WorldWideScience

Sample records for animal models relevant

  1. Stress and adaptation : Toward ecologically relevant animal models

    NARCIS (Netherlands)

    Koolhaas, Jaap M.; Boer, Sietse F. de; Buwalda, Bauke

    Animal models have contributed considerably to the current understanding of mechanisms underlying the role of stress in health and disease. Despite the progress made already, much more can be made by more carefully exploiting animals' and humans' shared biology, using ecologically relevant models.

  2. Relevance of animal models to human tardive dyskinesia

    Directory of Open Access Journals (Sweden)

    Blanchet Pierre J

    2012-03-01

    Full Text Available Abstract Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia.

  3. Current understanding of hypospadias: relevance of animal models.

    Science.gov (United States)

    Cunha, Gerald R; Sinclair, Adriane; Risbridger, Gail; Hutson, John; Baskin, Laurence S

    2015-05-01

    Hypospadias is a congenital abnormality of the penile urethra with an incidence of approximately 1:200-1:300 male births, which has doubled over the past three decades. The aetiology of the overwhelming majority of hypospadias remains unknown but appears to be a combination of genetic susceptibility and prenatal exposure to endocrine disruptors. Reliable animal models of hypospadias are required for better understanding of the mechanisms of normal penile urethral formation and hence hypospadias. Mice and/or rats are generally used for experimental modelling of hypospadias, however these do not fully reflect the human condition. To use these models successfully, researchers must understand the similarities and differences between mouse, rat and human penile anatomy as well as the normal morphogenetic mechanisms of penile development in these species. Despite some important differences, numerous features of animal and human hypospadias are shared: the prevalence of distal penile malformations; disruption of the urethral meatus; disruption of urethra-associated erectile bodies; and a common mechanism of impaired epithelial fusion events. Rat and mouse models of hypospadias are crucial to our understanding of hypospadias to ultimately reduce its incidence through better preventive strategies.

  4. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  5. Stem cell therapy for joint problems using the horse as a clinically relevant animal model

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Betts, Dean H.

    2007-01-01

    of the developmental biology of synovial joints and their pathologies. Before human clinical trials are undertaken, stem cell-based therapies for non-life-threatening disorders should be evaluated for their safety and efficacy using animal models of spontaneous disease and not solely by the existing laboratory models...... of experimentally induced lesions. The horse lends itself as a good animal model of spontaneous joint disorders that are clinically relevant to similar human disorders. Equine stem cell and tissue engineering studies may be financially feasible to principal investigators and small biotechnology companies...

  6. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges

    Science.gov (United States)

    Ney, Denise M.; Sigalet, David L.; Vegge, Andreas; Burrin, Douglas

    2014-01-01

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the

  7. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    Science.gov (United States)

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  8. Malaria in pregnancy: the relevance of animal models for vaccine development.

    Science.gov (United States)

    Doritchamou, Justin; Teo, Andrew; Fried, Michal; Duffy, Patrick E

    2017-10-06

    Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.

  9. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

    Science.gov (United States)

    Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P

    2018-04-01

    What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published

  10. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    Science.gov (United States)

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  11. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    OpenAIRE

    Takahashi, Mami; Hori, Mika; Mutoh, Michihiro; Wakabayashi, Keiji; Nakagama, Hitoshi

    2011-01-01

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5’ CpG islands or by homozygous deletions have been frequent...

  12. New insight into oseophageal injury and protection in physiologically relevant animal models.

    Science.gov (United States)

    Zayachkivska, O; Pshyk-Titko, I; Hrycevych, N; Savytska, M

    2014-04-01

    Chronic diseases of lifestyle (CDL), the most common chronic group of non-infectious and non-transmissible diseases worldwide, which share the similar risk factors of unhealthy lifestyle, have become most recognized as a serious trigger in the genesis of oesophageal injury. Non-erosive oesophageal lesions (NEOL) are found more frequently than erosive or ulcer lesions in patients with reflux oesophagitis (RO) related to CDL. They also have restricted healing options, which often leads to carcinogenesis. Therefore, developing a physiologically relevant animal model of NEOL remains an urgent priority. One of triggers of CDL, postprandial hyperglycemia (PHG), which is characterized by hyperglycemic spikes, and overloading nitro-compounds leading to oxidative stress that may predispose to NEOL. The present study was designed to set up a model of RO related to CDL in rodents to understand mechanisms of oesophageal preulcerogenic injury under such conditions as food-associated long-term PHG, restrained water-immersion stress (WIS), and imbalance of entero-salivary nitrites recirculation (ESNR). Beneficial effects of L-tryptophan (L-Try) have already been described by many activities in kynurenine and melatonin (Mel) synthesis, redox reactions, which play a key role for cytoprotection and proliferation. Nevertheless, the effect of L-Try and Mel on NEOL under PHG is still unknown. An extract of Cucurbita maxim sweet seed (eCMS), which contains a high amount of antioxidants, also appear to play an important role in foregut cytoprotection. Thus, the second aim was to observe the effects of eCSE on oesophageal mucosa (OEM) in modification of ESNR (mESNR). Rats were used with without/with pre-treatment L-Try, Mel during WIS and PHG. In the second series of experiments rats were used with without/with CSE pre-treatment in mESNR; oral and OEM lesions were determined by histology; inflammation of OEM by lectin histochemistry; esophageal NO2(-), cNOS and iNOS via bioassays

  13. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    International Nuclear Information System (INIS)

    Takahashi, Mami; Hori, Mika; Mutoh, Michihiro; Wakabayashi, Keiji; Nakagama, Hitoshi

    2011-01-01

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention

  14. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mami, E-mail: mtakahas@ncc.go.jp; Hori, Mika; Mutoh, Michihiro [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Wakabayashi, Keiji [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526 (Japan); Nakagama, Hitoshi [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  15. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Directory of Open Access Journals (Sweden)

    Hitoshi Nakagama

    2011-02-01

    Full Text Available Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropylamine (BOP into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5’ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  16. Experimental animal models of pancreatic carcinogenesis for prevention studies and their relevance to human disease.

    Science.gov (United States)

    Takahashi, Mami; Hori, Mika; Mutoh, Michihiro; Wakabayashi, Keiji; Nakagama, Hitoshi

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5' CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  17. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  18. Pharmacokinetic models relevant to toxicity and metabolism for uranium in humans and animals

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1989-01-01

    Models to predict short and long term accumulation of uranium in the human kidney are reviewed and summarised. These are generally first order linear compartmental models or pseudo-pharmacokinetic models such as the retention model of the ICRP. Pharmacokinetic models account not only for transfer from blood to organs, but also recirculation from the organ to blood. The most recent information on mammalian and human metabolism of uranium is used to establish a revised model. The model is applied to the short term accumulation of uranium in the human kidney after a single rapid dosage to the blood, such as that obtained by inhaling UF6 or its hydrolysis products. It is shown that the maximum accumulation in the kidney under these conditions is less than the fraction of the material distributed from the blood to kidney if a true pharmacokinetic model is used. The best coefficients applicable to man in the authors' view are summarised in model V. For a half-time of two days in the mammalian kidney, the maximum concentration in kidney is 75% of that predicted by a retention model such as that used by the ICRP following a single acute intake. We conclude that one must use true pharmacokinetic models, which incorporate recirculation from the organs to the blood, in order to realistically predict time dependent uptake in the kidneys and other organs. Information is presented showing that the half-time for urinary excretion of soluble uranium in man after inhalation of UF6 is about one quarter of a day. (author)

  19. Expression of presynaptic markers in a neurodevelopmental animal model with relevance to schizophrenia

    DEFF Research Database (Denmark)

    Karlsen, Anna S; Kaalund, Sanne Simone; Møller, Morten

    2013-01-01

    Administration of N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) to rat pups at postnatal day (PND) 7, 9, and 11 [neonatal PCP (neoPCP) model] induces cognitive deficits similar to those observed in schizophrenia. Expression of presynaptic SNARE protein, synaptosomal......-associated protein of 25 kDa (Snap25), has been shown to be downregulated in postmortem brains from patients with schizophrenia. The present study was designed to investigate the long-term effects of neoPCP administration on expression of presynaptic markers altered in schizophrenia. Using radioactive in...

  20. Animal models of Central Diabetes Insipidus: Human relevance of acquired beyond hereditary syndromes and the role of oxytocin.

    Science.gov (United States)

    Bernal, Antonio; Mahía, Javier; Puerto, Amadeo

    2016-07-01

    The aim of this study was to review different animal models of Central Diabetes Insipidus, a neurobiological syndrome characterized by the excretion of copious amounts of diluted urine (polyuria), a consequent water intake (polydipsia), and a rise in the serum sodium concentration (hypernatremia). In rodents, Central Diabetes Insipidus can be caused by genetic disorders (Brattleboro rats) but also by various traumatic/surgical interventions, including neurohypophysectomy, pituitary stalk compression, hypophysectomy, and median eminence lesions. Regardless of its etiology, Central Diabetes Insipidus affects the neuroendocrine system that secretes arginine vasopressin, a neurohormone responsible for antidiuretic functions that acts trough the renal system. However, most Central Diabetes Insipidus models also show disorders in other neurobiological systems, specifically in the secretion of oxytocin, a neurohormone involved in body sodium excretion. Although the hydromineral behaviors shown by the different Central Diabetes Insipidus models have usually been considered as very similar, the present review highlights relevant differences with respect to these behaviors as a function of the individual neurobiological systems affected. Increased understanding of the relationship between the neuroendocrine systems involved and the associated hydromineral behaviors may allow appropriate action to be taken to correct these behavioral neuroendocrine deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Relevance of various animal models of human infections to establish therapeutic equivalence of a generic product of piperacillin/tazobactam.

    Science.gov (United States)

    Agudelo, Maria; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2015-02-01

    After demonstrating with diverse intravenous antibacterials that pharmaceutical equivalence (PE) does not predict therapeutic equivalence, we tested a single generic product of piperacillin/tazobactam (TZP) in terms of PE, pharmacokinetics and in vitro/vivo pharmacodynamics against several pathogens in neutropenic mouse thigh, lung and brain infection models. A generic product was compared head-to-head against the innovator. PE was evaluated by microbiological assay. Single-dose serum pharmacokinetics were determined in infected mice, and the MIC/MBC were determined by broth microdilution. In vivo experiments were done in a blind fashion. Reproducibility was tested on different days using different infecting organisms and animal models. Neutropenic MPF mice were infected in the thighs with Staphylococcus aureus GRP-0057 or Pseudomonas aeruginosa PA01 and in the lungs or brain with Klebsiella pneumoniae ATCC 10031. Treatment started 2h (thigh and brain) or 14 h (lung) after infection and was administered every 3h over 24h (thigh and lung) or 48 h (brain). Both products exhibited the same MIC/MBC against each strain, yielded overlaid curves in the microbiological assay (P>0.21) and were bioequivalent (IC90 83-117% for AUC test/reference ratio). In vivo, the generic product and innovator were again undistinguishable in all models and against the different bacterial pathogens involved. The relevance of these neutropenic murine models of infection was established by demonstrating their accuracy to predict the biological response following simultaneous treatment with a generic product or the innovator of TZP. Therapeutic equivalence of the generic product was proved in every model and against different pathogens. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  2. Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Philip Lewis

    2016-12-01

    Full Text Available The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and, altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

  3. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use and compulsive smoking

    Directory of Open Access Journals (Sweden)

    Ami eCohen

    2013-06-01

    Full Text Available Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.

  4. Animal Models of Nicotine Exposure: Relevance to Second-Hand Smoking, Electronic Cigarette Use, and Compulsive Smoking

    Science.gov (United States)

    Cohen, Ami; George, Olivier

    2013-01-01

    Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake. PMID:23761766

  5. Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders.

    Science.gov (United States)

    Fagherazzi, Elen V; Garcia, Vanessa A; Maurmann, Natasha; Bervanger, Thielly; Halmenschlager, Luis H; Busato, Stefano B; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Schröder, Nadja

    2012-02-01

    Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

  6. Animal Models of Neuropsychiatric Disorders

    Science.gov (United States)

    Nestler, Eric J.; Hyman, Steven E.

    2013-01-01

    Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many key symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression, and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported. PMID:20877280

  7. Animal models of schizophrenia

    Science.gov (United States)

    Jones, CA; Watson, DJG; Fone, KCF

    2011-01-01

    Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble ‘positive-like’ symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed. LINKED ARTICLES This article is part of a themed issue on

  8. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics.

    Science.gov (United States)

    Goyal, Sameer N; Reddy, Navya M; Patil, Kalpesh R; Nakhate, Kartik T; Ojha, Shreesh; Patil, Chandragouda R; Agrawal, Yogeeta O

    2016-01-25

    Streptozotocin (STZ) has been extensively used over the last three decades to induce diabetes in various animal species and to help screen for hypoglycemic drugs. STZ induces clinical features in animals that resemble those associated with diabetes in humans. For this reason STZ treated animals have been used to study diabetogenic mechanisms and for preclinical evaluation of novel antidiabetic therapies. However, the physiochemical characteristics and associated toxicities of STZ are still major obstacles for researchers using STZ treated animals to investigate diabetes. Another major challenges in STZ-induced diabetes are sustaining uniformity, suitability, reproducibility and induction of diabetes with minimal animal lethality. Lack of appropriate use of STZ was found to be associated with increased mortality and animal suffering. During STZ use in animals, attention should be paid to several factors such as method of preparation of STZ, stability, suitable dose, route of administration, diet regimen, animal species with respect to age, body weight, gender and the target blood glucose level used to represent hyperglycemia. Therefore, protocol for STZ-induced diabetes in experimental animals must be meticulously planned. This review highlights specific skills and strategies involved in the execution of STZ-induced diabetes model. The present review aims to provide insight into diabetogenic mechanisms of STZ, specific toxicity of STZ with its significance and factors responsible for variations in diabetogenic effects of STZ. Further this review also addresses ways to minimize STZ-induced mortality, suggests methods to improve STZ-based experimental models and best utilize them for experimental studies purported to understand diabetes pathogenesis and preclinical evaluation of drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Modelling Farm Animal Welfare

    Science.gov (United States)

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  10. Solidarity with Animals: Assessing a Relevant Dimension of Social Identification with Animals.

    Science.gov (United States)

    Amiot, Catherine E; Bastian, Brock

    2017-01-01

    Interactions with animals are pervasive in human life, a fact that is reflected in the burgeoning field of human-animal relations research. The goal of the current research was to examine the psychology of our social connection with other animals, by specifically developing a measure of solidarity with animals. In 8 studies using correlational, experimental, and longitudinal designs, solidarity with animals predicted more positive attitudes and behaviors toward animals, over and above existing scales of identification, and even when this implied a loss of resources and privileges for humans relative to animals. Solidarity with animals also displayed predicted relationships with relevant variables (anthropomorphism, empathy). Pet owners and vegetarians displayed higher levels of solidarity with animals. Correlational and experimental evidence confirmed that human-animal similarity heightens solidarity with animals. Our findings provide a useful measure that can facilitate important insights into the nature of our relationships with animals.

  11. Inositol-deficient food augments a behavioral effect of long-term lithium treatment mediated by inositol monophosphatase inhibition: an animal model with relevance for bipolar disorder.

    Science.gov (United States)

    Shtein, Liza; Agam, Galila; Belmaker, R H; Bersudsky, Yuly

    2015-04-01

    Lithium treatment in rodents markedly enhances cholinergic agonists such as pilocarpine. This effect can be reversed in a stereospecific manner by administration of inositol, suggesting that the effect of lithium is caused by inositol monophosphatase inhibition and consequent inositol depletion. If so, inositol-deficient food would be expected to enhance lithium effects. Inositol-deficient food was prepared from inositol-free ingredients. Mice with a homozygote knockout of the inositol monophosphatase 1 gene unable to synthesize inositol endogenously and mimicking lithium-treated animals were fed this diet or a control diet. Lithium-treated wild-type animals were also treated with the inositol-deficient diet or control diet. Pilocarpine was administered after 1 week of treatment, and behavior including seizures was assessed using rating scale. Inositol-deficient food-treated animals, both lithium treated and with inositol monophosphatase 1 knockout, had significantly elevated cholinergic behavior rating and significantly increased or earlier seizures compared with the controls. The effect of inositol-deficient food supports the role of inositol depletion in the effects of lithium on pilocarpine-induced behavior. However, the relevance of this behavior to other more mood-related effects of lithium is not clear.

  12. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches are ...

  13. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches...

  14. Animal models of tinnitus.

    Science.gov (United States)

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  15. Animal models of sarcoidosis.

    Science.gov (United States)

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  16. Animal Models of Glaucoma

    Directory of Open Access Journals (Sweden)

    Rachida A. Bouhenni

    2012-01-01

    Full Text Available Glaucoma is a heterogeneous group of disorders that progressively lead to blindness due to loss of retinal ganglion cells and damage to the optic nerve. It is a leading cause of blindness and visual impairment worldwide. Although research in the field of glaucoma is substantial, the pathophysiologic mechanisms causing the disease are not completely understood. A wide variety of animal models have been used to study glaucoma. These include monkeys, dogs, cats, rodents, and several other species. Although these models have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. In this paper we present a summary of most of the animal models that have been developed and used for the study of the different types of glaucoma, the strengths and limitations associated with each species use, and some potential criteria to develop a suitable model.

  17. ANIMAL MODELS IN SURGICAL

    African Journals Online (AJOL)

    ASSEMBLED BY

    1 Dept.of Veterinary Surgery and Medicine 2Veterinary Teaching Hospital Ahmadu Bello University. Zaria .... unnecessary suffering., Administration of poisons .... way that humans are. Vivisection/ Surgical Training And Research. Animal model use: In both the human and veterinary medical practice, there continue to be ...

  18. Animal models of sepsis.

    Science.gov (United States)

    Fink, Mitchell P

    2014-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism.

  19. Animal Models of Atherosclerosis

    Science.gov (United States)

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  20. Animal models of spondyloarthritis.

    Science.gov (United States)

    Lories, Rik J U

    2006-07-01

    The aim of this article is to review new insights into spondyloarthritis obtained in animal models during the last year. HLA-B27 misfolding has been demonstrated in HLA-B27/human beta2-microglobulin transgenic rats. HLA-B27 misfolding is associated with a typical unfolded protein stress response and with an interferon-response signature. Prebiotic treatment of these rats reduced colitis and arthritis. Proteoglycan-induced spondylitis is distinct from proteoglycan-induced arthritis. Specific susceptibility loci for proteoglycan-induced spondylitis have been demonstrated. Bone morphogenetic proteins are important in new cartilage and bone formation in ankylosing enthesitis. Psoriasis and psoriatic arthritis-like disease develops in conditional double JunB/c-Jun knockout mice. Insights into the molecular signaling pathways driving HLA-B27 associated spondylitis, autoimmune spondylitis, ankylosing enthesitis and psoriasis, resulting from animal models, identify new and specific therapeutic targets in spondyloarthritis.

  1. Animal models of sepsis

    OpenAIRE

    Fink, Mitchell P

    2013-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, ...

  2. Toll-like receptor mRNA expression is selectively increased in the colonic mucosa of two animal models relevant to irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Declan P McKernan

    2009-12-01

    Full Text Available Irritable bowel syndrome (IBS is largely viewed as a stress-related disorder caused by aberrant brain-gut-immune communication and altered gastrointestinal (GI homeostasis. Accumulating evidence demonstrates that stress modulates innate immune responses; however, very little is known on the immunological effects of stress on the GI tract. Toll-like receptors (TLRs are critical pattern recognition molecules of the innate immune system. Activation of TLRs by bacterial and viral molecules leads to activation of NF-kB and an increase in inflammatory cytokine expression. It was our hypothesis that innate immune receptor expression may be changed in the gastrointestinal tract of animals with stress-induced IBS-like symptoms.In this study, our objective was to evaluate the TLR expression profile in the colonic mucosa of two rat strains that display colonic visceral hypersensitivity; the stress-sensitive Wistar-Kyoto (WKY rat and the maternally separated (MS rat. Quantitative PCR of TLR2-10 mRNA in both the proximal and distal colonic mucosae was carried out in adulthood. Significant increases are seen in the mRNA levels of TLR3, 4 & 5 in both the distal and proximal colonic mucosa of MS rats compared with controls. No significant differences were noted for TLR 2, 7, 9 & 10 while TLR 6 could not be detected in any samples in both rat strains. The WKY strain have increased levels of mRNA expression of TLR3, 4, 5, 7, 8, 9 & 10 in both the distal and proximal colonic mucosa compared to the control Sprague-Dawley strain. No significant differences in expression were found for TLR2 while as before TLR6 could not be detected in all samples in both strains.These data suggest that both early life stress (MS and a genetic predisposition (WKY to stress affect the expression of key sentinels of the innate immune system which may have direct relevance for the molecular pathophysiology of IBS.

  3. Animal Models of Hemophilia

    Science.gov (United States)

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  4. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans.

    Science.gov (United States)

    Hatton, Grace B; Yadav, Vipul; Basit, Abdul W; Merchant, Hamid A

    2015-09-01

    "All animals are equal, but some are more equal than others" was the illustrious quote derived from British writer George Orwell's famed work, Animal Farm. Extending beyond the remit of political allegory, however, this statement would appear to hold true for the selection of appropriate animal models to simulate human physiology in preclinical studies. There remain definite gaps in our current knowledge with respect to animal physiology, notably those of intra- and inter-species differences in gastrointestinal (GI) function, which may affect oral drug delivery and absorption. Factors such as cost and availability have often influenced the choice of animal species without clear justification for their similarity to humans, and lack of standardization in techniques employed in past studies using various animals may also have contributed to the generation of contradictory results. As it stands, attempts to identify a single animal species as appropriately representative of human physiology and which may able to adequately simulate human in vivo conditions are limited. In this review, we have compiled and critically reviewed data from numerous studies of GI anatomy and physiology of various animal species commonly used in drug delivery modeling, commenting on the appropriateness of these animals for in vivo comparison and extrapolation to humans. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Other relevant numerical modelling papers

    International Nuclear Information System (INIS)

    Chartier, M.

    1989-01-01

    The ocean modelling is a rapidly evolving science and a large number of results have been published. Several categories of papers are of particular interest for this review: the papers published by the international atomic institutions, such as the NEA (for the CRESP or Subseabed Programs), the IAEA (for example the Safety Series, the Technical Report Series or the TECDOC), and the ICRP, and the papers concerned by more fundamental research, which are published in specific scientific literature. This paper aims to list some of the most relevant publications for the CRESP purposes. It means by no way to be exhaustive, but informative on the incontestable progress recently achieved in that field. One should note that some of these papers are so recent that their final version has not yet been published

  6. Relevance of animal studies to the human experience

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    Animal experiments are being used to examine a number of physical and biological factors that influence risk estimations, though not usually in coordination with epidemiologists. It is clear that the different mechanisms involved in different types of tumors are reflected in the diversity of dose-response relationships. The forms of the dose-response relationships are influenced by both the initial events and their expression. Evidence is accumulating that many initiated cells do not get expressed as overt cancers and that host factors may play a major role in the expression of potential tumor cells. There is a need for information about the relationship of the natural incidence and susceptibility to radiation induction for more tumor types. Such experiments will help answer the question of which risk estimate models are appropriate for different tumor types, and they can be carried out on animals. Perhaps because of the importance of host factors, risk estimates as a percentage of the natural incidence appear to be similar for human beings and mice for a small number of tumor types. Animal experiments must remain a major approach to the investigation of mechanisms of carcinogenesis. 22 references, 5 figures, 2 tables

  7. Relevance of experimental animal studies to the human experience

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1982-01-01

    Animal experiments are being used to examine a number of physical and biological factors that influence risk estimations though not usually in coordination with epidemiologists. It is clear that the different mechanisms involved in different types of tumors are reflected in the diversity of dose-response relationships. The forms of the dose-response relationships are influenced by both the initial events and their expression. Evidence is accumulating that many initiated cells do not get expressed as overt cancers and host factors may play a major role in the expression of potential tumor cells. There is a need for information about the relationship of the natural incidence and susceptibility to radiation induction for more tumor types. Such experiments will help answer the question of which risk estimate models are appropriate for different tumor types and can be carried out on animals. Perhaps because of the importance of host factors risk estimates as a percentage of the natural incidence appear to be similar for human beings and mice for a small number of tumor types. The elucidation of the mechanisms involved in different tissues while a slow business remains an important role of animal experiments

  8. Animal models of RLS phenotypes.

    Science.gov (United States)

    Allen, Richard P; Donelson, Nathan C; Jones, Byron C; Li, Yuqing; Manconi, Mauro; Rye, David B; Sanyal, Subhabrata; Winkelmann, Juliane

    2017-03-01

    Restless legs syndrome (RLS) is a complex disorder that involves sensory and motor systems. The major pathophysiology of RLS is low iron concentration in the substantia nigra containing the cell bodies of dopamine neurons that project to the striatum, an area that is crucial for modulating movement. People who have RLS often present with normal iron values outside the brain; recent studies implicate several genes are involved in the syndrome. Like most complex diseases, animal models usually do not faithfully capture the full phenotypic spectrum of "disease," which is a uniquely human construct. Nonetheless, animal models have proven useful in helping to unravel the complex pathophysiology of diseases such as RLS and suggesting novel treatment paradigms. For example, hypothesis-independent genome-wide association studies (GWAS) have identified several genes as increasing the risk for RLS, including BTBD9. Independently, the murine homolog Btbd9 was identified as a candidate gene for iron regulation in the midbrain in mice. The relevance of the phenotype of another of the GWAS identified genes, MEIS1, has also been explored. The role of Btbd9 in iron regulation and RLS-like behaviors has been further evaluated in mice carrying a null mutation of the gene and in fruit flies when the BTBD9 protein is degraded. The BTBD9 and MEIS1 stories originate from human GWAS research, supported by work in a genetic reference population of mice (forward genetics) and further verified in mice, fish flies, and worms. Finally, the role of genetics is further supported by an inbred mouse strain that displays many of the phenotypic characteristics of RLS. The role of animal models of RLS phenotypes is also extended to include periodic limb movements. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Animal models for cancer cachexia.

    Science.gov (United States)

    Ballarò, Riccardo; Costelli, Paola; Penna, Fabio

    2016-12-01

    Cancer cachexia is a frequent syndrome that affects patient quality of life, anticancer treatment effectiveness, and overall survival. The lack of anticancer cachexia therapies likely relies on the complexity of the syndrome that renders difficult to design appropriate clinical trials and, conversely, on the insufficient knowledge of the underlying pathogenetic mechanisms. The aim of this review is to collect the most relevant latest information regarding cancer cachexia with a special focus on the experimental systems adopted for modeling the disease in translational studies. The scenario of preclinical models for the study of cancer cachexia is not static and is rapidly evolving in parallel with new prospective treatment options. The well established syngeneic models using rodent cancer cells injected ectopically are now used alongside new ones featuring orthotopic injection, human cancer cell or patient-derived xenograft, or spontaneous tumors in genetically engineered mice. The use of more complex animal models that better resemble cancer cachexia, ideally including also the administration of chemotherapy, will expand the understanding of the underlying mechanisms and will allow a more reliable evaluation of prospective drugs for translational purposes.

  10. ANIMAL MODELS FOR IMMUNOTOXICITY

    Science.gov (United States)

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  11. Animal Models of Chemotherapy-induced Mucositis

    DEFF Research Database (Denmark)

    Sangild, Per T; Shen, René Liang; Pontoppidan, Peter Erik Lotko

    2018-01-01

    of CIM, and how to prevent it. Animal models allow highly controlled experimental conditions, detailed organ (e.g. GIT) insights, standardized, clinically-relevant treatment regimens and discovery of new biomarkers. Still, surprisingly few results from animal models have been translated into clinical CIM......Chemotherapy for cancer patients induces damaging tissue reactions along the epithelium of the gastrointestinal tract (GIT). This chemotherapy-induced mucositis (CIM) is a serious side effect of cytotoxic drugs and several animal models of CIM have been developed to help understand the progression...... mangement and treatments. The results obtained from specific animal models can be difficult to translate to the diverse range of CIM manifestations in patients that vary according to the antineoplastic drugs, dose, underlying (cancer) disease and patient characteristics (e.g. age, genetics, body...

  12. Nuclear models relevant to evaluation

    International Nuclear Information System (INIS)

    Arthur, E.D.; Chadwick, M.B.; Hale, G.M.; Young, P.G.

    1992-01-01

    The widespread use of nuclear models continues in the creation of data evaluations. The reasons include extension of data evaluations to higher energies, creation of data libraries for isotopic components of natural materials, and production of evaluations for radioactive target species. In these cases, experimental data are often sparse or nonexistent. As this trend continues, the nuclear models employed in evaluation work move towards more microscopically-based theoretical methods, prompted in part by the availability of increasingly powerful computational resources. Advances in nuclear models applicable to evaluation will be reviewed. These include advances in optical model theory, microscopic and phenomenological state and level density theory, unified models that consistently describe both equilibrium and nonequilibrium reaction mechanisms, and improved methodologies for calculation of prompt radiation from fission. (orig.)

  13. Nuclear models relevant to evaluation

    International Nuclear Information System (INIS)

    Arthur, E.D.; Chadwick, M.B.; Hale, G.M.; Young, P.G.

    1991-01-01

    The widespread use of nuclear models continues in the creation of data evaluations. The reasons include extension of data evaluations to higher energies, creation of data libraries for isotopic components of natural materials, and production of evaluations for radiative target species. In these cases, experimental data are often sparse or nonexistent. As this trend continues, the nuclear models employed in evaluation work move towards more microscopically-based theoretical methods, prompted in part by the availability of increasingly powerful computational resources. Advances in nuclear models applicable to evaluation will be reviewed. These include advances in optical model theory, microscopic and phenomenological state and level density theory, unified models that consistently describe both equilibrium and nonequilibrium reaction mechanism, and improved methodologies for calculation of prompt radiation from fission. 84 refs., 8 figs

  14. Animal Models for Candidiasis

    Science.gov (United States)

    Conti, Heather R.; Huppler, Anna R.; Whibley, Natasha; Gaffen, Sarah L.

    2014-01-01

    Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described. PMID:24700323

  15. Animal Models of Bacterial Keratitis

    Science.gov (United States)

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  16. Small Animal Massage Therapy: A Brief Review and Relevant Observations.

    Science.gov (United States)

    Formenton, Maira Rezende; Pereira, Marco Aurélio Amador; Fantoni, Denise Tabacchi

    2017-12-01

    Massage therapy is becoming increasingly popular in human and animal physiotherapy and rehabilitation. Wider application of the technique led to research efforts aimed at providing scientific support to anecdotal beneficial effects, particularly pain relief. Recent studies have shown that massage therapy alters dopamine and serotonin levels, decreases noradrenaline levels, and modulates the immune system. Psychological effects such as reduction of stress and anxiety, with improvement of depressive patients, have been reported in humans. This article set out to review the major aspects of massage therapy based on recent publications on the topic, and to extrapolate concepts and practical aspects described in human physiotherapy to the veterinary patient, particularly the applicability of different techniques in Small Animal Medicine. Indications of massage therapy in small animals include pain relief, orthopedic rehabilitation, Canine Sports Medicine, intensive care, and management of nonspecific edema. Techniques described in this article were originally intended for use in humans and scientific data supporting anecdotal, beneficial effects in domestic animals are still lacking; this fruitful area for research is therefore open to veterinary professionals. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Relevance of animal symbolism in corporate communications and ...

    African Journals Online (AJOL)

    The study of animals as symbol in communication and other corporate organization was carried out for a period of five months in the year 2001, by the use of structured questionnaire in three local governments within Ibadan metropolis; Ibadan North West, North East and South West. Simple percentage and student T tests ...

  18. Animal models for human diseases.

    Science.gov (United States)

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  19. Animal models in myopia research.

    Science.gov (United States)

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. © 2015 Optometry

  20. Solidarity with Animals: Assessing a Relevant Dimension of Social Identification with Animals

    OpenAIRE

    Amiot, Catherine E.; Bastian, Brock

    2017-01-01

    Interactions with animals are pervasive in human life, a fact that is reflected in the burgeoning field of human-animal relations research. The goal of the current research was to examine the psychology of our social connection with other animals, by specifically developing a measure of solidarity with animals. In 8 studies using correlational, experimental, and longitudinal designs, solidarity with animals predicted more positive attitudes and behaviors toward animals, over and above existin...

  1. Modelling Complex Relevance Spaces with Copulas

    OpenAIRE

    Eickhoff, Carsten; Vries, Arjen

    2014-01-01

    htmlabstractModern relevance models consider a wide range of criteria in order to identify those documents that are expected to satisfy the user's information need. With growing dimensionality of the underlying relevance spaces the need for sophisticated score combination and estimation schemes arises. In this paper, we investigate the use of copulas, a model family from the domain of robust statistics, for the formal estimation of the probability of relevance in high-dimensional spaces. Our ...

  2. Animal models of pituitary neoplasia

    OpenAIRE

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal mod...

  3. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... a source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown......, are important drawbacks of the corticosteroid-treated models. For these reasons, inoculated animal models of PCP were developed. The intratracheal inoculation of lung homogenates containing viable parasites in corticosteroid-treated non-latently infected rats resulted in extensive, reproducible Pneumocystis...

  4. Animal models of pituitary neoplasia

    Science.gov (United States)

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  5. Animal welfare and use of silkworm as a model animal.

    Science.gov (United States)

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  6. Small animal models of xenotransplantation.

    Science.gov (United States)

    Wang, Hao

    2012-01-01

    Organ transplantation has become a successful and acceptable treatment for end-stage organ failure. Such success has allowed transplant patients to resume a normal lifestyle. The demands for transplantation have been steadily increasing, as more patients and new diseases are being deemed eligible for treatment via transplantation. However, it is clear that human organs will never meet the increasing demand of transplantation. Therefore, scientists must continue to pursue alternative therapies and explore new treatments to meet the growing demand for the limited number of organs available. Transplanting organs from animals into humans (xenotransplantation) is one such therapy. The observed enthusiasm for xenotransplantation, irrespective of the severe shortage of human organs and tissues available for transplantation, can be said to stem from at least two factors. First, there is the possibility that animal organs and tissues might be less susceptible than those of humans to the recurrence of disease processes. Second, a xenograft might be used as a vehicle for introducing novel genes or biochemical processes which could be of therapeutic value for the transplant recipient.To date, millions of lives have been saved by organ transplantation. These remarkable achievements would have been impossible without experimental transplantation research in animal models. Presently, more than 95% of organ transplantation research projects are carried out using rodents, such as rats and mice. The key factor to ensure the success of these experiments lies in state-of-the art experimental surgery. Small animal models offer unique advantages for the mechanistic study of xenotransplantation rejection. Currently, multiple models have been developed for investigating the different stages of immunological barriers in xenotransplantation. In this chapter, we describe six valuable small animal models that have been used in xenotransplantation research. The methodology for the small animal

  7. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species.

    Science.gov (United States)

    Morrison, Liam J; Vezza, Laura; Rowan, Tim; Hope, Jayne C

    2016-08-01

    Animal African trypanosomiasis (AAT), caused by Trypanosoma congolense and Trypanosoma vivax, remains one of the most important livestock diseases in sub-Saharan Africa, particularly affecting cattle. Despite this, our detailed knowledge largely stems from the human pathogen Trypanosoma brucei and mouse experimental models. In the postgenomic era, the genotypic and phenotypic differences between the AAT-relevant species of parasite or host and their model organism counterparts are increasingly apparent. Here, we outline the timeliness and advantages of increasing the research focus on both the clinically relevant parasite and host species, given that improved tools and resources for both have been developed in recent years. We propose that this shift of emphasis will improve our ability to efficiently develop tools to combat AAT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Wexler, Anthony; Ristenpart, William

    2014-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in modulating the pathogen transmission, to date the infectious disease community has paid little attention to the effect of airspeed or turbulence intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of a standard axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We demonstrate that the fan speed counterintuitively has no effect on the downstream plume width, a result replicated with a variety of different fan types and configurations. The results point toward a useful simplification in modeling of airborne disease transmission via fan-generated flows.

  9. Modelling Complex Relevance Spaces with Copulas

    NARCIS (Netherlands)

    C. Eickhoff (Carsten); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractModern relevance models consider a wide range of criteria in order to identify those documents that are expected to satisfy the user's information need. With growing dimensionality of the underlying relevance spaces the need for sophisticated score combination and estimation schemes

  10. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  11. Animal models of papillomavirus pathogenesis.

    Science.gov (United States)

    Campo, M Saveria

    2002-11-01

    Tumorigenesis due to papillomavirus (PV) infection was first demonstrated in rabbits and cattle early last century. Despite the evidence obtained in animals, the role of viruses in human cancer was dismissed as irrelevant. It took a paradigm shift in the late 1970s for some viruses to be recognised as 'tumour viruses' in humans, and in 1995, more than 60 years after Rous's first demonstration of CRPV oncogenicity, WHO officially declared that 'HPV-16 and HPV-18 are carcinogenic to humans'. Experimental studies with animal PVs have been a determining factor in this decision. Animal PVs have been studied both as agents of disease in animals and as models of human PV infection. In addition to the study of PV infection in whole animals, in vitro studies with animal PV proteins have contributed greatly to the understanding of the mechanisms of cell transformation. Animal PVs cause distressing diseases in both farm and companion animals, such as teat papillomatosis in cattle, equine sarcoids and canine oral papillomatosis and there is an urgent need to understand the pathogenesis of these problematic infections. Persistent and florid teat papillomatosis in cows can lead to mastitis, prevent the suckling of calves and make milking impossible; heavily affected animals are culled and so occasionally are whole herds. Equine sarcoids are often recurrent and untreatable and lead to loss of valuable animals. Canine oral papillomatosis can be very extensive and persistent and lead to great distress. Thus the continuing research in the biology of animal PVs is amply justified. BPVs and CRPV have been for many years the model systems with which to study the biology of HPV. Induction of papillomas and their neoplastic progression has been experimentally demonstrated and reproduced in cattle and rabbits, and virus-cofactor interactions have been elucidated in these systems. With the advancements in molecular and cell culture techniques, the direct study of HPV has become less

  12. Animal Models of Zika Virus

    Science.gov (United States)

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  13. Passage relevance models for genomics search

    Directory of Open Access Journals (Sweden)

    Frieder Ophir

    2009-03-01

    Full Text Available Abstract We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus.

  14. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... the host immune response as well as Pneumocystis-surfactant interactions. Pigs and horses also develop spontaneous PCP. Treated with corticosteroids, piglets develop extensive PCP and could be used as a non-rodent model. Pneumocystis was detected in many non-human primates. Primates could represent...... a source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown...

  15. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings.

    Science.gov (United States)

    McCafferty, Dominic; Pandraud, Guillaume; Gilles, Jérôme; Fabra-Puchol, Maria; Henry, Pierre-Yves

    2017-11-13

    Birds and mammals have evolved many thermal adaptations that are relevant for bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. Here, we review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent for building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions produce fine-tuned spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperature to hourly, daily or annual demands for energy. They provide examples of how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types. © 2017 IOP Publishing Ltd.

  16. Animal models of drug addiction.

    Science.gov (United States)

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  17. Henipavirus Infections: Lessons from Animal Models

    Directory of Open Access Journals (Sweden)

    Kévin P. Dhondt

    2013-04-01

    Full Text Available The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.

  18. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    in non-ideal scenarios, we show that generally the estimation of models of this type is both feasible and ecologically informative. We illustrate the approach using real movement data from 11 reindeer (Rangifer tarandus). Results indicate a directional bias towards a group centroid for reindeer......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual...

  19. Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models

    DEFF Research Database (Denmark)

    Baktoft, Henrik; Jacobsen, Lene; Skov, Christian

    2016-01-01

    Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacitylimitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and p...... model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated...... with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify...

  20. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  1. Animal Models of Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Domenico Santoro

    2014-12-01

    Full Text Available Allergic diseases have great impact on the quality of life of both people and domestic animals. They are increasing in prevalence in both animals and humans, possibly due to the changed lifestyle conditions and the decreased exposure to beneficial microorganisms. Dogs, in particular, suffer from environmental skin allergies and develop a clinical presentation which is very similar to the one of children with eczema. Thus, dogs are a very useful species to improve our understanding on the mechanisms involved in people’s allergies and a natural model to study eczema. Animal models are frequently used to elucidate mechanisms of disease and to control for confounding factors which are present in studies with patients with spontaneously occurring disease and to test new therapies that can be beneficial in both species. It has been found that drugs useful in one species can also have benefits in other species highlighting the importance of a comprehensive understanding of diseases across species and the value of comparative studies. The purpose of the current article is to review allergic diseases across species and to focus on how these diseases compare to the counterpart in people.

  2. Animal Models of Periventricular Leukomalacia

    Science.gov (United States)

    Choi, Ehn-Kyoung; Park, Dongsun; Kim, Tae Kyun; Lee, Sun Hee; Bae, Dae-Kwon; Yang, Goeun; Yang, Yun-Hui; Kyung, Jangbeen; Kim, Dajeong; Lee, Woo Ryoung; Suh, Jun-Gyo; Jeong, Eun-Suk; Kim, Seung U.

    2011-01-01

    Periventricular leukomalacia, specifically characterized as white matter injury, in neonates is strongly associated with the damage of pre-myelinating oligodendrocytes. Clinical data suggest that hypoxia-ischemia during delivery and intrauterine or neonatal infection-inflammation are important factors in the etiology of periventricular leukomalacia including cerebral palsy, a serious case exhibiting neurobehavioral deficits of periventricular leukomalacia. In order to explore the pathophysiological mechanisms of white matter injury and to better understand how infectious agents may affect the vulnerability of the immature brain to injury, novel animal models have been developed using hypoperfusion, microbes or bacterial products (lipopolysaccharide) and excitotoxins. Such efforts have developed rat models that produce predominantly white matter lesions by adopting combined hypoxia-ischemia technique on postnatal days 1-7, in which unilateral or bilateral carotid arteries of animals are occluded (ischemia) followed by 1-2 hour exposure to 6-8% oxygen environment (hypoxia). Furthermore, low doses of lipopolysaccharide that by themselves have no adverse-effects in 7-day-old rats, dramatically increase brain injury to hypoxic-ischemic challenge, implying that inflammation sensitizes the immature central nervous system. Therefore, among numerous models of periventricular leukomalacia, combination of hypoxia-ischemia-lipopolysaccharide might be one of the most-acceptable rodent models to induce extensive white matter injury and ensuing neurobehavioral deficits for the evaluation of candidate therapeutics. PMID:21826166

  3. Towards increased policy relevance in energy modeling

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Ramesohl, Stephan; Boyd, Gale

    2003-07-29

    Historically, most energy models were reasonably equipped to assess the impact of a subsidy or change in taxation, but are often insufficient to assess the impact of more innovative policy instruments. We evaluate the models used to assess future energy use, focusing on industrial energy use. We explore approaches to engineering-economic analysis that could help improve the realism and policy relevance of engineering-economic modeling frameworks. We also explore solutions to strengthen the policy usefulness of engineering-economic analysis that can be built from a framework of multi-disciplinary cooperation. We focus on the so-called ''engineering-economic'' (or ''bottom-up'') models, as they include the amount of detail that is commonly needed to model policy scenarios. We identify research priorities for the modeling framework, technology representation in models, policy evaluation and modeling of decision-making behavior.

  4. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    Directory of Open Access Journals (Sweden)

    Mohan Kumar Pasupuleti

    2016-01-01

    Full Text Available Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  5. Animal models and conserved processes

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-09-01

    Full Text Available Abstract Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is

  6. Animal models and conserved processes.

    Science.gov (United States)

    Greek, Ray; Rice, Mark J

    2012-09-10

    The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response

  7. Parathyroid diseases and animal models.

    Science.gov (United States)

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  8. Parathyroid diseases and animal models

    Directory of Open Access Journals (Sweden)

    Yasuo eImanishi

    2012-06-01

    Full Text Available Circulating calcium and phosphate are tightly regulated by 3 hormones: the active form of vitamin D (1,25-dihydroxyvitamin D, fibroblast growth factor (FGF-23, and parathyroid hormone (PTH. PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  9. A step-by-step guide to systematically identify all relevant animal studies

    Science.gov (United States)

    Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first step in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search filters to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, step-by-step guide was prepared and optimized using feedback from scientists in the field of animal experimentation. The step-by-step guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future. PMID:22037056

  10. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2010-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...... be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered...

  11. Chronobiology of ethanol: animal models.

    Science.gov (United States)

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Animal Models of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Eva Harris

    2012-01-01

    Full Text Available The development of animal models of dengue virus (DENV infection and disease has been challenging, as epidemic DENV does not naturally infect non-human species. Non-human primates (NHPs can sustain viral replication in relevant cell types and develop a robust immune response, but they do not develop overt disease. In contrast, certain immunodeficient mouse models infected with mouse-adapted DENV strains show signs of severe disease similar to the ‘vascular-leak’ syndrome seen in severe dengue in humans. Humanized mouse models can sustain DENV replication and show some signs of disease, but further development is needed to validate the immune response. Classically, immunocompetent mice infected with DENV do not manifest disease or else develop paralysis when inoculated intracranially; however, a new model using high doses of DENV has recently been shown to develop hemorrhagic signs after infection. Overall, each model has its advantages and disadvantages and is differentially suited for studies of dengue pathogenesis and immunopathogenesis and/or pre-clinical testing of antiviral drugs and vaccines.

  13. Structural Model Error and Decision Relevancy

    Science.gov (United States)

    Goldsby, M.; Lusk, G.

    2017-12-01

    The extent to which climate models can underwrite specific climate policies has long been a contentious issue. Skeptics frequently deny that climate models are trustworthy in an attempt to undermine climate action, whereas policy makers often desire information that exceeds the capabilities of extant models. While not skeptics, a group of mathematicians and philosophers [Frigg et al. (2014)] recently argued that even tiny differences between the structure of a complex dynamical model and its target system can lead to dramatic predictive errors, possibly resulting in disastrous consequences when policy decisions are based upon those predictions. They call this result the Hawkmoth effect (HME), and seemingly use it to rebuke rightwing proposals to forgo mitigation in favor of adaptation. However, a vigorous debate has emerged between Frigg et al. on one side and another philosopher-mathematician pair [Winsberg and Goodwin (2016)] on the other. On one hand, Frigg et al. argue that their result shifts the burden to climate scientists to demonstrate that their models do not fall prey to the HME. On the other hand, Winsberg and Goodwin suggest that arguments like those asserted by Frigg et al. can be, if taken seriously, "dangerous": they fail to consider the variety of purposes for which models can be used, and thus too hastily undermine large swaths of climate science. They put the burden back on Frigg et al. to show their result has any effect on climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We distinguish a `decision standard' from a `burden of proof', which helps clarify the contributions to the debate from both sides. In making this distinction, we argue that scientists bear the burden of assessing the consequences of HME, but that the standard Frigg et al. adopt for decision relevancy is too strict.

  14. Ensino da relevância da dor para o bem-estar animal

    OpenAIRE

    Borges, Tâmara Duarte

    2011-01-01

    Resumo: Temas emergentes na área de bem-estar animal, como a preocupação com a dor e seu diagnóstico nas diferentes formas de utilização de animais, constituem uma crescente exigência na prática veterinária. O objetivo deste trabalho foi avançar no conhecimento sobre o ensino da relevância da dor para o bem-estar animal no Brasil. Para alcançar tal objetivo, dividiu-se o estudo em quatro capítulos: I) Apresentação; II) Ensino de bem-estar e dor animal em cursos de medicina veterinária no Bras...

  15. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  16. Animal models in fetal medicine and obstetrics

    DEFF Research Database (Denmark)

    Dahl Andersen, Maria; Alstrup, Aage Kristian Olsen; Duvald, Christina Søndergaard

    2017-01-01

    Animal models remain essential to understand the fundamental mechanisms occurring in fetal medicine and obstetric diseases, such as intrauterine growth restriction, preeclampsia and gestational diabetes. These vary regarding the employed method used for induction of the disease, and vary regarding...... the animal characteristics (size, number of fetuses, placenta barrier type, etc). While none of these exactly mirrors the human condition, different pregnant animal models (mice, rats, guinea pigs, chinchillas, rabbits, sheep and pigs) are here described with respect to advantages and limitations...

  17. Unraveling the genetics of chronic kidney disease using animal models

    NARCIS (Netherlands)

    Korstanje, Ron; DiPetrillo, K.

    2004-01-01

    Identifying genes underlying common forms of kidney disease in humans has proven difficult, expensive, and time consuming. Quantitative trait loci (QTL) for several complex traits are concordant among mice, rats, and humans, suggesting that genetic findings from these animal models are relevant to

  18. A review of animal models for portal vein embolization

    NARCIS (Netherlands)

    Huisman, Floor; van Lienden, Krijn P.; Damude, Samantha; Hoekstra, Lisette T.; van Gulik, Thomas M.

    2014-01-01

    Portal vein embolization (PVE) is a preoperative intervention to increase the future remnant liver (FRL) through regeneration of the non-embolized liver lobes. This review assesses all the relevant animal models of PVE available, to guide researchers who intend to study PVE. We performed a

  19. Animal models of cerebral arterial gas embolism

    NARCIS (Netherlands)

    Weenink, Robert P.; Hollmann, Markus W.; van Hulst, Robert A.

    2012-01-01

    Cerebral arterial gas embolism is a dreaded complication of diving and invasive medical procedures. Many different animal models have been used in research on cerebral arterial gas embolism. This review provides an overview of the most important characteristics of these animal models. The properties

  20. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. Copyright © 2016 the American Physiological Society.

  1. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  2. Animal model and neurobiology of suicide.

    Science.gov (United States)

    Preti, Antonio

    2011-06-01

    Animal models are formidable tools to investigate the etiology, the course and the potential treatment of an illness. No convincing animal model of suicide has been produced to date, and despite the intensive study of thousands of animal species naturalists have not identified suicide in nonhuman species in field situations. When modeling suicidal behavior in the animal, the greatest challenge is reproducing the role of will and intention in suicide mechanics. To overcome this limitation, current investigations on animals focus on every single step leading to suicide in humans. The most promising endophenotypes worth investigating in animals are the cortisol social-stress response and the aggression/impulsivity trait, involving the serotonergic system. Astroglia, neurotrophic factors and neurotrophins are implied in suicide, too. The prevention of suicide rests on the identification and treatment of every element increasing the risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Animal Migraine Models for Drug Development

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Tfelt-Hansen, Peer; Olesen, Jes

    2013-01-01

    responses are likely to be behavioral, allowing multiple experiments in each individual animal. Distinction is made between acute and prophylactic models and how to validate each of them. Modern insight into neurobiological mechanisms of migraine is so good that it is only a question of resources...... for headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording...

  4. Overview of Animal Models of Obesity

    Science.gov (United States)

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  5. Animal Models Used to Explore Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lysgaard Poulsen, J; Stubbe, J; Lindholt, J S

    2016-01-01

    OBJECTIVE: Experimental animal models have been used to investigate the formation, development, and progression of abdominal aortic aneurysms (AAAs) for decades. New models are constantly being developed to imitate the mechanisms of human AAAs and to identify treatments that are less risky than...... those used today. However, to the authors' knowledge, there is no model identical to the human AAA. The objective of this systematic review was to assess the different types of animal models used to investigate the development, progression, and treatment of AAA and to highlight their advantages...... and limitations. METHODS: A search protocol was used to perform a systematic literature search of PubMed and Embase. A total of 2,830 records were identified. After selection of the relevant articles, 564 papers on animal AAA models were included. RESULTS: The most common models in rodents, including elastase...

  6. Animal models for testing anti-prion drugs.

    Science.gov (United States)

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  7. Animal models of obesity and diabetes mellitus

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Clemmensen, Christoffer; Hofmann, Susanna M

    2018-01-01

    More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover...... available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models....

  8. Campylobacter species in animal, food, and environmental sources, and relevant testing programs in Canada.

    Science.gov (United States)

    Huang, Hongsheng; Brooks, Brian W; Lowman, Ruff; Carrillo, Catherine D

    2015-10-01

    Campylobacter species, particularly thermophilic campylobacters, have emerged as a leading cause of human foodborne gastroenteritis worldwide, with Campylobacter jejuni, Campylobacter coli, and Campylobacter lari responsible for the majority of human infections. Although most cases of campylobacteriosis are self-limiting, campylobacteriosis represents a significant public health burden. Human illness caused by infection with campylobacters has been reported across Canada since the early 1970s. Many studies have shown that dietary sources, including food, particularly raw poultry and other meat products, raw milk, and contaminated water, have contributed to outbreaks of campylobacteriosis in Canada. Campylobacter spp. have also been detected in a wide range of animal and environmental sources, including water, in Canada. The purpose of this article is to review (i) the prevalence of Campylobacter spp. in animals, food, and the environment, and (ii) the relevant testing programs in Canada with a focus on the potential links between campylobacters and human health in Canada.

  9. Animal Models of Middle Ear Cholesteatoma

    Directory of Open Access Journals (Sweden)

    Tomomi Yamamoto-Fukuda

    2011-01-01

    Full Text Available Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  10. Animal models: an important tool in mycology.

    Science.gov (United States)

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  11. The development of expertise: animal models?

    Science.gov (United States)

    Helton, William S

    2004-01-01

    There is a continuing debate in the psychological literature between researchers who lean more toward learning theories of expertise development and those who lean more toward talent theories. However, the development of human expertise has not been open to direct experimental methods and will probably continue to elude experimentalists in the future. A promising alternative to direct experimental methods is to use human animal models, a possibility that researchers in expertise seem to have overlooked. However, there are studies in the animal behavior literature that address the development of nonhuman animal expertise without specifically referring to the topic as expertise. In the present study, the author discusses two nonhuman animal examples of expertise development that have been researched by ethologists. Nonhuman animal expertise development, unlike human expertise development, is subject to direct experimentation. The author thus recommends that researchers use nonhuman animals in their studies of expertise.

  12. Lessons from animal models of osteoarthritis.

    NARCIS (Netherlands)

    Berg, W.B. van den

    2008-01-01

    Animal models of osteoarthritis (OA) provide valuable insight into pathogenetic pathways. Although OA is not an inflammatory disease, synovial activation clearly plays a role. Matrix metalloproteinases 3 (stromelysin) and 13 (collagenase) appear crucial, and a disintegrin and metalloproteinase with

  13. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  14. Proteomics in farm animals models of human diseases.

    Science.gov (United States)

    Ceciliani, Fabrizio; Restelli, Laura; Lecchi, Cristina

    2014-10-01

    The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Animal models of cerebral amyloid angiopathy.

    Science.gov (United States)

    Jäkel, Lieke; Van Nostrand, William E; Nicoll, James A R; Werring, David J; Verbeek, Marcel M

    2017-10-15

    Cerebral amyloid angiopathy (CAA), due to vascular amyloid β (Aβ) deposition, is a risk factor for intracerebral haemorrhage and dementia. CAA can occur in sporadic or rare hereditary forms, and is almost invariably associated with Alzheimer's disease (AD). Experimental (animal) models are of great interest in studying mechanisms and potential treatments for CAA. Naturally occurring animal models of CAA exist, including cats, dogs and non-human primates, which can be used for longitudinal studies. However, due to ethical considerations and low throughput of these models, other animal models are more favourable for research. In the past two decades, a variety of transgenic mouse models expressing the human Aβ precursor protein (APP) has been developed. Many of these mouse models develop CAA in addition to senile plaques, whereas some of these models were generated specifically to study CAA. In addition, other animal models make use of a second stimulus, such as hypoperfusion or hyperhomocysteinemia (HHcy), to accelerate CAA. In this manuscript, we provide a comprehensive review of existing animal models for CAA, which can aid in understanding the pathophysiology of CAA and explore the response to potential therapies. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. A cognitive model's view of animal cognition

    Directory of Open Access Journals (Sweden)

    Sidney D'MELLO, Stan FRANKLIN

    2011-08-01

    Full Text Available Although it is a relatively new field of study, the animal cognition literature is quite extensive and difficult to synthesize. This paper explores the contributions a comprehensive, computational, cognitive model can make toward organizing and assimilating this literature, as well as toward identifying important concepts and their interrelations. Using the LIDA model as an example, a framework is described within which to integrate the diverse research in animal cognition. Such a framework can provide both an ontology of concepts and their relations, and a working model of an animal’s cognitive processes that can compliment active empirical research. In addition to helping to account for a broad range of cognitive processes, such a model can help to comparatively assess the cognitive capabilities of different animal species. After deriving an ontology for animal cognition from the LIDA model, we apply it to develop the beginnings of a database that maps the cognitive facilities of a variety of animal species. We conclude by discussing future avenues of research, particularly the use of computational models of animal cognition as valuable tools for hypotheses generation and testing [Current Zoology 57 (4: 499–513, 2011].

  17. Animal models in motion sickness research

    Science.gov (United States)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  18. Final model of multicriterionevaluation of animal welfare

    DEFF Research Database (Denmark)

    Bonde, Marianne; Botreau, R; Bracke, MBM

    One major objective of Welfare Quality® is to propose harmonized methods for the overall assessment of animal welfare on farm and at slaughter that are science based and meet societal concerns. Welfare is a multidimensional concept and its assessment requires measures of different aspects. Welfare...... Quality® proposes a formal evaluation model whereby the data on animals or their environment are transformed into value scores that reflect compliance with 12 subcriteria and 4 criteria of good welfare. Each animal unit is then allocated to one of four categories: excellent welfare, enhanced welfare......, acceptable welfare and not classified. This evaluation model is tuned according to the views of experts from animal and social sciences, and stakeholders....

  19. Optogenetics in animal model of alcohol addiction

    Science.gov (United States)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  20. Engel's biopsychosocial model is still relevant today.

    Science.gov (United States)

    Adler, Rolf H

    2009-12-01

    In 1977, Engel published the seminal paper, "The Need for a New Medical Model: A Challenge for Biomedicine" [Science 196 (1977) 129-136]. He featured a biopsychosocial (BPS) model based on systems theory and on the hierarchical organization of organisms. In this essay, the model is extended by the introduction of semiotics and constructivism. Semiotics provides the language which allows to describe the relationships between the individual and his environment. Constructivism explains how an organism perceives his environment. The impact of the BPS model on research, medical education, and application in the practice of medicine is discussed.

  1. Sex differences in animal models of psychiatric disorders

    Science.gov (United States)

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  2. Oxymetazoline ototoxicity in a chinchilla animal model.

    Science.gov (United States)

    Daniel, Sam J; Akinpelu, Olubunmi V; Sahmkow, Sofia; Funnell, W Robert J; Akache, Fadi

    2012-01-01

    To investigate possible ototoxic effects of a one-time application of oxymetazoline drops in a chinchilla animal model with tympanostomy tubes. Study Design. A prospective, controlled animal study. The Research Institute of the Montreal's Children Hospital, McGill University Health Centre. Ventilation tubes were inserted in both ears of 12 animals. One ear was randomly assigned to receive oxymetazoline drops (0.5 mL). The contralateral ear did not receive any drops, serving as a control ear. Distortion product otoacoustic emissions were measured bilaterally for a wide range of frequencies (between 1 and 16 kHz) before and 1 day after the application of oxymetazoline in the experimental ears. Two months later, the animals were sacrificed and all cochleae were dissected out and processed for scanning electron microscopy. In this established chinchilla animal model, the measured distortion product otoacoustic emission amplitudes and the morphological appearance on scanning electron microscopy were similar for both control and experimental ears. Oxymetazoline did not cause ototoxicity in a chinchilla animal model 2 months after a single application via a tympanostomy tube.

  3. Animal models of preeclampsia; uses and limitations.

    LENUS (Irish Health Repository)

    McCarthy, F P

    2012-01-31

    Preeclampsia remains a leading cause of maternal and fetal morbidity and mortality and has an unknown etiology. The limited progress made regarding new treatments to reduce the incidence and severity of preeclampsia has been attributed to the difficulties faced in the development of suitable animal models for the mechanistic research of this disease. In addition, animal models need hypotheses on which to be based and the slow development of testable hypotheses has also contributed to this poor progress. The past decade has seen significant advances in our understanding of preeclampsia and the development of viable reproducible animal models has contributed significantly to these advances. Although many of these models have features of preeclampsia, they are still poor overall models of the human disease and limited due to lack of reproducibility and because they do not include the complete spectrum of pathophysiological changes associated with preeclampsia. This review aims to provide a succinct and comprehensive assessment of current animal models of preeclampsia, their uses and limitations with particular attention paid to the best validated and most comprehensive models, in addition to those models which have been utilized to investigate potential therapeutic interventions for the treatment or prevention of preeclampsia.

  4. Animal models for HIV cure research

    Directory of Open Access Journals (Sweden)

    Ben Bruno Policicchio

    2016-01-01

    Full Text Available The HIV-1/AIDS pandemic continues to spread unabated worldwide and no vaccine exists within our grasp. Effective antiretroviral therapy (ART has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for HIV infection will require multiple tools and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure or eliminating the reservoir altogether (sterilizing cure. Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new nonhuman primate and mouse models, along with a certain interest in the feline model, have the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  5. Animal Models for HIV Cure Research.

    Science.gov (United States)

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  6. Animal models of pulmonary emphysema: a stereologist's perspective

    Directory of Open Access Journals (Sweden)

    H. Fehrenbach

    2006-12-01

    Full Text Available A variety of animal models have been suggested as models of pulmonary emphysema; these are critically discussed in the present article from a stereologist's perspective. In addition, a stereological design for the quantification of experimentally induced emphysema is proposed. On the basis of the widely accepted definition of pulmonary emphysema being an "abnormal permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of their walls," quantitative morphology is the only method with which to reliably assess the presence of emphysema. Recognising this, careful inspection of animal models that are based on instillation of elastase, genetic alterations, inhalation of cigarette smoke or induction of apoptosis, reveals that both criteria of emphysema definition were demonstrated in surprisingly few of them. Several aspects are suggested to be critical for the understanding of animal models of human emphysema. For example, genetic models that rely on the inhibition of the formation of alveoli during post-natal alveolarisation should clearly be distinguished from models that rely on the loss of mature alveoli after alveolarisation is complete. Furthermore, inhalation models that are characterised by exposed animals exhibiting a severe loss of body weight should carefully examine the relative contribution of intervention and weight loss, respectively. Models that rely on the exposure of juvenile animals for several weeks or even months should take into account the effects of normal lung growth and ageing. Stereology offers appropriate tools with which to quantify the parameters relevant to assess development and the regeneration of emphysema. Stereologists continue to develop tools that will help ascertain the reliability of established and new models. If inappropriate parameters continue to be used for the evaluation of animal models of emphysema, thinking and resources are likely to be misdirected and the

  7. Large animal models for stem cell therapy.

    Science.gov (United States)

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  8. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Science.gov (United States)

    Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su

    2016-01-01

    Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  9. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Directory of Open Access Journals (Sweden)

    Soo Yeon Jung

    Full Text Available Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5 and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5, PTX-NC (n = 10, and PTX-HC (n = 10, respectively. Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  10. Development of animal models of otitis media.

    Science.gov (United States)

    Park, Moo Kyun; Lee, Byung Don

    2013-04-01

    Otitis media is defined as inflammation of the middle ear, including the auditory ossicles and the Eustachian tube. Otitis media is a major health problem in many societies. The causes of otitis media includes infection and anatomic/physiologic, host, and environmental factors. In general, otitis media is a childhood disease, and anatomic and physiologic changes have great effects on its development. Thus, in vitro or human experimental studies of otitis media are difficult. Several experimental animal models have been introduced to investigate the pathogenesis and treatment of otitis media. However, none are ideal. The aim of this review is to provide a brief overview of the current status of animal models of otitis media with effusion, acute otitis media, and cholesteatoma. This review will assist determination of the most appropriate animal models of otitis media.

  11. Animal models for Gaucher disease research

    Directory of Open Access Journals (Sweden)

    Tamar Farfel-Becker

    2011-11-01

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  12. Animal models of transcranial direct current stimulation: Methods and mechanisms.

    Science.gov (United States)

    Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom

    2016-11-01

    The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the

  13. Animal models of asthma: utility and limitations

    Directory of Open Access Journals (Sweden)

    Aun MV

    2017-11-01

    Full Text Available Marcelo Vivolo Aun,1,2 Rafael Bonamichi-Santos,1,2 Fernanda Magalhães Arantes-Costa,2 Jorge Kalil,1 Pedro Giavina-Bianchi1 1Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil, 2Laboratory of Experimental Therapeutics (LIM20, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil Abstract: Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes

  14. A systematic review of current osteoporotic metaphyseal fracture animal models.

    Science.gov (United States)

    Wong, R M Y; Choy, M H V; Li, M C M; Leung, K-S; K-H Chow, S; Cheung, W-H; Cheng, J C Y

    2018-01-01

    The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted. Fracture techniques included drill hole defects (3 of 19), bone defects (3 of 19), partial osteotomy (1 of 19), and complete osteotomies (12 of 19). Drill hole models and incomplete osteotomy models are easy to perform and allow the study of therapeutic agents but do not represent the usual clinical setting. Additionally, biomaterials can be filled into drill hole defects for analysis. Complete osteotomy models are most commonly used and are best suited for the investigation of therapeutic drugs or noninvasive interventions. The metaphyseal defect models allow the study of biomaterials, which are associated with complex and comminuted osteoporotic fractures. For a clinically relevant model, we propose that an animal model should satisfy the following criteria to study osteoporotic fracture healing: 1) induction of osteoporosis, 2) complete osteotomy or defect at the metaphysis unilaterally, and 3) internal fixation. Cite this article : R. M. Y. Wong, M. H. V. Choy, M. C. M. Li, K-S. Leung, S. K-H. Chow, W-H. Cheung, J. C. Y. Cheng. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;7:6-11. DOI: 10.1302/2046-3758.71.BJR-2016-0334.R2. © 2018 Wong et al.

  15. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    Science.gov (United States)

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  16. Mathematical Properties Relevant to Geomagnetic Field Modeling

    DEFF Research Database (Denmark)

    Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils

    2014-01-01

    Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers to as a geomag...

  17. Are invertebrates relevant models in ageing research?

    DEFF Research Database (Denmark)

    Erdogan, Cihan Suleyman; Hansen, Benni Winding; Vang, Ole

    2016-01-01

    is an evolutionary conserved key protein kinase in the TOR pathway that regulates growth, proliferation and cell metabolism in response to nutrients, growth factors and stress. Comparing the ageing process in invertebrate model organisms with relatively short lifespan with mammals provides valuable information about...... the molecular mechanisms underlying the ageing process faster than mammal systems. Inhibition of the TOR pathway activity via either genetic manipulation or rapamycin increases lifespan profoundly in most invertebrate model organisms. This contribution will review the recent findings in invertebrates concerning...... the TOR pathway and effects of TOR inhibition by rapamycin on lifespan. Besides some contradictory results, the majority points out that rapamycin induces longevity. This suggests that administration of rapamycin in invertebrates is a promising tool for pursuing the scientific puzzle of lifespan...

  18. Are animal models predictive for humans?

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2009-01-01

    Full Text Available Abstract It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics.

  19. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  20. Animal models of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  1. The enduring importance of animal models in understanding periodontal disease.

    Science.gov (United States)

    Hajishengallis, George; Lamont, Richard J; Graves, Dana T

    2015-01-01

    Whereas no single animal model can reproduce the complexity of periodontitis, different aspects of the disease can be addressed by distinct models. Despite their limitations, animal models are essential for testing the biological significance of in vitro findings and for establishing cause-and-effect relationships relevant to clinical observations, which are typically correlative. We provide evidence that animal-based studies have generated a durable framework for dissecting the mechanistic basis of periodontitis. These studies have solidified the etiologic role of bacteria in initiating the inflammatory response that leads to periodontal bone loss and have identified key mediators (IL-1, TNF, prostaglandins, complement, RANKL) that induce inflammatory breakdown. Moreover, animal studies suggest that dysbiosis, rather than individual bacterial species, are important in initiating periodontal bone loss and have introduced the concept that organisms previously considered commensals can play important roles as accessory pathogens or pathobionts. These studies have also provided insight as to how systemic conditions, such as diabetes or leukocyte adhesion deficiency, contribute to tissue destruction. In addition, animal studies have identified and been useful in testing therapeutic targets.

  2. Large Mammalian Animal Models of Heart Disease

    Directory of Open Access Journals (Sweden)

    Paula Camacho

    2016-10-01

    Full Text Available Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians.

  3. [Skin defect modeling in experimental animals].

    Science.gov (United States)

    Oleshko, A N; Kornienko, V V; Tkachenko, Yu A; Kurganskaya, V A

    2015-02-01

    To assess the skin regeneration and explore new medical devices for the treatment of skin defects is necessary to conduct long-term experiments using laboratory animals. Currently, there are many methods for skin trauma modeling but most of them have disadvantages that limit their use. The purpose of this work - the development of an experimental model of the formation of skin defect of various etiologies with the specified parameters of depth and area of damage to the absence of systemic effects on the animal's body. We have developed an installation that allows us to form a skin defect of mechanical, thermal and chemical etiology with area from 1.76 cm2 to 2.0 cm2. The experiment was conducted on 18 male laboratory rats to examine the effectiveness of current method and control the depth and area of the defect. As a result of the new methodology, we were able to carry out simulation skin injuries of different etiology on laboratory animals in the short term and reduce the severity of injuries to extend the life span of animals to monitor the repair processes, as well as to standardize the modeling of injuries according to the criteria of area and depth of the defect.

  4. Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.

    Science.gov (United States)

    Maduwage, Kalana P; Scorgie, Fiona E; Lincz, Lisa F; O'Leary, Margaret A; Isbister, Geoffrey K

    2016-01-01

    Animal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma. Compared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human. Different animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Model systems to study immunomodulation in domestic food animals.

    Science.gov (United States)

    Roth, J A; Flaming, K P

    1990-01-01

    Development of immunomodulators for use in food producing animals is an active area of research. This research has generally incorporated aspects of immunosuppression in model systems. This methodology is appropriate because most of the research has been aimed at developing immunomodulators for certain economically significant diseases in which immunosuppression is believed to be an important component of their pathogenesis. The primary focus has been on stress-associated diseases (especially bovine respiratory disease), infectious diseases in young animals, and mastitis. The model systems used have limitations, but they have demonstrated that immunomodulators are capable of significantly increasing resistance to these important infectious disease syndromes. As our understanding of molecular immunology increases and as more potential immunomodulators become available, the use of relevant model systems should greatly aid advancement in the field of immunomodulation.

  6. On relevant boundary perturbations of unitary minimal models

    International Nuclear Information System (INIS)

    Recknagel, A.; Roggenkamp, D.; Schomerus, V.

    2000-01-01

    We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions

  7. Phenotyping animal models of diabetic neuropathy

    DEFF Research Database (Denmark)

    Biessels, G J; Bril, V; Calcutt, N A

    2014-01-01

    of statistically different values between diabetic and control animals in 2 of 3 assessments (nocifensive behavior, nerve conduction velocities, or nerve structure). The participants propose that this framework would allow different research groups to compare and share data, with an emphasis on data targeted......NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy....... The discussion was divided into five areas: (1) status of commonly used rodent models of diabetes, (2) nerve structure, (3) electrophysiological assessments of nerve function, (4) behavioral assessments of nerve function, and (5) the role of biomarkers in disease phenotyping. Participants discussed the current...

  8. Animal models of anxiety disorders and stress

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2013-01-01

    Full Text Available Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents. The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as “ethological” the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field, whereas models that involve learned/punished responses are referred to as “conditioned operant conflict tests” (such as the Vogel conflict test. We also discussed models that involve mainly classical conditioning tests (fear conditioning. Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress, physical (restraint stress, and chronic unpredictable stress.

  9. MBT/Pas mouse: a relevant model for the evaluation of Rift Valley fever vaccines.

    Science.gov (United States)

    Ayari-Fakhfakh, Emna; do Valle, Tânia Zaverucha; Guillemot, Laurent; Panthier, Jean-Jacques; Bouloy, Michèle; Ghram, Abdeljelil; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2012-07-01

    Currently, there are no worldwide licensed vaccines for Rift Valley fever (RVF) that are both safe and effective. Development and evaluation of vaccines, diagnostics and treatments depend on the availability of appropriate animal models. Animal models are also necessary to understand the basic pathobiology of infection. Here, we report the use of an inbred MBT/Pas mouse model that consistently reproduces RVF disease and serves our purpose for testing the efficacy of vaccine candidates; an attenuated Rift Valley fever virus (RVFV) and a recombinant RVFV-capripoxvirus. We show that this model is relevant for vaccine testing.

  10. Fantastic animals as an experimental model to teach animal adaptation

    Science.gov (United States)

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  11. Spatiotemporal epidemic models for rabies among animals

    Directory of Open Access Journals (Sweden)

    Shigui Ruan

    2017-08-01

    Full Text Available Rabies is a serious concern to public health and wildlife management worldwide. Over the last three decades, various mathematical models have been proposed to study the transmission dynamics of rabies. In this paper we provide a mini-review on some reaction-diffusion models describing the spatial spread of rabies among animals. More specifically, we introduce the susceptible-exposed-infectious models for the spatial transmission of rabies among foxes (Murray et al., 1986, the spatiotemporal epidemic model for rabies among raccoons (Neilan and Lenhart, 2011, the diffusive rabies model for skunk and bat interactions (Bonchering et al., 2012, and the reaction-diffusion model for rabies among dogs (Zhang et al., 2012. Numerical simulations on the spatiotemporal dynamics of these models from these papers are presented.

  12. Relevance units latent variable model and nonlinear dimensionality reduction.

    Science.gov (United States)

    Gao, Junbin; Zhang, Jun; Tien, David

    2010-01-01

    A new dimensionality reduction method, called relevance units latent variable model (RULVM), is proposed in this paper. RULVM has a close link with the framework of Gaussian process latent variable model (GPLVM) and it originates from a recently developed sparse kernel model called relevance units machine (RUM). RUM follows the idea of relevance vector machine (RVM) under the Bayesian framework but releases the constraint that relevance vectors (RVs) have to be selected from the input vectors. RUM treats relevance units (RUs) as part of the parameters to be learned from the data. As a result, a RUM maintains all the advantages of RVM and offers superior sparsity. RULVM inherits the advantages of sparseness offered by the RUM and the experimental result shows that RULVM algorithm possesses considerable computational advantages over GPLVM algorithm.

  13. Vestibular animal models: contributions to understanding physiology and disease.

    Science.gov (United States)

    Straka, Hans; Zwergal, Andreas; Cullen, Kathleen E

    2016-04-01

    Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more "exotic" species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.

  14. Antidiabetic dietary materials and animal models.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan

    2016-07-01

    The ever-increasing occurrence of diabetes worldwide demands cost-effective anti-diabetic strategies. Food-based materials have great potential as efficient anti-diabetic agents. Focusing on the literatures of the recent 5years, this review summarizes the methods, findings, and limitations of each research involving non-medicinal foods (individual and mixed) and diabetic animal models. Various types of fruits, vegetables, legumes, cereals, spices, beverages, oilseeds, and edible oils showed antidiabetic effects in different animal models. Animal feeding trials rarely had identical designs in food doses, feeding schedules, and routes of administration, as well as biochemical markers for antidiabetic evaluation. Various possible cellular and metabolic targets were speculated for the anti-hyperglycemic effects of the dietary materials, and the molecular mechanisms of action remain to be better explored. Short-term (maximum 16weeks) antidiabetic studies have been established. Limited safety/tolerability data are available for antidiabetic dietary materials. Findings from current animal studies present a generic antidiabetic dietary pattern associated with plant-based whole foods, which agrees well with the findings of epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Relevance of information warfare models to critical infrastructure ...

    African Journals Online (AJOL)

    This article illustrates the relevance of information warfare models to critical infrastructure protection. Analogies of information warfare models to those of information security and information systems were used to deconstruct the models into their fundamental components and this will be discussed. The models were applied ...

  16. Animal Models of Human Placentation - A Review

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2007-01-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however...... and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial...

  17. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Directory of Open Access Journals (Sweden)

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  18. Microparticles and cancer thrombosis in animal models.

    Science.gov (United States)

    Mege, Diane; Mezouar, Soraya; Dignat-George, Françoise; Panicot-Dubois, Laurence; Dubois, Christophe

    2016-04-01

    Cancer-associated venous thromboembolism (VTE) constitutes the second cause of death after cancer. Many risk factors for cancer-associated VTE have been identified, among them soluble tissue factor and microparticles (MPs). Few data are available about the implication of MPs in cancer associated-VTE through animal model of cancer. The objective of the present review was to report the state of the current literature about MPs and cancer-associated VTE in animal model of cancer. Fourteen series have reported the role of MPs in cancer-associated VTE, through three main mouse models: ectopic or orthotopic tumor induction, experimental metastasis by intravenous injection of tumor cells into the lateral tail vein of the mouse. Pancreatic cancer is the most used animal model, due to its high rate of cancer-associated VTE. All the series reported that tumor cell-derived MPs can promote thrombus formation in TF-dependent manner. Some authors reported also the implication of phosphatidylserine and PSGL1 in the generation of thrombin. Moreover, MPs seem to be implicated in cancer progression through a coagulation-dependent mechanism secondary to thrombocytosis, or a mechanism implicating the regulation of the immune response. For these reasons, few authors have reported that antiplatelet and anticoagulant treatments may prevent tumor progression and the formation of metastases in addition of coagulopathy. © 2016 Elsevier Ltd. All rights reserved.

  19. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  20. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  1. Service and Emotional Support Animals on Campus: The Relevance and Controversy

    Science.gov (United States)

    Phillips, Melinda

    2016-01-01

    Service and emotional support animals (ESA) have recently been a topic of conversation on college campuses, despite decades of controversy related to the interpretation of federal law. The distinction between an Emotional Support Animal and Service Animals, and the rights of the student regarding accommodations under FHA and ADA have been debated…

  2. Animal models of compulsive eating behavior.

    Science.gov (United States)

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-10-22

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating "comfort foods" in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, "food addiction" has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  3. Animal Models of Compulsive Eating Behavior

    Directory of Open Access Journals (Sweden)

    Matteo Di Segni

    2014-10-01

    Full Text Available Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies.

  4. Principles for developing animal models of military PTSD

    Directory of Open Access Journals (Sweden)

    Nikolaos P. Daskalakis

    2014-08-01

    Full Text Available The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies.

  5. Animal Models Utilized in HTLV-1 Research

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2013-01-01

    Full Text Available Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1 over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP. Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.

  6. Animal Models of Cancer-Associated Hypercalcemia.

    Science.gov (United States)

    Kohart, Nicole A; Elshafae, Said M; Breitbach, Justin T; Rosol, Thomas J

    2017-04-13

    Cancer-associated hypercalcemia (CAH) is a frequently-occurring paraneoplastic syndrome that contributes to substantial patient morbidity and occurs in both humans and animals. Patients with CAH are often characterized by markedly elevated serum calcium concentrations that result in a range of clinical symptoms involving the nervous, gastrointestinal and urinary systems. CAH is caused by two principle mechanisms; humorally-mediated and/or through local osteolytic bone metastasis resulting in excessive calcium release from resorbed bone. Humoral hypercalcemia of malignancy (HHM) is the most common mechanism and is due to the production and release of tumor-associated cytokines and humoral factors, such as parathyroid hormone-related protein (PTHrP), that act at distant sites to increase serum calcium concentrations. Local osteolytic hypercalcemia (LOH) occurs when primary or metastatic bone tumors act locally by releasing factors that stimulate osteoclast activity and bone resorption. LOH is a less frequent cause of CAH and in some cases can induce hypercalcemia in concert with HHM. Rarely, ectopic production of parathyroid hormone has been described. PTHrP-mediated hypercalcemia is the most common mechanism of CAH in human and canine malignancies and is recognized in other domestic species. Spontaneous and experimentally-induced animal models have been developed to study the mechanisms of CAH. These models have been essential for the evaluation of novel approaches and adjuvant therapies to manage CAH. This review will highlight the comparative aspects of CAH in humans and animals with a discussion of the available animal models used to study the pathogenesis of this important clinical syndrome.

  7. Potential animal models of seasonal affective disorder.

    Science.gov (United States)

    Workman, Joanna L; Nelson, Randy J

    2011-01-01

    Seasonal affective disorder (SAD) is characterized by depressive episodes during winter that are alleviated during summer and by morning bright light treatment. Currently, there is no animal model of SAD. However, it may be possible to use rodents that respond to day length (photoperiod) to understand how photoperiod can shape the brain and behavior in humans. As nights lengthen in the autumn, the duration of the nightly elevation of melatonin increase; seasonally breeding animals use this information to orchestrate seasonal changes in physiology and behavior. SAD may originate from the extended duration of nightly melatonin secretion during fall and winter. These similarities between humans and rodents in melatonin secretion allows for comparisons with rodents that express more depressive-like responses when exposed to short day lengths. For instance, Siberian hamsters, fat sand rats, Nile grass rats, and Wistar rats display a depressive-like phenotype when exposed to short days. Current research in depression and animal models of depression suggests that hippocampal plasticity may underlie the symptoms of depression and depressive-like behaviors, respectively. It is also possible that day length induces structural changes in human brains. Many seasonally breeding rodents undergo changes in whole brain and hippocampal volume in short days. Based on strict validity criteria, there is no animal model of SAD, but rodents that respond to reduced day lengths may be useful to approximate the neurobiological phenomena that occur in people with SAD, leading to greater understanding of the etiology of the disorder as well as novel therapeutic interventions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A Compositional Relevance Model for Adaptive Information Retrieval

    Science.gov (United States)

    Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.

  9. An animal model to study regenerative endodontics.

    Science.gov (United States)

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  10. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    Science.gov (United States)

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Animal Modelling of Interstitial Cystitis/Bladder Pain Syndrome.

    Science.gov (United States)

    Birder, Lori; Andersson, Karl-Erik

    2018-01-01

    The etiology of interstitial cystitis/bladder pain syndrome (IC/BPS) remains elusive and may involve multiple causes. To better understand its pathophysiology, many efforts have been made to create IC/BPS models. Most existing models of IC/BPS strive to recreate bladder-related features by applying noxious intravesical or systemic stimuli to healthy animals. These models are useful to help understand various mechanisms; however, they are limited to demonstrating how the bladder and nervous system respond to noxious stimuli, and are not representative of the complex interactions and pathophysiology of IC/BPS. To study the various factors that may be relevant for IC/BPS, at least 3 different types of animal models are commonly used: (1) bladder-centric models, (2) models with complex mechanisms, and (3) psychological and physical stressors/natural disease models. It is obvious that all aspects of the human disease cannot be mimicked by a single model. It may be the case that several models, each contributing to a piece of the puzzle, are required to recreate a reasonable picture of the pathophysiology and time course of the disease(s) diagnosed as IC/BPS, and thus to identify reasonable targets for treatment.

  12. Animal models for HIV/AIDS research

    Science.gov (United States)

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  13. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models.

    Science.gov (United States)

    Herati, Ramin Sedaghat; Wherry, E John

    2018-04-02

    Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Experimental Oral Candidiasis in Animal Models

    Science.gov (United States)

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  15. Reproduction of an animal model of landmine blast injuries

    Directory of Open Access Journals (Sweden)

    Sen ZHANG

    2014-03-01

    Full Text Available Objective To reproduce an animal model of landmine blast injuries for studying its mechanism and characteristics. Methods Fifteen healthy New Zealand white rabbits (body weight 1.9-2.4 kg were prepared as experimental animals. Punctiform burster was used to simulate the landmine, and it was electrically detonated far away to produce landmine blast injuries on unilateral hind limb of rabbits in upright state. The vital signs before and 5min, 15min, 30min, 45min, 1h, 2h, 3h, 6h, 9h and 12h after injuries were recorded. Autopsy of dead animals was performed immediately and the survivors were sacrificed for pathological examination 6h and 12h after the injury. Macroscopic and microscopic changes in the injured limb and distant organs were observed. Fifteen random adult body weights were generated by random number table, and the explosive energy of M14 landmine (about 29g TNT explosive energy was simulated, to compare the ratio of explosive force equivalent to weight calculated between experimental animals and randomly selected adults. Results No significant change in blood pressure was observed at different time points before and after injuries. A broom-like change was found in the injured limb by the general observation. The subareas and pathological changes of injured limb coincided with the typical limb injuries produced by landmine explosion. Damage in different degrees was found in distant organs, and the wound characteristics and injury of major organs were in accordance with the reports of relevant literature. The ratio of explosive equivalent to weight of experimental animals (0.50±0.04g TNT/kg was similar to that of randomly selected adults (0.51±0.05g TNT/kg. Conclusion The present animal model could simulate the landmine explosive injuries, and may be used in research of landmine explosive injuries. DOI: 10.11855/j.issn.0577-7402.2014.01.14

  16. Animal models of gene-environment interactions in schizophrenia.

    Science.gov (United States)

    Ayhan, Yavuz; Sawa, Akira; Ross, Christopher A; Pletnikov, Mikhail V

    2009-12-07

    The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.

  17. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  18. Small-Animal Models of Zika Virus.

    Science.gov (United States)

    Julander, Justin G; Siddharthan, Venkatraman

    2017-12-16

    Zika virus (ZIKV) infection can result in serious consequences, including severe congenital manifestations, persistent infection in the testes, and neurologic sequelae. After a pandemic emergence, the virus has spread to much of North and South America and has been introduced to many countries outside of ZIKV-endemic areas as infected travelers return to their home countries. Rodent models have been important in gaining a better understanding of the wide range of disease etiologies associated with ZIKV infection and for the initial phase of developing countermeasures to prevent or treat viral infections. We discuss herein the advantages and disadvantages of small-animal models that have been developed to replicate various aspects of disease associated with ZIKV infection. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Biokinetic models for radionuclides in experimental animals

    International Nuclear Information System (INIS)

    Morcillo, M. A.

    2003-01-01

    The biokinetic models for many radionuclides are, to a large extent, based on data obtained in experimental animals. The methods used in the experimental development of a biokinetic model can be classified in two groups (i) those applied during the experimental work, which include the activity determination of a given radionuclide at different times and in different biological media such as blood, serum, organs/tissues, urine, bile and faeces and (ii) those methods used for the analysis and study of the experimental data, based in mathematical tools. Some of these methods are reviewed,with special emphasis in the whole body macro autoradiography. To conclude, the contribution that this type of studies can have in two fields of radiation protection is discussed, namely optimization of dosimetric evaluations and decorporation of radionuclides. (Author)

  20. Advances in transgenic animal models and techniques.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Remy, Séverine; Usal, Claire; Ouisse, Laure-Hélène; Brusselle, Lucas; Chenouard, Vanessa; Anegon, Ignacio

    2017-10-01

    On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.

  1. Overview: Using Mode of Action and Life Stage Information to Evaluate the Human Relevance of Animal Toxicity Data

    Energy Technology Data Exchange (ETDEWEB)

    Seed, Jennifer; Carney, E W.; Corley, Rick A.; Crofton, Kevin M.; DeSesso, John M.; Foster, Paul M.; Kavlock, Robert; Kimmel, Gary; Klaunig, James E.; Meek, M E.; Preston, R J.; Slikker, William; Tabacova, Sonia; Williams, Gary M.; Wiltse, J; Zoeller, R T.; Fenner-Crisp, P; Patton, D E.

    2005-10-01

    A complete mode of action human relevance analysis--as distinct from mode of action (MOA) analysis alone--depends on robust information on the animal MOA, as well as systematic comparison of the animal data with corresponding information from humans. In November 2003, the International Life Sciences Institute's Risk Science Institute (ILSI RSI) published a 2-year study using animal and human MOA information to generate a four-part Human Relevance Framework (HRF) for systematic and transparent analysis of MOA data and information. Based mainly on non-DNA-reactive carcinogens, the HRF features a ''concordance'' analysis of MOA information from both animal and human sources, with a focus on determining the appropriate role for each MOA data set in human risk assessment. With MOA information increasingly available for risk assessment purposes, this article illustrates the further applicability of the HRF for reproductive, developmental, neurologic, and renal endpoints, as well as cancer. Based on qualitative and quantitative MOA considerations, the MOA/human relevance analysis also contributes to identifying data needs and issues essential for the dose-response and exposure assessment steps in the overall risk assessment.

  2. The relevance of animal experimental results for the assessment of radiation genetic risks in man

    International Nuclear Information System (INIS)

    Stephan, G.

    1981-01-01

    No suitable data are available from man for the quantitative assessment of genetic radiation risk. Therefore, the results from experiments on animals must be utilized. Two hypotheses are presented here in drawing analogical conclusions from one species to another. Although the extrapolation of results from animal experiments remains an open question, the use of experimental results from mice seems to be justified for an assessment of the genetic radiation risk in man. (orig.) [de

  3. Animal Ownership and Touching Enrich the Context of Social Contacts Relevant to the Spread of Human Infectious Diseases

    Science.gov (United States)

    Kifle, Yimer Wasihun; Goeyvaerts, Nele; Van Kerckhove, Kim; Willem, Lander; Faes, Christel; Leirs, Herwig; Hens, Niel; Beutels, Philippe

    2015-01-01

    Many human infectious diseases originate from animals or are transmitted through animal vectors. We aimed to identify factors that are predictive of ownership and touching of animals, assess whether animal ownership influences social contact behavior, and estimate the probability of a major zoonotic outbreak should a transmissible influenza-like pathogen be present in animals, all in the setting of a densely populated European country. A diary-based social contact survey (n = 1768) was conducted in Flanders, Belgium, from September 2010 until February 2011. Many participants touched pets (46%), poultry (2%) or livestock (2%) on a randomly assigned day, and a large proportion of participants owned such animals (51%, 15% and 5%, respectively). Logistic regression models indicated that larger households are more likely to own an animal and, unsurprisingly, that animal owners are more likely to touch animals. We observed a significant effect of age on animal ownership and touching. The total number of social contacts during a randomly assigned day was modeled using weighted-negative binomial regression. Apart from age, household size and day type (weekend versus weekday and regular versus holiday period), animal ownership was positively associated with the total number of social contacts during the weekend. Assuming that animal ownership and/or touching are at-risk events, we demonstrate a method to estimate the outbreak potential of zoonoses. We show that in Belgium animal-human interactions involving young children (0–9 years) and adults (25–54 years) have the highest potential to cause a major zoonotic outbreak. PMID:26193480

  4. [Analysis of dalbavancin in animal models].

    Science.gov (United States)

    Murillo, Óscar; El-Haj, Cristina

    2017-01-01

    Multiresistant Gram-positive infections continue to pose a major clinical challenge and the development of new antibiotics is always desirable. Dalbavancin is a lipoglycopeptide with a prolonged half-life that allows long dosing intervals. In experimental models, its activity has been evaluated in distinct models and microorganisms, which limits the conclusions that can be drawn; however, the largest number of studies have been conducted in Staphylococcus aureus infection. Overall, dalbavancin has shown concentration-dependent efficacy and the parameters best explaining its activity are maximal pharmacodynamic concentration/minimal inhibitory concentration and the area under the curve/minimal inhibitory concentration. In these experimental models, dalbavancin has shown good distribution, a prolonged half-life in all animal species and efficacy that is mostly similar to that of previous glycopeptides but with lower doses and with longer dosing intervals. Of note, the efficacy of dalbavancin is not altered by methicillin resistance or the glycopeptide sensitivity of S. aureus. In the case of difficult-to-treat staphylococcal infections (eg, endocarditis, foreign body infections), an adequate dosing interval and high dosage seem to play an important role in the efficacy of the drug. All in all, experimental models can still provide greater knowledge of this new antibiotic to guide clinical research and determine its role in the treatment of distinct infections produced by Gram-positive microorganisms. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  5. Automatic Relevance Determination for multi-way models

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    2009-01-01

    Estimating the adequate number of components is an important yet difficult problem in multi-way modelling. We demonstrate how a Bayesian framework for model selection based on Automatic Relevance Determination (ARD) can be adapted to the Tucker and CP models. By assigning priors for the model...... parameters and learning the hyperparameters of these priors the method is able to turn off excess components and simplify the core structure at a computational cost of fitting the conventional Tucker/CP model. To investigate the impact of the choice of priors we based the ARD on both Laplace and Gaussian...

  6. Biochemical correlates in an animal model of depression

    International Nuclear Information System (INIS)

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action

  7. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    Science.gov (United States)

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  8. Animal models of chronic wound care

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Calum, Henrik

    2016-01-01

    Chronic wounds are a substantial clinical problem affecting millions of people worldwide. Pathophysiologically, chronic wounds are stuck in the inflammatory state of healing. The role of bacterial biofilms in suppression and perturbation of host response could be an explanation for this observation....... An inhibiting effect of bacterial biofilms on wound healing is gaining significant clinical attention over the last few years. There is still a paucity of suitable animal models to recapitulate human chronic wounds. The etiology of the wound (venous insufficiency, ischemia, diabetes, pressure) has to be taken...... into consideration as underlying pathophysiological mechanisms and comorbidities display tremendous variation in humans. Confounders such as infection, smoking, chronological age, sex, medication, metabolic disturbances, and renal impairment add to the difficulty in gaining systematic and comparable studies...

  9. Estimating the predictive validity of diabetic animal models in rosiglitazone studies.

    Science.gov (United States)

    Varga, O E; Zsíros, N; Olsson, I A S

    2015-06-01

    For therapeutic studies, predictive validity of animal models - arguably the most important feature of animal models in terms of human relevance - can be calculated retrospectively by obtaining data on treatment efficacy from human and animal trials. Using rosiglitazone as a case study, we aim to determine the predictive validity of animal models of diabetes, by analysing which models perform most similarly to humans during rosiglitazone treatment in terms of changes in standard diabetes diagnosis parameters (glycosylated haemoglobin [HbA1c] and fasting glucose levels). A further objective of this paper was to explore the impact of four covariates on the predictive capacity: (i) diabetes induction method; (ii) drug administration route; (iii) sex of animals and (iv) diet during the experiments. Despite the variable consistency of animal species-based models with the human reference for glucose and HbA1c treatment effects, our results show that glucose and HbA1c treatment effects in rats agreed better with the expected values based on human data than in other species. Induction method was also found to be a substantial factor affecting animal model performance. The study concluded that regular reassessment of animal models can help to identify human relevance of each model and adapt research design for actual research goals. © 2015 World Obesity.

  10. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    Full Text Available

    The narrow host range of infection and lack of suitable tissue culture systems for the propagation of hepatitis B and C viruses are limitations that have prevented a more thorough understanding of persistent infection and the pathogenesis of chronic liver disease.

    Despite decades of intensive research and significant progresses in understanding of viral hepatitis, many basic questions and clinical problems still await to be resolved. For example, the HBV cellular receptor and related mechanisms of viral entry have not yet been identified. Little is also known about the function of certain non-structural viral products, such as the hepatitis B e antigen and the X protein, or about the role of excess hepadnavirus subviral particles circulating in the blood stream during infection. Furthermore, the molecular mechanisms involved in the development of hepatocellular carcinoma and the role of the immune system in determining the fate of infection are not fully understood.

    The reason for these drawbacks is essentially due to the lack of reliable cell-based in vitro infection systems and, most importantly, convenient animal models.

    This lack of knowledge has been partially overcome for hepatitis B virus (HBV, by the discovery and characterization of HBV-like viruses in wild animals while for hepatitis C virus (HCV, related flaviviruses have been used as surrogate systems.

    Other laboratories have developed transgenic mice that express virus gene products and/or support virus replication. Some HBV transgenic mouse models

  11. A step-by-step guide to systematically identify all relevant animal studies

    NARCIS (Netherlands)

    Leenaars, Marlies; Hooijmans, Carlijn R.; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential

  12. A step-by-step guide to systematically identify all relevant animal studies.

    NARCIS (Netherlands)

    Leenaars, M.; Hooijmans, C.R.; Veggel, N. van; Riet, G. ter; Leeflang, M.; Hooft, L.; Wilt, G.J. van der; Tillema, A.; Ritskes-Hoitinga, M.

    2012-01-01

    Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential

  13. Prospects for new information relevant to radiation protection from studies of experimental animals

    International Nuclear Information System (INIS)

    McClellan, R.O.

    1988-01-01

    The theory underlying radiation protection was developed from studies of people, laboratory animals, tissues, cells and macromolecules. Data on people were obtained from opportunistic studies of individuals previously exposed to radiation. Rarely has it been possible to conduct prospective studies of people exposed to known quantities of radiation, which sharply restricts the nature of questions that they can address. In contrast, studies using laboratory animals and simpler biological systems can be designed to address specific questions, using controlled exposure conditions. In-vitro research with macromolecules, cells and tissues leads to understanding normal and disease processes in isolated biological components. Studies of the intact animals provide opportunities to study in vivo interactive mechanisms observed in vitro and their role in development of radiation-induced diseases such as cancer. In the future, studies of intact animals should prove increasingly valuable in linking new knowledge at the subanimal level with the more fragmentary information obtained from direct observations on people. This will provide insight into important issues such as (a) effects of low-level radiation exposures, (b) mechanism of cancer induction at high versus low radiation doses, and (c) influence of factors such as nutrition and exposure to chemicals on radiation-induced cancer. This presentation describes strategies for conducting and integrating results of research using macromolecules, cells, tissues, laboratory animals and people to improve our understanding of radiation-induced cancer. It will also emphasize the problems encountered in studies at all levels of biological organization when the disease is observed in low excess incidence long after exposure to the toxicant

  14. Connecting Brain Proteomics with Behavioural Neuroscience in Translational Animal Models of Neuropsychiatric Disorders.

    Science.gov (United States)

    Sarnyai, Zoltán; Guest, Paul C

    2017-01-01

    Modelling psychiatric disorders in animals has been hindered by several challenges related to our poor understanding of the disease causes. This chapter describes recent advances in translational research which may lead to animal models and relevant proteomic biomarkers that can be informative about disease mechanisms and potential new therapeutic targets. The review focuses on the behavioural and molecular correlates in models of schizophrenia and major depressive disorder, as guided by recently established Research Domain Criteria (RDoC). This approach is based on providing proteomic data for aetiologically driven, behaviourally well-characterised animal models to link discovered biomarker candidates with the human disease.

  15. Animal Model of Acute Deep Vein Thrombosis

    International Nuclear Information System (INIS)

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    1998-01-01

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution

  16. Relevant criteria for testing the quality of turbulence models

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, J.D.

    2007-01-01

    Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...... turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3...

  17. Dose effect relationships for radiation induced cancer: relevance of animal evidence

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1982-01-01

    This article is based upon a paper which was presented at the SRP meeting on the Biological Bases of Radiation Protection Standards, October 1981. It is suggested that experimental radiation carcinogenesis data derived from animal studies will probably never provide numerical evidence of risk that is applicable to man. The uncertainties involved in any extrapolation of risk estimates from mice to men surely outweigh the uncertainties in the human epidemiological data. It is also suggested that at least in the foreseeable future animal data will not solve the perennial problem of the shape at low doses of the dose response curve for radiogenic cancer. At most the data may clarify the debate over linearity-non linearity and over the existence or otherwise of a threshold. However, the paper does suggest a very positive role for animal data in providing semi-quantitative generalisations for radiological protection concerning such variables as dose rate, radiation quality, partial body/organ exposure and in situations where the dose is received in a highly inhomogeneous fashion, e.g. the special problems of internal emitters. (author)

  18. RASopathies: unraveling mechanisms with animal models

    Directory of Open Access Journals (Sweden)

    Granton A. Jindal

    2015-08-01

    Full Text Available RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.

  19. Assessing The Policy Relevance of Regional Air Quality Models

    Science.gov (United States)

    Holloway, T.

    This work presents a framework for discussing the policy relevance of models, and regional air quality models in particular. We define four criteria: 1) The scientific status of the model; 2) Its ability to address primary environmental concerns; 3) The position of modeled environmental issues on the political agenda; and 4) The role of scientific input into the policy process. This framework is applied to current work simulating the transport of nitric acid in Asia with the ATMOS-N model, to past studies on air pollution transport in Europe with the EMEP model, and to future applications of the United States Environmental Protection Agency (US EPA) Models-3. The Lagrangian EMEP model provided critical input to the development of the 1994 Oslo and 1999 Gothenburg Protocols to the Convention on Long-Range Transbound- ary Air Pollution, as well as to the development of EU directives, via its role as a component of the RAINS integrated assessment model. Our work simulating reactive nitrogen in Asia follows the European example in part, with the choice of ATMOS-N, a regional Lagrangian model to calculate source-receptor relationships for the RAINS- Asia integrated assessment model. However, given differences between ATMOS-N and the EMEP model, as well as differences between the scientific and political cli- mates facing Europe ten years ago and Asia today, the role of these two models in the policy process is very different. We characterize the different aspects of policy relevance between these models using our framework, and consider how the current generation US EPA air quality model compares, in light of its Eulerian structure, dif- ferent objectives, and the policy context of the US.

  20. Wound healing in animal models: review article

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2017-10-01

    Full Text Available Wound healing and reduction of its recovery time is one of the most important issues in medicine. Wound is defined as disruption of anatomy and function of normal skin. This injury could be the result of physical elements such as  surgical incision, hit or pressure cut of the skin and gunshot wound. Chemical or caustic burn is another category of wound causes that can be induced by acid or base contact irritation. Healing is a process of cellular and extracellular matrix interactions that occur in the damaged tissue. Wound healing consists of several stages including hemostasis, inflammatory phase, proliferative phase and new tissue formation which reconstructs by new collagen formation. Wounds are divided into acute and chronic types based on their healing time. Acute wounds have sudden onset and in normal individuals usually have healing process of less than 4 weeks without any residual side effects. In contrast, chronic wounds have gradual onset. Their inflammatory phase is prolonged and the healing process is stopped due to some background factors like diabetes, ischemia or local pressure. If the healing process lasts more than 4 weeks it will be classified as chronic wound. Despite major advances in the treatment of wounds, still finding effective modalities for healing wounds in the shortest possible time with the fewest side effects is a current challenge. In this review different phases of wound healing and clinical types of wound such as venous leg ulcer, diabetic foot ulcer and pressure ulcer are discussed. Also acute wound models (i.e burn wounds or incisional wound and chronic wound models (such as venous leg ulcers, diabetic foot ulcer, pressure ulcers or bedsore in laboratory animals are presented. This summary can be considered as a preliminary step to facilitate designing of more targeted and applied research in this area.

  1. Practical application of stereological methods in experimental kidney animal models.

    Science.gov (United States)

    Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora

    The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  2. Searching for better animal models of BPD: a perspective.

    Science.gov (United States)

    Ambalavanan, Namasivayam; Morty, Rory E

    2016-11-01

    There have been many efforts to develop good animal models of bronchopulmonary dysplasia (BPD) to better understand the pathophysiology and mechanisms underlying development of BPD as well as to test potential strategies for its prevention and treatment. This Perspectives summarizes the features of common animal models of BPD and the strengths and limitations of such models. Potential optimal approaches to development of animal models are indicated, with the underlying concepts that require emphasis. Copyright © 2016 the American Physiological Society.

  3. Modeling individual animal histories with multistate capture–recapture models

    Science.gov (United States)

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  4. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Science.gov (United States)

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  5. Digital creature creation: applied 3D modelling and animation for Australian animal visualization

    OpenAIRE

    Ung, Chandara

    2017-01-01

    This exegesis focuses on the investigative and studio research informing the digital construction of a diverse selection of Australian animals. A series of case studies of digital creature construction - the Jackie Dragon, Jabiru, Bandicoot, Eel, Blue Ringed Octopus and Fiddler Crab - will be outlined along with the key creation study of the Groper. Through investigating how visual research can inform the creation of 3D modelled and animated animal subjects and tracing their development proce...

  6. Recent developments in chemical treatment of roughages and their relevance to animal production in developing countries

    International Nuclear Information System (INIS)

    Owen, E.

    1989-01-01

    Recent research in developed regions, at laboratory level, has investigated acids, amines and the oxidizing agents sulphur dioxide, ozone and alkaline hydrogen peroxide as reagents for upgrading roughages. In vivo experiments with sheep show improvements in digestibility from treating with 40 g SO 2 per kg wheat straw DM for 3 d at 70 deg. C, comparable to responses normally gained by treating with NaOH. Alkaline H 2 O 2 (pH11.5) treatment in one study increased wheat straw DM digestibility in sheep fed ad libitum, from 467 to 659 g/kg. However this treatment used large inputs (260 g H 2 O 2 and 180 g NaOH/kg straw DM in 26 L solution for 16 h, followed by drying); subsequent studies showed possible input reductions. The techniques are not relevant for use in developing countries except possibly at centralized processing plants, but greater commercial viability will need to be demonstrated before then. The NaOH dip method is the most effective current, low technology upgrading technique and is capable of further development to produce treated roughage of improved digestibility and optimum content of N and required minerals. There are no major new developments in urea ammonia treatment. The recent 'AGRI-AM' method produces NH 3 by hydrating a mixture of CaO and (NH 4 ) 2 SO 4 fertilizers, but the method requires much chemical input. 'Ensiling' barley straw for 60 d with 60 g Ca(OH) 2 and 30 g urea per kg straw DM improves intake and digestibility in sheep, with little loss of N from the system. This is due to reduced urea hydrolysis caused by high pH. Other research shows that the quantity of straw needing to be treated can be halved by allowing goats (or sheep) to 'graze' untreated straw (to allow 50% refusals) followed by treatment and refeeding. 92 refs, 11 tabs

  7. The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance.

    Science.gov (United States)

    Bouchon, Didier; Zimmer, Martin; Dittmer, Jessica

    2016-01-01

    Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis ), while others are well-known intracellular pathogens ( Rickettsiella spp.) or reproductive parasites ( Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations

  8. The terrestrial isopod microbiome: An all-in-one toolbox for animal-microbe interactions of ecological relevance

    Directory of Open Access Journals (Sweden)

    Didier Bouchon

    2016-09-01

    Full Text Available Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host-microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g. cellulose or lignins. If this were the case, then (i the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e. Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum and Rhabdochlamydia porcellionis, while others are well-known intracellular pathogens (Rickettsiella spp. or reproductive parasites (Wolbachia sp.. Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host

  9. The complete guide to blender graphics computer modeling and animation

    CERN Document Server

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  10. A multiple relevance feedback strategy with positive and negative models.

    Directory of Open Access Journals (Sweden)

    Yunlong Ma

    Full Text Available A commonly used strategy to improve search accuracy is through feedback techniques. Most existing work on feedback relies on positive information, and has been extensively studied in information retrieval. However, when a query topic is difficult and the results from the first-pass retrieval are very poor, it is impossible to extract enough useful terms from a few positive documents. Therefore, the positive feedback strategy is incapable to improve retrieval in this situation. Contrarily, there is a relatively large number of negative documents in the top of the result list, and it has been confirmed that negative feedback strategy is an important and useful way for adapting this scenario by several recent studies. In this paper, we consider a scenario when the search results are so poor that there are at most three relevant documents in the top twenty documents. Then, we conduct a novel study of multiple strategies for relevance feedback using both positive and negative examples from the first-pass retrieval to improve retrieval accuracy for such difficult queries. Experimental results on these TREC collections show that the proposed language model based multiple model feedback method which is generally more effective than both the baseline method and the methods using only positive or negative model.

  11. A multiple relevance feedback strategy with positive and negative models.

    Science.gov (United States)

    Ma, Yunlong; Lin, Hongfei

    2014-01-01

    A commonly used strategy to improve search accuracy is through feedback techniques. Most existing work on feedback relies on positive information, and has been extensively studied in information retrieval. However, when a query topic is difficult and the results from the first-pass retrieval are very poor, it is impossible to extract enough useful terms from a few positive documents. Therefore, the positive feedback strategy is incapable to improve retrieval in this situation. Contrarily, there is a relatively large number of negative documents in the top of the result list, and it has been confirmed that negative feedback strategy is an important and useful way for adapting this scenario by several recent studies. In this paper, we consider a scenario when the search results are so poor that there are at most three relevant documents in the top twenty documents. Then, we conduct a novel study of multiple strategies for relevance feedback using both positive and negative examples from the first-pass retrieval to improve retrieval accuracy for such difficult queries. Experimental results on these TREC collections show that the proposed language model based multiple model feedback method which is generally more effective than both the baseline method and the methods using only positive or negative model.

  12. The safety, efficacy and regulatory triangle in drug development: Impact for animal models and the use of animals.

    Science.gov (United States)

    van Meer, Peter J K; Graham, Melanie L; Schuurman, Henk-Jan

    2015-07-15

    Nonclinical studies in animals are conducted to demonstrate proof-of-concept, mechanism of action and safety of new drugs. For a large part, in particular safety assessment, studies are done in compliance with international regulatory guidance. However, animal models supporting the initiation of clinical trials have their limitations, related to uncertainty regarding the predictive value for a clinical condition. The 3Rs principles (refinement, reduction and replacement) are better applied nowadays, with a more comprehensive application with respect to the original definition. This regards also regulatory guidance, so that opportunities exist to revise or reduce regulatory guidance with the perspective that the optimal balance between scientifically relevant data and animal wellbeing or a reduction in animal use can be achieved. In this manuscript we review the connections in the triangle between nonclinical efficacy/safety studies and regulatory aspects, with focus on in vivo testing of drugs. These connections differ for different drugs (chemistry-based low molecular weight compounds, recombinant proteins, cell therapy or gene therapy products). Regarding animal models and their translational value we focus on regulatory aspects and indications where scientific outcomes warrant changes, reduction or replacement, like for, e.g., biosimilar evaluation and safety testing of monoclonal antibodies. On the other hand, we present applications where translational value has been clearly demonstrated, e.g., immunosuppressives in transplantation. Especially for drugs of more recent date like recombinant proteins, cell therapy products and gene therapy products, a regulatory approach that allows the possibility to conduct combined efficacy/safety testing in validated animal models should strengthen scientific outcomes and improve translational value, while reducing the numbers of animals necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Modeling the Encephalopathy of Prematurity in Animals: The Important Role of Translational Research

    Directory of Open Access Journals (Sweden)

    Hannah C. Kinney

    2012-01-01

    Full Text Available Translational research in preterm brain injury depends upon the delineation of the human neuropathology in order that animal models faithfully reiterate it, thereby ensuring direct relevance to the human condition. The major substrate of human preterm brain injury is the encephalopathy of prematurity that is characterized by gray and white matter lesions reflecting combined acquired insults, altered developmental trajectories, and reparative phenomena. Here we highlight the key features of human preterm brain development and the encephalopathy of prematurity that are critical for modeling in animals. The complete mimicry of the complex human neuropathology is difficult in animal models. Many models focus upon mechanisms related to a specific feature, for example, loss of premyelinating oligodendrocytes in the cerebral white matter. Nevertheless, animal models that simultaneously address oligodendrocyte, neuronal, and axonal injury carry the potential to decipher shared mechanisms and synergistic treatments to ameliorate the global consequences of the encephalopathy of prematurity.

  14. Steroid-associated osteonecrosis animal model in rats

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    2018-04-01

    Full Text Available Summary: Objective: Established preclinical disease models are essential for not only studying aetiology and/or pathophysiology of the relevant diseases but more importantly also for testing prevention and/or treatment concept(s. The present study proposed and established a detailed induction and assessment protocol for a unique and cost-effective preclinical steroid-associated osteonecrosis (SAON in rats with pulsed injections of lipopolysaccharide (LPS and methylprednisolone (MPS. Methods: Sixteen 24-week-old male Sprague–Dawley rats were used to induce SAON by one intravenous injection of LPS (0.2 mg/kg and three intraperitoneal injections of MPS (100 mg/kg with a time interval of 24 hour, and then, MPS (40 mg/kg was intraperitoneally injected three times a week from week 2 until sacrifice. Additional 12 rats were used as normal controls. Two and six weeks after induction, animals were scanned by metabolic dual energy X-ray absorptiometry for evaluation of tissue composition; serum was collected for bone turnover markers, Microfil perfusion was performed for angiography, the liver was collected for histopathology and bilateral femora and bilateral tibiae were collected for histological examination. Results: Three rats died after LPS injection, i.e., with 15.8% (3/19 mortality. Histological evaluation showed 100% incidence of SAON at week 2. Dual energy X-ray absorptiometry showed significantly higher fat percent and lower lean mass in SAON group at week 6. Micro-computed tomography (Micro-CT showed significant bone degradation at proximal tibia 6 weeks after SAON induction. Angiography illustrated significantly less blood vessels in the proximal tibia and significantly more leakage particles in the distal tibia 2 weeks after SAON induction. Serum amino-terminal propeptide of type I collagen and osteocalcin were significantly lower at both 2 and 6 weeks after SAON induction, and serum carboxy-terminal telopeptide was significantly

  15. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  16. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  17. Food and animal characteristics relevant to the prediction of forage consumption and nutrient use in productive ruminants

    International Nuclear Information System (INIS)

    Oldham, J.D.; Eayres, H.; Emmans, G.C.; Hou, X.Z.; Illius, A.W.; Jessop, N.S.; Matthewman, R.W.

    1989-01-01

    A general model is presented of the relationships between animal and food characteristics which help lead to predictions of food consumption and animal performance. It is an important part of this scheme that equal weight is given to the description of food and animal characteristics. The results of some experiments are given suggesting that ruminants can select between feeds to meet their nutrient needs and that, in growing animals, the physical capacity to bite is an important determinant of grazing efficiency and ecology. Studies with growing lambs of the energetic efficiency of growth suggest that variation in the energy cost of protein accretion may be a more important determinant of overall energetic efficiency of growth than is conventionally supposed. In lactating animals that also exercise, milk protein and lactose yields fall during exercise and this effect is difficult to counteract by protein and/or starch supplementation of straw diets. Studies of forage substitution by supplements have not revealed differences in substitution rate with age in sheep. (author). 22 refs, 6 figs, 2 tabs

  18. Animal Models of Compulsive Eating Behavior

    OpenAIRE

    Matteo Di Segni; Enrico Patrono; Loris Patella; Stefano Puglisi-Allegra; Rossella Ventura

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medica...

  19. ANIMAL BEHAVIOR AND WELL-BEING SYMPOSIUM: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals.

    Science.gov (United States)

    Koolhaas, J M; Van Reenen, C G

    2016-06-01

    This paper will argue that understanding animal welfare and the individual vulnerability to stress-related disease requires a fundamental understanding of functional individual variation as it occurs in nature as well as the underlying neurobiology and neuroendocrinology. Ecological studies in feral populations of mice, fish, and birds start to recognize the functional significance of phenotypes that individually differ in their behavioral and neuroendocrine response to environmental challenge. Recent studies indicate that the individual variation within a species may buffer the species for strong fluctuations in the natural habitat. Similarly, evolutionary ancient behavioral trait characteristics have now been identified in a range of domestic farm animals including cattle, pigs, and horses. Individual variation in behavior can be summarized in a 3-dimensional model with coping style, emotionality, and sociality as independent dimensions. These dimensions can be considered trait characteristics that are stable over time and across situations within the individual. This conceptual model has several consequences. First, the coping style dimension is strongly associated with differential stress vulnerability. Social stress studies show that proactive individuals are resilient under stable environmental conditions but vulnerable when outcome expectancies are violated. Reactive individuals are, in fact, rather flexible and seem to adapt more easily to a changing environment. A second consequence relates to genetics and breeding. Genetic selection for one trait usually implies selection for other traits as well. It is discussed that a more balanced breeding program that takes into account biologically functional temperamental traits will lead to more robust domestic farm animals. Finally, the relationship between temperamental traits, animal production, fitness, and welfare is discussed.

  20. The Use of Animal Models in Behavioural Neuroscience Research

    NARCIS (Netherlands)

    Bovenkerk, B.; Kaldewaij, F.

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  1. The Use of Animal Models in Behavioural Neuroscience Research.

    NARCIS (Netherlands)

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  2. Aspects of animal models for major neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Lefter Radu

    2014-01-01

    Full Text Available We will review the main animal models for the major neuropsychiatric disorders, focusing on schizophrenia, Alzheimer’s disease, Parkinson’s disease, depression, anxiety and autism. Although these mental disorders are specifically human pathologies and therefore impossible to perfectly replicate in animals, the use of experimental animals is based on the physiological and anatomical similarities between humans and animals such as the rat, and mouse, and on the fact that 99% of human and murine genomes are shared. Pathological conditions in animals can be assessed by manipulating the metabolism of neurotransmitters, through various behavioral tests, and by determining biochemical parameters that can serve as important markers of disorders.

  3. Culturally relevant model program to prevent and reduce agricultural injuries.

    Science.gov (United States)

    Helitzer, D L; Hathorn, G; Benally, J; Ortega, C

    2014-07-01

    Limited research has explored pesticide injury prevention among American Indian farmers. In a five-year agricultural intervention, a university-community partnership, including the University of New Mexico School of Medicine, New Mexico State University, Shiprock Area Cooperative Extension Service, and Navajo Nation communities, used a culturally relevant model to introduce and maintain safe use of integrated pest management techniques. We applied the Diffusion of Innovations theory and community-based approaches to tailor health promotion strategies for our intervention. In a longitudinal study with repeated measures, we trained six "model farmers" to be crop management experts in pesticide safety, application, and control. Subsequently, these model farmers worked with 120 farm families randomized into two groups: intervention (Group 1) and delayed intervention (Group 2). Measurements included a walk-through analysis, test of knowledge and attitudes, and yield analysis. Both groups demonstrated improvements in pesticide storage behaviors after training. Test scores regarding safety practices improved significantly: from 57.3 to 72.4 for Group 1 and from 52.6 to 76.3 for Group 2. Group 1 maintained their knowledge and safety practices after the intervention. Attitudes about pesticides and communication of viewpoints changed across the study years. With pesticides and fertilizer, the number of corn ears increased by 56.3% and yield (kg m(-2)) of alfalfa increased by 41.2%. The study combined traditional farming practices with culturally relevant approaches and behavior change theory to affect knowledge, safety practices, attitudes, communication channels, and crop yield. Storage behaviors, use of pesticides and safety and application equipment, and safety practice knowledge changed significantly, as did attitudes about social networking, social support, and the compatibility and relative advantage of pesticides for farms.

  4. Formal models in animal-metacognition research: the problem of interpreting animals' behavior.

    Science.gov (United States)

    Smith, J David; Zakrzewski, Alexandria C; Church, Barbara A

    2016-10-01

    Ongoing research explores whether animals have precursors to metacognition-that is, the capacity to monitor mental states or cognitive processes. Comparative psychologists have tested apes, monkeys, rats, pigeons, and a dolphin using perceptual, memory, foraging, and information-seeking paradigms. The consensus is that some species have a functional analog to human metacognition. Recently, though, associative modelers have used formal-mathematical models hoping to describe animals' "metacognitive" performances in associative-behaviorist ways. We evaluate these attempts to reify formal models as proof of particular explanations of animal cognition. These attempts misunderstand the content and proper application of models. They embody mistakes of scientific reasoning. They blur fundamental distinctions in understanding animal cognition. They impede theoretical development. In contrast, an energetic empirical enterprise is achieving strong success in describing the psychology underlying animals' metacognitive performances. We argue that this careful empirical work is the clear path to useful theoretical development. The issues raised here about formal modeling-in the domain of animal metacognition-potentially extend to biobehavioral research more broadly.

  5. Animal models for microbicide safety and efficacy testing.

    Science.gov (United States)

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  6. Awareness, perceived relevance, and acceptance of large animal hospital surveillance and infection control practices by referring veterinarians and clients.

    Science.gov (United States)

    Ekiri, Abel B; House, Amanda M; Krueger, Traci M; Hernandez, Jorge A

    2014-04-01

    To assess awareness, perceived relevance, and acceptance of surveillance and infection control practices at a large animal referral hospital among referring veterinarians and clients who sent horses to the facility for veterinary care. Survey. 57 referring veterinarians and 594 clients. A 15-question survey targeting Salmonella enterica as an important pathogen of interest in horses was sent to clients who sent ≥ 1 horse to the University of Florida Large Animal Hospital for veterinary care during July 1, 2007, through July 1, 2011, and to veterinarians who had referred horses to the same hospital prior to July 1, 2011. Responses were summarized with descriptive statistics. The χ(2) test and the Wilcoxon rank sum test were used to examine associations among variables of interest. Survey response rates were low (57/467 [12%] for veterinarians and 594/3,095 [19%] for clients). Significantly more (35/56 [63%]) veterinarians than clients (227/585 [39%]) were aware that the hospital operates a surveillance and infection control program. Most veterinarians (56/57 [98%]) and clients (554/574 [97%]) indicated that sampling and testing of horses to detect Salmonella shedding in feces at admission and during hospitalization was justified. In addition, on a scale of 1 (not important) to 10 (very important), veterinarians and clients indicated it was very important (median score, 10 [interquartile range, 8 to 10] for both groups) that a referral hospital operates a surveillance and infection control program. Survey results indicated that awareness of hospital surveillance and infection control practices was higher among veterinarians than clients, and these practices were considered relevant and well-accepted among participant veterinarians and clients.

  7. Mathematical models of behavior of individual animals.

    Science.gov (United States)

    Tsibulsky, Vladimir L; Norman, Andrew B

    2007-01-01

    This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.

  8. Systematic reviews of animal models: methodology versus epistemology.

    Science.gov (United States)

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.

  9. Animal models for the study of hepatitis C virus infection and related liver disease

    DEFF Research Database (Denmark)

    Bukh, Jens

    2012-01-01

    Hepatitis C virus (HCV) causes liver-related death in more than 300,000 people annually. Treatments for patients with chronic HCV are suboptimal, despite the introduction of directly acting antiviral agents. There is no vaccine that prevents HCV infection. Relevant animal models are important...... for HCV research and development of drugs and vaccines. Chimpanzees are the best model for studies of HCV infection and related innate and adaptive host immune responses. They can be used in immunogenicity and efficacy studies of HCV vaccines. The only small animal models of robust HCV infection are T...

  10. Animal Models of Hemophilia and Related Bleeding Disorders

    Science.gov (United States)

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  11. Time series sightability modeling of animal populations.

    Directory of Open Access Journals (Sweden)

    Althea A ArchMiller

    Full Text Available Logistic regression models-or "sightability models"-fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model with year-specific parameters and a temporally-smoothed model (TS model that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.

  12. Reviewing model application to support animal health decision making.

    Science.gov (United States)

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare.

    Science.gov (United States)

    Egermann, M; Goldhahn, J; Holz, R; Schneider, E; Lill, C A

    2008-10-01

    Animal models are necessary to evaluate new options for the treatment of fractures in osteoporotic bone. They permit both the biological response of a living system and the influence of the pathological processes to be taken into account. A sheep model for osteoporosis was established by combining oestrogen deficiency, calcium and vitamin D-deficient diet with steroid medication. Bone mineral density (BMD) was reduced by >30% after 12 weeks of combined treatment. Osteoporosis similar to the human situation with corresponding changes in the micro-architecture and mechanical properties of bone was observed. This publication focuses on the impressive results obtained with the model and contrasts them with considerations of animal welfare. Considerable side-effects associated with steroid medication became manifest. Animals in the treatment groups showed signs of infection of various degrees due to the immunosuppressive effect of the medication. The infections were mostly caused by Corynebacterium pseudotuberculosis. Antibody testing revealed a 100% prevalence of infection in this breed of sheep. A modification of the steroid treatment, i.e. less-frequent injections, reduced the incidence of side-effects. This sheep model shows a significant and reproducible reduction in cancellous BMD of >30%, including relevant changes in biomechanical properties and increased fracture risk. However, the severity of the side-effects cannot be overlooked. The model must be improved if it is to be used in the future. Options to reduce the side-effects are discussed.

  14. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome

    DEFF Research Database (Denmark)

    Sangild, Per Torp; Ney, Denise M; Sigalet, David L

    2014-01-01

    help but careful evaluation of the cellular mechanisms, safety and translational relevance of new procedures are required. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult...... hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g. PN, milk diets, long/short chain lipids, pre- and probiotics). Conversely......, newborn pigs and weanling rats represent a translational advantage for infant SBS due to their immature intestine. A balance among practical, economical, experimental and ethical constraints determines the choice of SBS model for each clinical or basic research question....

  15. Time series sightability modeling of animal populations

    Science.gov (United States)

    ArchMiller, Althea A.; Dorazio, Robert; St. Clair, Katherine; Fieberg, John R.

    2018-01-01

    Logistic regression models—or “sightability models”—fit to detection/non-detection data from marked individuals are often used to adjust for visibility bias in later detection-only surveys, with population abundance estimated using a modified Horvitz-Thompson (mHT) estimator. More recently, a model-based alternative for analyzing combined detection/non-detection and detection-only data was developed. This approach seemed promising, since it resulted in similar estimates as the mHT when applied to data from moose (Alces alces) surveys in Minnesota. More importantly, it provided a framework for developing flexible models for analyzing multiyear detection-only survey data in combination with detection/non-detection data. During initial attempts to extend the model-based approach to multiple years of detection-only data, we found that estimates of detection probabilities and population abundance were sensitive to the amount of detection-only data included in the combined (detection/non-detection and detection-only) analysis. Subsequently, we developed a robust hierarchical modeling approach where sightability model parameters are informed only by the detection/non-detection data, and we used this approach to fit a fixed-effects model (FE model) with year-specific parameters and a temporally-smoothed model (TS model) that shares information across years via random effects and a temporal spline. The abundance estimates from the TS model were more precise, with decreased interannual variability relative to the FE model and mHT abundance estimates, illustrating the potential benefits from model-based approaches that allow information to be shared across years.

  16. Animal models for dengue vaccine development and testing.

    Science.gov (United States)

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  17. Animals

    International Nuclear Information System (INIS)

    Skuterud, L.; Strand, P.; Howard, B.J.

    1997-01-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  18. Recent advances in animal model experimentation in autism research.

    Science.gov (United States)

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  19. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    to be the prime model of inherited human disease and share 99% of their ... disturbances (including anxiety and depression) ..... Leibovici M, Safieddine S, Petit C (2008). Mouse models for human hereditary deafness. Curr. Top. Dev. Biol. 84:385-429. Levi YF, Meiner Z, Canello T, Frid K, Kovacs GG, Budka H, Avrahami.

  20. Research progress on animal models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wen DONG

    2015-08-01

    Full Text Available Alzheimer's disease (AD is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  1. Animal Models and Antifungal Agents in Paracoccidioidomycosis: An Overview.

    Science.gov (United States)

    Goldani, Luciano Z; Wirth, Fernanda

    2017-08-01

    Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The morbidity and mortality associated with paracoccidioidomycosis necessitate our understanding of fungal pathogenesis and discovering of new agents to treat this infection. Animal models have contributed much to the knowledge of fungal infections and their corresponding therapeutic treatments. This is true for animal models of the primary fungal pathogens such as P. brasiliensis. This review describes the development, details and utility of animal models of paracoccidioidomycosis for studying and developing the current antifungal agents used for therapy of this fungal disease and novel agents with antifungal properties against P. brasiliensis.

  2. Epidemiological models to support animal disease surveillance activities

    DEFF Research Database (Denmark)

    Willeberg, Preben; Paisley, Larry; Lind, Peter

    2011-01-01

    Epidemiological models have been used extensively as a tool in improving animal disease surveillance activities. A review of published papers identified three main groups of model applications: models for planning surveillance, models for evaluating the performance of surveillance systems...... and models for interpreting surveillance data as part of ongoing control or eradication programmes. Two Danish examples are outlined. The first illustrates how models were used in documenting country freedom from disease (trichinellosis) and the second demonstrates how models were of assistance in predicting...

  3. Animal models for periodontal regeneration and peri-implant responses.

    Science.gov (United States)

    Kantarci, Alpdogan; Hasturk, Hatice; Van Dyke, Thomas E

    2015-06-01

    Translation of experimental data to the clinical setting requires the safety and efficacy of such data to be confirmed in animal systems before application in humans. In dental research, the animal species used is dependent largely on the research question or on the disease model. Periodontal disease and, by analogy, peri-implant disease, are complex infections that result in a tissue-degrading inflammatory response. It is impossible to explore the complex pathogenesis of periodontitis or peri-implantitis using only reductionist in-vitro methods. Both the disease process and healing of the periodontal and peri-implant tissues can be studied in animals. Regeneration (after periodontal surgery), in response to various biologic materials with potential for tissue engineering, is a continuous process involving various types of tissue, including epithelia, connective tissues and alveolar bone. The same principles apply to peri-implant healing. Given the complexity of the biology, animal models are necessary and serve as the standard for successful translation of regenerative materials and dental implants to the clinical setting. Smaller species of animal are more convenient for disease-associated research, whereas larger animals are more appropriate for studies that target tissue healing as the anatomy of larger animals more closely resembles human dento-alveolar architecture. This review focuses on the animal models available for the study of regeneration in periodontal research and implantology; the advantages and disadvantages of each animal model; the interpretation of data acquired; and future perspectives of animal research, with a discussion of possible nonanimal alternatives. Power calculations in such studies are crucial in order to use a sample size that is large enough to generate statistically useful data, whilst, at the same time, small enough to prevent the unnecessary use of animals. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Application of Model Animals in the Study of Drug Toxicology

    Science.gov (United States)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  5. Medulloblastoma: Molecular Genetics and Animal Models

    Directory of Open Access Journals (Sweden)

    Corey Raffel

    2004-07-01

    Full Text Available Medulloblastoma is a primary brain tumor found in the cerebellum of children. The tumor occurs in association with two inherited cancer syndromes: Turcot syndrome and Gorlin syndrome. Insights into the molecular biology of the tumor have come from looking at alterations in the genes altered in these syndromes, PTC and APC, respectively. Murine models of medulloblastoma have been constructed based on these alterations. Additional murine models that, while mimicking the appearance of the human tumor, seem unrelated to the human tumor's molecular alterations have been made. In this review, the clinical picture, origin, molecular biology, murine models of medulloblastoma are discussed. Although a great deal has been discovered about this tumor, the genetic alterations responsible for tumor development in a majority of patients have yet to be described.

  6. Food Addiction and Binge Eating: Lessons Learned from Animal Models

    Science.gov (United States)

    Diéguez, Carlos

    2018-01-01

    The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered “addictive” under normal circumstances, people can become “addicted” to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of “eating addiction” are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of “food addiction”. This review aims to summarize the most relevant animal models of “eating addictive behaviour”, emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies. PMID:29324652

  7. Food Addiction and Binge Eating: Lessons Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Marta G. Novelle

    2018-01-01

    Full Text Available The feeding process is required for basic life, influenced by environment cues and tightly regulated according to demands of the internal milieu by regulatory brain circuits. Although eating behaviour cannot be considered “addictive” under normal circumstances, people can become “addicted” to this behaviour, similarly to how some people are addicted to drugs. The symptoms, cravings and causes of “eating addiction” are remarkably similar to those experienced by drug addicts, and both drug-seeking behaviour as eating addiction share the same neural pathways. However, while the drug addiction process has been highly characterised, eating addiction is a nascent field. In fact, there is still a great controversy over the concept of “food addiction”. This review aims to summarize the most relevant animal models of “eating addictive behaviour”, emphasising binge eating disorder, that could help us to understand the neurobiological mechanisms hidden under this behaviour, and to improve the psychotherapy and pharmacological treatment in patients suffering from these pathologies.

  8. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  9. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    Science.gov (United States)

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  10. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  11. Advances in Animal Models of Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhang Hang

    2015-12-01

    Full Text Available Hepatitis B virus (HBV infection seriously affects human health. Stable and reliable animal models of HBV infection bear significance in studying pathogenesis of this health condition and development of intervention measures. HBV exhibits high specificity for hosts, and chimpanzee is long used as sole animal model of HBV infection. However, use of chimpanzees is strictly constrained because of ethical reasons. Many methods were used to establish small-animal models of HBV infection. Tupaia is the only nonprimate animal that can be infected by HBV. Use of HBV-related duck hepatitis virus and marmot hepatitis virus infection model contributed to evaluation of mechanism of HBV replication and HBV treatment methods. In recent years, development of human–mouse chimeric model provided possibility of using common experimental animals to carry out HBV research. These models feature their own advantages and disadvantages and can be complementary in some ways. This study provides an overview of current and commonly used animal models of HBV infection.

  12. Animal models for evaluation of oral delivery of biopharmaceuticals

    DEFF Research Database (Denmark)

    Harloff-Helleberg, Stine; Nielsen, Line Hagner; Nielsen, Hanne Mørck

    2017-01-01

    of systems for oral delivery of biopharmaceuticals may result in new treatment modalities to increase the patient compliance and reduce product cost. In the preclinical development phase, use of experimental animal models is essential for evaluation of new formulation designs. In general, the limited oral...... bioavailability of biopharmaceuticals, of just a few percent, is expected, and therefore, the animal models and the experimental settings must be chosen with utmost care. More knowledge and focus on this topic is highly needed, despite experience from the numerous studies evaluating animal models for oral drug...... delivery of small molecule drugs. This review highlights and discusses pros and cons of the most currently used animal models and settings. Additionally, it also looks into the influence of anesthetics and sampling methods for evaluation of drug delivery systems for oral delivery of biopharmaceuticals...

  13. Albino mice as an animal model for infantile nystagmus syndrome

    NARCIS (Netherlands)

    D.L. Traber (Daniel); C.-C. Chen (Chien-Cheng); Y.-Y. Huang (Ying-Yu); M. Spoor (Monique); J. Roos (Jeanine); M.A. Frens (Maarten); D. Straumann (Dominik); C. Grimm (Christian)

    2012-01-01

    textabstractPURPOSE. Individuals with oculocutaneous albinism are predisposed to visual system abnormalities affecting the retina and retinofugal projections, which may lead to reduced visual acuity and Infantile Nystagmus Syndrome (INS). Due to absence of an established mammalian animal model,

  14. Instrumental and ethical aspects of experimental research with animal models

    Directory of Open Access Journals (Sweden)

    Mirian Watanabe

    2014-02-01

    Full Text Available Experimental animal models offer possibilities of physiology knowledge, pathogenesis of disease and action of drugs that are directly related to quality nursing care. This integrative review describes the current state of the instrumental and ethical aspects of experimental research with animal models, including the main recommendations of ethics committees that focus on animal welfare and raises questions about the impact of their findings in nursing care. Data show that, in Brazil, the progress in ethics for the use of animals for scientific purposes was consolidated with Law No. 11.794/2008 establishing ethical procedures, attending health, genetic and experimental parameters. The application of ethics in handling of animals for scientific and educational purposes and obtaining consistent and quality data brings unquestionable contributions to the nurse, as they offer subsidies to relate pathophysiological mechanisms and the clinical aspect on the patient.

  15. The Digestive Tract of Cephalopods: a Neglected Topic of Relevance to Animal Welfare in the Laboratory and Aquaculture

    Directory of Open Access Journals (Sweden)

    António V. Sykes

    2017-07-01

    Full Text Available Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent and the amount of food provided; (ii The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised

  16. Biology of Obesity: Lessons from Animal Models of Obesity

    Directory of Open Access Journals (Sweden)

    Keizo Kanasaki

    2011-01-01

    problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.

  17. Stop staring facial modeling and animation done right

    CERN Document Server

    Osipa, Jason

    2010-01-01

    The de facto official source on facial animation—now updated!. If you want to do character facial modeling and animation at the high levels achieved in today's films and games, Stop Staring: Facial Modeling and Animation Done Right, Third Edition , is for you. While thoroughly covering the basics such as squash and stretch, lip syncs, and much more, this new edition has been thoroughly updated to capture the very newest professional design techniques, as well as changes in software, including using Python to automate tasks.: Shows you how to create facial animation for movies, games, and more;

  18. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree. ...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  19. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  20. Animal models of pancreatic cancer for drug research.

    Science.gov (United States)

    Kapischke, Matthias; Pries, Alexandra

    2008-10-01

    The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.

  1. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction.

    Science.gov (United States)

    Meyer, Jerrold S; Hamel, Amanda F

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. © The Author 2014. Published by Oxford University Press on

  3. Lab-on-a-brane: A novel physiologically relevant planar arterial model to study transendothelial transport

    Science.gov (United States)

    Budhwani, Karim Ismail

    The tremendous quality of life impact notwithstanding, cardiovascular diseases and Cancer add up to over US$ 700bn each year in financial costs alone. Aging and population growth are expected to further expand the problem space while drug research and development remain expensive. However, preclinical costs can be substantially mitigated by substituting animal models with in vitro devices that accurately model human cardiovascular transport. Here we present a novel physiologically relevant lab-on-a-brane that simulates in vivo pressure, flow, strain, and shear waveforms associated with normal and pathological conditions in large and small blood vessels for studying molecular transport across the endothelial monolayer. The device builds upon previously demonstrated integrated microfluidic loop design by: (a) introducing nanoscale pores in the substrate membrane to enable transmembrane molecular transport, (b) transforming the substrate membrane into a nanofibrous matrix for 3D smooth muscle cell (SMC) tissue culture, (c) integrating electrospinning fabrication methods, (d) engineering an invertible sandwich cell culture device architecture, and (e) devising a healthy co-culture mechanism for human arterial endothelial cell (HAEC) monolayer and multiple layers of human smooth muscle cells (HSMC) to accurately mimic arterial anatomy. Structural and mechanical characterization was conducted using confocal microscopy, SEM, stress/strain analysis, and infrared spectroscopy. Transport was characterized using FITC-Dextran hydraulic permeability protocol. Structure and transport characterization successfully demonstrate device viability as a physiologically relevant arterial mimic for testing transendothelial transport. Thus, our lab-on-a-brane provides a highly effective and efficient, yet considerably inexpensive, physiologically relevant alternative for pharmacokinetic evaluation; possibly reducing animals used in pre-clinical testing, clinical trials cost from false

  4. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    Directory of Open Access Journals (Sweden)

    Gillian M. Lavelle

    2016-01-01

    Full Text Available Cystic fibrosis (CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF.

  5. The Use of Short, Animated, Patient-Centered Springboard Videos to Underscore the Clinical Relevance of Preclinical Medical Student Education.

    Science.gov (United States)

    Adam, Maya; Chen, Sharon F; Amieva, Manuel; Deitz, Jennifer; Jang, Heeju; Porwal, Aarti; Prober, Charles

    2017-07-01

    Medical students often struggle to appreciate the clinical relevance of material taught in the preclinical years. The authors believe videos could be effectively used to interweave a patient's illness script with foundational basic science concepts. In collaboration with four other U.S. medical schools, educators at the Stanford University School of Medicine created 36 short, animated, patient-centered springboard videos (third-person, narrated accounts of authentic patient cases conveying foundational pathophysiology) in 2014. The videos were used to introduce students to 36 content modules, created as part of a microbiology, immunology, and infectious diseases curriculum. The videos were created with input from faculty content experts and in some cases medical students, and were piloted using a flipped classroom pedagogical approach in January 2015-June 2016. Student feedback from course evaluations and focus groups was analyzed using a mixed-methods approach. On the course evaluations, the majority of students rated the patient-centered videos positively, and the majority of comments on the videos were positive, highlighting both enhanced engagement and enhanced learning and retention. Comments from focus groups mirrored the course evaluation comments and highlighted different usage patterns for the videos. The authors will continue to gather and analyze data from schools using the videos as part of their core preclinical curriculum, and will produce similar videos for use in other areas of undergraduate medical education. These videos could support students' review of content taught previously and be repurposed for use in continuing and graduate medical education, as well as patient education.

  6. Cytomegalovirus Antivirals and Development of Improved Animal Models

    Science.gov (United States)

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  7. Review of Animal Models of Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Jessica K. Simmons

    2014-06-01

    Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.

  8. Animal models for the study of hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Na Guo

    2018-01-01

    Full Text Available Even with an effective vaccine, an estimated 240 million people are chronically infected with hepatitis B virus (HBV worldwide. Current antiviral therapies, including interferon and nucleot(side analogues, rarely cure chronic hepatitis B. Animal models are very crucial for understanding the pathogenesis of chronic hepatitis B and developing new therapeutic drugs or strategies. HBV can only infect humans and chimpanzees, with the use of chimpanzees in HBV research strongly restricted. Thus, most advances in HBV research have been gained using mouse models with HBV replication or infection or models with HBV-related hepadnaviral infection. This review summarizes the animal models currently available for the study of HBV infection.

  9. Elementary of animal model for percutaneous and ocular penetration

    Directory of Open Access Journals (Sweden)

    Kalpesh Chhotalal Ashara

    2016-12-01

    Full Text Available Models of animal are the most appropriate method for assessments of human in-vivo percutaneous and ocular penetrations. Monkey and rodents are used for the same. There are several nuts and bolts of each one, so it is necessary to study each one separately. Monkey, porcine and guinea pig penetration are correlated with that of human skin. The skin of rodents, lupus, pigs, etc. has more penetration properties than human skin. Rabbit, goat and sheep eye are mostly used for ocular penetration. The researcher also used hen’s egg chorioallantoic membrane test for ocular irritation study. The other animals’ cornea, cul-de-sac, eyeballs and prepared corneal epithelial models are very less in practice. Web-based alternative non-animal models are also available instead of animal models too. This article describes characteristics of monkeys, pigs, rats, rabbits, guinea pigs and hairless rodents, HuSki model, Cellophane® membrane, egg membrane, gelatin membrane, animal models for ophthalmic delivery, hen’s egg chorioallantoic membrane test, prepared corneal epithelial models and web-based alternative non-animal database.

  10. Animal models of chronic wound care: the application of biofilms in clinical research

    Directory of Open Access Journals (Sweden)

    Trøstrup H

    2016-11-01

    Full Text Available Hannah Trøstrup,1 Kim Thomsen,1 Henrik Calum,2 Niels Høiby,1,3 Claus Moser1 1Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, 2Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, 3Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark Abstract: Chronic wounds are a substantial clinical problem affecting millions of people worldwide. Pathophysiologically, chronic wounds are stuck in the inflammatory state of healing. The role of bacterial biofilms in suppression and perturbation of host response could be an explanation for this observation. An inhibiting effect of bacterial biofilms on wound healing is gaining significant clinical attention over the last few years. There is still a paucity of suitable animal models to recapitulate human chronic wounds. The etiology of the wound (venous insufficiency, ischemia, diabetes, pressure has to be taken into consideration as underlying pathophysiological mechanisms and comorbidities display tremendous variation in humans. Confounders such as infection, smoking, chronological age, sex, medication, metabolic disturbances, and renal impairment add to the difficulty in gaining systematic and comparable studies on nonhealing wounds. Relevant hypotheses based on clinical or in vitro observations can be tested in representative animal models, which provide crucial tools to uncover the pathophysiology of cutaneous skin repair in infectious environments. Disposing factors, species of the infectious agent(s, and time of establishment of the infection are well defined in suitable animal models. In addition, several endpoints can be involved for evaluation. Animals do not display chronic wounds in the way that humans do. However, in many cases, animal models can mirror the pathological conditions observed in humans, although discrepancies between human and animal wound repair are obvious. The use of animal models should

  11. Models of 'obesity' in large animals and birds.

    Science.gov (United States)

    Clarke, Iain J

    2008-01-01

    Most laboratory-based research on obesity is carried out in rodents, but there are a number of other interesting models in the animal kingdom that are instructive. This includes domesticated animal species such as pigs and sheep, as well as wild, migrating and hibernating species. Larger animals allow particular experimental manipulations that are not possible in smaller animals and especially useful models have been developed to address issues such as manipulation of fetal development. Although some of the most well-studied models are ruminants, with metabolic control that differs from monogastrics, the general principles of metabolic regulation still pertain. It is possible to obtain much more accurate endocrine profiles in larger animals and this has provided important data in relation to leptin and ghrelin physiology. Genetic models have been created in domesticated animals through selection and these complement those of the laboratory rodent. This short review highlights particular areas of research in domesticated and wild species that expand our knowledge of systems that are important for our understanding of obesity and metabolism.

  12. Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions

    DEFF Research Database (Denmark)

    Villa, C; Olsen, K B; Hansen, S H

    2017-01-01

    physiognomics and can be used to create whole-body 3D virtual animations. In such way, virtual reconstructions of the probable ante-mortem postures of victims can be constructed and contribute to understand the sequence of events. This procedure is demonstrated in two victims of gunshot injuries. Case #1...... was a man showing three perforating gunshot wounds, who died due to the injuries of the incident. Whole-body PMCT was performed and 3D reconstructions of bones, relevant internal organs and bullet paths were generated. Using 3ds Max software and a human anatomy 3D model, a virtual animated body was built...... the anatomical proportions of the patient was made combining the actual bones of the victim with those obtained from the human anatomy 3D model. The resulted 3D model was used for the animation process. Several probable postures were also visualized in this case. It has be shown that in Case #1 the lesions...

  13. OBESITY AND CRITICAL ILLNESS: INSIGHTS FROM ANIMAL MODELS.

    Science.gov (United States)

    Mittwede, Peter N; Clemmer, John S; Bergin, Patrick F; Xiang, Lusha

    2016-04-01

    Critical illness is a major cause of morbidity and mortality around the world. While obesity is often detrimental in the context of trauma, it is paradoxically associated with improved outcomes in some septic patients. The reasons for these disparate outcomes are not well understood. A number of animal models have been used to study the obese response to various forms of critical illness. Just as there have been many animal models that have attempted to mimic clinical conditions, there are many clinical scenarios that can occur in the highly heterogeneous critically ill patient population that occupies hospitals and intensive care units. This poses a formidable challenge for clinicians and researchers attempting to understand the mechanisms of disease and develop appropriate therapies and treatment algorithms for specific subsets of patients, including the obese. The development of new, and the modification of existing animal models, is important in order to bring effective treatments to a wide range of patients. Not only do experimental variables need to be matched as closely as possible to clinical scenarios, but animal models with pre-existing comorbid conditions need to be studied. This review briefly summarizes animal models of hemorrhage, blunt trauma, traumatic brain injury, and sepsis. It also discusses what has been learned through the use of obese models to study the pathophysiology of critical illness in light of what has been demonstrated in the clinical literature.

  14. Precise MRI-based stereotaxic surgery in large animal models

    DEFF Research Database (Denmark)

    Glud, A. N.; Bech, J.; Tvilling, L.

    and subcortical anatomical differences. NEW METHOD: We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulphate solution or MRI-visible paste from a commercially available......BACKGROUND: Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical...... cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. RESULTS: Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. COMPARISON...

  15. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    Science.gov (United States)

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  16. Research advances in animal models of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    HUANG Haiyan

    2014-09-01

    Full Text Available In recent years, the incidence of nonalcoholic fatty liver disease (NAFLD has increased gradually along with the rising prevalence of obesity, type 2 diabetes, and hyperlipidemia, and NAFLD has become one of the most common chronic liver diseases in the world and the second major liver disease after chronic viral hepatitis in China. However, its pathogenesis has not yet been clarified. Animal models are playing an important role in researches on NAFLD due to the facts that the development and progression of NAFLD require a long period of time, and ethical limitations exist in conducting drug trials in patients or collecting liver tissues from patients. The animal models with histopathology similar to that of NAFLD patients are reviewed, and their modeling principle, as well as the advantages and disadvantages, are compared. Animal models provide a powerful tool for further studies of NAFLD pathogenesis and drug screening for prevention and treatment of NAFLD.

  17. Animal models for the study of Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Eliza Miszczyk

    2014-05-01

    Full Text Available The Gram-negative bacillus Helicobacter pylori is widely recognized as a major etiologic agent responsible for chronic active gastritis, peptic ulcers, the development of gastric cancer and mucosa-associated lymphoid tissue (MALT lymphoma. Still, little is known about the natural history of H. pylori infection, since patients usually after many years of not suffering from symptoms of the infection are simply asymptomatic. Since the research investigators carried out on human models has many limitations, there is an urgent need for the development of an animal model optimal and suitable for the monitoring of H. pylori infections. This review summarizes the recent findings on the suitability of animal models used in H. pylori research. Several animal models are useful for the assessment of pathological, microbiological and immunological consequences of infection, which makes it possible to monitor the natural

  18. Th17 in Animal Models of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Motomu Hashimoto

    2017-07-01

    Full Text Available IL-17-secreting helper CD4 T cells (Th17 cells constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.

  19. Th17 in Animal Models of Rheumatoid Arthritis.

    Science.gov (United States)

    Hashimoto, Motomu

    2017-07-21

    IL-17-secreting helper CD4 T cells (Th17 cells) constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA) in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.

  20. Animal Models for Tuberculosis in Translational and Precision Medicine

    Directory of Open Access Journals (Sweden)

    Lingjun Zhan

    2017-05-01

    Full Text Available Tuberculosis (TB is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

  1. ANIMAL MODELS OF POST-TRAUMATIC STRESS DISORDER: FACE VALIDITY

    Directory of Open Access Journals (Sweden)

    SONAL eGOSWAMI

    2013-05-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma.

  2. Animal models of post-traumatic stress disorder: face validity

    Science.gov (United States)

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  3. Animal Models for Tuberculosis in Translational and Precision Medicine.

    Science.gov (United States)

    Zhan, Lingjun; Tang, Jun; Sun, Mengmeng; Qin, Chuan

    2017-01-01

    Tuberculosis (TB) is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

  4. Animal Models for the Study of Female Sexual Dysfunction

    Science.gov (United States)

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  5. Food allergy: What do we learn from animal models?

    NARCIS (Netherlands)

    Knippels, L.M.J.; Wijk, F. van; Penninks, A.H.

    2004-01-01

    Purpose of review This review summarizes selected articles on animal models of food allergy published in 2003. The research areas that are covered include mechanistic studies, the search for new therapies, as well as screening models for hazard identification of potential allergens. Recent findings

  6. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  7. An animal model to train Lichtenstein inguinal hernia repair

    DEFF Research Database (Denmark)

    Rosenberg, J; Presch, I; Pommergaard, H C

    2013-01-01

    pigs, and a total of 55 surgeons have been educated to perform Lichtenstein's hernia repair in these animals. CONCLUSIONS: This new experimental surgical model for training Lichtenstein's hernia repair mimics the human inguinal anatomy enough to make it suitable as a training model. The operation...

  8. Obsessive-compulsive disorder: Insights from animal models.

    Science.gov (United States)

    Szechtman, Henry; Ahmari, Susanne E; Beninger, Richard J; Eilam, David; Harvey, Brian H; Edemann-Callesen, Henriette; Winter, Christine

    2017-05-01

    Research with animal models of obsessive-compulsive disorder (OCD) shows the following: (1) Optogenetic studies in mice provide evidence for a plausible cause-effect relation between increased activity in cortico-basal ganglia-thalamo-cortical (CBGTC) circuits and OCD by demonstrating the induction of compulsive behavior with the experimental manipulation of the CBGTC circuit. (2) Parallel use of several animal models is a fruitful paradigm to examine the mechanisms of treatment effects of deep brain stimulation in distinct OCD endophenotypes. (3) Features of spontaneous behavior in deer mice constitute a rich platform to investigate the neurobiology of OCD, social ramifications of a compulsive phenotype, and test novel drugs. (4) Studies in animal models for psychiatric disorders comorbid with OCD suggest comorbidity may involve shared neural circuits controlling expression of compulsive behavior. (5) Analysis of compulsive behavior into its constitutive components provides evidence from an animal model for a motivational perspective on OCD. (6) Methods of behavioral analysis in an animal model translate to dissection of compulsive rituals in OCD patients, leading to diagnostic tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Chest compressions in newborn animal models: A review.

    Science.gov (United States)

    Solevåg, Anne Lee; Cheung, Po-Yin; Lie, Helene; O'Reilly, Megan; Aziz, Khalid; Nakstad, Britt; Schmölzer, Georg Marcus

    2015-11-01

    Much of the knowledge about the optimal way to perform chest compressions (CC) in newborn infants is derived from animal studies. The objective of this review was to identify studies of CC in newborn term animal models and review the evidence. We also provide an overview of the different models. MEDLINE, EMBASE and CINAHL, until September 29th 2014. Study eligibility criteria and interventions: term newborn animal models where CC was performed. Based on 419 retrieved studies from MEDLINE and 502 from EMBASE, 28 studies were included. No additional studies were identified in CINAHL. Most of the studies were performed in pigs after perinatal transition without long-term follow-up. The models differed widely in methodological aspects, which limits the possibility to compare and synthesize findings. Studies uncommonly reported the method for randomization and allocation concealment, and a limited number were blinded. Only the evidence in favour of the two-thumb encircling hands technique for performing CC, a CC to ventilation ratio of 3:1; and that air can be used for ventilation during CC; was supported by more than one study. Animal studies should be performed and reported with the same rigor as in human randomized trials. Good transitional and survival models are needed to further increase the strength of the evidence derived from animal studies of newborn chest compressions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. How animal models inform child and adolescent psychiatry.

    Science.gov (United States)

    Stevens, Hanna E; Vaccarino, Flora M

    2015-05-01

    Every available approach should be used to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of nonhuman animals and the biology and behavior that they share with humans is an approach that must be used to advance the clinical work of child psychiatry. We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology, but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. We present examples of how animal systems are used to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Animal models have clear advantages and disadvantages that must be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Animal models of GM2 gangliosidosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Lawson CA

    2016-07-01

    Full Text Available Cheryl A Lawson,1,2 Douglas R Martin2,3 1Department of Pathobiology, 2Scott-Ritchey Research Center, 3Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA Abstract: GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. Keywords: GM2 gangliosidosis, Tay–Sachs disease, Sandhoff disease, lysosomal storage disorder, sphingolipidosis, brain disease

  12. Animal models of GM2 gangliosidosis: utility and limitations.

    Science.gov (United States)

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  13. Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders.

    Science.gov (United States)

    Konopka, Genevieve; Roberts, Todd F

    2016-01-01

    Disruptions in speech, language, and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language compared with vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. We review animal models of vocal learning and vocal communication and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language, and vocal communication. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Relevance Theory as model for analysing visual and multimodal communication

    NARCIS (Netherlands)

    Forceville, C.; Machin, D.

    2014-01-01

    Elaborating on my earlier work (Forceville 1996: chapter 5, 2005, 2009; see also Yus 2008), I will here sketch how discussions of visual and multimodal discourse can be embedded in a more general theory of communication and cognition: Sperber and Wilson’s Relevance Theory/RT (Sperber and Wilson

  15. relevance of information warfare models to critical infrastructure

    African Journals Online (AJOL)

    ismith

    not be applicable to every possible scenario; however, the intention is to illustrate their relevance in many .... digital communications system, where the vehicles are analogous to bits or packets, intersections for routers or ..... wireless channel, and negatively impact on the systems that rely on that channel. Electronic warfare.

  16. The use of animal models in behavioural neuroscience research.

    Science.gov (United States)

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are also likely to be considered the ones that are most morally problematic to use, if it seems probable that (and if indeed they are initially selected as models because) they have experiences that are similar to human experiences that we have strong reasons to avoid causing, and indeed aim to alleviate (such as pain, anxiety or sadness). In this paper, against the background of contemporary discussions in animal ethics and the philosophy of animal minds, we discuss the views that it is morally permissible to use animals in these kinds of experiments, and that it is better to use less cognitively complex animals (such as zebrafish) than more complex animals (such as dogs). First, we criticise some justifications for the claim that human beings and more complex animals have higher moral status. We argue that contemporary approaches that attribute equal moral status to all beings that are capable of conscious strivings strivings (e.g. avoiding pain and anxiety; aiming to eat and play) are based on more plausible assumptions. Second, we argue that it is problematic to assume that less cognitively complex animals have a lesser sensory and emotional experience than more complex beings across the board. In specific cases, there might be good reasons to assume that more complex beings would be harmed more by a specific physical or environmental intervention, but it might also be that they sometimes are harmed less because of a better ability to cope. Determining whether a specific experiment is justified is therefore a complex issue. Our aim in this chapter is to stimulate further reflection on these common assumptions behind the use of animal models for psychopathologies. In

  17. Amphibians as animal models for laboratory research in physiology.

    Science.gov (United States)

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  18. Engineering Large Animal Species to Model Human Diseases.

    Science.gov (United States)

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  19. Models of Stress in Nonhuman Primates and Their Relevance for Human Psychopathology and Endocrine Dysfunction

    Science.gov (United States)

    Meyer, Jerrold S.; Hamel, Amanda F.

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. PMID:25225311

  20. Alternative animal model for studies of total skin thickness burns.

    Science.gov (United States)

    Andrade, Ana Laura Martins de; Parisi, Julia Risso; Brassolatti, Patrícia; Parizotto, Nivaldo Antonio

    2017-10-01

    To present an alternative experimental model of third degree burn of easy reproducibility. Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with exposure time of 10 seconds and group 15 (G15) the animals were burned at 150°C with exposure time of 15 seconds. Histopathological analyzes showed that all three groups had similar morphological characteristics, with total thickness involvement. The technique is effective to reproduce a third degree burn and suggests the temperature of 150ºC with 5 seconds of exposure in order to minimize the risks to the animals.

  1. Animal Models of Diabetic Retinopathy: Summary and Comparison

    Science.gov (United States)

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  2. Animal models of disc degeneration and major genetic strategies.

    Science.gov (United States)

    Sun, Fu; Qu, Ji-Ning; Zhang, Yin-Gang

    2013-01-01

    The establishment of a reliable animal model of lumbar disc degeneration (AMDD) is important for studying pathogenesis and evaluating treatment effectiveness. However, an ideal AMDD for use in laboratory studies has not yet been produced. This retrospective study reviews and compares several common AMDD and discusses their strengths and weaknesses. We also suggest a new method for establishing future AMDD. The identified genes associated with disc degeneration are susceptibility genes, which elevate risk but do not necessarily lead to disease occurrence. We propose to identify families with hereditary disc degeneration, find major casual genes with exome sequencing, and establish transgenic animal models. This approach may help us to build an improved AMDD.

  3. A content relevance model for social media health information.

    Science.gov (United States)

    Prybutok, Gayle Linda; Koh, Chang; Prybutok, Victor R

    2014-04-01

    Consumer health informatics includes the development and implementation of Internet-based systems to deliver health risk management information and health intervention applications to the public. The application of consumer health informatics to educational and interventional efforts such as smoking reduction and cessation has garnered attention from both consumers and health researchers in recent years. Scientists believe that smoking avoidance or cessation before the age of 30 years can prevent more than 90% of smoking-related cancers and that individuals who stop smoking fare as well in preventing cancer as those who never start. The goal of this study was to determine factors that were most highly correlated with content relevance for health information provided on the Internet for a study group of 18- to 30-year-old college students. Data analysis showed that the opportunity for convenient entertainment, social interaction, health information-seeking behavior, time spent surfing on the Internet, the importance of available activities on the Internet (particularly e-mail), and perceived site relevance for Internet-based sources of health information were significantly correlated with content relevance for 18- to 30-year-old college students, an educated subset of this population segment.

  4. Simple models for studying complex spatiotemporal patterns of animal behavior

    Science.gov (United States)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  5. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  6. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    Science.gov (United States)

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Animal models for implant biomaterial research in bone: A review

    Directory of Open Access Journals (Sweden)

    A I Pearce

    2007-03-01

    Full Text Available Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing of orthopaedic and dental implants prior to clinical use in humans. This review discusses some of the more commonly available and frequently used animal models such as the dog, sheep, goat, pig and rabbit models for the evaluation of bone-implant interactions. Factors for consideration when choosing an animal model and implant design are discussed. Various bone specific features are discussed including the usage of the species, bone macrostructure and microstructure and bone composition and remodelling, with emphasis being placed on the similarity between the animal model and the human clinical situation. While the rabbit was the most commonly used of the species discussed in this review, it is clear that this species showed the least similarities to human bone. There were only minor differences in bone composition between the various species and humans. The pig demonstrated a good likeness with human bone however difficulties may be encountered in relation to their size and ease of handling. In this respect the dog and sheep/goat show more promise as animal models for the testing of bone implant materials. While no species fulfils all of the requirements of an ideal model, an understanding of the differences in bone architecture and remodelling between the species is likely to assist in the selection of a suitable species for a defined research question.

  8. Canine intrahepatic vasculature: is a functional anatomic model relevant to the dog?

    Science.gov (United States)

    Hall, Jon L; Mannion, Paddy; Ladlow, Jane F

    2015-01-01

    To clarify canine intrahepatic portal and hepatic venous system anatomy using corrosion casting and advanced imaging and to devise a novel functional anatomic model of the canine liver to investigate whether this could help guide the planning and surgical procedure of partial hepatic lobectomy and interventional radiological procedures. Prospective experimental study. Adult Greyhound cadavers (n = 8). Portal and hepatic vein corrosion casts of healthy livers were assessed using computed tomography (CT). The hepatic lobes have a consistent hilar hepatic and portal vein supply with some variation in the number of intrahepatic branches. For all specimens, 3 surgically resectable areas were identified in the left lateral lobe and 2 surgically resectable areas were identified in the right medial lobe as defined by a functional anatomic model. CT of detailed acrylic casts allowed complex intrahepatic vascular relationships to be investigated and compared with previous studies. Improving understanding of the intrahepatic vascular supply facilitates interpretation of advanced images in clinical patients, the planning and performance of surgical procedures, and may facilitate interventional vascular procedures, such as intravenous embolization of portosystemic shunts. Functional division of the canine liver similar to human models is possible. The left lateral and right medial lobes can be consistently divided into surgically resectable functional areas and partial lobectomies can be performed following a functional model; further study in clinically affected animals would be required to investigate the relevance of this functional model in the dog. © Copyright 2014 by The American College of Veterinary Surgeons.

  9. Social defeat models in animal science: What we have learned from rodent models.

    Science.gov (United States)

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  10. Overview on available animal models for application in leukemia research

    International Nuclear Information System (INIS)

    Borkhardt, A.; Sanchez-Garcia, I.; Cobaleda, C.; Hauer, J.

    2015-01-01

    The term ''leukemia'' encompasses a group of diseases with a variable clinical and pathological presentation. Its cellular origin, its biology and the underlying molecular genetic alterations determine the very variable and individual disease phenotype. The focus of this review is to discuss the most important guidelines to be taken into account when we aim at developing an ''ideal'' animal model to study leukemia. The animal model should mimic all the clinical, histological and molecular genetic characteristics of the human phenotype and should be applicable as a clinically predictive model. It should achieve all the requirements to be used as a standardized model adaptive to basic research as well as to pharmaceutical practice. Furthermore it should fulfill all the criteria to investigate environmental risk factors, the role of genomic mutations and be applicable for therapeutic testing. These constraints limit the usefulness of some existing animal models, which are however very valuable for basic research. Hence in this review we will primarily focus on genetically engineered mouse models (GEMMs) to study the most frequent types of childhood leukemia. GEMMs are robust models with relatively low site specific variability and which can, with the help of the latest gene modulating tools be adapted to individual clinical and research questions. Moreover they offer the possibility to restrict oncogene expression to a defined target population and regulate its expression level as well as its timely activity. Until recently it was only possible in individual cases to develop a murin model, which fulfills the above mentioned requirements. Hence the development of new regulatory elements to control targeted oncogene expression should be priority. Tightly controlled and cell specific oncogene expression can then be combined with a knock-in approach and will depict a robust murine model, which enables almost physiologic oncogene

  11. Extracting the relevant delays in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    selection, and more precisely stepwise forward selection. The method is compared to other forward selection schemes, as well as to a nonparametric tests aimed at estimating the embedding dimension of time series. The final application extends these results to the efficient estimation of FIR filters on some......In this contribution, we suggest a convenient way to use generalisation error to extract the relevant delays from a time-varying process, i.e. the delays that lead to the best prediction performance. We design a generalisation-based algorithm that takes its inspiration from traditional variable...

  12. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform

    DEFF Research Database (Denmark)

    Schachtschneider, Kyle M.; Schwind, Regina M.; Newson, Jordan

    2017-01-01

    , and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model......Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012......, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role...

  13. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications

    Science.gov (United States)

    Pohl, Calvin S.; Medland, Julia E.

    2015-01-01

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  14. The Relevance of the CIPP Evaluation Model for Educational Accountability.

    Science.gov (United States)

    Stufflebeam, Daniel L.

    The CIPP Evaluation Model was originally developed to provide timely information in a systematic way for decision making, which is a proactive application of evaluation. This article examines whether the CIPP model also serves the retroactive purpose of providing information for accountability. Specifically, can the CIPP Model adequately assist…

  15. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    Science.gov (United States)

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. © 2016 AlphaMed Press.

  16. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  17. Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork

    Science.gov (United States)

    Chujitarom, Wannaporn; Piriyasurawong, Pallop

    2017-01-01

    This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…

  18. Geospatial forecast model for tsetse-transmitted animal ...

    African Journals Online (AJOL)

    Results indicate that GIS model developed for parasitic diseases based on growing degree day (GDD) concept can be applied to tsetse-transmitted trypanosomosis. GIS for animal trypanosomosis was created using Food and Agriculture Organization – Crop Production System Zones (FAO-CPSZ) database and Normalized ...

  19. In search for animal models of female sexual dysfunction

    NARCIS (Netherlands)

    Snoeren, E.M.S.

    2010-01-01

    Female Sexual Dysfunction (FSD) is a disorder that affects around 40% of the population. Low sexual arousal and low sexual desire are the most common problems. The mechanisms underlying the disorder are still unclear. The aims of this thesis were 1) the search for animal models of FSD, 2) the

  20. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    Science.gov (United States)

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  1. Animal models for plaque rupture: a biomechanical assessment

    NARCIS (Netherlands)

    van der Heiden, Kim; Hoogendoorn, Ayla; Daemen, Mat J.; Gijsen, Frank J. H.

    2016-01-01

    Rupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque

  2. The miniature pig as an animal model in biomedical research

    Czech Academy of Sciences Publication Activity Database

    Vodička, Petr; Smetana Jr., K.; Dvořánková, B.; Emerick, T.; Xu, Y.; Ourednik, J.; Ourednik, V.; Motlík, Jan

    2005-01-01

    Roč. 1049, - (2005), s. 161-171 ISSN 0077-8923 R&D Projects: GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50450515 Keywords : animal model * stem cell * transgenic pig Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.971, year: 2005

  3. Genetic Evaluation and Ranking of Different Animal Models Using ...

    African Journals Online (AJOL)

    An animal model utilizes all relationships available in a given data set. Estimates for variance components for additive direct, additive maternal, maternal environmental and direct environmental effects, and their covariances between direct and maternal genetic effects for post weaning growth traits have been obtained with ...

  4. Modeling herbivorous animal digestive system as 3- continuous ...

    African Journals Online (AJOL)

    Modeling herbivorous animal digestive system as 3- continuous stirred tank reactor (CSTR) and 1-plug flow reactor (PFR) in series with specific reference to ... This shows the efficiency of each reactor at converting the purely lignocellulosics substrates to useful products like protein, vitamin, fatty acid and the bye-products.

  5. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model

    NARCIS (Netherlands)

    Brouwer, E.; Huitema, M. G.; Klok, P. A.; de Weerd, H.; Tervaert, J. W.; Weening, J. J.; Kallenberg, C. G.

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  6. ANTIMYELOPEROXIDASE-ASSOCIATED PROLIFERATIVE GLOMERULONEPHRITIS - AN ANIMAL-MODEL

    NARCIS (Netherlands)

    BROUWER, E; HUITEMA, MG; KLOK, PA; DEWEERD, H; TERVAERT, JWC; WEENING, JJ; KALLENBERG, CGM

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  7. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  8. Animal models for arthritis: innovative tools for prevention and treatment

    NARCIS (Netherlands)

    Kollias, G.; Papadaki, P.; Apparailly, F.; Vervoordeldonk, M.J.; Holmdahl, R.; Baumans, V.; Desaintes, C.; Di Santo, J.; Distler, J.; Garside, P.; Hegen, M.; Huizinga, T.W.J.; Jüngel, A.; Klareskog, L.; McInnes, I.; Ragoussis, I.; Schett, G.; Hart, B.t.; Tak, P.P.; Toes, R.; van den Berg, W.; Wurst, W.; Gay, S.

    2011-01-01

    The development of novel treatments for rheumatoid arthritis (RA) requires the interplay between clinical observations and studies in animal models. Given the complex molecular pathogenesis and highly heterogeneous clinical picture of RA, there is an urgent need to dissect its multifactorial nature

  9. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms.

    Science.gov (United States)

    Tuovinen, Tiina S; Kasurinen, Anne; Häikiö, Elina; Tervahauta, Arja; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. Copyright © 2015. Published by Elsevier B.V.

  10. 75 FR 54349 - Animal Models-Essential Elements To Address Efficacy Under the Animal Rule; Notice of Public...

    Science.gov (United States)

    2010-09-07

    ... the Animal Rule; Notice of Public Meeting; and Reopening of Comment Period AGENCY: Food and Drug... challenges as addressed in the draft document entitled ``Guidance for ] Industry: Animal Models--Essential Elements to Address Efficacy Under the Animal Rule'' dated January 2009 (Draft Guidance), and as related to...

  11. An Experimental Animal Model for Abdominal Fascia Healing after Surgery

    DEFF Research Database (Denmark)

    Burcharth, J; Pommergaard, H-C; Klein, M

    2013-01-01

    Background: Incisional hernia (IH) is a well-known complication after abdominal surgical procedures. The exact etiology of IH is still unknown even though many risk factors have been suggested. The aim of this study was to create an animal model of a weakly healed abdominal fascia that could...... be used to evaluate the actively healing fascia. Such an animal model may promote future research in the prevention of IH. Methods: 86 male Sprague-Dawley rats were used to establish a model involving six experiments (experiments A-F). Mechanical testing of the breaking strength of the healed fascia...... was performed by testing tissue strips from the healed fascia versus the unincised control fascia 7 and 28 days postoperatively. Results: During the six experiments a healing model was created that produced significantly weaker coherent fascia when compared with the control tissue measured in terms...

  12. Animal models of human colorectal cancer: Current status, uses and limitations.

    Science.gov (United States)

    Mittal, Vijay K; Bhullar, Jasneet Singh; Jayant, Kumar

    2015-11-07

    To make orthotopic colon cancer murine models a more clearly understood subject. The orthotopic tumor models have been found to be more relevant in replicating the human disease process as compared to heterotopic models, many techniques for making orthotopic colorectal murine models have been reported. We evaluated the current literature for various reported orthotopic colon cancer models to understand their techniques, advantages and limitations. An extensive literature review was performed by searching the National Library of Medicine Database (PubMed) using MeSH terms animal model; colon cancer; orthotopic model; murine model. Twenty studies related to colon cancer orthotopic xenograft model were evaluated in detail and discussed here. The detailed analysis of all relevant reports on orthotopic model showed tumor take rate between 42%-100%. While models using the enema technique and minimally invasive technique have reported development of tumor from mucosa with tumor take rate between 87%-100% with metastasis in 76%-90%. Over the years, the increased understanding of the murine models of human colon cancer has resulted in the development of various models. Each reported model has some limitations. These latest models have opened up new doors for continuing cancer research for not only understanding the colon cancer pathogenesis but also aid in the development of newer chemotherapeutic drugs as they mimic the human disease closely.

  13. An animal model of spontaneous metabolic syndrome: Nile grass rat

    OpenAIRE

    Noda, Kousuke; Melhorn, Mark I.; Zandi, Souska; Frimmel, Sonja; Tayyari, Faryan; Hisatomi, Toshio; Almulki, Lama; Pronczuk, Andrzej; Hayes, K. C.; Hafezi-Moghadam, Ali

    2010-01-01

    Metabolic syndrome (MetS) is a prevalent and complex disease, characterized by the variable coexistence of obesity, dyslipidemia, hyperinsulinaemia, and hypertension. The alarming rise in the prevalence of metabolic disorders makes it imperative to innovate preventive or therapeutic measures for MetS and its complications. However, the elucidation of the pathogenesis of MetS has been hampered by the lack of realistic models. For example, the existing animal models of MetS, i.e., genetically e...

  14. A review of models relevant to road safety.

    Science.gov (United States)

    Hughes, B P; Newstead, S; Anund, A; Shu, C C; Falkmer, T

    2015-01-01

    It is estimated that more than 1.2 million people die worldwide as a result of road traffic crashes and some 50 million are injured per annum. At present some Western countries' road safety strategies and countermeasures claim to have developed into 'Safe Systems' models to address the effects of road related crashes. Well-constructed models encourage effective strategies to improve road safety. This review aimed to identify and summarise concise descriptions, or 'models' of safety. The review covers information from a wide variety of fields and contexts including transport, occupational safety, food industry, education, construction and health. The information from 2620 candidate references were selected and summarised in 121 examples of different types of model and contents. The language of safety models and systems was found to be inconsistent. Each model provided additional information regarding style, purpose, complexity and diversity. In total, seven types of models were identified. The categorisation of models was done on a high level with a variation of details in each group and without a complete, simple and rational description. The models identified in this review are likely to be adaptable to road safety and some of them have previously been used. None of systems theory, safety management systems, the risk management approach, or safety culture was commonly or thoroughly applied to road safety. It is concluded that these approaches have the potential to reduce road trauma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Experimental animal model for late postradiation reaction of the colon

    International Nuclear Information System (INIS)

    Trott, K.R.

    1987-01-01

    Experimental animal model worked out in Muenchen is discussed in which late postradiation reaction in Wistar rats following local irradiation of the colon manifests itself by appearance of colonic stenoses causing death of the animal. Clinical symptoms of this reaction together with results of histopathologic examination of the excised parts of the colon localized in the irradiated area are discussed. The relationships effect-dose obtained in this system for X radiation applying different regimen of dose fractionation and different total times of irradiation are presented. 8 refs., 5 figs., 1 tab. (author)

  16. Alternative animal model for studies of total skin thickness burns

    OpenAIRE

    Andrade, Ana Laura Martins de; Parisi, Julia Risso; Brassolatti, Patrícia; Parizotto, Nivaldo Antonio

    2017-01-01

    Abstract Purpose: To present an alternative experimental model of third degree burn of easy reproducibility. Methods: Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with e...

  17. The intraportal injection model: A practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer

    International Nuclear Information System (INIS)

    Thalheimer, Andreas; Waaga-Gasser, Ana M; Otto, Christoph; Bueter, Marco; Illert, Bertram; Gattenlohner, Stefan; Gasser, Martin; Meyer, Detlef; Fein, Martin; Germer, Christoph T

    2009-01-01

    The development of new therapeutic strategies for treatment of metastasized colorectal carcinoma requires biologically relevant and adequate animal models that generate both reproducible metastasis and the dissemination of tumor cells in the form of so-called minimal residual disease (MRD), an expression of the systemic character of neoplastic disease. We injected immunoincompetent nude mice intraportally with different numbers (1 × 10 5 , 1 × 10 6 and 5 × 10 6 cells) of the human colon carcinoma cell lines HT-29 and SW-620 and investigated by histological studies and CK-20 RT-PCR the occurrence of hematogenous metastases and the dissemination of human tumor cells in bone marrow. Only the injection of 1 × 10 6 cells of each colon carcinoma cell line produced acceptable perioperative mortality with reproducible induction of hepatic metastases in up to 89% of all animals. The injection of 1 × 10 6 cells also generated tumor cell dissemination in the bone marrow in up to 63% of animals with hepatic metastases. The present intraportal injection model in immunoincompetent nude mice represents a biologically relevant and adequate animal model for the induction of both reproducible hepatic metastasis and tumor cell dissemination in the bone marrow as a sign of MRD

  18. Peripheral biomarkers in animal models of major depressive disorder.

    Science.gov (United States)

    Carboni, Lucia

    2013-01-01

    Investigations of preclinical biomarkers for major depressive disorder (MDD) encompass the quantification of proteins, peptides, mRNAs, or small molecules in blood or urine of animal models. Most studies aim at characterising the animal model by including the assessment of analytes or hormones affected in depressive patients. The ultimate objective is to validate the model to better understand the neurobiological basis of MDD. Stress hormones or inflammation-related analytes associated with MDD are frequently measured. In contrast, other investigators evaluate peripheral analytes in preclinical models to translate the results in clinical settings afterwards. Large-scale, hypothesis-free studies are performed in MDD models to identify candidate biomarkers. Other studies wish to propose new targets for drug discovery. Animal models endowed with predictive validity are investigated, and the assessment of peripheral analytes, such as stress hormones or immune molecules, is comprised to increase the confidence in the target. Finally, since the mechanism of action of antidepressants is incompletely understood, studies investigating molecular alterations associated with antidepressant treatment may include peripheral analyte levels. In conclusion, preclinical biomarker studies aid the identification of new candidate analytes to be tested in clinical trials. They also increase our understanding of MDD pathophysiology and help to identify new pharmacological targets.

  19. Malarial birds: modeling infectious human disease in animals.

    Science.gov (United States)

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  20. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  1. Animal models of enterovirus 71 infection: applications and limitations

    Science.gov (United States)

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  2. Animal models for Ebola and Marburg virus infections

    Science.gov (United States)

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  3. Animal models for Ebola and Marburg virus infections

    Directory of Open Access Journals (Sweden)

    Eri eNakayama

    2013-09-01

    Full Text Available Ebola and Marburg hemorrhagic fevers (EHF and MHF are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus, respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4 pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  4. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    Directory of Open Access Journals (Sweden)

    Roxana Ramírez-Sandoval

    2015-01-01

    Full Text Available Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO32. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  5. Transmission of Helicobacter pyori in an animal model.

    Science.gov (United States)

    Cellini, L; Marzio, L; Ferrero, G; Del Vino, A; Di Campli, E; Grossi, L; Toracchio, S; Artese, L

    2001-01-01

    An experimental murine model was studied to evaluate the orogastrointestinal colonization of Helicobacter pylori and the animal-to-animal transmission. Balb/C mice were infected with H. pylori and housed with uninoculated mice in cages with and without a grate on the floor. Mice were killed after 7, 14, 30, and 45 days, and samples from the esophagus, stomach, small intestine, colon, and rectum were analyzed for H. pylori by PCR and immunohistochemistry and for histological changes. Bacterial colonization was assessed also by culture from stomach samples. H. pylori was cultured by stomach samples of infected mice at 7, 14, and 30 days. Using PCR and immunohistochemistry, H. pylori was detected in inoculated and uninoculated mice in all areas examined, with an high percentage of positive samples in the esophagus and stomach. Moreover transmission was detected, without differences, regardless of whether mice were housed with or without a grate on the floor, supporting an orooral animal transmission.

  6. Animal models of osteogenesis imperfecta: applications in clinical research

    Directory of Open Access Journals (Sweden)

    Enderli TA

    2016-09-01

    Full Text Available Tanya A Enderli, Stephanie R Burtch, Jara N Templet, Alessandra Carriero Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA Abstract: Osteogenesis imperfecta (OI, commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin and mechanical (ie, vibrational loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients. Keywords: OI, brittle bone, clinical research, mouse, dog, zebrafish

  7. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  8. Extraction of the Relevant Delays for Temporal Modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1998-01-01

    When modelling temporal processes just like in pattern recognition, selecting the optimal number of inputs is a central concern. In this contribution, wetake advantage of specific features of temporal modelling to propose a novel method for extracting the inputs, that yield the best predictive...... performance.The method relies on the use of generalisation estimators to assess the performance of the model. This technique is first applied to time series processing,where we perform a number of experiments on synthetic data as well as a real life dataset, and compare the results to a benchmark physical...

  9. Extraction of the relevant delays for temporal modeling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    2000-01-01

    When modeling temporal processes, just like in pattern recognition, selecting the optimal number of inputs is of central concern. We take advantage of specific features of temporal modeling to propose a novel method for extracting the inputs that attempts to yield the best predictive performance....... The method relies on the use of estimators of the generalization error to assess the predictive performance of the model. This technique is first applied to time series processing, where we perform a number of experiments on synthetic data, as well as a real life dataset, and compare the results...

  10. Animal models for glucocorticoid-induced postmenopausal osteoporosis: An updated review.

    Science.gov (United States)

    Zhang, Zhida; Ren, Hui; Shen, Gengyang; Qiu, Ting; Liang, De; Yang, Zhidong; Yao, Zhensong; Tang, Jingjing; Jiang, Xiaobing; Wei, Qiushi

    2016-12-01

    Glucocorticoid-induced postmenopausal osteoporosis is a severe osteoporosis, with high risk of major osteoporotic fractures. This severe osteoporosis urges more extensive and deeper basic study, in which suitable animal models are indispensable. However, no relevant review is available introducing this model systematically. Based on the recent studies on GI-PMOP, this brief review introduces the GI-PMOP animal model in terms of its establishment, evaluation of bone mass and discuss its molecular mechanism. Rat, rabbit and sheep with their respective merits were chosen. Both direct and indirect evaluation of bone mass help to understand the bone metabolism under different intervention. The crucial signaling pathways, miRNAs, osteogenic- or adipogenic- related factors and estrogen level may be the predominant contributors to the development of glucocorticoid-induced postmenopausal osteoporosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Infantile Spasms: A Critical Review of Emerging Animal Models

    Science.gov (United States)

    Stafstrom, Carl E

    2009-01-01

    Infantile spasms is a developmental epilepsy syndrome with unique clinical and EEG features, a specific pattern of pharmacological responsiveness, and poor outcome in terms of cognition and epilepsy. Despite the devastating nature of infantile spasms, little is known about its pathogenesis. Until recently, there has been no animal model available to investigate the pathophysiology of the syndrome or to generate and test novel therapies. Now, several promising animal models have emerged, spanning the etiological spectrum from genetic causes (e.g., Down syndrome or Aristaless-related homeobox [ARX] mutation) to acquired causes (e.g., endogenous and exogenous toxins or stress hormones with convulsant activity or blockade of neural activity). These new models are discussed in this review, with emphasis on the insights each can provide for understanding, treating, and preventing infantile spasms. PMID:19471616

  12. An animal model of spontaneous metabolic syndrome: Nile grass rat.

    Science.gov (United States)

    Noda, Kousuke; Melhorn, Mark I; Zandi, Souska; Frimmel, Sonja; Tayyari, Faryan; Hisatomi, Toshio; Almulki, Lama; Pronczuk, Andrzej; Hayes, K C; Hafezi-Moghadam, Ali

    2010-07-01

    Metabolic syndrome (MetS) is a prevalent and complex disease, characterized by the variable coexistence of obesity, dyslipidemia, hyperinsulinaemia, and hypertension. The alarming rise in the prevalence of metabolic disorders makes it imperative to innovate preventive or therapeutic measures for MetS and its complications. However, the elucidation of the pathogenesis of MetS has been hampered by the lack of realistic models. For example, the existing animal models of MetS, i.e., genetically engineered rodents, imitate certain aspects of the disease, while lacking other important components. Defining the natural course of MetS in a spontaneous animal model of the disease would be desirable. Here, we introduce the Nile grass rat (NGR), Arvicanthis niloticus, as a novel model of MetS. Studies of over 1100 NGRs in captivity, fed normal chow, revealed that most of these animals spontaneously develop dyslipidemia (P<0.01), and hyperglycemia (P<0.01) by 1 yr of age. Further characterization showed that the diabetic rats develop liver steatosis, abdominal fat accumulation, nephropathy, atrophy of pancreatic islets of Langerhans, fatty streaks in the aorta, and hypertension (P<0.01). Diabetic NGRs in the early phase of the disease develop hyperinsulinemia, and show a strong inverse correlation between plasma adiponectin and HbA1c levels (P<0.01). These data indicate that the NGR is a valuable, spontaneous model for exploring the etiology and pathophysiology of MetS as well as its various complications.

  13. Transfer of elements relevant to nuclear fuel cycle from soil to boreal plants and animals in experimental meso- and microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S., E-mail: tiina.tuovinen@uef.fi [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Kasurinen, Anne; Häikiö, Elina [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Tervahauta, Arja [Department of Biology, University of Eastern Finland, P.O. Box FI-70211, Kuopio (Finland); Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2016-01-01

    Uranium (U), cobalt (Co), molybdenum (Mo), nickel (Ni), lead (Pb), thorium (Th) and zinc (Zn) occur naturally in soil but their radioactive isotopes can also be released into the environment during the nuclear fuel cycle. The transfer of these elements was studied in three different trophic levels in experimental mesocosms containing downy birch (Betula pubescens), narrow buckler fern (Dryopteris carthusiana) and Scandinavian small-reed (Calamagrostis purpurea ssp. Phragmitoides) as producers, snails (Arianta arbostorum) as herbivores, and earthworms (Lumbricus terrestris) as decomposers. To determine more precisely whether the element uptake of snails is mainly via their food (birch leaves) or both via soil and food, a separate microcosm experiment was also performed. The element uptake of snails did not generally depend on the presence of soil, indicating that the main uptake route was food, except for U, where soil contact was important for uptake when soil U concentration was high. Transfer of elements from soil to plants was not linear, i.e. it was not correctly described by constant concentration ratios (CR) commonly applied in radioecological modeling. Similar nonlinear transfer was found for the invertebrate animals included in this study: elements other than U were taken up more efficiently when element concentration in soil or food was low. - Highlights: • We studied transfer of elements in boreal food chain using meso- and microcosms. • Elements related to nuclear fuel cycle and mining were examined. • Higher uptake at lower soil concentrations was observed for primary producers. • Snails took up elements mainly from food but for U also soil was an element source. • Non-linear transfer of essential elements was observed for herbivore and decomposer.

  14. Sleep and Obesity: A focus on animal models

    Science.gov (United States)

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  15. Sex Differences in Animal Models: Focus on Addiction

    Science.gov (United States)

    Becker, Jill B.

    2016-01-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of “craving”) show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  16. Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models.

    Science.gov (United States)

    Stavropoulos, Andreas; Sculean, Anton; Bosshardt, Dieter D; Buser, Daniel; Klinge, Björn

    2015-06-01

    Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neural models on temperature regulation for cold-stressed animals

    Science.gov (United States)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  18. Large Animal Models for Foamy Virus Vector Gene Therapy

    Directory of Open Access Journals (Sweden)

    Peter A. Horn

    2012-12-01

    Full Text Available Foamy virus (FV vectors have shown great promise for hematopoietic stem cell (HSC gene therapy. Their ability to efficiently deliver transgenes to multi-lineage long-term repopulating cells in large animal models suggests they will be effective for several human hematopoietic diseases. Here, we review FV vector studies in large animal models, including the use of FV vectors with the mutant O6-methylguanine-DNA methyltransferase, MGMTP140K to increase the number of genetically modified cells after transplantation. In these studies, FV vectors have mediated efficient gene transfer to polyclonal repopulating cells using short ex vivo transduction protocols designed to minimize the negative effects of ex vivo culture on stem cell engraftment. In this regard, FV vectors appear superior to gammaretroviral vectors, which require longer ex vivo culture to effect efficient transduction. FV vectors have also compared favorably with lentiviral vectors when directly compared in the dog model. FV vectors have corrected leukocyte adhesion deficiency and pyruvate kinase deficiency in the dog large animal model. FV vectors also appear safer than gammaretroviral vectors based on a reduced frequency of integrants near promoters and also near proto-oncogenes in canine repopulating cells. Together, these studies suggest that FV vectors should be highly effective for several human hematopoietic diseases, including those that will require relatively high percentages of gene-modified cells to achieve clinical benefit.

  19. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  20. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Science.gov (United States)

    Seth J. Wenger; Charles H. Luce; Alan F. Hamlet; Daniel J. Isaak; Helen M. Neville

    2010-01-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe...

  1. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Jennifer E., E-mail: Jennifer2.May@uwe.ac.uk; Morse, H. Ruth, E-mail: Ruth.Morse@uwe.ac.uk; Xu, Jinsheng, E-mail: Jinsheng.Xu@uwe.ac.uk; Donaldson, Craig, E-mail: Craig.Donaldson@uwe.ac.uk

    2012-09-15

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  2. Development of a novel, physiologically relevant cytotoxicity model: Application to the study of chemotherapeutic damage to mesenchymal stromal cells

    International Nuclear Information System (INIS)

    May, Jennifer E.; Morse, H. Ruth; Xu, Jinsheng; Donaldson, Craig

    2012-01-01

    There is an increasing need for development of physiologically relevant in-vitro models for testing toxicity, however determining toxic effects of agents which undergo extensive hepatic metabolism can be particularly challenging. If a source of such metabolic enzymes is inadequate within a model system, toxicity from prodrugs may be grossly underestimated. Conversely, the vast majority of agents are detoxified by the liver, consequently toxicity from such agents may be overestimated. In this study we describe the development of a novel in-vitro model, which could be adapted for any toxicology setting. The model utilises HepG2 liver spheroids as a source of metabolic enzymes, which have been shown to more closely resemble human liver than traditional monolayer cultures. A co-culture model has been developed enabling the effect of any metabolised agent on another cell type to be assessed. This has been optimised to enable the study of damaging effects of chemotherapy on mesenchymal stem cells (MSC), the supportive stem cells of the bone marrow. Several optimisation steps were undertaken, including determining optimal culture conditions, confirmation of hepatic P450 enzyme activity and ensuring physiologically relevant doses of chemotherapeutic agents were appropriate for use within the model. The developed model was subsequently validated using several chemotherapeutic agents, both prodrugs and active drugs, with resulting MSC damage closely resembling effects seen in patients following chemotherapy. Minimal modifications would enable this novel co-culture model to be utilised as a general toxicity model, contributing to the drive to reduce animal safety testing and enabling physiologically relevant in-vitro study. -- Highlights: ► An in vitro model was developed for study of drugs requiring hepatic metabolism ► HepG2 spheroids were utilised as a physiologically relevant source of liver enzymes ► The model was optimised to enable study of chemotherapeutic

  3. Modelling gait transition in two-legged animals

    Science.gov (United States)

    Pinto, Carla M. A.; Santos, Alexandra P.

    2011-12-01

    The study of locomotor patterns has been a major research goal in the last decades. Understanding how intralimb and interlimb coordination works out so well in animals' locomotion is a hard and challenging task. Many models have been proposed to model animal's rhythms. These models have also been applied to the control of rhythmic movements of adaptive legged robots, namely biped, quadruped and other designs. In this paper we study gait transition in a central pattern generator (CPG) model for bipeds, the 4-cells model. This model is proposed by Golubitsky, Stewart, Buono and Collins and is studied further by Pinto and Golubitsky. We briefly resume the work done by Pinto and Golubitsky. We compute numerically gait transition in the 4-cells CPG model for bipeds. We use Morris-Lecar equations and Wilson-Cowan equations as the internal dynamics for each cell. We also consider two types of coupling between the cells: diffusive and synaptic. We obtain secondary gaits by bifurcation of primary gaits, by varying the coupling strengths. Nevertheless, some bifurcating branches could not be obtained, emphasizing the fact that despite analytically those bifurcations exist, finding them is a hard task and requires variation of other parameters of the equations. We note that the type of coupling did not influence the results.

  4. Animal models of social anxiety disorder and their validity criteria.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gender Differences in Animal Models of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Hagit Cohen

    2011-01-01

    Full Text Available Epidemiological studies report higher prevalence rates of stress-related disorders such as acute stress disorder and post-traumatic stress disorder (PTSD in women than in men following exposure to trauma. It is still not clear whether this greater prevalence in woman reflects a greater vulnerability to stress-related psychopathology. A number of individual and trauma-related characteristics have been hypothesized to contribute to these gender differences in physiological and psychological responses to trauma, differences in appraisal, interpretation or experience of threat, coping style or social support. In this context, the use of an animal model for PTSD to analyze some of these gender-related differences may be of particular utility. Animal models of PTSD offer the opportunity to distinguish between biological and socio-cultural factors, which so often enter the discussion about gender differences in PTSD prevalence.

  6. Altered glial plasticity in animal models for mood disorders.

    Science.gov (United States)

    Czéh, Boldizsár; Fuchs, Eberhard; Flügge, Gabriele

    2013-10-01

    Numerous clinical evidences support the notion that glial changes in fronto-limbic brain areas could contribute to the pathophysiology of mood disorders. Glial alterations have been reported not only in patients, but also in various kinds of animal models for depression. Molecular and cellular data suggest that all the major classes of glial cells are affected in these conditions, including astrocytes, oligodendrocytes, NG2-positive cells and microglia. The aim of this review was to summarize the currently available experimental results demonstrating alterations in glial morphology and functioning in animal models for mood disorders. Better understanding of these glial changes affecting neuronal activity could help us to identify novel targets for the development of antidepressant drugs.

  7. Cardiovascular Changes in Animal Models of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Alexandre M. Lehnen

    2013-01-01

    Full Text Available Metabolic syndrome has been defined as a group of risk factors that directly contribute to the development of cardiovascular disease and/or type 2 diabetes. Insulin resistance seems to have a fundamental role in the genesis of this syndrome. Over the past years to the present day, basic and translational research has used small animal models to explore the pathophysiology of metabolic syndrome and to develop novel therapies that might slow the progression of this prevalent condition. In this paper we discuss the animal models used for the study of metabolic syndrome, with particular focus on cardiovascular changes, since they are the main cause of death associated with the condition in humans.

  8. Animal models of tic disorders: a translational perspective.

    Science.gov (United States)

    Godar, Sean C; Mosher, Laura J; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-12-30

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  10. A novel animal model of dysphagia following stroke.

    Science.gov (United States)

    Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane

    2014-02-01

    Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.

  11. New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis

    Directory of Open Access Journals (Sweden)

    Dass Crispin R

    2010-06-01

    Full Text Available Abstract Background Chondrosarcoma responds poorly to adjuvant therapy and new, clinically relevant animal models are required to test targeted therapy. Methods Two human chondrosarcoma cell lines, JJ012 and FS090, were evaluated for proliferation, colony formation, invasion, angiogenesis and osteoclastogenesis. Cell lines were also investigated for VEGF, MMP-2, MMP-9, and RECK expression. JJ012 and FS090 were injected separately into the mouse tibia intramedullary canal or tibial periosteum. Animal limbs were measured, and x-rayed for evidence of tumour take and progression. Tibias and lungs were harvested to determine the presence of tumour and lung metastases. Results JJ012 demonstrated significantly higher proliferative capacity, invasion, and colony formation in collagen I gel. JJ012 conditioned medium stimulated endothelial tube formation and osteoclastogenesis with a greater potency than FS090 conditioned medium, perhaps related to the effects of VEGF and MMP-9. In vivo, tumours formed in intratibial and periosteal groups injected with JJ012, however no mice injected with FS090 developed tumours. JJ012 periosteal tumours grew to 3 times the non-injected limb size by 7 weeks, whereas intratibial injected limbs required 10 weeks to achieve a similar tumour size. Sectioned tumour tissue demonstrated features of grade III chondrosarcoma. All JJ012 periosteal tumours (5/5 resulted in lung micro-metastases, while only 2/4 JJ012 intratibial tumours demonstrated metastases. Conclusions The established JJ012 models replicate the site, morphology, and many behavioural characteristics of human chondrosarcoma. Local tumour invasion of bone and spontaneous lung metastasis offer valuable assessment tools to test the potential of novel agents for future chondrosarcoma therapy.

  12. Current State of Animal (Mouse Modeling in Melanoma Research

    Directory of Open Access Journals (Sweden)

    Omer F. Kuzu

    2015-01-01

    Full Text Available Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  13. NAFLD, Estrogens, and Physical Exercise: The Animal Model

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lavoie

    2012-01-01

    Full Text Available One segment of the population that is particularly inclined to liver fat accumulation is postmenopausal women. Although nonalcoholic hepatic steatosis is more common in men than in women, after menopause there is a reversal in gender distribution. At the present time, weight loss and exercise are regarded as first line treatments for NAFLD in postmenopausal women, as it is the case for the management of metabolic syndrome. In recent years, there has been substantial evidence coming mostly from the use of the animal model, that indeed estrogens withdrawal is associated with modifications of molecular markers favouring the activity of metabolic pathways ultimately leading to liver fat accumulation. In addition, the use of the animal model has provided physiological and molecular evidence that exercise training provides estrogens-like protective effects on liver fat accumulation and its consequences. The purpose of the present paper is to present information relative to the development of a state of NAFLD resulting from the absence of estrogens and the role of exercise training, emphasizing on the contribution of the animal model on these issues.

  14. Stem cells in animal asthma models: a systematic review.

    Science.gov (United States)

    Srour, Nadim; Thébaud, Bernard

    2014-12-01

    Asthma control frequently falls short of the goals set in international guidelines. Treatment options for patients with poorly controlled asthma despite inhaled corticosteroids and long-acting β-agonists are limited, and new therapeutic options are needed. Stem cell therapy is promising for a variety of disorders but there has been no human clinical trial of stem cell therapy for asthma. We aimed to systematically review the literature regarding the potential benefits of stem cell therapy in animal models of asthma to determine whether a human trial is warranted. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal asthma models. Nineteen studies were selected. They were found to be heterogeneous in their design. Mesenchymal stromal cells were used before sensitization with an allergen, before challenge with the allergen and after challenge, most frequently with ovalbumin, and mainly in BALB/c mice. Stem cell therapy resulted in a reduction of bronchoalveolar lavage fluid inflammation and eosinophilia as well as Th2 cytokines such as interleukin-4 and interleukin-5. Improvement in histopathology such as peribronchial and perivascular inflammation, epithelial thickness, goblet cell hyperplasia and smooth muscle layer thickening was universal. Several studies showed a reduction in airway hyper-responsiveness. Stem cell therapy decreases eosinophilic and Th2 inflammation and is effective in several phases of the allergic response in animal asthma models. Further study is warranted, up to human clinical trials. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Modeling DNA structure and processes through animation and kinesthetic visualizations

    Science.gov (United States)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  16. The establishment of animal model of acute massive pulmonary embolism

    International Nuclear Information System (INIS)

    Lu Junliang; Yang Ning; Yang Jianping; Ma Junshan; Zhao Shijun

    2008-01-01

    Objective: To find a way of establishing the model of acute massive pulmonary embolism in dog. Methods: Seven dogs were selected with self-clots made outside the body transferring through a 10 F guiding catheter into the central branch of pulmonary artery via the femoral vein approach on one side and then under pressure monitor of pulmonary artery until the very branch of pulmonary artery was occluded. Blood gas and pulmonary arterial pressure were tested before and after the embolization, Pulmonary artery pressure was continuously monitored together with the examinations of angiography. The bilateral lung specimens were resected for histological examination 12 hours in average after the embolization for comparative study. Results: One animal died of cardiogenic shock after clots injection; the other one presented with tachycardia and premature ventricular beat causing partial recanalization 12 h later. The others were occluded successfully in central branch of pulmonary artery and the pulmonary arterial pressure reached above 50 mmHg after occlusion. Pathologic examination showed the formation of red and mix thrombi within the vascular lumens. Conclusions: This method for making acute massive pulmonary embolism animal model was reliable, feasible and reproducible, and could provide an animal model of acute massive pulmonary embolism for other correlative experiments. (authors)

  17. Potentially toxic contamination of sediments, water and two animal species in Lake Kalimanci, FYR Macedonia: Relevance to human health

    International Nuclear Information System (INIS)

    Vrhovnik, Petra; Arrebola, Juan P.; Serafimovski, Todor; Dolenec, Tadej; Šmuc, Nastja Rogan; Dolenec, Matej; Mutch, Elaine

    2013-01-01

    The objectives of the research were: (1) to examine the concentrations of metals in Vimba melanops and Rana temporaria and (2) to evaluate the potential risks of the contaminated organisms to human health in Makedonska Kamenica region. Analyses identified high levels of Cr, Hg, Ni and Pb in studied animals, which also exceeded their permissible levels in food. In sediment and soil samples, levels of Cd, Cu, Cr, Pb, Zn and As were perceived, while Cd, Cu, Ni, Pb, Se and As were increased in water samples. Results of transfer factor revealed that the examined animals had higher bioaccumulation rate from surrounding waters than from sediments or soils. The accomplished Health Risk Index disclosed that studied animals can have considerably high health risks for inhabitants. Conclusively, they could be considered as highly contaminated with metals and can consequently harm human health, especially children in their early development stages. -- Highlights: •The study merges the accumulation of PTE in animal species, sediments, soils and water. •Correlation between different media and their impact to living organisms'. •Considerably high health risks for inhabitants. -- In the Makedonska Kamenica region had been described several potential sources of exposure therefore exists the potential threat to human health

  18. Testing flow diversion in animal models: a systematic review.

    Science.gov (United States)

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  19. Acute liver failure: a critical appraisal of available animal models.

    Science.gov (United States)

    Bélanger, Mireille; Butterworth, Roger F

    2005-12-01

    The availability of adequate experimental models of acute liver failure (ALF) is of prime importance to provide a better understanding of this condition and allow the development and testing of new therapeutic approaches for patients with ALF. However, the numerous etiologies and complications of ALF contribute to the complexity of this condition and render the development of an ideal experimental model of ALF more difficult than expected. Instead, a number of different models that may be used for the study of specific aspects of ALF have been developed. The most common approaches used to induce ALFin experimental animals are surgical procedures, toxic liver injury,or a combination of both. Despite the high prevalence of viral hepatitis worldwide, very few satisfactory viral models of ALF are available. Established and newly developed models of ALF are reviewed.

  20. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Leonardo Furlan

    2016-01-01

    Full Text Available Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.

  1. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence

    Directory of Open Access Journals (Sweden)

    Cheryl M. McCormick

    2017-02-01

    Full Text Available Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.

  2. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Science.gov (United States)

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well. PMID:26843992

  3. Comparison of digital elevation models and relevant derived attributes

    Science.gov (United States)

    Li, Xinchuan; Zhang, Youjing; Jin, Xiuliang; He, Qiaoning; Zhang, Xiuping

    2017-10-01

    The digital elevation model (DEM) and its derivative attributes are important parameters for evaluating any process using digital terrain analysis. Five freely available global DEM products including Advanced Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model version 2 (ASTER GDEM2), Shuttle Radar Topographic Mission version 4.1 (SRTM V4.1), Global Multiresolution Terrain Elevation Data 2010 (GMTED2010), EarthEnv-DEM90, and Global 30 Arc-Second Elevation (GTOPO30) were assessed in this study. The objective of this study was to compare the differences of elevations, slopes, and topographic wetness indices (TWIs) derived from these five DEM products. SRTM V4.1 showed a better accuracy [root mean square error (RMSE)=4.87 m] than ASTER GDEM2 (RMSE=7.08 m) based on ICESat/GLAS (the Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) laser altimetry points. ICESat/GLAS data were then selected as the benchmark to rectify the SRTM V4.1 data using the simple kriging (SK) interpolation method. The corrected high-accuracy SRTM V4.1 data (RMSE=1.14 m) were then regarded as the reference data. EarthEnv-DEM90 displayed the best accuracy in the DEM and slope, whereas the TWI accuracy of GMTED2010 was best. The accuracy of topographic attributes was sensitive to the roughness of the terrain. DEM and slope displayed a larger error variance as the elevation increased. DEM was sensitive to the data source and slope was sensitive to the data source and spatial resolution. TWI was influenced by data source and spatial resolution. As the spatial resolution decreased, the differences of topographic attributes tended to decrease.

  4. Melittin restores proteasome function in an animal model of ALS

    Directory of Open Access Journals (Sweden)

    Lee Sang Min

    2011-06-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a paralyzing disorder characterized by the progressive degeneration and death of motor neurons and occurs both as a sporadic and familial disease. Mutant SOD1 (mtSOD1 in motor neurons induces vulnerability to the disease through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport- and growth factor signaling, excitotoxicity, and neuro-inflammation. Melittin is a 26 amino acid protein and is one of the components of bee venom which is used in traditional Chinese medicine to inhibit of cancer cell proliferation and is known to have anti-inflammatory and anti-arthritic effects. The purpose of the present study was to determine if melittin could suppress motor neuron loss and protein misfolding in the hSOD1G93A mouse, which is commonly used as a model for inherited ALS. Meltittin was injected at the 'ZuSanLi' (ST36 acupuncture point in the hSOD1G93A animal model. Melittin-treated animals showed a decrease in the number of microglia and in the expression level of phospho-p38 in the spinal cord and brainstem. Interestingly, melittin treatment in symptomatic ALS animals improved motor function and reduced the level of neuron death in the spinal cord when compared to the control group. Furthermore, we found increased of α-synuclein modifications, such as phosphorylation or nitration, in both the brainstem and spinal cord in hSOD1G93A mice. However, melittin treatment reduced α-synuclein misfolding and restored the proteasomal activity in the brainstem and spinal cord of symptomatic hSOD1G93A transgenic mice. Our research suggests a potential functional link between melittin and the inhibition of neuroinflammation in an ALS animal model.

  5. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  6. Basic mechanisms of catastrophic epilepsy – overview from animal models

    Science.gov (United States)

    Galanopoulou, Aristea S.

    2013-01-01

    Infantile spasms are age-specific seizures of infantile epileptic encephalopathies that are usually associated with poor epilepsy and neurodevelopmental outcomes. The current treatments are not always effective and may be associated with significant side effects. Various mechanisms have been proposed as pathogenic for infantile spasms, including cortical or brainstem dysfunction, disruption of normal cortical-subcortical communications, genetic defects, inflammation, stress, developmental abnormalities. Many of these have been recently tested experimentally, resulting into the emergence of several animal models of infantile spasms. The stress theory of spasms yielded the corticotropin releasing hormone (CRH) induced model, which showed the higher proconvulsant potency of CRH in developing rats, although only limbic seizures were observed. Models of acute induction of infantile spasms in rodents include the N-methyl-D-aspartate (NMDA) model of emprosthotonic seizures, the prenatal betamethasone and prenatal stress variants of the NMDA model, and the γ-butyrolactone induced spasms in a Down’s syndrome mouse model. Chronic rodent models of infantile spasms include the tetrodotoxin model and the multiple-hit models in rats, as well as two genetic mouse models of interneuronopathies with infantile spasms due to loss of function of the aristaless X-linked homeobox related gene (ARX). This review discusses the emerging mechanisms for generation of infantile spasms and their associated chronic epileptic and dyscognitive phenotype as well as the recent progress in identifying pathways to better treat this epileptic encephalopathy. PMID:23312951

  7. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  8. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    International Nuclear Information System (INIS)

    Vamathevan, Jessica J.; Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M.; Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli; Kenny, Steve; Brown, James R.; Huxley-Jones, Julie; Lyon, Jon; Haselden, John; Min, Jiumeng; Sanseau, Philippe

    2013-01-01

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns

  9. Development of virtual hands using animation software and graphical modelling

    International Nuclear Information System (INIS)

    Oliveira, Erick da S.; Junior, Alberico B. de C.

    2016-01-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  10. Large animal models and new therapies for glycogen storage disease.

    Science.gov (United States)

    Brooks, Elizabeth D; Koeberl, Dwight D

    2015-05-01

    Glycogen storage diseases (GSD), a unique category of inherited metabolic disorders, were first described early in the twentieth century. Since then, the biochemical and genetic bases of these disorders have been determined, and an increasing number of animal models for GSD have become available. At least seven large mammalian models have been developed for laboratory research on GSDs. These models have facilitated the development of new therapies, including gene therapy, which are undergoing clinical translation. For example, gene therapy prolonged survival and prevented hypoglycemia during fasting for greater than one year in dogs with GSD type Ia, and the need for periodic re-administration to maintain efficacy was demonstrated in that dog model. The further development of gene therapy could provide curative therapy for patients with GSD and other inherited metabolic disorders.

  11. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of

  12. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  13. Understanding the Pathogenesis of Angelman Syndrome through Animal Models

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Jana

    2012-01-01

    Full Text Available Angelman syndrome (AS is a neurodevelopmental disorder characterized by severe mental retardation, lack of speech, ataxia, susceptibility to seizures, and unique behavioral features such as easily provoked smiling and laughter and autistic features. The disease is primarily caused by deletion or loss-of-function mutations of the maternally inherited UBE3A gene located within chromosome 15q11-q13. The UBE3A gene encodes a 100 kDa protein that functions as ubiquitin ligase and transcriptional coactivator. Emerging evidence now indicates that UBE3A plays a very important role in synaptic function and in regulation of activity-dependent synaptic plasticity. A number of animal models for AS have been generated to understand the disease pathogenesis. The most widely used model is the UBE3A-maternal-deficient mouse that recapitulates most of the essential features of AS including cognitive and motor abnormalities. This paper mainly discusses various animal models of AS and how these models provide fundamental insight into understanding the disease biology for potential therapeutic intervention.

  14. Understanding the Pathogenesis of Angelman Syndrome through Animal Models

    Science.gov (United States)

    Jana, Nihar Ranjan

    2012-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe mental retardation, lack of speech, ataxia, susceptibility to seizures, and unique behavioral features such as easily provoked smiling and laughter and autistic features. The disease is primarily caused by deletion or loss-of-function mutations of the maternally inherited UBE3A gene located within chromosome 15q11-q13. The UBE3A gene encodes a 100 kDa protein that functions as ubiquitin ligase and transcriptional coactivator. Emerging evidence now indicates that UBE3A plays a very important role in synaptic function and in regulation of activity-dependent synaptic plasticity. A number of animal models for AS have been generated to understand the disease pathogenesis. The most widely used model is the UBE3A-maternal-deficient mouse that recapitulates most of the essential features of AS including cognitive and motor abnormalities. This paper mainly discusses various animal models of AS and how these models provide fundamental insight into understanding the disease biology for potential therapeutic intervention. PMID:22830052

  15. Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals.

    Science.gov (United States)

    Balasubramanian, Sriram; Peters, James R; Robinson, Lucy F; Singh, Anita; Kent, Richard W

    2016-12-01

    Based on the structural anatomy, loading condition and range of motion (ROM), no quadruped animal has been shown to accurately mimic the structure and biomechanical function of the human spine. The objective of this study is to quantify the thoracic vertebrae geometry of the kangaroo, and compare with adult human, pig, sheep, and deer. The thoracic vertebrae (T1-T12) from whole body CT scans of ten juvenile kangaroos (ages 11-14 months) were digitally reconstructed and geometric dimensions of the vertebral bodies, endplates, pedicles, spinal canal, processes, facets and intervertebral discs were recorded. Similar data available in the literature on the adult human, pig, sheep, and deer were compared to the kangaroo. A non-parametric trend analysis was performed. Thoracic vertebral dimensions of the juvenile kangaroo were found to be generally smaller than those of the adult human and quadruped animals. The most significant (p human and kangaroo were in vertebrae and endplate dimensions (0.951 ≤ Rho ≤ 0.963), pedicles (0.851 ≤ Rho ≤ 0.951), and inter-facet heights (0.891 ≤ Rho ≤ 0.967). The deer displayed the least similar trends across vertebral levels. Similarities in thoracic spine vertebral geometry, particularly of the vertebrae, pedicles and facets may render the kangaroo a more clinically relevant human surrogate for testing spinal implants. The pseudo-biped kangaroo may also be a more suitable model for the human thoracic spine for simulating spine deformities, based on previously published similarities in biomechanical loading, posture and ROM.

  16. Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light.

    Science.gov (United States)

    Aarons, Alexandra R; Talan, Amanda; Schiffer, Wynne K

    2012-01-01

    Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior.

  17. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  18. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  19. Prebiotic effect of Agave fourcroydes fructans: an animal model.

    Science.gov (United States)

    García-Curbelo, Yanelys; Bocourt, Ramón; Savón, Lourdes L; García-Vieyra, Maria Isabel; López, Mercedes G

    2015-09-01

    The use of prebiotics such as fructans has increased in human and animal nutrition because of their productive performance and health benefits. Agave fourcroydes has shown high concentrations of fructans in their stems; however, there is no information on new products derived from this plant that might enhance its added value. Therefore, we evaluated the prebiotic effect of Agave fourcroydes fructans in an animal model. Male mice (C57BL/6J) were fed on parallel form with a standard diet or diets supplemented with 10% of fructans from Cichorium intybus (Raftilose P95) and Agave fourcroydes from Cuba for 35 days. The body weight, food intake, blood glucose, triglycerides and cholesterol, gastrointestinal organ weights, fermentation indicators in cecal and colon contents and mineral content in femurs were determined. The body weight and food intake of mice were not significantly modified by any treatment. However, serum glucose, cholesterol and triglycerides decreased (P Agave fourcroydes in the mice diet induced a prebiotic response, similar to or greater than the commercial product (Raftilose P95) and this constitutes a promising alternative with potential use not only in animal but also in human diets.

  20. Using computational and mechanical models to study animal locomotion.

    Science.gov (United States)

    Miller, Laura A; Goldman, Daniel I; Hedrick, Tyson L; Tytell, Eric D; Wang, Z Jane; Yen, Jeannette; Alben, Silas

    2012-11-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms' performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: "Integrating living and physical systems."

  1. Navigational efficiency in a biased and correlated random walk model of individual animal movement.

    Science.gov (United States)

    Bailey, Joseph D; Wallis, Jamie; Codling, Edward A

    2018-01-01

    Understanding how an individual animal is able to navigate through its environment is a key question in movement ecology that can give insight into observed movement patterns and the mechanisms behind them. Efficiency of navigation is important for behavioral processes at a range of different spatio-temporal scales, including foraging and migration. Random walk models provide a standard framework for modeling individual animal movement and navigation. Here we consider a vector-weighted biased and correlated random walk (BCRW) model for directed movement (taxis), where external navigation cues are balanced with forward persistence. We derive a mathematical approximation of the expected navigational efficiency for any BCRW of this form and confirm the model predictions using simulations. We demonstrate how the navigational efficiency is related to the weighting given to forward persistence and external navigation cues, and highlight the counter-intuitive result that for low (but realistic) levels of error on forward persistence, a higher navigational efficiency is achieved by giving more weighting to this indirect navigation cue rather than direct navigational cues. We discuss and interpret the relevance of these results for understanding animal movement and navigation strategies. © 2017 by the Ecological Society of America.

  2. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection.

    Science.gov (United States)

    Rampton, Melanie; Walton, Shelley F; Holt, Deborah C; Pasay, Cielo; Kelly, Andrew; Currie, Bart J; McCarthy, James S; Mounsey, Kate E

    2013-01-01

    No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8-16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.

  3. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection.

    Directory of Open Access Journals (Sweden)

    Melanie Rampton

    Full Text Available No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA. Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8-16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.

  4. Animal model for endoscopic neurosurgical training: technical note.

    Science.gov (United States)

    Fernandez-Miranda, J C; Barges-Coll, J; Prevedello, D M; Engh, J; Snyderman, C; Carrau, R; Gardner, P A; Kassam, A B

    2010-10-01

    The learning curve for endonasal endoscopic and neuroendoscopic port surgery is long and often associated with an increase in complication rates as surgeons gain experience. We present an animal model for laboratory training aiming to encourage the young generation of neurosurgeons to pursue proficiency in endoscopic neurosurgical techniques. 20 Wistar rats were used as models. The animals were introduced into a physical trainer with multiple ports to carry out fully endoscopic microsurgical procedures. The vertical and horizontal dimensions of the paired ports (simulated nostrils) were: 35×20 mm, 35×15 mm, 25×15 mm, and 25×10 mm. 2 additional single 11.5 mm endoscopic ports were added. Surgical depth varied as desired between 8 and 15 cm. The cervical and abdominal regions were the focus of the endoscopic microsurgical exercises. The different endoscopic neurosurgical techniques were effectively trained at the millimetric dimension. Levels of progressive surgical difficulty depending upon the endoneurosurgical skills set needed for a particular surgical exercise were distinguished. LEVEL 1 is soft-tissue microdissection (exposure of cervical muscular plane and retroperitoneal space); LEVEL 2 is soft-tissue-vascular and vascular-capsule microdissection (aorto-cava exposure, carotid sheath opening, external jugular vein isolation); LEVEL 3 is artery-nerve microdissection (carotid-vagal separation); LEVEL 4 is artery-vein microdissection (aorto-cava separation); LEVEL 5 is vascular repair and microsuturing (aortic rupture), which verified the lack of current proper instrumentation. The animal training model presented here has the potential to shorten the length of the learning curve in endonasal endoscopic and neuroendoscopic port surgery and reduce the incidence of training-related surgical complications. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Studying human respiratory disease in animals--role of induced and naturally occurring models.

    Science.gov (United States)

    Williams, Kurt; Roman, Jesse

    2016-01-01

    Respiratory disorders like asthma, emphysema, and pulmonary fibrosis affect millions of Americans and many more worldwide. Despite advancements in medical research that have led to improved understanding of the pathophysiology of these conditions and sometimes to new therapeutic interventions, these disorders are for the most part chronic and progressive; current interventions are not curative and do not halt disease progression. A major obstacle to further advancements relates to the absence of animal models that exactly resemble the human condition, which delays the elucidation of relevant mechanisms of action, the unveiling of biomarkers of disease progression, and identification of new targets for intervention in patients. There are currently many induced animal models of human respiratory disease available for study, and even though they mimic features of human disease, discoveries in these models have not always translated into safe and effective treatments in humans. A major obstacle relates to the genetic, anatomical, and functional variations amongst species, which represents the major challenge to overcome when searching for appropriate models of respiratory disease. Nevertheless, rodents, in particular mice, have become the most common species used for experimentation, due to their relatively low cost, size, and adequate understanding of murine genetics, among other advantages. Less well known is the fact that domestic animals also suffer from respiratory illnesses similar to those found in humans. Asthma, bronchitis, pneumonia, and pulmonary fibrosis are among the many disorders occurring naturally in dogs, cats, and horses, among other species. These models might better resemble the human condition and are emphasized here, but further investigations are needed to determine their relevance. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. The temporal-relevance temporal-uncertainty model of prospective duration judgment.

    Science.gov (United States)

    Zakay, Dan

    2015-12-15

    A model aimed at explaining prospective duration judgments in real life settings (as well as in the laboratory) is presented. The model is based on the assumption that situational meaning is continuously being extracted by humans' perceptual and cognitive information processing systems. Time is one of the important dimensions of situational meaning. Based on the situational meaning, a value for Temporal Relevance is set. Temporal Relevance reflects the importance of temporal aspects for enabling adaptive behavior in a specific moment in time. When Temporal Relevance is above a certain threshold a prospective duration judgment process is evoked automatically. In addition, a search for relevant temporal information is taking place and its outcomes determine the level of Temporal Uncertainty which reflects the degree of knowledge one has regarding temporal aspects of the task to be performed. The levels of Temporal Relevance and Temporal Uncertainty determine the amount of attentional resources allocated for timing by the executive system. The merit of the model is in connecting timing processes with the ongoing general information processing stream. The model rests on findings in various domains which indicate that cognitive-relevance and self-relevance are powerful determinants of resource allocation policy. The feasibility of the model is demonstrated by analyzing various temporal phenomena. Suggestions for further empirical validation of the model are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Utility of Small Animal Models of Developmental Programming.

    Science.gov (United States)

    Reynolds, Clare M; Vickers, Mark H

    2018-01-01

    Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.

  8. Thymoma related myasthenia gravis in humans and potential animal models.

    Science.gov (United States)

    Marx, Alexander; Porubsky, Stefan; Belharazem, Djeda; Saruhan-Direskeneli, Güher; Schalke, Berthold; Ströbel, Philipp; Weis, Cleo-Aron

    2015-08-01

    Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Validity and Variability of Animal Models Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Saghiri

    2015-01-01

    Full Text Available Background: Animal models have contributed to dental literature for several decades. The major aim of this review was to outline tooth development stages in mice, and attempt to addressing potential strain differences. A literature review was performed using electronic and hand-searching methods for the animal models in dentistry with special emphasis on mice and dentistry. Root canal development in both C57BL/6 and BALB/c strains were investigated. There are a number of published reports regarding the morphogenesis and molecular reaction and maturation stages of mice molars. We observed some similarity between the mice and human odontegeneis as primary factor for tooth development. Although mice may present some technical challenges, including the small size of the mouse molars, they have similar stages as humans for molar development, and can be used to monitor the effects of various biomaterials, regeneration, and remodeling. Thus, mice provide an ideal alternative model to study developmental and regenerative processes in dentistry.

  10. Fuzzy classification of phantom parent groups in an animal model

    Directory of Open Access Journals (Sweden)

    Fikse Freddy

    2009-09-01

    Full Text Available Abstract Background Genetic evaluation models often include genetic groups to account for unequal genetic level of animals with unknown parentage. The definition of phantom parent groups usually includes a time component (e.g. years. Combining several time periods to ensure sufficiently large groups may create problems since all phantom parents in a group are considered contemporaries. Methods To avoid the downside of such distinct classification, a fuzzy logic approach is suggested. A phantom parent can be assigned to several genetic groups, with proportions between zero and one that sum to one. Rules were presented for assigning coefficients to the inverse of the relationship matrix for fuzzy-classified genetic groups. This approach was illustrated with simulated data from ten generations of mass selection. Observations and pedigree records were randomly deleted. Phantom parent groups were defined on the basis of gender and generation number. In one scenario, uncertainty about generation of birth was simulated for some animals with unknown parents. In the distinct classification, one of the two possible generations of birth was randomly chosen to assign phantom parents to genetic groups for animals with simulated uncertainty, whereas the phantom parents were assigned to both possible genetic groups in the fuzzy classification. Results The empirical prediction error variance (PEV was somewhat lower for fuzzy-classified genetic groups. The ranking of animals with unknown parents was more correct and less variable across replicates in comparison with distinct genetic groups. In another scenario, each phantom parent was assigned to three groups, one pertaining to its gender, and two pertaining to the first and last generation, with proportion depending on the (true generation of birth. Due to the lower number of groups, the empirical PEV of breeding values was smaller when genetic groups were fuzzy-classified. Conclusion Fuzzy

  11. From animal models to human disease: a genetic approach for personalized medicine in ALS.

    Science.gov (United States)

    Picher-Martel, Vincent; Valdmanis, Paul N; Gould, Peter V; Julien, Jean-Pierre; Dupré, Nicolas

    2016-07-11

    Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.

  12. Shigella vaccine development: prospective animal models and current status.

    Science.gov (United States)

    Kim, Yeon-Jeong; Yeo, Sang-Gu; Park, Jae-Hak; Ko, Hyun-Jeong

    2013-01-01

    Shigella was first discovered in 1897 and is a major causative agent of dysenteric diarrhea. The number of affected patients has decreased globally because of improved sanitary conditions; however, Shigella still causes serious problems in many subjects, including young children and the elderly, especially in developing countries. Although antibiotics may be effective, a vaccine would be the most powerful solution to combat shigellosis because of the emergence of drug-resistant strains. However, the development of a vaccine is hampered by several problems. First, there is no suitable animal model that can replace human-based studies for the investigation of the in vivo mechanisms of Shigella vaccines. Mouse, guinea pig, rat, rabbit, and nonhuman primates could be used as models for shigellosis, but they do not represent human shigellosis and each has its own weaknesses. However, a recent murine model based on peritoneal infection with virulent S. flexneri 2a is promising. Moreover, although the inflammatory responses and mechanisms such as pathogenassociated molecular patterns and danger-associated molecular patterns have been studied, the pathology and immunology of Shigella are still not clearly defined. Despite these obstacles, many vaccine candidates have been developed, including live attenuated, killed whole cells, conjugated, and subunit vaccines. The development of Shigella vaccines also demands considerations of the cost, routes of administration, ease of storage (stability), cross-reactivity, safety, and immunogenicity. The main aim of this review is to provide a detailed introduction to the many promising vaccine candidates and animal models currently available, including the newly developed mouse model.

  13. The animal model determines the results of Aeromonas virulence factors

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2016-10-01

    Full Text Available The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of A. hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analysed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1∆vapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild type. Variations between models were evidenced using the AH-1∆rmlB, which lacks the O-antigen lipopolysaccharide (LPS, and the AH-1∆wahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim and the AH-1::motX (non-motile but producing flagella. They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study

  14. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  15. Tissue and Animal Models of Sudden Cardiac Death

    Science.gov (United States)

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Houser, Steven R.; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD. PMID:26044252

  16. Animal Models of Schizophrenia with a Focus on Models Targeting NMDA Receptors

    Czech Academy of Sciences Publication Activity Database

    Svojanovská, Markéta; Stuchlík, Aleš

    2015-01-01

    Roč. 4, č. 1 (2015), s. 3-18 ISSN 1805-7225 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : schizophrenia * animal models * pharmacological models * genetic models * neurodevelopmental models * preclinical studies Subject RIV: FH - Neurology

  17. Old and new synthetic cannabinoids: lessons from animal models.

    Science.gov (United States)

    Zanda, Mary Tresa; Fattore, Liana

    2018-02-01

    Synthetic cannabinoids have long been studied for their therapeutic potentials. However, during the last decade, new generations of synthetic cannabinoid agonists appeared on the drug market. These new psychoactive substances are currently sold as 'marijuana-like' products as they claim to mimic the effects of the psychoactive component of cannabis, delta-9-tetrahydrocannabinol (THC). Yet, their effects are more intense and potent than THC, typically last longer and are often associated to serious psychiatric consequences. Animal models of drug addiction are frequently used in preclinical research to assess the abuse potential of new compounds, evaluate drug positive reinforcing effects and analyze drug-induced behaviors. Some of these protocols have been used recently to study the newly synthesized cannabinoid agonists and have started elucidating their pharmacology and actions in the brain. The aim of this review is to summarize the major findings reported by animal studies that tested synthetic cannabinoids of first, second, and third generation by using self-administration and reinstatement models, drug discrimination and conditioned place preference procedures. Altogether, behavioral studies clearly indicate that synthetic cannabinoids possess abuse liability, are likely to activate the brain reward circuit and induce positive subjective and reinforcing effects.

  18. Cytokine networks in animal models of colitis-associated cancer.

    Science.gov (United States)

    Antoniou, Efstathios; Margonis, Georgios Antonios; Angelou, Anastasios; Zografos, George C; Pikoulis, Emmanouil

    2015-01-01

    It is well-known that inflammatory bowel disease (IBD) poses an increased, yet not definitely estimated, risk of colitis-associated colon cancer (CAC), which is considered a more aggressive and distinct in both genetic and molecular levels clinical entity compared to sporadic colorectal cancer (CRC). The present review discusses the cytokine networks involved in CAC-based translational findings from suitable animal models of the disease. Moreover, we summarize the most prominent data concerning the role of Th1, Th2, Th17 and anti-inflammatory cytokines in the pathogenesis of CAC. Last, we briefly address the controversies between basic science findings in IBD and CAC and suggest further directions regarding research on cytokines. This review should serve as a primer for clinicians and surgeons to understand the rapidly evolving field of cytokines in the context of CAC. The MEDLINE database was thoroughly searched using the keywords: cytokines, colitis-associated cancer, animal models, carcinogenesis. Additional articles were gathered and evaluated. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Experimental animal data and modeling of late somatic effects

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable

  20. Minimally invasive resynchronization pacemaker: a pediatric animal model.

    Science.gov (United States)

    Jordan, Christopher P; Wu, Kyle; Costello, John P; Ishibashi, Nobuyuki; Krieger, Axel; Kane, Timothy D; Kim, Peter; Berul, Charles I

    2013-12-01

    We developed a minimally invasive epicardial pacemaker implantation method for infants and congenital heart disease patients for whom a transvenous approach is contraindicated. The piglet is an ideal model for technical development. In 5 piglets we introduced a needle through subxiphoid approach under thoracoscopic guidance, inserting a wire into the pericardial space. Pacing leads were affixed to the left ventricular free wall and left atrial appendage. After verifying functionality with atrial and ventricular pacing and sensing, animals were euthanized. Pacemaker monitoring occurred daily for 4 days in the fifth animal. Through minimally invasive pericardial access, we directly visualized and fixated pacing leads to the left ventricle and left atrial appendage, successfully pacing atrium and ventricle. Epicardial structures were visualized. One piglet had contralateral pneumothorax, which resolved with needle decompression. No other adverse events occurred. Minimally invasive epicardial pacemaker implantation in an infant model is feasible and effective. This innovation may be of value for pacing and resynchronization in infants and congenital heart disease patients. Survival studies with permanent generator implantation are under way. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Ocular Manifestations of Alzheimer’s Disease in Animal Models

    Directory of Open Access Journals (Sweden)

    Miles Parnell

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia, and the pathological changes of senile plaques (SPs and neurofibrillary tangles (NFTs in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an extension of the brain; the retina. Due to the optically transparent nature of the eye, it is possible to image the retina at a cellular level noninvasively and thus potentially allow an earlier diagnosis as well as a way of monitoring progression and treatment effects. Transgenic animal models expressing amyloid precursor protein (APP presenilin (PS and tau mutations have been used successfully to recapitulate the pathological findings of AD in the brain. This paper will cover the ocular abnormalities that have been detected in these transgenic AD animal models.

  2. Experimental animal data and modeling of late somatic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1988-01-01

    This section is restricted to radiation-induced life shortening and cancer and mainly to studies with external radiation. The emphasis will be on the experimental data that are available and the experimental systems that could provide the type of data with which to either formulate or test models. Genetic effects which are of concern are not discussed in this section. Experimental animal radiation studies fall into those that establish general principles and those that demonstrate mechanisms. General principles include the influence of dose, radiation quality, dose rate, fractionation, protraction and such biological factors as age and gender. The influence of these factors are considered as general principles because they are independent, at least qualitatively, of the species studied. For example, if an increase in the LET of the radiation causes an increased effectiveness in cancer induction in a mouse a comparable increase in effectiveness can be expected in humans. Thus, models, whether empirical or mechanistic, formulated from experimental animal data should be generally applicable.

  3. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Francesca Sciandra

    2015-01-01

    Full Text Available In skeletal muscle, dystroglycan (DG is the central component of the dystrophin-glycoprotein complex (DGC, a multimeric protein complex that ensures a strong mechanical link between the extracellular matrix and the cytoskeleton. Several muscular dystrophies arise from mutations hitting most of the components of the DGC. Mutations within the DG gene (DAG1 have been recently associated with two forms of muscular dystrophy, one displaying a milder and one a more severe phenotype. This review focuses specifically on the animal (murine and others model systems that have been developed with the aim of directly engineering DAG1 in order to study the DG function in skeletal muscle as well as in other tissues. In the last years, conditional animal models overcoming the embryonic lethality of the DG knock-out in mouse have been generated and helped clarifying the crucial role of DG in skeletal muscle, while an increasing number of studies on knock-in mice are aimed at understanding the contribution of single amino acids to the stability of DG and to the possible development of muscular dystrophy.

  4. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  5. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  6. Behavior of lyophilized biological valves in a chronic animal model.

    Science.gov (United States)

    Maizato, Marina J S; Taniguchi, Fabio P; Ambar, Rafael F; Pitombo, Ronaldo N M; Leirner, Adolfo A; Cestari, Idágene A; Stolf, Noedir A G

    2013-11-01

    Glutaraldehyde is used in order to improve the mechanical and immunogenic properties of biological tissues, such as bovine pericardium membranes, used to manufacture heart valve bioprostheses. Lyophilization, also known as freeze-drying, preserves biological material without damage by freezing the water content and removing ice by sublimation. Through this process, dehydrated products of high quality may be obtained; also, the material may be easily handled. The lyophilization process reduces aldehyde residues in biological tissue previously treated with glutaraldehyde, thus promoting reduction of cytotoxicity, increasing resistance to inflammation, and possibly decreasing the potential for tissue calcification. The objective of this study was to chronically evaluate the calcification of bovine pericardium heart valve prostheses, previously lyophilized or not, in an animal model. Six-month-old sheep received implants of lyophilized and unlyophilized heart valve prostheses in the pulmonary position with right bypass. The study followed 16 animals for a period of 90 days. Right ventricle-pulmonary artery (RV/PA) transvalvular pressure gradient was evaluated before and immediately after implantation and before explantation, as were tissue calcium, inflammation intensity, and thrombosis and pannus formation. The t-test was used for statistical analysis. Twelve animals survived to the end of the experiment, but one of the animals in the control group had endocarditis and was excluded from the data. Four animals died early. The mean RV/PA gradient on implantation was 2.0 ± 1.6 mm Hg in the control group and 6.2 ± 4.1 mm Hg in the lyophilized group (P = 0.064). This mean gradient increased at explantation to 7.7 ± 3.9 mm Hg and 8.6 ± 5.8 mm Hg, respectively (P = 0.777). The average calcium content in the tissue leaflets after 3 months was 21.6 ± 39.1 mg Ca(2+)/g dry weight in the control group, compared with an average content of 41.2 ± 46.9 mg Ca(2+)/g dry weight

  7. Animal Models of Peritoneal Dialysis: Thirty Years of Our Own Experience

    Science.gov (United States)

    Baum, Ewa; Schwermer, Krzysztof; Hoppe, Krzysztof; Lindholm, Bengt; Breborowicz, Andrzej

    2015-01-01

    Experimental animal models improve our understanding of technical problems in peritoneal dialysis PD, and such studies contribute to solving crucial clinical problems. We established an acute and chronic PD model in nonuremic and uremic rats. We observed that kinetics of PD in rats change as the animals are aging, and this effect is due not only to an increasing peritoneal surface area, but also to changes in the permeability of the peritoneum. Changes of the peritoneal permeability seen during chronic PD in rats are comparable to results obtained in humans treated with PD. Effluent dialysate can be drained repeatedly to measure concentration of various bioactive molecules and to correlate the results with the peritoneal permeability. Additionally we can study in in vitro conditions properties of the effluent dialysate on cultured peritoneal mesothelial cells or fibroblasts. We can evaluate acute and chronic effect of various additives to the dialysis fluid on function and permeability of the peritoneum. Results from such study are even more relevant to the clinical scenario when experiments are performed in uremic rats. Our experimental animal PD model not only helps to understand the pathophysiology of PD but also can be used for testing biocompatibility of new PD fluids. PMID:26236720

  8. Neuronal changes after chronic high blood pressure in animal models and its implication for vascular dementia.

    Science.gov (United States)

    Flores, Gonzalo; Flores-Gómez, Gabriel D; de Jesús Gomez-Villalobos, Ma

    2016-05-01

    Vascular dementia is a devastating disorder not only for the patient, but also for the family because this neurocognitive disorder breaks the patient's independence, and leads to family care of the patient with a high cost for the family. This complex disorder alters memory, learning, judgment, emotional control and social behavior and affects 4% of the elderly world population. The high blood pressure or arterial hypertension is a major risk factor for cerebrovascular disease, which in most cases leads to vascular dementia. Interestingly, this neurocognitive disorder starts after long lasting hypertension, which is associated with reduced cerebral blood flow or hypoperfusion, and complete or incomplete ischemia with cortical thickness. Animal models have been generated to elucidate the pathophysiology of this disorder. It is known that dendritic complexity determines the receptive synaptic contacts, and the loss of dendritic spine and arbor stability are strongly associated with dementia in humans. This review evaluates relevant data of human and animal models that have investigated the link between long-lasting arterial hypertension and neural morphological changes in the context of vascular dementia. We examined the effect of chronic arterial hypertension and aged in vascular dementia. Neural dendritic morphology in the prefrontal cortex and the dorsal hippocampus and nucleus accumbens after chronic hypertension was diskussed in the animal models of hypertension. Chronic hypertension reduced the dendritic length and spine density in aged rats. © 2016 Wiley Periodicals, Inc.

  9. Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs, but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models.

  10. Nicotine addiction: studies about vulnerability, epigenesis and animal models

    Directory of Open Access Journals (Sweden)

    Bernabeu, Ramon

    2013-07-01

    Full Text Available This article is a summary about the current research of nicotine effects on the nervous system and its relationship to the generation of an addictive behavior. Like other drugs of abuse, nicotine activates the reward pathway, which in turn is involved in certain psychiatric diseases. There are individuals who have a high vulnerability to nicotine addiction. This may be due to genetic and epigenetic factors and/or the environment. In this review, we described some epigenetic factors that may be involved in those phenomena. The two animal models most widely used for studying the reinforcing effects of nicotine are: self-administration and conditioning place preference (CPP. Here, we emphasized the CPP, due to its potential application in humans. In addition, we described the locomotor activity model (as a measure of psychostimulant effects to study vulnerability to drugs of abuse

  11. Learning from Animal Models of Obsessive-Compulsive Disorder

    Science.gov (United States)

    Monteiro, Patricia; Feng, Guoping

    2015-01-01

    Obsessive-Compulsive Disorder (OCD) affects 2–3% of the worldwide population and can cause significant distress and disability to its sufferers. Substantial challenges remain in the field of OCD research and therapeutics. Approved interventions only partially alleviate symptoms, with 30–40% of patients being resistant to treatment. Research evidence points towards the involvement of cortico-striato-thalamocortical circuitry (CSTC) although OCD’s etiology is still unknown. This review will focus on the most recent behavior, genetics and neurophysiological findings from animal models of OCD. Based on evidence from these models and parallels with human studies, we discuss the circuit hyperactivity hypothesis for OCD, a potential circuitry dysfunction of action termination, and the involvement of candidate genes. Adding a more biologically-valid framework to OCD will help us define and test new hypotheses and facilitate the development of targeted therapies based on disease-specific mechanisms. PMID:26037910

  12. Relevance of the Kübler-Ross model to the post-injury responses of ...

    African Journals Online (AJOL)

    Relevance of the Kübler-Ross model to the post-injury responses of competitive athletes. J van der Poel, P Nel. Abstract. Attempts to explain and/or predict the post-injury responses of competitive athletes have relied upon current models of grief. Kübler-Ross's stage model (1969) has been particularly popular among sports ...

  13. Political economy models and agricultural policy formation : empirical applicability and relevance for the CAP

    NARCIS (Netherlands)

    Zee, van der F.A.

    1997-01-01

    This study explores the relevance and applicability of political economy models for the explanation of agricultural policies. Part I (chapters 4-7) takes a general perspective and evaluates the empirical applicability of voting models and interest group models to agricultural policy

  14. Highly Relevant Mentoring (HRM) as a Faculty Development Model for Web-Based Instruction

    Science.gov (United States)

    Carter, Lorraine; Salyers, Vincent; Page, Aroha; Williams, Lynda; Albl, Liz; Hofsink, Clarence

    2012-01-01

    This paper describes a faculty development model called the highly relevant mentoring (HRM) model; the model includes a framework as well as some practical strategies for meeting the professional development needs of faculty who teach web-based courses. The paper further emphasizes the need for faculty and administrative buy-in for HRM and…

  15. Large Animal Stroke Models vs. Rodent Stroke Models, Pros and Cons, and Combination?

    Science.gov (United States)

    Cai, Bin; Wang, Ning

    2016-01-01

    Stroke is a leading cause of serious long-term disability worldwide and the second leading cause of death in many countries. Long-time attempts to salvage dying neurons via various neuroprotective agents have failed in stroke translational research, owing in part to the huge gap between animal stroke models and stroke patients, which also suggests that rodent models have limited predictive value and that alternate large animal models are likely to become important in future translational research. The genetic background, physiological characteristics, behavioral characteristics, and brain structure of large animals, especially nonhuman primates, are analogous to humans, and resemble humans in stroke. Moreover, relatively new regional imaging techniques, measurements of regional cerebral blood flow, and sophisticated physiological monitoring can be more easily performed on the same animal at multiple time points. As a result, we can use large animal stroke models to decrease the gap and promote translation of basic science stroke research. At the same time, we should not neglect the disadvantages of the large animal stroke model such as the significant expense and ethical considerations, which can be overcome by rodent models. Rodents should be selected as stroke models for initial testing and primates or cats are desirable as a second species, which was recommended by the Stroke Therapy Academic Industry Roundtable (STAIR) group in 2009.

  16. Gastroprotective activity of Zanthoxylum rhoifolium Lam. in animal models.

    Science.gov (United States)

    Freitas, F F B P; Fernandes, H B; Piauilino, C A; Pereira, S S; Carvalho, K I M; Chaves, M H; Soares, P M G; Miura, L M C V; Leite, J R S A; Oliveira, R C M; Oliveira, F A

    2011-09-01

    The stem barks of Zanthoxylum rhoifolium Lam. (Rutaceae), locally known as "mamica de cadela", are popularly used in dyspepsies, stomachic, tonic, antitumoral, antipyretic and are used in treating flatulence and colic. The objective of this study was to evaluate the gastroprotective effect of the ethanolic extract of Zanthoxylum rhoifolium (EEZR) stem barks in acute gastric lesion models, investigating their possible mechanisms. Mice were used for the evaluation of the acute toxicity, and mice and rats to study the gastroprotective activity. The gastroprotective action of EEZR was analyzed in the absolute ethanol, HCl/ethanol and indomethacin-induced gastric lesion models in mice, hypothermic-restraint stress, and ischemia/reperfusion in rats. In the investigation of the gastroprotective mechanisms of EEZR, the participation of the NO-synthase pathway, ATP-sensitive potassium channels (K(ATP)), the levels of the non-protein sulfhydril groups (NP-SH) and the catalase activity using the ethanol-induced gastric mucosa lesion model and the quantification of the gastric mucus and the antisecretory activity through pylorus ligature model in rats were analyzed. The animals did not present any signs of acute toxicity for the EEZR (up to the 4 g/kg dose, po), and it was not possible to calculate the DL(50). EEZR (125-500 mg/kg) exhibited a significant gastroprotective effect in absolute ethanol, HCl/ethanol, hypothermic-restraint stress, and ischemia/reperfusion-induced gastric lesion models. EEZR (250 and 500 mg/kg) exhibited still a gastroprotective activity in the indomethacin-induced ulcer model. Gastroprotection of EEZR was significantly decreased in pre-treated mice with l-NAME or glibenclamide, the respective nitric oxide synthase and K(ATP) channels inhibitors. Our studies revealed that EEZR (500 mg/kg) prevented the decrease of the non-protein sulfhydril groups (NP-SH) and increased the catalase levels in ethanol-treated animals. Furthermore, the extract (500 mg

  17. Is it acceptable to use animals to model obese humans?

    DEFF Research Database (Denmark)

    Lund, Thomas Bøker; Sørensen, Thorkild I.A.; Olsson, I. Anna S.

    2014-01-01

    for the view that this form of animal use, unlike some other forms of animal-based medical research, cannot be defended. The first argument leans heavily on the notion that people themselves are responsible for developing obesity and so-called 'lifestyle' diseases; the second involves the claim that animal......Animal use in medical research is widely accepted on the basis that it may help to save human lives and improve their quality of life. Recently, however, objections have been made specifically to the use of animals in scientific investigation of human obesity. This paper discusses two arguments...... of animals in obesity research as especially problematic....

  18. Animal model for age- and sex-related genotoxicity of diethylstilbestrol

    Directory of Open Access Journals (Sweden)

    A. Fučić

    2009-11-01

    Full Text Available Environmental xenoestrogens pose a significant health risk for all living organisms. There is growing evidence concerning the different susceptibility to xenoestrogens of developing and adult organisms, but little is known about their genotoxicity in pre-pubertal mammals. In the present study, we developed an animal model to test the sex- and age-specific genotoxicity of the synthetic estrogen diethylstilbestrol (DES on the reticulocytes of 3-week-old pre-pubertal and 12-week-old adult BALB/CJ mice using the in vivo micronucleus (MN assay. DES was administered intraperitoneally at doses of 0.05, 0.5, and 5 µg/kg for 3 days and animals were sampled 48, 72 and 96 h, and 2 weeks after exposure. Five animals were analyzed for each dose, sex, and age group. After the DES dose of 0.05 µg/kg, pre-pubertal mice showed a significant increase in MN frequency (P < 0.001, while adults continued to show reference values (5.3 vs 1.0 MN/1000 reticulocytes. At doses of 0.5 and 5 µg/kg, MN frequency significantly increased in both age groups. In pre-pubertal male animals, MN frequency remained above reference values for 2 weeks after exposure. Our animal model for pre-pubertal genotoxicity assessment using the in vivo MN assay proved to be sensitive enough to distinguish age and sex differences in genome damage caused by DES. This synthetic estrogen was found to be more genotoxic in pre-pubertal mice, males in particular. Our results are relevant for future investigations and the preparation of legislation for drugs and environmentally emitted agents, which should incorporate specific age and gender susceptibility.

  19. Hypothalamic expression of inflammatory mediators in an animal model of binge eating.

    Science.gov (United States)

    Alboni, Silvia; Micioni Di Bonaventura, Maria Vittoria; Benatti, Cristina; Giusepponi, Maria Elena; Brunello, Nicoletta; Cifani, Carlo

    2017-03-01

    Binge eating episodes are characterized by uncontrollable, distressing eating of a large amount of highly palatable food and represent a central feature of bingeing related eating disorders. Research suggests that inflammation plays a role in the onset and maintenance of eating-related maladaptive behavior. Markers of inflammation can be selectively altered in discrete brain regions where they can directly or indirectly regulate food intake. In the present study, we measured expression levels of different components of cytokine systems (IL-1, IL-6, IL-18, TNF-α and IFN-ɣ) and related molecules (iNOS and COX2) in the preoptic and anterior-tuberal parts of the hypothalamus of a validated animal model of binge eating. In this animal model, based on the exposure to both food restriction and frustration stress, binge-like eating behavior for highly palatable food is not shown when animals are exposed to the frustration stress during the estrus phase. We found a characteristic down-regulation of the IL-18/IL-18 receptor system (with increased expression of the inhibitor of the pro-inflammatory cytokine IL-18, IL-18BP, together with a decreased expression of the binding chain of the IL-18 receptor) and a three-fold increase in the expression of iNOS specifically in the anterior-tuberal region of the hypothalamus of animals that develop a binge-like eating behavior. Differently, when food restricted animals were stressed during the estrus phase, IL-18 expression increased, while iNOS expression was not significantly affected. Considering the role of this region of the hypothalamus in controlling feeding related behavior, this can be relevant in eating disorders and obesity. Our data suggest that by targeting centrally selected inflammatory markers, we may prevent that disordered eating turns into a full blown eating disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Animal models for radiation injury, protection and therapy.

    Science.gov (United States)

    Augustine, Alison Deckhut; Gondré-Lewis, Timothy; McBride, William; Miller, Lara; Pellmar, Terry C; Rockwell, Sara

    2005-07-01

    Current events throughout the world underscore the growing threat of different forms of terrorism, including radiological or nuclear attack. Pharmaceutical products and other approaches are needed to protect the civilian population from radiation and to treat those with radiation-induced injuries. In the event of an attack, radiation exposures will be heterogeneous in terms of both dose and quality, depending on the type of device used and each victim's location relative to the radiation source. Therefore, methods are needed to protect against and treat a wide range of early and slowly developing radiation-induced injuries. Equally important is the development of rapid and accurate biodosimetry methods for estimating radiation doses to individuals and guiding clinical treatment decisions. Acute effects of high-dose radiation include hematopoietic cell loss, immune suppression, mucosal damage (gastrointestinal and oral), and potential injury to other sites such as the lung, kidney and central nervous system (CNS). Long-term effects, as a result of both high- and low-dose radiation, include dysfunction or fibrosis in a wide range of organs and tissues and cancer. The availability of appropriate types of animal models, as well as adequate numbers of animals, is likely to be a major bottleneck in the development of new or improved radioprotectors, mitigators and therapeutic agents to prevent or treat radiation injuries and of biodosimetry methods to measure radiation doses to individuals.

  1. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Lewis, Russell E; Verweij, Paul E

    2017-08-15

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Neurorestoratology evidence in an animal model with cervical spondylotic myelopathy

    Directory of Open Access Journals (Sweden)

    Li X

    2017-01-01

    Full Text Available Xiang Li,1,2 Guangsheng Li,1,3 Keith Dip-Kei Luk,1 Yong Hu1–3 1Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, 2Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 3Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Guangdong, People’s Republic of China Background: Cervical spondylotic myelopathy (CSM is a chronic compression injury of the spinal cord, with potentially reversible conditions after surgical decompression, and a unique model of incomplete spinal cord injury. Several animal studies showed pathological changes of demyelination, axon loss and neuron apoptosis in rats with chronic spinal cord compression. However, there is a limited understanding of the neurological change in the spinal cord after surgical decompression. The aim of this study was to validate the neurorestoratology of myelopathic lesions in the spinal cord in a rat model. Materials and methods: A total of 16 adult Sprague-Dawley rats were divided into four groups: sham control (group 1; CSM model with 4-week chronic compression (group 2, 2 weeks (group 3 and 4 weeks (group 4 after surgical decompression of CSM model. The compression and decompression were verified by magnetic resonance imaging (MRI test. Neurological function was evaluated by Basso, Beattie, and Bresnahan (BBB locomotor rating scale, ladder rung walking test and somatosensory-evoked potentials (SEPs. Neuropathological change was evaluated by histological examinations. Results: MRI confirmed the compression of the cervical spinal cord as well as the reshaping of cord morphology after decompression. After decompression, significant changes of neurological function were observed in BBB scores (p < 0.01, F = 10.52, ladder rung walking test (p < 0.05, F = 14.21 and latencies (p < 0.05, F = 5.76 and amplitudes (p < 0.05, F = 3.8 of

  3. Mechanisms and genes in human strial presbycusis from animal models.

    Science.gov (United States)

    Ohlemiller, Kevin K

    2009-06-24

    Schuknecht proposed a discrete form of presbycusis in which hearing loss results principally from degeneration of cochlear stria vascularis and decline of the endocochlear potential (EP). This form was asserted to be genetically linked, and to arise independently from age-related pathology of either the organ of Corti or cochlear neurons. Although extensive strial degeneration in humans coincides with hearing loss, EPs have never been measured in humans, and age-related EP reduction has never been verified. No human genes that promote strial presbycusis have been identified, nor is its pathophysiology well understood. Effective application of animal models to this issue requires models demonstrating EP decline, and preferably, genetically distinct strains that vary in patterns of EP decline and its cellular correlates. Until recently, only two models, Mongolian gerbils and Tyrp1(B-lt) mice, were known to undergo age-associated EP reduction. Detailed studies of seven inbred mouse strains have now revealed three strains (C57BL/6J, B6.CAST-Cdh23(CAST), CBA/J) showing essentially no EP decline with age, and four strains ranging from modest to severe EP reduction (C57BL/6-Tyr(c-2J), BALB/cJ, CBA/CaJ, NOD.NON-H2(nbl)/LtJ). Collectively, animal models support five basic principles regarding a strial form of presbycusis: 1) Progressive EP decline from initially normal levels as a defining characteristic; 2) Non-universality, not all age-associated hearing loss involves EP decline; 3) A clear genetic basis; 4) Modulation by environment or stochastic events; and 5) Independent strial, organ of Corti, and neural pathology. Shared features between human strial presbycusis, gerbils, and BALB/cJ and C57BL/6-Tyr(c-2J) mice further suggest this condition frequently begins with strial marginal cell dysfunction and loss. By contrast, NOD.NON-H2(nbl) mice may model a sequence more closely associated with strial microvascular disease. Additional studies of these and other inbred mouse

  4. On Feature Relevance in Image-Based Prediction Models: An Empirical Study

    DEFF Research Database (Denmark)

    Konukoglu, E.; Ganz, Melanie; Van Leemput, Koen

    2013-01-01

    the community. In this article, we present an empirical study on the relevant features produced by two recently developed discriminative learning algorithms: neighborhood approximation forests (NAF) and the relevance voxel machine (RVoxM). Specifically, we examine whether the sets of features these methods......Determining disease-related variations of the anatomy and function is an important step in better understanding diseases and developing early diagnostic systems. In particular, image-based multivariate prediction models and the “relevant features” they produce are attracting attention from...... produce are exhaustive; that is whether the features that are not marked as relevant carry disease-related information. We perform experiments on three different problems: image-based regression on a synthetic dataset for which the set of relevant features is known, regression of subject age as well...

  5. Consumer Perception of Online Advertising - The Effects of Animation, Ad Characteristics, Repetition and Task Relevancy on Attention and Memory

    OpenAIRE

    Kuisma, Jarmo

    2015-01-01

    Prior advertising research on advertising perception models has mainly focused on effects that occur after consumers have been exposed to advertising stimuli. Little research has examined how consumers are exposed to advertising and the quality of visual attention during advertising exposure. This doctoral dissertation examines how consumers allocate their visual attention to online ads and how consumers memorize ads in different viewing conditions. More precisely, the dissertation focuses on...

  6. Sound preference test in animal models of addicts and phobias.

    Science.gov (United States)

    Soga, Ryo; Shiramatsu, Tomoyo I; Kanzaki, Ryohei; Takahashi, Hirokazu

    2016-08-01

    Biased or too strong preference for a particular object is often problematic, resulting in addiction and phobia. In animal models, alternative forced-choice tasks have been routinely used, but such preference test is far from daily situations that addicts or phobic are facing. In the present study, we developed a behavioral assay to evaluate the preference of sounds in rodents. In the assay, several sounds were presented according to the position of free-moving rats, and quantified the sound preference based on the behavior. A particular tone was paired with microstimulation to the ventral tegmental area (VTA), which plays central roles in reward processing, to increase sound preference. The behaviors of rats were logged during the classical conditioning for six days. Consequently, some behavioral indices suggest that rats search for the conditioned sound. Thus, our data demonstrated that quantitative evaluation of preference in the behavioral assay is feasible.

  7. Two new animal models for actinide toxicity studies

    International Nuclear Information System (INIS)

    Taylor, G.N.; Gardner, P.A.; Jones, C.W.; Lloyd, R.D.; Mays, C.W.

    1979-01-01

    Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus) have tenacious retention in the liver and skeleton of plutonium and americium. The retention following intraperitoneal injection of Pu and Am in citrate solution ranged from 20 to 47% (liver) and 19 to 42% (skeleton), relatively independent of post-injection times, varying from 30 to 125 days. Based on observations extended to 125 days post-injection, the biological half-times appeared to be long. Both of these rodents are relatively long-lived (median lifespans of approximately 1400 days), breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium is partitioned between the skeleton and liver in a manner similar to that of man, may be useful animal models for actinide toxicity studies

  8. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  9. Pathogenesis of presbycusis in animal models: a review.

    Science.gov (United States)

    Fetoni, Anna R; Picciotti, Pasqualina M; Paludetti, Gaetano; Troiani, Diana

    2011-06-01

    Presbycusis is the most common cause of hearing loss in aged subjects, reducing individual's communicative skills. Age related hearing loss can be defined as a progressive, bilateral, symmetrical hearing loss due to age related degeneration and it can be considered a multifactorial complex disorder, with both environmental and genetic factors contributing to the aetiology of the disease. The decline in hearing sensitivity caused by ageing is related to the damage at different levels of the auditory system (central and peripheral). Histologically, the aged cochlea shows degeneration of the stria vascularis, the sensorineural epithelium, and neurons of the central auditory pathways. The mechanisms responsible for age-associated hearing loss are still incompletely characterized. This work aims to give a broad overview of the scientific findings related to presbycusis, focusing mainly on experimental studies in animal models. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Animated pose templates for modeling and detecting human actions.

    Science.gov (United States)

    Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun

    2014-03-01

    This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a

  11. Tissue mechanics, animal models, and pelvic organ prolapse: a review.

    Science.gov (United States)

    Abramowitch, Steven D; Feola, Andrew; Jallah, Zegbeh; Moalli, Pamela A

    2009-05-01

    Pelvic floor disorders such as pelvic organ prolapse, urinary incontinence, and fecal incontinence affect a large number of women each year. The pelvic floor can be thought of as a biomechanical structure due to the complex interaction between the vagina and its supportive structures that are designed to withstand the downward descent of the pelvic organs in response to increases in abdominal pressure. Although previous work has highlighted the biochemical changes that are associated with specific risk factors (i.e. parity, menopause, and genetics), little work has been done to understand the biomechanical changes that occur within the vagina and its supportive structures to prevent the onset of these pelvic floor disorders. Human studies are often limited due to the challenges of obtaining large tissue samples and ethical concerns. Therefore, it is necessary to investigate the use of animal models and their importance in understanding how different risk factors affect the biomechanical properties of the vagina and its supportive structures. In this review paper, we will discuss the different animal models that have been previously used to characterize the biomechanical properties of the vagina: including non-human primates, rodents, rabbits, and sheep. The anatomy and preliminary biomechanical findings are discussed along with the importance of considering experimental conditions, tissue anisotropy, and viscoelasticity when characterizing the biomechanical properties of vaginal tissue. Although there is not a lot of biomechanics research related to the vagina and pelvic floor, the future is exciting due to the significant potential for scientific findings that will improve our understanding of these conditions and hopefully lead to improvements in the prevention and treatment of pelvic disorders.

  12. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma.

    Science.gov (United States)

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT.

  13. Studying the Immunomodulatory Effects of Small Molecule Ras Inhibitors in Animal Models of Rheumatoid Arthritis

    Science.gov (United States)

    2017-10-01

    2) and in animal models of human autoimmune diseases including autoimmune colitis (3), experimental autoimmune encephalomyelitis (4), collagen...studied in multiple pre-clinical animal models of autoimmune. For example, FTS can attenuate disease manifestations in experimental autoimmune... experimental animal model of polyarthritis, which can be induced in inbred Lewis rats by immunization with Complete Freund’s adjuvant containing

  14. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission

    Science.gov (United States)

    Infants and children with tuberculosis (TB) account for more than 20% of cases in endemic countries. Current animal models study TB during adulthood but animal models for adolescent and infant TB are scarce. Here we propose that minipigs can be used as an animal model to study adult, adolescent and ...

  15. Guinea pigs as an animal model for sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Malik Abu Rafee

    2017-01-01

    Full Text Available The overwhelming use of rat models in nerve regeneration studies is likely to induce skewness in treatment outcomes. To address the problem, this study was conducted in 8 adult guinea pigs of either sex to investigate the suitability of guinea pig as an alternative model for nerve regeneration studies. A crush injury was inflicted to the sciatic nerve of the left limb, which led to significant decrease in the pain perception and neurorecovery up to the 4th weak. Lengthening of foot print and shortening of toe spread were observed in the paw after nerve injury. A 3.49 ± 0.35 fold increase in expression of neuropilin 1 (NRP1 gene and 2.09 ± 0.51 fold increase in neuropilin 2 (NRP2 gene were recorded 1 week after nerve injury as compared to the normal nerve. Ratios of gastrocnemius muscle weight and volume of the experimental limb to control limb showed more than 50% decrease on the 30th day. Histopathologically, vacuolated appearance of the nerve was observed with presence of degenerated myelin debris in digestion chambers. Gastrocnemius muscle also showed degenerative changes. Scanning electron microscopy revealed loose and rough arrangement of connective tissue fibrils and presence of large spherical globules in crushed sciatic nerve. The findings suggest that guinea pigs could be used as an alternative animal model for nerve regeneration studies and might be preferred over rats due to their cooperative nature while recording different parameters.

  16. Common Marmosets: A Potential Translational Animal Model of Juvenile Depression

    Directory of Open Access Journals (Sweden)

    Nicole Leite Galvão-Coelho

    2017-09-01

    Full Text Available Major depression is a psychiatric disorder with high prevalence in the general population, with increasing expression in adolescence, about 14% in young people. Frequently, it presents as a chronic condition, showing no remission even after several pharmacological treatments and persisting in adult life. Therefore, distinct protocols and animal models have been developed to increase the understanding of this disease or search for new therapies. To this end, this study investigated the effects of chronic social isolation and the potential antidepressant action of nortriptyline in juvenile Callithrix jacchus males and females by monitoring fecal cortisol, body weight, and behavioral parameters and searching for biomarkers and a protocol for inducing depression. The purpose was to validate this species and protocol as a translational model of juvenile depression, addressing all domain criteria of validation: etiologic, face, functional, predictive, inter-relational, evolutionary, and population. In both sexes and both protocols (IDS and DPT, we observed a significant reduction in cortisol levels in the last phase of social isolation, concomitant with increases in autogrooming, stereotyped and anxiety behaviors, and the presence of anhedonia. The alterations induced by chronic social isolation are characteristic of the depressive state in non-human primates and/or in humans, and were reversed in large part by treatment with an antidepressant drug (nortriptyline. Therefore, these results indicate C. jacchus as a potential translational model of juvenile depression by addressing all criteria of validation.

  17. An animal model of emotional blunting in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Charmaine Y Pietersen

    Full Text Available Schizophrenia is often associated with emotional blunting--the diminished ability to respond to emotionally salient stimuli--particularly those stimuli representative of negative emotional states, such as fear. This disturbance may stem from dysfunction of the amygdala, a brain region involved in fear processing. The present article describes a novel animal model of emotional blunting in schizophrenia. This model involves interfering with normal fear processing (classical conditioning in rats by means of acute ketamine administration. We confirm, in a series of experiments comprised of cFos staining, behavioral analysis and neurochemical determinations, that ketamine interferes with the behavioral expression of fear and with normal fear processing in the amygdala and related brain regions. We further show that the atypical antipsychotic drug clozapine, but not the typical antipsychotic haloperidol nor an experimental glutamate receptor 2/3 agonist, inhibits ketamine's effects and retains normal fear processing in the amygdala at a neurochemical level, despite the observation that fear-related behavior is still inhibited due to ketamine administration. Our results suggest that the relative resistance of emotional blunting to drug treatment may be partially due to an inability of conventional therapies to target the multiple anatomical and functional brain systems involved in emotional processing. A conceptual model reconciling our findings in terms of neurochemistry and behavior is postulated and discussed.

  18. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  19. Animal Models of Autism: An Epigenetic and Environmental Viewpoint

    Directory of Open Access Journals (Sweden)

    Keiko Iwata

    2010-01-01

    Full Text Available Autism is a neurodevelopmental disorder of social behavior, which is more common in males than in females. The causes of autism are unknown; there is evidence for a substantial genetic component, but it is likely that a combination of genetic, environmental and epigenetic factors contribute to its complex pathogenesis. Rodent models that mimic the behavioral deficits of autism can be useful tools for dissecting both the etiology and molecular mechanisms. This review discusses animal models of autism generated by prenatal or neonatal environmental challenges, including virus infection and exposure to valproic acid (VPA or stress. Studies of viral infection models suggest that interleukin-6 can influence fetal development and programming. Prenatal exposure to the histone deacetylase inhibitor VPA has been linked to autism in children, and male VPA-exposed rats exhibit a spectrum of autistic-like behaviors. The experience of prenatal stress produces male-specific behavioral abnormalities in rats. These effects may be mediated by epigenetic modifications such as DNA methylation and histone acetylation resulting in alterations to the transcriptome.

  20. Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard

    2008-01-01

    10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3  s and 10  s preaveraging of wind speed data are relevant for megawatt......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...

  1. A New Tube Gastrostomy Model in Animal Experiments

    Directory of Open Access Journals (Sweden)

    Atakan Sezer

    2013-01-01

    Full Text Available Aim: The orogastric route is the most preferred application method in the vast majority of the animal experiments in which application can be achieved by adding the material to the water of the experiment animal, through an orogastric tube or with a surgically managed ostomy. Material and Method: This experiment was constructed with twelve male Sprague-Dawley rats which were randomly assigned to one of two groups consist of control group ( group C, n: 6 and tube gastrostomy group ( group TG, n: 6.A novel and simple gastrostomy tube was derivated from a silicone foley catheter. Tube gastrostomy apparatus was constituted with a silicone foley catheter (6 French. In the group TG an incision was performed, and the stomach was visualized. A 1 cm incision was made in the midline and opening of the peritoneum. Anchoring sutures were placed and anterior gastric wall was lifted. The gastric wall is then opened. The apparatus was placed into the stomach and pulled through from a tunnel under the skin and fixed to the lateral abdominal wall with a 2/0 silk suture. Result: The procedure was ended in the 10th day of experiment. No mortality was observed in group C. The rats were monitored daily and no abnormal behavior consists of self harming incision site, resistance to oral intake or attending to displace. There was statistically significant difference in increasing alanine transaminase level (p<0.05 and decrease in the total protein and body weight (p<0.05 at the group TG at the end of experiment. There was significant increase in urea levels in Group C (p<0.05 at the end of experiment. The statistically significant decrease was observed in the same period in group C between aspartate transaminase, albumin, total protein, and body weight (p<0.05.  Glucose (p=0.047 and aspartate transaminase (p=0.050 level decrease changes and weight loose (p=0.034 from preoperative period to the end of the experiment between gastrostomy and laparotomy groups were

  2. A parsimonious approach to modeling animal movement data.

    Directory of Open Access Journals (Sweden)

    Yann Tremblay

    Full Text Available Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are complicated and often time-consuming (state-space models, resulting in limited application of this technique and the potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature, bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks. Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location 50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (<0.94 degrees, and 90% were less than 199.8 km (<1.80 degrees. Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient, promising extensive utilization in future research.

  3. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Science.gov (United States)

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  4. Modelling bronchopulmonary dysplasia in animals: arguments for the preterm rabbit model.

    Science.gov (United States)

    Salaets, Thomas; Gie, Andre; Tack, Bieke; Deprest, Jan; Toelen, Jaan

    2017-09-26

    Bronchopulmonary dysplasia (BPD) remains a frequent and disabling consequence of preterm birth, despite the recent advances in neonatal intensive care. There is a need to further improve outcomes and many novel therapeutic or preventive strategies are therefore investigated in animal models. We discuss in this review the aspects of human BPD pathophysiology and phenotype, which ideally should be mimicked by an animal model for this disease. Prematurity remains the common denominator in the heterogeneous spectrum of human BPD, and preterm animal models thus have a clear translational advantage. Additional factors, like excessive oxygen, mechanical ventilation and infection, which frequently have been studied in animal models, can contribute to preterm lung injury however are not indispensable to develop BPD. The phenotype of human BPD is characterized by alveolar developmental arrest with extracellular matrix remodeling, signs of obstructive airway disease and pulmonary vascular disease. Many animal models mimic this phenotype and have their place in BPD research, but results should be interpreted bearing in mind the specific advantages and disadvantages of the model. Term mice and rats are well suited for basic explorative research on specific disease mechanisms, essential for the generation of new hypotheses, while the larger ventilated preterm baboons and lambs provide a good platform for the ultimate translation of these strategies towards clinical application. The preterm rabbit model seems a promising model as it the smallest model that includes a factor of prematurity and has a unique position between the small and large animal models. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Aggression, Social Stress, and the Immune System in Humans and Animal Models.

    Science.gov (United States)

    Takahashi, Aki; Flanigan, Meghan E; McEwen, Bruce S; Russo, Scott J

    2018-01-01

    Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  6. Aggression, Social Stress, and the Immune System in Humans and Animal Models

    Directory of Open Access Journals (Sweden)

    Aki Takahashi

    2018-03-01

    Full Text Available Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  7. Use, misuse and extensions of "ideal gas" models of animal encounter.

    Science.gov (United States)

    Hutchinson, John M C; Waser, Peter M

    2007-08-01

    Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas. These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters among animals or social groups that move randomly and independently, given population density, velocity, and distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of movement and size on rates of encounter between members of the opposite sex, between gametes, between predators and prey, and between observers and the individuals that they are counting. One limitation of published models has been that they predict rates of encounter, but give no means of determining whether observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when animal movements deviate from the model's assumptions in specific, biologically relevant ways. Here, we review applications of the ideal gas model, derive extensions of the model to cover some more realistic movement patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for expected rates of encounter among independently moving individuals. We illustrate these results using data from mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other. Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both a valuable null model and a useful, less onerous, approximation to biological reality.

  8. ANIMAL MODELS FOR THE STUDY OF LEISHMANIASIS IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Elsy Nalleli Loria-Cervera

    2014-01-01

    Full Text Available Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail are being infected, and different numbers (“low” 1×102 and “high” 1×106 of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.

  9. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  10. Neuropathology and Animal Models of Autism: Genetic and Environmental Factors

    Directory of Open Access Journals (Sweden)

    Bharathi S. Gadad

    2013-01-01

    Full Text Available Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.

  11. Experimental studies in the bronchial circulation. Which is the ideal animal model?

    Science.gov (United States)

    Panagiotou, Ioannis; Tsipas, Panteleimon; Melachrinou, Maria; Alexopoulos, Dimitrios; Dougenis, Dimitrios

    2014-01-01

    Background The importance of the role of bronchial arteries is notable in modern days thoracic surgery. The significance of their anastomoses with adjusted structures has not yet been sufficiently rated, especially in cases of haemoptysis, heart-lung transplantations and treatment of aneurysms of the thoracic aorta. The need of a thorough study is more relevant than ever and appropriate laboratory animals are required. Methods We review the literature in order to highlight the ideal experimental animal for the implementation of pilot programs relative to the bronchial circulation. A comparative analysis of the anatomy of the bronchial arterial system in humans along with these of pigs, dogs, rats, and birds, as being the most commonly used laboratory animals, is presented in details. Results The pig has the advantage that the broncho-oesophageal artery usually originates from the aorta as a single vessel, which makes the recognition and dissection of the artery easy to perform. In dogs, there is significant anatomical variation of the origin of the bronchial arteries. In rats, bronchial artery coming from the aorta is a rare event while in birds the pattern of the bronchial artery tree is clearly different from the human analog. Conclusions The pig is anatomically and physiologically suited for experimental studies on the bronchial circulation. The suitable bronchial anatomy and physiology along with the undeniable usefulness of the pig in experimental research and the low maintenance cost make the pig the ideal model for experiments in bronchial circulation. PMID:25364530

  12. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  13. The use of suspension models and comparison with true weightlessness. [Animal Model Workshop on Gravitational Physiology

    Science.gov (United States)

    Musacchia, X. J.; Ellis, S.

    1985-01-01

    A resume is presented of various papers concerning the effect of weightlessness on particular physiological and biochemical phenomena in animal model systems. Findings from weightlessness experiments on earth using suspension models are compared with results of experiments in orbit. The biological phenomena considered include muscle atrophy, changes in the endocrine system, reduction in bone formation, and changes in the cardiovascular system.

  14. Operational Details of the Five Domains Model and Its Key Applications to the Assessment and Management of Animal Welfare

    Science.gov (United States)

    Mellor, David J.

    2017-01-01

    Simple Summary The Five Domains Model is a focusing device to facilitate systematic, structured, comprehensive and coherent assessment of animal welfare; it is not a definition of animal welfare, nor is it intended to be an accurate representation of body structure and function. The purpose of each of the five domains is to draw attention to areas that are relevant to both animal welfare assessment and management. This paper begins by briefly describing the major features of the Model and the operational interactions between the five domains, and then it details seven interacting applications of the Model. These underlie its utility and increasing application to welfare assessment and management in diverse animal use sectors. Abstract In accord with contemporary animal welfare science understanding, the Five Domains Model has a significant focus on subjective experiences, known as affects, which collectively contribute to an animal’s overall welfare state. Operationally, the focus of the Model is on the presence or absence of various internal physical/functional states and external circumstances that give rise to welfare-relevant negative and/or positive mental experiences, i.e., affects. The internal states and external circumstances of animals are evaluated systematically by referring to each of the first four domains of the Model, designated “Nutrition”, “Environment”, “Health” and “Behaviour”. Then affects, considered carefully and cautiously to be generated by factors in these domains, are accumulated into the fifth domain, designated “Mental State”. The scientific foundations of this operational procedure, published in detail elsewhere, are described briefly here, and then seven key ways the Model may be applied to the assessment and management of animal welfare are considered. These applications have the following beneficial objectives—they (1) specify key general foci for animal welfare management; (2) highlight the foundations of

  15. Genetic animal models to decipher the pathogenic effects of vitamin B12 and folate deficiency.

    Science.gov (United States)

    Peng, Lu; Dreumont, Natacha; Coelho, David; Guéant, Jean-Louis; Arnold, Carole

    2016-07-01

    Vitamin B12 and folate are essential micronutrients that provide methyl groups for cellular methylations through the so-called one-carbon metabolism. Deficits in the absorption and transport or defects of the enzymes can lead to human pathogenesis comprising hematologic, neural, gastrointestinal, hepatic, renal, cardiovascular and developmental manifestations. One-carbon metabolism is a complex, multistep and multi-organ metabolism, and the understanding of the mechanisms at work have benefited from human inborn errors and population studies, as well as from nutritional animal models. Since 15 years, a wide variety of genetically engineered mice has been developed and has proved to be useful to decipher the underlying mechanisms. These genetically engineered mice target all the genes that are important for the intestinal absorption, cellular transport and metabolism of vitamin B12 and folate, which are detailed in this article. In conclusion, these mouse models represent valuable experimental paradigms for human pathogenesis. Since no animal model recapitulates the full spectrum of a human disease, researchers have to choose the one that is the most relevant for their specific needs, and this review may help in this respect. Copyright © 2016. Published by Elsevier B.V.

  16. The Estimation Modelling of Damaged Areas by Harmful Animals

    Science.gov (United States)

    Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.

    2017-12-01

    The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height

  17. A Spatio-temporal Model of African Animal Trypanosomosis Risk.

    Directory of Open Access Journals (Sweden)

    Ahmadou H Dicko

    Full Text Available African animal trypanosomosis (AAT is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking.We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign national initiatives. We computed the entomological inoculation rate (EIR or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a "one layer-one model" approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%, showed a positive correlation but less predictive power with serological status (r2 = 22% aggregated at the village level but was not related to the illness status (r2 = 2%.The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases.

  18. Overview of Threats and Failure Models for Safety-Relevant Computer-Based Systems

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2015-01-01

    This document presents a high-level overview of the threats to safety-relevant computer-based systems, including (1) a description of the introduction and activation of physical and logical faults; (2) the propagation of their effects; and (3) function-level and component-level error and failure mode models. These models can be used in the definition of fault hypotheses (i.e., assumptions) for threat-risk mitigation strategies. This document is a contribution to a guide currently under development that is intended to provide a general technical foundation for designers and evaluators of safety-relevant systems.

  19. Animal models in surgical training: choice and ethics | Hassan ...

    African Journals Online (AJOL)

    The use of animals in scientific research dates back to 500 BC, with research from Greece by Alcmaeon and other temporary scientists. Techniques for dissecting living animals were improved by Galen of Pergamum and his experiments were later valuable in the discovery of blood circulation in the16th century. Until the ...

  20. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models.

    Science.gov (United States)

    Berryman, Darlene E; Christiansen, Jens Sandahl; Johannsson, Gudmundur; Thorner, Michael O; Kopchick, John J

    2008-12-01

    Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the

  1. Development of computational small animal models and their applications in preclinical imaging and therapy research

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal

  2. An overview of animal models of pain: disease models and outcome measures

    Science.gov (United States)

    Gregory, N; Harris, AL; Robinson, CR; Dougherty, PM; Fuchs, PN; Sluka, KA

    2013-01-01

    Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience including reflexive hyperalgesia measures, sensory and affective dimensions of pain and impact of pain on function and quality of life. In this review we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes, as well as the main behavioral tests for assessing pain in each model. PMID:24035349

  3. Towards an Evolutionary Model of Animal-Associated Microbiomes

    Directory of Open Access Journals (Sweden)

    Bryan A. White

    2011-02-01

    Full Text Available Second-generation sequencing technologies have granted us greater access to the diversity and genetics of microbial communities that naturally reside endo- and ecto-symbiotically with animal hosts. Substantial research has emerged describing the diversity and broader trends that exist within and between host species and their associated microbial ecosystems, yet the application of these data to our evolutionary understanding of microbiomes appears fragmented. For the most part biological perspectives are based on limited observations of oversimplified communities, while mathematical and/or computational modeling of these concepts often lack biological precedence. In recognition of this disconnect, both fields have attempted to incorporate ecological theories, although their applicability is currently a subject of debate because most ecological theories were developed based on observations of macro-organisms and their ecosystems. For the purposes of this review, we attempt to transcend the biological, ecological and computational realms, drawing on extensive literature, to forge a useful framework that can, at a minimum be built upon, but ideally will shape the hypotheses of each field as they move forward. In evaluating the top-down selection pressures that are exerted on a microbiome we find cause to warrant reconsideration of the much-maligned theory of multi-level selection and reason that complexity must be underscored by modularity.

  4. Environmental enrichment facilitates cocaine abstinence in an animal conflict model.

    Science.gov (United States)

    Ewing, Scott; Ranaldi, Robert

    2018-03-01

    In this study, we sought to discover if housing in an enriched environment (EE) is an efficacious intervention for encouraging abstinence from cocaine seeking in an animal "conflict" model of abstinence. Sixteen Long-Evans rats were trained in 3-h daily sessions to self-administer a cocaine solution (1 mg/kg/infusion) until each demonstrated a stable pattern of drug-seeking. Afterward, half were placed in EE cages equipped with toys, obstacles, and a running wheel, while the other half were given clean, standard laboratory housing. All rats then completed daily 30-min sessions during which the 2/3 of flooring closest to the self-administration levers was electrified, causing discomfort should they approach the levers; current strength (mA) was increased after every day of drug seeking until the rat ceased activity on the active lever for 3 consecutive sessions (abstinence). Rats housed in EE abstained after fewer days and at lower current strengths than rats in standard housing. These results support the idea that EE administered after the development of a cocaine-taking habit may be an effective strategy to facilitate abstinence. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cytokines and VEGF Induction in Orthodontic Movement in Animal Models

    Directory of Open Access Journals (Sweden)

    M. Di Domenico

    2012-01-01

    Full Text Available Orthodo