WorldWideScience

Sample records for animal-based agriculture phosphorus

  1. Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future

    OpenAIRE

    Shigaki Francirose; Sharpley Andrew; Prochnow Luís Ignácio

    2006-01-01

    Eutrophication has become a major threat to water quality in the U.S., Europe, and Australasia. In most cases, freshwater eutrophication is accelerated by increased inputs of phosphorus (P), of which agricultural runoff is now a major contributor, due to intensification of crop and animal production systems since the early 1990s'. Once little information is available on the impacts of Brazilian agriculture in water quality, recent changes in crop and animal production systems in Brazil were e...

  2. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  3. Phosphorus in Agriculture : 100 % Zero

    NARCIS (Netherlands)

    Schnug, Ewald; De Kok, Luit J.

    2016-01-01

    Phosphorus is essential for all living organisms, reserves in geogenic deposits are finite, and phosphorus nutrient mining and oversupply are common phenomenons on agricultural soils. Only if the agricultural phosphorus cycle can be closed and the fertilized nutrient been utilized completely,

  4. Regulating phosphorus from the agricultural sector

    DEFF Research Database (Denmark)

    Hansen, Line Block; Hansen, Lars Gårn; Rubæk, Gitte Holton

    2010-01-01

      Loss of phosphorus (P) from agricultural areas is one of the main contributors to eutrophication of water systems in many European countries. Regulatory systems such as ambient taxes or discharge taxes which are suitable for regulation of N are insufficient for regulating P because these systems...... do not take into account the importance of P already stored in the soils. Phosphorus stored in the soils is the major source of P losses to surface waters, but at the same time crucial for the soils ability to sustain a viable crop production. Even if measures on P losses from agricultural areas...

  5. Agricultural trade and the global phosphorus cycle

    Science.gov (United States)

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  6. Use of Phosphorus Isotopes for Improving Phosphorus Management in Agricultural Systems

    International Nuclear Information System (INIS)

    2016-10-01

    Phosphorus is an essential element in plant, human and animal nutrition. Soils with low levels of phosphorus are widespread in many regions of the world, and the deficiency limits plant growth and reduces crop production and food quality. This publication provides comprehensive and up to date information on several topics related to phosphorus in soil–plant systems, in agricultural systems and in the environment. It presents the theoretical background as well as practical information on how to use nuclear and radioisotope tracer techniques in both laboratory and greenhouse experiments to assess soil phosphorus forms and plant-available soil phosphorus pools, and to understand the cycling processes in soil–plant systems. The publication focuses on practical applications of radiotracer techniques and can serve as resource material for research projects on improving sustainable phosphorus management in agricultural systems and as practical guidance on the use of phosphate isotopes in soil–plant research

  7. Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future Produção animal, manejo de fósforo e qualidade da água no Brasil: opções para o futuro

    Directory of Open Access Journals (Sweden)

    Francirose Shigaki

    2006-04-01

    Full Text Available Eutrophication has become a major threat to water quality in the U.S., Europe, and Australasia. In most cases, freshwater eutrophication is accelerated by increased inputs of phosphorus (P, of which agricultural runoff is now a major contributor, due to intensification of crop and animal production systems since the early 1990s'. Once little information is available on the impacts of Brazilian agriculture in water quality, recent changes in crop and animal production systems in Brazil were evaluated in the context of probable implications of the fate of P in agriculture. Between 1993 and 2003, there was 33% increase in the number of housed animals (i.e., beef, dairy cows, swine, and poultry, most in the South Region (i.e., Paraná, Rio Grande do Sul, and Santa Catarina States, where 43 and 49% of Brazil's swine and poultry production is located, respectively. Although grazing-based beef production is the major animal production system in Brazil, it is an extensive system, where manure is deposited over grazed pastures; confined swine and poultry are intensive systems, producing large amounts of manure in small areas, which can be considered a manageable resource. This discussion will focus on swine and poultry farming. Based on average swine (100 kg and poultry weights (1.3 kg, daily manure production (4.90 and 0.055 kg per swine and poultry animal unit, respectively, and manure P content (40 and 24 g kg-1 for swine and poultry, respectively, an estimated 2.5 million tones of P in swine and poultry manure were produced in 2003. Mostly in the South and Southeast regions of Brazil (62%, which represent only 18% of the country's land area. In the context of crop P requirements, there was 2.6 times more P produced in manure (1.08 million tones than applied as fertilizer (0.42 million tonnes in South Brazil in 2003. If it is assumed that fertilizer P use represents P added to meet crop needs and accounts for P sorbed by soil in unavailable forms each

  8. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    DEFF Research Database (Denmark)

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E

    2013-01-01

    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0...

  9. Phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  10. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?

    International Nuclear Information System (INIS)

    Jarvie, Helen P.; Neal, Colin; Withers, Paul J.A.

    2006-01-01

    Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P + suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication

  11. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Directory of Open Access Journals (Sweden)

    F. Lun

    2018-01-01

    Full Text Available The application of phosphorus (P fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  12. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Science.gov (United States)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  13. Agricultural phosphorus and water quality: sources, transport and management

    Directory of Open Access Journals (Sweden)

    A. SHARPLEY

    2008-12-01

    Full Text Available Freshwater eutrophication is usually controlled by inputs of phosphorus (P. To identify critical sources of P export from agricultural catchments we investigated hydrological and chemical factors controlling P export from a mixed land use (30% wooded, 50% cultivated, 20% pasture 39.5-ha catchment in east-central Pennsylvania, USA. Mehlich-3 extractable soil P, determined on a 30-m grid over the catchment, ranged from 7 to 788 mg kg-1. Generally, soils in wooded areas had low Mehlich-3 P (

  14. Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria – a step to phosphorus security in agriculture

    Directory of Open Access Journals (Sweden)

    Chandan eMukherjee

    2015-12-01

    Full Text Available Phosphorus (P, an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp. and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale.

  15. Embodied phosphorus and the global connections of United States agriculture

    Science.gov (United States)

    MacDonald, Graham K.; Bennett, Elena M.; Carpenter, Stephen R.

    2012-12-01

    Agricultural phosphorus (P) use is intricately linked to food security and water quality. Globalization of agricultural systems and changing diets clearly alter these relationships, yet their specific influence on non-renewable P reserves is less certain. We assessed P fertilizer used for production of food crops, livestock and biofuels in the US agricultural system, explicitly comparing the domestic P use required for US food consumption to the P use embodied in the production of US food imports and exports. By far the largest demand for P fertilizer throughout the US agricultural system was for feed and livestock production (56% of total P fertilizer use, including that for traded commodities). As little as 8% of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P) was consumed in US diets in the same year, while larger fractions may have been retained in agricultural soils (28%), associated with different post-harvest losses (40%) or with biofuel refining (10%). One quarter of all P fertilizer used in the US was linked to export production, primarily crops, driving a large net P flux out of the country (338 Gg P). However, US meat consumption relied considerably on P fertilizer use in other countries to produce red meat imports. Changes in domestic farm management and consumer waste could together reduce the P fertilizer required for US food consumption by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). US export-oriented agriculture, domestic post-harvest P losses and global demand for meat may ultimately have an important influence on the lifespan of US phosphate rock reserves.

  16. Phosphorus and water budgets in an agricultural basin.

    Science.gov (United States)

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas.

  17. Barium as a potential indicator of phosphorus in agricultural runoff.

    Science.gov (United States)

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p barium (p barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Managing agricultural phosphorus to minimize water quality impacts

    Directory of Open Access Journals (Sweden)

    Andrew Sharpley

    2016-02-01

    Full Text Available ABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P inputs from both point (e.g., municipal waste water treatment plants and nonpoint sources (e.g., urban and agricultural runoff. As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures.

  19. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  20. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water

    DEFF Research Database (Denmark)

    Dantas Mendes, Lipe Renato; Tonderski, Karin; Iversen, Bo Vangsø

    2018-01-01

    Surface-flow constructed wetlands (CWs) are potential cost-efficient solutions to mitigate phosphorus (P) loads from agricultural areas to surface waters. Hydraulic and phosphorus loading rates (HLR and PLR) are critical parameters that regulate P retention in these systems. The present study aim...

  1. Phosphorus losses from agricultural areas in river basins; effects and uncertainties of targeted mitigation measures

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Lundekvam, H.; Behrendt, H.; Rubaek, G.H.; Schoumans, O.F.; Syversen, N.; Andersen, H.E.; Hoffmann, C.C.

    2005-01-01

    In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly

  2. Efficient phosphorus management practices in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm

  3. Immobilization of Agricultural Phosphorus in an Illinois Floodplain Soil

    Science.gov (United States)

    Arenberg, M. R.; Arai, Y.

    2017-12-01

    Nutrient losses from the Mississippi watershed are exacerbating the growth of the hypoxic zone in the Gulf of Mexico. Located within the highly agricultural Piatt County, IL, Allerton Park encompasses a riparian forest that receives an influx of phosphorus (P) via surface runoff and leaching during spring flooding. The purpose of this study is to investigate the ability of a poorly drained Sawmill silty clay loam (fine-silty, mixed, superactive, mesic Cumulic Endoaquolls) and a poorly drained Tice silty clay loam (fine-silty, mixed, superactive, mesic Fluvaquentic Hapludolls), both with an average pH of 7.08, to buffer agricultural P losses through immobilization. If P is effectively sequestered, it may also lead to improved tree growth in woody biomass. The system's response to the seasonal flooding event was assessed by comparing P mineralization-immobilization dynamics within the bottomland and surrounding upland of the forest. Specifically, organic P, microbial P, phosphatase activity, and total P were assessed. First, total P ranged from 338 to 819 mg kg-1, averaging at 580 mg kg-1, in the bottomland and from 113 to 370 mg kg-1, averaging at 245 mg kg-1, in the upland. Next, organic P spanned from 90 to 457 mg kg-1in the bottomland, comprising an average of 45% of total P, and ranged from 42 to 191 mg kg-1in the upland, comprising an average of 36% of total P. Furthermore, microbial P averaged 13.08 mg kg-1 in the bottomland and 6.87 mg kg-1 in the upland. Finally, acidic phosphatase activity averaged 13 μmol p-nitrophenyl phosphate (PNP)/g·hr in the bottomland and 11 μmol PNP/g·hr in the upland while alkaline phosphatase activity averaged 24 μmol PNP/g·hr in the bottomland and 8 μmol PNP/g·hr in the upland. Our preliminary assessment suggests that the concentrations of total P, organic P, and microbial P in the bottomland are greater than that of the upland. This suggests that the floodplain has been effectively immobilizing agricultural P. This

  4. Phosphorus and groundwater: Establishing links between agricultural use and transport to streams

    Science.gov (United States)

    Domagalski, Joseph L.; Johnson, Henry

    2012-01-01

    Phosphorus is a highly reactive element that is essential for life and forms a variety of compounds in terrestrial and aquatic ecosystems. In water, phosphorus may be present as the orthophosphate ion (PO43-) and is also present in all life forms as an essential component of cellular material. In natural ecosystems, phosphorus is derived from the erosion of rocks and is conserved for plant growth as it is returned to the soil through animal waste and the decomposition of plant and animal tissue; but in agricultural systems, a portion of the phosphorus is removed with each harvest, especially since phosphorus is concentrated in the seeds and fruit. Phosphorus is added to soil by using chemical fertilizers, manure, and composted materials. Agricultural use of chemical phosphorus fertilizer, in the United States, in 2008 was 4,247,000 tons, which is an increase of 25 percent since 1964 (http://www.ers.usda.gov/Data/FertilizerUse/). Widely grown corn, soybeans, and wheat use the greatest amount of phosphorus fertilizer among agricultural crops.

  5. Phosphorus cycling in Montreal's food and urban agriculture systems.

    Science.gov (United States)

    Metson, Geneviève S; Bennett, Elena M

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities' P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents' relationship to, and understanding of, the food system and increases their acceptance of composting.

  6. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  7. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  8. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  9. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  10. Phosphorus losses from agricultural watersheds in the Mississippi Delta.

    Science.gov (United States)

    Yuan, Yongping; Locke, Martin A; Bingner, Ronald L; Rebich, Richard A

    2013-01-30

    Phosphorus (P) loss from agricultural fields is of environmental concern because of its potential impact on water quality in streams and lakes. The Mississippi Delta has long been known for its fish productivity and recreational value, but high levels of P in fresh water can lead to algal blooms that have many detrimental effects on natural ecosystems. Algal blooms interfere with recreational and aesthetic water use. However, few studies have evaluated P losses from agricultural watersheds in the Mississippi Delta. To better understand the processes influencing P loss, rainfall, surface runoff, sediment, ortho-P (orthophosphate, PO(4)-P), and total P (TP) were measured (water years 1996-2000) for two subwatersheds (UL1 and UL2) of the Deep Hollow Lake Watershed and one subwatershed of the Beasley Lake Watershed (BL3) primarily in cotton production in the Mississippi Delta. Ortho-P concentrations ranged from 0.01 to 1.0 mg/L with a mean of 0.17 mg/L at UL1 (17.0 ha), 0.36 mg/L at UL2 (11.2 ha) and 0.12 mg/L at BL3 (7.2 ha). The TP concentrations ranged from 0.14 to 7.9 mg/L with a mean of 0.96 mg/L at UL1, 1.1 mg/L at UL2 and 1.29 mg/L at BL3. Among the three sites, UL1 and UL2 received P application in October 1998, and BL3 received P applications in the spring of 1998 and 1999. At UL1, ortho-P concentrations were 0.36, 0.25 and 0.16 for the first, second and third rainfall events after P application, respectively; At UL2, ortho-P concentrations were 1.0, 0.66 and 0.65 for the first, second and third rainfall events after P application, respectively; and at BL3, ortho-P concentrations were 0.11, 0.22 and 0.09 for the first, second and third rainfall events after P application, respectively. P fertilizer application did influence P losses, but high P concentrations observed in surface runoff were not always a direct result of P fertilizer application or high rainfall. Application of P in the fall (UL1 and UL2) resulted in more ortho-P losses, likely

  11. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    Science.gov (United States)

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  12. Evaluation of Phosphorus Leaching in an Agricultural Soil under Different Soil Amendments

    OpenAIRE

    ERDONA DEMIRAJ; FERDI BRAHUSHI; JAMARBËR MALLTEZI; SULEJMAN SULÇE

    2017-01-01

    The transport of Phosphorus (P) from agricultural soils to surface waters sensitive to eutrophication has long been a world-wide environmental concern. The intensive agricultural activity in the upper Shkodra fields, combined with others point source pollution, probably, intensify eutrophication of the Shkodra Lake. These Clay Loamy soils (calcaric Regosols) are characterized by low organic matter, N and P, with a high water percolation. An experiment was conducted at Greenhouse Research Stat...

  13. Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Songjie He

    2018-06-01

    Full Text Available This study aims to evaluate recent total phosphorus (TP and dissolved inorganic phosphorus (DIP transport from three coastal rivers—the Calcasieu, Mermentau, and Vermilion Rivers—that drain watersheds with varied agriculture intensities (21%, 67%, and 61%, respectively into the northern Gulf of Mexico, one of the world’s largest summer hypoxic zones. The study also examined the spatial trends of TP and DIP from freshwater to saltwater along an 88-km estuarine reach with salinity increasing from 0.02 to 29.50. The results showed that from 1990–2009 to 2010–2017, the TP fluxes for one of the agriculture-intensive rivers increased while no significant change was found for the other two rivers. Change in river discharge was the main reason for this TP flux trend. The two more agriculture-intensive river basins showed consistently higher TP and DIP concentrations and fluxes, as well as higher DIP:TP ratios than the river draining less agriculture-intensive land, confirming the strong effect of land uses on phosphorus input and speciation. Longitudinal profiles of DIP along the salinity gradient of the estuarine reach displayed characteristic input behavior. Desorption of DIP from suspended solids and river bed sediments, urban inputs, as well as stronger calcium carbonate and phosphorus co-precipitation at the marine endmember could be the reasons for such mixing dynamics.

  14. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Elizabeth T. Alori

    2017-06-01

    Full Text Available The use of excess conventional Phosphorus (P fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se, arsenic (As in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

  15. SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS

    OpenAIRE

    Krzysztof Pulikowski; Katarzyna Pawęska; Aleksandra Bawiec

    2014-01-01

    In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values ​​calcu...

  16. Transitions to sustainable management of phosphorus in Brazilian agriculture.

    Science.gov (United States)

    Withers, Paul J A; Rodrigues, Marcos; Soltangheisi, Amin; de Carvalho, Teotonio S; Guilherme, Luiz R G; Benites, Vinicius de M; Gatiboni, Luciano C; de Sousa, Djalma M G; Nunes, Rafael de S; Rosolem, Ciro A; Andreote, Fernando D; Oliveira, Adilson de; Coutinho, Edson L M; Pavinato, Paulo S

    2018-02-07

    Brazil's large land base is important for global food security but its high dependency on inorganic phosphorus (P) fertilizer for crop production (2.2 Tg rising up to 4.6 Tg in 2050) is not a sustainable use of a critical and price-volatile resource. A new strategic analysis of current and future P demand/supply concluded that the nation's secondary P resources which are produced annually (e.g. livestock manures, sugarcane processing residues) could potentially provide up to 20% of crop P demand by 2050 with further investment in P recovery technologies. However, the much larger legacy stores of secondary P in the soil (30 Tg in 2016 worth over $40 billion and rising to 105 Tg by 2050) could provide a more important buffer against future P scarcity or sudden P price fluctuations, and enable a transition to more sustainable P input strategies that could reduce current annual P surpluses by 65%. In the longer-term, farming systems in Brazil should be redesigned to operate profitably but more sustainably under lower soil P fertility thresholds.

  17. Estimation of phosphorus loss from agricultural land in the Heartland region using the APEX model: a first step to evaluating phosphorus indices

    Science.gov (United States)

    Purpose. Phosphorus (P) indices are a key tool to minimize P loss from agricultural fields but there is insufficient water quality data to fully test them. Our goal is to use the Agricultural Policy/Environmental eXtender Model (APEX), calibrated with existing edge-of-field runoff data, to refine P...

  18. SEASONAL CHANGES IN PHOSPHORUS LOAD FLOWING OUT OF SMALL AGRICULTURAL CATCHMENTS

    Directory of Open Access Journals (Sweden)

    Krzysztof Pulikowski

    2014-12-01

    Full Text Available In this article distribution of monthly phosphorus loads flowing out of two agricultural catchments which are located in different physiographic conditions of Lower Silesia was analysed. Loads of phosphorus runoff from the catchment located in the piedmont part of Lower Silesia in each month rarely exceed 0.10 kg P ∙ ha-1. The size of annual load is determined by loads obtained in two months of early spring. Much lower loads obtained for lowland catchment, located near Wroclaw. Values ​​calculated for each month rarely exceed the value of 0.01 kg P ∙ ha-1. Culmination of loads bringing away is a bit more extended in a time compared to the catchment located on Sudety Mts. Foreland. Much higher loads are observed during the period from January to April – this period has a major impact on the size of phosphorus load that flows out from this catchment during whole hydrological year. The obtained results clearly indicate that the threat of watercourses and water reservoirs supply in phosphorus compounds from agricultural land is periodic and it is particularly high during early spring. Phosphorus load flowing out from the analyzed catchments is very diverse. From facility located on Sudety Foothill in hydrological year, during research period, flowed away average 0.81 kg P ∙ ha-1. Significantly lower values were obtained for second facility and it was average 0.15 kg P ∙ ha-1 during a year. The size of load discharged during a year is largely determined by amount of phosphorus load flowing out during winter half of the year (from XI to IV. In case of foothill catchment in this period flowed out average 0.56 kg P ∙ ha-1, which presents 69% of annual load and in lowland catchment this percentage was even slightly higher and was 73%.

  19. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    Science.gov (United States)

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  20. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    Science.gov (United States)

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  1. Food, Feed, or Fuel? Phosphorus Flows Embodied in US Agricultural Production and Trade

    Science.gov (United States)

    MacDonald, G.; Bennett, E.; Carpenter, S.

    2012-12-01

    Agricultural phosphorus (P) use is integral to sustainable food production and water quality regulation. Globalization of agricultural systems, changing diets, and increasing biofuel production pose new challenges for managing non-renewable P reserves, particularly in key agricultural producing regions such as the US. We used a detailed model of the US agricultural system to assess the quantity of mineral P fertilizers used to produce food crops, livestock, and biofuels relative to the P ultimately consumed in domestic diets. We also quantified linkages in fertilizer use between the US and its trading partners globally via agricultural trade. Feed and livestock production drove by far the largest demand for P fertilizers in the US (56% of all P use for domestic and imported products). Of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P), 28% were retained in agricultural soils as surplus P, 40% were lost through processing and waste prior to consumption in human diets, while 10% were diverted directly to biofuel production. One quarter of P fertilizer in the US was required to produce exports, particularly major food and feed crops (corn, soybean, and wheat) that drove a large net P flux out of the country (338 Gg P) with strongly crop-specific effects on soil P imbalances nationally. However, US meat consumption involved considerable reliance on P fertilizer use in other countries to produce red meat imports linked primarily to soil P surpluses abroad. We show that changes in domestic farm management and consumer waste could together reduce the P fertilizer needed to produce food consumed in the US by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). More effective distribution of P use for major crops nationally and greater recycling of all agricultural wastes is critical to using US phosphate rock reserves as efficiently as possible while maintaining export-oriented agriculture.

  2. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna.

    Science.gov (United States)

    Rodrigues, Marcos; Pavinato, Paulo Sergio; Withers, Paul John Anthony; Teles, Ana Paula Bettoni; Herrera, Wilfrand Ferney Bejarano

    2016-01-15

    Crop production in the Brazilian Cerrado is limited by soil phosphorus (P) supply without large inputs of inorganic P fertilizer, which may become more costly and scarce in the future. Reducing dependency on fertilizer P requires a greater understanding of soil P supply in the highly weathered soils in this important agricultural region. We investigated the impact of no tillage (NT) and conventional tillage (CT) agriculture on accumulated (legacy) soil P and P forms in four long-term sites. Compared to the native savanna soils, tilled soils receiving regular annual P fertilizer inputs (30-50 kg P ha(-1)) increased all forms of inorganic and organic P, except highly recalcitrant P associated with the background lithology. However, 70-85% of the net added P was bound in moderately labile and non-labile forms associated with Fe/Al oxyhydroxides rather than in plant available forms. Under NT agriculture, organic P forms and labile and non-labile inorganic P forms were all significantly (Pagriculture. The contribution of organic P cycling in these tropical soils increased after conversion to agriculture and was proportionally greater under NT. The results highlight the large amounts of unutilized legacy P present in Brazil's Cerrado soils that could be better exploited to reduce dependency on imports of finite phosphate rock. No tillage agriculture confers a positive albeit relatively small benefit for soil P availability and overall soil function. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Phosphorus dynamics in lowland streams as a response to climatic, hydrological and agricultural land use gradients

    DEFF Research Database (Denmark)

    Goyenola, G.; Meerhoff, M.; Teixeira-de Mello, F.

    2015-01-01

    contrasting climate and hydrological regimes (temperate Denmark and subtropical Uruguay). We applied two alternative nutrient sampling programmes (high frequency composite sampling and low frequency instantaneous-grab sampling) and three alternative methods to estimate exported P from the catchments. A source...... apportionment model was applied to evaluate the contribution derived from point and diffuse sources in all four catchments studied. Climatic and hydrological characteristics of catchments expressed as flow responsiveness (flashiness), exerted control on catchment and stream TP dynamics, having consequences......Climate and hydrology are relevant control factors for determining the timing and amount of nutrient losses from agricultural fields to freshwaters. In this study, we evaluated the effect of agricultural intensification on the concentrations, dynamics and export of phosphorus (P) in streams in two...

  4. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment.

    Science.gov (United States)

    Sun, Daquan; Hale, Lauren; Kar, Gourango; Soolanayakanahally, Raju; Adl, Sina

    2018-03-01

    Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Phosphorus retention in a newly constructed wetland receiving agricultural tile drainage water.

    Science.gov (United States)

    Kynkäänniemi, Pia; Ulén, Barbro; Torstensson, Gunnar; Tonderski, Karin S

    2013-01-01

    One measure used in Sweden to mitigate eutrophication of waters is the construction of small wetlands (free water surface wetland for phosphorus retention [P wetlands]) to trap particulate phosphorus (PP) transported in ditches and streams. This study evaluated P retention dynamics in a newly constructed P wetland serving a 26-ha agricultural catchment with clay soil. Flow-proportional composite water samples were collected at the wetland inlet and outlet over 2 yr (2010-2011) and analyzed for total P (TP), dissolved P (DP), particulate P (PP), and total suspended solids (TSS). Both winters had unusually long periods of snow accumulation, and additional time-proportional water samples were frequently collected during snowmelt. Inflow TP and DP concentrations varied greatly (0.02-1.09 mg L) during the sampling period. During snowmelt in 2010, there was a daily oscillation in P concentration and water flow in line with air temperature variations. Outflow P concentrations were generally lower than inflow concentrations, with net P losses observed only in August and December 2010. On an annual basis, the wetland acted as a net P sink, with mean specific retention of 69 kg TP, 17 kg DP, and 30 t TSS ha yr, corresponding to a reduction in losses of 0.22 kg TP ha yr from the agricultural catchment. Relative retention was high (36% TP, 9% DP, and 36% TSS), indicating that small constructed wetlands (0.3% of catchment area) can substantially reduce P loads from agricultural clay soils with moderately undulating topography. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    Science.gov (United States)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  7. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment

    DEFF Research Database (Denmark)

    Hashemi, Fatemeh; Olesen, Jørgen Eivind; Dalgaard, Tommy

    2016-01-01

    Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns...... nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic...... processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions...

  8. Sensitivity analysis of the agricultural policy/environmental extender (APEX) for phosphorus loads in tile-drained landscapes

    Science.gov (United States)

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on phosphorus (P) loadings from agricultural fields. However, tools that simulate both surface and subsurface P pathways are limited and have not been robustly evaluated in tile-drained...

  9. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability

    NARCIS (Netherlands)

    Firmansyah, I.; Spiller, M.; Ruijter, De F.J.; Carsjens, G.J.; Zeeman, G.

    2017-01-01

    Nitrogen (N) and phosphorus (P) are two essential macronutrients required in agricultural production. The
    major share of this production relies on chemical fertilizer that requires energy and relies on limited resources
    (P). Since these nutrients are lost to the environment, there is a need

  10. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)

    2017-01-09

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  11. Using agricultural practices information for multiscale environmental assessment of phosphorus risk

    Science.gov (United States)

    Matos Moreira, Mariana; Lemercier, Blandine; Michot, Didier; Dupas, Rémi; Gascuel-Odoux, Chantal

    2015-04-01

    Phosphorus (P) is an essential nutrient for plant growth. In intensively farmed areas, excessive applications of animal manure and mineral P fertilizers to soils have raised both economic and ecological concerns. P accumulation in agricultural soils leads to increased P losses to surface waterbodies contributing to eutrophication. Increasing soil P content over time in agricultural soils is often correlated with agricultural practices; in Brittany (NW France), an intensive livestock farming region, soil P content is well correlated with animal density (Lemercier et al.,2008). Thus, a better understanding of the factors controlling P distribution is required to enable environmental assessment of P risk. The aim of this study was to understand spatial distribution of extractable (Olsen method) and total P contents and its controlling factors at the catchment scale in order to predict P contents at regional scale (Brittany). Data on soil morphology, soil tests (including P status, particles size, organic carbon…) for 198 punctual positions, crops succession since 20 years, agricultural systems, field and animal manure management were obtained on a well-characterized catchment (ORE Agrhys, 10 km²). A multivariate analysis with mixed quantitative variables and factors and a digital soil mapping approach were performed to identify variables playing a significant role in soil total and extractable P contents and distribution. Spatial analysis was performed by means of the Cubist model, a decision tree-based algorithm. Different scenarios were assessed, considering various panels of predictive variables: soil data, terrain attributes derived from digital elevation model, gamma-ray spectrometry (from airborne geophysical survey) and agricultural practices information. In the research catchment, mean extractable and total P content were 140.0 ± 63.4 mg/kg and 2862.7 ± 773.0 mg/kg, respectively. Organic and mineral P inputs, P balance, soil pH, and Al contents were

  12. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture

    Directory of Open Access Journals (Sweden)

    Maïté S. Guignard

    2017-07-01

    Full Text Available Nitrogen (N and/or phosphorus (P availability can limit growth of primary producers across most of the world's aquatic and terrestrial ecosystems. These constraints are commonly overcome in agriculture by applying fertilizers to improve yields. However, excessive anthropogenic N and P inputs impact natural environments and have far-reaching ecological and evolutionary consequences, from individual species up to entire ecosystems. The extent to which global N and P cycles have been perturbed over the past century can be seen as a global fertilization experiment with significant redistribution of nutrients across different ecosystems. Here we explore the effects of N and P availability on stoichiometry and genomic traits of organisms, which, in turn, can influence: (i plant and animal abundances; (ii trophic interactions and population dynamics; and (iii ecosystem dynamics and productivity of agricultural crops. We articulate research priorities for a deeper understanding of how bioavailable N and P move through the environment and exert their ultimate impacts on biodiversity and ecosystem services.

  13. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  14. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    Science.gov (United States)

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  15. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    Directory of Open Access Journals (Sweden)

    Runzhe Geng

    Full Text Available Best management practices (BMPs for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P index, model simulation techniques (Hydrological Simulation Program-FORTRAN, and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001 decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program

  16. Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use.

    Science.gov (United States)

    Kröger, R; Dunne, E J; Novak, J; King, K W; McLellan, E; Smith, D R; Strock, J; Boomer, K; Tomer, M; Noe, G B

    2013-01-01

    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized by management with the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use.

    Science.gov (United States)

    Schröder, J J; Smit, A L; Cordell, D; Rosemarin, A

    2011-08-01

    Mineral phosphorus (P) fertilizers processed from fossil reserves have enhanced food production over the past 50 years and, hence, the welfare of billions of people. Fertilizer P has, however, not only been used to lift the fertility level of formerly poor soils, but also allowed people to neglect the reuse of P that humans ingest in the form of food and excrete again as faeces and urine and also in other organic wastes. Consequently, P mainly moves in a linear direction from mines to distant locations for crop production, processing and consumption, where a large fraction eventually may become either agronomically inactive due to over-application, unsuitable for recycling due to fixation, contamination or dilution, and harmful as a polluting agent of surface water. This type of P use is not sustainable because fossil phosphate rock reserves are finite. Once the high quality phosphate rock reserves become depleted, too little P will be available for the soils of food-producing regions that still require P supplements to facilitate efficient utilization of resources other than P, including other nutrients. The paper shows that the amounts of P applied in agriculture could be considerably smaller by optimizing land use, improvement of fertilizer recommendations and application techniques, modified livestock diets, and adjustment of livestock densities to available land. Such a concerted set of measures is expected to reduce the use of P in agriculture whilst maintaining crop yields and minimizing the environmental impact of P losses. The paper also argues that compensation of the P exported from farms should eventually be fully based on P recovered from 'wastes', the recycling of which should be stimulated by policy measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils.

    Science.gov (United States)

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger

    2013-01-01

    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  20. Characterizing phosphorus dynamics in tile-drained agricultural fieldsof eastern Wisconsin

    Science.gov (United States)

    Madison, Allison; Ruark, Matthew; Stuntebeck, Todd D.; Komiskey, Matthew J.; Good, Laura W.; Drummy, Nancy; Cooley, Eric

    2014-01-01

    Artificial subsurface drainage provides an avenue for the rapid transfer of phosphorus (P) from agricultural fields to surface waters. This is of particular interest in eastern Wisconsin, where there is a concentrated population of dairy farms and high clay content soils prone to macropore development. Through collaboration with private landowners, surface and tile drainage was measured and analyzed for dissolved reactive P (DRP) and total P (TP) losses at four field sites in eastern Wisconsin between 2005 and 2009. These sites, which received frequent manure applications, represent a range of crop management practices which include: two chisel plowed corn fields (CP1, CP2), a no-till corn–soybean field (NT), and a grazed pasture (GP). Subsurface drainage was the dominant pathway of water loss at each site accounting for 66–96% of total water discharge. Average annual flow-weighted (FW) TP concentrations were 0.88, 0.57, 0.21, and 1.32 mg L−1 for sites CP1, CP2, NT, and GP, respectively. Low TP concentrations at the NT site were due to tile drain interception of groundwater flow where large volumes of tile drainage water diluted the FW-TP concentrations. Subsurface pathways contributed between 17% and 41% of the TP loss across sites. On a drainage event basis, total drainage explained between 36% and 72% of the event DRP loads across CP1, CP2, and GP; there was no relationship between event drainflow and event DRP load at the NT site. Manure applications did not consistently increase P concentrations in drainflow, but annual FW-P concentrations were greater in years receiving manure applications compared to years without manure application. Based on these field measures, P losses from tile drainage must be integrated into field level P budgets and P loss calculations on heavily manured soils, while also acknowledging the unique drainage patterns observed in eastern Wisconsin.

  1. Phosphorus Cycling in Montreal’s Food and Urban Agriculture Systems

    Science.gov (United States)

    Metson, Geneviève S.; Bennett, Elena M.

    2015-01-01

    Cities are a key system in anthropogenic phosphorus (P) cycling because they concentrate both P demand and waste production. Urban agriculture (UA) has been proposed as a means to improve P management by recycling cities’ P-rich waste back into local food production. However, we have a limited understanding of the role UA currently plays in the P cycle of cities or its potential to recycle local P waste. Using existing data combined with surveys of local UA practitioners, we quantified the role of UA in the P cycle of Montreal, Canada to explore the potential for UA to recycle local P waste. We also used existing data to complete a substance flow analysis of P flows in the overall food system of Montreal. In 2012, Montreal imported 3.5 Gg of P in food, of which 2.63 Gg ultimately accumulated in landfills, 0.36 Gg were discharged to local waters, and only 0.09 Gg were recycled through composting. We found that UA is only a small sub-system in the overall P cycle of the city, contributing just 0.44% of the P consumed as food in the city. However, within the UA system, the rate of recycling is high: 73% of inputs applied to soil were from recycled sources. While a Quebec mandate to recycle 100% of all organic waste by 2020 might increase the role of UA in P recycling, the area of land in UA is too small to accommodate all P waste produced on the island. UA may, however, be a valuable pathway to improve urban P sustainability by acting as an activity that changes residents’ relationship to, and understanding of, the food system and increases their acceptance of composting. PMID:25826256

  2. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China.

    Science.gov (United States)

    Yi, Qitao; Xie, Kai; Sun, Pengfei; Kim, Youngchul

    2014-02-15

    Extensive coal mining in the Huainan Coal Mines, Anhui China, in light of the local hydrology and geology, has resulted in extensive land subsidence and submergence around the mines. This has led to the formation of large (>100 km(2)) lakes. Three representative lakes were selected to study the mechanisms of phosphorus (P) unavailability for primary production from the perspective of sedimentary environments, which in turn owe their formation to permanently inundated agricultural soils. Two important issues were considered: (1) potential of P transport from the cultivated soil column toward surface sediments and (2) characterization of P behavior in view of regional ecological rehabilitation and conservation. Accordingly, we conducted field sediment analyses, combined with simulation experiments of soil column inundation/submergence lasting for four months. Enrichment of Fe-(hydr)oxides in surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. Iron (Fe), but not its bound P, moved upward from the submerged soil column to the surface. However, an increasing upward gradient in the contents of organic matter (OM), total nitrogen (N), total phosphorus (TP), and different P fractions was caused by spatial heterogeneity in soil properties. Phosphorus was unable to migrate upward toward the surface sediments as envisioned, because of complex secondary reactions within soil minerals. Phosphorus bound to Fe and/or Al comprised over 50% of TP, which has important implications for local ecological rehabilitation and water conservation. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    Science.gov (United States)

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52

  4. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    Science.gov (United States)

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  5. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment.

    Science.gov (United States)

    Hashemi, Fatemeh; Olesen, Jørgen E; Dalgaard, Tommy; Børgesen, Christen D

    2016-12-15

    Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns within stream or river catchments have considerable influence on nutrient transport, transformation and retention processes that all eventually affect loadings to vulnerable aquatic environments. Therefore, in order to address options to reduce nutrient loadings, quantitative assessment of their effects in real catchments need to be undertaken. This involves setting up scenarios of the possible nutrient load reduction measures and quantifying their impacts via modelling. Over the recent two decades there has been a great increase in the use of scenario-based analyses of strategies to combat excessive nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic conditions, with a large focus on measures targeting land cover/use and land management for reducing the source load of N and P in the landscape. Some of the studies considered how to manage the flows of nutrients, or how changes in the landscape may be used to influence both flows and transformation processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions and climatic conditions. Most of the studies used existing catchment models such as SWAT and INCA, and the choice of the models may also have influenced the setup of the scenarios. The use of

  6. Future supply of phosphorus in agriculture and the need to maximise efficiency of use and reuse

    NARCIS (Netherlands)

    Rosemarin, A.; Schroder, J.J.; Dagerskog, L.; Cordell, D.; Smit, A.L.

    2011-01-01

    Commercially viable reserves of rock phosphate are limited and only a few countries are significant producers. China and the US will play a much smaller role within 50 years time and the bulk of the world's mined phosphorus will come from Morocco. A conservative estimate of longevity of the resource

  7. Evaluation of phosphorus and nitrogen balances as an indicator for the impact of agriculture on environment a comparison of case studies from Poland and the Mississippi US

    Science.gov (United States)

    The objective of the research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS). Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development...

  8. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol

    NARCIS (Netherlands)

    Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.

    2017-01-01

    The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of

  9. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    Science.gov (United States)

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  10. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    Science.gov (United States)

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  11. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona

    in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well....... Targeting high risk areas of P loss and applying site-specific measures promises to be a cost-efficient approach. The Danish Commission for Nature and Agriculture has, therefore, now called for a paradigm shift towards targeted, cost-efficient technologies to mitigate site-specific nutrient losses...... environmental threshold values (

  12. Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry

    Directory of Open Access Journals (Sweden)

    Michael Oster

    2018-06-01

    Full Text Available Since phosphorus (P is an essential element for life, its usage and application across agricultural production systems requires great attention. Monogastric species such as pigs and poultry can significantly contribute to global food security but these animals remain highly dependent on the supply of mineral inorganic P in their feeds. Pig and poultry, which represent 70% of the global meat production, are also major P excretors and thus represent important sources of environmental P inputs. Balancing the P cycle within farming systems is crucial to achieve P sustainable and resilient livestock production. Therefore, the interconnection of animal feed, livestock farming, manure, and soil/aquatic ecosystems requires multidisciplinary approaches to improve P management. With regard to a sustainable agricultural P cycle, this study addresses aspects of feeding strategies and animal physiology (e.g., phase feeding, P conditioning, liquid feeding, phytase supplementation, genetics, soil agroecosystems (e.g., P cycling, P losses, P gains, reuse and recycling (e.g., manure, slaughter waste, measures of farmers’ economic performance (e.g., bio-economic models, and P governance/policy instruments (e.g., P quota, P tax. To reconcile the economic and ecological sustainability of animal husbandry, the strategic objective of future research will be to provide solutions for a sufficient supply of high-quality animal products from resource-efficient and economically competitive agro-systems which are valued by society and preserve soil and aquatic ecosystems.

  13. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange.

    Science.gov (United States)

    Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina

    2017-01-01

    Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Dioxins, furans, biphenyls, arsenic, thorium and uranium in natural and anthropogenic sources of phosphorus and calcium used in agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Avelar, A.C., E-mail: avelara@ufmg.br [Department of Animal Sciences, Veterinary School, Universidad de Federal de Minas Gerais Avenida Antonio Carlos, 6627 Campus UFMG, Belo Horizonte (Brazil); Ferreira, W.M. [Department of Animal Sciences, Veterinary School, Universidad de Federal de Minas Gerais Avenida Antonio Carlos, 6627 Campus UFMG, Belo Horizonte (Brazil); Pemberthy, D. [Spanish Council for Scientific Research (CSIC), Institute of Environmental Assessment and Water Research, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Universidad de Antioquia, Departamento de Ingeniería Química, Facultad de Ingeniería, Grupo Catálisis Ambiental, Calle 70 No. 52-2, Medellín (Colombia); Abad, E. [Spanish Council for Scientific Research (CSIC), Institute of Environmental Assessment and Water Research, C/ Jordi Girona 18-26, 08034 Barcelona (Spain); Amaral, M.A. [Department of Animal Sciences, Veterinary School, Universidad de Federal de Minas Gerais Avenida Antonio Carlos, 6627 Campus UFMG, Belo Horizonte (Brazil)

    2016-05-01

    The aim of this study was to assess the presence of dioxins, furans and biphenyls, and the inorganic contaminants such as arsenic (As), thorium (Th) and uranium (U) in three main products used in Agriculture in Brazil: feed grade dicalcium phosphate, calcined bovine bone meal and calcitic limestone. The first two are anthropogenic sources of phosphorus and calcium, while calcitic limestone is a natural unprocessed mineral. Regarding to dioxin-like substances, all samples analyzed exhibited dioxins (PCDD) and furans (PCDF) and dioxin-like polychlorinated biphenyls (dl-PCBs) concentrations below limit of detection (LOD). In general, achieved is in accordance with regulation in Brazil where is established a maximum limit in limestone used in the citric pulp production (0.50 pg WHO-TEQ g{sup −1}). In addition, reported data revealed very low levels for limestone in comparison with similar materials reported by European legislation. As result for toxic metals, achieved data were obtained using Instrumental Neutron Activation Analysis (INAA). On one hand, limestone sample exhibits the largest arsenic concentration. On another hand, dicalcium phosphate exhibited the largest uranium concentration, which represents a standard in animal nutrition. Therefore, it is phosphorus source in the animal feed industry can be a goal of concern in the feed field. - Highlights: • PCDD/Fs dl- PCBs is not a matter since levels below the LOD in phosphate materials subject of study. • Significant accumulation of As and U in Limestone. Th was originally found in dicalcium phosphate. • High concentration of U in dicalcium phosphate suggests that a special attention should be paid.

  15. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  16. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    Science.gov (United States)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  17. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.

    Science.gov (United States)

    Ford, W; King, K; Williams, M; Williams, J; Fausey, N

    2015-07-01

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L. Gaertn.] woodlands

    Directory of Open Access Journals (Sweden)

    Anna Orczewska

    2012-06-01

    Full Text Available Black alder, an N-fixing tree is considered to accelerate the availability of phosphorus in soils due to the increased production of phosphatase enzymes, which are responsible for the P release from the litter. Acid phosphatase activity plays a pivotal role in organic P mineralization in forest soils and in making P available to plants. In order to check whether Alnus glutinosa stimulates acid phosphomonoesterase (PHACID activity, we compared enzyme activities, total P concentration (PTOT, plant-available P (PAVAIL, organic P (PORG and inorganic P (PINORG, and organic matter content in 27 ancient and 27 post-agricultural alder woods (the latter ones representing different age classes: 11-20, 21-40 and 41-60 years of soil samples taken from the litter and the mineral layers. Phosphomonoesterase activity, organic matter, PTOT, PINORG and PORG concentrations were significantly higher in ancient alder woods than in the soils of post-agricultural forests. Significant differences in the acid phosphatase activity, organic matter and PAVAIL concentration were noted between the litter and mineral layers within the same forest type. In recent stands the amount of organic matter and phosphatase activity increased significantly with the age of alder stands, although only in the mineral layer of their soils. Phosphomonoesterase activity, organic matter and PAVAIL content were higher in a litter layer and decreased significantly at a mineral depth of the soil. The acid phosphatase activity was significantly correlated with organic matter content in both ancient and recent stands. There was no significant relationship between PHACID activity and any P forms.

  19. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  20. Regulation of non-point phosphorus emissions from the agricultural sector by use of economic incentives

    DEFF Research Database (Denmark)

    Hansen, Line Block

    critical source areas taking spatial parameters into account. With reference to the joint findings of all four papers it is concluded that a tax on P surplus can be a core element in a close-to-efficient policy regulating P losses from the agricultural sector. However, the general tax fails to regulate...... P stocks to build up in fields and, over time, this increases the risk of losing P to the aquatic environment. The first paper identifies the most important parameters to include in a dynamic model where farm profit is maximized over time whilst taking soil-P dynamics into account. The second paper...... completes the modelling framework from paper 1 and analyses how a tax on P surpluses motivates the different farmer types to utilize the soil-P stock and implement measures to reduce P loss. The third and fourth papers are empirical, where a farm profit maximization model is developed for an area...

  1. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    Science.gov (United States)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their hydrological differences and the impact that annual and inter-annual climate and hydrological processes have on nutrient delivery. In the arable catchment total reactive P (TRP) concentrations in interpreted pathways declined across the quickflow, interflow and shallow groundwater of the slowflow, while TRP concentrations in the deeper groundwater, mostly contributing to baseflow, remained the same. However, the complexity of the flow pathways in the grassland catchment made it difficult to determine any trends in P concentrations as a

  2. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    Science.gov (United States)

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.

    2016-01-01

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.

  3. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  4. EnviroAtlas - Agricultural phosphorus balance for 2012 by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas national map displays the mean phosphorus (P) balance between inorganic fertilizer and confined manure inputs and P crop removal on croplands in the...

  5. Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds

    Science.gov (United States)

    Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle

    2018-01-01

    This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p

  6. Spatial and temporal variations in non-point source losses of nitrogen and phosphorus in a small agricultural catchment in the Three Gorges Region.

    Science.gov (United States)

    Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai

    2016-04-01

    Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn

  7. A multi-level analysis of China's phosphorus flows to identify options for improved management in agriculture

    NARCIS (Netherlands)

    Li, Guohua; Ittersum, van Martin K.; Leffelaar, Peter A.; Sattari, Sheida Z.; Li, Haigang; Huang, Gaoqiang; Zhang, Fusuo

    2016-01-01

    Phosphorus (P) is a finite natural resource and is essential for food production. The amount of P involved in food production in China relative to the increase of food production has increased dramatically over the past decades, which has led to serious environmental pollution. Because of China's

  8. Agriculture

    International Nuclear Information System (INIS)

    Goetz, B.; Riss, A.; Zethner, G.

    2001-01-01

    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  9. Phosphorus fractions in an agricultural chronosequence under tillage regimes in the Cerrado area in Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Roni Fernandes Guareschi

    2016-04-01

    Full Text Available The increase in the amount and quantity of soil organic matter (SOM, as well as the use of phosphorus-based fertilizers in the superficial soil layer in areas under tillage regimes (TR, may affect phosphorus (P dynamics in the soil. Therefore, the aims of the present work were as follows: to evaluate the inorganic and organic fractions of P and its lability levels (labile, moderately labile, and moderately resistant in a Distroferric Red Latosol under tillage regimes (TR 3, 15, and 20 years after implementation, and to compare them with those of areas of native Cerrado and pastures. We also focus on analyzing the correlations of the P fractions in these areas with other soil attributes, such as total carbon and nitrogen levels, light organic matter (LOM, chemical and physical granulometric fractions of the SOM, maximum phosphate adsorption capacity (MPAC, and the remaining phosphorus (Prem. In each of these areas, samples were collected from the 0.0-0.05 and 0.05-0.10 m soil layers. An entirely randomized experimental design was used. After TR implementation, the constant use of phosphorus-based fertilizers as well as the incremental addition of SOM resulted in an increase in the levels of labile, moderate labile, and moderately resistant organic and inorganic P, with a tendency for total P accumulation to be mostly in the inorganic, moderately labile form. The native Cerrado soil presented high levels of labile and moderately labile inorganic P. Pasture areas presented the lowest levels of labile organic and inorganic P, as well as moderately labile and moderately resistant organic P. By principal component analysis (PCA, it was possible to observe alterations in all soil attributes and P levels of the fractions analyzed.

  10. Guiding phosphorus stewardship for multiple ecosystem services

    Science.gov (United States)

    Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...

  11. Prediction of dissolved reactive phosphorus losses from small agricultural catchments: calibration and validation of a parsimonious model

    Directory of Open Access Journals (Sweden)

    C. Hahn

    2013-10-01

    Full Text Available Eutrophication of surface waters due to diffuse phosphorus (P losses continues to be a severe water quality problem worldwide, causing the loss of ecosystem functions of the respective water bodies. Phosphorus in runoff often originates from a small fraction of a catchment only. Targeting mitigation measures to these critical source areas (CSAs is expected to be most efficient and cost-effective, but requires suitable tools. Here we investigated the capability of the parsimonious Rainfall-Runoff-Phosphorus (RRP model to identify CSAs in grassland-dominated catchments based on readily available soil and topographic data. After simultaneous calibration on runoff data from four small hilly catchments on the Swiss Plateau, the model was validated on a different catchment in the same region without further calibration. The RRP model adequately simulated the discharge and dissolved reactive P (DRP export from the validation catchment. Sensitivity analysis showed that the model predictions were robust with respect to the classification of soils into "poorly drained" and "well drained", based on the available soil map. Comparing spatial hydrological model predictions with field data from the validation catchment provided further evidence that the assumptions underlying the model are valid and that the model adequately accounts for the dominant P export processes in the target region. Thus, the parsimonious RRP model is a valuable tool that can be used to determine CSAs. Despite the considerable predictive uncertainty regarding the spatial extent of CSAs, the RRP can provide guidance for the implementation of mitigation measures. The model helps to identify those parts of a catchment where high DRP losses are expected or can be excluded with high confidence. Legacy P was predicted to be the dominant source for DRP losses and thus, in combination with hydrologic active areas, a high risk for water quality.

  12. The stocks and flows of nitrogen, phosphorus and potassium across a 30-year time series for agriculture in Huantai county, China.

    Science.gov (United States)

    Bellarby, Jessica; Surridge, Ben W J; Haygarth, Philip M; Liu, Kun; Siciliano, Giuseppina; Smith, Laurence; Rahn, Clive; Meng, Fanqiao

    2018-04-01

    In order to improve the efficiency of nutrient use whilst also meeting projected changes in the demand for food within China, new nutrient management frameworks comprised of policy, practice and the means of delivering change are required. These frameworks should be underpinned by systemic analyses of the stocks and flows of nutrients within agricultural production. In this paper, a 30-year time series of the stocks and flows of nitrogen (N), phosphorus (P) and potassium (K) are reported for Huantai county, an exemplar area of intensive agricultural production in the North China Plain. Substance flow analyses were constructed for the major crop systems in the county across the period 1983-2014. On average across all production systems between 2010 and 2014, total annual nutrient inputs to agricultural land in Huantai county remained high at 18.1kt N, 2.7kt P and 7.8kt K (696kg N ha -1 ; 104kgP ha -1 ; 300kgK ha -1 ). Whilst the application of inorganic fertiliser dominated these inputs, crop residues, atmospheric deposition and livestock manure represented significant, yet largely unrecognised, sources of nutrients, depending on the individual production system and the period of time. Whilst nutrient use efficiency (NUE) increased for N and P between 1983 and 2014, future improvements in NUE will require better alignment of nutrient inputs and crop demand. This is particularly true for high-value fruit and vegetable production, in which appropriate recognition of nutrient supply from sources such as manure and from soil reserves will be required to enhance NUE. Aligned with the structural organisation of the public agricultural extension service at county-scale in China, our analyses highlight key areas for the development of future agricultural policy and farm advice in order to rebalance the management of natural resources from a focus on production and growth towards the aims of efficiency and sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Agriculture

    Science.gov (United States)

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  14. Hydrologic controls on the export dynamics of dissolved and particulate phosphorus in a lowland, headwater agricultural catchment

    Science.gov (United States)

    Dupas, Rémi; Grimaldi, Catherine; Gruau, Gérard; Gascuel-Odoux, Chantal

    2014-05-01

    Phosphorus (P) availability controls eutrophication in freshwater ecosystems, since P is generally the limiting nutrient to algal development. The contribution of diffuse P emission to surface waters is significant in intensively livestock farmed catchments as a result of high application rates of P-rich animal waste and subsequent enrichment of soils. This study investigates the transport dynamics of particulate phosphorus (PP), suspended sediments (SS), and dissolved phosphorus (DP) with the aim of elucidating the relationship between PP and DP transport mechanisms and water dynamics in lowland, headwater catchments. The selected catchment (Kervidy-Naizin catchment, France) is particularly suitable for this purpose as it benefits of a 5 years, high-frequency monitoring of PP and DP concentrations at its outlet, including data recovered both during base flow and storm periods, with the monitoring of more than 50 storm flow events. The data analysis includes interpretation of concentration-discharge relationships at the annual time scale and on an event basis, seasonal analysis of flood characteristics and empirical modeling. Annual DP and PP concentration-discharge relationships of interflood samples display a hysteretic pattern, with higher concentrations during the autumn and spring periods, and progressive decrease during winter. No hysteretic pattern is visible for interflood SS concentration, which follows a classical C=a*Qb relationship. During floods, the dynamic of PP export is similar to that of SS during most of the events: the concentration peak occurs during the rising limb of the hydrogram (clockwise hysteresis), suggesting a source close to or within the stream. The amplitude and the hysteresis' loop size for SS and PP are a function of maximum discharge and rate of change in discharge. On the contrary, there is a strong decoupling between DP and SS (and thus PP) during most of the floods (no significant correlation), with DP concentration peaks

  15. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted such a ...

  16. Fast phosphorus loss by sediment resuspension in a re-established shallow lake on former agricultural fields

    DEFF Research Database (Denmark)

    Kragh, Theis; Sand-Jensen, Kaj; Petersen, Kathrine

    2017-01-01

    Lake restoration on fertilized agricultural fields can lead to extensive nutrient release from flooded soils which can maintain a poor ecological quality in the new lake. The period with high sediment release is poorly understood due to few detailed lake restorations studies. We conducted...

  17. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance

    Science.gov (United States)

    Lu, Chaoqun; Tian, Hanqin

    2017-03-01

    In addition to enhancing agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically alters global nutrient budget, water quality, greenhouse gas balance, and their feedback to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system and land surface modeling studies have to ignore or use oversimplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long periods. In this study, we therefore develop global time series gridded data of annual synthetic N and P fertilizer use rate in agricultural lands, matched with HYDE 3.2 historical land use maps, at a resolution of 0.5° × 0.5° latitude-longitude during 1961-2013. Our data indicate N and P fertilizer use rates on per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961 when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) surveys of country-level fertilizer input became available. Considering cropland expansion, the increase in total fertilizer consumption is even larger. Hotspots of agricultural N fertilizer application shifted from the US and western Europe in the 1960s to eastern Asia in the early 21st century. P fertilizer input shows a similar pattern with an additional current hotspot in Brazil. We found a global increase in fertilizer N / P ratio by 0.8 g N g-1 P per decade (p human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global models to assess the impacts of nutrient enrichment on climate system, water resources, food security, etc. Datasets available at doi:10.1594/PANGAEA.863323.

  18. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  19. Agriculture

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  20. Agricultural production - Phase 2. Indonesia. Sources and sinks of nitrogen-E phosphorus-based nutrients in cropping systems

    International Nuclear Information System (INIS)

    Wetselaar, R.I.

    1992-01-01

    This document is the report of an expert mission to assist in the initiation of research on sustainable agriculture in rice-based cropping systems as related to the flow of plant nutrients, and on the use of legumes in upland cropping systems. Experimental suggestions include an investigation of the acid tolerance of different soybean strains under upland conditions, an analysis of ways to replace fertilizer nitrogen for rice crops by a green manure such as azolla, and a study of the increase in nutrient availability due to th presence of fish in a paddy field

  1. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    Science.gov (United States)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in

  2. Towards a closed phosphorus cycle

    NARCIS (Netherlands)

    Keyzer, M.A.

    2010-01-01

    Summary: This paper stresses the need to address upcoming scarcity of phosphorus, a mineral nutrient that is essential for all life on Earth. Agricultural crops obtain phosphorus from the pool in the soil that can be replenished by recycling of organic material, or by application of inorganic

  3. Return of phosphorus in agricultural residues and urban sewage sludge to soil using biochar from low-temperature gasification as fertilizer product

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Jensen, Lars Stoumann; Grønlund, Mette

    The return of residual products from bioenergy generation to soils is a step towards closing nutrient cycles, which is especially important for nutrients produced from non-renewable resources such as phosphorus (P). Low-temperature gasification is an innovative process efficiently generating ener...... from different biomass fuels, such as agricultural residues and waste streams, and at the same time producing a biochar product potentially valuable for soil amendment. In pot experiments, different residual products originating from low-temperature gasification were tested for their P......-fertilizing potential with spring barley as a test crop. Biochar resulting from gasification of pure wheat straw showed the best P fertilizer value, however, because of the low P content, extremely high amounts had to be applied when crop P demand should be met, which came along with an over-fertilization of potassium...... (K). Gasification of pure sewage sludge with a high Fe and Al content practically eliminated its P fertilizer value, while co-gasification of sludge lower in Fe and Al together with wheat straw resulted in a biochar product with only somewhat reduced P availability and improved P/K ratio...

  4. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  5. Ethics in Animal-Based Research.

    Science.gov (United States)

    Gross, Dominik; Tolba, René H

    2015-01-01

    In recent years, there have been a number of new demands and regulations which have reignited the discussion on ethics in animal-based research. In the light of this development, the present review first presents an overview of underlying core ethical questions and issues. This is followed by an outline of the current discussion on whether animals (used for experimentation) should have rights ascribed to them and whether animals need to have certain characteristics in order to be the beneficiaries of rights. The discourse on concepts of sentience and the 'sociozoological scale' in particular is mapped out in this regard. There follows an outline of relevant ethical positions and current moral approaches to animal-based research (animal rights position, utilitarianism, 'convergence position', intrinsic cultural value of fundamental research, 'contractarianism', anthropocentrism, principle of the three Rs). 2015 S. Karger AG, Basel.

  6. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  7. The surprisingly small but increasing role of international agricultural trade on the European Union’s dependence on mineral phosphorus fertiliser

    Science.gov (United States)

    Nesme, Thomas; Roques, Solène; Metson, Geneviève S.; Bennett, Elena M.

    2016-02-01

    Phosphorus (P) is subject to global management challenges due to its importance to both food security and water quality. The European Union (EU) has promoted policies to limit fertiliser over-application and protect water quality for more than 20 years, helping to reduce European P use. Over this time period, the EU has, however, become more reliant on imported agricultural products. These imported products require fertiliser to be used in distant countries to grow crops that will ultimately feed European people and livestock. As such, these imports represent a displacement of European P demand, possibly allowing Europe to decrease its apparent P footprint by moving P use to locations outside the EU. We investigated the effect of EU imports on the European P fertiliser footprint to better understand whether the EU’s decrease in fertiliser use over time resulted from P demand being ‘outsourced’ to other countries or whether it truly represented a decline in P demand. To do this, we quantified the ‘virtual P flow’ defined as the amount of mineral P fertiliser applied to agricultural soils in non-EU countries to support agricultural product imports to the EU. We found that the EU imported a virtual P flow of 0.55 Tg P/yr in 1995 that, surprisingly, decreased to 0.50 Tg P/yr in 2009. These results were contrary to our hypothesis that trade increases would be used to help the EU reduce its domestic P fertiliser use by outsourcing its P footprint abroad. Still, the contribution of virtual P flows to the total P footprint of the EU has increased by 40% from 1995 to 2009 due to a dramatic decrease in domestic P fertiliser use in Europe: in 1995, virtual P was equivalent to 32% of the P used as fertiliser domestically to support domestic consumption but jumped to 53% in 2009. Soybean and palm tree products from South America and South East Asia contributed most to the virtual P flow. These results demonstrate that, although policies in the EU have successfully

  8. Runoff, sediment, nitrogen, and phosphorus losses from agricultural land converted to sweetgum and switchgrass bioenergy feedstock production in north Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Nyakatawa, E.Z.; Mays, D.A. [Alabama A and M University, Normal (United States). Department of Plant and Soil Science; Tolbert, V.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Bionergy Feedstock Development Project; Green, T.H.; Bingham, L. [Alabama A and M University, Normal (United States). Center for Forestry and Ecology

    2006-07-15

    Renewable energy sources such as bioenergy crops have significant potential as alternatives to fossil fuels. Potential environmental problems arising from soil sediment and nutrient losses in runoff water from bioenergy crops need to be evaluated in order to determine the sustainability and overall feasibility of implementing bioenergy development strategies. This paper discusses runoff, sediment, N, and total P losses from agricultural land (continuous cotton (Gossypium hirsutum L.)) converted to short-rotation sweetgum (Liquidamber styraciflua L.) plantations with and without fescue (Festuca elatior L.) and switchgrass (Panicum virgatum L.) bioenergy crops, compared to corn (Zea mays L.), on a Decatur silt loam soil in north Alabama, from 1995 to 1999. Runoff volume was significantly correlated to total rainfall and sediment yield in each year, but treatment differences were not significant. Sweetgum plots produced the highest mean sediment yield of up to 800kgha{sup -1}compared to corn and switchgrass plots, which averaged less than 200kgha{sup -1}. Runoff NH{sub 4}{sup +} N losses averaged over treatments and years for spring season (3.1kgha{sup -1}) were three to five times those for summer, fall, and winter seasons. Runoff NO{sub 3}{sup -} N for no-till corn and switchgrass plots in spring and summer were five to ten times that for sweetgum plots. No-till corn and switchgrass treatments had 2.4 and 2.1kgha{sup -1} average runoff total P, respectively, which were two to three times that for sweetgum treatments. Growing sweetgum with a fescue cover crop provides significantly lower risk of water pollution from sediment, runoff NH{sub 4}{sup +} N, and NO{sub 3}{sup -} N. (author)

  9. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2013-01-01

    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  10. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage.

    Science.gov (United States)

    Sunohara, M D; Gottschall, N; Wilkes, G; Craiovan, E; Topp, E; Que, Z; Seidou, O; Frey, S K; Lapen, D R

    2015-09-01

    Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P

  11. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    Science.gov (United States)

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P in agricultural soils low in P availability

    Directory of Open Access Journals (Sweden)

    Yanliang Wang

    2016-11-01

    Full Text Available Many arable lands have accumulated large reserves of residual phosphorus (P and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. Brassica napus showed 74-103% increase of malate in low P loam, compared with clay loam. Avena sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 mol g-1 root DW. Avena sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (36% and 40%, the greatest root mass ratio (0.51 and 0.66 in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron in the low-P loam. Brassica napus had 15-44% more rhizosphere APase activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  13. Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability.

    Science.gov (United States)

    Wang, Yanliang; Krogstad, Tore; Clarke, Jihong L; Hallama, Moritz; Øgaard, Anne F; Eich-Greatorex, Susanne; Kandeler, Ellen; Clarke, Nicholas

    2016-01-01

    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum , and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74-103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 μmol g -1 root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15-44% more rhizosphere acid phosphatase (APase) activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  14. Animal-based measures for welfare assessment

    Directory of Open Access Journals (Sweden)

    Agostino Sevi

    2010-01-01

    Full Text Available Animal welfare assessment can’t be irrespective of measures taken on animals. Indeed, housing parametersrelatedtostructures, designandmicro-environment, evenifreliable parameters related to structures, design and micro-environment, even if reliable and easier to take, can only identify conditions which could be detrimental to animal welfare, but can’t predict poor welfare in animals per se. Welfare assessment through animal-based measures is almost complex, given that animals’ responses to stressful conditions largely depend on the nature, length and intensity of challenges and on physiological status, age, genetic susceptibility and previous experience of animals. Welfare assessment requires a multi-disciplinary approach and the monitoring of productive, ethological, endocrine, immunological and pathological param- eters to be exhaustive and reliable. So many measures are needed, because stresses can act only on some of the mentioned parameters or on all of them but at different times and degree. Under this point of view, the main aim of research is to find feasible and most responsive indicators of poor animal welfare. In last decades, studies focused on the following parameters for animal wel- fare assessment indexes of biological efficiency, responses to behavioral tests, cortisol secretion, neutrophil to lymphocyte ratio, lymphocyte proliferation, production of antigen specific IgG and cytokine release, somatic cell count and acute phase proteins. Recently, a lot of studies have been addressed to reduce handling and constraint of animals for taking measures to be used in welfare assessment, since such procedures can induce stress in animals and undermined the reliability of measures taken for welfare assessment. Range of animal-based measures for welfare assessment is much wider under experimental condition than at on-farm level. In welfare monitoring on-farm the main aim is to find feasible measures of proved validity and reliability

  15. Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    OpenAIRE

    Yuan, Yongping; Bingner, Ronald L.; Locke, Martin A.; Stafford, Jim; Theurer, Fred D.

    2011-01-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the ...

  16. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    Science.gov (United States)

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Environmental Phosphorus Recovery Based on Molecular Bioscavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix

    Phosphorus is a ubiquitous element of all known life and as such it is found throughout numerous key molecules related to various cellular functions. The supply of phosphorus is tightly linked to global food security, since phosphorus is used to produce agricultural fertilizers, without which...... it would not be possible to feed the world population. Sadly, the current supply of phosphorus is based on the gradual depletion of limited fossil reserves, and some estimates predict that within 15-25 years we will consume more phosphorus than we can produce. There is therefore a strong international...... pressure to develop sustainable phosphorus practices as well as new technologies for phosphorus recovery. Nature has spent billions of years refining proteins that interact with phosphates. This has inspired the present work where the overall ambitions are: to facilitate the development of a recovery...

  18. Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015

    Science.gov (United States)

    Krempa, Heather M.; Flickinger, Allison K.

    2017-08-01

    This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites

  19. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different...

  20. Estimation of phosphorus flux in rivers during flooding.

    Science.gov (United States)

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  1. Painful dilemmas: the ethics of animal-based pain research

    DEFF Research Database (Denmark)

    Magalhães-Sant'Ana, M.; Sandøe, Peter; Olsson, I. A. S.

    2009-01-01

    While it has the potential to deliver important human benefits, animal-based pain research raises ethical questions, because it involves inducing pain in sentient beings. Ethical decision-making, connected with this variety of research, requires informed harm-benefit analysis, and the aim of this...

  2. Sustainable use of phosphorus: a finite resource.

    Science.gov (United States)

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Screening crops for efficient phosphorus acquisition in a low phosphorus soil using radiotracer technique

    International Nuclear Information System (INIS)

    Meena, S.; Malarvizhi, P.; Rajeswari, R.

    2017-01-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production. Identification of cultivars with greater capacity to grow in soils having low P availability (phosphorus efficiency) will help in P management in a sustainable way. Green house experiment with maize (CO 6) and cotton (MCU 13) as test crops with four levels of phosphorus (0, 3.75, 7.50 and 15 mg P kg -1 soil) was conducted in a P deficient soil (7.2 kg ha -1 ) to study the phosphorus acquisition characteristics and to select efficient crop using 32 P radiotracer technique. Carrier free 32 P obtained as orthophosphoric acid in dilute hydrochloric acid medium from the Board of Radiation and Isotope Technology, Mumbai was used for labeling the soil @ 3200 kBq pot -1 . After 60 days the crops were harvested and the radioactivity was measured in the plant samples using Liquid scintillation counter (PerkinElmer - Tricarb 2810 TR). Different values of specific radioactivity and Isotopically Exchangeable Phosphorus for maize and cotton indicated that chemically different pools of soil P were utilized and maize accessing a larger pool than cotton. Maize having recorded high Phosphorus Use Efficiency, Phosphorus Efficiency and low Phosphorus Stress Factor values, it is a better choice for P deficient soils. Higher Phosphorus Acquisition Efficiency of maize (59 %) than cotton (48%) can be related to the ability of maize to take up P from insoluble inorganic P forms. (author)

  4. Investigating User Experiences Through Animation-based Sketching

    DEFF Research Database (Denmark)

    Vistisen, Peter; Poulsen, Søren Bolvig

    2016-01-01

    This paper discusses the use of animation-based sketching as an approach to explore diegetic designs in the fuzzy front-end ideation of the design process. We present the results from a design workshop with more than 200 partic- ipating design students, and 16 companies. The participants used mot...... on the visual delity or on how animation is ap- plied to support a design narrative anchoring to the context....

  5. Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2011-10-01

    Full Text Available This paper reviews the latest information and perspectives on global phosphorus scarcity. Phosphorus is essential for food production and modern agriculture currently sources phosphorus fertilizers from finite phosphate rock. The 2008 food and phosphate fertilizer price spikes triggered increased concerns regarding the depletion timeline of phosphate rock reserves. While estimates range from 30 to 300 years and are shrouded by lack of publicly available data and substantial uncertainty, there is a general consensus that the quality and accessibility of remaining reserves are decreasing and costs will increase. This paper clarifies common sources of misunderstandings about phosphorus scarcity and identifies areas of consensus. It then asks, despite some persistent uncertainty, what would it take to achieve global phosphorus security? What would a ‘hard-landing’ response look like and how could preferred ‘soft-landing’ responses be achieved?

  6. Substoichiometric extraction of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    A study of the substoichiometric extraction of phosphorus is described. Phosphorus was extracted in the form of ternary compounds such as ammonium phosphomolybdate, 8-hydroxyquinolinium phosphomolybdate, tetraphenylarsonium phosphomolybdate and tri-n-octylamine phosphomolybdate. Consequently, phosphorus was extracted substoichiometrically by the addition of a substoichiometric amount of molybdenum for the four phosphomolybdate compounds. On the other hand, phosphorus could be separated substoichiometrically with a substoichiometric amount of tetraphenylarsonium chloride or tri-n-octylamine. Stoichiometric ratios of these ternary compounds obtained substoichiometrically were 1:12:3 for phosphorus, molybdenum and organic reagent. The applicability of these compounds to phosphorus determination is also discussed. (author)

  7. Effect of phosphorus and potassium on seed production of berseem

    African Journals Online (AJOL)

    Jane

    2011-10-17

    Oct 17, 2011 ... 1Department of Agronomy, Khyber Pukhtunkhwa Agricultural University, Peshawar, Pakistan. ... Key words: Berseem, seed production, phosphorus, potassium. ... important forage legumes in Pakistan and India which belongs ...

  8. Phosphorus blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003478.htm Phosphorus blood test To use the sharing features on this page, please enable JavaScript. The phosphorus blood test measures the amount of phosphate in the blood. ...

  9. The future of phosphorus in our hands

    NARCIS (Netherlands)

    Shepherd, J.G.; Kleemann, Rosanna; Bahri-Esfahani, Jaleh; Hudek, Lee; Suriyagoda, Lalith; Vandamme, Elke; Dijk, van K.C.

    2016-01-01

    We live in a global phosphorus (P) system paradox. P access is becoming increasingly limiting, leading to food insecurity but at the same time an over-application or abundance of P in many agricultural and urban settings is causing environmental degradation. This has been recognised in the

  10. Use of reactive materials to bind phosphorus

    NARCIS (Netherlands)

    Chardon, W.J.; Groenenberg, J.E.; Temminghoff, E.J.M.; Koopmans, G.F.

    2012-01-01

    Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface

  11. Visualizing alternative phosphorus scenarios for future food security

    Directory of Open Access Journals (Sweden)

    Tina-Simone Neset

    2016-10-01

    Full Text Available The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialogue on the technical, behavioral and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real-time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialogue to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1 the potential of full recovery of human excreta, (2 the challenge of a potential increase in non-food phosphorus demand, (3 the potential of a decreased animal product consumption, and (4 the potential decrease in phosphorus demand from increased efficiency

  12. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    Science.gov (United States)

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  13. Phosphorus poisoning in waterfowl

    Science.gov (United States)

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  14. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    International Nuclear Information System (INIS)

    Montanez, A.; Zapata, F.; Kumarasinghe, K.S.

    1996-01-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. 15 N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs

  15. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, A; Zapata, F [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit; Kumarasinghe, K S [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section

    1996-07-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. {sup 15}N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs.

  16. Modelling heavy metal and phosphorus balances for farming systems

    NARCIS (Netherlands)

    Keller, A.N.; Schulin, R.

    2003-01-01

    Accounting for agricultural activities such as P fertilization in regional models of heavy metal accumulation provides suitable sustainable management strategies to reduce nutrient surpluses and metal inputs in agricultural soils. Using the balance model PROTERRA-S, we assessed the phosphorus ( P),

  17. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis

    Science.gov (United States)

    Genevieve S. Metson; David M. Iwaniec; Lawrence A. Baker; Elena M. Bennett; Daniel L. Childers; Dana Cordell; Nancy B. Grimm; J. Morgan Grove; Daniel A. Nidzgorski; Stuart. White

    2015-01-01

    Phosphorus (P) is an essential fertilizer for agricultural production but is also a potent aquatic pollutant. Current P management fails to adequately address both the issue of food security due to P scarcity and P pollution threats to water bodies. As centers of food consumption and waste production, cities transport and store much P and thus provide important...

  18. Research of Simulation in Character Animation Based on Physics Engine

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle.

  19. Phosphorus run-off assessment in a watershed.

    Science.gov (United States)

    Chebud, Yirgalem; Naja, Ghinwa M; Rivero, Rosanna

    2011-01-01

    The Watershed Assessment Model was used to simulate the runoff volume, peak flows, and non-point source phosphorus loadings from the 5870 km(2) Lake Okeechobee watershed as a case study. The results were compared to on-site monitoring to verify the accuracy of the method and to estimate the observed/simulated error. In 2008, the total simulated phosphorus contribution was 9634, 6524 and 3908 kg (P) y(-1) from sod farms, citrus farms and row crop farmlands, respectively. Although the dairies represent less than 1% of the total area of Kissimmee basin, the simulated P load from the dairies (9283 kg (P) y(-1) in 2008) made up 5.4% of the total P load during 2008. On average, the modeled P yield rates from dairies, sod farms and row crop farmlands are 3.85, 2.01 and 0.86 kg (P) ha(-1) y(-1), respectively. The maximum sediment simulated phosphorus yield rate is about 2 kg (P) ha(-1) and the particulate simulated phosphorus contribution from urban, improved pastures and dairies to the total phosphorus load was estimated at 9%, 3.5%, and 1%, respectively. Land parcels with P oversaturated soil as well as the land parcels with high phosphorus assimilation and high total phosphorus contribution were located. The most critical sub-basin was identified for eventual targeting by enforced agricultural best management practices. Phosphorus load, including stream assimilation, incoming to Lake Okeechobee from two selected dairies was also determined.

  20. Phosphorus and nitrogen in the eutrophication of waters

    International Nuclear Information System (INIS)

    Salonen, S.; Frisk, T.; Kaermeniemi, T.; Niemi, J.; Pitkaenen, H.; Silvo, K.; Vuoristo, H.

    1992-01-01

    This report is a summary of the contribution of nitrogen and phosphorus in the eutrophication process of inland and coastal waters. Special attention was paid to the mechanisms of these nutrients in regulating biological processes and to the methods available in estimating their effects in the eutrophication of water bodies. The report includes five chapters which are entitled: Introduction, which is a general background to the subject with special attention to the requirements of the Finnish Water Act. Phosphorus and nitrogen as factors regulating biological processes. The topics included are: definition of eutrophication, forms of phosphorus and nitrogen and their sources to inland and coastal waters, effects of these nutrients as growth factors of phytoplankton and macrophytes and consequences of eutrophication. Estimation of the effects of phosphorus and nitrogen. The topics discussed from the point of view of the tasks of the National Board of Waters and the Environment are: estimation of the effects of phosphorus and nitrogen in the planning and supervision of industry, fish farming, peat production, municipalities, agriculture and forestry. A brief state-of-the art of the research carried out in the National Board of Waters and the Environment is given. Methods of estimating the effects of phosphorus and nitrogen loading in waters. The topics are: relationships between phosphorus and nitrogen concentrations in waters, material balances, water quality models, classification of waters and different groups of organisms as indicators of water quality. Conclusions for the estimation of the effects of phosphorus and nitrogen in receiving waters

  1. Phosphorus dendrimers for nanomedicine.

    Science.gov (United States)

    Caminade, Anne-Marie

    2017-08-31

    From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.

  2. Industry and Consumers Awareness for Effective Management of Functional Animal-based Foods in South Korea

    OpenAIRE

    Wi, Seo-Hyun; Park, Jung-Min; Wee, Sung-Hwan; Park, Jae-Woo; Kim, Jin-Man

    2013-01-01

    In recent years, manufacturers of animal-based foods with health claims have encountered difficulties in the labeling of their products because of a lack of regulation on defining the functionality of animal-based foods. Therefore, this study was conducted to establish the basic requirements for the development of a definition for functional animal-based foods by investigating consumer and industry awareness. Survey data were collected from 114 industry representatives and 1,100 consumers. Th...

  3. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  4. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  5. phosphorus sorption capacity as a guide for phosphorus availability

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    drained, light yellowish brown, loamy sand ... Dongola 2 Akked series: Deep, dark grayish brown, clay ... energy. Statistical analysis. Data collected were statistically analysed using ANOVA of MStatc ... phosphorus sorbed versus phosphorus.

  6. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  7. Shaping Future Phosphorus Management Pathways by Understanding the Past and Present

    Science.gov (United States)

    Sustainable phosphorus (P) management in agricultural and urban ecosystems is necessary to ensure global food security and healthy aquatic ecosystems. Researchers and decision-makers alike need to understand how social, economic, political, and biophysical factors interact to cre...

  8. III. Quantitative aspects of phosphorus excretionin ruminants

    OpenAIRE

    Bravo , David; Sauvant , Daniel; Bogaert , Catherine; Meschy , François

    2003-01-01

    International audience; Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus...

  9. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  10. Chromatography of phosphorus oxoacids

    International Nuclear Information System (INIS)

    Ohashi, S.

    1975-01-01

    The present state of studies on the chromatographic separation of phosphorus oxoacids is surveyed. In this paper, chromatographic techniques are divided into four groups, i.e. paper and thin-layer chromatography, paper electrophoresis, ion-exchange chromatography, and gel chromatography. The separation mechanisms and characteristics for these chromatographic methods are discussed and some examples for the separation of phosphorus oxoacids are described. As examples of the application of ion-exchange and gel chromatography, studies on the hot atom chemistry of 32 P in solid inorganic phosphates and those on the substitution reactions between diphosphonate (diphosphite) and polyphosphates are reported. (author)

  11. Sensitivity analysis of the Ohio phosphorus risk index

    Science.gov (United States)

    The Phosphorus (P) Index is a widely used tool for assessing the vulnerability of agricultural fields to P loss; yet, few of the P Indices developed in the U.S. have been evaluated for their accuracy. Sensitivity analysis is one approach that can be used prior to calibration and field-scale testing ...

  12. Geochemical and hydrodynamic phosphorus retention mechanisms in lowland catchments

    NARCIS (Netherlands)

    van der Grift, B.

    2017-01-01

    The release of phosphorus (P) to surface water from heavily fertilised agricultural fields is of major importance for surface water quality. The research reported in this thesis examined the role of geochemical and hydrodynamic processes controlling P speciation and transport in lowland catchments

  13. Phosphorus recycling and food security in the long run

    NARCIS (Netherlands)

    Weikard, Hans Peter

    2016-01-01

    Food security for all is a global political goal and an outstanding moral concern. The common response to this concern is agricultural intensification, which includes among other things increasing inputs of fertilisers. The paper addresses the fact that phosphorus (P) is essential for

  14. Phosphorus adsorption pattern in selected cocoa growing soils in ...

    African Journals Online (AJOL)

    Application of phosphate fertilizer for the correction of P deficiency in soil is ideal in agricultural practices. Unfortunately, only a small fraction of applied P fertilizer is available for plant uptake due to fertilizer-soil interactions which leads to fixation of P. phosphorus adsorption isotherm and buffering capacity are strong tools ...

  15. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  16. Assessing the long term impact of phosphorus fertilization on phosphorus loadings using AnnAGNPS.

    Science.gov (United States)

    Yuan, Yongping; Bingner, Ronald L; Locke, Martin A; Stafford, Jim; Theurer, Fred D

    2011-06-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a "critical point" may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the "critical point" where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines.

  17. Application of two phosphorus models with different complexities in a mesoscale river catchment

    Directory of Open Access Journals (Sweden)

    B. Guse

    2007-06-01

    Full Text Available The water balance and phosphorus inputs of surface waters of the Weiße Elster catchment, Germany, have been quantified using the models GROWA/MEPhos and SWAT. A comparison of the model results shows small differences in the mean long-term total runoff for the entire study area. All relevant pathways of phosphorus transport were considered in MEPhos with phosphorus inputs resulting to about 65% from point sources. SWAT focuses on agricultural areas and estimates a phosphorus input of about 60% through erosion. The mean annual phosphorus input from erosion calculated with SWAT is six times higher than the estimation with MEPhos due to the differing model concepts. This shows the uncertainty contributed by the modelling description of phosphorus pathways.

  18. Coordinated programme on isotopic tracer-aided studies of the biological side effects of foreign chemical residues in food and agriculture. Study of sulfur dioxide effects on phosphorus metabolism in plants using 32-P as indicator

    International Nuclear Information System (INIS)

    Plesnicar, M.

    1977-07-01

    Exposure of bean plants to low sulphur dioxide concentrations (0.02-0.32 ppm, up to 72 hours) stimulated the incorporation of 32 P into RNA, DNA, phospholipids and the acid soluble fraction, without altering the total phosphorus content. Statistically significant 32 P increases were only observed with RNA. Uptake of 35 SO 2 (14 ppm) by bean leaves was shown to be fairly rapid and the radioactivity was translocated in the roots within 1 to 6 hours following exposure. Subcellular leaf fractions showed that the supernatant contained 60-90% of the absorbed radioactivity. The chloroplasts and microsomes showed higher 35 S content than the mitochondrial fraction. In vitro studies on pea-derived chloroplasts included photosynthetic phosphorylation and electron transport. Phosphorylation was found to be inhibited in presence of SO 2 (I 50 =3.7 mM). The nature of inhibition seems to be of the reversible-competitive type with an apparent inhibitor constant (Ki) of 1.5 mM. The electron transport system remained unaffected. It is maintained that the identification of some lesions in this study would contribute to a better understanding of the nature of the complex interactions between cultivated plants and sulphur dioxide

  19. Impacts of anthropic pressures on soil phosphorus availability, concentration, and phosphorus forms in sediments in a Southern Brazilian watershed

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Joao Batista Rossetto; Rheinheimer dos Santos, Danilo; Goncalves, Celso Santos; Copetti, Andre Carlos Cruz [Dept. de Solos, Univ. Federal de Santa Maria, Centro de Ciencias Rurais, Santa Maria, RS (Brazil); Bortoluzzi, Edson Campanhola [Faculdade de Agronomia e Medicina Veterinaria da Univ. de Passo Fundo, RS (Brazil); Tessier, Daniel [Inst. National de la Recherche Agronomique, Versailles (France)

    2010-04-15

    Purpose: The transfer of soil sediments and phosphorus from terrestrial to aquatic systems is a common process in agricultural lands. The aims of this paper are to quantify the soil phosphorus availability and to characterize phosphorus forms in soil sediments as contaminant agents of waters as a function of anthropic pressures. Materials and methods On three subwatersheds with different anthropic pressure, water and sediment samples were collected automatically in upstream and downstream discharge points in six rainfall events during the tobacco growing season. Phosphorus desorption capacity from soil sediments was estimated by successive extractions with anion exchange resins. First-order kinetic models were adjusted to desorption curves for estimating potentially bioavailable particulate phosphorus, desorption rate constant, and bioavailable particulate phosphorus. Results and discussion The amount of bioavailable particulate phosphorus was directly correlated with the iron oxide content. The value of desorption rate constant was directly related with the total organic carbon and inversely with the iron oxide contents. Phosphate ions were released to solution, on average, twice as rapidly from sediments collected in subwatersheds with low anthropic activity than from those ones of highly anthropic subwatersheds. Anthropic pressure on watershed can engender high sediment discharge, but these solid particles seem to present low phosphorus-releasing capacity to water during transport due to the evidenced high affinity between phosphorus and iron oxide from sediments. Conclusions Anthropic pressure was related with sediment concentration and phosphorus release to aquatic systems. While natural vegetation along streams plays a role on soil and water depuration, it is unable to eliminate the phosphorus inputs intrinsic to the agricultural-intensive systems. Recommendations and perspectives The contamination of water in watershed by phosphates is facilitated by the

  20. Substoichiometric determination of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    Phosphorus in orchard leaves (NBS SRM-1571) and spinach (SRM-1570) was determined by various substoichiometric analytical methods such as the direct method, Gravshchenko's method and the method of carrier amount variation. All samples were labelled with 32 P radioisotope. The data obtained by the method of carrier amount variation were also treated by the method of least squares instead of De Voe's method. Phosphorus concentration in orchard leaves was 0.206+-0.011% by the direct method, 0.219+-0.011% by Gravshchenko's method, 0.211+-0.011% by the method of carrier amount variation and 0.207+-0.007% by the method of least squares, respectively. These values agree with the value reported by NBS (0.21+-0.01%). Furthermore, these concentrations obtained by various substoichiometric methods were compared with those by radioactivation reported in a previous paper. (author)

  1. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    Science.gov (United States)

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  2. Phosphorus Transport in Rivers.

    Science.gov (United States)

    1978-11-01

    be attributed to excessive nutrient inputs to the lake. These nutrients sti- mulate the phytoplankton (algae) growth which yields excess growth. The...phosphorus in relation to the restoration of Lake Erie. The various computational techniques presented herein aid in the understanding of total...as caused by the absorption on clay materials and by assimilation by periphyton . Other investigators have found correlations between flow and other

  3. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  4. Assessment of phosphorus fertility by means of isotopically exchangeable phosphorus and the fixing capacity of soils

    International Nuclear Information System (INIS)

    Gachon, L.

    1979-01-01

    Using over 400 soils representative of French pedological types, the absorption kinetics of phosphorus were studied on Italian rye-grass grown in pots until assimilable reserves had been exhausted. At the same time, Russell's E value (isotopically exchangeable P in vitro), Larsen's L value (isotopically exchangeable P in vivo) and the fixing capacity of the soils were measured. The study shows a very close correlation between the phosphorus removed by the first four cuttings and fertility indices combining E or L with the fixing capacity. The agricultural value of the two indices proposed, Isub(E) and Isub(L), is confirmed by the results of about forty one-year and multi-year field experiments. Norms for the interpretation of these indices are deduced; these are independent of the pedological type but need to be modified as a function of the type of crop and the cultural practice. (author)

  5. Comparison of three persulfate digestion methods for total phosphorus analysis and estimation of suspended sediments

    International Nuclear Information System (INIS)

    Dayton, Elizabeth Ann; Whitacre, Shane; Holloman, Christopher

    2017-01-01

    As a result of impairments to fresh surface water quality due to phosphorus enrichment, substantial research effort has been put forth to quantify agricultural runoff phosphorus as related to on-field practices. While the analysis of runoff dissolved phosphorus is well prescribed and leaves little room for variability in methodology, there are several methods and variations of sample preparation reagents as well as analysis procedures for determining runoff total phosphorus. Due to the variation in methodology for determination of total phosphorus and an additional laboratory procedure required to measure suspended solids, the objectives of the current study are to i. compare the performance of three persulfate digestion methods (Acid Persulfate, USGS, and Alkaline Persulfate) for total phosphorus percent recovery across a wide range of suspended sediments (SS), and ii. evaluate the ability of using Al and/or Fe in digestion solution to predict SS as a surrogate to the traditional gravimetric method. Percent recovery of total phosphorus was determined using suspensions prepared from soils collected from 21 agricultural fields in Ohio. The Acid Persulfate method was most effective, with an average total phosphorus percent recovery of 96.6%. The second most effective method was the USGS with an average total phosphorus recovery of 76.1%. However, the Alkaline Persulfate method performed poorly with an average 24.5% total phosphorus recovery. As a result application of Alkaline Persulfate digestion to edge of field monitoring may drastically underestimated runoff total phosphorus. In addition to excellent recovery of total phosphorus, the Acid Persulfate method combined with analysis of Al and Fe by inductively coupled plasma atomic emission spectrometry provides a robust estimate of total SS. Due to the large quantity of samples that can result from water quality monitoring, an indirect measure of total SS could be very valuable when time and budget constraints limit

  6. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  7. Phosphorus and the dairy cow

    OpenAIRE

    Ekelund, Adrienne

    2003-01-01

    The general aim of the present work was to investigate phosphorus balance in the dairy cow, with reference to the amount and source of phosphorus. Furthermore, biochemical bone markers were used to study the bone turnover during the lactation and dry period. Phosphorus is located in every cell of the body and has more known functions than any other mineral element in the animal body. Phosphorus is also an important constituent of milk, and is therefore required in large amounts in a high yiel...

  8. Risk Assessment of Nitrogen and Phosphorus Loss in a Hilly-Plain Watershed Based on the Different Hydrological Period: A Case Study in Tiaoxi Watershed

    Directory of Open Access Journals (Sweden)

    Hongmeng Ye

    2017-08-01

    Full Text Available Non-point source pollution is widely considered a serious threat to drinking water. Eutrophication in Chinese watershed is mainly due to nitrogen and phosphorus output from agricultural source. Taihu Lake is a typical eutrophic lake in China, a basin representative for the study of the temporal-spatial characteristics of pollution loading of nitrogen and phosphorus to provide scientific basis for reasonable estimation and targeted control measures of nitrogen and phosphorus loss. Based on data from nitrogen and phosphorus loss in agricultural land, livestock breeding, domestic discharge and aquaculture, this study calculated the levels of nitrogen and phosphorus comprehensive loss risk for each pollution source. Using the superposition of ArcGIS raster data, we also described the spatial distribution of nitrogen and phosphorus comprehensive loss risk by the formula of comprehensive loss risk. The results showed that critical risk areas of nitrogen and phosphorus loss mainly originated from livestock breeding and agricultural land during flood period in Tiaoxi watershed. Agricultural land and livestock breeding sources formed major parts of nitrogen loss, accounting for 30.85% and 36.18%, respectively, while phosphorus loss mainly originated from livestock breeding (56.28%. During non-flood period, integrated management of livestock breeding and domestic discharge requires much attention to control nitrogen and phosphorus loss in the critical risk area. Finally, it is of great practical significance to propose spatial-temporal targeted measurements to control nitrogen and phosphorus pollution in watershed for various periods and different areas.

  9. Lake Erie, phosphorus and microcystin: Is it really the farmer's fault?

    Science.gov (United States)

    Agricultural loss of phosphorus (P) have been identified as a primary contributor to eutrophication and the associated release of toxins (i.e., mycrocystin) in Lake Erie. These losses are commonly deemed excessive by the media and the public, singling out agriculture as the culprit in spite of redu...

  10. Reducing phosphorus loading of surface water using iron-coated sand

    NARCIS (Netherlands)

    Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F.

    2013-01-01

    Phosphorus losses from agricultural soils is an important source of P in surface waters leading to surface water quality impairment. In addition to reducing P inputs, mitigation measures are needed to reduce P enrichment of surface waters. Because drainage of agricultural land by pipe drainage is an

  11. International phosphorus workshop

    DEFF Research Database (Denmark)

    Kronvang, Brian; Rubæk, Gitte Holton; Heckrath, Goswin

    2009-01-01

    Received for publication February 9, 2009. Agriculture is a major source of P to the aquatic environment in many countries. Although efforts have been made to improve the P utilization in agricultural production, which is reflected in modestly declining P surpluses in many countries, increasing a...

  12. EnviroAtlas - Inorganic phosphorus fertilizer application for 2012 by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas national map displays the application rate of inorganic phosphorus (P) fertilizer on agricultural land in the conterminous United States (excluding...

  13. Soil Phosphorus Compositional Characteristics as a Function of Land-Use Practice in the Upper Eau Galle River Watershed, Wisconsin

    National Research Council Canada - National Science Library

    James, William F; Eakin, Harry L; Ruiz, Carlos E; Barko, John W

    2004-01-01

    The purpose of this research was to quantify biologically labile and refractory phosphorus species in source soils of an agricultural watershed that drains into a eutrophic Corps of Engineers reservoir...

  14. Phosphorus flows and balances of the European Union Member States

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Kimo C. van, E-mail: kimo.vandijk@wur.nl [Department of Soil Quality, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Lesschen, Jan Peter, E-mail: janpeter.lesschen@wur.nl [Department of Soil Quality, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Oenema, Oene, E-mail: oene.oenema@wur.nl [Department of Soil Quality, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen (Netherlands); Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2016-01-15

    Global society faces serious “phosphorus challenges” given the scarcity, essentiality, unequal global distribution and, at the same time, regional excess of phosphorus (P). Phosphorus flow studies can be used to analyze these challenges, providing insight into how society (re)uses and loses phosphorus, identifying potential solutions. Phosphorus flows were analyzed in detail for EU-27 and its Member States. To quantify food system and non-food flows, country specific data and historical context were considered. The sectors covered were crop production (CP), animal production (AP), food processing (FP), non-food production (NF) and consumption (HC). The results show that the EU-27 imported 2392 Gg P in 2005, half of which accumulated in agricultural soils (924 Gg) and half was lost as waste (1217 Gg). Net accumulation was 4.9 kg P/ha/year ranging between + 23.2 (Belgium) and − 2.8 (Slovakia). From the system losses, 54% was lost from HC in diverse waste flows and 28% from FP, mainly through incinerated slaughter residues. The largest HC losses (655 Gg) were wastewater (55%), food waste (27%), and pet excreta (11%). Phosphorus recycling rates were 73% in AP, 29% in FP, 21% in HC and ~ 0% in NF. The phosphorus use efficiencies showed that, relative to sector input, about 70% was taken up by crops (CP), 24% was retained in animals (AP), 52% was contained in food products (FP), 76% was stored in non-food materials (NF), and 21% was recycled (HC). Although wide-ranging variation between countries, generally phosphorus use in EU-27 was characterized by relatively (1) large dependency on (primary) imports, (2) long-term accumulation in agricultural soils, especially in west European countries, (3) leaky losses throughout entire society, especially emissions to the environment and sequestered waste, (4) little recycling with the exception of manure, and (5) low use efficiencies, because of aforementioned issues, providing ample opportunities for improvement

  15. Phosphorus flows and balances of the European Union Member States

    International Nuclear Information System (INIS)

    Dijk, Kimo C. van; Lesschen, Jan Peter; Oenema, Oene

    2016-01-01

    Global society faces serious “phosphorus challenges” given the scarcity, essentiality, unequal global distribution and, at the same time, regional excess of phosphorus (P). Phosphorus flow studies can be used to analyze these challenges, providing insight into how society (re)uses and loses phosphorus, identifying potential solutions. Phosphorus flows were analyzed in detail for EU-27 and its Member States. To quantify food system and non-food flows, country specific data and historical context were considered. The sectors covered were crop production (CP), animal production (AP), food processing (FP), non-food production (NF) and consumption (HC). The results show that the EU-27 imported 2392 Gg P in 2005, half of which accumulated in agricultural soils (924 Gg) and half was lost as waste (1217 Gg). Net accumulation was 4.9 kg P/ha/year ranging between + 23.2 (Belgium) and − 2.8 (Slovakia). From the system losses, 54% was lost from HC in diverse waste flows and 28% from FP, mainly through incinerated slaughter residues. The largest HC losses (655 Gg) were wastewater (55%), food waste (27%), and pet excreta (11%). Phosphorus recycling rates were 73% in AP, 29% in FP, 21% in HC and ~ 0% in NF. The phosphorus use efficiencies showed that, relative to sector input, about 70% was taken up by crops (CP), 24% was retained in animals (AP), 52% was contained in food products (FP), 76% was stored in non-food materials (NF), and 21% was recycled (HC). Although wide-ranging variation between countries, generally phosphorus use in EU-27 was characterized by relatively (1) large dependency on (primary) imports, (2) long-term accumulation in agricultural soils, especially in west European countries, (3) leaky losses throughout entire society, especially emissions to the environment and sequestered waste, (4) little recycling with the exception of manure, and (5) low use efficiencies, because of aforementioned issues, providing ample opportunities for improvement

  16. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  17. Animal based parameters are no panacea for on-farm monitoring of animal welfare

    NARCIS (Netherlands)

    Bracke, M.B.M.

    2007-01-01

    On-farm monitoring of animal welfare is an important, present-day objective in animal welfare science. Scientists tend to focus exclusively on animal-based parameters, possibly because using environment-based parameters could be begging the question why welfare has been affected and because

  18. Scientific Opinion on the use of animal-based measures to assess welfare in pigs

    DEFF Research Database (Denmark)

    Broom, D.; Doherr, M.G.; Edwards, S.

    2013-01-01

    Animal-based measures, identified on the basis of scientific evidence, can be used effectively in the evaluation of the welfare of on-farm pigs in relation to laws, codes of practice, quality assurance schemes and management. Some of these measures are also appropriate for ante-mortem inspection ...

  19. Performance of Underprepared Students in Traditional versus Animation-Based Flipped-Classroom Settings

    Science.gov (United States)

    Gregorius, R. Ma.

    2017-01-01

    Student performance in a flipped classroom with an animation-based content knowledge development system for the bottom third of the incoming first year college students was compared to that in a traditional lecture-based teaching method. 52% of these students withdrew from the traditionally taught General Chemistry course, compared to 22% in a…

  20. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    Science.gov (United States)

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Evaluation of Animal-Based Indicators to Be Used in a Welfare Assessment Protocol for Sheep.

    Science.gov (United States)

    Richmond, Susan E; Wemelsfelder, Francoise; de Heredia, Ina Beltran; Ruiz, Roberto; Canali, Elisabetta; Dwyer, Cathy M

    2017-01-01

    Sheep are managed under a variety of different environments (continually outdoors, partially outdoors with seasonal or diurnal variation, continuously indoors) and for different purposes, which makes assessing welfare challenging. This diversity means that resource-based indicators are not particularly useful and, thus, a welfare assessment scheme for sheep, focusing on animal-based indicators, was developed. We focus specifically on ewes, as the most numerous group of sheep present on farm, although many of the indicators may also have relevance to adult male sheep. Using the Welfare Quality ® framework of four Principles and 12 Criteria, we considered the validity, reliability, and feasibility of 46 putative animal-based indicators derived from the literature for these criteria. Where animal-based indicators were potentially unreliably or were not considered feasible, we also considered the resource-based indicators of access to water, stocking density, and floor slipperiness. With the exception of the criteria "Absence of prolonged thirst," we suggest at least one animal-based indicator for each welfare criterion. As a minimum, face validity was available for all indicators; however, for many, we found evidence of convergent validity and discriminant validity (e.g., lameness as measured by gait score, body condition score). The reliability of most of the physical and health measures has been tested in the field and found to be appropriate for use in welfare assessment. However, for the majority of the proposed behavioral indicators (lying synchrony, social withdrawal, postures associated with pain, vocalizations, stereotypy, vigilance, response to surprise, and human approach test), this still needs to be tested. In conclusion, the comprehensive assessment of sheep welfare through largely animal-based measures is supported by the literature through the use of indicators focusing on specific aspects of sheep biology. Further work is required for some indicators

  2. Agriculture: Agriculture and Air Quality

    Science.gov (United States)

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  3. Radioisotopes in Burmese agricultural research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-07-15

    The Burmese authorities decided to start a laboratory for the use of radioisotope techniques in agricultural r e search. The laboratory was set up at the Agricultural Research Institute at Gyogon, on the outskirts of Rangoon. Under its technical assistance program, IAEA assigned an expert in the agricultural applications of radioisotopes for this project. Discussions were held with regional representatives of the Food and Agriculture Organization on the best lines of research to be adopted at the laboratory in its early stages. As the most important crop in Burma is rice, a series of experiments were planned for a study of the nutrition of rice, particularly its phosphorus uptake, with special reference to comparative responses on a range of typical paddy soils. The experiments began last year and are being continued.

  4. Soil Macronutrient Sensing for Precision Agriculture

    Science.gov (United States)

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  5. Investigation by phosphorus-32 isotope the capabilities of mushrooms to decompose insoluble phosphoric compounds

    International Nuclear Information System (INIS)

    Takhtobin, K.S.; Tashpulatov, D.T.; Shulman, T.S.

    2006-01-01

    Full text: One of global ecological problems of agriculture is the problem 'phosphatization' of soils. Only of 10% - 25% of phosphorus, introduced by the way fertilizers to acquire by plants, the other main part, as a result of chemical changes in soil, transforms in insoluble, hard-to-reach for plants forms. The study of possibility to extract the phosphorus from this insoluble forms is very important. Our investigations devoted to study of some strains of soil mushrooms which are capable to decompose insoluble phosphoric compounds, secreting an acids and enzymes. Soil mushrooms have symbiotic relationship with roots systems of plants and other microorganisms, they augment the contents of solvable phosphorus in soil, which is easy assimilate by plants. It increases efficiency of other kinds of fertilizers, keeping nitrogen, the potassium and as a whole leads to favourable, balanced composition of soil. In order to investigate quantitatively the capacity of different strains of soil mushrooms to canker insoluble forms of phosphorus we are introduce an isotope phosphorus-32 in such compound as Ca 3 (PO 4) 2. We are investigate by an isotope phosphorus-32 some characteristics of strains, in particular, the absorption capabilities of phosphorus-32 from Ca 3 (PO 4 ) 2 . It find out that the part of mushrooms absorbed phosphorus from Ca 3 (PO 4 ) 2 , in particular, Aspergillus niger, Aspergillus terreus, Penicillium sp., Fusarium solani. (author)

  6. Spatio-Temporal Story Mapping Animation Based On Structured Causal Relationships Of Historical Events

    Science.gov (United States)

    Inoue, Y.; Tsuruoka, K.; Arikawa, M.

    2014-04-01

    In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.

  7. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  8. Phosphorus chemistry in everyday living

    National Research Council Canada - National Science Library

    Toy, Arthur D. F

    1976-01-01

    The author has drawn on his 35 years of experience as a research scientist in phosphorus chemistry to produce a book that is not only readable to the non-chemist but sophisticated enough to interest...

  9. phosphorus retention data and metadata

    Science.gov (United States)

    phosphorus retention in wetlands data and metadataThis dataset is associated with the following publication:Lane , C., and B. Autrey. Phosphorus retention of forested and emergent marsh depressional wetlands in differing land uses in Florida, USA. Wetlands Ecology and Management. Springer Science and Business Media B.V;Formerly Kluwer Academic Publishers B.V., GERMANY, 24(1): 45-60, (2016).

  10. Agriculture: Climate

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  11. Agricultural Overpopulation

    OpenAIRE

    Bičanić, Rudolf

    2003-01-01

    The author discusses three different approaches to agricultural overpopulation: from the consumption side, from the production side and from the aspect of immobility of agricultural population. In the first approach agrarian overpopulation is defined from the consumption point of viewas the number of people living from agriculture that can live from aggregate agricultural income at a certain standard of consumption. In this connection the problem of measuring total agricultu...

  12. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  13. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption.

    Science.gov (United States)

    van Vliet, Stephan; Burd, Nicholas A; van Loon, Luc J C

    2015-09-01

    Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain

  14. The opportunity cost of animal based diets exceeds all food losses.

    Science.gov (United States)

    Shepon, Alon; Eshel, Gidon; Noor, Elad; Milo, Ron

    2018-04-10

    Food loss is widely recognized as undermining food security and environmental sustainability. However, consumption of resource-intensive food items instead of more efficient, equally nutritious alternatives can also be considered as an effective food loss. Here we define and quantify these opportunity food losses as the food loss associated with consuming resource-intensive animal-based items instead of plant-based alternatives which are nutritionally comparable, e.g., in terms of protein content. We consider replacements that minimize cropland use for each of the main US animal-based food categories. We find that although the characteristic conventional retail-to-consumer food losses are ≈30% for plant and animal products, the opportunity food losses of beef, pork, dairy, poultry, and eggs are 96%, 90%, 75%, 50%, and 40%, respectively. This arises because plant-based replacement diets can produce 20-fold and twofold more nutritionally similar food per cropland than beef and eggs, the most and least resource-intensive animal categories, respectively. Although conventional and opportunity food losses are both targets for improvement, the high opportunity food losses highlight the large potential savings beyond conventionally defined food losses. Concurrently replacing all animal-based items in the US diet with plant-based alternatives will add enough food to feed, in full, 350 million additional people, well above the expected benefits of eliminating all supply chain food waste. These results highlight the importance of dietary shifts to improving food availability and security. Copyright © 2018 the Author(s). Published by PNAS.

  15. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  16. Contribution of food additives to sodium and phosphorus content of diets rich in processed foods.

    Science.gov (United States)

    Carrigan, Anna; Klinger, Andrew; Choquette, Suzanne S; Luzuriaga-McPherson, Alexandra; Bell, Emmy K; Darnell, Betty; Gutiérrez, Orlando M

    2014-01-01

    Phosphorus-based food additives increase the total phosphorus content of processed foods. However, the extent to which these additives augment total phosphorus intake per day is unclear. To examine the contribution of phosphorus-based food additives to the total phosphorus content of processed foods, separate 4-day menus for a low-additive and additive-enhanced diet were developed using Nutrition Data System for Research (NDSR) software. The low-additive diet was designed to conform to U.S. Department of Agriculture guidelines for energy and phosphorus intake (∼2,000 kcal/day and 900 mg of phosphorus per day), and it contained minimally processed foods. The additive-enhanced diet contained the same food items as the low-additive diet except that highly processed foods were substituted for minimally processed foods. Food items from both diets were collected, blended, and sent for measurement of energy and nutrient intake. The low-additive and additive-enhanced diet provided approximately 2,200 kcal, 700 mg of calcium, and 3,000 mg of potassium per day on average. Measured sodium and phosphorus content standardized per 100 mg of food was higher each day of the additive-enhanced diet as compared with the low-additive diet. When averaged over the 4 menu days, the measured phosphorus and sodium contents of the additive-enhanced diet were 606 ± 125 and 1,329 ± 642 mg higher than the low-additive diet, respectively, representing a 60% increase in total phosphorus and sodium content on average. When comparing the measured values of the additive-enhanced diet to NDSR-estimated values, there were no statistically significant differences in measured versus estimated phosphorus contents. Phosphorus and sodium additives in processed foods can substantially augment phosphorus and sodium intake, even in relatively healthy diets. Current dietary software may provide reasonable estimates of the phosphorus content in processed foods. Copyright © 2014 National Kidney

  17. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    Science.gov (United States)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  18. Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran

    Science.gov (United States)

    Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.

    2018-02-01

    Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.

  19. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Gårn Hansen, Lars

    2014-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...

  20. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  1. Spatial temporal determination of phosphorus concentration in Lake Tota

    International Nuclear Information System (INIS)

    Cordero, Ruben D; Ruiz, J Efraim; Vargas, Edgar F

    2005-01-01

    The lapse from July to November of 2003 a study was made to determine the spatial and temporal concentration of phosphorus in the lake of Tota (Boyaca, Colombia). Samples were taken with a Van-Dorn bottle of the horizontal type of two-liter capacity in the superficial stratum up to 20 cm in the water column and at 10 m depth. The different forms of phosphorus studied, show that there are significant differences in their concentrations, the highest values being found in the sector known as Lago Chico and the lowest in the area of Lago Grande; this behavior is found to be closely related to the agricultural uses of the land in the littoral zone and additionally with the climatic factors especially the precipitation in the area investigated

  2. Phosphorus in Denmark: national and regional anthropogenic flows

    DEFF Research Database (Denmark)

    Klinglmair, Manfred; Lemming, Camilla; Jensen, Lars Stoumann

    2015-01-01

    by country-wide average values. To quantify and evaluate these imbalances we integrated a country-scale and regional-scale model of the Danish anthropogenic P flows and stocks. We examine three spatial regions with regard to agriculture, as the main driver for P use, and waste management, the crucial sector......Substance flow analyses (SFA) of phosphorus (P) have been examined on a national or supra-national level in various recent studies. SFA studies of P on the country scale or larger can have limited informative value; large differences between P budgets exist within countries and are easily obscured...... for P recovery. The regions are characterised by their differences in agricultural practice, population and industrial density. We show considerable variation in P flows within the country. First, these are driven by agriculture, with mineral fertiliser inputs varying between 3 and 5 kg ha−1 yr−1...

  3. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  4. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  5. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  6. Recycling phosphorus from wastewater

    DEFF Research Database (Denmark)

    Lemming, Camilla Kjærulff

    wastewater-derived products, and to relate this to the availability from other P-containing waste products and mineral P fertiliser. This included aspects of development over time and soil accumulation, as well as effects of soil pH and the spatial distribution in soil. The P sources applied in this PhD work...... reserves. Wastewater represents the largest urban flow of P in waste. Hence, knowledge about plant P availability of products from the wastewater treatment system, and also comparison to other waste P sources and mineral P is essential to obtain an efficient recycling and to prioritise between different P...... recycling options. The work of this PhD focused on the plant P availability of sewage sludge, a P-rich residue from wastewater treatment which is commonly applied to agricultural soil in Denmark. The overall objective of the PhD work was to evaluate the plant availability of P in sewage sludge and other...

  7. Parameter uncertainty analysis for the annual phosphorus loss estimator (APLE) model

    Science.gov (United States)

    Technical abstract: Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study, we conduct an uncertainty analys...

  8. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    Science.gov (United States)

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  9. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils

    NARCIS (Netherlands)

    Schoumans, O.F.

    2013-01-01

    To determine phosphorus (P) losses from agricultural land to surface water, information is needed about the behavior of P in soils. In this study, the sorption and desorption characteristics of lowland peaty clay soils are described based on experimental laboratory studies. The maximum P sorption

  10. Trends in the balance and material flows of phosphorus in the Czech Republic.

    Czech Academy of Sciences Publication Activity Database

    Hejzlar, Josef; Vystavna, Yuliya; Kopáček, Jiří

    2016-01-01

    Roč. 2016, č. 4 (2016), s. 225-233 ISSN 1804-0195 R&D Projects: GA ČR(CZ) GA15-04034S Institutional support: RVO:60077344 Keywords : phosphorus cycle * material flow analysis * nutrient use efficiency * agricultural Subject RIV: DJ - Water Pollution ; Quality http://www.wasteforum.cz/cisla/WF_4_2016.pdf

  11. The Impact of First-Generation Biofuels on the Depletion of the Global Phosphorus Reserve

    NARCIS (Netherlands)

    Hein, L.G.; Leemans, R.

    2012-01-01

    The large majority of biofuels to date is “first-generation” biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to

  12. Comparing different extraction methods for estimating phosphorus solubility in various soil types

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Dekker, P.H.M.; Römkens, P.F.A.M.; Schoumans, O.F.

    2006-01-01

    In areas with intensive animal livestock farming, agricultural soils are enriched with phosphorus (P). These soils exhibit an increased risk for P transfer to the sub-soil and surface water via leaching. Besides the presence of hydrological pathways between a field and surface water, P in soil

  13. Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary

    NARCIS (Netherlands)

    Kraal, Peter; Burton, Edward D.; Rose, Andrew L.; Kocar, Benjamin D.; Lockhart, Robert S.; Grice, Kliti; Bush, Richard T.; Tan, Eileen; Webb, Samuel M.

    2015-01-01

    Phosphorus (P) is often a limiting nutrient within freshwater and estuarine systems, thus excess inputs of P from anthropogenic activities (dominantly agriculture) can induce eutrophication in receiving water bodies. The sequestration of P within estuarine sediments is controlled by sorption and

  14. Phosphorus export from artificially drained fields across the Eastern corn belt

    Science.gov (United States)

    Field observations that quantify agricultural phosphorus (P) losses are critical for the development of P reduction strategies across the Eastern Corn Belt region of North America. Within this region, surface water bodies including Lake Erie are sensitive to non-point P loadings. It is therefore imp...

  15. Distributed and dynamic modelling of hydrology, phosphorus and ecology in the Hampshire Avon and Blashford Lakes: evaluating alternative strategies to meet WFD standards.

    Science.gov (United States)

    Whitehead, P G; Jin, L; Crossman, J; Comber, S; Johnes, P J; Daldorph, P; Flynn, N; Collins, A L; Butterfield, D; Mistry, R; Bardon, R; Pope, L; Willows, R

    2014-05-15

    The issues of diffuse and point source phosphorus (P) pollution in the Hampshire Avon and Blashford Lakes are explored using a catchment model of the river system. A multibranch, process based, dynamic water quality model (INCA-P) has been applied to the whole river system to simulate water fluxes, total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations and ecology. The model has been used to assess impacts of both agricultural runoff and point sources from waste water treatment plants (WWTPs) on water quality. The results show that agriculture contributes approximately 40% of the phosphorus load and point sources the other 60% of the load in this catchment. A set of scenarios have been investigated to assess the impacts of alternative phosphorus reduction strategies and it is shown that a combined strategy of agricultural phosphorus reduction through either fertiliser reductions or better phosphorus management together with improved treatment at WWTPs would reduce the SRP concentrations in the river to acceptable levels to meet the EU Water Framework Directive (WFD) requirements. A seasonal strategy for WWTP phosphorus reductions would achieve significant benefits at reduced cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Phosphorus requirement in laying hens

    NARCIS (Netherlands)

    Lambert, W.; Krimpen, van M.M.; Star, L.

    2014-01-01

    It was hypothesized that P supply by feed in alternative housing systems can be lowered without negative effects on bone quality and production performance. Therefore, the objectives of the current study were 1) to update the retainable phosphorus (rP) needs of two modern laying hen breeds from 36

  17. Greening the global phosphorus cycle

    NARCIS (Netherlands)

    Withers, Paul J.A.; Elser, James J.; Hilton, Julian; Ohtake, Hisao; Schipper, Willem J.; Dijk, Van Kimo C.

    2015-01-01

    The sustainability of global phosphorus (P) use is emerging as a major societal goal to secure future food, energy, and water security for a growing population. Phosphate rock (PR) is a critical raw material whose inefficiency of use is leading to widespread eutrophication and uncertainties about

  18. Anthropogenic phosphorus flows in Denmark

    DEFF Research Database (Denmark)

    Klinglmair, Manfred

    Phosphorus (P) is an essential plant nutrient mined from the earth’s crust as phosphate rock. It cannot be substituted, making it a crucial resource for food production. For the EU, future phosphate scarcity is a potential geopolitical and strategic threat. An increasing worldwide phosphate demand...

  19. Animal-Based Measures to Assess the Welfare of Extensively Managed Ewes

    Science.gov (United States)

    Hemsworth, Paul; Doyle, Rebecca

    2017-01-01

    Simple Summary The aim of this study was to assess the reliability and practicality of 10 animal-based welfare measures for extensively managed ewes, which were derived from the scientific literature, previous welfare protocols and through consultation with veterinarians and animal welfare scientists. Measures were examined on 100 Merino ewes, which were individually identified and repeatedly examined at mid-pregnancy, mid-lactation and weaning. Body condition score, fleece condition, skin lesions, tail length, dag score and lameness are proposed for on-farm use in welfare assessments of extensive sheep production systems. These six welfare measures, which address the main welfare concerns for extensively managed ewes, can be reliably and feasibly measured in the field. Abstract The reliability and feasibility of 10 animal-based measures of ewe welfare were examined for use in extensive sheep production systems. Measures were: Body condition score (BCS), rumen fill, fleece cleanliness, fleece condition, skin lesions, tail length, dag score, foot-wall integrity, hoof overgrowth and lameness, and all were examined on 100 Merino ewes (aged 2–4 years) during mid-pregnancy, mid-lactation and weaning by a pool of nine trained observers. The measures of BCS, fleece condition, skin lesions, tail length, dag score and lameness were deemed to be reliable and feasible. All had good observer agreement, as determined by the percentage of agreement, Kendall’s coefficient of concordance (W) and Kappa (k) values. When combined, these nutritional and health measures provide a snapshot of the current welfare status of ewes, as well as evidencing previous or potential welfare issues. PMID:29295551

  20. Few-layer black phosphorus nanoparticles.

    Science.gov (United States)

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  1. SEQUENTIAL ELECTRODIALYTIC EXTRACTION OF PHOSPHORUS COMPOUNDS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an apparatus for electrodialytic extraction of phosphorus from a particulate material in suspension and to a method for electrodialytic phosphorus recovery, which uses the apparatus. The method may be applied for wastewater treatment, and/or treatment of particulate...... material rich in phosphorus. The present invention provides an apparatus for electrodialytic extraction of phosphorus from a particulate material comprising acidic and/or alkaline soluble phosphorus compounds, in suspension, comprising: • a first electrodialytic cell comprising a first anolyte compartment...

  2. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  3. Agriculture Sectors

    Science.gov (United States)

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  4. Utilization of radioisotopes in the agriculture

    International Nuclear Information System (INIS)

    Cerri, C.C.

    1987-01-01

    Some aspects of radioisotopes utilization in the agriculture, such as, the use of gamma radiation for genetic improvement of plants; the use of C 14 as tracer for comprehension of the vegetable physiology; the use of nitrogen and phosphorus isotopes in soil fertilization and plant nutrition; the use of radiation for inset sterelization and, measurement of the humidity and density of soils by neutron moderation and attenuation of gamma radiation, are presented. (M.C.K.) [pt

  5. Screening of inbred popcorn lines for tolerance to low phosphorus.

    Science.gov (United States)

    Santos, O J A P; Gonçalves, L S A; Scapim, C A; S M de Sousa, de; Castro, C R; Y Baba, V; de Oliveira, A L M

    2016-05-06

    Increasing phosphorus use efficiency in agriculture is essential for sustainable food production. Thus, the aims of this study were: i) to identify phosphorus use efficiency (PUE) in popcorn lines during the early plant stages, ii) to study the relationship between traits correlated with PUE, and iii) to analyze genetic diversity among lines. To accomplish this, 35 popcorn lines from Universidade Estadual de Maringá breeding program were studied. The experiment was conducted in a growth chamber using a nutrient solution containing two concentrations of phosphorus (P): 2.5 μM or low P (LP) and 250 μM or high P (HP). After 13 days in the nutrient solution, root morphology traits, shoot and root dry weight, and P content of the maize seedlings were measured. A deviance analysis showed there was a high level of genetic variability. An unweighted pair group method with arithmetic mean (UPGMA) clustering analysis identified three groups for the LP treatment (efficient, intermediate, and inefficient) and three groups for the HP treatment (responsive, moderately responsive, and unresponsive). The results of a principal component analysis and selection index were consistent with the UPGMA analysis, and lines 1, 2, 13, 17, 26, and 31 were classified as PUE.

  6. Agriculture: About EPA's National Agriculture Center

    Science.gov (United States)

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  7. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  8. Phosphorus use efficiency of the gum arabi tree (Acacia senegal (L) Willd) in Sudan

    Energy Technology Data Exchange (ETDEWEB)

    Elamin, K H; Mustafa, A F [Gezira Agricultural Research Centre, Wad Medani (Sudan). Forestry Research Section

    1996-07-01

    This study was conducted to identify gum arabic tree (Acacia senegal L. Willd) provenances with high efficiency for phosphorus uptake and use. Thirteen provenances were collected from different habitats with the gum belt of the Sudan. A preliminary trial was conducted during the period 1989-1992 at the Gezira Agricultural Research Station in Wad Medani. This study revealed that there are clear genotypic differences in phosphorus use efficiency, nitrogen yield and dry matter production. All the provenances tested also exhibited a high ability for survival under the dry climatic conditions as prevailing in the gum belt of Sudan. Based on differences in phosphorus use efficiency observed in the preliminary study, 4 provenances were selected for a detailed study. Provenance 11 and 2 represented the highly efficient group, provenance 7 the moderately efficient group and provenance 13 the low efficient group. The detailed study revealed that provenance 11 is superior to all others in terms of biomass production as well as in phosphorus use efficiency. Although the ability to take up phosphorus was low, this was compensated by having a high root length density enabling the tree to take up a quantity of phosphorus similar to that taken up by other provenances. The high ability to convert the absorbed phosphorus into a greater quantity of dry matter made this provenance the best in phosphorus use efficiency. These results suggest that provenance 11 may be a suitable candidate to be introduced into the gum belt of Sudan in support of its rehabilitation programme. (author). 13 refs, 4 figs, 5 tabs.

  9. Phosphorus use efficiency of the gum arabi tree (Acacia senegal (L) Willd) in Sudan

    International Nuclear Information System (INIS)

    Elamin, K.H.; Mustafa, A.F.

    1996-01-01

    This study was conducted to identify gum arabic tree (Acacia senegal L. Willd) provenances with high efficiency for phosphorus uptake and use. Thirteen provenances were collected from different habitats with the gum belt of the Sudan. A preliminary trial was conducted during the period 1989-1992 at the Gezira Agricultural Research Station in Wad Medani. This study revealed that there are clear genotypic differences in phosphorus use efficiency, nitrogen yield and dry matter production. All the provenances tested also exhibited a high ability for survival under the dry climatic conditions as prevailing in the gum belt of Sudan. Based on differences in phosphorus use efficiency observed in the preliminary study, 4 provenances were selected for a detailed study. Provenance 11 and 2 represented the highly efficient group, provenance 7 the moderately efficient group and provenance 13 the low efficient group. The detailed study revealed that provenance 11 is superior to all others in terms of biomass production as well as in phosphorus use efficiency. Although the ability to take up phosphorus was low, this was compensated by having a high root length density enabling the tree to take up a quantity of phosphorus similar to that taken up by other provenances. The high ability to convert the absorbed phosphorus into a greater quantity of dry matter made this provenance the best in phosphorus use efficiency. These results suggest that provenance 11 may be a suitable candidate to be introduced into the gum belt of Sudan in support of its rehabilitation programme. (author). 13 refs, 4 figs, 5 tabs

  10. Phytoextraction of excess soil phosphorus

    International Nuclear Information System (INIS)

    Sharma, Nilesh C.; Starnes, Daniel L.; Sahi, Shivendra V.

    2007-01-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils

  11. Phytoextraction of excess soil phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nilesh C. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Starnes, Daniel L. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Sahi, Shivendra V. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States)]. E-mail: shiv.sahi@wku.edu

    2007-03-15

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils.

  12. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  13. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    A solute transport model was used to predict phosphorus mobility in the northern Everglades. Over the past several decades, agricultural drainage waters discharged into the northern Everglades, have been enriched in phosphorus (P) relative to the historic rainfall-driven inputs. While methods of reducing total P concentrations in the discharge water have been actively pursued through implementation of agricultural Best Management Practices (BMPs), a major parallel effort has focused on the construction of a network of constructed wetlands for P removal before these waters enter the Everglades. This study describes the development of a water quality model for P transport and cycling and its application to a large constructed wetland: Stormwater Treatment Area 1 West (STA 1W), located southeast of Lake Okeechobee on the eastern perimeter of the Everglades Agricultural Area (EAA). In STA 1W agricultural nutrients such as phosphorus (P) are removed from EAA runoff before entering the adjacent Water Conservation Areas (WCAs) and the Everglades. STA 1W is divided by levees into 4 cells, which are flooded for most of the year; thus the dominant mechanism for flow and transport is overland flow. P is removed either through deposition into sediments or is taken up by plants; in either case the soils end up being significantly enriched in P. The model has been applied and calibrated to several years of water quality data from Cell 4 within STA 1W. Most existing P models have been applied to agricultural/upland systems, with only a few relevant to treatment wetlands such as STA 1W. To ensure sufficient flexibility in selecting appropriate system components and reactions, the model has been designed to incorporate a wide range of user-selectable mechanisms for P uptake and release parameters between soils and inflowing water. The model can track a large number of mobile and nonmobile components and utilizes a Godunov-style operator-splitting technique for the transported

  14. Phosphorus content in three physical fractions of typical Chernozem

    Science.gov (United States)

    Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy

    2017-04-01

    The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of phosphorus accumulates in CF. In the group with double dose of fertilizers TPC in CF was more

  15. Agriculture applications

    International Nuclear Information System (INIS)

    Bastidas O, G.; Obando D, R.; Alvarez F, A.

    1989-01-01

    Since its beginnings, the Agricultural Area had a selected research team involved in the development of different agricultural techniques. Currently, there are two main branches engaged in the solution of agricultural problems: Soil fertility and induced mutations. Soil fertility: Within this branch, studies on soil nutrients and availability of water and light resources, have been made by using isotope methods. In the near future studies on nitrogen and potassium content in potato, rice and wheat plantations will be held. Induced mutations: The main objective of this team is to obtain through radioinduced mutations, as well as in vitro growth, improved rice and other cereal seeds to be used under hostile environmental conditions. The further goal will be to develop new genotypes straight from the mutants or by utilization of this material as breeding materials in interchange programs

  16. Modelling of in-stream nitrogen and phosphorus concentrations using different sampling strategies for calibration data

    Science.gov (United States)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could

  17. Agricultural sector

    International Nuclear Information System (INIS)

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    The applications of nuclear technology in agriculture sector cover the use of the technology at every aspects of agricultural activity, starting from the seed to harvesting as well as the management of plantations itself. In this sector, a total of 55 entities comprising 17 public agencies and 38 private companies were selected for the study. Almost all, 91 % of them are located in Peninsular Malaysia; the rest operates in Sabah and Sarawak. The findings of the study in the public agencies and private companies are presented in the next sections. (author)

  18. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  19. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption.

    Science.gov (United States)

    Ngatia, L W; Hsieh, Y P; Nemours, D; Fu, R; Taylor, R W

    2017-08-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in turn influence the phosphorus sorption optimization. Biochar was produced from switchgrass, kudzu and Chinese tallow at 200, 300, 400, 500, 550, 650,750 °C. Carbon thermal stability was determined by multi-element scanning thermal analysis (MESTA), C composition was determined using solid state 13 C NMR. Phosphorus sorption was determined using a mixture of 10% biochar and 90% sandy soil after incubation. Results indicate increased P sorption (P biochar pyrolysis temperature. However, optimum P sorption was feedstock specific with switchgrass indicating P desorption between 200 and 550 °C. Phosphorus sorption was in the order of kudzu > switchgrass > Chinese tallow. Total C, C thermal stability, aromatic C and alkalinity increased with elevated pyrolysis temperature. Biochar alkalinity favored P sorption. There was a positive relationship between high thermal stable C and P sorption for Kudzu (r = 0.62; P = 0.0346) and Chinese tallow (r = 0.73; P = 0.0138). In conclusion, biochar has potential for P eutrophication mitigation, however, optimum biochar pyrolysis temperature for P sorption is feedstock specific and in some cases might be out of 300-500 °C temperature range commonly used for agronomic application. High thermal stable C dominated by aromatic C and alkaline pH seem to favor P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fertilizer phosphorus in some Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1961-01-01

    Full Text Available In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2 superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4 for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13. Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2, or phosphorus

  1. Phosphorus and Nutrition in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Emilio González-Parra

    2012-01-01

    Full Text Available Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency.

  2. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options

    NARCIS (Netherlands)

    Cordell, D.; Rosemarin, A.; Schroder, J.J.; Smit, A.L.

    2011-01-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus

  3. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  4. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    Science.gov (United States)

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  5. Biochar as phosphorus transporter to support the closure of the phosphorus cycle

    Science.gov (United States)

    Soja, Gerhard; Jagerhofer, Reinhard; Fristak, Vladimir; Pfeifer, Christoph

    2017-04-01

    Waste materials rich in phosphorus could partly substitute rock phosphate-based mineral fertilizers. As rock phosphate is listed as critical raw material, measures for increasing the recovery rate of phosphorus and for closing the phosphorus cycle are required. However, direct use of the waste materials as fertilizers are frequently not possible because of legal constraints, adverse side effects because of co-occurring contaminants or hygienic concerns. So this study had the objective to test the appropriateness of carbonizing P-rich residues that can be used as secondary P resources for producing P fertilizers. The resulting biochar or hydrochar products should be tested for the bioavailability of P for plant uptake. Feedstock materials tested as secondary P resources were chicken manure, animal bone flour, sewage sludge, and digestates. These materials were either pyrolyzed at different temperatures, partly with different chemical modifications, or hydrothermally carbonized. The biochar and hydrochar products were analyzed for their total and available P concentrations, and the plant bioavailability was determined with a standardized plant growth test with rye (Neubauer-test). The results showed that biochar produced from a mixture of chicken manure and saw dust was equivalent to a standard phosphate fertilizer (superphosphate) with respect to P available for plant uptake. For most materials, a pyrolysis temperature of 400 °C was slightly more beneficial for P availability than 500 °C. Pyrolytic carbonization mostly was more supportive for plant growth than hydrothermal carbonization of the tested feedstocks. For some feedstocks the addition of sodium carbonate improved the P uptake of the plants without affecting the biomass production. The results show that P-rich waste materials used as secondary resources for carbonization can effectively contribute to increased P recovery, savings in the use of mineral phosphate fertilizers and reduced P loads to non

  6. Interaction effect of phosphorus and boron on yield and quality of lettuce

    Directory of Open Access Journals (Sweden)

    Sultana Zaman Chowdhury

    2015-12-01

    Full Text Available Proper nutrition is essential for satisfactory crop growth and production. A field experiment was conducted at Bangabandhu Sheikh Mujibur Rahman Agricultural University, to evaluate yield and quality of Grand Rapids lettuce using various levels of phosphorus and boron. Treatment combination of 120 kg ha-1 of phosphorus and 2 kg ha-1 of boron has significantly increased plant height, leaf number, leaf length, plant canopy, capsules plant-1, seeds capsule-1, seeds number plant-1, seed yield ha-1, germination (%, planting value (%, moisture (%, purity (%, dry matter (% and 1000 seed weight. Most of the treatment combinations performed better than control treatments in all parameter. The finding could be helpful to determine the precise levels of phosphorus and boron to improve the yield and quality of lettuce.

  7. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide

    International Nuclear Information System (INIS)

    Ribeiro, E.M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs

  8. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by 32P tracer

    International Nuclear Information System (INIS)

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi

    2007-01-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm 3 of soil (Typic Quartzipisamment) with 75 mg kg -1 of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 μCi) of 32 P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg -1 as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and 32 P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg -1 . The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  9. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  10. Improving food and agricultural production. Thailand. Improving food and agricultural production with nuclear and related technology

    International Nuclear Information System (INIS)

    Vanderdeelen, J.

    1991-01-01

    In the northern and north-eastern regions of Thailand, low agricultural production is due mainly to poor soil conditions and variability in the seasonal rainfall distribution. With respect to the former aspect, phosphorus fertilization is one of the major constraints. The aim of the mission was to provide guidance on the studies addressing the use of naturally occurring rock phosphate deposits or phosphate fertilizer. 9 refs, 3 tabs

  11. Global Fertilizer and Manure, Version 1: Phosphorus Fertilizer Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phosphorus Fertilizer Application dataset of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of phosphorus fertilizer nutrients...

  12. Invited review: Animal-based indicators for on-farm welfare assessment for dairy goats.

    Science.gov (United States)

    Battini, M; Vieira, A; Barbieri, S; Ajuda, I; Stilwell, G; Mattiello, S

    2014-11-01

    This paper reviews animal-based welfare indicators to develop a valid, reliable, and feasible on-farm welfare assessment protocol for dairy goats. The indicators were considered in the light of the 4 accepted principles (good feeding, good housing, good health, appropriate behavior) subdivided into 12 criteria developed by the European Welfare Quality program. We will only examine the practical indicators to be used on-farm, excluding those requiring the use of specific instruments or laboratory analysis and those that are recorded at the slaughterhouse. Body condition score, hair coat condition, and queuing at the feed barrier or at the drinker seem the most promising indicators for the assessment of the "good feeding" principle. As to "good housing," some indicators were considered promising for assessing "comfort around resting" (e.g., resting in contact with a wall) or "thermal comfort" (e.g., panting score for the detection of heat stress and shivering score for the detection of cold stress). Several indicators related to "good health," such as lameness, claw overgrowth, presence of external abscesses, and hair coat condition, were identified. As to the "appropriate behavior" principle, different criteria have been identified: agonistic behavior is largely used as the "expression of social behavior" criterion, but it is often not feasible for on-farm assessment. Latency to first contact and the avoidance distance test can be used as criteria for assessing the quality of the human-animal relationship. Qualitative behavior assessment seems to be a promising indicator for addressing the "positive emotional state" criterion. Promising indicators were identified for most of the considered criteria; however, no valid indicator has been identified for "expression of other behaviors." Interobserver reliability has rarely been assessed and warrants further attention; in contrast, short-term intraobserver reliability is frequently assessed and some studies consider mid

  13. Agricultural problems

    International Nuclear Information System (INIS)

    Bickerton, George E.

    1997-01-01

    Although there were not reasons to deplore against major activity release from any of the 110 industrial reactors authorized to operate in US, the nuclear incident that occurred at the Three Mile Island Plant in 1979 urged the public conscience toward the necessity of readiness to cope with events of this type. The personnel of the Emergency Planning Office functioning in the frame of US Department of Agriculture has already participated in around 600 intervention drillings on a federal, local or state scale to plan, test or asses radiological emergency plans or to intervene locally. These exercises allowed acquiring a significant experience in elaborating emergency plans, planning the drillings, working out scenarios and evaluation of the potential impact of accidents from the agricultural point of view. We have also taken part in different international drillings among which the most recent are INEX 1 and RADEX 94. We have found on these occasions that the agricultural problems are essential preoccupations in most of the cases no matter if the context is international, national, local or of state level. The paper poses problems specifically related to milk, fruits and vegetables, soils, meat and meat products. Finally the paper discusses issues like drilling planning, alarm and notification, sampling strategy, access authorizations for farmers, removing of contamination wastes. A number of social, political and economical relating problems are also mentioned

  14. Determination of phosphorus using derivative neutron activation

    International Nuclear Information System (INIS)

    Scindia, Y.M.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.

    2002-01-01

    For the determination of phosphorus in different matrices, the derivative neutron activation analysis is especially applicable to aqueous samples, since the conventional neutron activation analysis is not useful for the determination of phosphorus. Phosphorus when reacted with ammonium molybdate 4 hydrate and ammonium metavanadate forms molybdo vanado phosphoric acid. This complex is preconcentrated by extracting into methyl isobutyl ketone. The organic phase containing the molybdo vanado phosphoric acid is neutron activated and the phosphorus is determined through the activation product of 52 V. Preparation of this complex, its stoichiometry, application to trace level determination of phosphorus and improved detection limit are discussed. This method was applied for the analysis of industrial effluent samples. (author)

  15. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies...

  16. WHO WOULD EAT IN A WORLD WITHOUT PHOSPHORUS? A GLOBAL DYNAMIC MODEL

    Science.gov (United States)

    Dumas, M.

    2009-12-01

    Phosphorus is an indispensable and non-substitutable resource, as agriculture is impossible if soils do not hold adequate amounts of this nutrient. Phosphorus is also considered to be a non-renewable and increasingly scarce resource, as phosphate rock reserves - as one measure of availability amongst others - are estimated to last for 50 to 100 years at current rates of consumption. How would food production decline in different parts of the world in the scenario of a sudden shortage in phosphorus? To answer this question and explore management scenarios, I present a probabilistic model of the structure and dynamics of the global P cycle in the world’s agro-ecosystems. The model proposes an original solution to the challenge of capturing the large-scale aggregate dynamics of multiple micro-scale soil cycling processes. Furthermore, it integrates the essential natural processes with a model of human-managed flows, thereby bringing together several decades of research and measurements from soil science, plant nutrition and long-term agricultural experiments from around the globe. In this paper, I present the model, the first simulation results and the implications for long-term sustainable management of phosphorus and soil fertility.

  17. Phosphorus Regulation in Chronic Kidney Disease.

    Science.gov (United States)

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  18. Predicted impact and evaluation of North Carolina's phosphorus indexing tool.

    Science.gov (United States)

    Johnson, Amy M; Osmond, Deanna L; Hodges, Steven C

    2005-01-01

    Increased concern about potential losses of phosphorus (P) from agricultural fields receiving animal waste has resulted in the implementation of new state and federal regulations related to nutrient management. In response to strengthened nutrient management standards that require consideration of P, North Carolina has developed a site-specific P indexing system called the Phosphorus Loss Assessment Tool (PLAT) to predict relative amounts of potential P loss from agricultural fields. The purpose of this study was to apply the PLAT index on farms throughout North Carolina in an attempt to predict the percentage and types of farms that will be forced to change management practices due to implementation of new regulations. Sites from all 100 counties were sampled, with the number of samples taken from each county depending on the proportion of the state's agricultural land that occurs in that county. Results showed that approximately 8% of producers in the state will be required to apply animal waste or inorganic fertilizer on a P rather than nitrogen basis, with the percentage increasing for farmers who apply animal waste (approximately 27%). The PLAT index predicted the greatest amounts of P loss from sites in the Coastal Plain region of North Carolina and from sites receiving poultry waste. Loss of dissolved P through surface runoff tended to be greater than other loss pathways and presents an area of concern as no best management practices (BMPs) currently exist for the reduction of in-field dissolved P. The PLAT index predicted the areas in the state that are known to be disproportionately vulnerable to P loss due to histories of high P applications, high densities of animal units, or soil type and landscapes that are most susceptible to P loss.

  19. Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture

    NARCIS (Netherlands)

    Bouwman, A.F.; Pawlowski, M.; Liu, C.; Beusen, A.H.W.; Shumway, S.E.; Glibert, P.M.; Overbeek, C.C.

    2011-01-01

    A model was developed to estimate nitrogen and phosphorus budgets for aquaculture production of crustaceans, bivalves, gastropods, and seaweed, using country production data for the 1970–2006 period from the Food and Agriculture Organization and scenarios based on the Millenium Assessment for

  20. X-ray fluorescence spectrometry-based approach to precision management of bioavailable phosphorus in soil environments

    Science.gov (United States)

    Declining nutrient use efficiency in crop production has been a global priority to preserve high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients, and the availability of ...

  1. Global Hindcasts and Future Projections of Coastal Nitrogen and Phosphorus Loads Due to Shellfish and Seaweed Aquaculture

    NARCIS (Netherlands)

    Bouwman, A.F.; Pawlowski, M.; Liu, C.; Beusen, A.W.H.; Shumway, S.E.; Glibert, P.M.; Overbeek, C.C.

    2011-01-01

    A model was developed to estimate nitrogen and phosphorus budgets for aquaculture production of crustaceans, bivalves, gastropods, and seaweed, using country production data for the 1970–2006 period from the Food and Agriculture Organi- zation and scenarios based on the Millenium Assessment for

  2. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    Science.gov (United States)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  3. Phosphorus metabolism and estimation of phosphorus requirements for sheep

    International Nuclear Information System (INIS)

    Louvandini, H.; Vitti, D.M.S.S.

    1996-01-01

    The main objective of the present work was to determine the effects of different dietary phosphorus (P) levels on endogenous faecal loss and to estimate the minimum daily requirement of P for sheep. The study was conducted with 24 Suffolk sheep which received a basic diet consisting of a hay-concentrate mixture. The treatment consisted of different amounts of bone meal, added to the basic diet, so as to obtain supplementary P levels of 0, 2 and 3 g/day. Twenty-one days after the introduction of the experimental diet, 7.4 MBq radioactive P ( 32 P) was injected in the left jugular vein of each sheep and blood, feces and urine were collected daily for 8 days at 24-hour intervals. The samples were analysed for inorganic P and for radioactive specific activities. Mean endogenous faecal losses of P were 10.00, 31.79, 39.35 and 38.06 mg/kg live weight (LW) per day in sheep supplemented with 0, 1, 2 and 3 g respectively. A positive linear relation ship was observed between endogenous faecal loss and consumed P, indicating that this loss was linked to dietary P. Total P excretion in the faeces, as well as P absorption, retention urinary excretion and salivary secretion were also directly related to P intake, as part of the mechanism of homeostatic control of organism animal. The minimum endogenous faecal loss for zero P intake, calculated by interpolation, was 8.27 mg/kg LW per day, and for zero balance, the calculated phosphorus consumption was 21.36 mg/kg LW per day. (author)

  4. Formative pre-Hispanic agricultural soils in northwest Argentina

    Science.gov (United States)

    Sampietro Vattuone, María Marta; Roldán, Jimena; Neder, Liliana; Maldonado, Mario Gabriel; Vattuone, Marta Amelia

    2011-01-01

    Our study area is from an early agricultural archaeological site named "El Tolar" (1st to 9th century AD), located in Tafí Valley (Tucumán, northwest Argentina). The objective was to identify geochemical signatures generated by the sustained agrarian use of soils. Chemical and pedological studies were made in different archaeological contexts. Physical and chemical features, such as bulk density, pH, organic and inorganic phosphorus, and available copper, manganese and iron, were taken into account. The results suggested that a buried paleosol identified was contemporary with the occupation of the site. It also showed characteristics clearly related to pre-Hispanic agrarian production. The concentrations of organic phosphorus and iron in agricultural soils probably reflect the use of fertilizers. The application of geoscience techniques allowed us to obtain important information on their behaviour and socio-economic development. This paper constitutes the first pedogeochemical approach to the study of Argentinean pre-Hispanic agricultural soils.

  5. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  6. Historical balance of nitrogen, phosphorus, and sulfur of the Argentine Pampas

    OpenAIRE

    Álvarez, Roberto; Steinbach, Haydee S; de Paepe, Josefina L

    2016-01-01

    A surface balance for nitrogen (N), phosphorus (P), and sulfur (S) was performed for the Argentine Pampas during the 1870-2010 time interval, comprising the agricultural expansion period in the region. Nitrogen inputs accounted in the balance were atmospheric deposition, symbiotic fixation, and fertilization. Outputs included were grain harvest and livestock products. P and S balances included atmospheric deposition and fertilization as inputs and the same outputs than in the case of N balanc...

  7. Effect of Nitrogen and Phosphorus on Yield and Yield Components of Sesame (Sesamumindicum L.)

    OpenAIRE

    Muhammad Ibrahim; Manzoor Hussain; Ahmad Khan; Yousaf Jamal; Muhammad Ali; Muhammad Faisal Anwar Malik

    2014-01-01

    Nitrogen is a structural component of chlorophyll and protein therefore adequate supply of nitrogen is beneficial for both carbohydrates and protein metabolism as it promotes cell division and cell enlargement, resulting in more leaf area and thus ensuring good seed and dry matter yield. Theexperiment entitled effect of nitrogen and phosphorus on yield and yield components of sesame were conducted at New Developmental Farm of the University of Agriculture Peshawar during kharif 2013. Randomiz...

  8. Phosphorus determination by various substoichiometric methods

    International Nuclear Information System (INIS)

    Shigematsu, Toshio; Kudo, Kiyoshi

    1981-01-01

    Various substoichiometric methods have been classified from a view point of the substoichiometric separation. Based upon the substoichiometric separation, phosphorus was determined substoichiometrically by a direct method, a method of carrier amount variation and a comparison method for the irradiated sample. The direct method was applied to the determination of phosphorus in orchard leaves (SRM-1571). The analytical value was 0.23 +- 0.01%. Phosphorus in orchard leaves and spinach (SRM-1570) was determined by an ordinary method which devided the sample into equal parts in the method of carrier amount variation. Analytical values of orchard leaves and spinach were 0.22 +- 0.02% and 0.56 +- 0.04%, respectively. Moreover, a new modification of the method of carrier amount variation was studied by the use of various standard samples such as red phosphorus, spinach and orchard leaves. These standard samples were also employed for the determination of phosphorus in orchard leaves and 0.21 +- 0.01% was obtained. All these results are in good agreement with the value reported by NBS. The comparison method was applied to the determination of phosphorus in a semiconductor silicon single crystal. As a result of the correction of 32 P activity induced by the secondary nuclear reaction of 30 Si, 7.9 ppb and 3.1 ppb were obtained for the phosphorus concentrations in the single crystal silicon. (author)

  9. Use of Annual Phosphorus Loss Estimator (APLE) Model to Evaluate a Phosphorus Index.

    Science.gov (United States)

    Fiorellino, Nicole M; McGrath, Joshua M; Vadas, Peter A; Bolster, Carl H; Coale, Frank J

    2017-11-01

    The Phosphorus (P) Index was developed to provide a relative ranking of agricultural fields according to their potential for P loss to surface water. Recent efforts have focused on updating and evaluating P Indices against measured or modeled P loss data to ensure agreement in magnitude and direction. Following a recently published method, we modified the Maryland P Site Index (MD-PSI) from a multiplicative to a component index structure and evaluated the MD-PSI outputs against P loss data estimated by the Annual P Loss Estimator (APLE) model, a validated, field-scale, annual P loss model. We created a theoretical dataset of fields to represent Maryland conditions and scenarios and created an empirical dataset of soil samples and management characteristics from across the state. Through the evaluation process, we modified a number of variables within the MD-PSI and calculated weighting coefficients for each P loss component. We have demonstrated that our methods can be used to modify a P Index and increase correlation between P Index output and modeled P loss data. The methods presented here can be easily applied in other states where there is motivation to update an existing P Index. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  11. Prevalence of phosphorus containing food additives in grocery stores

    Directory of Open Access Journals (Sweden)

    Janeen B. Leon

    2012-06-01

    In conclusion, phosphorus additives are commonly present in groceries and contribute significantly to the phosphorus content of foods. Moreover, phosphorus additive foods are less costly than additive-free foods. As a result, phosphorus additives may be an important contributor to hyperphosphatemia among persons with chronic kidney disease

  12. Measurement of phosphorus in metals by RNAA

    International Nuclear Information System (INIS)

    Paul, R.L.

    2000-01-01

    An RNAA procedure has been developed for measurement of low-level phosphorus in metals. Samples are irradiated at a neutron flux of 2.7 x 10 13 n x cm -2 x s -1 then mixed with carrier and dissolved in acid. After chemical separation and purification of the phosphorus and gravimetric determination of carrier yield, 32 P is determined using a beta proportional counter. The detection limit for a 0.1 g sample irradiated for 30 minutes is 5 μg/kg. The method has been used to determine 6.4 ± 0.6 mg/kg phosphorus is SRM 2175 refractory alloy. (author)

  13. Radiochemical analysis of phosphorus in milk samples

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by thermal neutron activation analysis employing radiochemical separation is described. The radiochemical separation consists of the simultaneous irradiation of samples and standards, dissolution of the milk samples in a perchloric acid and nitric acid mixture, addition of zinc hold-back carrier, precipitation of phosphorus as ammonium phospho molybdate (A.M.P.) and sample counting in a Geiger-Mueller detector. The analysis sources of error were studied and the established method was applied to phosphorus analyses in commercial milk samples. (author)

  14. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    Science.gov (United States)

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  15. to Phosphorus Fertilization, Crop Sequence and Tillage Management

    Directory of Open Access Journals (Sweden)

    Xiaopeng Gao

    2012-01-01

    Full Text Available Field experiments were conducted at two locations in Manitoba, Canada, to determine the effect of crop rotation, phosphorus (P fertilization and tillage on grain yield and grain concentrations of Cd and Zn in durum wheat (Triticum durum L.. Compared to conventional tillage (CT, reduced tillage (RT management decreased grain Cd and increased grain yield and grain Zn in half of the site-years. The type of preceding crops of spring wheat-flax or canola-flax had little influence. Rate and timing of P application had little effect on grain Cd, but increasing P rate tended to decrease grain Zn. No interactive effect was detected among tested factors. Grain Zn was not related to grain Cd, but positively to other nutrients such as Fe, Mn, P, Ca, K, and Mg. Both grain Zn and Fe correlated positively with grain protein content, suggesting protein may represent a sink for micronutrients. The study suggested that the tillage management may have beneficial effects on both grain yield and quality. Phosphorus fertilizer can remain available for subsequent crops and high annual inputs in the crop sequence may decrease crop grain Zn. Understanding the environment is important in determining the impact of agricultural management on agronomic and nutrient traits.

  16. Performance assessment of food safety management systems in animal-based food companies in view of their context characteristics: A European study

    NARCIS (Netherlands)

    Luning, P.A.; Kirezieva, K.; Hagelaar, G.; Rovira, J.; Uyttendaele, M.; Jacxsens, L.

    2015-01-01

    Recurrently the question arises if efforts in food safety management system (FSMS) have resulted in effective systems in animal-based food production systems. The aim of this study was to gain an insight in the performance of FSMS in European animal-based food production companies in view of their

  17. Effects of WOE Presentation Types Used in Pre-Training on the Cognitive Load and Comprehension of Content in Animation-Based Learning Environments

    Science.gov (United States)

    Jung, Jung,; Kim, Dongsik; Na, Chungsoo

    2016-01-01

    This study investigated the effectiveness of various types of worked-out examples used in pre-training to optimize the cognitive load and enhance learners' comprehension of the content in an animation-based learning environment. An animation-based learning environment was developed specifically for this study. The participants were divided into…

  18. Phosphorus K4 Crystal: A New Stable Allotrope

    OpenAIRE

    Jie Liu; Shunhong Zhang; Yaguang Guo; Qian Wang

    2016-01-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K 4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K 4 phosphorus exhibits exceptional properties: i...

  19. The fate of phosphorus fertilizer in Amazon soya bean fields.

    Science.gov (United States)

    Riskin, Shelby H; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie

    2013-06-05

    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.

  20. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  1. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    Mathey, F.

    1988-01-01

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown [fr

  2. short communication synthesis of stabilized phosphorus ylides

    African Journals Online (AJOL)

    Preferred Customer

    made from phosphine and an alkyl halide [1], and they are also obtained by the Michael ... have established a convenient, one-pot method for preparing stabilized phosphorus ylides ... The ylides are converted to electron-poor alkenes via.

  3. Yellow phosphorus-induced Brugada phenocopy.

    Science.gov (United States)

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Electrical activation of phosphorus in silicon

    International Nuclear Information System (INIS)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y.; Clark, R.G.

    2003-01-01

    Full text: We present studies of phosphorus δ-doping in silicon with a view to determining the degree of electrical activation of the dopants. These results have a direct consequence for the use of phosphorus as a qubit in a silicon-based quantum computer such as that proposed by Kane. Room temperature and 4 K Hall effect measurements are presented for phosphorus δ-doped layers grown in n-type silicon using two different methods. In the first method, the δ-layer was deposited by a phosphorus effusion cell in an MBE chamber. In the second method, the Si surface was dosed with phosphine gas and then annealed to 550 deg C to incorporate P into the substrate. In both methods, the P δ-doped layer was subsequently encapsulated by ∼25 nm of Si grown epitaxially. We discuss the implications of our results on the fabrication of the Kane quantum computer

  5. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  6. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  7. Water Quality Criteria for White Phosphorus

    Science.gov (United States)

    1987-08-01

    the number of eggs produced per adult , Chronic tests using inidges exposed to elemental phosphorus through contaminated sediments were also performed by...hemoglobinemia, hemoglobinuria, hematuria, bilirubinemia, mild (Cases 2 and 3) to severe (Case 1) hypocalcemia , -61- r. ., TABLE 14. SUMMARY OF CASUALTIES...day yellow phosphorus in corn oil for 30 days or less, lost weight. Young adult rats injected with 0.5 mg/kg/day lost less weight than fully mature or

  8. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.

    1996-01-01

    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  9. Phosphorus and phytase levels for layer hens

    OpenAIRE

    Juliana Cristina Ramos Rezende; Antonio Carlos de Laurentiz; Rosemeire da Silva Filardi; Vitor Barbosa Fascina; Daniella Aparecida Berto; Sérgio Turra Sobrane Filho

    2013-01-01

    The objective of this research was to evaluate the performance and bone quality of laying hens after peak production fed diets containing phosphorus levels and phytase. An experiment was conducted with 384 Hy-line distributed in a completely randomized in a factorial 4 x 3 with 4 levels of available phosphorus and 3 levels of phytase. The experimental period was divided into four periods of 28 days, at the end of each cycle were determined experimental feed intake, egg production, egg weight,...

  10. Phosphorus Processing—Potentials for Higher Efficiency

    OpenAIRE

    Ludwig Hermann; Fabian Kraus; Ralf Hermann

    2018-01-01

    In the aftermath of the adoption of the Sustainable Development Goals (SDGs) and the Paris Agreement (COP21) by virtually all United Nations, producing more with less is imperative. In this context, phosphorus processing, despite its high efficiency compared to other steps in the value chain, needs to be revisited by science and industry. During processing, phosphorus is lost to phosphogypsum, disposed of in stacks globally piling up to 3–4 billion tons and growing by about 200 million ...

  11. Soil phosphorus dynamics in a humid tropical silvopastoral system

    International Nuclear Information System (INIS)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass

  12. Soil phosphorus dynamics in a humid tropical silvopastoral system

    Energy Technology Data Exchange (ETDEWEB)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass.

  13. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  14. Effects of white phosphorus on mallard reproduction

    Science.gov (United States)

    Vann, S.I.; Sparling, D.W.; Ottinger, M.A.

    2000-01-01

    Extensive waterfowl mortality involving thousands of ducks, geese, and swans has occurred annually at Eagle River Flats, Alaska since at least 1982. The primary agent for this mortality has been identified as white phosphorus. Although acute and subacute lethality have been described, sublethal effects are less well known. This study reports on the effects of white phosphorus on reproductive function in the mallard (Anas platyrhynchos) in captivity. Fertility, hatching success, teratogenicity, and egg laying frequency were examined in 70 adult female mallards who received up to 7 daily doses of 0, 0.5, 1.0, and 2.0 mg/kg of white phosphorus. Measurements of fertility and hatchability were reduced by the white phosphorus. Teratogenic effects were observed in embryos from hens dosed at all treatment levels. Egg laying frequency was reduced even at the lowest treatment level; treated hens required a greater number of days to lay a clutch of 12 eggs than control hens. After two doses at 2.0 mg/kg, all females stopped laying completely for a minimum of 10 days and laying frequency was depressed for at least 45 days. Fertility of 10 adult male mallards dosed with 1.0 mg/kg of white phosphorus did not differ from 10 controls, but plasma testosterone levels were significantly (p free-ranging mallards may be impaired if they are exposed to white phosphorus at typical field levels.

  15. Assessing Agricultural Intensification Strategies with a Sustainable Agriculture Matrix

    Science.gov (United States)

    Zhang, X.; Davidson, E. A.

    2017-12-01

    To meet the growing global demand for food and bioenergy, agricultural production must nearly double by 2050, placing additional pressures on the environment and the society. Thus, how to efficiently use limited land, water, and nutrient resources to produce more food with low pollution (MoFoLoPo) is clearly one of the major challenges of this century. The increasingly interconnected global market provides a great opportunity for reallocating crop production to the countries and regions that use natural resources more efficiently. For example, it is estimated that optimizing the allocation of crop production around the world can mitigate 41% of nitrogen lost to the environment. However, higher efficiency in nutrients use does not necessarily lead to higher efficiency in land use or water use. In addition, the increasing share of international trade in food supply may introduce additional systemic risk and affect the resilience of global food system. Using the data/indicator from a Sustainable Agriculture Matrix and an international trade matrix, we developed a simple model to assess the trade-offs of international trade considering resource use efficiencies (including water, land, nitrogen, and phosphorus), economic costs and benefits, and the resilience of food system.

  16. The renaissance of black phosphorus.

    Science.gov (United States)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S

    2015-04-14

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  17. Total Value of Phosphorus Recovery.

    Science.gov (United States)

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  18. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  19. The Chemical Evolution of Phosphorus

    Science.gov (United States)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  20. Risk assessment of chemicals in food and diet: Hazard identification by methods of animal-based toxicology

    DEFF Research Database (Denmark)

    Barlow, S. M.; Greig, J. B.; Bridges, J. W.

    2002-01-01

    the current state of the science of risk assessment of chemicals in food and diet, by consideration of the four stages of risk assessment, that is. hazard identification. hazard characterisation, exposure assessment and risk characterisation. The contribution of animal-based methods in toxicology to hazard......, on hazard identification for food chemicals, such as new measurement techniques, the use of transgenic animals, assessment of hormone balance and the possibilities for conducting studies in which common human diseases have been modelled. is also considered. (C) 2002 ILSI. Published by Elsevier Science Ltd....... All rights reserved....

  1. Estimate of dietary phosphorus intake using 24-h urine collection

    Science.gov (United States)

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-01-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record. PMID:25120281

  2. Sustainable Phosphorus Chemistry: A Silylphosphide Synthon for the Generation of Value-Added Phosphorus Chemicals.

    Science.gov (United States)

    Slootweg, J Chris

    2018-05-07

    Avoiding white phosphorus: Cummins and Geeson have recently described the conversion of phosphoric acid into the novel bis(trichlorosilyl)phosphide anion, which serves as a key intermediate in the synthesis of organophosphines, hexafluorophosphate, and phosphine gas in a reaction sequence that does not rely on white phosphorus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phosphorus use efficiency of maize: an investigation using radiotracer phosphorus (32P)

    International Nuclear Information System (INIS)

    Meena, S.

    2017-01-01

    A better understanding on the nutrient uptake and utilization by plants is essential for developing better nutrient efficient cultivars suited for optimal production. Precise information on the PUE of crops and P dynamics can be obtained with the help of radiotracer technique. To study the phosphorus acquisition and phosphorus use efficiency of added sources in maize using 32 P, a pot culture experiment was conducted in a medium P soil (21.26 kg ha -1 ). The treatments were P as Single Superphosphate, Enriched FYM with Single Superphosphate (EFYM), DAP, Nutriseed pack (SSP), Nutriseed pack (DAP). The above treatments were applied along with phosphobacteria. Totally there were ten treatments replicated four times. Phosphorus sources were tagged with 32 P (obtained as 32 P in orthophosphoric medium from the Board of Radiation and Isotope Technology) and applied as per the treatments. Radioactive 32 P in the grain and stover sample was determined using Liquid Scintillation Counter (Perkin Elmer Tricarb 2810 R). Using the data, per cent phosphorus derived from fertilizer (%Pdff), per cent phosphorus derived from soil (%Pdfs), Phosphorus Use Efficiency (PUE) and A value were determined. Application of Phosphorus (SSP, DAP, enriched FYM with SSP, Nutriseed pack (SSP) and Nutriseed pack (DAP)) along with PB increased the per cent phosphorus derived from fertilizer (% Pdff), P uptake from fertilizer and PUE. The highest PUE of 25.38 was recorded in the treatment where enriched FYM with SSP was applied along with PB. (author)

  4. BIODYNAMIC AGRICULTURE - ECO-FRIENDLY AGRICULTURAL PRACTICE

    Directory of Open Access Journals (Sweden)

    Veselka Vlahova

    2015-06-01

    Full Text Available Biodynamic agriculture is undoubtedly the oldest organized agricultural movement in the world. It is considered as an organic agricultural farming approach and determined as the oldest organized alternative agricultural movement in the world. In 1924 Rudolf Steiner – an Austrian natural scientist and philosopher, carried out a series of eight lectures in Koberwitz, currently Kobierzyce- Poland, where he formulated his visions on changes in agriculture and revealed his spiritual and scientific concepts about the connection between nature and agriculture by determining the important role of agriculture for the future of humanity and thus he became known as “the father of anthroposophy”. The great ecological effect of the application of the biodynamic agriculture is expressed in soil preservation and preservation of the living organisms in the soil, as well as maintenance of the natural balance in the vegetable and animal kingdom.

  5. Agricultural recycling of biodigested vinasse for lettuce production

    Directory of Open Access Journals (Sweden)

    Camila Roberta Javorski Ueno

    2014-10-01

    Full Text Available The agricultural use of waste products represents an interesting alternative for nutrient cycling. Biodigested vinasse, the final waste product of vinasse biodigestion and biogas production, can be reused for agricultural purposes. The present work sought to quantify the shoot dry mass production of lettuce plants, as well as foliar nitrogen, phosphorus and potassium content following the application of biodigested vinasse on soil. Biodigested vinasse was produced from anaerobic vinasse digestion, using anaerobic sludge as a source of microorganisms. The treatments, with four replications in entirely randomized design, consisted of anaerobic sludge from a gelatin factory, vinasse in natura, biodigested vinasse and a control treatment. The experiment was conducted over 45 days using 5 L vases and applying a dose equivalent to 150 m3 ha-1 . Lettuce treated with biodigested vinasse showed higher shoot dry mass production and higher accumulation of nitrogen, phosphorus and potassium in its leaves than that treated with vinasse in natura.

  6. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Wei, E-mail: wei@itc.nl; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: Black-Right-Pointing-Pointer Spatial dynamics of NPS phosphorus

  7. Evaluating spatial interaction of soil property with non‐point source pollution at watershed scale: The phosphorus indicator in Northeast China

    International Nuclear Information System (INIS)

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-01-01

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20–40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: ► Spatial dynamics of NPS phosphorus pollution with soil

  8. Secondary poisoning of kestrels by white phosphorus

    Science.gov (United States)

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  9. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    Science.gov (United States)

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  10. Urban Agriculture Guide

    NARCIS (Netherlands)

    Visser, A.J.; Jansma, J.E.; Dekking, A.J.G.; Klieverik, M.J.M.

    2007-01-01

    The Urban Agriculture Guide describes the experiences, learning moments, tips and tricks of those involved in the initiatives of urban agriculture and an indication is provided of what is required to develop urban agriculture further in the Netherlands

  11. Agricultural SWOT analysis and wisdom agriculture design of chengdu

    Science.gov (United States)

    Zhang, Qian; Chen, Xiangyu; Du, Shaoming; Yin, Guowei; Yu, Feng; Liu, Guicai; Gong, Jin; Han, Fujun

    2017-08-01

    According to the status of agricultural information, this paper analyzed the advantages, opportunities and challenges of developing wisdom agriculture in Chengdu. By analyzed the local characteristics of Chengdu agriculture, the construction program of Chengdu wisdom agriculture was designed, which was based on the existing agricultural informatization. The positioning and development theme of Chengdu agriculture is leisure agriculture, urban agriculture and quality agriculture.

  12. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  13. Genetics evaluation of phosphorus utilization in tropical cowpea ...

    African Journals Online (AJOL)

    Genetics evaluation of phosphorus utilization in tropical cowpea (Vigna ... that responds negatively to RP, using generation mean analysis of the parents, their ... was observed to be below the critical level, phosphorus uptake in the F1 and the ...

  14. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP

    Directory of Open Access Journals (Sweden)

    M. W. Lomas

    2010-02-01

    Full Text Available Inorganic phosphorus (SRP concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP supports a significant fraction of primary production in the subtropical North Atlantic. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ~25% of annual primary production and ~100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus, utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.

  15. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by {sup 32}P tracer

    Energy Technology Data Exchange (ETDEWEB)

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fertilidade do Solo]. E-mails: trevizam@cena.usp.br; falvarez@cena.usp.br; mlsousi@hotmail.com; muraoka@cena.usp.br

    2007-07-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm{sup 3} of soil (Typic Quartzipisamment) with 75 mg kg{sup -1} of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 {mu}Ci) of {sup 32}P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg{sup -1} as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and {sup 32}P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg{sup -1}. The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  16. Determination of traces of phosphorus using isotope exchange

    International Nuclear Information System (INIS)

    Zeman, A.; Kratzer, K.

    1976-01-01

    A simple and selective radioanalytical method for the determination of phosphorus (0.015 - 5 μg in a 5 ml sample), based on the heterogeneous isotope exchange, has been developed. The sample containing phosphorus is shaken in the presence of molybdate with a standard solution of tetraphenylarsonium molybdophosphate labelled with phosphorus-32 in 1-2 dicloroethan. From the distribution of the activity between the aqueous and organic phases the amount of phosphorus in the sample can be determined. (Authors)

  17. Phosphorus-containing macrocyclic compounds: synthesis and properties

    International Nuclear Information System (INIS)

    Knyazeva, I R; Burilov, Alexander R; Pudovik, Michael A; Habicher, Wolf D

    2013-01-01

    Main trends in the development of methods for the synthesis of phosphorus-containing macrocyclic compounds in the past 15 years are considered. Emphasis is given to reactions producing macrocyclic structures with the participation of a phosphorus atom and other functional groups involved in organophosphorus molecules and to modifications of macrocycles by phosphorus compounds in different valence states. Possibilities of the practical application of phosphorus-containing macrocyclic compounds in difference areas of science and engineering are discussed. The bibliography includes 205 references.

  18. Production of carrier-free phosphorus-33 at MURR

    International Nuclear Information System (INIS)

    Jia, W.; Ketring, A.R.; Schuh, J.; Lanigan, J.; Ma, D.; Manson, L.; Chanley, D.

    1996-01-01

    Phosphorus-33, a new radionuclide used in medical and biochemical research, is produced at the University of Missouri research reactor (MURR) in production quantities. Phosphorus-33 has a longer shelf life and lower dose rates than phosphorus-32. Recently, the MURR and New England Nuclear (NEN) jointly developed a method to recover carrier-free phosphorus-33 as well as the enriched sulfur target using a sublimation technique at reduced pressure

  19. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    Science.gov (United States)

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  20. Quantity and quality of phosphorus losses from an artificially drained lowland catchment

    Science.gov (United States)

    Nausch, Monika; Woelk, Jana; Kahle, Petra; Nausch, Günther; Leipe, Thomas; Lennartz, Bernd

    2017-04-01

    Currently, agricultural diffuse sources constitute the major portion of phosphorus (P) fluxes to the Baltic Sea and have to reach the good ecological status aimed by the Baltic Sea Action Plan and the Marine Strategy Framework Directive. The objective of this study was to uncover the change in phosphorus loading as well as in P fractions along the flow path of a mid-size river basin in order to derive risk assessment and management strategies for a sustainable P reduction. P-fractions and the mineral composition of particulate P were investigated in a sub-basin of the river Warnow, the second largest German catchment discharging to the Baltic Sea. Samples were collected from the sources (tile drain, ditch) and along the subsequent brook up to the river Warnow representing spatial scales of a few hectars up to 3300 km2. The investigations were performed during the discharge season from November 1th 2013 until April 30th 2014 covering a relative dry and mild winter period. We observed an increase of total phosphorus (TP) concentrations from 15.5 ± 3.9 µg L-1 in the drain outlet to 72.0 ± 7.2 µg L-1 in the river Warnow emphasizing the importance of sediment-bound P mobilization along the flow path. Particulate phosphorus (PP) of 36.6 - 61.2% accounted for the largest share of TP in the streams. Clay minerals and Fe(hydr)oxides were the main carrier of particle bound P followed by apatite. A transformation of dissolved inorganic phosphorus (DIP) into particulate organic P was observed in the river Warnow with the beginning of the growth season in February. Our investigations indicate that the overall P load could be reduced by half when PP is removed.

  1. Inter-observer agreement, diagnostic sensitivity and specificity of animal-based indicators of young lamb welfare

    DEFF Research Database (Denmark)

    Phythian, C. J.; Toft, N.; Cripps, P. J.

    2013-01-01

    A scientific literature review and consensus of expert opinion used the welfare definitions provided by the Farm Animal Welfare Council (FAWC) Five Freedoms as the framework for selecting a set of animal-based indicators that were sensitive to the current on-farm welfare issues of young lambs (aged...... fill posture, body condition and eye condition. The diagnostic performance of some indicators was influenced by the composition of the study population, and it would be useful to test the indicators on lambs with a greater level of outcomes associated with poor welfare. The findings presented...... in this paper could be applied in the selection of valid, reliable and feasible indicators used for the purposes of on-farm assessments of lamb welfare....

  2. Maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere in a milk producing area

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P M

    1963-01-01

    A method is given for calculating, for design purposes, the maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere with respect to milk contamination. In the absence of authoritative advice from the Medical Research Council, provisional working levels for the concentration of phosphorus-32 and sulphur-35 in milk are derived, and details are given of the agricultural assumptions involved in the calculation of the relationship between the amount of the nuclide deposited on grassland and that to be found in milk. The agricultural and meteorological conditions assumed are applicable as an annual average to England and Wales. The results (in mc/day) for phosphorus-32 and sulphur-35 for a number of stack heights and distances are shown graphically; typical values, quoted in a table, include 20 mc/day of phosphorus-32 and 30 mc/day of sulfur-35 as the maximum permissible continuous release rates with respect to ground level releases at a distance of 200 metres from pastureland.

  3. Contribution of Nuclear Science in Agriculture Sustainability

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.

    2017-01-01

    Sustainable agricultural systems employ natural processes to achieve acceptable levels of productivity and food quality while minimizing adverse environmental impacts. Sustainable agriculture must, by definition, be ecologically sound, economically viable, and socially responsible. Sustainable agriculture must nurture healthy co systems and support the sustainable management of land, water and natural resources, while ensuring world food security. To be sustainable, agriculture must meet the needs of present and future generations for its products and services, while ensuring profitability, environmental health and social and economic equity. The global transition to sustainable food and agriculture will require major improvements in the efficiency of resource use, in environmental protection and in systems resilience. In Mediterrane an environments, crops are grown mainly in the semiarid and sub-humid are as. In arid and semiarid are as dry land farming, techniques are of renewed interest in the view of sustain ability. They are aimed to increase water accumulation in the soil, reduce runoff and soil evaporation losses, choose species and varieties able to make better use of rainwater, and rationalize fertilization plans, sowing dates, and weed and pest control. Fertilization plans should be based on well-defined principles of plant nutrition, soil chemistry, and chemistry of the fertilizer elements. Starting from the calculation of nutrient crop uptake (based on the actually obtainable yield), dose calculation must be corrected by considering the relation ship between the availability of the trace elements in soil and the main physical and chemical parameters of the soil (ph, organic matter content, mineralization rate, C/N, ratio of solubilization of phosphorus, active lime content, presence of antagonist ions, etc.). In the Egyptian Atomic Energy Authority, Soil and Water Research Department, nuclear techniques including radio and stable isotopes in addition to

  4. Phosphorus in virgin peat soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1956-01-01

    coefficient after the elimination of the effects of total P and N contents was only r = 0.136. No significant correlation existed between the organic P content and the N content, r = 0.184. The organic P content of the 217 samples expressed as a percentage of the total P content ranged from 55 to 95 per cent with an average of 78 ± 1 per cent. The proportion of organic P of total P was correlated with the degree of humification, the total correlation coefficient was r = 0.504***, the partial correlation coefficient after the elimination of the effect of the sampling depth was r = 0.427***. No correlation with the sampling depth existed after the elimination of the effect of the degree of humification: the partial correlation coefficient was r = 0.159, whereas the total correlation coefficient was r = 0.334***. A low correlation existed between the percentage of organic P of total P and the pH value even after the elimination of the effect of the degree of humification, r = 0.228*, but the connection with the total P content appeared to be only indirect and arised from the effect of the degree of humification, the total correlation coefficient was r = 0.222*, the partial correlation coefficient r = 0.076. The amount of organic P expressed as a percentage of the organic dry matter ranged from 0.01 to 0.25 per cent with an average of 0.07 ± 0.004. The ratio of N/org.P ranged from 12 to 133 with an average of 45 ± 3. Owing to the low P content of the BCp-group its mean ratio was significantly higher than that of the other groups. The degree of humification did not show any correlation with the ratio of N/org.P. The solubility of inorganic P in 0.5 N acetic acid and in 0.2 N sulphuric acid was highest in the Sp-group. On the average approximately from 15 to 30 per cent of total inorganic P was extracted by the latter solution. The acetic acid extracted only about 2 per cent of the inorganic P in the Cp-group but about 15 per cent in the Sp-group. The phosphorus conditions in

  5. Phosphorus analysis in milk samples by neutron activation analysis method

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by instrumental thermal neutron activation analysis is described. The procedure involves a short irradiation in a nuclear reactor and measurement of the beta radiation emitted by phosphorus - 32 after a suitable decay period. The sources of error were studied and the established method was applied to standard reference materials of known phosphorus content. (author)

  6. Phosphorus Uptake and Partitioning in Maize as Affected by Tillage ...

    African Journals Online (AJOL)

    Higher phosphorus concentrations were found in the ears than in the shoots and leaves at physiological maturity. Tillage x phospho-rus interactions influenced phosphorus partitioning in the ears and the leaves on the Dystric Cam-bisol but not on the Ferric Acrisol. PUE in the plant parts were significantly higher under ...

  7. Reaching ultra low phosphorus concentrations by filtration techniques

    NARCIS (Netherlands)

    Scherrenberg, S.M.

    2011-01-01

    This research deals with tertiary treatment techniques used for the removal of phosphorus from wastewater treatment plant (WWTP) effluent. The main objective of this research is to obtain ultra low total phosphorus (<0.15 mg total phosphorus/L) concentrations by coagulation, flocculation and

  8. Sequestration of phosphorus by acid mine drainage floc

    Science.gov (United States)

    Adler, P.R.; Sibrell, P.L.

    2003-01-01

    Solubilization and transport of phosphorus (P) to the water environment is a critical environmental issue. Flocs resulting from neutralizing acid mine drainage (AMD) were tested as a possible lowcost amendment to reduce the loss of soluble P from agricultural fields and animal wastewater. Flocs were prepared by neutralizing natural and synthetic solutions of AMD with limestone, lime, ammonium hydroxide, and sodium hydroxide. Phosphorus sequestration was tested in three distinct environments: water, soil, and manure storage basins. In water, flocs prepared from AMD adsorbed 10 to 20 g P kg-1 dry floc in equilibrium with 1 mg L-1 soluble P. Similar results were observed for both Fe-based and A1-based synthetic flocs. A local soil sample adsorbed about 0.1 g P kg-1, about two orders of magnitude less. The AMD-derived flocs were mixed with a highP soil at 5 to 80 g floc kg-1 soil, followed by water and acid (Mehlich1) extractions. All flocs performed similarly. About 70% of the waterextractable P was sequestered by the floc when applied at a rate of 20 g floc kg-1 soil, whereas plant-available P only decreased by about 30%. Under anaerobic conditions simulating manure storage basins, all AMD flocs reduced soluble P by greater than 95% at a rate of 0.2 g floc g-1 rainbow trout (Oncorhynchus mykiss) manure. These findings indicate that AMD flocs could be an effective agent for preventing soluble P losses from soil and manure to the water environment, while at the same time decreasing the costs associated with AMD treatment.

  9. Weather, landscape, and management effects on nitrate and soluble phosphorus concentrations in subsurface drainage discharge in the western Lake Erie basin

    Science.gov (United States)

    Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. Eutrophication (i.e., excessive enrichment of waters by NO3 and soluble P) supports harmful algal blooms (HABs) in receiving ...

  10. Vocational Agriculture Computer Handbook.

    Science.gov (United States)

    Kentucky State Dept. of Education, Frankfort.

    This document is a catalog of reviews of computer software suitable for use in vocational agriculture programs. The reviews were made by vocational agriculture teachers in Kentucky. The reviews cover software on the following topics: farm management, crop production, livestock production, horticulture, agricultural mechanics, general agriculture,…

  11. The role of algae in agriculture: a mathematical study.

    Science.gov (United States)

    Tiwari, P K; Misra, A K; Venturino, Ezio

    2017-06-01

    Synthetic fertilizers and livestock manure are nowadays widely used in agriculture to improve crop yield but nitrogen and phosphorous runoff resulting from their use compromises water quality and contributes to eutrophication phenomena in waterbeds within the countryside and ultimately in the ocean. Alternatively, algae could play an important role in agriculture where they can be used as biofertilizers and soil stabilizers. To examine the possible reuse of the detritus generated by dead algae as fertilizer for crops, we develop three mathematical models building upon each other. A system is proposed in which algae recover waste nutrients (nitrogen and phosphorus) for reuse in agricultural production. The results of our study show that in so doing, the crop yield may be increased and simultaneously the density of algae in the lake may be reduced. This could be a way to mitigate and possibly solve the environmental and economic issues nowadays facing agriculture.

  12. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T. [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  13. Animation-based Sketching

    DEFF Research Database (Denmark)

    Vistisen, Peter

    This thesis is based on the results of a three-year long PhD-study at the Department of Communication and Psychology at Aalborg University. The thesis consist of five original papers, a book manuscript, as well as a linking text with the thesis’ research questions, research design, and summary...

  14. A review of phosphorus removal structures

    DEFF Research Database (Denmark)

    Penn, Chad; Chagas, Isis; Klimeski, Aleksandar

    2017-01-01

    Controlling dissolved phosphorus (P) losses to surface waters is challenging as most conservation practices are only effective at preventing particulate P losses. As a result, P removal structures were developed to filter dissolved P from drainage water before reaching a water body. While many P ...

  15. Stewardship to tackle global phosphorus inefficiency

    NARCIS (Netherlands)

    Withers, P.J.A.; Dijk, van K.C.; Neset, T.S.S.; Nesme, Thomas; Oenema, Oene; Rubæk, G.H.; Schoumans, O.F.; Smit, Bert; Pellerin, Sylvain

    2015-01-01

    The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of

  16. Process for uranium recovery in phosphorus compounds

    International Nuclear Information System (INIS)

    Demarthe, J.M.; Solar, Serge.

    1980-01-01

    Process for uranium recovery in phosphorus compounds with an organic phase containing a dialkylphosphoric acid. A solubilizing agent constituted of an heavy alcohol or a phosphoric acid ester or a tertiary phosphine oxide or octanol-2, is added to the organic phase for solubilization of the uranium and ammonium dialkyl pyrophosphate [fr

  17. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the

  18. Estimating phosphorus intake by grazing sheep

    African Journals Online (AJOL)

    phosphorus levels in various organs, tissues, bones, body fluids or excretory products of sheep reflected dietary ... did decrease bone mineral deposition slightly. Rumen fluid P and total daily urinary P levels did .... which were alike in composition except for their levels of. P and Ca. After 98 days rib biopsy specimens were.

  19. Flotation of uraniferous phosphorus ore from Itataia

    International Nuclear Information System (INIS)

    Aquino, J.A. de

    1984-01-01

    Flotation conditions, in laboratory and pilot scale, were established in a sample of Itataia uraniferous phosphorus ore which was basically constitute of apatite and calcite. The system of reagents-tall oil, collamil and sodium silicate-was studied in rougher, scavenger and cleaner stage. (M.A.C.) [pt

  20. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  1. Phosphorus Processing—Potentials for Higher Efficiency

    Directory of Open Access Journals (Sweden)

    Ludwig Hermann

    2018-05-01

    Full Text Available In the aftermath of the adoption of the Sustainable Development Goals (SDGs and the Paris Agreement (COP21 by virtually all United Nations, producing more with less is imperative. In this context, phosphorus processing, despite its high efficiency compared to other steps in the value chain, needs to be revisited by science and industry. During processing, phosphorus is lost to phosphogypsum, disposed of in stacks globally piling up to 3–4 billion tons and growing by about 200 million tons per year, or directly discharged to the sea. Eutrophication, acidification, and long-term pollution are the environmental impacts of both practices. Economic and regulatory framework conditions determine whether the industry continues wasting phosphorus, pursues efficiency improvements or stops operations altogether. While reviewing current industrial practice and potentials for increasing processing efficiency with lower impact, the article addresses potentially conflicting goals of low energy and material use as well as Life Cycle Assessment (LCA as a tool for evaluating the relative impacts of improvement strategies. Finally, options by which corporations could pro-actively and credibly demonstrate phosphorus stewardship as well as options by which policy makers could enforce improvement without impairing business locations are discussed.

  2. interaction between phosphorus fertilizer and arbuscular ...

    African Journals Online (AJOL)

    userpc

    examine the interaction between Phosphorus (P) fertilizer and Arbuscular Mycorrhizal Fungal ... recorded 28% and 4% total plant dry yield increment respectively over control. This study shows that ... ratio 1:3 inoculant: water, application per ... Table 1: Effect of P and AMF on the dry yield components of cassava (t ha-1).

  3. Rapid thermal annealing of phosphorus implanted silicon

    International Nuclear Information System (INIS)

    Lee, Y.H.; Pogany, A.; Harrison, H.B.; Williams, J.S.

    1985-01-01

    Rapid thermal annealing (RTA) of phosphorus-implanted silicon has been investigated by four point probe, Van der Pauw methods and transmission electron microscopy. The results have been compared to furnace annealing. Experiments show that RTA, even at temperatures as low as 605 deg C, results in good electrical properties with little remnant damage and compares favourably with furnace annealing

  4. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, B.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2004-01-01

    The article describes the potential and limitations for recovery of phosphate from secondary materials in the production process for white phosphorus. This thermal process involves the feeding of phosphate rock, cokes and pebbles to a furnace. The reducing conditions in the furnace promote the

  5. 28 PHOSPHORUS FORMS AND DISTRIBUTION IN SELECTED ...

    African Journals Online (AJOL)

    sys01

    Coleman and Thomas (1967). Total phosphorus in the soils was determined by perchloric acid digestion (Jackson, 1958) and organic P was estimated by the difference between 13 M HCL extractable inorganic P, before and after ignition, by the method of Leg and Black (1955). Inorganic P was fractionated by method of.

  6. Phosphorus and phytase levels for layer hens

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Ramos Rezende

    2013-02-01

    Full Text Available The objective of this research was to evaluate the performance and bone quality of laying hens after peak production fed diets containing phosphorus levels and phytase. An experiment was conducted with 384 Hy-line distributed in a completely randomized in a factorial 4 x 3 with 4 levels of available phosphorus and 3 levels of phytase. The experimental period was divided into four periods of 28 days, at the end of each cycle were determined experimental feed intake, egg production, egg weight, feed conversion, mortality, and average egg weight, shell thickness, Haugh units and specific gravity. At the end of the experimental period were determined amounts of calcium and phosphorus excreted by the method of total excreta collection and a fowl per experimental unit was sacrificed for collection of bones and evaluation of width, length and level of robustness from femur and tibia. There was interaction between phosphorus levels and phytase on feed intake, feed conversion and percentage of posture. For inclusion levels of phytase all egg quality variables showed no significant differences. The treatments did not affect bone characteristics of laying hens.

  7. Risk assessment methodologies for predicting phosphorus losses

    NARCIS (Netherlands)

    Schoumans, O.F.; Chardon, W.J.

    2003-01-01

    Risk assessment parameters are needed to assess the contribution of phosphorus (P) losses from soil to surface water, and the effectiveness of nutrient and land management strategies for the reduction of P loss. These parameters need to take into account the large temporal and spatial variation in P

  8. Stability of phosphorus species in seawater

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Somasundar, K.; Rajendran, A.

    Relative stabilities of various oxidation states, oxyacids and dissolved inorganic complexes of phosphorus in anoxic and oxic marine environments are elucidated. H sub(3) PO sub(2)/P super(0) and H sub(2) PO sub(2)/p super(0) are the strong reducing...

  9. Stewardship to tackle global phosphorus inefficiency

    DEFF Research Database (Denmark)

    Withers, Paul J. A.; Dijk, Kimo van; Neset, Tina-Simone

    2015-01-01

    The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R...

  10. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching

  11. Phosphorus supplementation of Karakul sheep grazing natural ...

    African Journals Online (AJOL)

    The phosphorus (P) status of adult Karakul ewes grazing natural pasture was determined by measuring the P content of blood, saliva, faecal, and bone samples. The ewes were divided into four groups of 20 ewes each, viz. ewes supplemented with P+ and P- which lambed during May and October. All lambs born were ...

  12. Nuclear Techniques in Agriculture: Status and Applications

    International Nuclear Information System (INIS)

    Kurdali, F.

    2007-01-01

    This paper is focused on the role of nuclear techniques and their applications in agriculture science for plant and animal production, and to study the relationships among soil, plant, air, water, nutrients and agricultural pests. For example, carbon isotope discrimination 12 C/ 13 C can be used to select appropriate plant genotypes which are tolerant to drought and salinity stress. Using 15 N to study, symbiotic N 2 fixation, inorganic N dynamics in the soil, plant system, mineralization of organic N in soils, efficient use of chemical and organic N fertilizers and microbial protein production in ruminants. Neutron gauges are used for soil moisture measurements to assess crop water use efficiencies, crops water requirements, and irrigation scheduling for conventional and new methods of irrigation. The use of environmental isotopes ( 18 O, 2 H, 3 H and 14 C) in hydrology; and 137 Cs to study soil erosion. Using 32 P to study the fate of applied P fertilizers (chemical fractionation and availability), their use efficiency and phosphorus metabolism in animals. Ionizing radiation is used to improve the quality and productivity of major crops, to induce mutations, to improve the metabolisable and digestible energy of unconventional feeds and the nutritive value of agricultural residues, and to protect crops against agricultural pests and in food conservation. Radioimmunoassay is used in studies to improve the production and reproductive performance of indigenous small ruminants. (author)

  13. What aspect of dietary modification in broilers controls litter water-soluble phosphorus: dietary phosphorus, phytase, or calcium?

    Science.gov (United States)

    Leytem, A B; Plumstead, P W; Maguire, R O; Kwanyuen, P; Brake, J

    2007-01-01

    Environmental concerns about phosphorus (P) losses from animal agriculture have led to interest in dietary strategies to reduce the concentration and solubility of P in manures and litters. To address the effects of dietary available phosphorus (AvP), calcium (Ca), and phytase on P excretion in broilers, 18 dietary treatments were applied in a randomized complete block design to each of four replicate pens of 28 broilers from 18 to 42 d of age. Treatments consisted of three levels of AvP (3.5, 3.0, and 2.5 g kg(-1)) combined with three levels of Ca (8.0, 6.9, and 5.7 g kg(-1)) and two levels of phytase (0 and 600 phytase units [FTU]). Phytase was added at the expense of 1.0 g kg(-1) P from dicalcium phosphate. Fresh litter was collected from pens when the broilers were 41 d of age and analyzed for total P, soluble P, and phytate P as well as P composition by (31)P nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the inclusion of phytase at the expense of inorganic P or reductions in AvP decreased litter total P by 28 to 43%. Litter water-soluble P (WSP) decreased by up to 73% with an increasing dietary Ca/AvP ratio, irrespective of phytase addition. The ratio of WSP/total P in litter decreased as the dietary Ca/AvP ratio increased and was greater in the phytase-amended diets. This study indicated that while feeding reduced AvP diets with phytase decreased litter total P, the ratio of Ca/AvP in the diet was primarily responsible for effects on WSP. This is important from an environmental perspective as the amount of WSP in litter could be related to potential for off-site P losses following land application of litter.

  14. Gender in crop agriculture

    OpenAIRE

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the role of gender in crop agriculture as an essential component of development and poverty reduction. Gender is an integral aspect of crop agriculture because women's roles in crop production and household subsistence, as well as their knowledge of complex production syst...

  15. Diversity of inland valleys and opportunities for agricultural development in Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Elliott Ronald Dossou-Yovo

    Full Text Available Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for more precise interventions. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i semi-permanently flooded with high soil organic carbon (4.2% and moderate available phosphorus (10.2 ppm, mostly under natural vegetation; (ii semi-permanently flooded with low soil organic carbon (1.5% and very low available phosphorus (3.1 ppm, abandoned by farmers; (iii seasonally flooded with moderate soil organic carbon (3.1% and low available phosphorus (8.3 ppm, used for rainfed rice and off-season vegetables produced without fertilizer application for household consumption and market; (iv well drained with moderate soil organic carbon (3.8% and moderate available phosphorus (10.0 ppm, used for rainfed rice and off-season vegetables produced with fertilizer application for household consumption and market; and (v well drained with moderate soil organic carbon (3.6% and moderate available phosphorus (11 ppm, used for household consumption without fertilizer application. Soil organic carbon, available phosphorus, hydrological regime, physical accessibility and market opportunity were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and

  16. Phosphorus effect on fracture properties of structural steels

    International Nuclear Information System (INIS)

    Goritskij, V.M.; Guseva, I.A.

    1985-01-01

    Phosphorus content is studied for its effect on fracture peculiarities and fracture toughness. It is supposed that the phosphorus effect on ductile fractures is associated with phosphorus segregation on the ferrite-carbide interfaces. An increase of the phosphorus content in heat-treated 10KhSND steel from 0.020 up to 0.043 wt.% results in a decrease of the pore size and asub(p) value. Close linear correlation is established between critical temperature of embrittlement T 50 and √ asub(p) or √ KC values for a number of structural steels with different phosphorus content

  17. Biological phosphorus uptake under anoxic and aerobic conditions

    DEFF Research Database (Denmark)

    Kerrn-Jespersen, Jens Peter; Henze, Mogens

    1993-01-01

    Biological phosphorus removal was investigated under anoxic and aerobic conditions. Tests were made to establish whether phosphorus accumulating bacteria can take up phosphate under anoxic conditions and thus utilise nitrate as oxidant. Furthermore, it was tested how the amount of organic matter...... as oxidant. The phosphorus uptake was more rapid under aerobic conditions than under anoxic conditions. The explanation of this is that all phosphorus accumulating bacteria take up phosphate under aerobic conditions, whereas only part of the phosphorus accumulating bacteria take up phosphate under anoxic...

  18. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices

    Czech Academy of Sciences Publication Activity Database

    Vagstad, N.; French, H. K.; Andersen, H. E.; Behrendt, H.; Grizzetti, B.; Groenendijk, P.; Lo Porto, A.; Reisser, H.; Siderius, C.; Stromquist, J.; Hejzlar, Josef; Deelstra, J.

    2009-01-01

    Roč. 11, č. 3 (2009), s. 594-601 ISSN 1464-0325 Grant - others:EC(XE) EVK1-CT-2001-00096 Institutional research plan: CEZ:AV0Z60170517 Keywords : catchment modelling * phosphorus and nitrogen losses * agriculture practice * diffuse sources Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.225, year: 2009

  19. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    Science.gov (United States)

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  20. RIPARIAN VEGETATION AND CHANNEL MORPHOLOGY IMPACT ON SPATIAL PATTERNS OF WATER QUALITY IN AGRICULTURAL WATERSHEDS

    Science.gov (United States)

    A model based on the KLS factors of the Universal Soil Loss Equation (USLE) accurately predicted temporal dynamics and relative peak levels of suspended solids, turbidity, and phosphorus in an agricultural watershed with well-protected streambanks and cultivation to the stream ed...

  1. An investigation into the inputs controlling predictions from a diffuse phosphorus loss model for the UK; the Phosphorus Indicators Tool (PIT).

    Science.gov (United States)

    Liu, Shuming; Brazier, Richard; Heathwaite, Louise

    2005-05-15

    A simple catchment scale model simulating diffuse phosphorus (P) loss from agricultural land to water, the Phosphorus Indicators Tool (PIT), has been developed. Previous research has shown that this model worked well in simulating the average annual P lost from two catchments: Windermere and Windrush, but it was not known which drivers in the model had the greatest control on predicted P delivery to water from agricultural land. In order to simulate the P export from each catchment source via each hydrological pathway specified individually, 108 coefficients are used in the model code. A univariate sensitivity analysis was conducted to evaluate which coefficient exerted the greatest control on the model output. Results from the univariate analysis suggest that the model is sensitive to a number of coefficients, but importantly, not all of the coefficients that were varied in the sensitivity analysis, altered the model output. The PIT model has been calibrated by optimizing results from the univariate analysis against observed data in the Windermere catchment. The simulated results from model calibration fit the observed data well, at the 95% level. This paper describes the methodology developed for the univariate analysis and evaluates the model calibration procedure against observed data from the Windermere catchment.

  2. Applying animal-based welfare assessments on New Zealand dairy farms: feasibility and a comparison with United Kingdom data.

    Science.gov (United States)

    Laven, R A; Fabian, J

    2016-07-01

    To assess the feasibility of applying animal-based welfare assessments developed for use in Europe on New Zealand dairy farms; in particular, to identify measures which could be evaluated during a single visit at milking time alongside whole herd locomotion scoring. A protocol for animal welfare assessment, developed in the United Kingdom (UK), was evaluated. Measures that were suitable for use on pasture-based dairy farms in New Zealand were then assessed for practicability on 59 farms across New Zealand, during and immediately after milking, alongside whole herd locomotion scoring. Where data were collected the results were compared to those from a UK study of 53 dairy farms. Thirteen observations of the physical condition of cows were considered suitable for measurement, excluding observations related to hock lesions as they are rarely observed on pasture-based farms. Five of these measures were not assessed as there was not time to do so during milking alongside whole herd locomotion scoring. Thus, the prevalence of dirty flanks, hind limbs and udders, dull coat, thick hairy coat, significant hair loss, very fat cows (body condition score (BCS) ≥7 on 1-10 scale) and very thin cows (BCS≤3), were recorded. Three measures of behaviour were considered suitable for measurement on-farm, but only locomotion score was practicable and was measured. Farmer-estimates for the incidence of mastitis, lameness, sudden death, milk fever and other diseases were also obtained.Overall, dirty flanks, dirty udders and estimated milk fever incidence were more prevalent in this study than in the UK. The prevalence of thin and fat cows, lame cows and estimated mastitis incidence were much lower in the present study than on UK farms. Animal-based assessments can be used on dairy farms in New Zealand, but need to be modified from those developed for housed cows.Welfare on these farms was generally good compared to those in the UK, but these results need to be confirmed on more farms

  3. The phosphorus fertilizer production as a source of rare-earth elements pollution of the environment

    International Nuclear Information System (INIS)

    Volokh, A.A.; Gorbunov, A.V.; Revich, B.A.; Gundorina, S.F.; Frontas'eva, M.V.; Chen Sen Pal.

    1989-01-01

    This paper considers some peculiarities of the production of phosphorus fertilizers from the point of view of the pollution of the environment with rare-earth elements. The principal possibility is demonstrated of the determination of the influence of a given type of production on the environment by measuring the change in the rare-arth elements interrelationship in the show. The main source of industrial dust is identified. The distribution of pollutants in dependence on the size of aerosol particles is given. The data on the concentrations of the pollutants in agricultural plants, employees hair and hair of local residents are also reported. 8 refs.; 4 figs.; 4 tabs

  4. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  5. Upgrading of the Solid Fraction of Pig Slurry as Phosphorus Fertilizer

    DEFF Research Database (Denmark)

    Christel, Wibke

    Improved recycling of the solid fraction of separated pig slurry, which is considerably enriched in the essential plant nutrient phosphorus (P), could balance the P input in differently used agricultural areas and reduce the unsustainable depletion of the limited P rock reserves. By subsequent...... biological or thermal treatment, the P concentration of the pig slurry-derived products is furthermore increased, but these processes are also expected to affect P availability from the respective products. Consequently it was the overall objective of this PhD project to identify options for upgrading...

  6. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  7. Estimation of phosphorous loss from agricultural land in the Heartland region of the U.S.A. using the APEX model

    Science.gov (United States)

    Accurate phosphorus (P) loss estimation from agricultural land is important for development of best management practices and protection of water quality. The Agricultural Policy/Environmental Extender (APEX) model is a powerful simulation model designed to simulate edge-of-field water, sediment, an...

  8. The location and nature of accumulated phosphorus in seven sludges from activated sludge plants which exhibited enhanced phosphorus removal

    International Nuclear Information System (INIS)

    Buchan, L.

    1981-01-01

    Electron microscopy combined with the energy dispersive analysis of X-rays (EDX) has been used to examine the nature of the phosphorus accumulated in sludges from seven activated sludge plants exhibiting enhanced phosphorus removal. Large phosphorus accumulations were located in identical structures in the sludges examined. The phosphorus was located in large electron-dense bodies, within large bacterial cells which were characteristically grouped in clusters. The calcium:phosphorus ratio of these electron-dense bodies precluded them from being any form of calcium phosphate precipitate. Quantitative analysis indicated that the electron-dense bodies contained in excess of 30% phosphorus. The results obtained are supportive of a biological mechanism of enhanced phosphorus uptake in activated sludge

  9. Identification and Quantification of Phosphorus Sources at the Owasco Lake Watershed

    Science.gov (United States)

    Lisboa, M. S.

    2016-12-01

    Discharge of pollutants into water bodies is of major concern for water quality protection, and for the sustainable development of the areas that rely on water bodies. NPS pollution, especially from agriculture runoff, is considered the leading contributor to water quality impairments in the U.S. Our proposed area of study, the Owasco Lake, is part of the Finger Lakes, a group of water bodies located in Western and Central NY that supports agriculture and industrial activities, and constitutes the main drinking water source for its community. Owasco Lake and its watershed is exposed to a variety of environmental threats, with NPS pollution being one of the major concerns. Phytoplankton growth in the lake is P limited and P concentrations in the lake has been raising for several years. In order to establish effective P control strategies for the Owasco Lake watershed, we intend to identify and quantify all diffuse sources of phosphorus, and determine the effect of agricultural land use on the P loads draining to the lake and its tributaries. With the aim of addressing our goal we are conducting a whole year monitoring of base and quick flow coupled with GIS analysis. The sampling design captured the diverse land uses present at the Owasco watershed, with a primary focus on agriculture since it is the dominant use. In addition, we use a Soil Topographic Index (STI) that has previously been well correlated to soil moisture and storm runoff to identify the areas prone to more readily produce runoff in each sub-catchment. Preliminary results from the base flow monitoring show that the areas with more than 80% of agriculture land use cover present significantly higher soluble reactive phosphorus (SRP) concentrations; however, this trend is not as clear for Total Phosphorus (TP). We expect to find a similar trend in the result of storm runoff analysis and to observe a P load gradient associated with land use, from a low (basal load) in areas with mostly forest cover to

  10. Agricultural policy schemes

    DEFF Research Database (Denmark)

    Hansen, Henning Otte

    2016-01-01

    Agricultural support is a very important element in agricultural policy in many countries. Agricultural support is basically an instrument to meet the overall objectives of the agricultural policy – objectives set by society. There are a great number of instruments and ways of intervention...... in agricultural policy and they have different functions and impacts. Market price support and deficiency payments are two very important instruments in agricultural policy; however, they belong to two different support regimes or support systems. Market price support operates in the so-called high price system...

  11. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg in winter wheat I. Content of macronutrients

    Directory of Open Access Journals (Sweden)

    Renata GAJ

    2014-12-01

    Full Text Available The aim of the study carried out under field conditions was to evaluate the effect of differentiated phosphorus and potassium fertilization level on nutritional status of winter wheat at stem elongation (BBCH 31 and flowering (BBCH 65 development stages as well as on macronutrient contents in yield obtained (grain and straw. The research was conducted in 2007-2010, within an individual agricultural holding, on lessive soil with medium and high richness in potassium and phosphorus, respectively. The contents of nitrogen, phosphorus, potassium, magnesium and calcium in wheat changed depending on the organ assessed and plant development stage. At BBCH 31, regardless fertilization level, the plants observed were malnourished with potassium, phosphorus and calcium and at the control site also with nitrogen. Furthermore, there were found significant correlation relationships among the contents of nutrient pairs: nitrogen-potassium, nitrogen-phosphorus, nitrogen-magnesium and nitrogen-calcium. The content of nitrogen in wheat grain and straw differed mainly due to weather conditions during the study. Irrespective of the years of observation, differentiated rates of P and K applied had no significant effect on N accumulation in wheat at full ripening stage. In contrast to nitrogen, the level of P and K fertilization significantly differentiated the contents of phosphorus, potassium and magnesium in wheat grain and straw. In case of calcium, the effect of fertilization factor was indicated only as regards the content of this nutrient in grain.

  12. Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake.

    Directory of Open Access Journals (Sweden)

    Sajeela Ghaffar

    Full Text Available This study was designed to advance understanding of phosphorus regulation of Microcystis aeruginosa growth, phosphorus uptake and storage in changing phosphorus (P conditions as would occur in lakes. We hypothesized that Microcystis growth and nutrient uptake would fit classic models by Monod, Droop, and Michaelis-Menten in these changing conditions. Microcystis grown in luxury nutrient concentrations was transferred to treatments with phosphorus concentrations ranging from 0-256 μg P∙L-1 and luxury nitrogen. Dissolved phosphorus concentration, cell phosphorus quota, P uptake rate and cell densities were measured at day 3 and 6. Results showed little relationship to predicted models. Microcystis growth was asymptotically related to P treatment from day 0-3, fitting Monod model well, but negatively related to P treatment and cell quota from day 3-6. From day 0-3, cell quota was negatively related to P treatments at <2 μg∙L-1, but increased slightly at higher P. Cell quota decreased greatly in low P treatments from day 3-6, which may have enabled high growths in low P treatments. P uptake was positively and linearly related to P treatment during both periods. Negative uptake rates and increases in measured culture phosphorus concentrations to 5 μg∙L-1 in the lowest P treatments indicated P leaked from cells into culture medium. This leakage during early stages of the experiment may have been sufficient to stimulate metabolism and use of intracellular P stores in low P treatments for rapid growth. Our study shows P regulation of Microcystis growth can be complex as a result of changing P concentrations, and this complexity may be important for modeling Microcystis for nutrient and ecosystem management.

  13. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    Science.gov (United States)

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices

  14. Animation-Based Teaching of Semiconductor Devices: Long-Term Improvement in Students’ Achievements in a Two-Year College

    Directory of Open Access Journals (Sweden)

    Aharon Gero

    2015-02-01

    Full Text Available The structure and operating principle of semiconductor devices are a central topic in teaching electronics, both in universities and in two-year colleges. Teachers teaching this subject normally run into substantial difficulties stemming from the fact that a major part of the concepts and processes that are relevant to understanding these devices are abstract. In light of the advantages of multimedia in illustrating dynamic processes, the chapter covering the field effect transistor (FET has recently been taught through animation at a two-year college in Israel. The study presented here has examined, through quantitative tools, whether animation-based teaching of the FET had any effect on students’ achievements in the subject of basic electronic devices. Forty electronics students have participated in the study. Its findings indicate that in the short and long term alike, the achievements of students who studied the transistor through animation were significantly higher than those of their peers who studied it through a traditional method. Additionally, the effect size was very large.

  15. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006

    Science.gov (United States)

    Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan

    2017-07-01

    Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.

  16. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    Science.gov (United States)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  17. Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution

    Directory of Open Access Journals (Sweden)

    Bus Agnieszka

    2017-09-01

    Full Text Available Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution. Polonite® is an effective reactive material (manufactured from opoka rock for removing phosphorus from aqueous solutions. In conducted experiments, Polonite® of grain size of 2–5 mm was used as a potential reactive material which can be used as a filter fulfillment to reduce phosphorus diffuse pollution from agriculture areas. Kinetic and equilibrium studies (performed as a batch experiment were carried out as a function of time to evaluate the sorption properties of the material. The obtained results show that Polonite® effectively removes such contamination. All tested concentrations (0.998, 5.213, 10.965 mg P-PO4·L−1 are characterized by a better fit to pseudo-second kinetic order. The Langmuir isotherm the best reflects the mechanism of adsorption process in case of Polonite® and based on the isotherm, calculated maximum adsorption capacity equals 96.58 mg P-PO4·g−1.

  18. Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study.

    Science.gov (United States)

    Odamaki, T; Kato, K; Sugahara, H; Xiao, J Z; Abe, F; Benno, Y

    2016-09-01

    Diet has a significant influence on the intestinal environment. In this study, we assessed changes in the faecal microbiota induced by an animal-based diet and the effect of the ingestion of yoghurt supplemented with a probiotic strain on these changes. In total, 33 subjects were enrolled in an open, randomised, parallel-group study. After a seven-day pre-observation period, the subjects were allocated into three groups (11 subjects in each group). All of the subjects were provided with an animal-based diet for five days, followed by a balanced diet for 14 days. Subjects in the first group ingested dairy in the form of 200 g of yoghurt supplemented with Bifidobacterium longum during both the animal-based and balanced diet periods (YAB group). Subjects in the second group ingested yoghurt only during the balanced diet period (YB group). Subjects who did not ingest yoghurt throughout the intervention were used as the control (CTR) group. Faecal samples were collected before and after the animal-based diet was provided and after the balanced diet was provided, followed by analysis by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. In the YB and CTR groups, the animal-based diet caused a significant increase in the relative abundance of Bilophila, Odoribacter, Dorea and Ruminococcus (belonging to Lachnospiraceae) and a significant decrease in the level of Bifidobacterium after five days of intake. With the exception of Ruminococcus, these changes were not observed in the YAB group. No significant effect was induced by yoghurt supplementation following an animal-based diet (YB group vs CTR group). These results suggest that the intake of yoghurt supplemented with bifidobacteria played a role in maintaining a normal microbiota composition during the ingestion of a meat-based diet. This study protocol was registered in the University Hospital Medical Information Network: UMIN000014164.

  19. Performance of fertigation technique for phosphorus application in cotton

    Directory of Open Access Journals (Sweden)

    M. Aslam

    2009-05-01

    Full Text Available Low native soil phosphorus availability coupled with poor utilization of added phosphorus is one of the major constraints limiting the productivity of the crops. With a view of addressing this issue, field studies were conducted to compare the relative efficacy of broadcast and fertigation techniques for phosphorus application during 2005-2006 using cotton as a test crop. Two methods of phosphorus application i.e. broadcast and fertigation were evaluated using five levels of P2O5 (0, 30, 45, 60 and 75 kg P2O5 ha -1. Fertigation showed an edge over broadcast method at all levels of phosphorus application. The highest seed cotton yield was recorded with 75 kg P2O5 ha-1. Fertilizer phosphorus applied at the rate of 60 kg ha-1 through fertigation produced 3.4 tons ha-1 of seed cotton yield, which was statistically identical to 3.3 tons recorded with 75 kg ha-1 of broadcast phosphorus. Agronomic performance of phosphorus was influenced considerably by either method of fertilizer application. The seed cotton yield per kg of fertigation phosphorus was 48% higher than the corresponding broadcast application. The results of these studies showed that fertigation was the most efficient method of phosphorus application compared with the conventional broadcast application of fertilizers.

  20. Agriculture: Land Use

    Science.gov (United States)

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  1. Agricultural Health and Safety

    Science.gov (United States)

    ... that occur while living, working, or visiting agricultural work environments (primarily farms) are considered agricultural injuries, whether or ... of Labor's Occupational Safety & Health Administration (OSHA) supports safe and healthful working conditions by setting and enforcing standards and by ...

  2. Innovations in urban agriculture

    NARCIS (Netherlands)

    Schans, van der J.W.; Renting, Henk; Veenhuizen, Van René

    2014-01-01

    This issuehighlights innovations in urban agriculture. Innovation and the various forms of innovations are of particular importance because urban agriculture is adapted to specific urban challenges and opportunities. Innovation is taking place continuously, exploring the multiple fundions of urban

  3. Agricultural Research Service

    Science.gov (United States)

    ... Menu United States Department of Agriculture Agricultural Research Service Research Research Home National Programs Research Projects Scientific Manuscripts International Programs Scientific Software/Models Databases and Datasets Office of Scientific Quality ...

  4. Agricultural science policy

    OpenAIRE

    Alston, Julian M.; Pardey, Philip G.; Taylor, Michael J.

    2001-01-01

    Technological advances developed through R&D have supplied the world with not only more food, but better food. This report looks at issues raised by this changing environment for agricultural productivity, agricultural R&D, and natural resource management.

  5. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  6. Phosphorus kinetics in ovine fed with different phosphorus sources, using the isotopic dilution technique

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.; Abdalla, A.L.; Meirelles, C.F.

    1992-01-01

    Phosphorus kinetics in fluids and tissues of sheep was studied. Sixteen castrated sheep were kept in metabolism cages, receiving a semipuried diet containing as phosphorus sources dicalcium phosphate (BIC), monoammonium phosphate (MAP), superphosphate (SPT) and Tapita phosphate (TAP) 200 μCi P-32 was intravenously injected in each sheep and blood and feces were collected for eight days. From the specific activities in feces and plasma the endogenous phosphorus and the absorption coefficient were calculated. plasma P-32 half-life was determined. Nine days after injection the animals were killed and liver, kidney and muscle and bone samples were collected. P-32 retention and specific activities in tissues were determined. Endogenous phosphorus and absorption coefficient values were 54.44 ± 15.31 mh/kg live weight and 0.60; 47.98 ± 12.44 and 0.56; 39.70 ± 7.29 and 0.49; 59.11 ± 17.12 and 0.58 respectively bor BIC, MAP, TAP and SPT. P-32 retention by tissues was 0.29 ± 0.09; 0.27 ± 0.06; 0.16 ± 0.04 and 0.08 ± 0.03 dose/g fresh matter, respectively for bone, liver, kidney and muscle. It was concluded that animals which received TAP showed differences in absorption, distribution and P-32 retention by fluids and tissues. Phosphorus availability was lower for this source. (author)

  7. Gender and agricultural markets

    OpenAIRE

    Food and Agriculture Organization; The World Bank; IFAD

    2008-01-01

    Metadata only record This is a module in the "Gender in Agriculture Sourcebook" published by the World Bank, UN Food and Agriculture Organization, and International Fund for Agricultural Development. This module examines the traditional division of labor within agricultural markets, where women farmers are primarily responsible for subsistence and household crop production while male farmers dominate the commercial sector. Challenging these gendered roles by increasing women farmers' acces...

  8. Lamb shift measurement in hydrogenlike phosphorus

    International Nuclear Information System (INIS)

    Mueller, D.; Gassen, J.; Kremer, L.

    1988-01-01

    In hydrogenlike phosphorus ions the 2S 1/2 -2P 1/2 energy splitting (Lamb shift) has been found to be E exp (LS)=0.08343(29) eV using laser spectroscopy. This result is to be compared with the most recent theoretical value E th (LS)=0.08376(4) eV by Mohr and Johnson and Soff

  9. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  10. Division of Agriculture

    Science.gov (United States)

    Department of Natural Resources logo, color scheme Department of Natural Resources Division of Agriculture Search Search DNR's site DNR State of Alaska Toggle main menu visibility Agriculture Home Programs Asset Disposals Alaska Caps Progam Board of Agriculture & Conservation Farm To School Program Grants

  11. Gender in Agriculture Sourcebook

    OpenAIRE

    World Bank; Food and Agriculture Organization; International Fund for Agricultural Development

    2009-01-01

    Three out of every four poor people in developing countries live in rural areas, and most of them depend directly or indirectly on agriculture for their livelihoods. In many parts of the world, women are the main farmers or producers, but their roles remain largely unrecognized. The 2008 World development report: agriculture for development highlights the vital role of agriculture in susta...

  12. Nigeria Agricultural Journal: Submissions

    African Journals Online (AJOL)

    Author Guidelines. NATURE OF PAPERS. Papers should be of agricultural interest and include: full reports of original research not previously elsewhere, research notes which consist of brief or new findings; techniques and equipment of importance to agricultural workers; evaluations of problems and trends in agricultural ...

  13. Biotechnology and Agriculture.

    Science.gov (United States)

    Kenney, Martin

    Even at this early date in the application of biotechnology to agriculture, it is clear that agriculture may provide the largest market for new or less expensive biotechnologically manufactured products. The chemical and pharmaceutical industries that hold important positions in agricultural inputs are consolidating their positions by purchasing…

  14. Flow analysis techniques for phosphorus: an overview.

    Science.gov (United States)

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  15. Derivation of a fuzzy national phosphorus export model using 84 Irish catchments

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Ahmed [School of Civil and Building Services Engineering, College Of Engineering and Built Environment, Dublin Institute of Technology, Bolton Street, Dublin 1 (Ireland); Bruen, Michael, E-mail: michael.bruen@ucd.ie [Centre for Water Resources Research, University College Dublin, Newstead Building, Richview, Belfield, Dublin 4 (Ireland)

    2013-01-15

    Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) pollution at the catchment scale is vitally important for the sustainable development of water resources in Ireland. An important element in the process of implementing such strategies is the prediction of their impacts on P concentrations in a catchment using a reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy inference system (ANFIS) has been used to develop a new national P model capable of estimating average annual ortho-P concentrations at un-gauged catchments. Data from 84 catchments dominated by diffuse P pollution were used in developing and testing the model. Six different split-sample scenarios were used to partition the total number of the catchments into two sets, one to calibrate and the other to validate the model. The k-means clustering algorithm was used to partition the sets into clusters of catchments with similar features. Then for each scenario and for each cluster case, 11 different models, each of which consists of a linear regression sub-model for each cluster, were formulated by using different input variables selected from among six spatially distributed variables including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO), groundwater (GW), land use (LU), and soil (SO). The success of the new approach over the conventional lumped, empirical, modelling approach was evident from the improved results obtained for most of the cases. In addition the results highlighted the importance of using information on PDI and RRI as explanatory input variables to simulate the average annual ortho-P concentrations. - Highlights: ► Develops a new national phosphorus export model for agricultural catchments in Ireland ► Improves on earlier empirical phosphorus export models by using k-means clustering method for partitioning data ► Uses ANFIS model to predict annual average ortho-phosphorus concentrations

  16. Derivation of a fuzzy national phosphorus export model using 84 Irish catchments

    International Nuclear Information System (INIS)

    Nasr, Ahmed; Bruen, Michael

    2013-01-01

    Implementation of appropriate management strategies to mitigate diffuse phosphorus (P) pollution at the catchment scale is vitally important for the sustainable development of water resources in Ireland. An important element in the process of implementing such strategies is the prediction of their impacts on P concentrations in a catchment using a reliable mathematical model. In this study, a state-of-the-art adaptive neuro-fuzzy inference system (ANFIS) has been used to develop a new national P model capable of estimating average annual ortho-P concentrations at un-gauged catchments. Data from 84 catchments dominated by diffuse P pollution were used in developing and testing the model. Six different split-sample scenarios were used to partition the total number of the catchments into two sets, one to calibrate and the other to validate the model. The k-means clustering algorithm was used to partition the sets into clusters of catchments with similar features. Then for each scenario and for each cluster case, 11 different models, each of which consists of a linear regression sub-model for each cluster, were formulated by using different input variables selected from among six spatially distributed variables including phosphorus desorption index (PDI), runoff risk index (RRI), geology (GEO), groundwater (GW), land use (LU), and soil (SO). The success of the new approach over the conventional lumped, empirical, modelling approach was evident from the improved results obtained for most of the cases. In addition the results highlighted the importance of using information on PDI and RRI as explanatory input variables to simulate the average annual ortho-P concentrations. - Highlights: ► Develops a new national phosphorus export model for agricultural catchments in Ireland ► Improves on earlier empirical phosphorus export models by using k-means clustering method for partitioning data ► Uses ANFIS model to predict annual average ortho-phosphorus concentrations

  17. Phosphorus retention in riparian buffers: review of their efficiency.

    Science.gov (United States)

    Hoffmann, Carl Christian; Kjaergaard, Charlotte; Uusi-Kämppä, Jaana; Hansen, Hans Christian Bruun; Kronvang, Brian

    2009-01-01

    Ground water and surface water interactions are of fundamental importance for the biogeochemical processes governing phosphorus (P) dynamics in riparian buffers. The four most important conceptual hydrological pathways for P losses from and P retention in riparian buffers are reviewed in this paper: (i) The diffuse flow path with ground water flow through the riparian aquifer, (ii) the overland flow path across the riparian buffer with water coming from adjacent agricultural fields, (iii) irrigation of the riparian buffer with tile drainage water from agricultural fields where disconnected tile drains irrigate the riparian buffer, and (iv) inundation of the riparian buffer (floodplain) with river water during short or longer periods. We have examined how the different flow paths in the riparian buffer influence P retention mechanisms theoretically and from empirical evidence. The different hydrological flow paths determine where and how water-borne P compounds meet and interact with iron and aluminum oxides or other minerals in the geochemical cycling of P in the complex and dynamic environment that constitutes a riparian buffer. The main physical process in the riparian buffer-sedimentation-is active along several flow paths and may account for P retention rates of up to 128 kg P ha(-1) yr(-1), while plant uptake may temporarily immobilize up to 15 kg P ha(-1) yr(-1). Retention of dissolved P in riparian buffers is not as pronounced as retention of particulate P and is often below 0.5 kg P ha(-1) yr(-1). Several studies show significant release of dissolved P (i.e., up to 8 kg P ha(-1) yr(-1)).

  18. Response of sunflower to various levels of nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Arif, M.; Karar, K.M.

    2003-01-01

    To study the response of sunflower to various levels of nitrogen and phosphorous, an experiment was conducted in pots at NWFP Agricultural University Peshawar, during 1997. Four nitrogen levels 0, 80, 120, 160 kg/ha and three phosphorous levels 0,60,90 kg/ha were included in the experiment. Increase in nitrogen levels significantly increased head diameter, grain yield per head and thousand-grain weight. Maximum head diameter (25.71), grain yield per head (114.84g) and thousand-grain weight (75.67g) was recorded at nitrogen level of 160 kg/ha. Increased in phosphorus level increased plant height and thousand grains weight. Tallest plants (198.92cm) were observed at 6Okg P/ha while heavy grains (70.67g) were recorded at P level of 9Okg P/sub 2/O/sub 5/ha. It is concluded that l60kg N/ha and 9Okg P/ha is proper dose of N and P for sunflower hybrid. (author)

  19. Total phosphorus, phytate phosphorus contents and the correlation of phytates with amylose in selected edible beans in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Keerthana Sivakumaran

    2018-02-01

    Full Text Available Phytate a major anti nutritional factors in legumes and it accounts for larger portion of the total phosphorus, while limiting the bioavailablity of certain divalent cations to the human body. Legumes of eleven varieties cultivated in Sri Lanka, Mung bean (MI5, MI6, Cowpea (Waruni, MICP1, Bombay, Dhawala, ANKCP1, Soybean (MISB1, Pb1 and Horse gram (ANKBlack, ANKBrown were analyzed for phosphorus content and phytate content. Total phosphorus content was quantified by dry ashing followed by spectrophotometrical measurement of the blue colour intensity of acid soluble phosphate with sodium molybdate in the presence of ascorbic acid while phytate phosphorus using anion exchange chromatographic technique followed by spectrometrical measurement of the digested organic phosphorus and amylose content by Simple Iodine-Colourimetric method. Where the least value for phosphorus was observed 275.04 ±1.44 mg.100g-1 in ANKBlack (Horse gram and the highest in MISB1 (Soyabean with 654.94 ±0.05 mg.100g-1. The phytate phosphorus content (which is a ratio of phyate to total phosphorus was highest in Dhawala (Cowpea. The phytate phosphorus (which is a ratio of phyate to total phosphorus was highest in Dhawala with 67.42% and least in Bombay (Cowpea with 24.87%. The amylose content of the legumes was least in Pb1 with 8.71 ±0.13 mg.100mg-1 and the highest in MI6 22.58 ±0.71 mg.100mg-1. The correlation between phyate and total phosphorus was significant (p <0.05 and positive (r = 0.62. Similarly the correlation coefficient for phytate phosphorus and total phosphorus was significant (p <0.05 and positive (r = 0.63. Amylose content of legumes was significantly correlated negatively (p <0.05 with the total phytates content (r = -0.82.

  20. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    Science.gov (United States)

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  1. Detecting and analyzing soil phosphorus loss associated with critical source areas using a remote sensing approach.

    Science.gov (United States)

    Lou, Hezhen; Yang, Shengtian; Zhao, Changsen; Shi, Liuhua; Wu, Linna; Wang, Yue; Wang, Zhiwei

    2016-12-15

    The detection of critical source areas (CSAs) is a key step in managing soil phosphorus (P) loss and preventing the long-term eutrophication of water bodies at regional scale. Most related studies, however, focus on a local scale, which prevents a clear understanding of the spatial distribution of CSAs for soil P loss at regional scale. Moreover, the continual, long-term variation in CSAs was scarcely reported. It is impossible to identify the factors driving the variation in CSAs, or to collect land surface information essential for CSAs detection, by merely using the conventional methodologies at regional scale. This study proposes a new regional-scale approach, based on three satellite sensors (ASTER, TM/ETM and MODIS), that were implemented successfully to detect CSAs at regional scale over 15years (2000-2014). The approach incorporated five factors (precipitation, slope, soil erosion, land use, soil total phosphorus) that drive soil P loss from CSAs. Results show that the average area of critical phosphorus source areas (CPSAs) was 15,056km 2 over the 15-year period, and it occupied 13.8% of the total area, with a range varying from 1.2% to 23.0%, in a representative, intensive agricultural area of China. In contrast to previous studies, we found that the locations of CSAs with P loss are spatially variable, and are more dispersed in their distribution over the long term. We also found that precipitation acts as a key driving factor in the variation of CSAs at regional scale. The regional-scale method can provide scientific guidance for managing soil phosphorus loss and preventing the long-term eutrophication of water bodies at regional scale, and shows great potential for exploring factors that drive the variation in CSAs at global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. AGRICULTURAL POLICIES AND COMPETITION IN WORLD AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Raluca Duma

    2011-04-01

    Full Text Available Agricultural policies have had a guiding role inagriculture development and implicitly in their marketing. Usually they belongto each state and government and are issued in accordance with their specificclimate, social-economic and cultural background which includes food andgastronomic traditions. Agricultural policies have in view home and foreignmarket demand, as well as the socio-demographic, political and military contextat a certain point in the socio-economic development

  3. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  4. Isotopic techniques to study phosphorus cycling in soils

    International Nuclear Information System (INIS)

    Manjaiah, K.M.; Sreenivasa Chari, M.; Sachdev, P.; Sachdev, M.S.

    2008-01-01

    A sound understanding of phosphorus cycling in soil system is essential in order to manage this system in a sustainable manner. Phosphorus transformations are characterized by physico-chemical (sorption-desorption) and biological processes . The transformation rates need to be taken into account while developing nutrient management strategies for economical and sustainable production. One of the important tools and the method gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The major processes in the soil-plant system which determine the distribution and bioavailability of phosphorus in various inorganic and organic soil components consist of: (1) the dissolution of soil mineral phosphates, (2) retention of phosphorus by inorganic soil constituents, (3) decomposition of organic phosphorus contained in plant, animal and microbial detritus and (4) Immobilization of phosphorus via the soil microbial biomass and plan uptake

  5. Simulation of Nitrogen and Phosphorus Removal in Ecological Ditch Based on EFDC Model

    Science.gov (United States)

    Li, S. M.; Wang, X. L.; Zhou, Q. Y.; Han, N. N.

    2018-03-01

    Agricultural non-point source pollution threatens water quality and ecological system recently. To control it, the first and most important task is to control the migration and transformation of nitrogen and phosphorus in the agricultural ditches. An ecological ditch was designed, and according to the design a pilot device was built, the mechanism of N and P removal in ditches under the collaboration of aquatic organisms-hydraulic power was studied through the dynamic and static experiments, in order to find out the specific influences of different environmental factors such as influent concentration, influent flow and water level. The transport and diffusion of N and P in the ditch was simulated by a three dimensional water quality model EFDC, the simulation results and the experimental data were compared. The average relative errors of EFDC model simulated results were all less than 15%, which verified the reliability of the model.

  6. Critical Evaluation of the Implementation of Mitigation Options for Phosphorus from Field to Catchment Scales

    DEFF Research Database (Denmark)

    O. Maguire, Rory; Rubæk, Gitte Holton; E. Haggard, Brian

    2009-01-01

    management practices are starting to have an effect on P losses from agriculture, but water quality has only improved slightly. Impairment to the supply of drinking water to the City of Tulsa Oklahoma led to a lawsuit that has greatly affected the management of poultry litter in the supplying watershed......Received for publication December 19, 2007. Nutrient regulations have been developed over the past decades to limit anthropogenic inputs of phosphorus (P) to surface waters. All of the regulations were promulgated in response to decreased water quality, which was at least partially associated...... with agricultural non-point source pollution. Improvements in water quality can take years, so the impacts of these regulations on water quality can not always be seen. Denmark has had nutrient management regulations aimed at achieving mass balance of P for 20 yr, and although great progress has been made...

  7. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    Science.gov (United States)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  8. Recovery of agricultural nutrients from biorefineries.

    Science.gov (United States)

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  10. Metabolism of nonparticulate phosphorus in an acid bog lake

    International Nuclear Information System (INIS)

    Koenings, J.P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied

  11. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  12. Availability for plants of phosphorus in some virgin peat samples

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1958-01-01

    Full Text Available The availability to plants of native peat phosphorus was studied by chemical methods and by a pot experiment in which three successive oat crops were grown with peat as the only source of phosphorus. The eight samples were collected from virgin peat lands. They were air-dried and ground. The samples were found to represent three different types of phosphorus condition: the first group contained relatively high amounts of inorganic phosphorus which was fairly easily available; the second group had a very high capacity to fix phosphorus which made its high quantity of inorganic phosphorus difficultly available; the third group was very poor in total and inorganic phosphorus but the latter was easily soluble and available to plants. On the basis of the capacity and intensity factors determined according to the method by Teräsvuori and also on the basis of inorganic phosphorus extractable by water fairly reliable predictions could be made of the mutual order of the samples as phosphorus supplyer to the plants in the pot experiment. In an incubation experiment at 27°C the amounts of organic phosphorus mineralized during the period of four months were in some of the samples quite marked, even 40 mg/l, and in most of the samples they corresponded to 5 to 15 per cent of the organic phosphorus. The amounts of phosphorus taken up by the oat crops under the favourable conditions of the pot experiment varied from 11 to 60 mg/l or from 20 to 120 kg/ha.

  13. 7. Food and agriculture

    International Nuclear Information System (INIS)

    Livernash, R.

    1992-01-01

    Global food production has increased substantially over the past two decades, but factors such as population pressures and environmental degradation are undermining agriculture's current condition and future prospects. This chapter discusses the following: global trends; production trends (livestock and fisheries); per capita production trends (population density and agriculture); environmental trends (soil degradation, inputs of fertilizers, pesticides, and freshwater); economic trends (agricultural commodity prices, declining investment in irrigation, World Bank lending); trade liberalization and the Gatt negotiations; conventional agriculture and alternative agriculture; problems with the conventional model (on-farm impacts, off-farm impacts); agricultural policies - creating a new environment; policy impacts - distorted price structures; new policy options (reducing input subsidies, land conservation programs, management agreements, taxes, fees, and tax incentives, strengthening regulations, subsidizing conversion); the economics of alternative agriculture

  14. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H; Morita, Y; Ohshima, T

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  15. Effect of supplemented fungal phytase on performance and phosphorus availability by phosphorus-depleted juvenile rainbow trout (Oncorhynchus mykiss), and on the magnitude and composition of phosphorus waste output

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Schøn Ekmann, K.; Pedersen, Per Bovbjerg

    2009-01-01

    The effect of a supplemental fungal phytase on performance and phosphorus availability by juvenile rainbow trout fed diets with a high inclusion of plant based protein and on the magnitude and composition of the waste phosphorus production was tested in a 2 × 3 factorial design at a temperature....../suspended phosphorus waste output from fish fed the phytase supplemented diet containing 0.71% available phosphorus, suggesting that the phosphorus requirement was reached at this phosphorus level. Consistent with this, there was a substantial increase in the dissolved/suspended phosphorus waste output from fish fed...... the phytase supplemented diet containing 0.81% available phosphorus, suggesting that the phosphorus requirement was exceeded in this group. This study demonstrated that phytase supplementation will be advantageous to the fish and the environment if supplemented to low-phosphorus diets containing a large share...

  16. Phosphorus use efficiency by cotton measured through 32P isotope technique

    Science.gov (United States)

    Marcante, N. C.; Muraoka, T.; Camacho, M. A.; César, F. R. C. F.; Bruno, I. P.

    2012-04-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production in the Brazilian Savannah (Cerrado), which is naturally poor in this nutrient. Most of the P applied by fertilizer in Cerrado soils are converted into low solubility forms and can not be easily absorbed by plants. This occurs for characteristics of adsorption, conditioned by the predominance of low pH and aluminum and iron oxides in the clay fraction. The development of genotypes and cultivars with greater capacity to grow up in soils with low P availability ('phosphorus efficiency') is interesting to improve the agriculture in these areas in a sustainable way. Cotton (Gossypium spp.) is the main product for the fibers used nationally and globally in the textile chain. This study aim was to evaluate the efficiency of absorption and utilization of P by cotton cultivars/genotypes grown in Cerrado soil by the isotopic dilution technique. The soil classified as Ultisols, was labeled with the radioisotope 32P.The experiment was conducted in a greenhouse in a completely randomized design factorial 2 x 17. Factors were considered two levels of P (insufficient = 20 mg kg-1 and sufficient = 120 mg kg-1) and 17 genetic materials of cotton recommended for Cerrado region. Phosphorus levels influenced significantly the shoots dry matter production, the P content and accumulation, the 32P specific activity, the L value and L value less seed cotton P by cultivars and genotypes. The hierarchical clustering analysis used to verify the similarities between the cultivars and genotypes of cotton, classified them into internally homogeneous groups and heterogeneous between different groups. Cultivars FMT 523, FM 910 and CNPA GO 2043 were the most responsive to phosphate fertilizer in sufficient level of P, while the genotype Barbadense 01 and cultivars FM 966LL, IPR Jataí, BRS Aroeira and BRS Buriti were most efficient absorbing P in soils with insufficient level.

  17. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  18. Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada.

    Science.gov (United States)

    Duval, Tim P

    2018-10-01

    Suburban landscapes are known to have degraded water quality relative to natural settings, including increased total phosphorus (TP) levels; however, the effect of subdivision construction activities on stream TP dynamics are less understood. This study measured TP and its constituents particulate, dissolved organic, and dissolved inorganic phosphorus (PP, DOP, and DIP, respectively) in two headwater streams of contrasting urbanization activity to examine whether the land-use conversion process itself contributed to TP concentrations and export. The nested watershed undergoing significant active residential community construction contained large areas of cleared former agricultural field and associated sediment mounds with elevated soil TP (~1000 mg kg -1 ), and twice as many stormwater management (SWM) ponds than the watershed with completed suburban communities. Daily stream sampling for six months revealed limited differences in TP between urbanized and urbanizing watersheds regardless of season or stream flow condition; however, the forms of TP varied significantly. The proportion of TP as DOP was consistently higher in the urbanizing stream relative to the urban stream, which was in line with significant decreases in DOP concentration as proportion of cleared former agricultural land decreased and density of SWM ponds increased. The DOP, and to a lesser extent DIP and PP, dynamics resulted in a 2.5× greater areal export of TP from a small watershed actively being suburbanized during the study period compared to the larger watershed with greater land urbanized 3-5 years ago. The results of this study suggest stream TP concentrations are relatively unresponsive to active versus established suburban cover, but the forms of TP can be quite different, and the period of home construction can increase phosphorus (P) delivery to and export through nearby streams. This information can aid land managers and urban planners update best management practices to

  19. Contributions to total phosphorus intake: all sources considered.

    Science.gov (United States)

    Calvo, Mona S; Uribarri, Jaime

    2013-01-01

    High serum phosphorus is linked to poor health outcome and mortality in chronic kidney disease (CKD) patients before or after the initiation of dialysis. Dietary intake of phosphorus, a major determinant of serum phosphorus, seems to be systematically underestimated using the available software tools and generalized nutrient content databases. Several sources of dietary phosphorus including the addition of phosphorus ingredients in food processing, and phosphorus content of vitamin and mineral supplements and commonly used over-the-counter or prescription medications are not fully accounted for by the nutrient content databases and software programs in current clinical use or used in large population studies. In this review, we explore the many unknown sources of phosphorus in the food supply to identify all possible contributors to total phosphorus intake of Americans that have escaped inclusion in past intake estimates. Our goal is to help delineate areas for future interventions that will enable tighter control of dietary phosphorus intake, a critical factor to maintaining health and quality of life in CKD and dialysis patients. © 2012 Wiley Periodicals, Inc.

  20. Evaluation of added phosphorus in six volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.; Urbinsa P, M.C.

    1984-01-01

    The behaviour of added phosphorus in six volcanic ash soils (Andepts) was studied. Two phosphate retention solution were used; one of them labeled with 32 P carrier free. The phosphate retention solution (25 ml) was added to 5 gr of air dry soil. The remainder phosphorus in solution was measured through colorimetry and liquid scintillation. Over 85% phosphorus retention was measured in five soils. A phosphate retention solution labeled with 32 P carrier free proved to be efficient for the determination of phosphorus retention rates in the volcanic ash soils studied. (Author)

  1. A new model of anomalous phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.

    1989-01-01

    A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs

  2. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco

    2015-01-01

    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the pe......Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns...... applied two alternative nutrient sampling programs (high-frequency composite sampling and low-frequency instantaneous-grab sampling) and estimated the contribution derived from point and diffuse sources fitting a source apportionment model. We expected to detect a pattern of higher total and particulate...... program to estimate P exports in flashy streams compared to the less variable streams. We also found signs of interaction between climate/hydrology and land use intensity, in particular in the presence of point sources of P, leading to a bias towards underestimation of P in hydrologically stable streams...

  3. Relative efficiency of different methods of phosphorus (32P) application on fertilizer phosphorus uptake by maize (zea may L.)

    International Nuclear Information System (INIS)

    Chaudhary, M.L.; Gupta, A.P.

    1975-01-01

    A green house study was conducted for comparing four methods of phosphorus application (broad cast, below the seed, one side and both sides of the seeds) at the rate of 60 ppm in sierozem soil of H issar (Haryana). Maize crop was planted in 50 cm. bottomless bitumin drums for 70 days i.e. upto tasseling stage. The plant samples were collected at jointing and tasseling stages of plant growth. The results revealed that the highest dry matter yield, total and fertilizer phosphorus uptake was observed when the phosphorus was applied below the seed, followed by both side application of phosphorus. The least yield, total and fertilizer phosphorus uptake were recorded when the phosphorus was broadcast at the time of sowing. (author)

  4. Effect of phytase supplementation on apparent phosphorus digestibility and phosphorus output in broiler chicks fed low-phosphorus diets

    Directory of Open Access Journals (Sweden)

    Xian-Ren Jiang

    2015-04-01

    Full Text Available This study was conducted to evaluate the effect of supplemental phytase in broiler chicks fed different low levels of total phosphorus (P on the apparent phosphorus digestibility (APD and phosphorus output (PO in the faeces and ileal digesta. After fed a standard broiler starter diet from day 0 to 14 post-hatch, a total of 144 male broiler chicks were allocated to 6 groups for a 7-d experiment with a 2 × 3 factorial design comparing phytase (supplemented without (CTR or with 400 FTU/kg phytase (PHY and total P levels (2.0, 2.5 and 3.0 g/kg. The faecal samples were collected from day 17 to 21 post-hatch. At 22 days of age, all the chicks were slaughtered and collected the ileal digesta. Phytase supplementation significantly (P < 0.01 increased APD and decreased PO in the faeces and ileal digesta in comparison with the CTR group. In addition, PO in the faeces expressed as g/kg DM diets and faeces (Diet × P level, P = 0.047 and < 0.01, respectively as well as PO in the ileal digesta expressed as g/kg DM digesta (Diet × P level, P = 0.04 were affected by diet and P level, which were due to the significant reduction (P < 0.01 by PHY supplementation to the diets with 3.0 g/kg total P. The results evidenced that supplemental phytase improved the APD and PO when chicks was fed 3.0 g/kg total P diet, while lower total P levels may limit exogenous phytase efficacy.

  5. Ethylene: a regulator of root architectural responses to soil phosphorus availability

    NARCIS (Netherlands)

    Borch, K.; Bouma, T.J.; Lynch, J.P.; Brown, K.M.

    1999-01-01

    The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean (Phaseolus vulgaris L,) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was

  6. Quantitative aspects of phosphorus absorption and excretion in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Ives Claudio da Silva; Abdalla, Adibe Luiz; Vitti, Dorinha Miriam Silber Schmidt [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Nutricao Animal]. E-mails: icsbueno@cena.usp.br; abdalla@cena.usp.br; dovitti@cena.usp.br; Furtado, Carlos Eduardo [Universidade Estadual de Maringa, PR (Brazil). Dept. de Zootecnia]. E-mail: cefurtado@uem.br

    2007-07-01

    Phosphorus (P) is one of the most polluting nutrients because of high husbandry concentrations in restricted areas. The present study compiles data from previous studies dealing with true digestibility of different P levels in diets for horses. Database consisted of results from two experiments carried out at the Centre for Nuclear Energy in Agriculture (CENA/USP), using horses fed different levels of P (n=28). True absorption of phosphorus was determined by isotopic dilution technique, using {sup 32}P as tracer. All parameters (P{sub ING}: ingested P; P{sub ABS}: absorbed P; P{sub FECTOT}: total faecal P excretion; P{sub FECENDO}: endogenous faecal P; P{sub URI}: total urinary excretion; and P{sub RET}: retained P) were normalized according to body weight (BW) and linear and quadratic regressions between P{sub ING} and the other parameters were tested. No quadratic effect was observed. P{sub ING} ranged from 41 to 264 mg/kg BW. Faecal P excretion was affected by intake, analysing by total (P{sub FECTOT} = 0.888 (S.E. 0.058) P{sub ING} - 29.40 (S.E. 8.14) (P<0.0001; RMSE=20.37; R{sup 2}=0.90) or by endogenous fraction (P{sub FECENDO} = 0.095 (S.E. 0.029) P{sub ING} + 12.10 (S.E. 4.16) (P=0.0034; RMSE=10.41; {sup R}2=0.29). Urinary P excretion was not affected by intake (P=0.35), although ranging from 0.06 to 59.20 mg/kg BW. The same occurred for P{sub RET} (P=0.25) ranging from -13.69 to 88.78 mg/kg BW. P absorption also was affect by P intake (P{sub ABS} = 0.195 (S.E. 0.060) P{sub ING} + 42.19 (S.E. 8.45) (P=0.0031; RMSE=21.15; R{sup 2}=0.29). The present study showed that only a small part of ingested P was absorbed, i.e. most of ingested P was excreted via faeces, contributing for environmental pollution. (author)

  7. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide; Cinetica de adsorcao e dessorcao de fosforo ({sup 32}P) em hidroxido de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, E M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs.

  8. Effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L. under different phosphorus application rates

    Directory of Open Access Journals (Sweden)

    S. Fatih Ergin

    2016-10-01

    Full Text Available In this study, effect of mycorrhiza on growth criteria and phosphorus nutrition of lettuce (Lactuca sativa L. under different phosphorus fertilization rates were investigated. Phosphorus were added into growing media as 0, 50, 100 and 200 mg P2O5/kg with and without mycorrhiza applications. Phosphorus applications significantly increased yield criteria of lettuce according to the control treatment statistically. Mycorrhiza application also significantly increased plant diameter, plant dry weight and phosphor uptake by plant. The highest phosphorus uptakes by plants were determined in 200 mg P2O5/kg treatments as 88.8 mg P/pot with mycorrhiza and 83.1 mg P/pot without mycorrhiza application. In the control at 0 doses of phosphorus with mycorrhiza treatment, phosphorus uptake (69.9 mg P/pot, edible weight (84.36 g, dry weight (8.64 g and leaf number (28 of lettuce were higher than that (47.7 mg P/pot, 59.33 g, 6.75 g and 20, respectively in the control without mycorrhiza application. It was determined that mycorrhiza had positive effect on growth criteria and phosphorus nutrition by lettuce plant, and this effect decreased at higher phosphorus application rates.

  9. Using a phosphorus loss model to evaluate the Kentucky phosphorus index

    Science.gov (United States)

    U.S. Department of Agriculture’s Natural Resource Conservation Service (USDA-NRCS) has recently revised its 590 Nutrient Management Conservation Standard. As part of this revision, USDA-NRCS is requiring states to test the accuracy of their phosphorus (P) index using either measured P loss data or s...

  10. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  11. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    Science.gov (United States)

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal

    NARCIS (Netherlands)

    Postma, J.; Nijhuis, E.H.; Sommeus, E.

    2010-01-01

    Bacteria with the ability to solubilize phosphorus (P) and to improve plant health were selected and tested for growth and survival in P-rich animal bone charcoal (ABC). ABC is suggested to be suitable as a carrier for biocontrol agents, offering them a protected niche as well as delivering

  13. Phosphorus fractions and phosphorus sorption characteristics of freshwater sediments and their relationship to sediment composition

    Czech Academy of Sciences Publication Activity Database

    Borovec, Jakub; Hejzlar, Josef

    2001-01-01

    Roč. 151, č. 4 (2001), s. 687-703 ISSN 0003-9136 R&D Projects: GA ČR GA206/99/0028; GA ČR GA206/00/0063 Keywords : nutrients in aquatic systems * sorption/desorption of phosphorus Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.186, year: 2001

  14. Phosphorus availability and microbial respiration across biomes :  from plantation forest to tundra

    OpenAIRE

    Esberg, Camilla

    2010-01-01

    Phosphorus is the main limiting nutrient for plant growth in large areas of the world and the availability of phosphorus to plants and microbes can be strongly affected by soil properties. Even though the phosphorus cycle has been studied extensively, much remains unknown about the key processes governing phosphorus availability in different environments. In this thesis the complex dynamics of soil phosphorus and its availability were studied by relating various phosphorus fractions and soil ...

  15. Digestible phosphorus levels for barrows from 50 to 80 kg

    Directory of Open Access Journals (Sweden)

    Viviane Maria Oliveira dos Santos Nieto

    2016-05-01

    Full Text Available ABSTRACT This study was carried out to evaluate the levels of digestible phosphorus in diets for barrows with a high potential for lean meat deposition from 50 to 80 kg. Eighty barrows, with an initial weight of 47.93±3.43 kg, were distributed in completely randomized blocks, with each group given five levels of digestible phosphorus (1.86, 2.23, 2.61, 2.99, and 3.36 g kg−1. There were eight replicates, and two animals per experimental unit. Phosphorus levels did not significantly influence feed intake, weight gain, or feed conversion ratio. Daily digestible phosphorus intake increased linearly as levels of phosphorus in the diet were increased. Phosphorus levels did not significantly influence muscle depth, loin eye area, backfat thickness, or the percentage and quantity of lean meat in the carcass. A linear increase was observed for feeding cost as the levels of digestible phosphorus in the diet were increased, and the level of 1.86 g kg−1 cost 29.4% less when compared with the level of 2.61 g kg−1. The dry matter, natural matter, the coefficient of the residue, and volatile solids of the waste were not significantly influenced by phosphorus levels. Conversely, it was possible to observe an increasing linear effect for total solids, total phosphorus, and total nitrogen in the waste of animals receiving diets with increased levels of digestible phosphorus. The level of 1.86 g kg−1, which corresponded to a daily intake of 4.77 g−1 of digestible phosphorus, meets the requirements of barrows weighing 50 to 80 kg.

  16. Patient education for phosphorus management in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Kalantar-Zadeh K

    2013-05-01

    Full Text Available Kamyar Kalantar-ZadehHarold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine’s School of Medicine, Irvine, CA, USAObjectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia.Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed.Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels.Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism.Keywords: hyperphosphatemia, renal diet, phosphorus binders, educational programs, food fatigue, concordance

  17. Assessment of safety and efficiency of nitrogen organic fertilizers from animal-based protein hydrolysates--a laboratory multidisciplinary approach.

    Science.gov (United States)

    Corte, Laura; Dell'abate, Maria Teresa; Magini, Alessandro; Migliore, Melania; Felici, Barbara; Roscini, Luca; Sardella, Roccaldo; Tancini, Brunella; Emiliani, Carla; Cardinali, Gianluigi; Benedetti, Anna

    2014-01-30

    Protein hydrolysates or hydrolysed proteins (HPs) are high-N organic fertilizers allowing the recovery of by-products (leather meal and fluid hydrolysed proteins) otherwise disposed of as polluting wastes, thus enhancing matter and energy conservation in agricultural systems while decreasing potential pollution. Chemical and biological characteristics of HPs of animal origin were analysed in this work to assess their safety, environmental sustainability and agricultural efficacy as fertilizers. Different HPs obtained by thermal, chemical and enzymatic hydrolytic processes were characterized by Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis, and their safety and efficacy were assessed through bioassays, ecotoxicological tests and soil biochemistry analyses. HPs can be discriminated according to their origin and hydrolysis system by proteomic and metabolomic methods. Three experimental systems, soil microbiota, yeast and plants, were employed to detect possible negative effects exerted by HPs. The results showed that these compounds do not significantly interfere with metabolomic activity or the reproductive system. The absence of toxic and genotoxic effects of the hydrolysates prepared by the three hydrolytic processes suggests that they do not negatively affect eukaryotic cells and soil ecosystems and that they can be used in conventional and organic farming as an important nitrogen source derived from otherwise highly polluting by-products. © 2013 Society of Chemical Industry.

  18. Phosphorus and Fluorine - The Union for Bioregulators

    Directory of Open Access Journals (Sweden)

    Romanenko, V.

    2007-06-01

    Full Text Available The review demonstrates the very high efficiency and usefulness of the fluorine-phosphorus combination in order to synthesize organic molecules for purposes of modern life science. For biochemistry, the "P-F-union" in" biomolecules enables investigation of the enzyme structure and mechanism of action more correctly, as well as creation of new anti-body enzymes. Enhancing or regulation of inhibitor properties of these compounds, their stability or selectivity allows creation of new drugs for treatment of numerous serious diseases, especially viral infections and cancer.

  19. Uptake of phosphorus from feed by carps

    International Nuclear Information System (INIS)

    Kellermann, H.J.; Buehringer, H.

    1993-01-01

    One of the aims of the International Conference for the Protection of the North Sea is to reduce the input of nutrients by 50% within the period of 1985 -1995. This is only possible by reducing the riverine input of phosphorus into the North Sea. For the regulated shortlived isotope of this element the bioconcentration factor to fishmeat is determined by the phosporus concentration in the water on the one hand and by the biological turn over rate in tissue on the other hand. Aquaria studies of the turn over rate of carps at different feed applications reveal that the recommended bioconcentration factor does not yield the desired conservative assessment. (orig.) [de

  20. Phosphorus response in two varieties of cotton

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahendra; Bhandari, D K; Kumar, Vinod [Haryana Agricultural Univ., Hissar (India)

    1974-09-01

    Phosphorus requirements of cotton varieties H-14 and J-34 were studied on seirozem soils of Hissar under greenhouse conditions. The dry matter yield of both the varieties increased significantly upto 120 kg/ha P after which dry matter yield decreased. Total P uptake also increased with the addition of P. The highest utilization of fertilizer P by H-14 and J-34 was observed at 240 kg and 120 kg/ha levels of applied P, respectively. H-14 utilized more native P than J-34 at all levels of P application.

  1. Agriculture and environmental pollution

    International Nuclear Information System (INIS)

    Iqbal, M.M.; Idris, M.; Shah, S.M.

    1997-01-01

    Agriculture is a profession which is open both to natural conditions and intense human activity. This has brought it in direct interface with the environment. The activities related to agriculture can have favorable as well as unfavorable influence on environment. Pressure of burgeoning population in demanding increased production from agriculture to feed and clothe the teeming millions. This has resulted in excessive use of soil, fertilizers and pesticides. The paper describes the effect of these productive resources on environment and human health. (author)

  2. Malawi - Conservation Agriculture

    Data.gov (United States)

    Millennium Challenge Corporation — The randomized control trial impact evaluation tests different strategies for communicating information about agricultural technologies to smallholder maize farmers...

  3. Energy in agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, E J

    1980-02-01

    Agriculture is an important component of Canadian energy policy. There are many opportunities for both the production of energy from agricultural processes and the conservation of energy in agricultural production. These opportunities, as well as current practices and research in progress, are outlined in this report. Energy sources in agriculture include biomass (straw and other residues), methane production from manure, and oil and alcohol from crops. Alternate energy sources such as solar and wind power conserve conventional resources, and additional conservation opportunities exist in the use of greenhouses, waste heat and energy-efficient farming processes. Research programs and possible trends are outlined. 10 figs., 3 tabs.

  4. Agriculture - reconciling ancient tensions

    Directory of Open Access Journals (Sweden)

    David Atkinson

    2002-09-01

    Full Text Available Decision-making in agriculture has tended to be driven by factors other than environmental concerns. This may be changing, and perhaps the emphases of the two creation accounts in Genesis (responsible management or 'dominion', and active care may become more important. The paper examines a number of current developments in agriculture (synthetic fertilizers and pesticides, genetic manipulation, and organic versus industrial methodologies and discusses the issues they raise for agricultural productivity and the human communities dependent on farming. The questions raised are complex; we are faced with establishing a new paradigm for agricultural practice.

  5. Agriculture. Pt. 2

    International Nuclear Information System (INIS)

    1994-01-01

    The climatic effects of agriculture and nutritional habits of the West German population are investigated. Changes in solar UV-B radiation and methods of measuring them are described. The climatic relevance of ecological and conventional agricultural techniques are compared. The agricultural policy of the European Communities is presented and discussed. The climatic effects of the totality of agricultural production techniques and processing stages of the food industry, as well as of transport and trade, are analyzed. Sociological investigations are made of the nutritional habits of the population, and the consequences for the global climate are compared. (SR) [de

  6. Longitudinal Gradients in Phosphorus Characteristics in the Minnesota-Upper Mississippi River System

    National Research Council Canada - National Science Library

    James, William

    2002-01-01

    This technical note describes longitudinal patterns in soluble phosphorus and biologically available particulate phosphorus and equilibrium characteristics for suspended sediment collected at stations...

  7. Factors Affecting Water Dynamics and Their Assessment in Agricultural Landscapes

    International Nuclear Information System (INIS)

    Sakadevan, K.; Nguyen, M.L.

    2015-01-01

    The intensification and extension of agriculture have contributed significantly to the global food production in the last five decades. However, intensification without due attention to the ecosystem services and sustainability of soil and water resources contributed to land and water quality degradation such as soil erosion, decreased soil fertility and quality, salinization and nutrient discharge to surface and ground waters. Land use change from forests to crop lands altered the vegetation pattern and hydrology of landscapes with increased nutrient discharge from crop lands to riverine environment. Global climate change will increase the amount of water required for agriculture in addition to water needed for further irrigation development causing water scarcity in many dry, arid and semi-arid regions. The water and nutrient use efficiencies of agricultural production systems are still below 40% in many regions across the globe. Nitrogen (N) and phosphorus (P) fertilizer use in agriculture have accelerated the cycling of these nutrients in the landscape and contributed to water quality degradation. Such nutrient pollution has a wide array of consequences including eutrophication of inland waters and marine ecosystems. While intensifying drought conditions, increasing water consumption and environmental pollution in many parts of the world threatens agricultural productivity and livelihood, these also provided opportunities for farmers to use improved land and water management technologies and practices to make agriculture resilient to external shocks

  8. Evaluation of the APEX model to simulate runoff quality from agricultural fields in the southern region of the US

    Science.gov (United States)

    The phosphorus (P) Index (PI) is the risk assessment tool approved in the NRCS 590 standard used to target critical source areas and practices to reduce P losses. A revision of the 590 standard, suggested using the Agricultural Policy/Environmental eXtender (APEX) model to assess the risk of nitroge...

  9. Clinical and Pathological Findings on Intoxication by Yellow Phosphorus After Ingesting Firework Cracker: A Rare Case of Autopsy.

    Science.gov (United States)

    Türkmen Şamdanci, Emine; Çakir, Ebru; Şahin, Nurhan; Elmali, Candan; Sayin, Sadegül

    2016-01-01

    Yellow phosphorus is a toxic substance used in the production of firework cracker, fireworks, ammunition and agricultural dung. When ingested, it shows its effects mainly in the liver, the kidneys, and the brain. A four-year-old girl had died as a result of acute hepatic failure caused by ingesting a firework cracker. The case showed high levels of hepatic enzymes, along with non-specific signs such as nausea, vomiting and diarrhea. Autopsy revealed diffuse microvesicular steatosis in the liver and disseminated degeneration in the proximal tubules of the kidneys. In cases with concomitant hepatorenal failure and cardiovascular collapse, death is inevitable. However, when only hepatic failure develops, hepatic transplantation may be lifesaving. Although intoxication from ingesting yellow phosphorus has a very high rate of mortality, forensic cases are extremely rare in the literature.

  10. Effects of Nitrogen and Phosphorus Fertilizer on Agro ...

    African Journals Online (AJOL)

    SH

    caraway plant (Carum carvi) grown from root tubers when phosphorus was applied at the rate of 40 kg/ ha. The significant reduction in the number of days to first flower appearance, number of days to 50% flower appearance and first fruit maturity with increasing rates of phosphorus fertilizer showed that well P-fertilized T.

  11. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    The availability of excess nutrients (phosphorus (P) and nitrogen (N)) in wastewater systems causes many water quality problems. These problems include eutrophication whereby algae grow excessively and lead to depletion of oxygen, death of the aquatic life and bad odours. Biological phosphorus removal has gained ...

  12. Anthropogenic phosphorus flow analysis of Hefei City, China.

    Science.gov (United States)

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  13. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  14. Evaluation of phosphorus sorption characteristics of soils from the ...

    African Journals Online (AJOL)

    The evaluation of phosphorus sorption characteristics of soils and their relation to soil properties from the Bambouto sequence of Baranka 1, Baranka 2, Femock 1 and Femock 2 has been studied. Phosphorus, an essential plant nutrient, is often not readily available to plants and this deficiency tends to limit plant growth.

  15. Structure of inorganic phosphorus-nitrogen tetrahedral compounds

    International Nuclear Information System (INIS)

    Vitola, A.; Ronis, J.; Avotins, V.; Millers, T.

    1997-01-01

    The structure analysis of phosphorus-nitrogen compounds has shown the possibility of the P(O,N) 4 tetrahedra to form various kinds of structures. The wide spectrum of the properties determined by the diversity of structures marks the considerable promise to the future application of phosphorus-nitrogen compounds

  16. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  17. Identification of cowpea cultivars for low phosphorus soils of Nigeria

    International Nuclear Information System (INIS)

    Afolabi, N.O.; Ogunbodede, B.A.; Adediran, J.A.

    1996-01-01

    Twenty cultivars of cowpea, Vigna unguiculata, adapted to the Nigerian ecologies were screened to identify cultivars which can give high and sustainable yields when grown on soils with low available phosphorus in a sub-humid climate. Some cultivars including TVX3236, AFB1757, Ogunfowokan and K-28 gave three to four times higher grain yields than the other cultivars at zero phosphorus supply. While phosphorus application reduced grain yield in most of the cultivars with marked reduction in the higher yielding cultivars, low yielding cultivars tended to show some yield increase. Phosphorus use efficiency of the roots, stem or leaves was not significantly correlated with grain yield when 60 KgP/ha was applied. Reduction in yield due to phosphorus application might be due to induced Zn deficiency as Zn supply in these soils has been found to be inherently low. High grain yielding capacity without fertilizer phosphorus application was generally positively correlated with high vegetative shoot dry matter production. However, no clear relationship could be found between grain yield and root dry matter at maturity. It is concluded that selection for phosphorus efficiency in cowpea can substantially contribute to higher cowpea productivity and the farmers income on soils low in available phosphorus in the sub-humid areas of Nigeria. (author). 5 refs, 2 figs, 2 tabs

  18. Biological Phosphorus Removal in a Moving Bed Biofilm Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Helness, Herman

    2007-09-15

    The scope of this study was to investigate use of the moving bed biofilm reactor (MBBR) process for biological phosphorus removal. The goal has been to describe the operating conditions required for biological phosphorus and nitrogen removal in a MBBR operated as a sequencing batch reactor (SBR), and determine dimensioning criteria for such a process

  19. Identification of cowpea cultivars for low phosphorus soils of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Afolabi, N O; Ogunbodede, B A; Adediran, J A [Obafemi Awolowo Univ., Ibadan (Nigeria). Inst. of Agricultural Research and Training

    1996-07-01

    Twenty cultivars of cowpea, Vigna unguiculata, adapted to the Nigerian ecologies were screened to identify cultivars which can give high and sustainable yields when grown on soils with low available phosphorus in a sub-humid climate. Some cultivars including TVX3236, AFB1757, Ogunfowokan and K-28 gave three to four times higher grain yields than the other cultivars at zero phosphorus supply. While phosphorus application reduced grain yield in most of the cultivars with marked reduction in the higher yielding cultivars, low yielding cultivars tended to show some yield increase. Phosphorus use efficiency of the roots, stem or leaves was not significantly correlated with grain yield when 60 KgP/ha was applied. Reduction in yield due to phosphorus application might be due to induced Zn deficiency as Zn supply in these soils has been found to be inherently low. High grain yielding capacity without fertilizer phosphorus application was generally positively correlated with high vegetative shoot dry matter production. However, no clear relationship could be found between grain yield and root dry matter at maturity. It is concluded that selection for phosphorus efficiency in cowpea can substantially contribute to higher cowpea productivity and the farmers income on soils low in available phosphorus in the sub-humid areas of Nigeria. (author). 5 refs, 2 figs, 2 tabs.

  20. Anthropogenic phosphorus flow analysis of Hefei City, China

    International Nuclear Information System (INIS)

    Li Sisi; Yuan Zengwei; Bi Jun; Wu Huijun

    2010-01-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns.

  1. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?

    Science.gov (United States)

    Cha, Yoonkyung; Stow, Craig A; Nalepa, Thomas F; Reckhow, Kenneth H

    2011-09-01

    Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production.

  2. Plasma Calcium and Phosphorus In Weanling Pigs as influenced by ...

    African Journals Online (AJOL)

    Twenty Yorkshire piglets, weaned at approximately 4 weeks of age, were used in this study to investigate the variations in plasma calcium and phosphorus as influenced by dietary calcium and phosphorus and 3 Cestrum diurnam. In the CCD and TCD pigs, hypercalcemia developed rapidly and persisted following the ...

  3. Evaluation of an automated struvite reactor to recover phosphorus ...

    African Journals Online (AJOL)

    In the present study we attempted to develop a reactor system to recover phosphorus by struvite precipitation, and which can be installed anywhere in the field without access to a laboratory. A reactor was developed that can run fully automated and recover up to 93% of total phosphorus (total P). Turbidity and conductivity ...

  4. Phosphorus recycling and availability in the western Wadden Sea

    NARCIS (Netherlands)

    De Freixo Leote, C.M.

    2014-01-01

    Phosphorus is a main and often limiting nutrient for phytoplankton growth, as suggested for the western Wadden Sea. In this area, freshwater discharge was a major nutrient source in the past. However, pollution reduction measures dramatically reduced its contribution, particularly for phosphorus. In

  5. The release of dissolved phosphorus from lake sediments

    NARCIS (Netherlands)

    Boers, P.C.M.

    1991-01-01

    Chapter 1. Introduction: Eutrophication is one of the world's major water quality problems. Attempts to alleviate eutrophication of lakes have involved the control of phosphorus loadings. In such cases, an internal loading of phosphorus from the sediments may

  6. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  7. The agricultural policy of Serbia and common agricultural policy

    Directory of Open Access Journals (Sweden)

    Stanković Milica

    2012-01-01

    Full Text Available The agricultural sector has a relatively high importance in the economic structure of Serbia. The Common Agricultural Policy (CAP, Common Agricultural Policy is one of the main policies of the European Union. It is very important to point out the fundamental principles and objectives of the Common Agricultural Policy. Harmonization of the national agricultural policy of Serbia with the Common Agricultural Policy and acceptance of its mechanisms is crucial for the development of the agricultural sector as a whole.

  8. Clustering of agricultural enterprises

    Directory of Open Access Journals (Sweden)

    Michaela Beranová

    2013-01-01

    Full Text Available Agricultural business is a very specific branch which is characterized by very low financial performance while this characteristic is given mainly by external factors as market pricing of agricultural commodities on one side, and production costs of agricultural commodities on the other side. This way, agricultural enterprises recognize negative values of gross margin in the Profit and Loss Statement but positive value of operating profit after even there are items of costs which are deducted. These results are derived from agricultural production subsidies which are recognized as income in the P/L Statement. In connection with this fact, the government subsidies are a substantial component of financial performance of agricultural enterprises.Primary research proceeded on the statistical sample of one hundred agricultural companies, has shown that also other specifics influencing financial performance of these businesses exist here. In order to determine the influences, the cluster analysis has been applied at using more than 10 variables. This approach has led to construction of clusters (groups of agricultural business entities with different characteristics of the group. The objective of this paper is to identify the main determinants of financial performance of agricultural enterprises and to determine their influences under different economic characteristics of these business entities. For this purpose, the regression analysis has been subsequently applied on the groups of companies coming out from the cluster analysis. Besides the operating profit which is the main driving force of financial performance measured with the economic value added (EVA in agricultural enterprises, also capital structure and cost of capital have been observed as very strong influences on financial performance but these factors have different directions of their influence on the economic value added under different financial characteristics of agricultural

  9. Vocational Agriculture Education: Agricultural Livestock Skills.

    Science.gov (United States)

    Pierce, Greg

    Ten units of instruction are provided in this curriculum guide on agricultural livestock skills. Unit topics are as follow: (1) restraining, (2) vaccination, (3) livestock castration, (4) dehorning, (5) docking, (6) growth stimulants, (7) identification, (8) shearing, (9) hoof trimming, and (10) birth assistance. Each instructional unit generally…

  10. Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments.

    Science.gov (United States)

    Perks, M T; Owen, G J; Benskin, C McW H; Jonczyk, J; Deasy, C; Burke, S; Reaney, S M; Haygarth, P M

    2015-08-01

    Recent advances in monitoring technology have enabled high frequency, in-situ measurements of total phosphorus and total reactive phosphorus to be undertaken with high precision, whilst turbidity can provide an excellent surrogate for suspended sediment. Despite these measurements being fundamental to understanding the mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period spanning March 2012-February 2013. An assessment of the factors producing constituent hysteresis is undertaken following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment, with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate and soluble constituents, highlighting the

  11. Fluctuation contents of phosphorus and natural radionuclide in the water column of the Mersing river, Johor, Malaysia

    International Nuclear Information System (INIS)

    Saili, Noor Affizah Bujang; Mohamed, Che Abd Rahim

    2013-01-01

    Studies on natural radionuclides such as 210 Po and 210 Pb with the concentration of phosphorus in water column related to suspended particulate matter (SPM) were carried out at the Mersing River, Johor, Malaysia. Sixteen water samples were collected from nine stations on the 4 th July 2010. 210 Po and 210 Pb activities varied between 0.76 to 2.24 mBq/L and 0.16 to 1.60 mBq/L respectively. The phosphorus concentrations, comprising total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) and dissolved organic phosphorus (DOP), were within the ranges of 6.06 to 23.31 μg/L, 2.24 to 13.42 μg/L and 0.47 to 16.10 μ/L, respectively. The concentration of TDP and salinity shows weak positive correlation (r = 0.39), perhaps due to the shallow depth of the Mersing River. There is a high positive correlation (r = 0.85) of 210 Po activity with SPM concentration and a moderately positive correlation (r =0.59) of 210 Po and TDP in water. The K d values in suspended particulate matter are much higher compare to that in dissolved phase, proving that the adsorption of radionuclides to particles is more dominant. This implies that SPM significantly influences the variation of the P compound and both radionuclides in the Mersing River. This corresponds with agricultural activities from palm oil estates; erosion of the river bank due to river runoff; advection of suspended particulates from surface sediment due to boat and ferry traffic at the jetties; sedimentation; domestic sewage from nearby terrestrial areas; and natural processes; all of which might have resulted in their introduction to the Mersing River. (author)

  12. The study of Phosphorus distribution at Putrajaya Wetland

    Science.gov (United States)

    Mubin Zahari, Nazirul; Malek, Nur Farzana Fasiha Abdul; Fai, Chow Ming; Humaira Haron, Siti; Hafiz Zawawi, Mohd; Nazmi Ismail, Iszmir; Mohamad, Daud; Syamsir, Agusril; Sidek, Lariyah Mohd; Zakwan Ramli, Mohd; Ismail, Norfariza; Zubir Sapian, Ahmad; Noordin, Normaliza; Rahaman, Nurliyana Abdul; Muhamad, Yahzam; Mat Saman, Jarina

    2018-04-01

    This study is concerning phosphorus distribution in Putrajaya Wetland. Phosphorus is one of the important component in nutrients for living things be it aquatic or non – aquatic organisms. Total phosphorus (TP) results will give some information on the trophic status of surface water in water bodies. The focus of this study is to determine the total phosphorus concentration in Putrajaya Wetland which is in the inlet of the wetland then outlet of the wetland (Central Wetland Lake). The water sample is taken from Putrajaya Wetland and the test was conducted in the laboratory. The result from this study shows the results for total phosphorus according to month, sampling station and cells. Lowest total phosphate at the Central Wetland compare with all the wetland arms cells.

  13. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  14. Influence of phosphorus on point defects in an austenitic alloy

    International Nuclear Information System (INIS)

    Boulanger, L.

    1988-06-01

    The influence of phosphorus on points defects clusters has been studied in an austenitic alloy (Fe/19% at. Cr/13% at. Ni). Clusters are observed by transmission electron microscopy. After quenching and annealing, five types of clusters produced by vacancies or phosphorus-vacancies complexes are observed whose presence depends on cooling-speed. Vacancy concentration (with 3.6 10 -3 at. P) in clusters is about 10 -5 and apparent vacancy migration is 2 ± 0.1 eV. These observations suggest the formation of metastable small clusters during cooling which dissociate during annealing and migrate to create the observed clusters. With phosphorus, the unfrequent formation of vacancy loops has been observed during electron irradiation. Ions irradiations show that phosphorus does not favour nucleation of interstitial loops but slowers their growth. It reduces swelling by decreasing voids diameter. Phosphorus forms vacancy complexes whose role is to increase the recombination rate and to slow vacancy migration [fr

  15. Direct observation of thermal disorder and decomposition of black phosphorus

    Science.gov (United States)

    Yoo, Seung Jo; Kim, Heejin; Lee, Ji-Hyun; Kim, Jin-Gyu

    2018-02-01

    Theoretical research has been devoted to reveal the properties of black phosphorus as a two-dimensional nanomaterial, but little attention has been paid for the experimental characterization. In this study, the thermal disorder and decomposition of black phosphorus were examined using in situ heating transmission electron microscopy experiments. We observed that the breaking of crystallographic symmetry begins at 380 °C under vacuum condition, followed by the phosphorus evaporates after long-term heating at 400 °C. This decomposition process can be initiated by the surficial vacancy and proceeds toward both interlayer ([010]) and intralayer ([001]) directions. The results on the thermal behavior of black phosphorus provide useful guidance for thin film deposition and fabrication processes with black phosphorus.

  16. Overview of phosphorus diffusion and gettering in multicrystalline silicon

    International Nuclear Information System (INIS)

    Bentzen, A.; Holt, A.

    2009-01-01

    This paper gives an overview of phosphorus emitter diffusion and gettering as experienced in multicrystalline silicon solar cell processing. The paper gives a brief summary of the diffusion properties of phosphorus in silicon, explaining the nature behind the characteristic kink-and-tail profiles often encountered in silicon solar cells. Then, phosphorus diffusion gettering is discussed with particular focus to the inhomogeneous nature of multicrystalline silicon, and it is discussed how the abundant presence of dislocations in the areas of the material having a low recombination lifetime can cause only minor lifetime enhancements in such areas upon phosphorus diffusion. Attributed to dissociation of precipitated impurities in combination with longer effective diffusion lengths of the impurities, it is then seen that even poor areas of multicrystalline can exhibit a noticeable improvement by phosphorus diffusion gettering when applying a lower diffusion temperature for a longer duration.

  17. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    Directory of Open Access Journals (Sweden)

    Tae Hyung Lee

    2016-10-01

    Full Text Available A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  18. Neutron activation analysis for calibration of phosphorus implantation dose

    International Nuclear Information System (INIS)

    Paul, Rick L.; Simons, David S.

    2001-01-01

    A feasibility study was undertaken to determine if radiochemical neutron activation analysis (RNAA) can be used to certify the retained dose of phosphorus implanted in silicon, with the goal of producing a phosphorus SRM. Six pieces of silicon, implanted with a nominal phosphorus dose of 8.5x10 14 atoms·cm -2 were irradiated at a neutron flux of 1.05x10 14 cm -2 ·s -1 . The samples were mixed with carrier, dissolved in acid, the phosphorus isolated by chemical separation, and 32 P measured using a beta proportional counter. A mean phosphorus concentration of (8.35±0.20)x10 14 atoms·cm -2 (uncertainty=1 standard deviation) was determined for the six samples, in agreement with the nominal implanted dose

  19. Quantitation of phosphorus excretion in sheep by compartmental analysis

    International Nuclear Information System (INIS)

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-01-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of 32 P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney

  20. Recovery of phosphorus compounds from thermally-processed wastes

    Science.gov (United States)

    Czechowska-Kosacka, A.; Pawłowski, L.; Niedbala, G.; Cel, W.

    2018-05-01

    Depletion of phosphorus deposits is one of the most serious global problems, which may soon lead to a crisis in food production. It is estimated that if the current living standard is maintained, the available reserves will be depleted in 130 years. Considering the principle of sustainable development, searching for alternative phosphorus sources is extremely important. The work presented the results of the research on the possibility of utilizing wastes as a source of phosphorus. The studies were conducted on poultry manure. The physicochemical properties of phosporus-rich wastes were determined as well. The fertilizing properties of ashes from poultry manure combustion – obtained from different systems, i.e. caged and barn production. The assimilability of phosphorus from the obtained ashes was determined. Potential applications of phosphorus-rich ashes were proposed as well.

  1. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    Science.gov (United States)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  2. Journal of Agricultural Extension

    African Journals Online (AJOL)

    Scope of journal The Journal of Agricultural Extension" is devoted to the advancement of knowledge of agricultural extension services and practice through the publication of original and empirically based research, ... Vol 22, No 1 (2018) ... Symbol recognition and interpretation of HIV/AIDS pictorial messages among rural ...

  3. Sustainable Agriculture: Cover Cropping

    Science.gov (United States)

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  4. The Urban Agriculture Circle

    NARCIS (Netherlands)

    Jansma, J.E.; Chambers, Joe; Sabas, Eva; Veen, E.J.

    2015-01-01

    The lack of inclusion of urban agriculture in city planning directly affects the success of initiatives in this sector, which subsequently could impede fu-ture innovations. The poor representation of urban agriculture in planning can be attributed to a lack of understanding about its

  5. Theme: Urban Agriculture.

    Science.gov (United States)

    Ellibee, Margaret; And Others

    1990-01-01

    On the theme of secondary agricultural education in urban areas, this issue includes articles on opportunities, future directions, and implications for the profession; creative supervised experiences for horticulture students; floral marketing, multicultural education; and cultural diversity in urban agricultural education. (JOW)

  6. AGRICULTURE IN THE CITY

    International Development Research Centre (IDRC) Digital Library (Canada)

    The target audience of this book, then, is not only researchers and high-level ...... given the current higher availability of food traded in agricultural markets and in ... recyclable materials as containers for the organic matter and agricultural soil ...

  7. Conservation Agriculture in Europe

    Directory of Open Access Journals (Sweden)

    Á. Kertész

    2014-03-01

    Yield performance and stability, operating costs, environmental policies and programs of the Common Agricultural Policy (CAP, and climate change will likely be the major driving forces defining the direction and for the extension of CA in Europe. The role of agriculture in climate change mitigation in the EU is discussed in the paper.

  8. Agriculture. Pt. 1

    International Nuclear Information System (INIS)

    1994-01-01

    The study investigates the impact of agriculture on the earth's atmosphere. It describes the natural carbon cycle, the socioeconomic factors that influence it, and the climate effects. The climatic relevance of gaseous sulphur and nitrogen compounds, methane and other hydrocarbons, and ammonia emissions from biological and agricultural process is discussed. (SR) [de

  9. Glossary on agricultural landscapes.

    NARCIS (Netherlands)

    Kruse, A.; Centeri, C.; Renes, J.; Roth, M.; Printsman, A.; Palang, H.; Benito Jorda, M.-D.; Verlarde, M.D.; Kruckenberg, H.

    2010-01-01

    T he following glossary of terms related to the European agricultural landscape shall serve as a common basis for all parties, working in or on agricultural landscapes. Some of the terms are quite common and sometimes used in our every day language, but they often have different meanings in

  10. Agriculture and food processing

    International Nuclear Information System (INIS)

    Muhammad Lebai Juri

    2003-01-01

    This chapter discuss the application of nuclear technology in agriculture sector. Nuclear Technology has help agriculture and food processing to develop tremendously. Two techniques widely use in both clusters are ionization radiation and radioisotopes. Among techniques for ionizing radiation are plant mutation breeding, SIT and food preservation. Meanwhile radioisotopes use as a tracer for animal research, plant soil relations water sedimentology

  11. The New Nordic Diet: phosphorus content and absorption.

    Science.gov (United States)

    Salomo, Louise; Poulsen, Sanne K; Rix, Marianne; Kamper, Anne-Lise; Larsen, Thomas M; Astrup, Arne

    2016-04-01

    High phosphorus content in the diet may have adverse effect on cardiovascular health. We investigated whether the New Nordic Diet (NND), based mainly on local, organic and less processed food and large amounts of fruit, vegetables, wholegrain and fish, versus an Average Danish Diet (ADD) would reduce the phosphorus load due to less phosphorus-containing food additives, animal protein and more plant-based proteins. Phosphorus and creatinine were measured in plasma and urine at baseline, week 12 and week 26 in 132 centrally obese subjects with normal renal function as part of a post hoc analysis of data acquired from a 26-week controlled trial. We used the fractional phosphorus excretion as a measurement of phosphorus absorption. Mean baseline fractional phosphorus excretion was 20.9 ± 6.6 % in the NND group (n = 82) and 20.8 ± 5.5 % in the ADD group (n = 50) and was decreased by 2.8 ± 5.1 and 3.1 ± 5.4 %, respectively, (p = 0.6) at week 26. At week 26, the mean change in plasma phosphorus was 0.04 ± 0.12 mmol/L in the NND group and -0.03 ± 0.13 mmol/L in the ADD group (p = 0.001). Mean baseline phosphorus intake was 1950 ± 16 mg/10 MJ in the NND group and 1968 ± 22 mg/10 MJ in the ADD group and decreased less in the NND compared to the ADD (67 ± 36 mg/10 MJ and -266 ± 45 mg/day, respectively, p food concept beneficial regarding phosphorus absorption.

  12. Phosphorus in the feeding of pigs : effect of diet on the absorption and retention of phosphorus by growing pigs

    NARCIS (Netherlands)

    Jongbloed, A.W.

    1987-01-01

    An extensive review is given of the literature concerning phosphorus feeding of pigs. Subjects dealt with are: 1. physiological background, regulation and effect of diet composition and nutrient supply on phosphorus absorption and retention; 2. estimation of the amount of P present in the

  13. Radiation technology in agriculture

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  14. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  15. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  16. Sustainable Agricultural Marketing Initiatives

    Directory of Open Access Journals (Sweden)

    Hakan Adanacıoğlu

    2015-07-01

    Full Text Available Sustainable marketing is a holistic approach that puts equal emphasis on environmental, social equity, and economic concerns in the development of marketing strategies. The purpose of the study is to examine and discuss the sustainable agricultural marketing initiatives practiced throughout the World and Turkey, and to put forth suggestions to further improve the performance of agricultural marketing initiatives in Turkey. Some of the sustainable agricultural marketing initiatives practiced around the world are carried out through civil organizations. Furthermore; some of these initiatives have also launched by farmers, consumers, food processors and retailers. The long-term strategies to increase these initiatives should be determined due to the fact that examples of successful sustainable agricultural marketing initiatives are inadequate and cannot be spread in Turkey. In this context, first of all, the supports provided by the government to improve agricultural marketing systems, such as EU funds for rural development should be compatible with the goals of sustainable marketing. For this purpose, it should be examined whether all proposed projects related to agricultural marketing meet the social, economic, and environmental principles of sustainable marketing. It is important that supporting organizations, especially civil society organisations, should take an active role for faster dissemination and adoption of sustainable agricultural marketing practices in Turkey. These organizations may provide technical assistance in preparing successful project proposals and training to farm groups. In addition, the other organizations, such as local administrations, producers' associations, cooperatives, can contribute to the success of sustainable agricultural marketing initiatives. The use of direct marketing strategies and vertical integration attempts in sustainable agricultural marketing initiatives that will likely be implemented in Turkey is

  17. The Prevalence of Phosphorus Containing Food Additives in Top Selling Foods in Grocery Stores

    Science.gov (United States)

    León, Janeen B.; Sullivan, Catherine M.; Sehgal, Ashwini R.

    2013-01-01

    Objective To determine the prevalence of phosphorus-containing food additives in best selling processed grocery products and to compare the phosphorus content of a subset of top selling foods with and without phosphorus additives. Design The labels of 2394 best selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created and daily phosphorus and pricing differentials were computed. Setting Northeast Ohio Main outcome measures Presence of phosphorus-containing food additives, phosphorus content Results 44% of the best selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread & baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive containing foods averaged 67 mg phosphorus/100 gm more than matched non-additive containing foods (p=.03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared to meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Conclusion Phosphorus additives are common in best selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. PMID:23402914

  18. The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores.

    Science.gov (United States)

    León, Janeen B; Sullivan, Catherine M; Sehgal, Ashwini R

    2013-07-01

    The objective of this study was to determine the prevalence of phosphorus-containing food additives in best-selling processed grocery products and to compare the phosphorus content of a subset of top-selling foods with and without phosphorus additives. The labels of 2394 best-selling branded grocery products in northeast Ohio were reviewed for phosphorus additives. The top 5 best-selling products containing phosphorus additives from each food category were matched with similar products without phosphorus additives and analyzed for phosphorus content. Four days of sample meals consisting of foods with and without phosphorus additives were created, and daily phosphorus and pricing differentials were computed. Presence of phosphorus-containing food additives, phosphorus content. Forty-four percent of the best-selling grocery items contained phosphorus additives. The additives were particularly common in prepared frozen foods (72%), dry food mixes (70%), packaged meat (65%), bread and baked goods (57%), soup (54%), and yogurt (51%) categories. Phosphorus additive-containing foods averaged 67 mg phosphorus/100 g more than matched nonadditive-containing foods (P = .03). Sample meals comprised mostly of phosphorus additive-containing foods had 736 mg more phosphorus per day compared with meals consisting of only additive-free foods. Phosphorus additive-free meals cost an average of $2.00 more per day. Phosphorus additives are common in best-selling processed groceries and contribute significantly to their phosphorus content. Moreover, phosphorus additive foods are less costly than phosphorus additive-free foods. As a result, persons with chronic kidney disease may purchase these popular low-cost groceries and unknowingly increase their intake of highly bioavailable phosphorus. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Sediment and Phosphorus losses by Surface Runoff from a Catchment in the Humid Pampa Landscape, Argentina Republic

    Science.gov (United States)

    Méndez M., A.; Díaz E., L.; Lenzi M., L.; Lado, M.; Vidal-Vázquez, E.

    2015-04-01

    The estimation of sediment and phosphorus transfers from soil into watersheds as a result of agricultural activity is a key aspect for characterizing the sustainability of current land use systems. The objective of the present study was to quantify the temporal evolution of suspended sediment and dissolved phosphorus losses from the upper basin of the Gualeguaychú River. The studied catchment has an area of 483 Km2 and is located in the Entre Ríos province, Argentina Republic. The climate is subtropical humid with average annual rainfall of 1200 mm. Soils are characterized by very low infiltration rates. Land use was assessed by remote sensing and GIS tools, and consists of: 31% abandoned rice fields, 20% naturalized fields, 20% soybean (second cycle), 10% soybean (first cycle), 7% rice, 4% Pasture, and the remaining 7% is devoted to civil and road works, native forests and other crops. Low soil infiltration capacity, together with landscape geomorphological traits of the studied landscape and zonal rainfall regime, typically originates periods with high surface runoff volumes, mainly in autumn, spring and summer months. The study was conducted during a period of eight years. Instantaneous water flow measurements (discharge) were estimated in a control section of Gualeguaychú River from hydrometer reading and the rating curve of height-flow. In addition, 134 water samples of 2000 cm3 were collected during the study period to analyze the concentration of suspended sediments and dissolved phosphorus. The instantaneous flow was estimated with the hydrometer reading and the application of curve of height - flow. The discharge range was from 0.14 to 128 m3/sec, indicating a high variability in the response of the catchment to seasonal rainfall. On average suspended sediment and dissolved phosphorus losses of the experimental catchment were 1.42 Mg and 0.335 Kg per hectare/year, respectively. It was also shown that few events of high rainfall that generate excess

  20. Drivers of phosphorus uptake by barley following secondary resource application

    Directory of Open Access Journals (Sweden)

    Eva eBrod

    2016-05-01

    Full Text Available Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP and an unfertilized control (NoP in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil and pH 6.2 (limed soil. In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥ fish sludge ≥ wood ash ≥ meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare. The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilisation and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers, or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.