead cluster anions

    International Nuclear Information System (INIS)

    Gantefoer, G.; Gausa, M.; Meiwes-Broer, K.H.; Lutz, H.O.

    1989-01-01

    Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n - , Pb n - ) are detached by ultraviolet laser light (hν=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n - are dominated by flat thresholds with an n-dependence similar to that of other group IV clusters. In contrast, for Pb n - we find pronounced narrow lines close to threshold, generally followed by a 0.3-1.4 eV gap which indicates closed-shell behaviour of Pb n - for nearly all n. (orig.)

  11. Clinical acid-base pathophysiology: disorders of plasma anion gap.

    Science.gov (United States)

    Moe, Orson W; Fuster, Daniel

    2003-12-01

    The plasma anion gap is a frequently used parameter in the clinical diagnosis of a variety of conditions. The commonest application of the anion gap is to classify cases of metabolic acidosis into those that do and those that do not leave unmeasured anions in the plasma. While this algorithm is useful in streamlining the diagnostic process, it should not be used solely in this fashion. The anion gap measures the difference between the unmeasured anions and unmeasured cations and thus conveys much more information to the clinician than just quantifying anions of strong acids. In this chapter, the significance of the anion gap is emphasized and several examples are given to illustrate a more analytic approach to using the clinical anion gap; these include disorders of low anion gap, respiratory alkalosis and pyroglutamic acidosis.

  12. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  13. Organic superconductors with an incommensurate anion structure

    OpenAIRE

    Kawamoto, Tadashi; Takimiya, Kazuo

    2009-01-01

    Superconducting incommensurate organic composite crystals based on the methylenedithio-tetraselenafulvalene (MDT-TSF) series donors, where the energy band filling deviates from the usual 3/4-filled, are reviewed. The incommensurate anion potential reconstructs the Fermi surface for both (MDT-TSF)(AuI2)0.436 and (MDT-ST)(I3)0.417 neither by the fundamental anion periodicity q nor by 2q, but by 3q, where MDT-ST is 5H-2-(1,3-dithiol-2-ylidene)-1,3-diselena-4,6-dithiapentalene, and q is the recip...

  14. Recognition, Sensing and Separation of Anions

    Indian Academy of Sciences (India)

    Dr Pradyut Ghosh

    2016-11-05

    Nov 5, 2016 ... Arsenate Recognition in Aqueous Medium. Anion log K log Ka log Kb. HAsO4. 2-. 4.42. 4.35. -. H2PO4. -. 3.62. 3.62. 5.52. SO4. 2-. 3.48. 3.36. 4.73. CO3. 2-. 2.68. -. 4.04. Table 1. Association constant value of L in DMSO-d6/D2O (9:1, v/v) with different anion in DMSO-d6/D2O (1.1:1, v/v) at 298 K a: log K ...

  15. ANION GAP NO SANGUE VENOSO EM EQUINOS

    Directory of Open Access Journals (Sweden)

    Luís Carlos Ribeiro Fan

    1994-01-01

    Full Text Available RESUMO A influência do sangue venoso na determinação do anion gap foi estudada em 50 equinos adultos clinicamente sadios no município de Santa Maria, RS. Os resultados obtidos em mEq/1 foram: sódio 140 ± 2,0; potássio 4,2 ± 0,5; cloreto 102 ± 12 e bicarbonato 26,9 ± 2,0. Conclui-se que o sangue venoso pode substituir o arterial na determinação do anion gap em equinos.

  16. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  17. Organic anion transporter (Slc22a) family members as mediators of toxicity

    International Nuclear Information System (INIS)

    Sweet, Douglas H.

    2005-01-01

    Exposure of the body to toxic organic anions is unavoidable and occurs from both intentional and unintentional sources. Many hormones, neurotransmitters, and waste products of cellular metabolism, or their metabolites, are organic anions. The same is true for a wide variety of medications, herbicides, pesticides, plant and animal toxins, and industrial chemicals and solvents. Rapid and efficient elimination of these substances is often the body's best defense for limiting both systemic exposure and the duration of their pharmacological or toxicological effects. For organic anions, active transepithelial transport across the renal proximal tubule followed by elimination via the urine is a major pathway in this detoxification process. Accordingly, a large number of organic anion transport proteins belonging to several different gene families have been identified and found to be expressed in the proximal nephron. The function of these transporters, in combination with the high volume of renal blood flow, predisposes the kidney to increased toxic susceptibility. Understanding how the kidney mediates the transport of organic anions is integral to achieving desired therapeutic outcomes in response to drug interactions and chemical exposures, to understanding the progression of some disease states, and to predicting the influence of genetic variation upon these processes. This review will focus on the organic anion transporter (OAT) family and discuss the known members, their mechanisms of action, subcellular localization, and current evidence implicating their function as a determinant of the toxicity of certain endogenous and xenobiotic agents

  18. Synthesis of azaphenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Hansen, Henriette Møller; Lysén, M.; Begtrup, M.

    2005-01-01

    A new and convergent synthesis of azaphenanthridines via an anionic ring closure is reported. Ortho-lithiation/in situ borylation of cyanopyridines produces the corresponding cyanopyridylboronic esters, which undergo a Suzuki-Miyaura cross-coupling to give the key intermediates. Addition of lithium...

  19. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  20. DFT-Based Comparative Study about the Influence of Fluorine and Hydroxyl Anions on Opto-Electric Properties of Borate Crystals: Choice for Better Anion.

    Science.gov (United States)

    Bashir, Beenish; Zhang, Bingbing; Lee, Ming-Hsien; Pan, Shilie; Yang, Zhihua

    2017-05-15

    Replacing hydroxyl anions OH¯ by fluorine anions F¯ in borates can cause the blue shift of the UV cutoff edge and also exhibits apparent differences in nonlinear optical (NLO) properties. To clarify the intrinsic difference between OH¯ anions and F¯ anions, several typical borates with different types of cations (p-cations with lone-pair electrons, trivalent rare-earth, and alkaline earth metals) have been studied. The theoretical studies reveal that the blue shift in the band gap of borates with fluorine as compared to those with hydroxyl can be assumed to be the result of weaker interaction of the cation-fluoride (La/Bi/B-F) bonds compared to that of the cation-oxygen and hydroxyl bonds. NLO properties are found to have the order of BiB 2 O 4 F > BiB 2 O 4 (OH)> LaB 2 O 4 F ≈ LaB 2 O 4 (OH). The large difference can be attributed mainly to the stereochemical activity of the lone pair (SCALP) effect of the Bi cations and the special BO 3 F with strong anisotropy as compared to the BO 4 group. The energy spanning of F-2p orbitals is more extended in BiB 2 O 4 F as compared to LaB 2 O 4 F, Sr 3 B 6 O 11 F 2 , and Ba 3 B 6 O 11 F 2 due to the bonding of Bi/B-F, which indicates F-2p orbitals have more chance to overlap with surrounding atoms and enhance the polarizability in all systems. Moreover, the degree of SCALP of the Bi cations is apparently activated by the introduction of the F¯ anions, which causes an obvious enhancement in NLO properties in bismuth borates with F¯. These investigations will help us to classify the solid-state chemistry of F¯ and OH¯ anions in borate systems with different types of metal cations.

  1. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  2. Experimental Detection of the Pentazole Anion, N5(-)

    National Research Council Canada - National Science Library

    Vij, Ashwani

    2002-01-01

    .... Whereas at low collision voltages the para-phenoxypentazole anion undergoes stepwise N2 elimination generating the corresponding azide and nitrene, at high collision voltages the N5(-) anion is formed...

  3. Advances in anion supramolecular chemistry: from recognition to chemical applications.

    Science.gov (United States)

    Evans, Nicholas H; Beer, Paul D

    2014-10-27

    Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under-exploited anion-π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion-templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modelling the Effects of Competing Anions on Fluoride Removal by ...

    African Journals Online (AJOL)

    NICOLAAS

    ... the physico-chemical properties of anions and their interaction with the adsorbent surface.16. Properties of anions such as the solubility, ionic radius, hydration energy and bulk diffusion coefficient are of great importance for the selective adsorption of anions.17 In our earlier study the equilibrium and thermodynamics of ...

  5. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R 2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  6. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  7. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  8. Interactions between anions and soil constituents

    International Nuclear Information System (INIS)

    Bolt, G.H.; Haan, F.A.M. de

    1965-01-01

    Clay mineral crystals are characterized by a non-isotropic structure, in which a pattern is recognized. It is known that the planar sides are negatively charged (as a result of the isomorphic replacement of Si 4+ by Al 3+ and/or Al 3+ by Mg 2+ ). Under certain conditions the exposed alumina groups at the edges are charged positively. The different types of interaction between ions and clay crystals may be listed as follows: (a) Cations: positive adsorption on planar side (electrostatic interaction modified by -- non-electrostatic -- specific factors); and possibly negative adsorption at positively charged edges (electrostatic effect). (b) Anions: negative adsorption (exclusion) on planar side (electrostatic effect); and positive adsorption on the edges -- in part electrostatic, if edge positively charged; furthermore chemisorption of certain anions, as e.g. PO 4 , SiO 4

  9. An intracellular anion channel critical for pigmentation.

    Science.gov (United States)

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-12-16

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.

  10. Politseiuuringud kooskõlastamisele / Liivia Anion

    Index Scriptorium Estoniae

    Anion, Liivia

    2003-01-01

    1. aprillil 2003. a. moodustatud uurimistööde kooskõlastamise komisjoni tegevuse eesmärk on saada ülevaade kõrgkoolides õppivate töötajate poolt politseis korraldatavatest uurimustest, kasutada saadud infot politsei kasuks ja vältida teenistujate tööd segavate uurimuste tegemist. Komisjoni liige Liivia Anion teeb ülevaate komisjoni otsustuspädevuse valdkondadest ja töökorraldusest

  11. Sequence anatomy of mitochondrial anion carriers

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Ježek, Jan

    2003-01-01

    Roč. 534, 1-3 (2003), s. 15-25 ISSN 0014-5793 R&D Projects: GA AV ČR IAA5011106; GA ČR GA301/02/1215; GA MŠk ME 389 Institutional research plan: CEZ:AV0Z5011922 Keywords : mitochondrial anion carriers * carrier genomics * bioinformatics Subject RIV: CE - Biochemistry Impact factor: 3.609, year: 2003

  12. Molecular basis of claudin-17 anion selectivity.

    Science.gov (United States)

    Conrad, Marcel P; Piontek, Jörg; Günzel, Dorothee; Fromm, Michael; Krug, Susanne M

    2016-01-01

    Claudin-17 is a paracellular channel-forming tight junction protein. Unlike the cation channels claudin-2 and -15, claudin-17 forms a distinct anion-selective channel. Aim of this study was to determine the molecular basis of channel formation and charge selectivity of this protein. To achieve this, residues located in the extracellular loops (ECL) 1 and 2 of claudin-17 were substituted, preferably those whose charges differed in claudin-17 and in claudin-2 or -15. The respective mutants were stably expressed in MDCK C7 cells and their ability to form charge-selective channels was analyzed by measuring ion permeabilities and transepithelial electrical resistance. The functional data were combined with homology modeling of the claudin-17 protomer using the structure of claudin-15 as template. In ECL1, K65, R31, E48, and E44 were found to be stronger involved in Cldn17 channel function than the clustered R45, R56, R59, and R61. For K65, not only charge but also stereochemical properties were crucial for formation of the anion-selective channel. In ECL2, both Y149 and H154 were found to contribute to constitution of the anion channel in a distinct manner. In conclusion, we provide insight into the molecular mechanism of the formation of charge- and size-selective paracellular ion channels. In detail, we propose a hydrophilic furrow in the claudin-17 protomer spanning from a gap between the ends of TM2 and TM3 along R31, E48, and Y67 to a gap between K65 and S68 lining the anion channel.

  13. Revisiting the Anionic Polymerization of Methyl Ethacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Kennemur, Justin G. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee FL 32306-4390 USA; Bates, Frank S. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis MN 55455-0431 USA; Hillmyer, Marc A. [Department of Chemistry, University of Minnesota, Minneapolis MN 55455-0431 USA

    2017-09-26

    Synthesis of poly(methyl ethacrylate), (PMEA), in tetrahydrofuran at -78 °C using anionic polymerization techniques results in high molar mass (>30 kg mol-1), low dispersity (1.3), and high conversion (>81%). The molar masses of a series of samples are consistent with values anticipated by the monomer-to-initiator ratio and conversion. These results represent a significant improvement to earlier reported attempts to prepare PMEA using anionic methods. Successful diblock polymerization of polystyrene-block-PMEA, (PS-PMEA), and poly(4-tert-butylstyrene)-block-PMEA, (PtBS-PMEA), is achieved through sequential anionic polymerization techniques with dispersities as low as 1.06 and segment molar fractions close to those targeted. Broad principal scattering peaks observed by small-angle X-ray scattering (SAXS) for symmetric PS-PMEA at relatively high molar mass (39 kg mol-1) suggests an effective interaction parameter (χeff) that is smaller than for PS-block-poly(methyl methacrylate). On the other hand, PtBS-PMEA block polymers form a well-ordered morphology based on SAXS measurements and is attributable to the more hydrophobic PtBS segment. These results confirm the viability of PMEA as a new constituent in the expanding suite of polymers suitable for preparing nanostructured block polymers.

  14. Ion-selective electrode and anion gap range: What should the anion gap be?

    Science.gov (United States)

    Sadjadi, Seyed-Ali; Manalo, Rendell; Jaipaul, Navin; McMillan, James

    2013-01-01

    Using flame photometry technique in the 1970s, the normal value of anion gap (AG) was determined to be 12 ± 4 meq/L. However, with introduction of the autoanalyzers using an ion-selective electrode (ISE), the anion gap value has fallen to lower levels. A retrospective study of US veterans from a single medical center was performed to determine the value of the anion gap in subjects with normal renal function and normal serum albumin and in patients with lactic acidosis and end-stage renal disease on dialysis. In 409 patients with an estimated glomerular filtration rate ≥60 mL/min/1.73 m(2) body surface area and serum albumin ≥4 g/dL, the mean AG was 7.2 ± 2 (range 3-11) meq/L. In 299 patients with lactic acidosis (lactate level ≥4 meq/L) and 68 patients with endstage renal disease on dialysis, the mean AG was 12.5 meq/L and 12.4 meq/L, respectively. A value anion gap and a possible clue to drug intoxication and paraproteinemic disorders. With the advent of ISE for measurement of analytes, the value of the anion gap has fallen. Physicians need to be aware of the normal AG value in their respective institutions, and laboratories need to have an established value for AG based on the type of instrument they are using.

  15. Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10

    International Nuclear Information System (INIS)

    Kumar, Vinod; Govind; Uma, S.

    2011-01-01

    Noticeable lowering of the energy gaps have been achieved for the layered perovskite K 2 La 2 Ti 3 O 10 as a result of the attempts made to incorporate Sn 2+ and N 3- ions. Incorporation of Sn 2+ ions was carried out by the ion-exchange reaction of K 2 La 2 Ti 3 O 10 with aqueous tin(II) chloride solution. Nitrogen incorporation was attempted by the solid state reaction of the parent oxide with urea around 400 o C in air. The resultant oxides have been characterized by power X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. Room temperature ion-exchange was sufficient to introduce Sn 2+ ions with the resulting product of composition (Sn 0.45 K 0.2 H 0.9 )La 2 Ti 3 O 10 .H 2 O. Visible light absorption was observed with the absorption edge red shift of ∼100 nm from that of the parent K 2 La 2 Ti 3 O 10 . The lowering of the band gap was as expected by the contribution of Sn 5s orbitals to the O 2p orbitals in the formation of the valence band. Nitridation using urea resulted not only in nitrogen doping but with the additional sensitization by the presence of carbon nitride (CN) polymers, which again resulted in visible light absorption. The product oxides obtained as a result of cation and anion intended substitutional studies have been found to be useful for the visible light photocatalytic decomposition of organic dyes such as rhodamine B.

  16. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    Science.gov (United States)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  17. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    Science.gov (United States)

    Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer

    2017-10-01

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Renal Organic Anion Transporters (SLC22 Family): Expression, Regulation, Roles in Toxicity, and Impact on Injury and Disease

    OpenAIRE

    Wang, Li; Sweet, Douglas H.

    2012-01-01

    Organic solute flux across the basolateral and apical membranes of renal proximal tubule cells is a key process for maintaining systemic homeostasis. It represents an important route for the elimination of metabolic waste products and xenobiotics, as well as for the reclamation of essential compounds. Members of the organic anion transporter (OAT, SLC22) family expressed in proximal tubules comprise one pathway mediating the active renal secretion and reabsorption of organic anions. Many drug...

  19. Effect of the electrolyte cations and anions on the photocurrent of dodecylsulphate doped polypyrrole films

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Milena; De Paoli, Marco-A. [Laboratorio de Poliimeros Condutores, Instituto de Quimica-UNICAMP, Universidade de Campinas, Cx Postal 6154, 13081-970 , SP Campinas (Brazil)

    2002-07-01

    Photoelectrochemical and UV-Vis spectroelectrochemical measurements were performed in a three-electrode cell containing dodecylsulphate-doped polypyrrole films as active layers in contact with different aqueous electrolytes. The effect of both cations and anions of the electrolyte on the photocurrent generation and on the absorption spectra of the system was studied. Dynamic photocurrent and absorption spectra measurements performed during the redox cycles of the films show that both cation and anion insertion and deinsertion occurs during the cycles. These results are in agreement with the previously reported redox mechanism proposed for amphiphilic anion doped polypyrrole. Reduced films show cathodic photocurrent at -0.4>E>-0.8V vs. Ag|AgCl. Photocurrent voltammograms are reproducible after the conditioning of the films and the higher cathodic currents were observed in films with thickness of =0.05-0.5{mu}m.

  20. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  1. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  2. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    International Nuclear Information System (INIS)

    Samsahl, K.

    1963-01-01

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined

  3. Scavenging of superoxide anion by phosphorylethanolamine: studies in human neutrophils and in a cell free system.

    Science.gov (United States)

    Gordon, L I; Weiss, D; Prachand, S; Weitzman, S A

    1991-01-01

    On the basis of previous observations, we attempted to characterize the effects of various products of phospholipid hydrolysis on neutrophil (PMN) respiratory burst activity. We studied the effects of phosphorylcholine (PC) and phosphorylethanoline (PE) on superoxide anion production in PMN and in cell free system. We found that PE but not PC inhibited measured superoxide anion, but that this was not due to inhibition of cellular superoxide generation but to scavenging of generated superoxide anion. Further, utilizing a system based upon the photo-oxidation of O-dianisidine sensitized by riboflavin, we were able to determine that the scavenging effect of PE was not superoxide dismutase (SOD)-like but rather a general scavenging or glutathione (GSH)-like effect. These data underscore the importance of identifying the mechanism of inhibition of superoxide generation by putative inhibitors as being due to a direct cellular effect or to a scavenging property.

  4. Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids

    NARCIS (Netherlands)

    Monreal, J.A.; McLoughlin, F.; Echevarría, C.; García-Mauriño, S.; Testerink, C.

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme playing a crucial role in photosynthesis of C4 plants. Here, we identify anionic phospholipids as novel regulators that inhibit C4 PEPC activity and provide evidence that the enzyme partially localizes to membranes.

  5. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.

    Science.gov (United States)

    Xu, You; Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Zhang, Bin

    2013-07-28

    Nanoporous FeP nanosheets are successfully synthesized via the anion-exchange reaction of inorganic-organic hybrid Fe18S25-TETAH (TETAH = protonated triethylenetetramine) nanosheets with P ions. The as-prepared nanoporous FeP nanosheets exhibit high electrochemical hydrogen evolution reaction activity in acidic medium.

  6. Ion-selective electrode and anion gap range: What should the anion gap be?

    OpenAIRE

    Sadjadi,; Manalo,Rendell; Jaipaul,Navin; McMillan,James

    2013-01-01

    Seyed-Ali Sadjadi, Rendell Manalo, Navin Jaipaul, James McMillan Jerry L Pettis Memorial Veterans Medical Center, Loma Linda University School of Medicine, Loma Linda, CA, USA Background: Using flame photometry technique in the 1970s, the normal value of anion gap (AG) was determined to be 12 ± 4 meq/L. However, with introduction of the autoanalyzers using an ion-selective electrode (ISE), the anion gap value has fallen to lower levels. Methods: A retrospective study of US veteran...

  7. Graphene-coated polymeric anion exchangers for ion chromatography

    International Nuclear Information System (INIS)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan; Wu, Shuchao; Zhang, Peimin; Zhi, Mingyu; Zhu, Yan

    2017-01-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  8. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  9. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  10. Recognition and sensing of fluoride anion.

    Science.gov (United States)

    Cametti, Massimo; Rissanen, Kari

    2009-05-28

    Fluoride anion recognition is attracting a mounting interest in the scientific community due to its duplicitous nature. It is a useful chemical for many industrial applications, and it has been used in human diet, but, recently it has been accused for several human pathologies. Here we describe the ample panorama of different approaches the chemists world-wide have employed to face the challenge of fluoride binding, and we outline some of the research which in our view can contribute to the development of this field, especially when fluoride binding has to be achieved in highly competitive protic solvents and water.

  11. 1,2,3-Triazoles and the Expanding Utility of Charge Neutral CH···Anion Interactions

    Science.gov (United States)

    McDonald, Kevin P.; Hua, Yuran; Flood, Amar H.

    As the field of anion supramolecular chemistry continues to grow in its sophistication and understanding of the noncovalent interactions used to effectively bind anions, there exists new theoretical and experimental evidence for a necessary reexamination of the way in which the field views hydrogen bond donors. The heteroatom based hydrogen-bond donors (e.g., NH and OH) are well-known to provide strong stabilization to negatively charged species. However, new findings point to the untapped stabilization energy that lay dormant in extrinsically-activated CH hydrogen bonds. Computational studies showed that an activated aliphatic or aromatic CH can provide an amount of anion stabilization in the gas phase approaching that of conventional NH based donors. Discovery of the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition to provide 1,2,3-triazoles and the ability to readily "click" this functionality into anion receptors has allowed extensive experimental investigation of the ideas posed by these calculations. This chapter will focus on the evolution of the CH hydrogen bond from being viewed as a weak, secondary interaction to now being utilized as a powerful source of anion stabilization in macrocyclic and oligomeric receptors. In addition, the application of the anion binding power of the 1,2,3-triazole towards the preparation of mechanically interlocked structures will also be discussed.

  12. Photoelectron Spectroscopy and Theoretical Studies of Anion-pi Interactions: Binding Strength and Anion Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhou, Bin; Sun, Zhenrong; Wang, Xue B.

    2015-01-01

    Proposed in theory and confirmed to exist, anion–π interactions have been recognized as new and important non-covalent binding forces. Despite extensive theoretical studies, numerous crystal structural identifications, and a plethora of solution phase investigations, intrinsic anion–π interaction strengths that are free from complications of condensed phases’ environments, have not been directly measured in the gas phase. Herein we present a joint photoelectron spectroscopic and theoretical study on this subject, in which tetraoxacalix[2]arene[2]triazine 1, an electron-deficient and cavity self-tunable macrocyclic was used as a charge-neutral molecular host to probe its interactions with a series of anions with distinctly different shapes and charge states (spherical halides Cl⁻, Br⁻, I⁻, linear thiocyanate SCN⁻, trigonal planar nitrate NO₃⁻, pyramidic iodate IO₃⁻, and tetrahedral sulfate SO₄²⁻). The binding energies of the resultant gaseous 1:1 complexes (1•Cl⁻,1•Br⁻, 1•I⁻, 1•SCN⁻, 1•NO₃⁻, 1•IO₃⁻ and 1•SO₄²⁻) were directly measured experimentally, exhibiting substantial non-covalent interactions with pronounced anion specific effects. The binding strengths of Cl⁻, NO₃⁻, IO₃⁻ with 1 are found to be strongest among all singly charged anions, amounting to ca. 30 kcal/mol, but only about 40% of that between 1 and SO₄²⁻. Quantum chemical calculations reveal that all anions reside in the center of the cavity of 1 with anion–π binding motif in the complexes’ optimized structures, where 1 is seen to be able to self-regulate its cavity structure to accommodate anions of different geometries and three-dimensional shapes. Electron density surface and natural bond orbital charge distribution analysis further support anion–π binding formation. The calculated binding energies of the anions and 1 nicely reproduce the experimentally estimated electron binding energy increase. This work

  13. The quantum structure of anionic hydrogen clusters

    Science.gov (United States)

    Calvo, F.; Yurtsever, E.

    2018-03-01

    A flexible and polarizable interatomic potential has been developed to model hydrogen clusters interacting with one hydrogen anion, (H2)nH-, in a broad range of sizes n = 1-54 and parametrized against coupled cluster quantum chemical calculations. Using path-integral molecular dynamics simulations at 1 K initiated from the putative classical global minima, the equilibrium structures are found to generally rely on icosahedral shells with the hydrogen molecules pointing toward the anion, producing geometric magic numbers at sizes n = 12, 32, and 44 that are in agreement with recent mass spectrometry measurements. The energetic stability of the clusters is also connected with the extent of vibrational delocalization, measured here by the fluctuations among inherent structures hidden in the vibrational wave function. As the clusters grow, the outer molecules become increasingly free to rotate, and strong finite size effects are also found between magic numbers, associated with more prominent vibrational delocalization. The effective icosahedral structure of the 44-molecule cluster is found to originate from quantum nuclear effects as well, the classical structure showing no particular symmetry.

  14. An intracellular anion channel critical for pigmentation

    Science.gov (United States)

    Bellono, Nicholas W; Escobar, Iliana E; Lefkovith, Ariel J; Marks, Michael S; Oancea, Elena

    2014-01-01

    Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation. DOI: http://dx.doi.org/10.7554/eLife.04543.001 PMID:25513726

  15. Isobar Separator for Anions: Current status

    International Nuclear Information System (INIS)

    Alary, Jean-François; Javahery, Gholamreza; Kieser, William; Zhao, Xiao-Lei; Litherland, Albert; Cousins, Lisa; Charles, Christopher

    2015-01-01

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of 36 S from 36 Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion–molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  16. Isobar Separator for Anions: Current status

    Energy Technology Data Exchange (ETDEWEB)

    Alary, Jean-François, E-mail: alaryjf@isobarex.ca [Isobarex Corp., 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Javahery, Gholamreza [IONICS Mass Spectrometry, 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Kieser, William; Zhao, Xiao-Lei [Andre E. Lalonde Accelerator Mass Spectrometry Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton Street, Ottawa, ON K1N 6N5 (Canada); Litherland, Albert [IsoTrace Laboratory, Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3B1 (Canada); Cousins, Lisa [IONICS Mass Spectrometry, 32 Nixon Road Unit #1, Bolton, ON L7E 1W2 (Canada); Charles, Christopher [Andre E. Lalonde Accelerator Mass Spectrometry Laboratory, Advanced Research Complex, University of Ottawa, 25 Templeton Street, Ottawa, ON K1N 6N5 (Canada)

    2015-10-15

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of {sup 36}S from {sup 36}Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion–molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  17. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  18. Ion-selective electrode and anion gap range: What should the anion gap be?

    Directory of Open Access Journals (Sweden)

    Sadjadi SA

    2013-06-01

    Full Text Available Seyed-Ali Sadjadi, Rendell Manalo, Navin Jaipaul, James McMillan Jerry L Pettis Memorial Veterans Medical Center, Loma Linda University School of Medicine, Loma Linda, CA, USA Background: Using flame photometry technique in the 1970s, the normal value of anion gap (AG was determined to be 12 ± 4 meq/L. However, with introduction of the autoanalyzers using an ion-selective electrode (ISE, the anion gap value has fallen to lower levels. Methods: A retrospective study of US veterans from a single medical center was performed to determine the value of the anion gap in subjects with normal renal function and normal serum albumin and in patients with lactic acidosis and end-stage renal disease on dialysis. Results: In 409 patients with an estimated glomerular filtration rate ≥60 mL/min/1.73 m2 body surface area and serum albumin ≥4 g/dL, the mean AG was 7.2 ± 2 (range 3–11 meq/L. In 299 patients with lactic acidosis (lactate level ≥4 meq/L and 68 patients with end-stage renal disease on dialysis, the mean AG was 12.5 meq/L and 12.4 meq/L, respectively. A value <2 meq/L should be considered a low anion gap and a possible clue to drug intoxication and paraproteinemic disorders. Conclusion: With the advent of ISE for measurement of analytes, the value of the anion gap has fallen. Physicians need to be aware of the normal AG value in their respective institutions, and laboratories need to have an established value for AG based on the type of instrument they are using. Keywords: acidosis, electrolytes, ESRD

  19. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  20. Photoinduced Dynamics of Neutral, Cationic, and Anionic Species

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup

    electrons and subsequently transition from dipole to valence-bound anions in different energy regimes. The investigations indicate that dipole-bound anion formation depends strongly on the magnitude of the molecular dipole moment, while the formation and stability of valence-bound anions depends on ring....... Nucleobase anions are posited to be involved in DNA damage, where the molecular dipole moment of a nucleobase acts as electron-antenna and gateway for low-energy electrons to access the valence system of DNA. The investigations presented herein explore the abilities of adenine, thymine, and uracil to capture...

  1. Photoelectron Spectroscopy of 4-Bromochlorobenzene Dimer and Trimer Anions

    International Nuclear Information System (INIS)

    Kim, Namdoo

    2013-01-01

    I investigated the electron attachment to 4-BCB dimer and trimer anions using anion photoelectron spectroscopy and theoretical calculations. I found that an excess electron can be delocalized to these clusters through extended π-network. However, the nature of the ion core is different for the dimer and trimer. For the heterodimer anions, the geometry is determined by the differences in electronegativity of the molecules. Dimer anions with a large electronegativity difference have T-shaped geometries and those with a small electronegativity difference have PD geometries

  2. Experimental evidence for the functional relevance of anion-π interactions

    Science.gov (United States)

    Dawson, Ryan E.; Hennig, Andreas; Weimann, Dominik P.; Emery, Daniel; Ravikumar, Velayutham; Montenegro, Javier; Takeuchi, Toshihide; Gabutti, Sandro; Mayor, Marcel; Mareda, Jiri; Schalley, Christoph A.; Matile, Stefan

    2010-07-01

    Attractive in theory and confirmed to exist, anion-π interactions have never really been seen at work. To catch them in action, we prepared a collection of monomeric, cyclic and rod-shaped naphthalenediimide transporters. Their ability to exert anion-π interactions was demonstrated by electrospray tandem mass spectrometry in combination with theoretical calculations. To relate this structural evidence to transport activity in bilayer membranes, affinity and selectivity sequences were recorded. π-acidification and active-site decrowding increased binding, transport and chloride > bromide > iodide selectivity, and supramolecular organization inverted acetate > nitrate to nitrate > acetate selectivity. We conclude that anion-π interactions on monomeric surfaces are ideal for chloride recognition, whereas their supramolecular enhancement by π,π-interactions appears perfect to target nitrate. Chloride transporters are relevant to treat channelopathies, and nitrate sensors to monitor cellular signaling and cardiovascular diseases. A big impact on organocatalysis can be expected from the stabilization of anionic transition states on chiral π-acidic surfaces.

  3. Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel

    Science.gov (United States)

    Okada, Yasunobu; Sato, Kaori; Numata, Tomohiro

    2009-01-01

    Cell swelling activates or upregulates a number of anion channels. Of the volume-activated or -regulated anion channels (VAACs or VRACs), the volume-sensitive outwardly rectifying anion channel (VSOR) is most prominently activated and ubiquitously expressed. This channel is known to be involved in a variety of physiological processes including cell volume regulation, cell proliferation, differentiation and cell migration as well as cell turnover involving apoptosis. Recent studies have shown that VSOR activity is also involved in a number of pathophysiological processes including the acquisition of cisplatin resistance by cancer cells, ischaemia–reperfusion-induced death of cardiomyocytes and hippocampal neurons, glial necrosis under lactacidosis as well as neuronal necrosis under excitotoxicity. Moreover, VSOR serves as the pathway for glutamate release from astrocytes under ischaemic conditions and when stimulated by bradykinin, an initial mediator of inflammation. So far, many signalling molecules including the EGF receptor, PI3K, Src, PLCγ and Rho/Rho kinase have been implicated in the regulation of VSOR activity. However, our pharmacological studies suggest that these signals are not essential components of the swelling-induced VSOR activation mechanism even though some of these signals may play permissive or modulatory roles. Molecular identification of VSOR is required to address the question of how cells sense volume expansion and activate VSOR. PMID:19171657

  4. The difference between critical care initiation anion gap and prehospital admission anion gap is predictive of mortality in critical illness.

    Science.gov (United States)

    Lipnick, Michael S; Braun, Andrea B; Cheung, Joyce Ting-Wai; Gibbons, Fiona K; Christopher, Kenneth B

    2013-01-01

    We hypothesized that the delta anion gap defined as difference between critical care initiation standard anion gap and prehospital admission standard anion gap is associated with all cause mortality in the critically ill. Observational cohort study. Two hundred nine medical and surgical intensive care beds in two hospitals in Boston, MA. Eighteen thousand nine hundred eighty-five patients, age ≥18 yrs, who received critical care between 1997 and 2007. The exposure of interest was delta anion gap and categorized a priori as 10 mEq/L. Logistic regression examined death by days 30, 90, and 365 postcritical care initiation and in-hospital mortality. Adjusted odds ratios were estimated by multivariable logistic regression models. The discrimination of delta anion gap for 30-day mortality was evaluated using receiver operator characteristic curves performed for a subset of patients with all laboratory data required to analyze the data via physical chemical principles (n = 664). None. Delta anion gap was a particularly strong predictor of 30-day mortality with a significant risk gradient across delta anion gap quartiles following multivariable adjustment: delta anion gap anion gap 5-10 mEq/L odds ratio 1.56 (95% confidence interval 1.35-1.81; p anion gap >10 mEq/L odds ratio 2.18 (95% confidence interval 1.76-2.71; p anion gap 0-5 mEq/L. Similar significant robust associations post multivariable adjustments are seen with death by days 90 and 365 as well as in-hospital mortality. Correcting for albumin or limiting the cohort to patients with standard anion gap at critical care initiation of 10-18 mEq/L did not materially change the delta anion gap-mortality association. Delta anion gap has similarly moderate discriminative ability for 30-day mortality in comparison to standard base excess and strong ion gap. An increase in standard anion gap at critical care initiation relative to prehospital admission standard anion gap is a predictor of the risk of all cause patient

  5. Improved therapeutic benefits of doxorubicin by entrapment in anionic liposomes.

    Science.gov (United States)

    Forssen, E A; Tökés, Z A

    1983-02-01

    When used as drug carriers, anionic liposomes can reduce the chronic cardiac toxicity and increase the antileukemic activity of doxorubicin (DXN; Adriamycin). Continuing investigations, reported here, have now established the therapeutic benefits of this mode of drug delivery. Liposome encapsulation caused a prolonged elevation in DXN plasma levels and a 2-fold reduction in the exposure of cardiac tissue to the drug. This reduction, however, was not proportional to the substantial decrease in chronic heart toxicity observed in the earlier study. In vivo studies have demonstrated that the entrapped drug retains its full activity against Sarcoma 180 and significantly increases its action against Lewis lung carcinoma, as measured by reduced tumor volume. The increased antineoplastic activity was again not proportional to the increased association of drug with tumor tissue. The effect of liposome entrapment on the immune-suppressive activity of DXN was also examined to determine if factors other than the direct delivery of drug to tumor tissue might improve the therapeutic response. The suppression of the humoral immune response and peripheral leukocyte counts by free DXN was nearly abolished when the drug was administered in the liposome form. These experiments suggest that the improved therapeutic effect of encapsulation may be the outcome of three different mechanisms: (a) altered disposition into subcellular compartments, which reduces cardiotoxicity; (b) increased plasma drug exposure to tumor cells; and (c) significant reduction in the immune suppressive activity of DXN.

  6. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    Science.gov (United States)

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  7. Once upon Anion: A Tale of Photodetachment

    Science.gov (United States)

    Lineberger, W. Carl

    2013-04-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, “with a little help from my friends.” Actually, it was so much more than a little help!

  8. Structural evolution of small ruthenium cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, Eugen [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Hehn, Anna-Sophia; Ahlrichs, Reinhart [Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany); Kappes, Manfred M.; Schooss, Detlef, E-mail: detlef.schooss@kit.edu [Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany); Institute für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstrasse 12, 76128 Karlsruhe (Germany)

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  9. Adsorption of an anionic dispersant on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering, Chemical & Metallurgical Engineering Faculty

    2001-12-01

    Since coal is not a homogeneous substance but a mixture of carbonaceous materials and mineral matter, it has a variety of surface properties. Therefore, it is not easy to control the properties of coal suspensions by simply adjusting variables, such as pH and/or electrolyte. A chemical agent needs to be added to control the properties of the coal suspensions. The adsorption behavior of an anionic dispersant in the presence of a wetting agent using some Turkish lignite samples was investigated. The effects of dispersant concentration, temperature and pH on the dispersant adsorption were studied systematically, and the experimental results are presented. Pellupur B69 as a dispersant, commercial mixture of formaldehyde condensate sodium salt of naphthalene sulphonic acid, and Texapon N{sub 2}5 as a wetting agent, a sodium lauryl ether sulfate, have been used.

  10. Structures and properties of anionic clay minerals

    International Nuclear Information System (INIS)

    Koch, Chr. Bender

    1998-01-01

    The Moessbauer spectra of pyroaurite-sjoegrenite-type compounds (PTC) (layered anion exchangers) are discussed with reference to the crystal structure, cation order, and crystallite morphology. It is shown that cation-ordered layers are produced in the synthesis of carbonate and sulphate types of green rust. In contrast, synthetic and natural pyroaurite only occurs as disordered types. The redox chemistry of Fe(III) within the metal hydroxide layer is illustrated with examples of electrochemical oxidation and reversible reduction by boiling glycerol. The chemistry of iron in the interlayer is exemplified by the intercalation of Fe-cyanide complexes in hydrotalcite. This reaction may be used as a probe for the charge distribution in the interlayer

  11. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  12. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...

  13. Anion gap in hyperproteinaemia: With reference to tuberculosis ...

    African Journals Online (AJOL)

    Objectives: (1)To determine the level of electrolyte in TB patients (2) To see if these are significantly different from those of control-match for age and sex (3) To calculate the anion gap levels in TB patient and (4) to see if the anion gap levels could be used in the management of patient with tuberculosis. Patient and Methods: ...

  14. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Alkaline polymer electrolyte fuel cell; anion exchange membrane; PPO; homogeneous quaterni- zation. 1. Introduction. Presently, alkaline polymer electrolyte fuel cells (APEFCs) using anion exchange membranes have received an immense interest among researchers (Varcoe and Slade. 2005). The advantages of ...

  15. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  16. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  17. Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions

    Science.gov (United States)

    Linsenbardt, Andrew J.; Chisari, Mariangela; Yu, Andrew; Shu, Hong-Jin; Zorumski, Charles F.

    2013-01-01

    NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABAA receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC50 of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists. PMID:23144238

  18. Photochemical reaction cycle transitions during anion channelrhodopsin gating.

    Science.gov (United States)

    Sineshchekov, Oleg A; Li, Hai; Govorunova, Elena G; Spudich, John L

    2016-04-05

    A recently discovered family of natural anion channelrhodopsins (ACRs) have the highest conductance among channelrhodopsins and exhibit exclusive anion selectivity, which make them efficient inhibitory tools for optogenetics. We report analysis of flash-induced absorption changes in purified wild-type and mutant ACRs, and of photocurrents they generate in HEK293 cells. Contrary to cation channelrhodopsins (CCRs), the ion conducting state of ACRs develops in an L-like intermediate that precedes the deprotonation of the retinylidene Schiff base (i.e., formation of an M intermediate). Channel closing involves two mechanisms leading to depletion of the conducting L-like state: (i) Fast closing is caused by a reversible L⇔M conversion. Glu-68 in Guillardia theta ACR1 plays an important role in this transition, likely serving as a counterion and proton acceptor at least at high and neutral pH. Incomplete suppression of M formation in the GtACR1_E68Q mutant indicates the existence of an alternative proton acceptor. (ii) Slow closing of the channel parallels irreversible depletion of the M-like and, hence, L-like state. Mutation of Cys-102 that strongly affected slow channel closing slowed the photocycle to the same extent. The L and M intermediates were in equilibrium in C102A as in the WT. In the position of Glu-123 in channelrhodopsin-2, ACRs contain a noncarboxylate residue, the mutation of which to Glu produced early Schiff base proton transfer and strongly inhibited channel activity. The data reveal fundamental differences between natural ACR and CCR conductance mechanisms and their underlying photochemistry, further confirming that these proteins form distinct families of rhodopsin channels.

  19. Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes.

    Directory of Open Access Journals (Sweden)

    Ravshan Z Sabirov

    Full Text Available Glutathione (GSH is a negatively charged tripeptide, which is a major determinant of the cellular redox state and defense against oxidative stress. It is assembled inside and degraded outside the cells and is released under various physiological and pathophysiological conditions. The GSH release mechanism is poorly understood at present. In our experiments, freshly isolated rat thymocytes were found to release GSH under normal isotonic conditions at a low rate of 0.82±0.07 attomol/cell/min and that was greatly enhanced under hypoosomotic stimulation to reach a level of 6.1±0.4 attomol/cell/min. The swelling-induced GSH release was proportional to the cell density in the suspension and was temperature-dependent with relatively low activation energy of 5.4±0.6 kcal/mol indicating a predominant diffusion mechanism of GSH translocation. The osmosensitive release of GSH was significantly inhibited by blockers of volume-sensitive outwardly rectifying (VSOR anion channel, DCPIB and phloretin. In patch-clamp experiments, osmotic swelling activated large anionic conductance with the VSOR channel phenotype. Anion replacement studies suggested that the thymic VSOR anion channel is permeable to GSH(- with the permeability ratio P(GSH/P(Cl of 0.32 for influx and 0.10 for efflux of GSH. The osmosensitive GSH release was trans-stimulated by SLCO/OATP substrates, probenecid, taurocholic acid and estrone sulfate, and inhibited by an SLC22A/OAT blocker, p-aminohippuric acid (PAH. The inhibition by PAH was additive to the effect of DCPIB or phloretin implying that PAH and DCPIB/phloretin affected separate pathways. We suggest that the VSOR anion channel constitutes a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells.

  20. Vapor-Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol.

    Science.gov (United States)

    Khan, Imran; Batista, Marta L S; Carvalho, Pedro J; Santos, Luís M N B F; Gomes, José R B; Coutinho, João A P

    2015-08-13

    Isobaric vapor-liquid equilibria of 1-butyl-3-methylimidazolium thiocyanate ([C4C1im][SCN]), 1-butyl-3-methylimidazolium dicyanamide ([C4C1im][N(CN)2]), 1-butyl-3-methylimidazolium tricyanomethanide ([C4C1im][C(CN)3]), and 1-ethyl-3-methylimidazolium tetracyanoborate ([C2C1im][B(CN)4]), with water and ethanol were measured over the whole concentration range at 0.1, 0.07, and 0.05 MPa. Activity coefficients were estimated from the boiling temperatures of the binary systems, and the data were used to evaluate the ability of COSMO-RS for describing these molecular systems. Aiming at further understanding the molecular interactions on these systems, molecular dynamics (MD) simulations were performed. On the basis of the interpretation of the radial and spatial distribution functions along with coordination numbers obtained through MD simulations, the effect of the increase of CN-groups in the IL anion in its capability to establish hydrogen bonds with water and ethanol was evaluated. The results obtained suggest that, for both water and ethanol systems, the anion [N(CN)2](-) presents the higher ability to establish favorable interactions due to its charge, and that the ability of the anions to interact with the solvent, decreases with further increasing of the number of cyano groups in the anion. The ordering of the partial charges in the nitrogen atoms from the CN-groups in the anions agrees with the ordering obtained for VLE and activity coefficient data.

  1. Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Chen, Junzheng; Cao, Ruiguo; Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shi, Lili; Pan, Huilin; Zhang, Jiguang; Liu, Jun; Persson, Kristin A.; Mueller, Karl T.

    2017-10-27

    The electrolyte is a crucial component of lithium-sulfur (Li-S) batteries, as it controls polysulfide dissolution, charge shuttling processes, and solid-electrolyte interphase (SEI) layer formation. Experimentally, the overall performance of Li-S batteries varies with choice of solvent system and Li-salt used in the electrolyte, and a lack of predictive understanding about the effects of individual electrolyte components inhibits the rational design of electrolytes for Li-S batteries. Here we analyze the role of the counter anions of common Li salts (such as TfO-, FSI-, TFSI-, and TDI-) when dissolved in DOL/DME (1:1 vol.) for use in Li-S batteries. The evolution of ion-ion and ion-solvent interactions due to vari-ous anions was analyzed using 17O NMR and pulsed-field gradient (PFG) NMR and then correlated with electrochemi-cal performance in Li-S cells. These data reveal that the for-mation of the passivation layer on the anode and the loss of active materials from the cathode (evidenced by polysulfide dissolution) are related to anion mobility and affinity with lithium polysulfide, respectively. For future electrolyte de-sign, anions with lower mobility and weaker interactions with lithium polysulfides may be superior candidates for increasing the long-term stability of Li-S batteries.

  2. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chenglong; Lu, Yaxiang; Hu, Yong-Sheng; Chen, Liquan; Wang, Qidi; Li, Baohua

    2017-01-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A 2 MO 3 -family layered compounds (A  =  Li, Na; M  =  Mn 4+ , Ru 4+ , etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible. (topical review)

  3. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    International Nuclear Information System (INIS)

    Wu, Qianqian; Liu, Zhiqiang; Cao, Duxia; Guan, Ruifang; Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin

    2015-01-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin

  4. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress.

    Science.gov (United States)

    Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2016-06-01

    We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.

  5. Role of phosphate and other proton-donating anions in respiration-coupled transport of Ca2+ by mitochondria.

    Science.gov (United States)

    Lehninger, A L

    1974-04-01

    Measurements of extra oxygen consumption, (45)Ca(2+) uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca(2+) from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, beta-hydroxybutyrate, lactate, and bicarbonate + CO(2) supported Ca(2+) uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate "pulling" force for the influx of Ca(2+) on the electrogenic Ca(2+) carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO(2) system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca(2+) and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP(3-) for internal ATP(4-) during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca(2+), K(+), and other cations.

  6. Chemical Hydrogen Storage Using Polyhedral Borane Anions and Aluminum-Ammonia-Borane Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick; Jalisatgi, Satish S.; Safronov, Alexander V.; Lee, Han Beak; Wu, Jianguo

    2010-10-01

    Phase 1. Hydrolysis of borohydride compounds offer the potential for significant hydrogen storage capacity, but most work to date has focused on one particular anion, BH4-, which requires high pH for stability. Other borohydride compounds, in particular polyhedral borane anions offer comparable hydrogen storage capacity without requiring high pH media and their long term thermal and hydrolytic stability coupled with non-toxic nature make them a very attractive alternative to NaBH4. The University of Missouri project provided the overall program focal point for the investigation of catalytic hydrolysis of polyhedral borane anions for hydrogen release. Due to their inherent stability, a transition metal catalyst was necessary for the hydrolysis of polyhedral borane anions. Transition metal ions such as cobalt, nickel, palladium and rhodium were investigated for their catalytic activity in the hydrolysis of nido-KB11H14, closo-K2B10H10, and closo-K2B12H12. The rate of hydrolysis follows first-order kinetics with respect to the concentration of the polyhedral borane anion and surface area of the rhodium catalyst. The rate of hydrolysis depends upon a) choice of polyhedral borane anion, c) concentration of polyhedral borane anion, d) surface area of the rhodium catalyst and e) temperature of the reaction. In all cases the yield of hydrogen was 100% which corresponds to ~7 wt% of hydrogen (based on material wt%). Phase 2. The phase 2 of program at the University of Missouri was focused upon developing aluminum ammonia-boranes (Al-AB) as chemical hydrogen storage materials, specifically their synthesis and studies of their dehydrogenation. The ammonia borane molecule (AB) is a demonstrated source of chemically stored hydrogen (19.6 wt%) which meets DOE performance parameters except for its regeneration from spent AB and elemental hydrogen. The presence of an aluminum center bonded to multiple AB residues might combine the efficiency of AB dehydrogenation with an aluminum

  7. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  8. Serum anion gap, bicarbonate and biomarkers of inflammation in healthy individuals in a national survey.

    Science.gov (United States)

    Farwell, Wildon R; Taylor, Eric N

    2010-02-09

    In vitro data suggest that lower extracellular pH activates the immune system. We conducted a population-based study of the relation between serum acid-base status and inflammation. We examined the serum anion gap and serum levels of bicarbonate and inflammatory biomarkers in 4525 healthy adults who participated in the National Health and Nutrition Examination Survey during 1999-2006. We excluded participants who had chronic disease, recent infection and an estimated glomerular filtration rate of less than 60 mL/min per 1.73 m2. The mean values of serum anion gap, bicarbonate level, leukocyte count and C-reactive protein level were all within normal limits. After adjustment for age, sex, ethnic background, body mass index, serum albumin level and other factors, we found that a higher anion gap and lower bicarbonate level were associated with a higher leukocyte count and higher C-reactive protein level. Compared with participants in the lowest quartile of anion gap, those in the highest quartile had a leukocyte count that was 1.0x10(9)/L higher and a C-reactive protein level that was 10.9 nmol/L higher (panion gap and lower bicarbonate level were also associated with a higher platelet count, a larger mean platelet volume and a higher ferritin level. A higher serum anion gap and lower bicarbonate level were associated with higher levels of inflammatory biomarkers in a healthy sample of the general population. Further studies are needed to elucidate the relation between acid-base status and inflammation.

  9. Early anion gap metabolic acidosis in acetaminophen overdose.

    Science.gov (United States)

    Zein, Joe G; Wallace, David J; Kinasewitz, Gary; Toubia, Nagib; Kakoulas, Christine

    2010-09-01

    The study aimed to determine the incidence and clinical significance of early high (>15 mEq/L) anion gap metabolic acidosis in acetaminophen (APAP) overdose. A retrospective review of a cohort of 74 patients presenting within 24 hours of APAP overdose was conducted. Early high anion gap metabolic acidosis was present in 41% of patients on admission and persisted for 1.5 ± 0.1 days. The anion gap was associated with an elevated lactate level (4.5 ± 1 mmol/L) (r(2) = 0.66, P anion gap had a higher incidence of confusion (48% vs 3%; P anion gap metabolic acidosis was found in the absence of shock or liver failure. All patients were treated with N-acetylcysteine and, despite the early high anion gap metabolic acidosis, none developed hepatic failure or hypoglycemia. Early high anion gap metabolic acidosis in patients with APAP overdose is self-limited and does not predict clinical or laboratory outcomes. Persistent or late metabolic acidosis in the absence of liver failure is not likely due to APAP and should prompt a search for other causes of metabolic acidosis. Finally, APAP overdose should be considered in patients presenting to the emergency department with altered mental status, as this is a treatable condition when detected early. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Ionic Block Copolymers for Anion Exchange Membranes

    Science.gov (United States)

    Tsai, Tsung-Han; Herbst, Dan; Giffin, Guinevere A.; di Noto, Vito; Witten, Tom; Coughlin, E. Bryan

    2013-03-01

    Anion exchange membrane (AEM) fuel cells have regained interest because it allows the use of non-noble metal catalysts. Until now, most of the studies on AEM were based on random polyelectrolytes. In this work, Poly(vinylbenzyltrimethylammonium bromide)-b- (methylbutylene) ([PVBTMA][Br]-b-PMB) was studied by SAXS, TEM and dielectric spectroscopy to understand the fundamental structure-conductivity relationship of ion transport mechanisms within well-ordered block copolymers. The ionic conductivity and the formation of order structure were dependent on the casting solvent. Higher ion exchange capacity (IEC) of the membranes showed higher conductivity at as IEC values below 1.8mmol/g, as above this, the ionic conductivity decreases due to more water uptake leading to dilution of charge density. The humidity dependence of morphology exhibited the shifting of d-spacing to higher value and the alteration in higher characteristic peak of SAXS plot as the humidity increase from the dry to wet state. This phenomenon can be further explained by a newly developed polymer brush theory. Three ionic conduction pathways with different conduction mechanism within the membranes can be confirmed by broadband electric spectroscopy. US Army MURI (W911NF1010520)

  11. Radiosensitization of microorganisms by radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.; Swildens, M.

    1981-01-01

    Irradiation of Streptococcus faecalis in a neutral, N 2 O/Br - system leads to practically complete killing with extraordinarily low doses of irradiation, namely a D 10 of 13 Gy compared to 470 Gy in N 2 , 250 Gy in N 2 O and 160 Gy in O 2 . However, irradiation and chemical investigations demonstrated that the apparent radiosensitization in neutral, N 2 O/Br - is due mainly to bromine, Br 2 and HOBr rather than B 3 - or the radical anion, Br 2 - . For example, addition of unirradiated bacteria to a previously irradiated neutral solution of N 2 O/Br - reduces survival. The medium effects are eliminated by radiation chemical and/or chemical reactions which destroy bromine, such as occur in basic solutions, in N 2 /Br - or O 2 /Br - systems because of back reactions of Br 2 with e - sub(aq) in the former and of Br 2 with H 2 O 2 and O 2 - in the latter. Neither are medium effects produced in N 2 O/Br - systems at pH > 9. However, in N 2 /Br - the D 10 = 82 Gy compared to 160 Gy in O 2 which indicates that for S. faecalis Br 2 - is intrinsically a more effective radiosensitizing agent than oxygen. (author)

  12. Simultaneous determination of inorganic and organic anions by ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  13. A Quick Reference on High Anion Gap Metabolic Acidosis.

    Science.gov (United States)

    Funes, Silvia; de Morais, Helio Autran

    2017-03-01

    High anion gap (AG) metabolic acidoses can be identified by a decrease in pH, decrease in HCO 3 - or base excess, and an increased AG. The AG represents the difference between unmeasured cations and unmeasured anions; it increases secondary to the accumulation of anions other than bicarbonate and chloride. The most common causes of high AG acidosis are renal failure, diabetic ketoacidosis, and lactic acidosis. Severe increases in concentration of phosphorus can cause hyperphosphatemic acidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sulfate anion stabilization of native ribonuclease A both by anion binding and by the Hofmeister effect.

    Science.gov (United States)

    Ramos, Carlos H I; Baldwin, Robert L

    2002-07-01

    Data are reported for T(m), the temperature midpoint of the thermal unfolding curve, of ribonuclease A, versus pH (range 2-9) and salt concentration (range 0-1 M) for two salts, Na(2)SO(4) and NaCl. The results show stabilization by sulfate via anion-specific binding in the concentration range 0-0.1 M and via the Hofmeister effect in the concentration range 0.1-1.0 M. The increase in T(m) caused by anion binding at 0.1 M sulfate is 20 degrees at pH 2 but only 1 degree at pH 9, where the net proton charge on the protein is near 0. The 10 degrees increase in T(m) between 0.1 and 1.0 M Na(2)SO(4), caused by the Hofmeister effect, is independent of pH. A striking property of the NaCl results is the absence of any significant stabilization by 0.1 M NaCl, which indicates that any Debye screening is small. pH-dependent stabilization is produced by 1 M NaCl: the increase in T(m) between 0 and 1.0 M is 14 degrees at pH 2 but only 1 degree at pH 9. The 14 degree increase at pH 2 may result from anion binding or from both binding and Debye screening. Taken together, the results for Na(2)SO(4) and NaCl show that native ribonuclease A is stabilized at low pH in the same manner as molten globule forms of cytochrome c and apomyoglobin, which are stabilized at low pH by low concentrations of sulfate but only by high concentrations of chloride.

  15. Renal organic anion transport: a comparative and cellular perspective.

    Science.gov (United States)

    Dantzler, William H

    2002-11-13

    A major system for net transepithelial secretion of a wide range of hydrophobic organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. This process involves transport into the cells against an electrochemical gradient at the basolateral membrane and movement from the cells into the lumen down an electrochemical gradient. Transport into the cells at the basolateral membrane, which is the dominant, rate-limiting step, is a tertiary active transport process, the final step which involves countertransport of the OA into the cells against its electrochemical gradient in exchange for alpha-ketoglutarate moving out of the cells down its electrochemical gradient. The outwardly directed gradient for alpha-ketoglutarate is maintained by metabolism ( approximately 40%) and by transport into the cells across both the basolateral and luminal membranes by separate sodium-dicarboxylate cotransporters ( approximately 60%). The inwardly directed sodium gradient driving alpha-ketoglutarate uptake is maintained by the basolateral Na(+)-K(+)-ATPase, the primary energy-requiring transport step in the total tertiary process. The basolateral OA/alpha-ketoglutarate exchange process now appears to be physiologically regulated by several factors in mammalian tubules, including peptide hormones (e.g., bradykinin) and the autonomic nervous system acting via protein kinase C (PKC) pathways and epidermal growth factor (EGF) working via the mitogen-activated protein kinase (MAPK) pathway.

  16. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  17. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  18. Anions for Near-Infrared Selective Organic Salt Photovoltaics.

    Science.gov (United States)

    Traverse, Christopher J; Young, Margaret; Suddard-Bangsund, John; Patrick, Tyler; Bates, Matthew; Chen, Pei; Wingate, Brian; Lunt, Sophia Y; Anctil, Annick; Lunt, Richard R

    2017-11-27

    Organic molecular salts are an emerging and highly tunable class of materials for organic and transparent photovoltaics. In this work, we demonstrate novel phenyl borate and carborane-based anions paired with a near-infrared (NIR)-selective heptamethine cation. We further explore the effects of anion structures and functional groups on both device performance and physical properties. Changing the functional groups on the anion significantly alters the open circuit voltage and yields a clear dependence on electron withdrawing groups. Anion exchange is also shown to selectively alter the solubility and film surface energy of the resulting molecular salt, enabling the potential fabrication of solution-deposited cascade or multi-junction devices from orthogonal solvents. This study further expands the catalog and properties of organic salts for inexpensive, and stable NIR-selective molecular salt photovoltaics.

  19. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the foll......Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  20. Unmeasured anions and mortality in critically ill patients in 2016.

    Science.gov (United States)

    Kotake, Yoshifumi

    2016-01-01

    The presence of acid-base disturbances, especially metabolic acidosis may negatively affect the outcome of critically ill patients. Lactic acidosis is the most frequent etiology and has largest impact on the prognosis. Since lactate measurement might not have always been available at bedside, it had been regarded as one of the unmeasured anions. Therefore, anion gap and strong ion gap has been used to as a surrogate of lactate concentration. From this perspective, the relationship between either anion gap or strong ion gap and mortality has been explored. Then, lactate became routinely measurable at bedside and the direct comparison between directly measured lactate and these surrogate parameters can be possible. Currently available evidence suggests that directly measured lactate has larger prognostic ability for mortality than albumin-corrected anion gap and strong ion gap without lactate. In this commentary, the rationale and possible clinical implications of these findings are discussed.

  1. Approach to the Patient With a Negative Anion Gap.

    Science.gov (United States)

    Emmett, Michael

    2016-01-01

    When anion gap calculation generates a very small or negative number, an explanation must be sought. Sporadic (nonreproducible) measurement errors and systematic (reproducible) laboratory errors must be considered. If an error is ruled out, 2 general possibilities exist. A true anion gap reduction can be generated by either reduced concentrations of unmeasured anions such as albumin or increased concentrations of unmeasured cations such as magnesium, calcium, or lithium. This teaching case describes a patient with aspirin (salicylate) poisoning whose anion gap was markedly reduced (-47 mEq/L). The discussion systematically reviews the possibilities and provides the explanation for this unusual laboratory result. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  2. Radiosensitization of microorganisms by radical anions

    International Nuclear Information System (INIS)

    Schubert, J.; Stegeman, H.; Groneman, A.

    1981-01-01

    The inactivation of Streptococcus faecalis by radiolytically generated selective inorganic radical anions was investigated. The Br 2 - radical, but not (CNS) 2 - , had a pronounced radiosensitizing action. In gamma-irradiated solutions at pH7.0, the radiosensitization of a variety of scavenging systems was studied. Among these the D 10 for N 2 /Br - was 0.082 kGy while N 2 O/CNS - = 0.35 kGy, N 2 O = 0.25 kGy, N 2 = 0.47, and O 2 = 0.16 kGy. As shown previously, inactivation in N 2 O/Br - systems is due mainly to Br 2 and HOBr. From the variation of the inactivation with pH by Br 2 - and (CNS) 2 - it was deduced that tyrosine is crucial for the survival of S. faecalis via inactivation of enzymes with essential tyrosine residues such as aldolase and lipoyl dehydrogenase which are presumably needed to make energy available for DNA repair. Studies with a variety of scavengers also revealed that the t-butanol radical produced some radiosensitization of S. faecalis while the damaging effect of e - sub(aq) was much less than OH as shown by the D 10 at pH 7.0; N 2 /t-butanol = 0.32 and N 2 /ethanol = 0.71. The radiosensitizing action of Br 2 - in a natural environment containing sewage sludge was also determined, using the faecal streptococcal group as test organisms. (author)

  3. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  4. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    International Nuclear Information System (INIS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C n H – (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n H 2 ∼>10 5 cm –3 ). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C 6 H – anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C 6 O, C 7 O, HC 6 O, and HC 7 O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  5. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  6. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    Science.gov (United States)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  7. Synthesis of Pyridoacridines through Anionic Cascade Ring Closure

    DEFF Research Database (Denmark)

    Petersen, I.N.; Kristensen, Jesper Langgaard

    2014-01-01

    A new synthesis of 13-deazaascididemin (AK-37) based on a recently developed anionic cascade ring closure is presented. Although the isolated yields are modest, the approach provides ready access to new substituted derivatives of 13-deazaascididemin.......A new synthesis of 13-deazaascididemin (AK-37) based on a recently developed anionic cascade ring closure is presented. Although the isolated yields are modest, the approach provides ready access to new substituted derivatives of 13-deazaascididemin....

  8. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  9. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  10. Benzoate Anion-Intercalated Layered Cobalt Hydroxide Nanoarray: An Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Ge, Ruixiang; Ren, Xiang; Ji, Xuqiang; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Sun, Xuping; Chen, Liang

    2017-10-23

    Efficient oxygen evolution reaction (OER) catalysts are highly desired to improve the overall efficiency of electrochemical water splitting. We develop a benzoate anion-intercalated layered cobalt hydroxide nanobelt array on nickel foam (benzoate-Co(OH) 2 /NF) through a one-pot hydrothermal process. As a 3 D electrode, benzoate-Co(OH) 2 /NF with an expanded interlayer spacing (14.72 Å) drives a high OER catalytic current density of 50 mA cm -2 at an overpotential of 291 mV, outperforming its carbonate anion-intercalated counterpart with a lower interlayer spacing of 8.81 Å (337 mV overpotential at 50 mA cm -2 ). Moreover, this benzoate-Co(OH) 2 /NF can maintain its catalytic activity for 21 h. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Substituent Effects in CH Hydrogen Bond Interactions: Linear Free Energy Relationships and Influence of Anions.

    Science.gov (United States)

    Tresca, Blakely W; Hansen, Ryan J; Chau, Calvin V; Hay, Benjamin P; Zakharov, Lev N; Haley, Michael M; Johnson, Darren W

    2015-12-02

    Aryl CH hydrogen bonds (HBs) are now commonly recognized as important factors in a number of fields, including molecular biology, stereoselective catalysis, and anion supramolecular chemistry. As the utility of CH HBs has grown, so to has the need to understand the structure-activity relationship for tuning both their strength and selectivity. Although there has been significant computational effort in this area, an experimental study of the substituent effects on CH HBs has not been previously undertaken. Herein we disclose a systematic study of a single CH HB by using traditional urea donors as directing groups in a supramolecular binding cavity. Experimentally determined association constants are examined by a combination of computational (electrostatic potential) and empirical (σm and σp) values for substituent effects. The dominance of electrostatic parameters, as observed in a computational DFT study, is consistent with current CH HB theory; however, a novel anion dependence of the substituent effects is revealed in solution.

  12. Effect of CO2 absorption on ion and water mobility in an anion exchange membrane

    Science.gov (United States)

    Peng, Jing; Roy, Asa L.; Greenbaum, Steve G.; Zawodzinski, Thomas A.

    2018-03-01

    We report the measured water uptake, density, ionic conductivity and water transport properties in Tokuyama A201 membrane in OH-, HCO3- and Cl- forms. The water uptake of the AEM varies with anion type in the order λ(OH-) > λ(HCO3-) > λ(Cl-) for samples equilibrated with the same water vapor activity (aw). The conductivity of the AEM is reduced by absorption of CO2. Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were utilized to characterize the diffusivity of water and HCO3- ion. The anion diffusion coefficient and membrane conductivity are used to probe the applicability of the Nernst-Einstein equation in these AEMs.

  13. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.

    Science.gov (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae

    2014-10-01

    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  14. Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex.

    Science.gov (United States)

    Akbar Ali, Mohammad; Mirza, Aminul Huq; Butcher, Raymond J; Tarafder, M T H; Keat, Tan Boon; Ali, A Manaf

    2002-11-25

    Palladium(II) and platinum(II) complexes of general empirical formula, [M(NS)(2)] (NS=uninegatively charged acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate; M=Pt(II) and Pd(II)) have been prepared and characterized by a variety of physicochemical techniques. Based on conductance, IR and electronic spectral evidence, a square-planar structure is assigned to these complexes. The crystal and molecular structure of the [Pd(asme)(2)] complex (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) has been determined by X-ray diffraction. The complex has a distorted cis-square planar structure with the ligands coordinated to the palladium(II) ions as uninegatively charged bidentate NS chelating agents via the azomethine nitrogen and the mercaptide sulfur atoms. The distortion from a regular square-planar geometry is attributed to the restricted bite angles of the ligands. Antimicrobial tests indicate that the Schiff bases exhibit strong activities against the pathogenic bacteria, Bacillus subtilis (mutant defective DNA repair), methicillin-resistant Staphylococcus aureus, B. subtilis (wild type) and Pseudomonas aeruginosa and the fungi, Candida albicans (CA), Candida lypotica (2075), Saccharomyces cerevisiae (20341) and Aspergillus ochraceous (398)-the activities exhibited by these compounds being greater than that of the standard antibacterial and antifungal drugs, streptomycin and nystatin, respectively. The palladium(II) and platinum(II) complexes are inactive against most of these organisms but, the microbe, Pseudomonas aeruginosa shows strong sensitivity to the platinum(II) complexes. Screening of the compounds for their cytotoxicities against T-lymphoblastic leukemia cancer cells has shown that the acetone Schiff base of S-methyldithiocarbazate (Hasme) exhibits a very weak activity, whereas the S-benzyl derivative (Hasbz) is inactive. However, the palladium(II) complexes exhibit strong cytotoxicities against this cancer; their

  15. Influence of anisotropy, anion sorption, and degree of decomposition on solute transport in peat

    Science.gov (United States)

    McCarter, C. P. R.; Rezanezhad, F.; Gharedaghloo, B.; Price, J. S.; Van Cappellen, P.

    2017-12-01

    Many permafrost regions are covered by peat dominated wetlands that govern the flow of water, nutrients, and contaminants in these landscapes. However, due to the non-linear decrease in active pore distribution, hydraulic conductivity, and anisotropy with depth from surface, solute transport processes in peat and peatlands are complex and generally poorly understood. Historically, the majority of solute transport studies in peat and peatlands rely on non-reactive chemical tracers (e.g., chloride or bromide) but the high organic content of peat creates the potential for anion sorption. Where anion sorption is possible, the conservative nature of non-reactive anion tracers may be questionable; however, conservative isotopic tracers, such as deuterated water, present the opportunity to determine whether "non-reactive" anions are truly conservative in highly organic peat soils. Given these critical gaps in our understanding, this study aims to characterize the influence of pore structure, anisotropy, and diffusion on the transport of chloride and deuterium tracers at two depths below the surface (-20 and -70 cm); representing two distinct levels of peat decomposition. The results indicate that the chloride sorption partitioning coefficient decreased with degree of decomposition, yet all levels of decomposition showed limited sorption at low concentrations (< 165 mg/L); suggesting a partial conservative behaviour of chloride in peat. However, chloride was sorbed at higher concentrations; thus, limiting its effectiveness as a conservative tracer. Horizontal dispersivity was higher than vertical at both -20 and -70 cm depths and, on average, dispersivity increased with depth suggesting a more tortuous flow path at lower depths. These results highlight that unlike hydraulic conductivity, which is typically larger horizontally than vertically, the majority of solute transport may occur in a subset of pores the hydraulically active pores.

  16. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap.

    Science.gov (United States)

    Story, D A; Poustie, S; Bellomo, R

    2002-11-01

    We used 100 routine blood samples from critically ill patients to establish whether correcting the anion-gap and base-deficit for decreased plasma albumin improves agreement with the strong-ion-gap for estimating unmeasured anions and whether the modifications increase the proportion of samples with levels of anion-gap or base-deficit above the reference ranges. We used Bland-Altman analyses to compare the methods of estimating unmeasured ions. Compared with the strong-ion-gap, modification reduced the limits of agreement for both the anion-gap and the base-deficit. The bias for the base-deficit was also reduced but the bias for the anion-gap was increased. The proportion of samples with an anion-gap > 22 meq.l(-1) increased from 4 to 29% (p 5 meq.l(-1) increased from 8 to 42% (p < 0.001). Consequently, metabolic acidosis from unmeasured ions in critically ill patients maybe more frequent than often recognised.

  17. The purified ATPase from chromaffin granule membranes is an anion-dependent proton pump.

    Science.gov (United States)

    Moriyama, Y; Nelson, N

    1987-07-05

    The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed.

  18. Anion gap, anion gap corrected for albumin, and base deficit fail to accurately diagnose clinically significant hyperlactatemia in critically ill patients.

    Science.gov (United States)

    Chawla, Lakhmir S; Jagasia, Dhiraj; Abell, Lynn M; Seneff, Michael G; Egan, Melinda; Danino, Natale; Nguyen, Aline; Ally, Mazer; Kimmel, Paul L; Junker, Christopher

    2008-01-01

    Anion gap, anion gap corrected for serum albumin, and base deficit are often used as surrogates for measuring serum lactate. None of these surrogates is postulated to predict hyperlactatemia in the critically ill. We prospectively collected data from September 2004 through August 2005 for 1381 consecutive admissions. Patients with renal disease, ketoacidosis, or toxic ingestion were excluded. Anion gap, anion gap corrected for albumin, and base deficit were calculated for all patients. We identified 286 patients who met our inclusion or exclusion criteria. The receiver-operating characteristic area under the curve for the prediction of hyperlactatemia for anion gap, anion gap corrected for albumin, and base deficit were 0.55, 0.57, and 0.64, respectively. Anion gap, anion gap corrected for albumin, and base deficit do not predict the presence or absence of clinically significant hyperlactatemia. Serum lactate should be measured in all critically ill adults in whom hypoperfusion is suspected.

  19. Discovery of Interstellar Anions in Cepheus and Auriga

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.; Buckle, J. V.; Walsh, C.

    2011-01-01

    We report the detection of microwave emission lines from the hydrocarbon anion C6H(-) and its parent neutral C6H in the star-forming region LI251 A (in Cepheus), and the pre-stellar core LI512 (in Auriga). The carbon chain-bearing species C4H, HC3N, HC5N, HC7N, and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long-chain polyynes and cyanopolyynes (with more than five carbon atoms) in the Cepheus Flare star-forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, indicating a possible wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines and are found to be 6.2 K for L1251A and 8.7 K for LI5l2. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes toward the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

  20. Anion gap among patients of multiple myeloma and normal individuals.

    Science.gov (United States)

    Mansoor, Shireen; Siddiqui, Imran; Adil, Salman; Nabi Kakepoto, Ghulam; Fatmi, Zafar; Ghani, Farooq

    2007-02-01

    To compare the Anion gap between patients of multiple myeloma and normal individuals presenting at a tertiary care hospital. This is a matched case-control study conducted at Aga Khan University Hospital, Karachi, from July 10, 2004 to April 30, 2006. The anion gap (AG) from the medical records of the 82 diagnosed cases of multiple myeloma (MM) and 104 controls were compared. Immunoglobulins (IgG and IgA) were measured by array nephelometric assay. Staging for MM patients were performed based on Salmon-Durie method. AGs were compared by independent sample t-test. Pearson coefficient of correlation was used to correlate paraprotein IgG concentration and anion gap. : Of the 186 study subjects (82 cases and 104 controls), 70% were males and 30% were females. The mean ages of MM and controls were 59.68+/-11.94 and 60+/-9.2 years respectively. There was a significant difference in mean AG, 11.2+/-1.7 mmol/L in control group (panion gap of 8.7+/-1.7 in stage I, 7.93+/-0.47 in stage II and 5.65+/-0.31 in stage III. A significant correlation was found in IgG myeloma when anion gap was expressed as a function of the serum monoclonal protein concentration. The anion gap is significantly lower in multiple myeloma patients compared to controls. Lowered anion gap is more specific feature of the IgG type MM. We suggest that correlation of AG with the disease severity and with paraproteins concentration could potentially be useful in monitoring patients for disease progression. However, longitudinal studies are required to confirm the utility of anion gap in monitoring patients with MM.

  1. Radiometric determination of anionic surfactants by two-phase titration method with the use of sup(131)I-Rose Bengal as indicator

    International Nuclear Information System (INIS)

    Lengyel, J.; Krtil, J.

    1986-01-01

    A radiometric variant of the two-phase titration method for the determination of anionic surfactants of nonsoapy type is described. The method is based on the titration of an anionic surfactant with Septonex in alkaline medium in the presence of sup(131)I-Rose Bengal (sup(131)I-RB). The ion associates are extracted into chloroform. The equivalence point is determined graphically from the activity of sup(131)I-RB-Septonex associate, which is formed after the consumption of the anionic surfactant and passes into the organic phase. The influence of sup(131)I-RB amount, pH of the titrated medium and of soap on the precision of anionic surfactant determination was studied. The detection limit is 2.88 μg sodium n-dodecylsulfate in 10 ml of sample. (author)

  2. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    Science.gov (United States)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  3. A series of poly(butylimidazolium) ionic liquid functionalized copolymers for anion exchange membranes

    Science.gov (United States)

    Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin

    2017-12-01

    A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.

  4. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  5. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    Science.gov (United States)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  6. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  7. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  8. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  9. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  10. Treatment of acute non-anion gap metabolic acidosis.

    Science.gov (United States)

    Kraut, Jeffrey A; Kurtz, Ira

    2015-02-01

    Acute non-anion gap metabolic acidosis, also termed hyperchloremic acidosis, is frequently detected in seriously ill patients. The most common mechanisms leading to this acid-base disorder include loss of large quantities of base secondary to diarrhea and administration of large quantities of chloride-containing solutions in the treatment of hypovolemia and various shock states. The resultant acidic milieu can cause cellular dysfunction and contribute to poor clinical outcomes. The associated change in the chloride concentration in the distal tubule lumen might also play a role in reducing the glomerular filtration rate. Administration of base is often recommended for the treatment of acute non-anion gap acidosis. Importantly, the blood pH and/or serum bicarbonate concentration to guide the initiation of treatment has not been established for this type of metabolic acidosis; and most clinicians use guidelines derived from studies of high anion gap metabolic acidosis. Therapeutic complications resulting from base administration such as volume overload, exacerbation of hypertension and reduction in ionized calcium are likely to be as common as with high anion gap metabolic acidosis. On the other hand, exacerbation of intracellular acidosis due to the excessive generation of carbon dioxide might be less frequent than in high anion gap metabolic acidosis because of better tissue perfusion and the ability to eliminate carbon dioxide. Further basic and clinical research is needed to facilitate development of evidence-based guidelines for therapy of this important and increasingly common acid-base disorder.

  11. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  12. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  13. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  14. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  15. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    International Nuclear Information System (INIS)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na; Wang Aihua

    2008-01-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (≤20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 ± 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 ± 1.14 mV to -17.16 ± 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 ± 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo

  16. Anion exchange separation and purification of neodymium from fission products

    International Nuclear Information System (INIS)

    Ramkumar, K.L.; Raman, V.A.; Khodade, P.S.; Jain, H.C.

    1979-01-01

    Neodymium-148, the stable fission product has been proved to be one of the best monitors for the determination of nuclear fuel burn-up using triple spike isotope dilution mass spectrometry. For the precise and accurate determination of neodymium it is essential to separate it from bulk of other materials and purify from cerium and samarium which would otherwise cause isobaric interferences. A single stage anion exchange procedure for the separation and purification of neodymium from fission products has been developed. This method supercedes the lengthy and time consuming two stage anion exchange procedure normally used and ensures good chemical yield. (author)

  17. Direct infrared observation of hydrogen chloride anions in solid argon.

    Science.gov (United States)

    Huang, Tzu-Ping; Chen, Hui-Fen; Liu, Meng-Chen; Chin, Chih-Hao; Durrant, Marcus C; Lee, Yin-Yu; Wu, Yu-Jong

    2017-09-21

    To facilitate direct spectroscopic observation of hydrogen chloride anions (HCl - ), electron bombardment of CH 3 Cl diluted in excess Ar during matrix deposition was used to generate this anion. Subsequent characterization were performed by IR spectroscopy and quantum chemical calculations. Moreover the band intensity of HCl - decays slowly when the matrix sample is maintained in the dark for a prolonged time. High-level ab inito calculation suggested that HCl - is only weakly bound. Atom-in-molecule charge analysis indicated that both atoms of HCl - are negatively charged and the Cl atom is hypervalent.

  18. Derivatives of Dodecahalo-Closo-Dodecaborate Di-Anion

    OpenAIRE

    Avelar, Amy Cindy

    2009-01-01

    ABSTRACT OF THE DISSERTATIONDerivatives of the Dodecahalo-Closo-Dodecaborate Di-AnionbyAmy AvelarDoctor of Philosophy, Graduate Program in ChemistryUniversity of California, Riverside, December 2009Dr. Christopher A. Reed, ChairpersonThe di-anion, dodecahalo-closo-dodecaborate, B12X122-, where the X = Cl or Br, has been determined to be a useful weakly coordinating anion, WCA. Despite the di- negative charge, several elusive and reactive cationic species were stabilized with B12X122- as the c...

  19. Photoelectron spectroscopy of boron aluminum hydride cluster anions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup −}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  20. Photoelectron spectroscopy of boron aluminum hydride cluster anions.

    Science.gov (United States)

    Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H; Li, Xiang; Kiran, Boggavarapu; Kandalam, Anil K

    2014-04-28

    Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, BxAlyHz(-), were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

  1. A study of model systems in anionic exchange

    International Nuclear Information System (INIS)

    Haegele, R.; Boeyens, J.C.A.

    1977-01-01

    Preliminary experiments are reported on the preparation and characterization of anionic sulphate and chloride complexes of UO 2+ 2 and iron(III), benzyl-trimethylammonium cation being used as a model substance for the simulation of positive sites in an anionic-exchange resin. The structure of (BTMA) 4 [UO 2 CL 3 -O 2 -CL 3 UO 2 ], a binuclear uranyl-peroxocomplex that has not been reported in the literature, was elucidated by single-crystal x-ray examination, and is described and discussed [af

  2. Electrokinetic remediation of anionic contaminants from unsaturated soils

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Kozak, M.W.; Mattson, E.D.

    1992-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in the DOE weapons complex, and for the nation as a whole. Electrokinetic remediation is one possible technique for in situ removal of such contaminants from unsaturated soils. In previous studies at Sandia National Laboratories, the electromigration of chromate ions and anionic dye ions have been demonstrated. This paper reports on a series of experiments that were conducted to study the effect of moisture content on the electromigration rate of anionic contaminants in unsaturated soil and determine the limiting moisture content for which electromigration occurs

  3. Uranium extraction from sulfuric acid solution using anion exchange resin

    International Nuclear Information System (INIS)

    Sheta, M. E.; Abdel Aal, M. M.; Kandil, A. T.

    2012-12-01

    Uranium is currently recovered from sulfuric acid leach liquor using anion exchange resin as Amberlite IRA 402 (CT). This technology is based on fact that, uranium exists as anionic complexes. This takes place by controlling the pH of the solution, agitation time, temperature and resin to solution ratio (R/S). In this work, batch stirrer tank used for uranium extraction from sulfate medium and after extraction, elution process was done using 1M NaCl solution. After extraction and elution process, the resin was separated from the system and uranium was determined in the solution. (Author)

  4. Photodetachment and Doppler laser cooling of anionic molecules

    Science.gov (United States)

    Gerber, Sebastian; Fesel, Julian; Doser, Michael; Comparat, Daniel

    2018-02-01

    We propose to extend laser-cooling techniques, so far only achieved for neutral molecules, to molecular anions. A detailed computational study is performed for {{{C}}}2- molecules stored in Penning traps using GPU based Monte Carlo simulations. Two cooling schemes—Doppler laser cooling and photodetachment cooling—are investigated. The sympathetic cooling of antiprotons is studied for the Doppler cooling scheme, where it is shown that cooling of antiprotons to subKelvin temperatures could becomes feasible, with impacts on the field of antimatter physics. The presented cooling schemes also have applications for the generation of cold, negatively charged particle sources and for the sympathetic cooling of other molecular anions.

  5. A Quick Reference on Anion Gap and Strong Ion Gap.

    Science.gov (United States)

    Torrente Artero, Carlos

    2017-03-01

    Metabolic acid-base disorders are common in emergency and critically ill patients. Clinicians may have difficulty recognizing their presence when multiple acid-base derangements are present in a single patient simultaneously. The anion gap and the strong ion gap concepts are useful calculations to identify the components of complex metabolic acid-base associated to the presence of unmeasured anions. This article presents their definition, normal values, indications, limitations, and guidelines for interpretation of changes in the clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Akiba, Kazuki

    2016-01-01

    Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.

  7. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  8. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide.

    Science.gov (United States)

    Yang, Shiying; Wang, Ping; Yang, Xin; Shan, Liang; Zhang, Wenyi; Shao, Xueting; Niu, Rui

    2010-07-15

    In this paper, the degradation of azo dye Acid Orange 7 (AO7) by three common peroxides (persulfate (PS), peroxymonosulfate (PMS) or hydrogen peroxide (H(2)O(2))) under various activation conditions, i.e., heat (25-80 degrees C), UV light (254 nm), or anions (SO(4)(2-), NO(3)(-), CO(3)(2-), HCO(3)(-), HPO(4)(2-), and Cl(-)), was investigated. The order of AO7 degradation efficiencies by heat activation is PS>PMS>H(2)O(2). PS oxidation activated by heat (>50 degrees C) is an effective degradation technology, while PMS and H(2)O(2) are hardly activated. When assisted by UV, peroxides could all be activated and degrade AO7 quickly. The order is PS>H(2)O(2)>PMS. We activated peroxides, for the first time, by using some anions and compared the subsequently degradation efficiencies of AO7. It was found that PMS could be activated by some anions, but PS and H(2)O(2) cannot. The activation efficiencies of PMS by SO(4)(2-) and NO(3)(-) are negligible, whereas remarkable by HCO(3)(-), HPO(4)(2-), Cl(-) and CO(3)(2-). For HCO(3)(-), HPO(4)(2-) and Cl(-), the activation efficiencies become higher with the increase of anion concentration. For CO(3)(2-), however, the activation efficiency is higher at lower concentration. 2010 Elsevier B.V. All rights reserved.

  9. Organic anion transporter 3- and organic anion transporting polypeptides 1B1- and 1B3-mediated transport of catalposide

    Directory of Open Access Journals (Sweden)

    Jeong HU

    2015-01-01

    Full Text Available Hyeon-Uk Jeong,1 Mihwa Kwon,2 Yongnam Lee,3 Ji Seok Yoo,3 Dae Hee Shin,3 Im-Sook Song,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea; 2College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Korea; 3Central R&D Institute, Yungjin Pharm Co., Ltd., Suwon 443-270, Korea Abstract: We investigated the in vitro transport characteristics of catalposide in HEK293 cells overexpressing organic anion transporter 1 (OAT1, OAT3, organic anion transporting polypeptide 1B1 (OATP1B1, OATP1B3, organic cation transporter 1 (OCT1, OCT2, P-glycoprotein (P-gp, and breast cancer resistance protein (BCRP. The transport mechanism of catalposide was investigated in HEK293 and LLC-PK1 cells overexpressing the relevant transporters. The uptake of catalposide was 319-, 13.6-, and 9.3-fold greater in HEK293 cells overexpressing OAT3, OATP1B1, and OATP1B3 transporters, respectively, than in HEK293 control cells. The increased uptake of catalposide via the OAT3, OATP1B1, and OATP1B3 transporters was decreased to basal levels in the presence of representative inhibitors such as probenecid, furosemide, and cimetidine (for OAT3 and cyclosporin A, gemfibrozil, and rifampin (for OATP1B1 and OATP1B3. The concentration-dependent OAT3-mediated uptake of catalposide revealed the following kinetic parameters: Michaelis constant (Km =41.5 µM, maximum uptake rate (Vmax =46.2 pmol/minute, and intrinsic clearance (CLint =1.11 µL/minute. OATP1B1- and OATP1B3-mediated catalposide uptake also showed concentration dependency, with low CLint values of 0.035 and 0.034 µL/minute, respectively. However, the OCT1, OCT2, OAT1, P-gp, and BCRP transporters were apparently not involved in the uptake of catalposide into cells. In addition, catalposide inhibited the transport activities of OAT3, OATP1B1, and OATP1B3 with half-maximal inhibitory concentration values of 83, 200, and 235 µ

  10. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Bartsch, Richard A.; Barr, Mary E.

    2001-01-01

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  11. Do TFSA Anions Slither? Pressure Exposes the Role of TFSA Conformational Exchange in Self-Diffusion.

    Science.gov (United States)

    Suarez, Sophia N; Rúa, Armando; Cuffari, David; Pilar, Kartik; Hatcher, Jasmine L; Ramati, Sharon; Wishart, James F

    2015-11-19

    Multinuclear ((1)H, (2)H, and (19)F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent (2)H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm(3)/mol for TFSA vs 14.6 ± 1.3 cm(3)/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV(‡)) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis. In addition, (2)H T1 data suggest increased ordering with increasing pressure, with two T1 regimes observed for the MD3 and D2 isotopologues between 0.1-100 and 100-250 MPa, respectively. The activation volumes for T1 were 21 and 25 cm(3)/mol (0-100 MPa) and 11 and 12 cm(3)/mol (100-250 MPa) for the MD3 and D2 isotopologues, respectively.

  12. MinD and MinE Interact with Anionic Phospholipids and Regulate Division Plane Formation in Escherichia coli*

    Science.gov (United States)

    Renner, Lars D.; Weibel, Douglas B.

    2012-01-01

    The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (Kd) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The Kd for MinD (1.8 μm) in the presence of ATP was smaller than for MinE (12.1 μm) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (kon). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential. PMID:23012351

  13. Dietary cation anion difference: Impact on productive and ...

    African Journals Online (AJOL)

    Various nutritional tools have been used to improve the productive and reproductive performance of animals, among which difference between certain minerals, called dietary cation anion difference (DCAD) plays a pivotal role. Low or negative DCAD diets reduce blood pH and HCO3- and animal becomes acidotic.

  14. The effect of membrane diffusion potential change on anionic drugs ...

    African Journals Online (AJOL)

    The effect of membrane potential change on anionic drugs Indomethacin and barbitone induced human erythrocyte shape change and red cell uptake of drug has been studied using microscopy and spectrophotometry techniques respectively. The membrane potential was changed by reducing the extracellular chloride ...

  15. Core-modified octaphyrins: Syntheses and anion-binding properties

    Indian Academy of Sciences (India)

    Unknown

    proton of the inverted ring of selenophene from the biselenophene unit forms a secondary interaction. (non-electrostatic) with oxygen of the TFA. Apart from the oxygen, the fluorine of the triflate anion also forms secondary interaction with the proton of the methyl group of the mesityl ring. Tetraoxaoctaphyrin 9 also binds two ...

  16. Beneficiation of Nigerian Clay with Poly Anionic Cellulose-Regular ...

    African Journals Online (AJOL)

    ... concentrations and the effect of different concentration of Poly Anionic Cellulose-Regular (PAC-R) on the Emede clay was investigated. The experiment centred on the determination of its suitability for use in drilling mud formulation. Preliminary investigation suggests that Emede clay has a good potential for use in drilling ...

  17. A carbohydrate-anion recognition system in aprotic solvents.

    Science.gov (United States)

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  18. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal ...

  19. Measurement of carbon disulfide anion diffusion in a TPC

    International Nuclear Information System (INIS)

    Ohnuki, Tohru; Snowden-Ifft, D.P.Daniel P.; Martoff, C.J.C. Jeff

    2001-01-01

    A Negative Ion Time Projection Chamber was used to measure the field dependence of lateral and longitudinal diffusion for CS 2 anions drifting in mixtures of CS 2 and Ar at 40 Torr. Ion drift velocities and limits on the capture distance for electrons as a function of field and gas mixture are also reported

  20. Changes in plasma osmolality and anion gap: potential predictors of ...

    African Journals Online (AJOL)

    These changes may be related to mortality in patients on haemodialysis. Objective: To determine the relationship of mortality to plasma osmolality and anion gap inpatients on haemodialysis. Methods: Fifty consecutive dialysis naive stable stage 5 chronic kidney disease subjects aged between 18 and 70 years, attending a ...

  1. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  2. Anionic construction of the SLq,s(2) algebra

    International Nuclear Information System (INIS)

    Matheus-Valle, J.L.; Monteiro, M.R.

    1993-01-01

    Considering anionic oscillators in a two-dimensional lattice, the quantum semi-group sl (q,s ) (2) is realized by means of a generalized Schwinger construction. It is found that the parameter q of the algebra is connected to the statistical parameter, whereas the s parameter is related to a s-deformed oscillator introduced at each point of the lattice. (author)

  3. Anion binding in covalent and self-assembled molecular capsules.

    Science.gov (United States)

    Ballester, Pablo

    2010-10-01

    This critical review describes selected examples extracted from the extensive literature generated during the past 42 years on the topic of anion binding in molecular capsules. The goal of including anions in molecular capsules emerges from the idea of incorporating the traits exhibited by biological receptors into synthetic ones. At the outset of this research area the capsules were unimolecular. The scaffold of the receptor was designed to covalently link a series of functional groups that could converge into a cavity and to avoid its collapse. The initial examples involved the encapsulation of one monoatomic spherical anion. With time, the cavity size of the receptor was increased and encapsulation of polyatomic anions and co-encapsulation became a reality. Synthetic economy fueled the use of aggregates of self-complementary molecules rather than one large molecule as capsules. The main purpose of this review is to give a general overview of the topic which might be of interest to supramolecular or non supramolecular chemists alike (149 references).

  4. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  5. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  6. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  7. Spectral modulation through controlling anions in nanocaged phosphors

    NARCIS (Netherlands)

    Bian, H.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.S.; Liu, Y.; Zhang, H.; Wang, X.

    2013-01-01

    A new approach has been proposed and validated to modulate the emission spectra of europium-doped 12CaO center dot 7Al(2)O(3) phosphors by tuning the nonradiative and radiative transition rates, realized by controlling the sort and amount of the encaged anions. A single wavelength at 255 nm can

  8. Adsorption and intercalation of anionic surfactants onto layered ...

    Indian Academy of Sciences (India)

    Layered double hydroxides (LDH) with brucite like structure was modified with various anionic surfactants containing sulfonate, carboxyl, phosphonate and sulfate end group through ion-exchange method. XRD reports indicated that the sulfonate group containing surfactants led to an adsorption process whereas the sulfate ...

  9. Adsorption and intercalation of anionic surfactants onto layered ...

    Indian Academy of Sciences (India)

    Unknown

    MS received 12 October 2004; revised 10 January 2005. Abstract. Layered ... son 2004). Bifunctional short chain anionic surfactant such as tartrate and succinate intercalated Zn/Cr LDH was prepared by Prevot and co-workers (1998). Terephthalate ..... He L, Yin S and Sato T 2003 Solid State Chem. 77 51. Isupov V P and ...

  10. Adsorption and intercalation of anionic surfactants onto layered ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Layered double hydroxides (LDH) with brucite like structure was modified with various anionic surfactants containing sulfonate, carboxyl, phosphonate and sulfate end group through ion-exchange method. XRD reports indicated that the sulfonate group containing surfactants led to an adsorption process whereas.

  11. Functional Block Copolymers via Anionic Polymerization for Electroactive Membranes

    OpenAIRE

    Schultz, Alison

    2013-01-01

           Ion-containing block copolymers blend ionic liquid properties with well-defined polymer architectures. This provides conductive materials with robust mechanical stability, efficient processability, and tunable macromolecular design. Conventional free radical polymerization and anion exchange achieved copolymers containing n-butyl acrylate and phosphonium ionic liquids. These compositions incorporated vinylbenzyl triphenyl phosphonium and vinylbenzyl tricyclohexyl phosphonium cations be...

  12. Total synthesis of ascididemin via anionic cascade ring closure

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Kristensen, Jesper Langgaard

    2012-01-01

    A new and convergent synthesis of ascididemin is presented. Using an anionic cascade ring closure as the key step, this natural product is obtained in 45% overall yield in just 6 steps starting from 2'-fluoroacetophenone. This new approach was extended to the synthesis of a new isomer...

  13. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  14. Anion complexation by calix[4]arene–TTF conjugates

    Czech Academy of Sciences Publication Activity Database

    Flídrová, K.; Tkadlecová, M.; Lang, Kamil; Lhoták, P.

    2012-01-01

    Roč. 92, č. 1 (2012), s. 668-673 ISSN 0143-7208 R&D Projects: GA ČR GA203/09/0691 Institutional research plan: CEZ:AV0Z40320502 Keywords : calix[4]arene * tetrathiafulvalene * anion recognition * receptor * NMR titration * UV/vis spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.532, year: 2012

  15. Novel Biscalix[4]arene-based Anion Receptors

    Czech Academy of Sciences Publication Activity Database

    Šťastný, V.; Lhoták, P.; Michlová, V.; Stibor, I.; Sýkora, Jan

    2002-01-01

    Roč. 58, č. 36 (2002), s. 7207-7211 ISSN 0040-4020 R&D Projects: GA ČR GA104/00/1722; GA ČR GA203/00/1011 Keywords : calixarenes * anion receptors * NMR titration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.420, year: 2002

  16. Anion-based approaches to tunable functionality in oxide heterostructures

    Science.gov (United States)

    May, Steven

    2014-03-01

    The ability to control the position and composition of the anion site is emerging as a promising route to tune properties in epitaxial perovskites. This talk will focus on recent and ongoing efforts aimed at developing anion-based approaches to tailor electronic and magnetic properties in oxide films. First, I will discuss how the position of the oxygen anions can be tailored to stabilize non-bulk-like bond angles and lengths, thereby altering electronic bandwidth. Recent work on La2/3Sr1/3MnO3 will be presented in which ultrathin films under the same strain state exhibit dramatically different electronic and magnetic properties when grown on substrates with different symmetries. In the second half of the talk, I will describe efforts focused on altering the composition of the anion site. In La1/3Sr2/3FeO3-δ films, a reversible change in oxygen content leads to dramatic changes in electrical, optical, and structural properties. Finally, the synthesis of oxyfluoride ferrite and nickelate perovskite films via topotactic reactions carried out following thin film deposition will be described. This work is supported by the Office of Naval Research (N00014-11-1-0664) and the U. S. Army Research Office (W911NF-12-1-0132).

  17. On the Adsorption of Some Anionic Collectors on Fluoride Minerals

    DEFF Research Database (Denmark)

    Sørensen, Emil

    1973-01-01

    Test flotations have been carried out in a small apparatus under standardized conditions in order to determine the dependence of the flotation yield on the reagent concentration for certain minerals and anionic collectors. The results suggest that a special adsorption mechanism is operating...

  18. Anion effects on the cyclobis(paraquat-p-phenylene) host

    DEFF Research Database (Denmark)

    Andersen, Sissel Stenbæk; Jensen, Morten; Sørensen, Anne

    2012-01-01

    Binding studies between the electron accepting host cyclobis(paraquat-p-phenylene) and a series of electron donors in the presence of differently sized counteranions reveal that both the nature and the concentration of the anion have a large impact on the association strength of the resulting host...

  19. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    Science.gov (United States)

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  20. Evaluation of Some Anionic Exchange Resins as Potential Tablet ...

    African Journals Online (AJOL)

    Starches, clays, gums and hydrophilic cellulosic polymers have historically ... expand such interesting applications to anionic exchange resins ..... Edition, Revised and. Expanded. New York: Marcel Dekker; 1989; pp 75-. 130. 4. Goyanes A, Souto C, Martíínez-Pacheco R. A comparison of chitosan-silica and sodium starch.

  1. Degradation of anionic surfactants using the reactor based on dielectric barrier discharge

    Directory of Open Access Journals (Sweden)

    Aonyas Munera Mustafa

    2016-01-01

    Full Text Available Two anionic surfactants (sodium lauryl sulfate - SDS and sodium dodecylbenzenesulfonate - SDBS were treated with dielectric barrier discharge. Loss of surfactant activity, decrease of chemical oxygen demand and total organic carbon as well as lower toxicity of degradation products were determined. Effects of catalysts - hydrogen peroxide and iron (II, on parameters mentioned above, were determined. Catalysts affect the degradation of SDBS and in the case of SDS catalysts have no effect on degradation. Both catalysts induce the decrease of COD and TOC values. Toxicity of solutions after the plasma treatment is lower in all the systems tested. [Projekat Ministarstva nauke Republike Srbije, br. OI 172030

  2. [High anion gap metabolic acidosis (pyroglutamic acidosis) induced by chronic acetaminophen use].

    Science.gov (United States)

    Tchougang Nono, J; Mistretta, V; Noirot, I; Canivet, J L; Damas, P

    2018-01-01

    Acetaminophen is the most consumable analgesic in the world in the form of medical prescription or self-medication. It is one of the active ingredients most often involved in voluntary poisoning. Lethal dose of acetaminophen classically induces acute hepatic failure on hepatic necrosis. Chronic intake of sub-lethal doses (i.e. near recommended therapeutic doses) of acetaminophen in the presence of certain risk factors may be responsible for another much less recognized pathological manifestation: severe metabolic acidosis with an increased anion gap due to the accumulation of 5-oxoproline or pyroglutamic acid.

  3. Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing

    KAUST Repository

    Masih, Dilshad

    2018-03-26

    The selectivity and sensitivity of sensors are of great interest to the materials chemistry community, and a lot of effort is now devoted to improving these characteristics. More specifically, the selective sensing of anions is one of the largest challenges impeding the sensing-research area due to their similar physical and chemical behaviors. In this work, platinum–metalated porphyrin (Pt(II)TMPyP) was successfully encapsulated in a rho-type zeolite-like metal–organic framework (rho-ZMOF) and applied for anion-selective sensing. The sensing activity and selectivity of the MOF-encaged Pt(II)TMPyP for various anions in aqueous and methanolic media were compared to that of the free (nonencapsulated) Pt(II)TMPyP. While the photoinduced triplet-state electron transfer of Pt(II)TMPyP showed a very low detection limit for anions with no selectivity, the Pt(II)TMPyP encapsulated in the rho-ZMOF framework possessed a unique chemical structure to overcome such limitations. This new approach has the potential for use in other complex sensing applications, including biosensors, which require ion selectivity.

  4. [Establishment of double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers].

    Science.gov (United States)

    Xie, Tao; Qin, Zhi-Zhen; Zhou, Rui; Zhao, Ying; Du, Guan-hua

    2015-04-01

    A double targets of high throughput screening model for xanthine oxidase inhibitors and superoxide anion scavengers was established. In the reaction system of xanthine oxidase, WST-1 works as the probe for the ultra oxygen anion generation, and product uric acid works as xanthine oxidase activity indicator. By using SpectraMax M5 continuous spectrum enzyme sign reflectoscope reflector, the changes of these indicators' concentration were observed and the influence factors of this reaction system to establish the high throughput screening model were studied. And the model is confirmed by positive drugs. In the reaction system, the final volume of reaction system is 50 μL and the concentrations of xanthine oxidase is 4 mU x mL(-1), xanthine 250 μmol x L(-1) and WST-1 100 μmol x L(-1), separately. The Z'-factor of model for xanthine oxidase inhibitors is 0.537 4, S/N is 47.519 9; the Z'-factor of model for superoxide anion scavengers is 0.507 4, S/N is 5.388 9. This model for xanthine oxidase inhibitors and superoxide anion scavengers has more common characteristics of the good stability, the fewer reagent types and quantity, the good repeatability, and so on. And it can be widely applied in high-throughput screening research.

  5. Intermolecular proton transfer in anionic complexes of uracil with alcohols

    International Nuclear Information System (INIS)

    Haranczyk, Maciej; Rak, Janusz; Gutowski, Maciej S.; Radisic, Dunja; Stokes, Sarah T.; Bowen, Kit H.

    2005-01-01

    A series of eighteen alcohols (ROH) has been designed with an enthalpy of deprotonation (H DP ) in a range of 13.8-16.3 eV. The effects of excess electron attachment to the binary alcohol-uracil (ROH...U) complexes have been studied at the density functional level with a B3LYP exchange-correlation functional and at the second order Moeller-Plesset perturbation theory level. The photoelectron spectra of anionic complexes of uracil with three alcohols (ethanol, 2,2,3,3,3-pentafluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol) have been measured with 2.54 eV photons. For ROHs with deprotonation enthalpies larger than 14.8 eV only the ROH...U - minimum exists on the potential energy surface of the anionic complex. For alcohols with deprotonation enthalpies in a range of 14.3-14.8 eV two minima might exist on the anionic potential energy surface, which correspond to the RO - ...HU . and ROH...U - structures. For ROHs with deprotonation enthalpies smaller than 14.3 eV, the excess electron attachment to the ROH...U complex always induces a barrier-free proton transfer from the hydroxyl group of ROH to the O8 atom of U, with the product being RO - ...HU . . A driving force for the intermolecular proton transfer is to stabilize the excess negative charge localized on a orbital of uracil. Therefore, these complexes with proton transferred to the anionic uracil are characterized by larger values of electron vertical detachment energy (VDE). The values of VDE for anionic complexes span a range from 1.0 to 2.3 eV and roughly correlate with the acidity of alcohols. However, there is a gap of ∼0.5 eV in the values of VDE, which separates the two families, ROH...U - and RO - ...HU . , of anionic complexes. The energy of stabilization for the anionic complexes spans a range from 0.6 to 1.7 eV and roughly correlates with the acidity of alcohols. The measured photoelectron spectra are in good agreement with the theoretical predictions

  6. Process for reducing the pertechnetate anion

    International Nuclear Information System (INIS)

    Ruddock, C.F.

    1980-01-01

    Process for reducing the 'pertechnetate' ion TcO 4 - , whereby an aqueous solution of 'pertechnetate' is mixed with tin metal or a tin alloy as 'pertechnetate' reducing agent, and a soluble salt of a metal below tin in the electro-chemical tension scale, as activator for the reducing tin. This reduced 'pertechnetate' is used for forming usable complexes in medical diagnosis exploration [fr

  7. Ferrous Ion Chelating, Superoxide Anion Radical Scavenging and Tyrosinase Inhibitory Properties of Pure and Commercial Essential Oils of Anetrhum Graveolens

    Directory of Open Access Journals (Sweden)

    Sh Darvish Alipour Astaneh

    2013-04-01

    Full Text Available Introduction: Despite slight toxicities of essential oils, they are not under strict control in many countries. Anethum graveolens is widely consumed and its essential oils are at public reach. This study was designed to study essential oils of Anethum graveolens. Methods: The biological properties of pure and commercial essential oils of Anethum graveolens were investigated. In fact, Ferrous ion chelating activity, superoxide anion radical scavenging property, tyrosinase inhibition and total flavonoids of the oils were determined. Results: Chelating activity of 7.8 µg of EDTA was equivalent to 2 µg of the pure oil. The oils had superoxide anion radical scavenging activities which may be related to their total phenol and flavonoid contents. IC50 of ferrous ion chelating, antityrosiase and superoxide anion radical scavenging activities of pure and commercial oils were 1.3, 1.4, 1 and (171.6, 589, 132 µg respectively. Antityrosiase activity of 6.4 µg pure oil was equal to 1000 µg of the commercial oil. Conclusion: Anethum possesses antioxidative and free radical scavenging properties. This oil chelates ferrous ions and superoxide radicals. It is effective in formation of reactive toxic products. Anethum has good potentials regarding its applications in food and drug industries.

  8. New anion-exchange resins for improved separations of nuclear materials

    International Nuclear Information System (INIS)

    Barr, M.E.; Bartsch, R.A.

    1998-01-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  9. Reducing nitrogen crossover in microbial reverse-electrodialysis cells by using adjacent anion exchange membranes and anion exchange resin

    KAUST Repository

    Wallack, Maxwell J.

    2015-01-01

    Microbial reverse electrodialysis cells (MRECs) combine power generation from salinity gradient energy using reverse electrodialysis (RED), with power generation from organic matter using a microbial fuel cell. Waste heat can be used to distill ammonium bicarbonate into high (HC) and low salt concentration (LC) solutions for use in the RED stack, but nitrogen crossover into the anode chamber must be minimized to avoid ammonia loses, and foster a healthy microbial community. To reduce nitrogen crossover, an additional low concentration (LC) chamber was inserted before the anode using an additional anion exchange membrane (AEM) next to another AEM, and filled with different amounts of anion or cation ion exchange resins. Addition of the extra AEM increased the ohmic resistance of the test RED stack from 103 Ω cm2 (1 AEM) to 295 Ω cm2 (2 AEMs). However, the use of the anion exchange resin decreased the solution resistance of the LC chamber by 74% (637 Ω cm2, no resin; 166 Ω cm2 with resin). Nitrogen crossover into the anode chamber was reduced by up to 97% using 50% of the chamber filled with an anion exchange resin compared to the control (no additional chamber). The added resistance contributed by the use of the additional LC chamber could be compensated for by using additional LC and HC membrane pairs in the RED stack.

  10. The structure of glutamate transporters shows channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity, The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic

  11. Electrolyte secretion by the isolated cat pancreas during replacement of extracellular bicarbonate by organic anions and chloride by inorganic anions.

    Science.gov (United States)

    Case, R M; Hotz, J; Hutson, D; Scratcherd, T; Wynne, R D

    1979-01-01

    1. The effect of replacing extracellular bicarbonate and chloride by other anions on the volume and composition of secretin-stimulated pancreatic juice has been analysed in the isolated, perfused cat pancreas. 2. The anions of some aliphatic carboxylic acids were able partially to substitute for bicarbonate in sustaining pancreatic secretion. The order of effectiveness was: acetate greater than proprionate greater than butyrate greater than formate. 3. The rate of secretion in the presence of 25 mM-acetate was 42% of that achieved with 25 mM-bicarbonate. The concentration of acetate in the secretion varied with flow rate, reaching a maximum of 120 mM at high flow rates and declining at lower flow rates, with reciprocal changes in chloride concentration. Bicarbonate was always present in the secretion at a concentration of 5--7 mM. 4. Inorganic anions were able totally or partially to substitute for chloride in sustaining secretion. In relation to chloride, their degree of effectiveness was: chloride = bromide = or greater than nitrate greater than iodide greater than sulphate greater than methyl sulphate greater than isethionate. Those anions which had no effect on secretion rate (i.e. bromide and nitrate) also had no effect on the bicarbonate concentration of the secretion and themselves appeared in the secretion in place of chloride. Those anions which inhibited secretion increased the bicarbonate concentration in the secretion in proportion to the degree of inhibition they caused (i.e. the increase was greatest with isethionate). 5. When perfusate chloride was only partially replaced by bromide or iodide the ratios of chloride: bromide and chloride: iodide in the secretion were approximately equal to those in the perfusate. 6. The carbonic anhydrase inhibitor acetazolamide reduced secretory rate and bicarbonate concentration when added to normal perfusion fluid or chloride-substituted fluids, but had no effect following replacement of perfusate bicarbonate by

  12. Contribution of various metabolites to the "unmeasured" anions in critically ill patients with metabolic acidosis.

    NARCIS (Netherlands)

    Moviat, M.; Terpstra, A.M.; Ruitenbeek, W.; Kluijtmans, L.A.J.; Pickkers, P.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: The physicochemical approach, described by Stewart to investigate the acid-base balance, includes the strong ion gap (SIG), a quantitative measure of "unmeasured" anions, which strongly correlates to the corrected anion gap. The chemical nature of these anions is for the most part

  13. Using remote substituents to control solution structure and anion binding in lanthanide complexes

    DEFF Research Database (Denmark)

    Tropiano, Manuel; Blackburn, Octavia A.; Tilney, James A.

    2013-01-01

    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery ...

  14. Use of weak ion association in the separation of inorganic anions by ...

    African Journals Online (AJOL)

    In this work weak ion association was used to effect selectivity and detection of inorganic anions with environmental or health significance by capillary electropheresis, CE. Tetrabutylammonium ion was used as a pairing anion to separate mixtures containing closely or co-migrating inorganic anions at pHs 3.8 and pH 7.

  15. Synthesis and anion exchange reactions of a layered copper-zinc ...

    Indian Academy of Sciences (India)

    Acetate ions can be exchanged with simple inorganic anions such as chloride and nitrate, and organic anions such as benzoate and large surfactant anions such as dodecyl sulphate. Structures of these hydroxysalts are derived from that of Cu2(OH)3NO3 ⋅ H2O with some of the Cu2+ ions being replaced by Zn2+.

  16. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations

    NARCIS (Netherlands)

    van Montfoort, J.E; Hagenbuch, B; Fattinger, K.E; Muller, M; Groothuis, Geny; Meijer, D.K F; Meier, P.J

    1999-01-01

    Hepatic uptake of albumin-bound amphipathic organic cations has been suggested to be mediated by multispecific bile salt and organic anion transport systems. Therefore, we investigated whether the recently cloned rat organic anion transporting polypeptides 1 and 2 as well as the human organic anion

  17. Synthesis and anion exchange reactions of a layered copper–zinc ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A mixed-metal hydroxysalt of formula Cu1⋅6Zn0⋅4(OH)3(OAc)⋅H2O has been synthesized by an acetate hydrolysis route. Acetate ions can be exchanged with simple inorganic anions such as chloride and nitrate, and organic anions such as benzoate and large surfactant anions such as dodecyl sulphate. Struc-.

  18. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    Science.gov (United States)

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We

  19. Update on value of the anion gap in clinical diagnosis and laboratory evaluation.

    Science.gov (United States)

    Lolekha, P H; Vanavanan, S; Lolekha, S

    2001-05-01

    Anion gap (AG) is a calculated value commonly used in clinical practice. It approximates the difference between the concentration of unmeasured anions (UA) and unmeasured cations (UC) in serum. At present, the reference range of anion gap has been lowered from 8-16 to 3-11 mmol/l because of the changes in technique for measuring electrolyte. However, clinicians and textbooks still refer and use the old reference value of 8-16 mmol/l. This may lead to misinterpretation of the value of anion gap. Our study updated the value of anion gap in clinical diagnosis and laboratory evaluation. Criteria for using anion gap were also suggested. We analyzed serum electrolyte using the Beckman Synchron CX5. The anion gap was calculated from the formula: [Na(+)-(Cl(-)+HCO(3)(-))]. We estimated the reference range using the non-parametric percentile estimation method. The reference range of anion gap obtained from 124 healthy volunteers was 5-12 mmol/l, which was low and confirmed the reports from other studies (3-11 mmol/l) using ion-selective electrode. From the retrospective study on the 6868 sets of serum electrolyte among hospitalized patients, we found the incidences of normal, increased, and decreased anion gaps were 59.5%, 37.6%, and 2.9%, respectively. The mean and central 90% range of increased anion gap were 16 and 13-20 mmol/l, which was lower than those reported in previous study (25 and 19-28 mmol/l). Anion gap exceeding 24 mmol/l was rare. The mean and central 90% range of decreased anion gap were 3 and 2-4 mmol/l, which were lower than those reported in previous study (6 and 3-8 mmol/l). The value of less than 2 mmol/l was rare. The most common causes of increased anion gap (hypertensive disease, chronic renal failure, malignant neoplasms, diabetes mellitus and heart diseases) and decreased anion gap (liver cirrhosis and nephrotic syndrome) in this study were similar to those in previous studies. We found two cases of IgG multiple myeloma with anion gap of 2 mmol

  20. Impacts of anions on the oxygen reduction reaction kinetics on platinum and palladium surfaces in alkaline solutions.

    Science.gov (United States)

    Zhu, Shangqian; Hu, Xiaomeng; Shao, Minhua

    2017-03-15

    The fundamental understanding of the impacts induced by anions on oxygen reduction reaction (ORR) in alkaline media is of great importance in the design of more advanced catalysts for alkaline fuel cells (AFC). In this study, the specific adsorption of F - , Cl - , ClO 4 - , CO 3 2- , SO 4 2- , and citrate anions on Pt/C and Pd/C catalysts, and their impacts on the ORR kinetics in alkaline solutions were systematically studied. It was found that F - , Cl - and ClO 4 - did not specifically adsorb on Pt or Pd surfaces and had no poisoning effect on ORR. CO 3 2- and SO 4 2- had significant effects on Pt/C and lowered the activity even at a very low concentration. On the other hand, their impacts on Pd/C were negligible. Self-dissociation of citrate anions was found to occur on both Pt/C and Pd/C in the H adsorption/desorption and double layer regions. For the first time, surface enhanced infrared absorption spectroscopy (SEIRAS) with the attenuated total reflection (ATR) technique was used to investigate the self-dissociation of citrate on Pt and Pd thin film electrodes. The breaking of carboxylic groups and the carbon backbone was proposed as a possible dissociation pathway for citrate. The adsorbed species have a negligible effect on ORR activity on Pt/C as they are removed by oxidation before 0.75 V. In contrast, their oxidation on Pd/C surfaces is not completed until 0.91 V, which causes a lower ORR activity observed in rotating disk electrode measurements. The findings in this paper emphasize the importance of specific adsorption of anions and double-layer interfacial effects on the ORR activity measurement in alkaline solutions.

  1. Evidence of incompatibility for topical anionic agents used in conjunction with chlorhexidine gluconate: A systematic review

    Directory of Open Access Journals (Sweden)

    Gary Tran

    2016-07-01

    Full Text Available Chlorhexidine gluconate (CHG is a widely used antiseptic agent for skin and wound disinfection. The cationic properties of CHG may allow its inactivation and precipitation by anionic agents in commonly used topical agents. We conducted a systematic review by searching through PubMed, Cochrane Library, and Web of Science databases and selected original research articles reporting on CHG incompatibility, defined as inactivation or precipitation. The search yielded 22 publications that demonstrated CHG incompatibility via: 1 reduced antibacterial activity (carbomer, acrylates/C10-C30 alkyl acrylate crosspolymer, dentin, bovine serum albumin, copolymer M239144, sodium lauryl sulfate, heat-killed microbes, triethanolamine, and bark cork; and 2 visible precipitate formation (sodium hypochlorite, EDTA, saline, ethanol, andnystatin. Only three publications reported on CHG incompatibility in dermatology, specifically for carbomer, triethanolamine, and acrylates/C10-C30 alkyl acrylate crosspolymer. Although limited evidence linking CHG incompatibility and anionic agents exists, clinicians should carefully consider the nature of topical agents used if CHG is concurrently applied. Increased awareness of CHG incompatibility may result in better antibacterial activity thus ensuring optimal patient management.

  2. Investigation of PF6(-) and TFSI(-) anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries.

    Science.gov (United States)

    Qi, Xin; Blizanac, Berislav; DuPasquier, Aurelien; Meister, Paul; Placke, Tobias; Oljaca, Miodrag; Li, Jie; Winter, Martin

    2014-12-14

    Graphitized carbon blacks have shown a more promising electrochemical performance than the non-treated ones when being applied in small amounts as conductive additives in composite cathode electrodes for lithium ion batteries, due to the absence of surface functional groups which contribute to detrimental side-reactions with the electrolyte. Here, we report that at high potentials of >4.5 V vs. Li/Li(+), graphitic structures in carbon black can provide host sites for the partially reversible intercalation of electrolyte salt anions. This process is in analogy to the charge reaction of graphite positive electrodes in dual-ion cells. A standard furnace carbon black with small graphitic structural units, as well as slightly and highly graphitized carbon blacks, were characterized and analyzed with regard to anion intercalation. A LiPF6 containing organic solvent based electrolyte as well as a state-of-the-art ionic liquid based electrolyte composed of LiTFSI in PYR14TFSI were applied. The intercalation of both PF6(-) and TFSI(-) could be confirmed by cyclic voltammetry in electrodes made of carbon blacks. When exposed to high potentials, carbon blacks experienced strong activation in the 1st cycle, which promotes the perception for anion intercalation, and thus increases the anion intercalation capacity in the following cycles. The specific capacity from anion intercalation was evaluated by constant current charge-discharge cycling. The obtained capacity was proportional to the graphitization degree. As anion intercalation might be accompanied by decomposition reactions of the electrolyte, e.g., by co-intercalation of solvent molecules, it could induce the decomposition of the electrolyte inside the carbon and thus degradation of the carbon black graphitic structure. In order to avoid side reactions from surface groups and from anion intercalation, the thermal treatment of carbon blacks must be optimized.

  3. Studies on treatment of low level radioactive liquid waste for removal of anionic species of 125Sb, 99Tc and 106Ru. Contributed Paper RD-14

    International Nuclear Information System (INIS)

    Shivakamy, K.; Chitra, S.; Rao, S.V.S.; Paul, Biplob

    2014-01-01

    The treatment of intermediate level waste at Waste Immobilization Plant generates low level radioactive waste which would require further management before discharge to sea. This waste is expected to contain polymeric oxo anions of 125 Sb, 99 Tc, 106 Ru in addition to cationic species like 137 Cs, 90 Sr etc. Chemical treatment takes care of the major contributors to radioactivity viz 137 Cs, 90 Sr etc but traces of activity due to anionic species remain in the treated waste effluent. Novel composite anionic exchanger namely Polyurethane foam coated with Hydrous Zirconium Oxide was developed for removal of these anionic species. This material was successfully employed for removal of anionic 1 25S b from radioactive waste effluent at Waste Management Division, Trombay. Based on our experience with Sb removal using the above material it was decided to assess the ability of the exchanger in removal of other anionic species bearing Ru and Tc. It was observed that in addition to complete removal of Sb, 50% Ru removal and 40% Tc could also be removed using this material from radioactive waste effluents. In lab experiments, similar results were obtained with simulated low level waste bearing inactive Ru. Among several hydrous oxides tried in a batch study, Hydrous Zirconium Oxide showed a maximum removal of 40% for Tc in actual waste generated from reprocessing plant. Based on the above it has been planned to set up an anion exchange column with Hydrous Zirconium Oxide coated Polyurethane foam for final treatment of chemically treated waste effluent prior to discharge as a prime step towards achieving our goal of minimum discharge to Sea. (author)

  4. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  5. Facile synthesis of hollow silica nanospheres employing anionic PMANa templates

    Science.gov (United States)

    Shi, Yan; Takai, Chika; Shirai, Takashi; Fuji, Masayoshi

    2015-05-01

    This article presents a facile and green route to the synthesis of hollow silica particles by means of anionic particles of poly(sodium methacrylate) (PMANa) as templates. This method was composed of the following three steps: formation of PMANa particles in ethanol by nanoprecipitation, the deposition of silica shell on the polymer cores through sol-gel process of tetraethylorthosilicate under catalysis of ammonia, and removal of the polymer templates by washing with water. The templates' size can be controlled in the range of about 70-140 nm by altering the ratio of ethanol to water, the polymer solution concentration, the ethanol amount in polymer solution, and the silica shell thickness can be adjusted between 15 and 30 nm by varying the ratio of silica precursor to the polymer cores. A tentative interpretation about the silica-coating process on the anionic PMANa particles was also proposed according to the experimental results.

  6. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  7. Fluorescence enhancement of mazindol in the presence of anionic surfactants

    Science.gov (United States)

    de la Guardia, Miguel; Galdú, Manuel V.

    Experimental conditions for the determination of mazindol {[ 3H] imidazo(2,1-a)isoindol-5-ol-5(4 chlorophenyl-2,5 dihydro)} by u.v. spectroscopy and by spectrofluorimetry have been studied. We have found that the addition of anionic surfactants provides a four-fold increase in the sensitivity of the fluorimetric determination of mazindol at 325 nm. Sensitization parameters of each of the moieties of the anionic surfactant structures have been obtained and it has been found that the triethanolamine lauryl sulphate is the most adequate structure to produce an enhancement of the mazindol fluorescence. A new method for the fluorimetric determination of mazindol that involves prior u.v. irradiation of the samples is proposed which allows a sensitivity increase of 17,500% and a detection limit of 3.6 ng ml -1.

  8. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    Science.gov (United States)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  9. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    International Nuclear Information System (INIS)

    El-Batal, A.I.; Atia, K.S.; Eid, M.

    2005-01-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k cat /K m and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems

  10. Characterization of the anion sensitive ATPase in intact vacuoles of Kalanchoe diagremontiana

    Energy Technology Data Exchange (ETDEWEB)

    Kobza, J.; Uribe, E.G.

    1986-04-01

    A method for the isolation of intact vacuoles from K. daigremontiana was developed which produced high yields of relatively pure vacuoles as determined by marker enzyme contamination. Upon isolation, the vacuoles were stabilized by the inclusion of 5% (w/v) ficoll. Enzyme activity was insensitive to vanadate and azide but was strongly inhibited by DCCD. Enzyme activity was strictly dependent on the inclusion of Mg/sup 2 +/ and was stimulated by anions as depicted by the series, NO/sub 3//sup -/ < Br/sup -/ < SO/sub 4//sup -/ < HCO/sub 3//sup -/ < Cl/sup -/. It was found that in intact vacuoles the ATPase activity was stimulated by phosphate to a level equivalent to that found with the chloride. The enzyme exhibited Michaelis-Menten kinetics with a Km for Mg-ATP complex of 0.51 mM.

  11. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    Science.gov (United States)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  12. Inorganic anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; Jamil, M.A.

    1987-07-01

    Inorganic anion exchangers are evaluated for Tc, I and S isotope removal from aqueous nuclear waste streams. Chemical, thermal, and radiation stabilities were examined. Selected exchangers were examined in detail for their selectivities, kinetics and mechanism of the sorption process (especially in NO 3 - , OH - and BO 3 - environments). Cement encapsulation and leaching experiments were made on the exchangers showing most promise for 'radwaste' treatment. (author)

  13. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling.

    Science.gov (United States)

    Gulersonmez, Mehmet Can; Lock, Stephen; Hankemeier, Thomas; Ramautar, Rawi

    2016-04-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity. © 2015 The Authors ELECTROPHORESIS Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Anion Exchange Membranes: Current Status and Moving Forward

    Energy Technology Data Exchange (ETDEWEB)

    Hickner, MA; Herring, AM; Coughlin, EB

    2013-10-29

    This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727-1735, 2013

  15. Closing anion gap without insulin in euglycaemic diabetic ketoacidosis

    Directory of Open Access Journals (Sweden)

    Resham Raj Poudel

    2017-01-01

    Full Text Available Euglycaemic diabetic ketoacidosis (euDKA occurs in patients with poor carbohydrate intake who continue to take insulin. For these patients are not truly in the insulin-deficient state, intravenous fluid resuscitation alone can correct the ketoacidosis without any risk of hypoglycaemia. Diagnosis of euDKA can be missed in inexperienced settings; therefore, calculating anion gap and measuring ketone levels should be practiced in every sick diabetic patient regardless of glucose levels.

  16. Organic resin anion exchangers for the treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Dyer, A.; McGinnes, D.F.

    1988-07-01

    Organic anion exchange resins are evaluated for 99-TcO 4 - (pertechnate) removed from aqueous nuclear waste streams. Chemical, thermal and radiation stabilities were studied. Selected resins were examined in detail for their selectivities in the presence of I - , NO 3 - , SO 4 = , CO 3 = , Cl - and OH - . Ion exchange equilibria and kinetic mechanisms were determined. Preliminary investigations of cement encapsulation in polymer modified form were made and some leach studies carried out. (author)

  17. Thermal behaviour of synthetic pyroaurite-like anionic clay

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Balek, Vladimír; Dorničák, V.; Martinec, P.; Mašláň, M.; Bílková, L.; Koloušek, D.; Bountsewa, I. M.

    2003-01-01

    Roč. 72, č. 1 (2003), s. 727-737 ISSN 1388-6150 R&D Projects: GA MŠk LN00A028; GA ČR GA202/00/0982; GA ČR GA106/02/0523 Institutional research plan: CEZ:AV0Z4032918 Keywords : layered double hydroxide * pyroaurite-like anionic clay * thermal decomposition Subject RIV: CA - Inorganic Chemistry Impact factor: 1.094, year: 2003

  18. Removal of Pesticides from Water by Anionic Clays

    Science.gov (United States)

    Lakraimi, M.; Legrouri, A.; Barroug, A.; de Roy, A.; Besse, J.-P.

    1999-03-01

    The exchange of chloride ions by ions from the pesticide family 2.4-dichlorophe- noxyacetate (2.4D) in ?Zn-Al-Cl? anionic clay was investigated by X-ray diffraction and infrared spectroscopy. The effects of 2.4D concentration in solution and temperature on the ion exchange were studied. The best sample in terms of crystallinity, was obtained at 100°C with a 2.4D concentration corresponding to the solubility limit of the ion in water. This sample was further characterised by chemical analyses and scanning electron microscopy. The anion intercalation was effected without degradation of the pesticide anion. L'échange des ions chlorure par les ions d'une molécule appartenant à la famille des pesticides 2,4-dichlorophénoxyacétate (2,4D) dans l'argile anionique [Zn-Al-Cl] a été étudiée par diffraction des rayons X et spectroscopie infrarouge. Les influences de la concentration en 2,4D de la solution d'échange et de la température ont été étudiées afin d'optimiser les conditions de l'échange. La meilleure cristallinité a été obtenue à 100°C dans une solution 0.004 M en 2,4D. Une phase préparée dans ces conditions a été caractérisée par analyse chimique et microscopie électronique à balayage. L'échange a été réalisée sans dégradation de l'anion pesticide.

  19. Lowest auto-detachment state of the water anion

    International Nuclear Information System (INIS)

    Houfek, K.; Cizek, M.

    2016-01-01

    Because of the abundance of water in living tissue the reactive low-energy electron collisions with the water molecule represent an important step in the radiation damage of cells. In this paper, the potential energy surface of the ground state of the water anion H 2 O - is carefully mapped using multireference configuration interaction (MRCI) calculations for a large range of molecular geometries. Particular attention is paid to a consistent description of both the O - +H 2 and OH - +H asymptotes and to a relative position of the anion energy to the ground state energy of the neutral molecule. The auto-detachment region, where the anion state crosses to the electronic continuum is identified. The local minimum in the direction of the O - + H 2 channel previously reported by Werner et al. [J. Chem. Phys. 87, 2913 (1987)] is found to be slightly off the linear geometry and is separated by a saddle from the auto-detachment region. The auto-detachment region is directly accessible from the OH - +H asymptote. For the molecular geometries in the auto-detachment region and in its vicinity we also performed fixed-nuclei electron-molecule scattering calculations using the R-matrix method. Tuning of consistency of a description of the correlation energy in both the multireference CI and R-matrix calculations is discussed. Two models of the correlation energy within the R-matrix method that are consistent with the quantum chemistry calculations are found. Both models yield scattering quantities in a close agreement. The results of this work will allow a consistent formulation of the nonlocal resonance model of the water anion in a future publication

  20. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    Science.gov (United States)

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  1. Fixing of metallic acetates on an anion-exchange resin

    International Nuclear Information System (INIS)

    Brigaudeau-Vaissiere, M.

    1966-06-01

    After giving a brief review of the theoretical principles governing the fixation of anionic complexes of metallic elements on an anion exchange resin, we consider the particular case of uranyl acetate. By plotting the partition curves we have been able to calculate the exchange constants in the resin. By studying the changes in the logarithm of the limiting partition coefficient as a function of the logarithm of the free acetate ion concentration, it has been possible to calculate the dissociation constants for the complexes in solution. The fixation of a large number of metallic acetates has been studied. All the tests have been negative except in the case of mercury. For this reason we have been able to consider the possibility of separating uranium from a certain number of elements. Some of these separations are possible even in the presence of interfering anions such as chlorides which have a greater affinity for the resin than have the acetate ions. In the case of water-ethanol and water-isopropanol mixtures, we have improved the conditions under which copper acetate and mercury acetate may be fixed. This study has enabled us to calculate the dissociation constant for the CuAc 3 - complex in the mixtures water +40% (by weight) isopropanol and water +50% (by weight) isopropanol. It should also make it possible to use separation conditions which could not hitherto be applied in aqueous media. (author) [fr

  2. Dynamical Jahn-Teller effect of fullerene anions

    Science.gov (United States)

    Liu, Dan; Iwahara, Naoya; Chibotaru, Liviu F.

    2018-03-01

    The dynamical Jahn-Teller effect of C60n - anions (n =1 -5) is studied using the numerical diagonalization of the linear pn⊗8 d Jahn-Teller Hamiltonian with the currently established coupling parameters. It is found that in all anions the Jahn-Teller effect stabilizes the low-spin states, resulting in the violation of Hund's rule. The energy gain due to the Jahn-Teller dynamics is found to be comparable to the static Jahn-Teller stabilization. The Jahn-Teller dynamics influences the thermodynamic properties via strong variation of the density of vibronic states with energy. Thus the large vibronic entropy in the low-spin states enhances the effective spin gap of C603 - quenching the spin crossover. From the calculations of the effective spin gap as a function of the Hund's rule coupling, we found that the latter should amount 40 ±5 meV in order to cope with the violation of Hund's rule and to reproduce the large spin gap. With the obtained numerical solutions, the matrix elements of electronic operators for the low-lying vibronic levels and the vibronic reduction factors are calculated for all anions.

  3. Analysis of anions in beer using ion chromatography

    Science.gov (United States)

    Bruce, Jonathan

    2002-01-01

    The majority of anions found in beer are a consequence of impurities derived from the water used during the brewing process. The process of beer manufacture consists of malting, brewing and fermentation followed by maturation before filtration and finally storage. Strict quality control is required because the presence of certain anions outside strictly defined tolerance limits can affect the flavour characteristics of the finished product. The anions present were quantified using the technique of ion chromatography with the Metrohm modular system following sample preparation. The analysis produced a result of the order 200 mg l-1 for chloride, phosphate and sulphate and around 20 mg l-1 for nitrate. If the chloride level exceeds 250 mg l-1, then the sweetness of the beer is enhanced, but yeast flocculation can be hindered. An excess of sulphate can give a sharp, dry edge to hopped beers and excessive amounts of nitrate have been found to harm the yeast metabolism after conversion to the nitrite form. As water is a primary ingredient within beer, its quality and type is a fundamental factor in establishing many of the distinctive regional beers that can be found in the United Kingdom and is thus monitored carefully. PMID:18924733

  4. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  5. Fixation and spontaneous dehydrogenation of methanol on a triruthenium–iridium framework: synthesis and structure of the cluster anion [HRu3Ir(CO)12(OMe)]

    OpenAIRE

    Süss-Fink, Georg; Plasseraud, Laurent; Ferrand, Vincent; Stoeckli-Evans, Helen

    2006-01-01

    The anionic mixed-metal cluster [Ru3Ir(CO)13]–1, found to be catalytically active in the carbonylation of methanol, reacts with methanol at 70 °C to give, with O–H activation of the substrate, the cluster anion [HRu3Ir(CO)12(OMe)]–2, which upon prolonged reaction loses formaldehyde to give the cluster anion [H2Ru3Ir(CO)12]–3; both anions 2 and 3 crystallise together as the double-salt [N(PPh3)2]2[HRu3Ir(CO)12(OMe)][H2Ru3Ir(CO)12] the single-crystal X-ray structure analysis of which reveals a ...

  6. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    Science.gov (United States)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co

  7. Quantitative relationships among plasma lactate, inorganic phosphorus, albumin, unmeasured anions and the anion gap in lactic acidosis.

    Science.gov (United States)

    Figge, James; Bellomo, Rinaldo; Egi, Moritoki

    2018-04-01

    Quantitative relationships among plasma [Lactate], [Pi], [Albumin], unmeasured anions ([UA]) and the anion gap (AG K ) in lactic acidosis (LA) are not well defined. A mathematical model featuring compensatory potassium and chloride shifts and respiratory changes in LA demonstrated: (1) AG K =[Lactate]+Zp×[Pi]+2.4×[Albumin]+constant1+e, where Zp is a function of pH, and e reflects unmeasured anions and cations plus pH-related variations. Eq. (1) can be algebraically rearranged to incorporate the albumin-corrected anion gap, cAG K : (2) cAG K =[Lactate]+Zp×[Pi]+constant2+e. Eq. (1) was tested against 948 data sets from critically ill patients with [Lactate] 4.0mEq/L or greater. AG K and cAG K were evaluated against 12,341 data sets for their ability to detect [Lactate]>4.0mEq/L. Analysis of Eq. (1) revealed r 2 =0.5950, p15mEq/L exhibited a sensitivity of 93.0% [95% CI: 91.3-94.5] in detecting [Lactate]>4.0mEq/L, whereas AG K >15mEq/L exhibited a sensitivity of only 70.4% [67.5-73.2]. Additionally, [Lactate]>4.0mEq/L and cAG K >20mEq/L were each strongly associated with intensive care unit mortality (χ 2 >200, p4.0mEq/L. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  9. Detection of Reactive Oxygen Species in Anion Exchange Membrane Fuel Cells using In Situ Fluorescence Spectroscopy.

    Science.gov (United States)

    Zhang, Yunzhu; Parrondo, Javier; Sankarasubramanian, Shrihari; Ramani, Vijay

    2017-08-10

    The objectives of this study were: 1) to confirm superoxide anion radical (O 2 .- ) formation, and 2) to monitor in real time the rate of O 2 .- generation in an operating anion exchange membrane (AEM) fuel cell using in situ fluorescence spectroscopy. 1,3-Diphenlisobenzofuran (DPBF) was used as the fluorescent molecular probe owing to its selectivity and sensitivity toward O 2 .- in alkaline media. The activation energy for the in situ generation of O 2 .- during AEM fuel cell operation was estimated to be 18.3 kJ mol -1 . The rate of in situ generation of O 2 .- correlated well with the experimentally measured loss in AEM ion-exchange capacity and ionic conductivity attributable to oxidative degradation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Importance of cations and anions from control agents in the synthesis of silver nanowires by polyol method

    Science.gov (United States)

    Zhu, Qing; Zhang, Zhejuan; Sun, Zhuo; Cai, Bin; Cai, Wenjun

    2016-06-01

    The important influence of cations and anions, such as Fe3+, Cu2+, H+, Na+, K+, Cl-, SO4 2- and NO3 - from control agents on the growth of silver nanowires (AgNWs) by polyol method are seriously studied. The products with silver nanostructures are characterized by field emission scanning electron microscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The effect of slow release of Ag+, low value of solubility product constant due to anions and decrease in surface oxidation etching effect due to cations on silver nanostructures are discussed. The results demonstrate that strong oxidative activeness of cation makes a greater contribution to high purity of AgNWs, especially with the aid of Cl-. This work provides a simple, efficient and controllable method for high-yield production of long AgNWs.

  11. Electronic relaxations of radiative defects of the anion sublattice in cesium bromide crystals and exoemission of electrons

    CERN Document Server

    Galyij, P V

    2002-01-01

    The paper presents the results of investigations of thermostimulated exoelectron emission (TSEE) from CsBr crystal, excited by moderate doses (D <= 10 sup 4 Gy) of ultraviolet (h nu <= 7 eV) that selectively creates anion excitons and radiative defects in the anion sublattice. Having used the previously established connection between thermoactivated processes such as thermostimulated exoemission, electroconductivity, and luminescence in the irradiated crystal lattice, the concentrations of exoemission-active centers (EAC) and kinetics parameters of TSEE are calculated. The EAC concentration calculated on a base of the bulk, thermoactivated-recombinational, and band-gap Auger-like exoemission mechanisms, are in satisfactory agreement with the concentration of electron color centers in the irradiated crystals.

  12. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    Science.gov (United States)

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  13. Efficient Low-Temperature Oxidation of Carbon-Cluster Anions by SO2

    Science.gov (United States)

    Leavitt, Andrew; Wywras, Richard; Wallace, William; Serrano, Daniel; Arredondo, Melissa; Leslie, Logan; Khan, Farooq; Whetten, Robert

    2006-03-01

    Carbon-cluster anions, CN^-, are very reactive toward SO2 (sticking probability of 0.012 ± 0.005 for C27^- at 25 ^oC), in contrast to their inertness toward other common atmospheric gases and pollutants. In flow-reactor experiments at ambient temperature and near atmospheric pressure, primary adsorption of SO2 by the carbon cluster anions, N = 4 -- 60, yields CNSO2^- or CN-1S^-. The inferred elimination of neutral CO2 is also detected as meta-stable decay in collision-induced dissociation. At higher temperatures, the reaction of SO2 with nascent carbon clusters yields CN-1SO^- as well as undetected CO. Such carbon clusters are formed in sooting flames and may act as nuclei for the formation of primary soot particles, and serve as models for the local structural features of active soot particle sites for black-carbon soot. The facile generation of reactive carbon-sulfide and --sulfinate units may therefore have implications for understanding the health and environmental effects attributed to the coincidence of soot and SO2.

  14. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore.

    Science.gov (United States)

    Linsdell, Paul

    2017-01-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.

  15. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  16. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    Science.gov (United States)

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  17. Investigating the Structure and Reactivity of Azolyl-Based Copper(I)–NHC Complexes: The Role of the Anionic Ligand

    KAUST Repository

    Trose, Michael

    2017-11-01

    A family of copper(I)–NHC azolyl complexes was synthesized and deployed in the hydrosilylation of dicyclo-hexylketone to probe the role of the anionic ligand on catalytic performance. The azolyl ligand is shown to have a crucial role in catalytic activity without the need for additives, and this at very low catalyst loading.

  18. Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia.

    Science.gov (United States)

    Chawla, Lakhmir S; Shih, Shirley; Davison, Danielle; Junker, Christopher; Seneff, Michael G

    2008-12-16

    Base deficit (BD), anion gap (AG), and albumin corrected anion gap (ACAG) are used by clinicians to assess the presence or absence of hyperlactatemia (HL). We set out to determine if these tools can diagnose the presence of HL using cotemporaneous samples. We conducted a chart review of ICU patients who had cotemporaneous arterial blood gas, serum chemistry, serum albumin (Alb) and lactate(Lac) levels measured from the same sample. We assessed the capacity of AG, BD, and ACAG to diagnose HL and severe hyperlactatemia (SHL). HL was defined as Lac > 2.5 mmol/L. SHL was defined as a Lac of > 4.0 mmol/L. From 143 patients we identified 497 series of lab values that met our study criteria. Mean age was 62.2 +/- 15.7 years. Mean Lac was 2.11 +/- 2.6 mmol/L, mean AG was 9.0 +/- 5.1, mean ACAG was 14.1 +/- 3.8, mean BD was 1.50 +/- 5.4. The area under the curve for the ROC for BD, AG, and ACAG to diagnose HL were 0.79, 0.70, and 0.72, respectively. AG and BD failed to reliably detect the presence of clinically significant hyperlactatemia. Under idealized conditions, ACAG has the capacity to rule out the presence of hyperlactatemia. Lac levels should be obtained routinely in all patients admitted to the ICU in whom the possibility of shock/hypoperfusion is being considered. If an AG assessment is required in the ICU, it must be corrected for albumin for there to be sufficient diagnostic utility.

  19. Ethylene glycol toxicity presenting with non-anion gap metabolic acidosis.

    Science.gov (United States)

    Soghoian, Sari; Sinert, Richard; Wiener, Sage W; Hoffman, Robert S

    2009-01-01

    Ethylene glycol classically produces an elevated anion gap metabolic acidosis. We report a series of patients with ethylene glycol toxicity with a component of non-anion gap metabolic acidosis without known associated confounding factors. A retrospective review of Poison Control Center records were searched more than 8 years (2000-2007) for ethylene glycol and antifreeze. Cases were reviewed and excluded for miscoding, information calls, animal exposures, or non-ingestion exposures. The bicarbonate gap, or delta ratio (DR), was calculated using the formula: DR = (AG - 12)/[24 - measured serum where anion gap (AG) = [Na(+)] - [Cl(-)] - , all in mEq/l. Non-anion gap metabolic acidosis was considered present when the DR anion gap metabolic acidosis at presentation. Their calculated anion gap was 14-28, and measured serum ranged from 2-20 mEq/l. A normal anion gap was present in two patients who presented with non-anion gap metabolic acidosis. The DR ranged from 0.28-0.95. Seven out of 14 patients with non-anion gap metabolic acidosis had elevated serum [Cl(-)]. In the other cases, no explanation for the non-anion gap metabolic acidosis could be determined. The absence of a significant anion gap elevation in the setting of metabolic acidosis after ethylene glycol ingestion without other confounding factors (such as ethanol, lithium carbonate or bromide) has not previously been recognized. Clinicians should be aware of the potential for non-anion gap metabolic acidosis in patients with ethylene glycol toxicity, and should not exclude the diagnosis in patients who present with a non-anion gap metabolic acidosis. Further study is needed to determine the mechanisms by which this occurs.

  20. Ternary Complexation on Bacterial Surfaces: Implications for Subsurface Anion Transport

    Science.gov (United States)

    Maclean, L. C.; Higginbottom, C. M.; Fowle, D. A.

    2002-12-01

    The physical, chemical, and biological controls on contaminant mobilities in aquatic ecosystems must be determined to establish the threat that contamination poses to the environment. Quantitative models of contaminant mobilities are required as a prerequisite to guide remediation efforts and to prioritize the potential hazard to the ecosystem of each contaminated site. It is well established that mineral surface adsorption is an important control on contaminant mobilities, and many studies have utilized thermodynamics to quantify metal/organic adsorption in order to yield predictive models of contaminant transport. However, these models of contaminant transport may not be representative of the reactions which control contaminant mobilities as most mineral surfaces are coated with organic acids, bacteria, and extracellular polymers. Numerous laboratory studies have demonstrated that bacterial cell walls have a high affinity for binding metal cations, and field studies indicate that a significant proportion of bacteria cells and associated extracellular matrices are coated with small scale hydrous metal oxides. The small size of bacteria, and in many cases the nanoscale of their associated mineral phases, suggests these bacteria-mineral composites may represent a large proportion of surface area exposed to fluid flow. Therefore, due to the affinity of bacterial cell walls for cations and biominerals, bacteria may also have a significant impact on anionic contaminant mobility in many natural systems. The extent of metal-bacteria adsorption reactions varies drastically as a function of pH and solution chemistry. Current adsorption models have focused on the interactions of positively charged metal cations with bacterial surfaces, however in many oxidizing environments metals such as Cr exist as anions or anionic complexes. We have studied the ability of non-metabolizing cells of the bacterial species Bacillus subtilis and Shewanella putrifaciens to adsorb aqueous Cr

  1. Chemistry of nitrile anions in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Carles, S.; Le Garrec, J.-L.; Biennier, L. [Institut de Physique de Rennes, Département de Physique Moléculaire, Astrophysique de Laboratoire, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837,35708 Rennes Cedex 7 (France)

    2015-12-31

    Despite the extreme conditions of temperature (down to 10K) and density (down to 100 molecules/cm{sup 3}), the giant molecular clouds and the circumstellar envelopes present a rich and complex chemistry. To date, more than 180 molecules have been detected in the InterStellar Medium (ISM) with a large abundance of nitriles (RC≡N). In addition, several anions have been recently observed in this medium: C{sub 4}H{sup ¯}, C{sub 6}H{sup ¯}, C{sub 8}H{sup ¯}, CN{sup ¯}, C{sub 3}N{sup ¯} and C{sub 5}N{sup ¯}. These last species should play a key role in the molecular growth towards complexity. To explore this hypothesis, their reactivity must be studied in the laboratory. The FALP-MS and the CRESU experimental apparatuses of the Rennes University are able to measure absolute rate coefficient of various chemical reactions, including the ion – molecule reactions, in gas phase at low temperature (from 300K for the FALP-MS down to 15K for the CRESU). Therefore, these experimental tools are particularly adapted to the kinetic studies of reactions potentially involved in the Interstellar Medium. One of the difficulties encountered in experiments with anions is their generation. We describe here the formation of the CN{sup ¯} and C{sub 3}N{sup ¯} anions by dissociative electron attachment on the molecular precursors BrCN and BrC{sub 3}N.

  2. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  3. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  4. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin

    International Nuclear Information System (INIS)

    Cahuzac, S.

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO 2 2+ . By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni 2+ - Co 2+ ; Ni 2+ - Co 2+ - Cu 2+ ; UO 2 2+ - Fe 3+ ; UO 2 2+ - Cr 3+ ; UO 2 2+ - Cu 2+ ; UO 2 2+ - Ni 2+ ; UO 2 2+ - Co 2+ ; UO 2 2+ - Mn 2+ and UO 2 2+ - Cd 2+ ), as well as the purification

  5. Local impermeant anions establish the neuronal chloride concentration

    DEFF Research Database (Denmark)

    Glykys, J; Dzhala, V; Egawa, K

    2014-01-01

    Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulat......Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of γ-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane...... anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling....

  6. Review: equipment for anionic surfactant manufacture from oil palm

    Directory of Open Access Journals (Sweden)

    Jesús Alfonso Torres Ortega

    2010-05-01

    Full Text Available In the present study is performed a review of the current processes of sulfonation of various raw materials for determine the process conditions in order to present the state of the art of sulfonation processes for the manufacture of anionic surfactants. There has been a scientific literature with emphasis on several aspects: Technology, sulfonation reactors and operating conditions in the process, analytical techniques for monitoring the reaction degree, the mathematical models proposed in the literature for the sulfonation/sulfation in tubular absorbers, patenting and specialized industry publications in this area.

  7. Quenching ofp-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  8. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay

    2010-01-01

    dynamic model for transport of multiple ions through an anion exchange membrane is derived based on an irreversible thermodynamics approach. This model accounts for the convective transport of the dissociated and undissociated species in the channels with diffusion and migration across the boundary...... layers and membranes. Donnan equilibrium, flux continuity of the transported ions, the electroneutrality condition and Faraday's law are employed to describe the electrical potential and concentration discontinuities at the interfaces. The Nernst-Planck equation is used to model the ion transport though...

  9. Electronic structure and spectra of the peroxynitrite anion

    Science.gov (United States)

    Krauss, M.

    1994-05-01

    The planar cis conformer is calculated as lowest in energy but the trans is sufficiently close that both species may be present at room temperature. The difference in the peak absorption energy for the strong 1 1A' → 2 1A' transition is calculated to be sufficiently large between the conformers to distinguish them or determine their composition. The transition is dissociative in the gas phase but in the solution photo-isomerization is possible to the much more stable nitrate anion. Thermal conversion in the gas phase from cis to trans is calculated to require 65kJ by rotation about the NO bond.

  10. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    Science.gov (United States)

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The role of phospholipid transfer protein in lipoprotein-mediated neutralization of the procoagulant effect of anionic liposomes.

    Science.gov (United States)

    Oslakovic, C; Jauhiainen, M; Ehnholm, C; Dahlbäck, B

    2010-04-01

    Serum has the ability to neutralize the procoagulant properties of anionic liposomes, with transfer of phospholipids (PLs) to both high-density lipoprotein (HDL) and low-density lipoprotein (LDL) particles. Phospholipid transfer protein (PLTP) mediates transfer of PLs between HDL and other lipoproteins and conversion of HDL into larger and smaller particles. To examine the role of PLTP in the neutralization of procoagulant liposomes. Procoagulant liposomes were incubated with different lipoproteins in the presence or absence of PLTP, and then tested for their ability to stimulate thrombin formation. In the absence of added PLTP, the lipoprotein-enriched fraction, total HDL, HDL(3) and very high-density lipoprotein (VHDL) were all able to neutralize the procoagulant properties of the liposomes. In these samples, endogenous PLTP was present, as judged by Western blotting. In contrast, no PLTP was present in LDL, HDL(2) and lipoprotein-deficient serum, all of which displayed no ability to neutralize the procoagulant liposomes. The phospholipid (PL) transfer activity was dependent on both enzyme (PLTP) and PL acceptor (lipoproteins). After treatment of the VHDL fraction with antiserum against PLTP, the neutralization of procoagulant activity was reduced, but could be regained by the addition of active PLTP. The neutralizing activity was dependent on a catalytically active form of PLTP, and addition of a low activity form of PLTP had no effect. In conclusion, PLTP was found to mediate transfer of anionic PLs to HDL and LDL, thereby neutralizing the effect of procoagulant liposomes, resulting in a reduction of procoagulant activity.

  12. Does lipophilicity affect the effectiveness of a transmembrane anion transporter? Insight from squaramido-functionalized bis(choloyl) conjugates.

    Science.gov (United States)

    Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua

    2015-12-28

    Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.

  13. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrocycles as linker units

    International Nuclear Information System (INIS)

    Pang Haijun; Ma Huiyuan; Yu Yan; Yang Ming; Xun Ye; Liu Bo

    2012-01-01

    A new compound, [Cu I (H 2 O)(Hbpp) 2 ]⊂{[Cu I (bpp)] 2 [PW 11 Cu II O 39 ]} (1) (bpp=1,3-bis(4-pyridyl)propane), has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. In compound 1, the unusual –A–B–A–B– array mono-substituted Keggin anion-chains and 24-membered (Cubpp) 2 cation-macrocycles are linked together to form a (2, 4) connected 3D framework with channels of ca. 9.784×7.771 Å 2 along two directions, in which the [Cu(H 2 O)(Hbpp) 2 ] coordination fragments as guest components are trapped. The photocatalytic experiments of compound 1 were performed, which show a good catalytic activity of compound 1 for photodegradation of RhB. Furthermore, the IR, TGA and electrochemical properties of compound 1 were investigated. - Graphical abstract: An unusual example of mono-substituted Keggin anion-chain based hybrid compound that possesses a 3D structure has been synthesized, which offers a feasible route for synthesis of such compounds. Highlights: ► The first example of –A–B–A–B– array mono-substituted Keggin chain is observed. ► An unusual three dimensional structure based mono-substituted Keggin anion-chains. ► The photocatalysis and electrochemical properties of the title compound were studied.

  14. Poly(L-lysine)-based star-block copolymers as pH-responsive nanocarriers for anionic drugs.

    Science.gov (United States)

    Yan, Yunsong; Li, Jiayan; Zheng, Jinhong; Pan, Ying; Wang, Jinzhi; He, Xiaoying; Zhang, Lumian; Liu, Daojun

    2012-06-15

    Star-block copolymers PEI-g-(PLL-b-PEG) with a branched polyethylenimine (PEI) core, a poly(l-lysine) (PLL) inner shell, and a poly(ethylene glycol) (PEG) outer shell have been synthesised and evaluated as potential nanocarriers for anionic drugs. The star-block copolymers were synthesised by a ring-opening polymerisation of ɛ-benzyloxycarbonyl-L-lysine N-carboxyanhydride initiated by the peripheral primary amino groups of PEI, surface modification with activated PEG 4-nitrophenyl carbonate, and subsequent deprotection of benzyl groups on the side chains of the PLL inner shell. The synthesised star-block copolymers were characterised by (1)H NMR, gel permeation chromatography (GPC), and dynamic light scattering (DLS). The encapsulation properties of these star-block copolymers were characterised by spectrophotometric titration and dialysis. These techniques demonstrated that anionic model dyes, such as methyl orange and rose Bengal, and the model drug diclofenac sodium can be encapsulated efficiently by PEI-g-(PLL-b-PEG) at physiological pH. The entrapped model compounds demonstrated sustained release at physiological pH and accelerated release when the pH was either increased to 10.0-11.0 or decreased to 2.0-3.0. The efficient encapsulation as well as the pH-responsive releasing properties of these star-block copolymers could be potentially used in the controlled release of anionic drugs. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion

    Energy Technology Data Exchange (ETDEWEB)

    Transue, Wesley J.; Velian, Alexandra; Nava, Matthew; Martin-Drumel, Marie-Aline; Womack, Caroline C.; Jiang, Jun; Hou, Gao-Lei; Wang, Xue-Bin; McCarthy, Michael C.; Field, Robert W.; Cummins, Christopher C.

    2016-06-01

    Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been characterized by molecular beam mass spectrometry (MBMS), laser-induced fluorescence (LIF), microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH = 25.5 kcal/mol and ΔS = ₋2.43 e.u., and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3- , for which structural data have been obtained in a single-crystal Xray diffraction study. Negative ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3- has been assessed using nucleus-independent chemical shift (NICS), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) methods.

  16. Optical recognition of anions by ruthenium(II)-bipyridine-calix[4]arene system.

    Science.gov (United States)

    Mareeswaran, Paulpandian Muthu; Babu, Eththilu; Rajagopal, Seenivasan

    2013-09-01

    The two t-butylcalix[4]arene attached ruthenium(II)-bipyridine complexes (Rubc2 and Rubc3) has been synthesized and the anion recognition studies have been carried out using emission techniques. The binding of anions, which are sensed by the complexes, are studied by UV-visible and emission techniques. The complex Rubc2 recognizes the Cl(-), H2PO4 (-) and AcO(-) anions. The complex Rubc3 recognizes the Br(-) and AcO(-) anions. The AcO(-) quenches the emission intensity of both two complexes but the other anion increases the emission intensity of the complexes. The excited state lifetime and transient absorption studies were carried out the AcO(-) facilitates non radiative pathway. The other anions stabilize the excited state and facilitate the radiative pathway.

  17. Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis.

    Science.gov (United States)

    Lu, Jianxin; Zello, Gordon A; Randell, Edward; Adeli, Khosrow; Krahn, John; Meng, Qing H

    2011-01-30

    A high anion gap in diabetic ketoacidosis (DKA) suggests that some unmeasured anions must contribute to the generation of the anion gap. We investigated the contribution of D-lactate to the anion gap in DKA. Diabetic patients with and without DKA and high anion gap were recruited. Plasma D-lactate was quantified by HPLC. Plasma methylglyoxal was assayed by liquid chromatography-tandem mass spectrometry. The plasma fasting glucose, β-hydroxybutyrate, and blood HbA1c levels were highly elevated in DKA. Plasma anion gap was significantly increased in DKA (20.59±6.37) compared to either the diabetic (7.50±1.88) or the control group (6.53±1.75) (panion gap (r=0.686, panion gap in DKA. Laboratory monitoring of d-lactate will provide valuable information for assessment of patients with DKA. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The Clinical Efficacy, Safety and Functionality of Anion Textile in the Treatment of Atopic Dermatitis

    OpenAIRE

    Kim, Sang Hyun; Hwang, Sung Hwan; Hong, Soon Kwon; Seo, Jong Keun; Sung, Ho Suk; Park, Sung Wook; Shin, Jeong Hwan

    2012-01-01

    Background Several previous studies have suggested the improvement of atopic dermatitis (AD) in response to special fabrics. In particular, beneficial effects have been reported, following the use of anion textiles. Objective The purpose of this study is to evaluate the effectiveness and safety of an anion textile in patients suffering from AD. Methods We compared an anion textile with a pure cotton textile. Fifty-two atopic patients (n=52) were enrolled and divided into two groups. The patie...

  19. [The plasma anion gap is a useful tool for evaluating children with metabolic acidosis].

    Science.gov (United States)

    Pivkovska, Julijana; Born, Peter; Kvist, Nina Eva; Nygaard, Ulrikka

    2013-10-14

    Metabolic acidosis occurs frequently in hospitalized children. The causes are many and often apparent from the history and physical examination. However, if the aetiology is unclear, the plasma anion gap is a useful tool for evaluating patients with metabolic acidosis. In this case report we describe two children in which the aetiology to the metabolic acidosis was unknown, one with normal anion gap who was diagnosed with renal tubular acidosis, and one with increased anion gap acidosis due to D-lactic acidosis.

  20. Optical Sensing of Anions via Supramolecular Recognition with Biimidazole Complexes.

    Science.gov (United States)

    Rommel, Sebastian A; Sorsche, Dieter; Fleischmann, Maximilian; Rau, Sven

    2017-12-22

    Phosphorescent metal complexes with peripheral N-H donor functionalities have attracted great attention as potential molecular sensing units for anionic species lately. In this contribution we discuss the development and potential of anion recognition and sensing features of recent examples of luminescent 2,2'-biimidazole complexes of ruthenium(II), iridium(III), osmium(II) and cobalt(III). The general dependency of photophysical features in these complexes regarding the acid-base chemistry of the peripheral N-H functionalities will be outlined as a basic requirement for optical ion recognition. Systematic strategies for the tuning and specific improvement by synthetic means will be discussed regarding recent reports. With respect to their distinct photophysical features, different transition metals are considered individually to demonstrate particular trends regarding ligand modification within the respective groups. In summary, this review elucidates the current state-of-the-art and future potential of the versatile class of 2,2'-biimidazole based sensor chromophores. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions.

    Science.gov (United States)

    Martins, Vitor L; Rennie, Anthony J R; Sanchez-Ramirez, Nedher; Torresi, Roberto M; Hall, Peter J

    2018-02-01

    Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN) 4 ] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm -1 ). Herein, we report the use of ILs containing the [B(CN) 4 ] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two-electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g -1 @ 15 A g -1 ). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs.

  2. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  3. Dynamics of anion-molecule reactions at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Mikosch, J.

    2007-11-15

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S{sub N}2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S{sub N}2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S{sub N}2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S{sub N}2 mechanism involving CH{sub 3}-rotation. (orig.)

  4. Anion exchange in mixed solvent systems Part 7

    International Nuclear Information System (INIS)

    Koprda, V.

    1976-01-01

    The diffusion of chlorocomplexes of some corrosion and fission products in anion exchange beads has been studied in mixed solvent media. The effects of variables on the kinetics of the exchange process by the batch and flow technique were examined. The strongly basic anion exchanger Dowex 2x8 in its Cl - form was used in organic solvent-water-hydrochloric acid solutions. The dependence of the exchange rate on temperature, the viscosity of the solution, the mean resin particle diameter and the composition of the solution was studied. Film and particle diffusion coefficients were calculated from the experimental data. The results provide valuable data for the design of separation procedures. The most perspective parameters affecting substantially the kinetics of ion exchange and the dynamic behaviour of ionic species in chromatographic column seem to be temperature temperature, viscosity of solution, resin particle diameter and the quantity of organic solvent in mixed solution. The results of the kinetics of chlorocomplexes of trace radionuclides of corrosion and fission products provide valuable data for the design of separation procedures from mixed solvents. (T.G.)

  5. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.

    1994-02-01

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs + and Sr 2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs + and Sr 2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  6. Absorption spectrum of the firefly luciferin anion isolated in vacuo.

    Science.gov (United States)

    Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen

    2011-03-24

    The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.

  7. Dynamics of anion-molecule reactions at low energy

    International Nuclear Information System (INIS)

    Mikosch, J.

    2007-11-01

    Anion-molecule reactions must find their way through deeply bound entrance and exit channel complexes separated by a central barrier. This results in low reaction rates and rich dynamics since direct pathways compete with the formation of transient intermediates. In this thesis we examine the probability of proton transfer to a small anion and transient lifetimes of a thermoneutral bimolecular nucleophilic substitution (S N 2) reaction at well defined variable temperature down to 8 Kelvin in a multipole trap. The observed strong inverse temperature dependence is attributed to the deficit of available quantum states in the entrance channel at decreasing temperature. Furthermore we investigate scattering dynamics of S N 2 reactions at defined relative energy between 0.4 and 10 eV by crossed beam slice imaging. A weakly exothermic reaction with high central barrier proceeds via an indirect, complex-mediated mechanism at low relative energies featuring high internal product excitation in excellent quantitative agreement with a statistical model. In contrast, direct backward scattering prevails for higher energies with product velocities close to the kinematical cutoff. For a strongly exothermic reaction, competing S N 2-, dihalide- and proton transfer-channels are explored which proceed by complex mediation for low energy and various rebound-, grazing- and collision induced bond rupture-mechanisms at higher energy. From our data and a collaboration with theory we identify a new indirect roundabout S N 2 mechanism involving CH 3 -rotation. (orig.)

  8. Anion exchange fractionation of serum proteins versus albumin elimination.

    Science.gov (United States)

    Sahab, Ziad J; Iczkowski, Kenneth A; Sang, Qing-Xiang Amy

    2007-09-01

    Elimination of albumin, constituting more than 50% of total serum proteins, allows increased protein loads on immobilized pH gradient (IPG) gels and better visualization of low-abundance proteins; however, it may result in the loss of albumin-bound low-abundance proteins. In this study, we report the prefractionation of serum proteins by batch anion exchange chromatography into three fractions: one containing proteins with isoelectric points (pI values) higher than the pI of albumin, a second fraction containing proteins with pI values in the same range as the pI of albumin, and a third fraction containing proteins with pI values lower than the pI of albumin. This procedure uses common instrumentation, is carried out under denaturing conditions, and takes less than 30min. We also report the loss of a clinically established prostate cancer serum biomarker, prostate-specific antigen (PSA), after albumin is eliminated using two commercially available albumin elimination kits: one that uses Cibacron Blue F3GA, which achieves albumin depletion through dye-ligand binding, and one that uses specific albumin antibody. The loss of PSA secondary to albumin elimination exceeded that after batch anion exchange serum sample prefractionation.

  9. Hyperchloremic, normal anion-gap, metabolic acidosis due to topiramate.

    Science.gov (United States)

    Mathews, Kathryn D; Stark, Jennifer E

    2008-08-01

    A rare adverse effect observed after dose escalation of topiramate therapy is discussed. A review of published cases, monitoring recommendations, and important counseling information for patients who are prescribed topiramate are described. A 37-year-old man hospitalized for mental status changes and possible seizure developed hyperchloremic, normal anion-gap, metabolic acidosis. His medical history was significant for AIDS, progressive multifocal leukoencephalopathy, a cerebrovascular accident, a seizure disorder for the past three years, and a pulmonary embolism five months before being admitted to the hospital. The patient was also taking topiramate for two months before being hospitalized for his seizure disorder. His dosage was increased after admission, but no changes were made to his other medications. The only new medication initiated was cefotaxime for 14 days to treat pneumonia. During the following 8 days, the patient continued to receive increased dosages of topiramate. His serum chloride concentration increased daily and his serum bicarbonate decreased. Topiramate was identified as the cause and was discontinued the next day. Six other cases of metabolic acidosis in adults are reviewed, as well as risk factors for metabolic acidosis. After receiving increased dosages of topiramate, a 37-year-old man developed hyperchloremic, normal anion-gap, metabolic acidosis, which resolved after discontinuation of the drug.

  10. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    International Nuclear Information System (INIS)

    Xian, Fenglin; Ye, Jiandong; Gu, Shulin; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  11. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    -erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...... in both chicken embryo fibroblasts and the QT6 quail cell line. The results show that the vector is capable of producing high titers of Neor virus from stably integrated proviruses. These proviruses express a balanced ratio of genome length to spliced transcripts which are efficiently translated...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion...

  12. Ectopic expression of the erythrocyte band 3 anion exchange protein, using a new avian retrovirus vector

    DEFF Research Database (Denmark)

    Fuerstenberg, S; Beug, H; Introna, M

    1990-01-01

    A retrovirus vector was constructed from the genome of avian erythroblastosis virus ES4. The v-erbA sequences of avian erythroblastosis virus were replaced by those coding for neomycin phosphotransferase, creating a gag-neo fusion protein which provides G418 resistance as a selectable marker. The v...... into protein. Using the Escherichia coli beta-galactosidase gene cloned into the vector as a test construct, expression of enzyme activity could be detected in 90 to 95% of transfected target cells and in 80 to 85% of subsequently infected cells. In addition, a cDNA encoding the avian erythrocyte band 3 anion......-erbB sequences following the splice acceptor were replaced by a cloning linker allowing insertion of foreign genes. The vector has been tested in conjunction with several helper viruses for the transmission of G418 resistance, titer, stability, transcription, and the transduction and expression of foreign genes...

  13. Fast kinetic and efficient removal of As(V) from aqueous solution using anion exchange resins

    International Nuclear Information System (INIS)

    Donia, Ahmed M.; Atia, Asem A.; Mabrouk, Dalia H.

    2011-01-01

    Glycidyl methacrylate/methelenebisacrylamide resin with immobilized tetraethylenepentamine ligand was prepared. This pentamine containing resin was transformed to two anion exchange resins through treatment by glycidyl trimethylammonium chloride to give (RI) or hydrochloric acid giving (RII). The resins were used to adsorb As(V) at different experimental conditions using batch and column methods. Kinetics and thermodynamic properties as well as the mechanism of interaction between As(V) and resin active sites were discussed. The maximum adsorption capacities of As(V) on RI and RII were found to be 1.83 and 1.12 mmol/g, respectively. The regeneration and the durability of the loaded resin towards the successive reuse were also investigated.

  14. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Fenglin [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); Ye, Jiandong, E-mail: yejd@nju.edu.cn [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Gu, Shulin [School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-07-11

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  15. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    Science.gov (United States)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  16. Model-based analysis of anion-exchanger positioning in direct methanol fuel cell systems

    Science.gov (United States)

    Kraus, Maik; Schröder, Daniel; Krewer, Ulrike

    2014-09-01

    In this work we present a model based study to investigate the presence of anion exchangers in direct methanol fuel cell (DMFC) systems. It is well known that environmental or fuel impurities lead to accumulation of harmful anions, such as chloride, in the system. However, due to DMFC anodic reaction, a carbonate system is present. These corbanate anions have to be taken into account for the anion exchanger design and placement as well as for the system operation strategy with and without anion exchanger, which is the objective of this study. For this purpose, the expected amount of harmful chloride ions in a DMFC system is estimated, and that of carbonate ions is calculated with a model of the carbonate system in a DMFC system. The predicition of durability and dimensions of an anion exchanger is based on a monovalent anion exchange model. The design of gas liquid separators in the DMFC system has a major influence on the amount of dissolved carbon dioxide, which is crucial for durability and dimension of a system integrated anion exchanger. Finally, feasible positions of anion exchanger in a DMFC system are elaborated to fulfill the needs for long term and stable DMFC operation.

  17. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  18. Low oxidation state aluminum-containing cluster anions: Cp∗AlnH-, n = 1-3

    Science.gov (United States)

    Zhang, Xinxing; Ganteför, Gerd; Eichhorn, Bryan; Mayo, Dennis; Sawyer, William H.; Gill, Ann F.; Kandalam, Anil K.; Schnöckel, Hansgeorg; Bowen, Kit

    2016-08-01

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*AlnH-, n = 1-3, were prepared via reactions between aluminum hydride cluster anions, AlnHm-, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  19. Anion-tunable control of thermal Z→E isomerisation in basic azobenzene receptors.

    Science.gov (United States)

    Dąbrowa, Kajetan; Niedbała, Patryk; Jurczak, Janusz

    2014-12-25

    Herein, we report that thermal Z→E isomerisation of simple azobenzene urea derivatives is selectively and predictably controlled by anion binding. The rate of this process depends strictly on the anion concentration and its binding affinity to the Z-isomer of the azobenzene host, i.e. increased rate constants are observed for higher anion concentration as well as for more strongly bound guests. The origin of this phenomenon is attributed to the electron density transfer from the anion to the host π-system, resulting in increased repulsion between the lone electron pairs in the N=N bond.

  20. Gas-Phase Anionic ?-Adduct (Trans)formations in Heteroaromatic Systems1

    OpenAIRE

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-01-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid?s conjugate base and heteroaromatic anion (?PA). The proton transfer from C-H acid to heteroaromatic anion is a dominant pro...

  1. Negative anion gap metabolic acidosis in salicylate overdose--a zebra!

    Science.gov (United States)

    Kaul, Viren; Imam, Syed Haider; Gambhir, Harvir Singh; Sangha, Arindam; Nandavaram, Sravanthi

    2013-10-01

    Salicylate poisoning classically results in an increased anion gap metabolic acidosis. We discuss a case of normal anion gap metabolic acidosis despite elevated serum salicylate concentration. This diagnostic dilemma stemmed from aberrant reading of salicylate ions by analyzer electrodes as chloride ions leading to falsely negative anion gap. On review, this phenomenon is found to be possible with a number of commonly used analyzers. In emergency department settings, high level of clinical suspicion for salicylate poisoning should be maintained, and metabolic acidosis with normal anion gap should not be used to rule out salicylate overdose. This can prevent significant avoidable morbidity and mortality.

  2. Spurious Hyperchloremia and Negative Anion Gap in a Child with Refractory Epilepsy.

    Science.gov (United States)

    Chegondi, Madhuradhar; Totapally, Balagangadhar R

    2016-01-01

    We report a case with spurious hyperchloremia with negative anion gap in a child who was taking potassium bromide for refractory epilepsy. Blood chemistry showed a high chloride level (171 mEq/L) and a negative anion gap (-52 mEq/L). Plasma chloride concentration is measured by an ion-selective electrode method; however the presence of other anions like bromide and iodides can interfere with chloride level and largely overestimates the chloride concentration. Thus hyperchloremia with a negative anion gap is a clue to the diagnosis of halides like bromide and iodide ingestion.

  3. The serum anion gap is altered in early kidney disease and associates with mortality

    Science.gov (United States)

    Abramowitz, Matthew K.; Hostetter, Thomas H.; Melamed, Michal L.

    2012-01-01

    It is well known that uremia causes an increase in the serum anion gap; however, whether changes in the anion gap occur earlier in the course of chronic kidney disease is not known. Here we investigated whether different measures of the anion gap, as a marker of kidney function, are associated with mortality. To do this we analyzed the available laboratory data of 11,957 adults in the National Health and Nutrition Examination Survey 1999–2004 to calculate anion gap using the traditional method, or one that was albumin-adjusted, as well as a full anion gap reflecting other electrolytes. A significant elevation in the traditional anion gap was seen only with an estimated glomerular filtration rate (eGFR) less than 45 mL/min/1.73m2, whereas increases in the albumin-adjusted and full anion gap were found with eGFRs less than 60 or 90mL/min/1.73m2, respectively. Higher levels of each anion gap were associated with an increased risk of all-cause mortality after adjustment for age, gender, race/ethnicity, and eGFR. After adjustment for additional covariates including body-mass index and comorbidities, higher levels of the albumin-adjusted and full anion gap were associated with mortality (relative hazard for highest compared to the lowest quartile were 1.62 and 1.64, respectively). Thus, higher levels of anion gap are present in individuals with less advanced kidney disease than previously recognized, and are associated with increased risk of mortality. Further study is needed to identify the unmeasured anions and to determine their physiologic significance. PMID:22622500

  4. Monocarbaborane anion chemistry. The elusive C-arylated [PhCB11H11](-), [PhCB9H9]- and [PhCB8H8](-) anions

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Tomáš; Kilner, C. A.; Thornton-Pett, M.; Kennedy, J. D.

    č. 18 (2001), s. 1790-1791 ISSN 1359-7345 Institutional research plan: CEZ:AV0Z4032918 Keywords : weakly coordinating anions * carboranes Subject RIV: CA - Inorganic Chemistry Impact factor: 3.902, year: 2001

  5. Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Becker, Hans; Cleemann, Lars Nilausen; Aili, David

    2017-01-01

    Micro platinum electrodes embedded in a laminated phosphoric acid doped polybenzimidazole membrane are employed to monitor the acid migration during hydrogen pump mode operation. Upon application of a constant current, an immediate ohmic resistance decrease of the membrane near the anode is obser......Micro platinum electrodes embedded in a laminated phosphoric acid doped polybenzimidazole membrane are employed to monitor the acid migration during hydrogen pump mode operation. Upon application of a constant current, an immediate ohmic resistance decrease of the membrane near the anode...... mechanism e.g. for determination of the anionic transference number. The finding provides a technique to monitor the acid redistribution within the membrane as a basis for an engineering solution to address the long-term durability of fuel cells built around phosphoric acid doped polymer membranes....

  6. Using solvent extraction to process nitrate anion exchange column effluents

    International Nuclear Information System (INIS)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses

  7. Using solvent extraction to process nitrate anion exchange column effluents

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.

    1987-10-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), a new organophosphorous extractant, and a new centrifugal mixer-settler both recently developed at Argonne were evaluated for their potential use in the recovery of actinides from nitrate anion exchange column effluents. The performance of the extractant was evaluated by measuring the extraction coefficient values as a function of acid and salt concentration. Additional performance parameters include extraction coefficient behavior as a function of the total metal concentration in the organic phase, and comparison of different stripping and organic scrubbing techniques. A simulated effluent stream was used to evaluate the performance of the centrifugal mixer-settlers by comparing experimental and calculated interstage concentration profiles. Both the CMPO extractant and the centrifugal mixer-settlers have potential for processing nitrate column effluents, particularly if the stripping behavior can be improved. Details of the proposed process are presented in the flowsheet and contactor design analyses.

  8. Highly durable direct hydrazine hydrate anion exchange membrane fuel cell

    Science.gov (United States)

    Sakamoto, Tomokazu; Serov, Alexey; Masuda, Teruyuki; Kamakura, Masaki; Yoshimoto, Koji; Omata, Takuya; Kishi, Hirofumi; Yamaguchi, Susumu; Hori, Akihiro; Horiuchi, Yousuke; Terada, Tomoaki; Artyushkova, Kateryna; Atanassov, Plamen; Tanaka, Hirohisa

    2018-01-01

    The factors influenced on degradation of direct hydrazine hydrate fuel cells (DHFCs) under operation conditions are analyzed by in situ soft X-ray radiography. A durability of DHFCs is significantly improved by multi-step reaction DHFCs (MSR-DHFCs) approach designed to decrease the crossover of liquid fuel. An open circuit voltage (OCV) as well as cell voltage at 5 mA cm-2 of MSR-DHFC construct with commercial anion exchange membrane (AEM) maintained for over of 3500 h at 60 °C. Furthermore, the commercial proton exchange membrane (PEM) is integrated into AEM of MSR-DHFCs resulting in stable power output of MSR-DHFCs for over than 2800 h at 80 °C.

  9. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.

    1991-01-01

    The University of Tennessee Space Institute (UTSI) has a Department of Energy grant to further develop the Institute's anion-exchange resin-based flue gas, desulfurization concept. The developmental program proposed includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics.

  10. Preliminary Testing For Anionic, Cationic and Non-ionic

    Directory of Open Access Journals (Sweden)

    Bokic, Lj.

    2007-11-01

    Full Text Available Detergents present a major environmental problem due to large quantities of surfactants released from laundries. For this reason, it is important to apply an appropriate analytical method for their determination. In this work, we propose two simple, fast and inexpensive analytical methods for anionic, cationic and non-ionic surfactant determination: thin layer chromatography (TLC separation for qualitative screening and quantitative potentiometric determination with ion-selective electrodes. These methods have been chosen because of their many advantages: rapidity, ease of operation, low cost of analysis and a wide variety of TLC application possibilities. The advantage of potentiometric titration is its very high degree of automation and very low detection limits obtained with different ion-selective electrodes applied for different surfactants.

  11. Quenching of p-cyanophenylalanine fluorescence by various anions

    Science.gov (United States)

    Pazos, Ileana M.; Roesch, Rachel M.; Gai, Feng

    2013-03-01

    To expand the spectroscopic utility of the non-natural amino acid p-cyanophenylalanine (PheCN), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in PheCN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of PheCN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of PheCN strongly quenches its fluorescence, suggesting that PheCN could be used as a local pH sensor.

  12. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    Science.gov (United States)

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  13. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Energy Technology Data Exchange (ETDEWEB)

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: simonetta.fornarini@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  14. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  15. UNCERTAINTIES OF ANION AND TOC MEASUREMENTS AT THE DWPF LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.

    2011-04-07

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) has identified a technical issue related to the amount of antifoam added to the Chemical Process Cell (CPC). Specifically, due to the long duration of the concentration and reflux cycles for the Sludge Receipt and Adjustment Tank (SRAT), additional antifoam has been required. The additional antifoam has been found to impact the melter flammability analysis as an additional source of carbon and hydrogen. To better understand and control the carbon and hydrogen contributors to the melter flammability analysis, SRR's Waste Solidification Engineering (WSE) has requested, via a Technical Task Request (TTR), that the Savannah River National Laboratory (SRNL) conduct an error evaluation of the measurements of key Slurry Mix Evaporator (SME) anions. SRNL issued a Task Technical and Quality Assurance Plan (TTQAP) [2] in response to that request, and the work reported here was conducted under the auspices of that TTQAP. The TTR instructs SRNL to conduct an error evaluation of anion measurements generated by the DWPF Laboratory using Ion Chromatography (IC) performed on SME samples. The anions of interest include nitrate, oxalate, and formate. Recent measurements of SME samples for these anions as well as measurements of total organic carbon (TOC) were provided to SRNL by DWPF Laboratory Operations (Lab OPS) personnel for this evaluation. This work was closely coordinated with the efforts of others within SRNL that are investigating the Chemical Process Cell (CPC) contributions to the melter flammability. The objective of that investigation was to develop a more comprehensive melter flammability control strategy that when implemented in DWPF will rely on process measurements. Accounting for the uncertainty of the measurements is necessary for successful implementation. The error evaluations conducted as part of this task will facilitate the integration of appropriate uncertainties for the

  16. Common, yet elusive: a case of severe anion gap acidosis.

    Science.gov (United States)

    Agrawal, Akanksha; Kishlyansky, Marina; Biso, Sylvia; Patnaik, Soumya; Punjabi, Chitra

    2017-09-01

    Acid-base disturbances are common occurrence in hospitalized patients with life threatening complications. 5-oxoproline has been increasingly recognized as cause of high anion gap metabolic acidosis (AGMA) in association with chronic acetaminophen use. However, laboratory workup for it are not widely available. We report case of 56-year-old female with severe AGMA not attributable to ketoacidosis, lactic acidosis or toxic ingestion. History was significant for chronic acetaminophen use, and laboratory workup negative for all frequent causes of AGMA. Given history and clinical presentation, our suspicion for 5-oxoproline toxicity was high. Our patient required emergent hemodialysis and subsequently improved clinically. With an increasing awareness of the uncommon causes of high AGMA, tests should be more readily available to detect their presence. Physicians should be more vigilant of underdiagnosed causes of AGMA if the presentation and laboratory values do not reflect a common cause, as definitive treatment may vary based on the offending agent.

  17. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  18. Interactions of Phospholipid Vesicles with Cationic and Anionic Oligomeric Surfactants.

    Science.gov (United States)

    Chen, Yao; Qiao, Fulin; Fan, Yaxun; Han, Yuchun; Wang, Yilin

    2017-07-27

    This work studied the interactions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with cationic ammonium surfactants and anionic sulfate or sulfonate surfactants of different oligomeric degrees, including cationic monomeric DTAB, dimeric C 12 C 3 C 12 Br 2 , and trimeric DDAD as well as anionic monomeric SDS, dimeric C 12 C 3 C 12 (SO 3 ) 2 , and trimeric TED-(C 10 SO 3 Na) 3 . The partition coefficient P of these surfactants between the DOPC vesicles and water was determined with isothermal titration microcalorimetry (ITC) by titrating concentrated DOPC solution into the monomer solution of these surfactants. It was found that the P value increases with the increase of the surfactant oligomeric degree. Moreover, the enthalpy change and the Gibbs free energy for the transition of these surfactants from water into the DOPC bilayer become more negative with increasing the oligomeric degree. Meanwhile, the calcein release experiment proves that the surfactant with a higher oligomeric degree shows stronger ability of changing the permeability of the DOPC vesicles. Furthermore, the solubilization of the DOPC vesicles by these oligomeric surfactants was studied by ITC, turbidity, and dynamic light scattering, and thus the phase boundaries for the surfactant/lipid mixtures have been determined. The critical surfactant to lipid ratios for the onset and end of the solubilization for the DOPC vesicles derived from the phase boundaries decrease remarkably with increasing the oligomeric degree. Overall, the surfactant with a larger oligomerization degree shows stronger ability in incorporating into the lipid bilayer, altering the membrane permeability and solubilizing lipid vesicles, which provides comprehensive understanding about the effects of structure and shape of oligomeric surfactant molecules on lipid-surfactant interactions.

  19. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  20. Effect of Structure on Charge Distribution in the Isatin Anions in Aprotic Environment: Spectral Study

    Directory of Open Access Journals (Sweden)

    Pavol Tisovský

    2017-11-01

    Full Text Available Five isatin anions were prepared by deprotonation of initial isatins in aprotic solvents using basic fluoride and acetate anions (F− and CH3COO−. The F− basicity is sufficient to deprotonate isatin NH hydrogen from all the studied compounds. This process is reversible. In the presence of proton donor solvents, the anions form the corresponding isatins. The isatin hydrogen acidity depends on the overall structure of the isatin derivatives. The anions were characterized by ultraviolet–visible (UV–Vis, Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopy. Interestingly, the anions form aggregates at concentrations above 10−3 mol·dm−3. Further, the effect of cations on the UV–Vis spectra of the studied anions was studied. Charge transfer and its distribution in the anion depends on the radius and the cation electron configuration. The alkali metal cations, tetrabutylammonium (TBA+, Mg2+ and Ag+, interact with the C-2 carbonyl oxygen of the isatin anion. The interaction has a coulombic character. On the other hand, Cd2+, Zn2+, Hg2+, Co2+, and Cu+ cations form a coordinate bond with the isatin nitrogen.

  1. use of weak ion association in the separation of inorganic anions by ...

    African Journals Online (AJOL)

    a

    ANIONS BY CAPILLARY ELECTROPHORESIS WITH SPECIFIC APPLICATION. TO SIMULTANEOUS-TRACE .... ions. CE compliments ion chromatography but is preferred in inorganic anions determination, because of its simplicity in method development, less wastage of reagents and high efficiency coupled with lower ...

  2. Improvement of Anion Transport Systems by Modulation of Chalcogen Interactions: The influence of solvent.

    Science.gov (United States)

    Sánchez-Sanz, Goar; Trujillo, Cristina

    2018-02-08

    A series of potential anion transporters, dithieno[3,2-b;2',3'-d]thiophenes (DTT), involving anion-chalcogen interactions have been studied by analyzing the interaction energy, geometry, and charge transfer. It was found that gas phase calculations show very negative interaction energies with short anion-chalcogen distances, but when solvent effects are considered, the interaction energy values decreased drastically concomitantly with an elongation on the interatomic distances. To enhance the chalcogen interaction between the DTT derivatives and the anion, increasing the anion transporter capacity, bisisothioazole moiety was considered; i.e., the σ-hole of the chalcogen atom was modulated by substitution of the adjacent carbon by a nitrogen atom in the S-C axis, increasing the depth of the σ-hole and therefore the interaction between the chalcogen and anion. Finally, different anions were analyzed within the complexes, finding that F - and NO 3 - would be the best candidates to form complexes and possibly displace other anions such as Cl - or Br - .

  3. www.ajol.info and www.bioline.org.br/ja Evaluation of Serum Anion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    gastrointestinal and renal system can alter the acid- base balance of the pregnant woman. This alteration ultimately affects the anion gap which is a function of the electrolytes; sodium, potassium, chloride and bicarbonate. The anion gap being a function of electrolytes can be affected by gastrointestinal symptoms such as.

  4. Secretion of organic anions by hepatocytes : Involvement of homologues of the multidrug resistance protein

    NARCIS (Netherlands)

    Muller, M; Roelofsen, H; Jansen, PLM

    The canalicular multispecific organic anion transporter (cMOAT) is one of at least four ATP-dependent transport systems identified so far in the canalicular membrane domain. Using mutant rat strains that lack organic anion secretion, the substrate specificity of cMOAT has been characterized. cMOAT

  5. Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport.

    NARCIS (Netherlands)

    Terlouw, S.A.; Masereeuw, R.; Russel, F.G.M.

    2003-01-01

    The human body is exposed continuously to a wide variety of exogenous compounds, many of which are anionic compounds. In addition, products of phase II biotransformation reactions are negatively charged, viz. glucuronides, sulfate esters, or glutathiones. Renal transport of organic anions is an

  6. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  7. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  8. Anion Gap as a Determinant of Ionized Fraction of Divalent Cations in Hemodialysis Patients.

    Science.gov (United States)

    Sakaguchi, Yusuke; Hamano, Takayuki; Kubota, Keiichi; Oka, Tatsufumi; Yamaguchi, Satoshi; Matsumoto, Ayumi; Hashimoto, Nobuhiro; Mori, Daisuke; Obi, Yasue; Matsui, Isao; Isaka, Yoshitaka

    2018-02-07

    Circulating levels of anions that bind to magnesium and calcium are often altered in patients with CKD. However, it is unknown how these alterations affect the ionized fraction of magnesium and calcium. This cross-sectional study involved patients on maintenance hemodialysis and patients not on dialysis who visited the outpatient department of nephrology. We collected whole-blood samples to measure ionized magnesium and calcium concentrations. Adjusted anion gap was calculated as an integrative index of unmeasured anions. A total of 118 patients on hemodialysis and 112 patients not on dialysis were included. Although the prevalence of hypermagnesemia defined by total magnesium was much higher in patients on hemodialysis than in patients not on dialysis (69% versus 12%; P anion gap than patients not on dialysis (mean [SD]: 14.1 [2.2] versus 5.1 [3.1]), the ionized fractions of magnesium and calcium were inversely associated with the adjusted anion gap. Furthermore, the anion gap significantly improved predictions of ionized magnesium and calcium in patients on hemodialysis. Anions that accumulate in patients on hemodialysis contribute to the lower ionized fraction of magnesium and calcium. Equations that incorporate the anion gap provide better predictions of ionized magnesium and calcium in patients on hemodialysis. Copyright © 2018 by the American Society of Nephrology.

  9. [Serum anion gap in the umbilical cord blood of healthy newborn infants].

    Science.gov (United States)

    Jóźwik, Michał; Jóźwik, Marcin; Pietrzycki, Bartosz

    2002-01-01

    This paper presents the results of the determination of serum anion gap in arterial and venous umbilical cord blood obtained from a carefully selected group of 47 healthy term newborns. In the arterial blood, the following concentrations of particular anions were found: chloride - 102.85 +/- 4.35 mmol/l, bicarbonate - 22.26 +/- 2.67 mmol/l, protein anions - 11.89 +/- 1.00 mmol/l, and residual anions - 14.26 +/- 4.35 mmol/l, while in the venous blood these values were: chloride - 104.28 +/- 4.14 mmol/l, bicarbonate - 20.79 +/- 2.70 mmol/l, protein anions - 12.48 +/- 1.23 mmol/l, and residual anions - 13.03 +/- 3.06 mmol/l. Provided strict clinical and biochemical (acid-base balance and blood gases) selections criteria are applied, these data are likely to represent normal values for term newborns and can be the basis for comparison of umbilical serum anion gap in newborns under depressed conditions, like asphyxia. As discussed, the role of serum anion gap studies in the diagnosis of the type of metabolic acidosis, as well as in the monitoring of neonatal therapy is most important.

  10. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication.

    Science.gov (United States)

    Lee, Sun-Hyo; Park, Samel; Lee, Jung-Won; Hwang, Il-Woong; Moon, Hyung-Jun; Kim, Ki-Hwan; Park, Su-Yeon; Gil, Hyo-Wook; Hong, Sae-Yong

    2016-07-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na(+), K(+), Cl(-) HCO3 (-), Ca(++)), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication.

  11. Minding the Gap: Utility of the Anion Gap in the Differential Diagnosis of Metabolic Acidosis.

    Science.gov (United States)

    Bell, Susan Givens

    2017-07-01

    The anion gap, in conjunction with other laboratory results, can be a useful clue in the differential diagnosis of metabolic acidosis. There are three primary causes of metabolic acidosis: loss of base, decreased renal excretion of acid, and increased acid production. Depending on the cause of metabolic acidosis, the anion gap may be elevated or normal.

  12. Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene

    NARCIS (Netherlands)

    Wezenberg, Sander J.; Feringa, Ben L.

    2017-01-01

    Toward the development of photoresponsive anion receptors, a stiff-stilbene photoswitch has been equipped' with two urea anion -binding motifs. Photoinduced E/Z isomerization has been studied in detail by UV-vis and NMR spectroscopy. Titration experiments (H-1 NMR) reveal strong binding of acetate

  13. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide.

    Science.gov (United States)

    Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang

    2015-01-05

    Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The neuroleptic chlorpromazine inhibits the cationic and stimulates the anionic phospholipid precursor synthesis in human lymphocytes.

    Science.gov (United States)

    Staub, M; Stenger, A; Sumeg, R; Spasokoukotskaja, T; Fairbanks, L D; Simmonds, H A; Keszler, G

    2006-01-01

    The widely used neuroleptic drug chlorpromazine (CPZ) influences membrane functions at the levels of ionic channels and receptors as shown. Here we show the effect of short term treatments by CPZ (30 microM), on the nucleotide-containing phospholipid precursors in human lymphocyte primary cultures. During 60 minutes incubation of the cells, the CDP-ethanolamine (CDP-EA) content was only slightly reduced (87 to 76 pmol/10(6) cells), the amount of CDP-choline (CDP-Ch) was inhibited totally (from 25 to 0 pmol) upon the treatment with 30 microM CPZ under the same conditions. It has been shown earlier, that dCTP can be used as well as CTP for biosynthesis of phospholipids. Thus, the separation of the corresponding ribo- and deoxyribo-liponucleotides was developed. CPZ almost completely inhibited the synthesis of both dCDP-EA and dCDP-Ch under the same conditions The synthesis of the activated liponucleotide precursors, can be measured by incorporation of extracellular 14C-dCyt into both dCDP-EA and dCDP-Ch, as shown earlier. While the cationic deoxyribo-liponucleotide content (dCDP-Ch, dCDP-EA) was decreased, the labelling of the anionic phospholipid precursor dCDP-diacylglycerol (dCDP-DAG) was enhanced several times, it could be labelled only in the presence of CPZ from 14C-dCyd. Thus, a principal disturbance of the membrane phospholipid synthesis is presented (i.e., inhibition of the cationic and enhancement of the anionic dCDP-DAG synthesis). This profound influence on the membrane phospholipids by chlorpromazine, might be the primary effect that contributes to the wide spectrum of CPZ effects on neuronal cells.

  15. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes

    International Nuclear Information System (INIS)

    Lou, L.L.; Clarke, S.

    1987-01-01

    Band 3, the anion transport protein of erythrocyte membranes, is a major methyl-accepting substrate of the intracellular erythrocyte protein carboxyl methyltransferase (S-adenosyl-L-methionine: protein-D-aspartate O-methyltransferase; EC 2.1.1.77). The localization of methylation sites in intact cells by analysis of proteolytic fragments indicated that sites were present in the cytoplasmic N-terminal domain as well as the membranous C-terminal portion of the polypeptide. The amino acid residues that serve as carboxyl methylation sites of the erythrocyte anion transporter were also investigated. 3 H-Methylated band 3 was purified from intact erythrocytes incubated with L-[methyl- 3 H]methionine and from trypsinized and lysed erythrocytes incubated with S-adenosyl-L-[methyl- 3 H]methionine. After proteolytic digestion with carboxypeptidase Y, D-aspartic acid beta-[ 3 H]methyl ester was isolated in low yields (9% and 1%, respectively) from each preparation. The bulk of the radioactivity was recovered as [ 3 H]methanol, and the amino acid residue(s) originally associated with these methyl groups could not be determined. No L-aspartic acid beta-[ 3 H]methyl ester or glutamyl gamma-[ 3 H]methyl ester was detected. The formation of D-aspartic acid beta-[ 3 H]methyl esters in this protein in intact cells resulted from protein carboxyl methyltransferase activity since it was inhibited by adenosine and homocysteine thiolactone, which increases the intracellular concentration of the potent product inhibitor S-adenosylhomocysteine, and cycloleucine, which prevents the formation of the substrate S-adenosyl-L-[methyl- 3 H]methionine

  16. Heterometallic modular metal-organic 3D frameworks assembled via new tris-β-diketonate metalloligands: nanoporous materials for anion exchange and scaffolding of selected anionic guests.

    Science.gov (United States)

    Carlucci, Lucia; Ciani, Gianfranco; Maggini, Simona; Proserpio, Davide M; Visconti, Marco

    2010-11-02

    -48% of the cell volume and include the anions and many guest solvent molecules. The guest solvent molecules can be reversibly removed by thermal activation with retention of the framework structure, which proved to be stable up to about 270°C, as confirmed by TGA and powder XRD monitoring. The anions could be easily exchanged in single-crystal to single-crystal processes, thereby allowing the insertion of selected anions into the framework channels.

  17. Studies on the role of insect hemolymph polypeptides: Galleria mellonella anionic peptide 2 and lysozyme.

    Science.gov (United States)

    Sowa-Jasiłek, Aneta; Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Wydrych, Jerzy; Mak, Paweł; Jakubowicz, Teresa; Cytryńska, Małgorzata

    2014-03-01

    The lysozymes are well known antimicrobial polypeptides exhibiting antibacterial and antifungal activities. Their antibacterial potential is related to muramidase activity and non-enzymatic activity resembling the mode of action of cationic defense peptides. However, the mechanisms responsible for fungistatic and/or fungicidal activity of lysozyme are still not clear. In the present study, the anti-Candida albicans activity of Galleria mellonella lysozyme and anionic peptide 2 (AP2), defense factors constitutively present in the hemolymph, was examined. The lysozyme inhibited C. albicans growth in a dose-dependent manner. The decrease in the C. albicans survival rate caused by the lysozyme was accompanied by a considerable reduction of the fungus metabolic activity, as revealed by LIVE/DEAD staining. In contrast, although AP2 reduced C. albicans metabolic activity, it did not influence its survival rate. Our results suggest fungicidal action of G. mellonella lysozyme and fungistatic activity of AP2 toward C. albicans cells. In the presence of AP2, the anti-C. albicans activity of G. mellonella lysozyme increased. Moreover, when the fungus was incubated with both defense factors, true hyphae were observed besides pseudohyphae and yeast-like C. albicans cells. Atomic force microscopy analysis of the cells exposed to the lysozyme and/or AP2 revealed alterations in the cell surface topography and properties in comparison with the control cells. The results indicate synergistic action of G. mellonella AP2 and lysozyme toward C. albicans. The presence of both factors in the hemolymph of naive larvae suggests their important role in the early stages of immune response against fungi in G. mellonella. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Band-gap-confinement and image-state-recapture effects in the survival of anions scattered from metal surfaces

    International Nuclear Information System (INIS)

    Schmitz, Andrew; Shaw, John; Chakraborty, Himadri S.; Thumm, Uwe

    2010-01-01

    The resonant charge transfer process in the collision of hydrogen anions with metal surfaces is described within a single-active-electron wave-packet propagation method. The ion-survival probability is found to be strongly enhanced at two different surface-specific perpendicular velocities of the ion. It is shown that, while the low-velocity enhancement is induced from a dynamical confinement of the ion level inside the band gap, the high-velocity enhancement is due to electron recapture from transiently populated image states. Results are presented for Li(110), Cu(111), and Pd(111) surfaces.

  19. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    Silva, J.B.S.

    1979-01-01

    A method of dynamic elution of recoiled 51 Cr +3 , formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author) [pt

  20. Differential regulation of oxidative stress and cytokine production by endothelin ETA and ETB receptors in superoxide anion-induced inflammation and pain in mice.

    Science.gov (United States)

    Fattori, Victor; Serafim, Karla G G; Zarpelon, Ana C; Borghi, Sergio M; Pinho-Ribeiro, Felipe A; Alves-Filho, José C; Cunha, Thiago M; Cunha, Fernando Q; Casagrande, Rúbia; Verri, Waldiceu A

    2017-03-01

    The present study investigated whether endothelin-1 acts via ET A or ET B receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ET A receptor antagonist) or BQ-788 (ET B receptor antagonist) prior to stimulation with the superoxide anion donor, KO 2 . Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ET A or ET B receptors, regulates superoxide anion-induced inflammation and pain.

  1. Anion capture with calcium, aluminium and iron containing layered double hydroxides

    Science.gov (United States)

    Phillips, J. D.; Vandeperre, L. J.

    2011-09-01

    The competitive adsorption of nitrate, chloride and carbonate in layered double hydroxides (LHD) with the general formula Ca(1-x)2+Al(1-y)3+,Fe(y)3+x(OH)2xNO3-·nHO was investigated. Both normal ion exchange by exposure to a solution containing different anions, as well as addition of calcined material to solution thereby exploiting the memory effect of LDHs was studied. Changes in the interlayer anion changed the interlayer spacing of the LDH. The order of preference of intercalation was Cl≈CO32->NO3-. When multiple anions were present in the exchange solution, LDHs with several distinct interlayer spacing were produced indicating that LDHs with different anions in the interlayer existed at the same time. However for extended exchange times (14 days) where high concentrations of carbonate anion were present, the layered structure was destroyed resulting in the formation of calcite, CaCO 3.

  2. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  3. Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network

    KAUST Repository

    Ji, Xiaofan

    2018-02-13

    Reported here is a hydrogel-forming polymer network that contains a water-soluble tetracationic macrocycle. Upon immersion of this polymer network in aqueous solutions containing various inorganic and organic salts, changes in the physical properties are observed that are consistent with absorption of the constituent anions into the polymer network. This absorption is ascribed to host-guest interactions involving the tetracationic macrocyclic receptor. Removal of the anions may then be achieved by lifting the resulting hydrogels out of the aqueous phase. Treating the anion-containing hydrogels with dilute HCl leads to the protonation-induced release of the bound anions. This allows the hydrogels to be recycled for reuse. The present polymer network thus provides a potentially attractive approach to removing undesired anions from aqueous environments.

  4. Do anionic titanium dioxide nano-clusters reach bulk band gap? A density functional theory study.

    Science.gov (United States)

    Qu, Zheng-Wang; Zhu, Hui

    2010-07-30

    The electronic properties of both neutral and anionic (TiO(2))(n) (n = 1-10) clusters are investigated by extensive density functional theory calculations. The predicted electron detachment energies and excitation gaps of anionic clusters agree well with the original experimental anion photoelectron spectra (APES). It is shown that the old way to analyze APES tends to overestimate vertical excitation gaps (VGA) of large anionic clusters, due to the nature of multiple electronic origins for the higher APES bands. Moreover, the VGA of anionic TiO(2) clusters are evidently smaller than those of neutral clusters, which may also be the case for other metal oxide clusters with high electron affinity. 2010 Wiley Periodicals, Inc.

  5. Ileal Neobladder: An Important Cause of Non-Anion Gap Metabolic Acidosis.

    Science.gov (United States)

    St Clair, Jesse W; Wong, Matthew L

    2017-05-01

    The differential diagnosis for a non-anion gap metabolic acidosis is probably less well known than the differential diagnosis for an anion gap metabolic acidosis. One etiology of a non-anion gap acidosis is the consequence of ileal neobladder urinary diversion for the treatment of bladder cancer. We present a case of a patient with an ileal neobladder with a severe non-anion gap metabolic acidosis caused by a urinary tract infection and ureteroenterostomy. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Part of the ileal neobladder surgery includes ureteroenterostomy and predisposes patients to several clinically significant metabolic derangements, including a non-anion gap metabolic acidosis. These patients have an increased chronic acid load, bicarbonate deficit, and hypokalemia, which should be appreciated when resuscitating these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert [National Energy Technology Laboratory; Damodaran, Krishnan [Department of Chemistry, University of Pittsburgh; Luebke, David [National Energy Technology Laboratory; Nulwala, Hunaid [National Energy Technology Laboratory

    2013-04-18

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  7. Impact of the induced organic anion transporter 1 (Oat1) renal expression by furosemide on the pharmacokinetics of organic anions.

    Science.gov (United States)

    Severin, María Julia; Hazelhoff, María Herminia; Bulacio, Romina Paula; Mamprin, María Eugenia; Brandoni, Anabel; Torres, Adriana Mónica

    2017-08-01

    Furosemide is a loop diuretic. Different authors demonstrated that continuous administration of furosemide modulates the expression of organic anion transporters. This study was undertaken to simultaneously evaluate the effects of furosemide pretreatment on organic anion transporter 1 (Oat1) and multidrug resistance protein 2 (Mrp2) renal expressions, on p-aminohippurate (PAH) pharmacokinetics and on renal and urinary PAH levels in rats. Male Wistar rats were treated with furosemide (6 mg/100 g body weight per day, subcutaneously, 4 days) (treated group) or saline (control group). On the fifth day, PAH was administered as a bolus infusion in the femoral vein, and plasma samples were obtained from femoral artery at different time points. PAH levels in renal tissue and urine were also assessed. Renal Oat1 and Mrp2 expressions were evaluated by western blotting. Furosemide pretreatment increased both the expression of Oat1 and Mrp2. PAH plasma concentrations decreased following a biexponential function. The furosemide-treated group showed higher PAH plasma levels, a lower systemic clearance and elimination rate constant from the peripheral compartment, indicating that PAH renal elimination was decreased. PAH levels in renal tissue were significantly elevated and in urine appeared to be significantly lower as compared with control animals. Furosemide pretreatment caused a significant decrease of PAH renal elimination, despite Oat1 and Mrp2 augmented renal expression. The goal of the present study is the addition of important information in the wide gap of knowledge that exists about drug-drug interactions. Because of furosemide worldwide use, the data obtained are interesting and useful in terms of translation to clinical practice. © 2016 Asian Pacific Society of Nephrology.

  8. Polyamide from lactams by reactive rotational molding via anionic ring-opening polymerization: Optimization of processing parameters

    Directory of Open Access Journals (Sweden)

    N. Barhoumi

    2013-01-01

    Full Text Available A reactive rotational molding (RRM process was developed to obtain a PA6 by activated anionic ring-opening polymerization of epsilon-caprolactam (APA6. Sodium caprolactamate (C10 and caprolactam magnesium bromide (C1 were employed as catalysts, and difunctional hexamethylene-1,6-dicarbamoylcaprolactam (C20 was used as an activator. The kinetics of the anionic polymerization of !-caprolactam into polyamide 6 was monitored through dynamic rheology and differential scanning calorimetry measurements. The effect of the processing parameters, such as the polymerization temperature, different catalyst/activator combinations and concentrations, on the kinetics of polymerization is discussed. A temperature of 150°C was demonstrated to be the most appropriate. It was also found that crystallization may occur during PA6 polymerization and that the combination C1/C20 was well suited as it permitted a suitable induction time. Isoviscosity curves were drawn in order to determine the available processing window for RRM. The properties of the obtained APA6 were compared with those of a conventionally rotomolded PA6. Results pointed at lower cycle times and increased tensile properties at weak deformation.

  9. Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease.

    Science.gov (United States)

    Wang, Li; Sweet, Douglas H

    2013-01-01

    Organic solute flux across the basolateral and apical membranes of renal proximal tubule cells is a key process for maintaining systemic homeostasis. It represents an important route for the elimination of metabolic waste products and xenobiotics, as well as for the reclamation of essential compounds. Members of the organic anion transporter (OAT, SLC22) family expressed in proximal tubules comprise one pathway mediating the active renal secretion and reabsorption of organic anions. Many drugs, pesticides, hormones, heavy metal conjugates, components of phytomedicines, and toxins are OAT substrates. Thus, through transporter activity, the kidney can be a target organ for their beneficial or detrimental effects. Detailed knowledge of the OATs expressed in the kidney, their membrane targeting, substrate specificity, and mechanisms of action is essential to understanding organ function and dysfunction. The intracellular processes controlling OAT expression and function, and that can thus modulate kidney transport capacity, are also critical to this understanding. Such knowledge is also providing insight to new areas such as renal transplant research. This review will provide an overview of the OATs for which transport activity has been demonstrated and expression/function in the kidney observed. Examples establishing a role for renal OATs in drug clearance, food/drug-drug interactions, and renal injury and pathology are presented. An update of the current information regarding the regulation of OAT expression is also provided.

  10. Adsorption of model perfumes at the air-solution interface by coadsorption with an anionic surfactant.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-03-12

    The adsorption of the model perfumes phenyl ethanol, PE, and linalool, LL, at the air-solution interface by coadsorption with the anionic surfactant sodium dodecyl 6-benezene sulfonate, LAS-6, has been studied primarily by neutron reflectivity, NR. The variation in the mixed surface adsorption with solution composition is highly nonideal, and the more hydrophobic LL is more surface active. At a LAS-6 concentration of 0.5 mM the adsorption of PE and LL is broadly similar but with the LL systematically more surface active, and at 2 mM the LL completes more effectively for the surface than the PE. The variation in surface composition with solution composition and concentration reflect the greater hydrophobicity and hence surface activity of LL, and the greater solubility of PE in aqueous solution. Changing the geometry of the LAS isomer, from the symmetrical LAS-6 geometry to the more asymmetrical LAS-4, results in the LL competing more effectively for the surface due to changes in the packing constraints associated with the hydrophobic region. The results provide insights into the factors that affect coadsorption that can be more broadly applied to the surface delivery of a wide range of molecules other than perfumes.

  11. A versatile, pulsed anion source utilizing plasma-entrainment: characterization and applications.

    Science.gov (United States)

    Lu, Yu-Ju; Lehman, Julia H; Lineberger, W Carl

    2015-01-28

    A novel pulsed anion source has been developed, using plasma entrainment into a supersonic expansion. A pulsed discharge source perpendicular to the main gas expansion greatly reduces unwanted "heating" of the main expansion, a major setback in many pulsed anion sources in use today. The design principles and construction information are described and several examples demonstrate the range of applicability of this anion source. Large OH(-)(Ar)n clusters can be generated, with over 40 Ar solvating OH(-). The solvation energy of OH(-)(Ar)n, where n = 1-3, 7, 12, and 18, is derived from photoelectron spectroscopy and shows that by n = 12-18, each Ar is bound by about 10 meV. In addition, cis- and trans- HOCO(-) are generated through rational anion synthesis (OH(-) + CO + M → HOCO(-) + M) and the photoelectron spectra compared with previous results. These results, along with several further proof-of-principle experiments on solvation and transient anion synthesis, demonstrate the ability of this source to efficiently produce cold anions. With modifications to two standard General Valve assemblies and very little maintenance, this anion source provides a versatile and straightforward addition to a wide array of experiments.

  12. Effect of chemical retention on anionic species diffusion in compacted clays

    International Nuclear Information System (INIS)

    Bazer-Bachi, Frederic

    2005-01-01

    Anionic radioisotopes are of particular importance within the framework of the calculated health risk associated with high-level and long-lived intermediate-level underground radioactive waste disposal. Therefore, the objective of this work is the construction of a transport model coupled with chemistry in order to quantify the behaviour of anionic solutes in the Callovo-Oxfordian (CO x ) argillite, the argillaceous host rock of the ANDRA Meuse/Haute-Marne underground laboratory. An experimental methodology was defined to characterize this migration, several experimental methods being implemented: batch experiments, laboratory columns and through-diffusion cells. The study of the diffusion of the non-sorbing anionic tracer 36 Cl - highlighted the fact that, due to anionic exclusion, anions only had access to a part of the porosity. The retention of 35 SO 4 2- and 125 I- on CO x argillite was then characterized, quantified by batch experiments and confirmed by other experimental methods. Nevertheless, their migration was less retarded than expected by a model based on batch experiments and on 36 Cl - diffusive data. This difference was explained by anion exclusion which reduced sorption site accessibility. Thus, the intensity of this phenomenon has to be considered to model anion migration in compacted clays. (author) [fr

  13. Ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry inhibitors fishing assay: a novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis.

    Science.gov (United States)

    Liu, Shu; Xing, Junpeng; Zheng, Zhong; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2012-02-17

    Xanthine oxidase (XOD) inhibitors and superoxide anion scavengers play an important role in the treatment of gout and the inhibition of many diseases related to superoxide anion. The respective quantitation of uric acid and superoxide anion by traditional spectroscopic methods is routine in XOD inhibitors and superoxide anion scavengers screening at laboratories worldwide. In the present study, we established an ultrahigh performance liquid chromatography and triple quadrupole mass spectrometry (UHPLC-TQ-MS) method of higher accuracy and speed that combines screening of superoxide anion scavenger and XOD inhibitor in a single analysis by adding WST-1 (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium sodium salt) to the enzymatic reaction. We applied the established method to determine the XOD inhibitory activities and superoxide scavenging activities of some herbal extracts and compounds from natural products, which could be classified into six groups based on the results of the assay. Our innovative protocol is fast, accurate and robust. Moreover, it can eliminate false positive and false negative results which may occur in the traditional spectroscopic methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Anion and pH-dependent conformational transition of an amphiphilic polypeptide.

    Science.gov (United States)

    Goto, Y; Aimoto, S

    1991-03-20

    While several proteins, including beta-lactamase, cytochrome c and apomyoglobin, are maximally unfolded at pH 2 by HCl in the absence of salt, the addition of anions, either from salt or acid, co-operatively induces the unfolded proteins to refold to a molten globule state, because anions bind preferentially to the compact molten globule state compared to the extended unfolded state. To study the role of the anion-dependent conformational transition at neutral pH, we synthesized a model polypeptide of 51 amino acid residues, consisting of tandem repeats of a Lys-Lys-Leu-Leu sequence and containing a turn sequence, Asn-Pro-Gly, at the center of the molecule. The model polypeptide showed no significant conformation by circular dichroism under conditions of low salt at neutral pH. However, addition of anions, either from salt or acid, induced the folding transition to an alpha-helical conformational state. The order of effectiveness of various anions in inducing the folding transition was consistent with the series of anions in inducing the molten globule of the acid-denatured protein. This suggests that the helical state of the model polypeptide is equivalent to the molten globule state. At pH values above 9, the model polypeptide also took an alpha-helical conformation, which was very similar to that induced by anions. On the basis of the chloride and pH-dependent conformational transitions, a phase diagram for the conformational states was constructed. The phase diagram was explained simply by assuming that the conformational transition is linked to the proton and the anion bindings to a limited number of amino groups and that anions bind only to the protonated groups.

  15. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; González-Caniulef, D.; Jones, G. H.; Lewis, G. R.; Taylor, S. A.; Kataria, D. O. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Surrey RH5 6NT (United Kingdom); Vuitton, V. [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Crary, F. J. [Laboratory for Atmospheric and Space Physics, University of Colorado, Innovation Drive, Boulder, CO 80303 (United States); Shebanits, O.; Wahlund, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Waite, J. H. [Space Science and Engineering Division, Southwest Research Institute (SWRI), 6220 Culebra Road, San Antonio, TX 78238 (United States); Cordiner, M.; Sittler, E. C. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Edberg, N. J. T., E-mail: r.t.desai@ucl.ac.uk [Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala (Sweden)

    2017-08-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q{sup −1}. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q{sup −1} and between 49.0–50.1 u q{sup −1} which are identified as belonging to the carbon chain anions, CN{sup −}/C{sub 3}N{sup −} and/or C{sub 2}H{sup −}/C{sub 4}H{sup −}, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q{sup −1} could be attributed to the further carbon chain anions C{sub 5}N{sup −}/C{sub 6}H{sup −} but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q{sup −1}) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  16. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  17. Resonance effect in the allyl cation and anion: a revisit.

    Science.gov (United States)

    Mo, Yirong

    2004-08-20

    The interest over the magnitude of the conjugation effect in the allyl cation (1) and anion (2) has been revived recently by Barbour and Karty (J. Org. Chem. 2004, 69, 648-654), who derived the resonance energies of 20-22 and 17-18 kcal/mol for 1 and 2, respectively, using an empirical extrapolation approximation. This paper revisits the case by explicitly calculating the Pauling-Wheland resonance energy, which measures the stabilization from the most stable resonance structure to the delocalized energy-minimum state of a conjugated system, using our newly developed block-localized wave function (BLW) method. This BLW method has the geometrical optimization capability. The computations result in adiabatic resonance energies of 37 kcal/mol for 1 and 38 kcal/mol for 2. The significant disagreement between these values and Barbour and Karty's results originates from the neglect of structural and electronic variations in their derivation which are energy costing. Copyright 2004 American Chemical Society

  18. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres

    Science.gov (United States)

    Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.; Fayon, Pierre; Trewin, Abbie; Fitch, Andrew N.; Schmidt, Martin U.; Thomas, Arne

    2017-10-01

    Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO6 building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by 29Si nuclear magnetic resonance analysis. Characterization by high-resolution powder X-ray diffraction, density functional theory calculation and analysis of the pair-distribution function showed that those anionic frameworks—M2[Si(C16H10O4)1.5], where M = Li, Na, K and C16H10O4 is 9,10-dimethylanthracene-2,3,6,7-tetraolate—crystallize as two-dimensional hexagonal layers stabilized in a fully eclipsed stacking arrangement with pronounced disorder in the stacking direction. Permanent microporosity with high surface area (up to 1,276 m2 g-1) was evidenced by gas-sorption measurements. The negatively charged backbone balanced with extra-framework cations and the permanent microporosity are characteristics that are shared with zeolites.

  19. The hydrothermolysis of the picrate anion: Kinetics and mechanism

    Science.gov (United States)

    Ross, D.S.; Jayaweera, I.

    2002-01-01

    The hydrothermolysis of the picrate anion in aqueous solution has been studied at 260-325??C in liquid water. At starting pH values above 12, the disappearance of picrate begins immediately and is first order in OH-. At lower pH, there is an induction period preceding the disappearance, and over the pH range 6.7-11.9 there is no pH dependence in the developed reaction phase. Added borate and silicate salts promote the reaction, suggesting their acting as nucleophiles at hydrothermal conditions. Nitrite is an initial product, while acetate is a final product and reflective of a vigorous oxidative sequence consuming the intermediate products. A reaction sequence consistent with the results at the lower pH includes initiation of a chain process by displacement of nitrite by water, followed by nucleophilic displacement of nitrite by nitrite such that a nitro group is replaced by an O-N=O group. The ester then rapidly hydrolyzes, and the net reaction is the production of an additional nitrite with each cycle. A simple modeling of this system satisfactorily fits the experimental findings. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Stability of anionic polymers in presence of multivalent cations

    International Nuclear Information System (INIS)

    Sabbagh, Imad

    1997-01-01

    This research thesis aimed at studying the stability of poly-electrolytes in saline environments, and the interactions between ions and poly-electrolytes of different charge densities. For this purpose, the author more particularly studied specific interactions between anionic poly-electrolytes and multivalent cations. After a recall of properties of neutral polymers and poly-electrolytes in solution, the author evokes interactions between poly-electrolytes and counter-ions, and briefly presents two models of stability of poly-electrolytes in saline solutions. The next part presents various experimental spectroscopic and electrochemical techniques and results of the characterization of the used products. Spectroscopic techniques allow ion-polymer interactions at the atomic scale to be studied, and electrochemical techniques allow the behaviour of small ions to be studied. The author then discusses the main differences of solubility between poly-electrolytes containing sulphonate or sulphate groups and those containing carboxylate groups. A model is then developed to generalise phase diagrams of a poly-electrolyte with respect to the chemical affinity of its functional group with ions of opposite sign. The author then addresses the behaviour of a non charged polyacrylic acid in various saline solutions, and presents a phase diagram model [fr

  1. Anion-exchange resin-based desulfurization process

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A.C.; Strevel, S.D.; Dharmapurikar, R.

    1992-01-01

    Under the current grant, the University of Tennessee Space Institute (UTSI) will carry out the bench scale evaluation and further development of the anion-exchange resin-based desulfurization concept to desulfurize alkali metal sulfates. This concept has been developed and patented by UTSI under US Patent No. 4,917,874. The developmental program proposed under this DOE grant includes screening of commercially available resins to select three candidate resins for further study. These three resins will undergo a series of experiments designed to test the resins' performance under different process conditions (including the use of spent MHD seed material). The best of these resins will be used in optimizing the regeneration step and in testing the effects of performance enhancers. The process schematic developed from the results will be used to estimate the related economics. During this reporting period, October 1, 1991 to September 30, 1992, analysis of batch mode screening experiments was completed to select three candidate resins for process variables study in the fixed-bed set-up. This setup was modified and the experiments were carded out to evaluate effects of major process variables. The analysis of fixed-bed experiments is going on and we have also started simple batch mode experiments to identify desirable conditions for resin regeneration step. We have also started simple process engineering type calculations to determine the trade-off between the solution concentration and the resulting evaporation/concentration load.

  2. A direct ascorbate fuel cell with an anion exchange membrane

    Science.gov (United States)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  3. Anion exchange membrane fuel cells: Current status and remaining challenges

    Science.gov (United States)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung

    2018-01-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.

  4. Fouling mitigation of anion exchange membrane by zeta potential control.

    Science.gov (United States)

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase.

  5. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  7. Regulation of renal peripheral benzodiazepine receptors by anion transport inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Basile, A.S.; Lueddens, W.M.; Skolnick, P.

    1988-01-01

    The in vitro and in vivo regulation of (/sup 3/H)Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of (/sup 3/H)Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approx. = 30 - 130 ..mu..M). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki=100-1000 ..mu..M). Administration of furosemide to rats for five days resulted in a profound diuresis accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of (/sup 3/H)Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors. 36 references, 4 tables.

  8. Studies on Anionic Surfactant Structure in the Aggregation with (Hydroxypropylcellulose

    Directory of Open Access Journals (Sweden)

    Ricardo M. de Martins

    2002-01-01

    Full Text Available Fluorescence probing, viscosity and light scattering measurements have been combined to study the aggregation of different anionic surfactants mainly in dilute solutions (0.5% w/v of (hydroxypropylcellulose (HPC MW 173,000, in moderate ionic strength (NaCl 0.1 mol.L-1. The set of surfactants includes natural cholesterol derivatives, sodium cholate (CS and sodium deoxycholate (DC, and the alkylsulphate, sodium dodecylsulphate (SDS. At 298 K the critical surfactant concentration related to aggregate/HPC formation (C1 decreases for SDS and DC whereas it increases slightly for CS. At 312 K the C1 values for CS and DC are slightly shifted toward higher values whereas it is not changed for SDS. All surfactant/HPC systems increase C1 values as the HPC concentration increases to 1.2%. Above C1 the viscosity increases for all surfactant/HPC systems but it is sharper in the increasing order CS, DC and SDS. The hydrodynamic behavior indicates that CS induces higher diffusion to HPC than SDS and DC. The aggregation in the surfactant/HPC systems is analyzed through the feature of surfactant/aggregate structure (size, charge density, etc.

  9. Nanostructured anion conducting block copolymer electrolyte thin films

    Science.gov (United States)

    Arges, Christopher; Kambe, Yu; Nealey, Paul

    Lamellae forming block copolymer electrolyte (BCE) thin-films with perpendicular aligned orientation were registered with high fidelity over large areas via a self-assembly process followed by a novel chemical vapor infiltration reaction (CVIR) technique. In this scheme, poly(styrene- b-2-vinyl pyridine) (PS bP2VP) block copolymers were self-assembled with perpendicular orientations on neutral chemical brushes using solvent vapor annealing. The ionic groups were selectively introduced into the P2VP block via a Menshutkin reaction that converted the nitrogen in the pyridine to n-methylpyridinium - anion carrier groups. FTIR-ATR and XPS tools confirmed the formation of the aforementioned ionic moieties post CVIR process and structure imaging tools (e.g., SEM and AFM imaging, GI-SAXS and RSOXs) established that incorporation of the ionic groups did not alter the self-assembled nanostructured films nor did subsequent ion-exchange processes. Electrochemical impedance spectroscopy determined the in-plane ion conductivity of different counteranions in the BCE thin films and alteration to the symmetry of the block copolymer film substantially improved (or hindered) BCE ion conductivity if the P2VP block's volume fraction was slightly greater than (or less than) 0.5. U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

  10. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Cation and anion monitoring in a wastewater treatment pilot project

    Directory of Open Access Journals (Sweden)

    Magda de Almeida

    2015-01-01

    Full Text Available El propósito del tratamiento de aguas residuales es la reutilización del agua.Esta reduce el consumo de agua potable y previene la contaminación del agua de primeruso. La reutilización del agua ya se ha implementado con éxito en diferentes lugares. Lostratamientos que utilizan los humedales artifi ciales son ampliamente estudiados como unaalternativa más económica y ecológica para tratar las aguas residuales. En estos sistemas, elcontrol de especies inorgánicas también es importante. Este estudio ha monitoreado cationes (Na+, K+, Li+ y NH4+ y aniones (SO42-, NO3-, NO2-, Cl- y PO42- en un sistema de humedalesconstruido (CWs, en un sistema de captación de agua de lluvia, en el tratamiento de aguasresiduales y en agua reutilizable fi nal. El monitoreo se llevó a cabo utilizando el análisiscromatográfi co de iones. Los valores de remoción encontrados en CWs fueron: 99,9% K+,NH4+ y SO42-, 52,6% Na+, 89,8% NO3-, 98,2% NO2-, 63,6% Cl- y 96,8% PO42-. Los resultadostambién mostraron que el sistema CWs está adecuado para la eliminación de iones del aguaresidual.

  12. Sodium citrate-assisted anion exchange strategy for construction of Bi{sub 2}O{sub 2}CO{sub 3}/BiOI photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De, E-mail: zhangwd@scut.edu.cn

    2015-02-15

    Highlights: • Heterostructured Bi{sub 2}O{sub 2}CO{sub 3}/BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi{sub 2}O{sub 2}CO{sub 3}/BiOI composites show high visible light photocatalytic activity. - Abstract: Bi{sub 2}O{sub 2}CO{sub 3}/BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi{sub 2}O{sub 2}CO{sub 3} in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO{sub 3}{sup 2−} in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi{sub 2}O{sub 2}CO{sub 3}/BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi{sub 2}O{sub 2}CO{sub 3} towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi{sub 2}O{sub 2}CO{sub 3}, which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA.

  13. Contamination of commercial cane sugars by some organic acids and some inorganic anions.

    Science.gov (United States)

    Wojtczak, Maciej; Antczak, Aneta; Lisik, Krystyna

    2013-01-01

    The aim of the paper was the identification and the quantitative evaluation of the following inorganic anions: chloride, phosphate, nitrate, nitrite, sulphate and the following organic acids: lactic, acetic, formic, malic and citric in commercial "unrefined" brown cane sugars and in cane raw sugars. The determination was carried out by high performance anion exchange chromatography with conductivity detector HPAEC-CD. The conducted analyses have shown that the content of some inorganic anions and organic acids in cane sugars may be an important criterion of the quality of commercial "unrefined" brown cane sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Observation of an aromatic radical anion dimer: (C10F8)2 sm-bullet -

    International Nuclear Information System (INIS)

    Werst, D.W.

    1994-01-01

    Radical cation dimers are observed for many alkenes and aromatic hydrocarbons as products of the reaction between monomer radical cation and neutral molecule. In most cases, the dimer radical anions, formed via reaction of the monomer radical anion with a neutral molecule, have not been observed. Here we report the observation of the dimer radical anion of octafluoronaphthalene, formed by reaction of C 10 F 8 ·- with the neutral parent molecules in nonpolar solvents following pulse radiolysis. Both monomer and dimer ions have been characterized by EPR spectra obtained by the time-resolved fluorescence-detected magnetic resonance

  15. The mechanism in the poisoning of anion-exchange resins by cobalt cyanide

    International Nuclear Information System (INIS)

    Fleming, C.A.; Hancock, R.D.

    1979-01-01

    The complex responsible for the poisoning of anion-exchange resins is identified as the anionic cobaltic pentacyanide mono aquo species. It is shown that, at high concentration, this species polymerizes in solutions of pH less than 9. A mechanism for poisoning is presented that involves adsorption of anionic cobalt cyanide by a normal ion-exchange process, followed by polymerization within the resin matrix to form complexes that are too large to diffuse readily through the resin pores. The effects of resin structure and functionality on the extent of cobalt poisoning are examined, and the effect of cobalt poisoning on the kinetics and equilibrium loading of uranium is discussed [af

  16. Urine Anion Gap to Predict Urine Ammonium and Related Outcomes in Kidney Disease.

    Science.gov (United States)

    Raphael, Kalani L; Gilligan, Sarah; Ix, Joachim H

    2018-02-07

    Low urine ammonium excretion is associated with ESRD in CKD. Few laboratories measure urine ammonium, limiting clinical application. We determined correlations between urine ammonium, the standard urine anion gap, and a modified urine anion gap that includes sulfate and phosphate and compared risks of ESRD or death between these ammonium estimates and directly measured ammonium. We measured ammonium, sodium, potassium, chloride, phosphate, and sulfate from baseline 24-hour urine collections in 1044 African-American Study of Kidney Disease and Hypertension participants. We evaluated the cross-sectional correlations between urine ammonium, the standard urine anion gap (sodium + potassium - chloride), and a modified urine anion gap that includes urine phosphate and sulfate in the calculation. Multivariable-adjusted Cox models determined the associations of the standard urine anion gap and the modified urine anion gap with the composite end point of death or ESRD; these results were compared with results using urine ammonium as the predictor of interest. The standard urine anion gap had a weak and direct correlation with urine ammonium ( r =0.18), whereas the modified urine anion gap had a modest inverse relationship with urine ammonium ( r =-0.58). Compared with the highest tertile of urine ammonium, those in the lowest urine ammonium tertile had higher risk of ESRD or death (hazard ratio, 1.46; 95% confidence interval, 1.13 to 1.87) after adjusting for demographics, GFR, proteinuria, and other confounders. In comparison, participants in the corresponding standard urine anion gap tertile did not have higher risk of ESRD or death (hazard ratio, 0.82; 95% confidence interval, 0.64 to 1.07), whereas the risk for those in the corresponding modified urine anion gap tertile (hazard ratio, 1.32; 95% confidence interval, 1.03 to 1.68) approximated that of directly measured urine ammonium. Urine anion gap is a poor surrogate of urine ammonium in CKD unless phosphate and

  17. Electrocatalytic properties of nanomaterials synthesized from “Bromide Anion Exchange” method - Investigations of glucose and glycerol oxidation

    International Nuclear Information System (INIS)

    Holade, Yaovi; Servat, Karine; Napporn, Teko W.; Kokoh, K. Boniface

    2015-01-01

    Highlights: • Scrutiny of Bromide Anion Exchange (BAE) straightforward synthesis method. • Molar concentration of metal salt and bromide ion content control BAE method. • Enhanced kinetic of glucose electrooxidation on AuPd/C and AuPt/C. • Glycerate and glycolate are the main glycerol reaction products on Pd/C. - Abstract: In this work, different experimental parameters influencing the straightforward nanoparticles synthesis method, so-called Bromide Anion Exchange (BAE) were scrutinized. It was found that a bromide ion to metal(s) molar ratio of 1.5 gave the best electrochemical activity of the obtained catalysts toward the organics oxidation. The revisited BAE synthesis approach allows the preparation of highly active AuPt/C and AuPd/C nanomaterials. It has been highlighted that this method changes drastically the structure of AuPd nanostructures leading to alloyed system when Au atomic content is higher than 50%. These gold-based materials can be considered as advanced surfactant-free nanoparticles for anode electrodes design in abiotic or hybrid glucose biofuel cell. Furthermore, qualitative and quantitative analyses of glycerol conversion indicate that glycolate and glycerate are the main final products with selectivity higher than 40 and 30%, respectively

  18. Identification of a probable pore-forming domain in the multimeric vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Baetz, Ulrike; Krügel, Undine; Martinoia, Enrico; De Angeli, Alexis

    2013-10-01

    Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.

  19. Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation.

    Science.gov (United States)

    Huang, Liyi; El-Hussein, Ahmed; Xuan, Weijun; Hamblin, Michael R

    2018-01-01

    We recently reported that addition of the non-toxic salt, potassium iodide can potentiate antimicrobial photodynamic inactivation of a broad-spectrum of microorganisms, producing many extra logs of killing. If the photosensitizer (PS) can bind to the microbial cells, then delivering light in the presence of KI produces short-lived reactive iodine species, while if the cells are added after light the killing is caused by molecular iodine produced as a result of singlet oxygen-mediated oxidation of iodide. In an attempt to show the importance of PS-bacterial binding, we compared two charged porphyrins, TPPS4 (thought to be anionic and not able to bind to Gram-negative bacteria) and TMPyP4 (considered cationic and well able to bind to bacteria). As expected TPPS4+light did not kill Gram-negative Escherichia coli, but surprisingly when 100mM KI was added, it was highly effective (eradication at 200nM+10J/cm 2 of 415nm light). TPPS4 was more effective than TMPyP4 in eradicating the Gram-positive bacteria, methicillin-resistant Staphylococcus aureus and the fungal yeast Candida albicans (regardless of KI). TPPS4 was also highly active against E. coli after a centrifugation step when KI was added, suggesting that the supposedly anionic porphyrin bound to bacteria and Candida. This was confirmed by uptake experiments. We compared the phthalocyanine tetrasulfonate derivative (ClAlPCS4), which did not bind to bacteria or allow KI-mediated killing of E. coli after a spin, suggesting it was truly anionic. We conclude that TPPS4 behaves as if it has some cationic character in the presence of bacteria, which may be related to its delivery from suppliers in the form of a dihydrochloride salt. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).