WorldWideScience

Sample records for animal model development

  1. Animal models for dengue vaccine development and testing.

    Science.gov (United States)

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  2. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Animal Migraine Models for Drug Development

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Tfelt-Hansen, Peer; Olesen, Jes

    2013-01-01

    Migraine is number seven in WHO's list of all diseases causing disability and the third most costly neurological disorder in Europe. Acute attacks are treatable by highly selective drugs such as the triptans but there is still a huge unmet therapeutic need. Unfortunately, drug development...... for headache has almost come to a standstill partly because of a lack of valid animal models. Here we review previous models with emphasis on optimal characteristics of a future model. In addition to selection of animal species, the method of induction of migraine-like changes and the method of recording...... responses elicited by such measures are crucial. The most naturalistic way of inducing attacks is by infusion of endogenous signaling molecules that are known to cause migraine in patients. The most valid response is recording of neural activity in the trigeminal system. The most useful headache related...

  4. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models.

    Science.gov (United States)

    Uno, Narumi; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2018-02-01

    Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.

  5. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  6. Shigella vaccine development: prospective animal models and current status.

    Science.gov (United States)

    Kim, Yeon-Jeong; Yeo, Sang-Gu; Park, Jae-Hak; Ko, Hyun-Jeong

    2013-01-01

    Shigella was first discovered in 1897 and is a major causative agent of dysenteric diarrhea. The number of affected patients has decreased globally because of improved sanitary conditions; however, Shigella still causes serious problems in many subjects, including young children and the elderly, especially in developing countries. Although antibiotics may be effective, a vaccine would be the most powerful solution to combat shigellosis because of the emergence of drug-resistant strains. However, the development of a vaccine is hampered by several problems. First, there is no suitable animal model that can replace human-based studies for the investigation of the in vivo mechanisms of Shigella vaccines. Mouse, guinea pig, rat, rabbit, and nonhuman primates could be used as models for shigellosis, but they do not represent human shigellosis and each has its own weaknesses. However, a recent murine model based on peritoneal infection with virulent S. flexneri 2a is promising. Moreover, although the inflammatory responses and mechanisms such as pathogenassociated molecular patterns and danger-associated molecular patterns have been studied, the pathology and immunology of Shigella are still not clearly defined. Despite these obstacles, many vaccine candidates have been developed, including live attenuated, killed whole cells, conjugated, and subunit vaccines. The development of Shigella vaccines also demands considerations of the cost, routes of administration, ease of storage (stability), cross-reactivity, safety, and immunogenicity. The main aim of this review is to provide a detailed introduction to the many promising vaccine candidates and animal models currently available, including the newly developed mouse model.

  7. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    Science.gov (United States)

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. Copyright © 2016 the American Physiological Society.

  8. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis

    OpenAIRE

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-01-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mai...

  9. Development of a rabbit's urethral sphincter deficiency animal model for anatomical-functional evaluation

    Directory of Open Access Journals (Sweden)

    M. Skaff

    2012-02-01

    Full Text Available OBJECTIVE: The aim of the study was to develop a new durable animal model (using rabbits for anatomical-functional evaluation of urethral sphincter deficiency. MATERIALS AND METHODS: A total of 40 New Zealand male rabbits, weighting 2.500 kg to 3.100 kg, were evaluated to develop an incontinent animal model. Thirty-two animals underwent urethrolysis and 8 animals received sham operation. Before and at 2, 4, 8 and 12 weeks after urethrolysis or sham operation, it was performed cystometry and leak point pressure (LPP evaluation with different bladder distension volumes (10, 20, 30 mL. In each time point, 10 animals (8 from the study group and 2 from the sham group were sacrificed to harvest the bladder and urethra. The samples were evaluated by H&E and Masson's Trichrome to determine urethral morphology and collagen/smooth muscle density. RESULTS: Twelve weeks after urethrolysis, it was observed a significant decrease in LPP regardless the bladder volume (from 33.7 ± 6.6 to 12.8 ± 2.2 cmH2O. The histological analysis evidenced a decrease of 22% in smooth muscle density with a proportional increase in the collagen, vessels and elastin density (p < 0.01. CONCLUSIONS: Transabdominal urethrolysis develops urethral sphincter insufficiency in rabbits, with significant decrease in LPP associated with decrease of smooth muscle fibers and increase of collagen density. This animal model can be used to test autologous cell therapy for stress urinary incontinence treatment.

  10. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  11. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  12. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2016-01-15

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  13. Development of computational small animal models and their applications in preclinical imaging and therapy research

    International Nuclear Information System (INIS)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future

  14. Animal models of sarcoidosis.

    Science.gov (United States)

    Hu, Yijie; Yibrehu, Betel; Zabini, Diana; Kuebler, Wolfgang M

    2017-03-01

    Sarcoidosis is a debilitating, inflammatory, multiorgan, granulomatous disease of unknown cause, commonly affecting the lung. In contrast to other chronic lung diseases such as interstitial pulmonary fibrosis or pulmonary arterial hypertension, there is so far no widely accepted or implemented animal model for this disease. This has hampered our insights into the etiology of sarcoidosis, the mechanisms of its pathogenesis, the identification of new biomarkers and diagnostic tools and, last not least, the development and implementation of novel treatment strategies. Over past years, however, a number of new animal models have been described that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outline the present status quo for animal models of sarcoidosis, comparing their pros and cons with respect to their ability to mimic the etiological, clinical and histological hallmarks of human disease and discuss their applicability for future research. Overall, the recent surge in animal models has markedly expanded our options for translational research; however, given the relative early stage of most animal models for sarcoidosis, appropriate replication of etiological and histological features of clinical disease, reproducibility and usefulness in terms of identification of new therapeutic targets and biomarkers, and testing of new treatments should be prioritized when considering the refinement of existing or the development of new models.

  15. Development of virtual hands using animation software and graphical modelling

    International Nuclear Information System (INIS)

    Oliveira, Erick da S.; Junior, Alberico B. de C.

    2016-01-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  16. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  17. Modeling the development of drug addiction in male and female animals.

    Science.gov (United States)

    Lynch, Wendy J

    2018-01-01

    An increasing emphasis has been placed on the development and use of animal models of addiction that capture defining features of human drug addiction, including escalation/binge drug use, enhanced motivation for the drug, preference for the drug over other reward options, use despite negative consequences, and enhanced drug-seeking/relapse vulnerability. The need to examine behavior in both males and females has also become apparent given evidence demonstrating that the addiction process occurs differently in males and females. This review discusses the procedures that are used to model features of addiction in animals, as well as factors that influence their development. Individual differences are also discussed, with a particular focus on sex differences. While no one procedure consistently produces all characteristics, different models have been developed to focus on certain characteristics. A history of escalating/binge patterns of use appears to be critical for producing other features characteristic of addiction, including an enhanced motivation for the drug, enhanced drug seeking, and use despite negative consequences. These characteristics tend to emerge over abstinence, and appear to increase rather than decrease in magnitude over time. In females, these characteristics develop sooner during abstinence and/or following less drug exposure as compared to males, and for psychostimulant addiction, may require estradiol. Although preference for the drug over other reward options has been demonstrated in non-human primates, it has been more difficult to establish in rats. Future research is needed to define the parameters that optimally induce each of these features of addiction in the majority of animals. Such models are essential for advancing our understanding of human drug addiction and its treatment in men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evaluation of animal models of neurobehavioral disorders

    Directory of Open Access Journals (Sweden)

    Nordquist Rebecca E

    2009-02-01

    Full Text Available Abstract Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration. Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result. Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia. In a manner congruent to

  19. Bone augmentation for cancellous bone- development of a new animal model

    Science.gov (United States)

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  20. An animal model for tinnitus.

    Science.gov (United States)

    Jastreboff, P J; Brennan, J F; Sasaki, C T

    1988-03-01

    Subjective tinnitus remains obscure, widespread, and without apparent cure. In the absence of a suitable animal model, past investigations took place in humans, resulting in studies that were understandably restricted by the nature of human investigation. Within this context, the development of a valid animal model would be considered a major breakthrough in this field of investigation. Our results showed changes in the spontaneous activity of single neurons in the inferior colliculus, consistent with abnormally increased neuronal activity within the auditory pathways after manipulations known to produce tinnitus in man. A procedure based on a Pavlovian conditioned suppression paradigm was recently developed that allows us to measure tinnitus behaviorally in conscious animals. Accordingly, an animal model of tinnitus is proposed that permits tests of hypotheses relating to tinnitus generation, allowing the accommodation of interventional strategies for the treatment of this widespread auditory disorder.

  1. Animal welfare and use of silkworm as a model animal.

    Science.gov (United States)

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  2. Animal models of tinnitus.

    Science.gov (United States)

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  3. Animal models of cerebral ischemia

    Science.gov (United States)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  4. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  5. Overview of Animal Models of Obesity

    Science.gov (United States)

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  6. Animal models for rotator cuff repair.

    Science.gov (United States)

    Lebaschi, Amir; Deng, Xiang-Hua; Zong, Jianchun; Cong, Guang-Ting; Carballo, Camila B; Album, Zoe M; Camp, Christopher; Rodeo, Scott A

    2016-11-01

    Rotator cuff (RC) injuries represent a significant source of pain, functional impairment, and morbidity. The large disease burden of RC pathologies necessitates rapid development of research methodologies to treat these conditions. Given their ability to model anatomic, biomechanical, cellular, and molecular aspects of the human RC, animal models have played an indispensable role in reducing injury burden and advancing this field of research for many years. The development of animal models in the musculoskeletal (MSK) research arena is uniquely different from that in other fields in that the similarity of macrostructures and functions is as critical to replicate as cellular and molecular functions. Traditionally, larger animals have been used because of their anatomic similarity to humans and the ease of carrying out realistic surgical procedures. However, refinement of current molecular methods, introduction of novel research tools, and advancements in microsurgical techniques have increased the applicability of small animal models in MSK research. In this paper, we review RC animal models and emphasize a murine model that may serve as a valuable instrument for future RC tendon repair investigations. © 2016 New York Academy of Sciences.

  7. Animal models to guide clinical drug development in ADHD: lost in translation?

    Science.gov (United States)

    Wickens, Jeffery R; Hyland, Brian I; Tripp, Gail

    2011-01-01

    We review strategies for developing animal models for examining and selecting compounds with potential therapeutic benefit in attention-deficit hyperactivity disorder (ADHD). ADHD is a behavioural disorder of unknown aetiology and pathophysiology. Current understanding suggests that genetic factors play an important role in the aetiology of ADHD. The involvement of dopaminergic and noradrenergic systems in the pathophysiology of ADHD is probable. We review the clinical features of ADHD including inattention, hyperactivity and impulsivity and how these are operationalized for laboratory study. Measures of temporal discounting (but not premature responding) appear to predict known drug effects well (treatment validity). Open-field measures of overactivity commonly used do not have treatment validity in human populations. A number of animal models have been proposed that simulate the symptoms of ADHD. The most commonly used are the spontaneously hypertensive rat (SHR) and the 6-hydroxydopamine-lesioned (6-OHDA) animals. To date, however, the SHR lacks treatment validity, and the effects of drugs on symptoms of impulsivity and inattention have not been studied extensively in 6-OHDA-lesioned animals. At the present stage of development, there are no in vivo models of proven effectiveness for examining and selecting compounds with potential therapeutic benefit in ADHD. However, temporal discounting is an emerging theme in theories of ADHD, and there is good evidence of increased value of delayed reward following treatment with stimulant drugs. Therefore, operant behaviour paradigms that measure the effects of drugs in situations of delayed reinforcement, whether in normal rats or selected models, show promise for the future. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21480864

  8. Animal models of cardiovascular diseases.

    Science.gov (United States)

    Zaragoza, Carlos; Gomez-Guerrero, Carmen; Martin-Ventura, Jose Luis; Blanco-Colio, Luis; Lavin, Begoña; Mallavia, Beñat; Tarin, Carlos; Mas, Sebastian; Ortiz, Alberto; Egido, Jesus

    2011-01-01

    Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

  9. Animal Models of Hemophilia

    Science.gov (United States)

    Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.

    2013-01-01

    The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432

  10. Development of computational small animal models and their applications in preclinical imaging and therapy research

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal

  11. An animal model of tinnitus: a decade of development.

    Science.gov (United States)

    Jastreboff, P J; Sasaki, C T

    1994-01-01

    Although tinnitus affects approximately 9 million people in the United States, a cure remains elusive and the mechanisms of its origin are speculative. The crucial obstacle in tinnitus research has been the lack of an animal model. Over the last decade we have been creating such a model by combining a variety of methodologies, including a behavioral component, to allow for the detection of tinnitus perception. Initially, 2-deoxyglucose had been used to map changes in the metabolic activity after unilateral destruction of the cochlea. It has been found that the initial decrease of the metabolic rate in the auditory nuclei recovered to preoperative values, which could be attributable to the development of tinnitus. The spontaneous activity of single units recorded from the inferior colliculus before and after salicylate administration revealed an increase of discharges, which might reflect the presence of salicylate-induced tinnitus. Recent data have confirmed, and further elaborated this observation, including the discovery of abnormal, epileptic-like, neuronal activity. Finally, the authors have developed a behavioral model of tinnitus, tested it extensively, and used it to measure tinnitus pitch and loudness. The model is presently used for investigating the hypotheses for the mechanisms of tinnitus.

  12. Establishing the pig as a large animal model for vaccine development against human cancer

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    2015-01-01

    Immunotherapy has increased overall survival of metastatic cancer patients, and cancer antigens are promising vaccine targets. To fulfill the promise, appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential...... and the porcine immunome is closer related to the human counterpart, we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC, both important in human cancer development and progression, were used as vaccine targets and 12 pigs were immunized with overlapping......C-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer....

  13. XX. Animal models of pneumocystosis

    DEFF Research Database (Denmark)

    Dei-Cas, E.; Brun-Pascaud, M.; Bille-Hansen, Vivi

    1998-01-01

    As in vitro culture systems allowing to isolate Pneumocystis samples from patients or other mammal hosts are still not available, animal models have critical importance in Pneumocystis research. The parasite was reported in numerous mammals but P. carinii pneumonia (PCP) experimental models were...... a source of parasites taxonomically related to P. carinii sp. f hominis. Moreover, primates might be used as experimental hosts to human Pneumocystis. A marked variability of parasite levels among corticosteroid-treated animals and the fact that the origin of the parasite strain remains unknown......, are important drawbacks of the corticosteroid-treated models. For these reasons, inoculated animal models of PCP were developed. The intratracheal inoculation of lung homogenates containing viable parasites in corticosteroid-treated non-latently infected rats resulted in extensive, reproducible Pneumocystis...

  14. Elements of episodic-like memory in animal models.

    Science.gov (United States)

    Crystal, Jonathon D

    2009-03-01

    Representations of unique events from one's past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer's disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.

  15. Animal Models of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Carlos Zaragoza

    2011-01-01

    Full Text Available Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.

  16. Animal models of preeclampsia; uses and limitations.

    LENUS (Irish Health Repository)

    McCarthy, F P

    2012-01-31

    Preeclampsia remains a leading cause of maternal and fetal morbidity and mortality and has an unknown etiology. The limited progress made regarding new treatments to reduce the incidence and severity of preeclampsia has been attributed to the difficulties faced in the development of suitable animal models for the mechanistic research of this disease. In addition, animal models need hypotheses on which to be based and the slow development of testable hypotheses has also contributed to this poor progress. The past decade has seen significant advances in our understanding of preeclampsia and the development of viable reproducible animal models has contributed significantly to these advances. Although many of these models have features of preeclampsia, they are still poor overall models of the human disease and limited due to lack of reproducibility and because they do not include the complete spectrum of pathophysiological changes associated with preeclampsia. This review aims to provide a succinct and comprehensive assessment of current animal models of preeclampsia, their uses and limitations with particular attention paid to the best validated and most comprehensive models, in addition to those models which have been utilized to investigate potential therapeutic interventions for the treatment or prevention of preeclampsia.

  17. Latest animal models for anti-HIV drug discovery.

    Science.gov (United States)

    Sliva, Katja

    2015-02-01

    HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.

  18. Small Animal Models for Evaluating Filovirus Countermeasures.

    Science.gov (United States)

    Banadyga, Logan; Wong, Gary; Qiu, Xiangguo

    2018-05-11

    The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.

  19. Animal Models for Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Helieh S. Oz

    2011-01-01

    Full Text Available Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.

  20. Animal Models for Periodontal Disease

    Science.gov (United States)

    Oz, Helieh S.; Puleo, David A.

    2011-01-01

    Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis) in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed. PMID:21331345

  1. The necessity of animal models in pain research.

    Science.gov (United States)

    Mogil, Jeffrey S; Davis, Karen D; Derbyshire, Stuart W

    2010-10-01

    There exists currently a fair degree of introspection in the pain research community about the value of animal research. This review represents a defense of animal research in pain. We discuss the inherent advantage of animal models over human research as well as the crucial complementary roles animal studies play vis-à-vis human imaging and genetic studies. Finally, we discuss recent developments in animal models of pain that should improve the relevance and translatability of findings using laboratory animals. We believe that pain research using animal models is a continuing necessity-to understand fundamental mechanisms, identify new analgesic targets, and inform, guide and follow up human studies-if novel analgesics are to be developed for the treatment of chronic pain. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Animal models.

    Science.gov (United States)

    Walker, Ellen A

    2010-01-01

    As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.

  3. Investigating the Role of Polyunsaturated Fatty Acids in Bone Development Using Animal Models

    Directory of Open Access Journals (Sweden)

    Beatrice Y.Y. Lau

    2013-11-01

    Full Text Available Incorporating n-3 polyunsaturated fatty acids (PUFA in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA and long chain (EPA and DHA n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.

  4. Malaria in pregnancy: the relevance of animal models for vaccine development.

    Science.gov (United States)

    Doritchamou, Justin; Teo, Andrew; Fried, Michal; Duffy, Patrick E

    2017-10-06

    Malaria during pregnancy due to Plasmodium falciparum or P. vivax is a major public health problem in endemic areas, with P. falciparum causing the greatest burden of disease. Increasing resistance of parasites and mosquitoes to existing tools, such as preventive antimalarial treatments and insecticide-treated bed nets respectively, is eroding the partial protection that they offer to pregnant women. Thus, development of effective vaccines against malaria during pregnancy is an urgent priority. Relevant animal models that recapitulate key features of the pathophysiology and immunology of malaria in pregnant women could be used to accelerate vaccine development. This review summarizes available rodent and nonhuman primate models of malaria in pregnancy, and discusses their suitability for studies of biologics intended to prevent or treat malaria in this vulnerable population.

  5. Advances in Animal Models of Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhang Hang

    2015-12-01

    Full Text Available Hepatitis B virus (HBV infection seriously affects human health. Stable and reliable animal models of HBV infection bear significance in studying pathogenesis of this health condition and development of intervention measures. HBV exhibits high specificity for hosts, and chimpanzee is long used as sole animal model of HBV infection. However, use of chimpanzees is strictly constrained because of ethical reasons. Many methods were used to establish small-animal models of HBV infection. Tupaia is the only nonprimate animal that can be infected by HBV. Use of HBV-related duck hepatitis virus and marmot hepatitis virus infection model contributed to evaluation of mechanism of HBV replication and HBV treatment methods. In recent years, development of human–mouse chimeric model provided possibility of using common experimental animals to carry out HBV research. These models feature their own advantages and disadvantages and can be complementary in some ways. This study provides an overview of current and commonly used animal models of HBV infection.

  6. Modeling individual animal histories with multistate capture–recapture models

    Science.gov (United States)

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  7. Animal Models Used to Explore Abdominal Aortic Aneurysms

    DEFF Research Database (Denmark)

    Lysgaard Poulsen, J; Stubbe, J; Lindholt, J S

    2016-01-01

    OBJECTIVE: Experimental animal models have been used to investigate the formation, development, and progression of abdominal aortic aneurysms (AAAs) for decades. New models are constantly being developed to imitate the mechanisms of human AAAs and to identify treatments that are less risky than...... those used today. However, to the authors' knowledge, there is no model identical to the human AAA. The objective of this systematic review was to assess the different types of animal models used to investigate the development, progression, and treatment of AAA and to highlight their advantages...... and limitations. METHODS: A search protocol was used to perform a systematic literature search of PubMed and Embase. A total of 2,830 records were identified. After selection of the relevant articles, 564 papers on animal AAA models were included. RESULTS: The most common models in rodents, including elastase...

  8. Animal Models of Hemophilia and Related Bleeding Disorders

    Science.gov (United States)

    Lozier, Jay N.; Nichols, Timothy C.

    2013-01-01

    Animal models of hemophilia and related diseases are important for development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and von Willebrand disease pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform pre-clinical assessments of standard protein replacement therapies as well as novel gene transfer technology. Both the differences between species and differences in underlying causative mutations must be considered in choosing the best animal for a specific scientific study PMID:23956467

  9. Effects of nanotoxicity on female reproductivity and fetal development in animal models.

    Science.gov (United States)

    Sun, Jianling; Zhang, Qiu; Wang, Zhiping; Yan, Bing

    2013-04-29

    The extensive application of nanomaterials in industry, medicine and consumer products has raised concerns about their potential toxicity. The female population is particularly vulnerable and deserves special attention because toxicity in this group may impact both female reproductivity and fetal development. Mouse and zebrafish models each have their own unique features and studies using these models to examine the potential toxicity of various nanoparticles are compared and summarized in this review. Several nanoparticles exhibit detrimental effects on female reproductivity as well as fetal development, and these adverse effects are related to nanoparticle composition, surface modification, dose, exposure route and animal species. Limited studies on the mechanisms of nanotoxicity are also documented and reviewed herein.

  10. Effects of Nanotoxicity on Female Reproductivity and Fetal Development in Animal Models

    Directory of Open Access Journals (Sweden)

    Jianling Sun

    2013-04-01

    Full Text Available The extensive application of nanomaterials in industry, medicine and consumer products has raised concerns about their potential toxicity. The female population is particularly vulnerable and deserves special attention because toxicity in this group may impact both female reproductivity and fetal development. Mouse and zebrafish models each have their own unique features and studies using these models to examine the potential toxicity of various nanoparticles are compared and summarized in this review. Several nanoparticles exhibit detrimental effects on female reproductivity as well as fetal development, and these adverse effects are related to nanoparticle composition, surface modification, dose, exposure route and animal species. Limited studies on the mechanisms of nanotoxicity are also documented and reviewed herein.

  11. Th17 in Animal Models of Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Motomu Hashimoto

    2017-07-01

    Full Text Available IL-17-secreting helper CD4 T cells (Th17 cells constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.

  12. Basic mechanisms of MCD in animal models.

    Science.gov (United States)

    Battaglia, Giorgio; Becker, Albert J; LoTurco, Joseph; Represa, Alfonso; Baraban, Scott C; Roper, Steven N; Vezzani, Annamaria

    2009-09-01

    Epilepsy-associated glioneuronal malformations (malformations of cortical development [MCD]) include focal cortical dysplasias (FCD) and highly differentiated glioneuronal tumors, most frequently gangliogliomas. The neuropathological findings are variable but suggest aberrant proliferation, migration, and differentiation of neural precursor cells as essential pathogenetic elements. Recent advances in animal models for MCDs allow new insights in the molecular pathogenesis of these epilepsy-associated lesions. Novel approaches, presented here, comprise RNA interference strategies to generate and study experimental models of subcortical band heterotopia and study functional aspects of aberrantly shaped and positioned neurons. Exciting analyses address impaired NMDA receptor expression in FCD animal models compared to human FCDs and excitatory imbalances in MCD animal models such as lissencephaly gene ablated mice as well as in utero irradiated rats. An improved understanding of relevant pathomechanisms will advance the development of targeted treatment strategies for epilepsy-associated malformations.

  13. Laboratory animal models for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Dhanya Venugopalan Nair

    2016-11-01

    Full Text Available The incidence of esophageal cancer is rapidly increasing especially in developing countries. The major risk factors include unhealthy lifestyle practices such as alcohol consumption, smoking, and chewing tobacco to name a few. Diagnosis at an advanced stage and poor prognosis make esophageal cancer one of the most lethal diseases. These factors have urged further research in understanding the pathophysiology of the disease. Animal models not only aid in understanding the molecular pathogenesis of esophageal cancer but also help in developing therapeutic interventions for the disease. This review throws light on the various recent laboratory animal models for esophageal cancer.

  14. EG-VEGF Maintenance Over Early Gestation to Develop a Pregnancy-Induced Hypertensive Animal Model.

    Science.gov (United States)

    Reynaud, Déborah; Sergent, Frédéric; Abi Nahed, Roland; Brouillet, Sophie; Benharouga, Mohamed; Alfaidy, Nadia

    2018-01-01

    During the last decade, multiple animal models have been developed to mimic hallmarks of pregnancy-induced hypertension (PIH) diseases, which include gestational hypertension, preeclampsia (PE), or eclampsia. Converging in vitro, ex vivo, and clinical studies from our group strongly suggested the potential involvement of the new angiogenic factor EG-VEGF (endocrine gland-derived-VEGF) in the development of PIH. Here, we described the protocol that served to demonstrate that maintenance of EG-VEGF production over 11.5 days post coitus (dpc) in the gravid mice caused the development of PIH. The developed model exhibited most hallmarks of preeclampsia.

  15. Towards a reliable animal model of migraine

    DEFF Research Database (Denmark)

    Olesen, Jes; Jansen-Olesen, Inger

    2012-01-01

    The pharmaceutical industry shows a decreasing interest in the development of drugs for migraine. One of the reasons for this could be the lack of reliable animal models for studying the effect of acute and prophylactic migraine drugs. The infusion of glyceryl trinitrate (GTN) is the best validated...... and most studied human migraine model. Several attempts have been made to transfer this model to animals. The different variants of this model are discussed as well as other recent models....

  16. Chimeric animal models in human stem cell biology.

    Science.gov (United States)

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  17. Animal models: an important tool in mycology.

    Science.gov (United States)

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  18. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  19. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    International Nuclear Information System (INIS)

    Vamathevan, Jessica J.; Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M.; Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli; Kenny, Steve; Brown, James R.; Huxley-Jones, Julie; Lyon, Jon; Haselden, John; Min, Jiumeng; Sanseau, Philippe

    2013-01-01

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns

  20. Animal models for HIV/AIDS research

    Science.gov (United States)

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  1. Social defeat models in animal science: What we have learned from rodent models.

    Science.gov (United States)

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  2. Animal models of dementia

    DEFF Research Database (Denmark)

    Olsson, I. Anna S.; Sandøe, Peter

    2011-01-01

    This chapter aims to encourage scientists and others interested in the use of animal models of disease – specifically, in the study of dementia – to engage in ethical reflection. It opens with a general discussion of the moral acceptability of animal use in research. Three ethical approaches...... are here distinguished. These serve as points of orientation in the following discussion of four more specific ethical questions: Does animal species matter? How effective is disease modelling in delivering the benefits claimed for it? What can be done to minimize potential harm to animals in research? Who...... bears responsibility for the use of animals in disease models?...

  3. Animal models of drug addiction.

    Science.gov (United States)

    García Pardo, María Pilar; Roger Sánchez, Concepción; De la Rubia Ortí, José Enrique; Aguilar Calpe, María Asunción

    2017-09-29

    The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm. In recent years these models have incorporated methodological modifications to study extinction, reinstatement and reconsolidation processes, or to model specific aspects of addictive behavior such as motivation to consume drugs, compulsive consumption or drug seeking under punishment situations. There are also models that link different reinforcement components or model voluntary motivation to consume (two-bottle choice, or drinking in the dark tests). In short, innovations in these models allow progress in scientific knowledge regarding the different aspects that lead individuals to consume a drug and develop compulsive consumption, providing a target for future treatments of addiction.

  4. Modelling Farm Animal Welfare

    Science.gov (United States)

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  5. Retinal Cell Degeneration in Animal Models

    Directory of Open Access Journals (Sweden)

    Masayuki Niwa

    2016-01-01

    Full Text Available The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced, autoimmune (experimental autoimmune encephalomyelitis, mechanical stress (optic nerve crush-induced, light-induced and ischemia (transient retinal ischemia-induced. The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.

  6. Large Mammalian Animal Models of Heart Disease

    Directory of Open Access Journals (Sweden)

    Paula Camacho

    2016-10-01

    Full Text Available Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians.

  7. Cardio-respiratory development in bird embryos: new insights from a venerable animal model

    Directory of Open Access Journals (Sweden)

    Warren W. Burggren

    Full Text Available ABSTRACT The avian embryo is a time-honored animal model for understanding vertebrate development. A key area of extensive study using bird embryos centers on developmental phenotypic plasticity of the cardio-respiratory system and how its normal development can be affected by abiotic factors such as temperature and oxygen availability. Through the investigation of the plasticity of development, we gain a better understanding of both the regulation of the developmental process and the embryo's capacity for self-repair. Additionally, experiments with abiotic and biotic stressors during development have helped delineate not just critical windows for avian cardio-respiratory development, but the general characteristics (e.g., timing and dose-dependence of critical windows in all developing vertebrates. Avian embryos are useful in exploring fetal programming, in which early developmental experiences have implications (usually negative later in life. The ability to experimentally manipulate the avian embryo without the interference of maternal behavior or physiology makes it particularly useful in future studies of fetal programming. The bird embryo is also a key participant in studies of transgenerational epigenetics, whether by egg provisioning or effects on the germline that are transmitted to the F1 generation (or beyond. Finally, the avian embryo is heavily exploited in toxicology, in which both toxicological testing of potential consumer products as well as the consequences of exposure to anthropogenic pollutants are routinely carried out in the avian embryo. The avian embryo thus proves useful on numerous experimental fronts as an animal model that is concurrently both of adequate complexity and sufficient simplicity for probing vertebrate cardio-respiratory development.

  8. Animal models of age related macular degeneration

    Science.gov (United States)

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  9. Animal Models of Diabetic Macrovascular Complications: Key Players in the Development of New Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Suvi E. Heinonen

    2015-01-01

    Full Text Available Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease and microvascular disorders leading to damage of the kidneys (nephropathy and eyes (retinopathy. Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative, the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.

  10. Animal model for hepatitis C virus infection.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2015-01-01

    Hepatitis C virus (HCV) infects more than 170 million people in the world and chronic HCV infection develops into cirrhosis and hepatocellular carcinoma (HCC). Recently, the effective compounds have been approved for HCV treatment, the protease inhibitor and polymerase inhibitor (direct acting antivirals; DAA). DAA-based therapy enabled to cure from HCV infection. However, development of new drug and vaccine is still required because of the generation of HCV escape mutants from DAA, development of HCC after treatment of DAA, and the high cost of DAA. In order to develop new anti-HCV drug and vaccine, animal infection model of HCV is essential. In this manuscript, we would like to introduce the history and the current status of the development of HCV animal infection model.

  11. Animal models of asthma: utility and limitations

    Directory of Open Access Journals (Sweden)

    Aun MV

    2017-11-01

    Full Text Available Marcelo Vivolo Aun,1,2 Rafael Bonamichi-Santos,1,2 Fernanda Magalhães Arantes-Costa,2 Jorge Kalil,1 Pedro Giavina-Bianchi1 1Clinical Immunology and Allergy Division, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil, 2Laboratory of Experimental Therapeutics (LIM20, Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil Abstract: Clinical studies in asthma are not able to clear up all aspects of disease pathophysiology. Animal models have been developed to better understand these mechanisms and to evaluate both safety and efficacy of therapies before starting clinical trials. Several species of animals have been used in experimental models of asthma, such as Drosophila, rats, guinea pigs, cats, dogs, pigs, primates and equines. However, the most common species studied in the last two decades is mice, particularly BALB/c. Animal models of asthma try to mimic the pathophysiology of human disease. They classically include two phases: sensitization and challenge. Sensitization is traditionally performed by intraperitoneal and subcutaneous routes, but intranasal instillation of allergens has been increasingly used because human asthma is induced by inhalation of allergens. Challenges with allergens are performed through aerosol, intranasal or intratracheal instillation. However, few studies have compared different routes of sensitization and challenge. The causative allergen is another important issue in developing a good animal model. Despite being more traditional and leading to intense inflammation, ovalbumin has been replaced by aeroallergens, such as house dust mites, to use the allergens that cause human disease. Finally, researchers should define outcomes to be evaluated, such as serum-specific antibodies, airway hyperresponsiveness, inflammation and remodeling. The present review analyzes the animal models of asthma, assessing differences between species, allergens and routes

  12. Animal Models of Diabetic Retinopathy: Summary and Comparison

    Science.gov (United States)

    Lo, Amy C. Y.

    2013-01-01

    Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening. PMID:24286086

  13. Animal models of GM2 gangliosidosis: utility and limitations

    Science.gov (United States)

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  14. Animal models of osteoporosis - necessity and limitations

    Directory of Open Access Journals (Sweden)

    Turner A. Simon

    2001-06-01

    Full Text Available There is a great need to further characterise the available animal models for postmenopausal osteoporosis, for the understanding of the pathogenesis of the disease, investigation of new therapies (e.g. selective estrogen receptor modulators (SERMs and evaluation of prosthetic devices in osteoporotic bone. Animal models that have been used in the past include non-human primates, dogs, cats, rodents, rabbits, guinea pigs and minipigs, all of which have advantages and disadvantages. Sheep are a promising model for various reasons: they are docile, easy to handle and house, relatively inexpensive, available in large numbers, spontaneously ovulate, and the sheep's bones are large enough to evaluate orthopaedic implants. Most animal models have used females and osteoporosis in the male has been largely ignored. Recently, interest in development of appropriate prosthetic devices which would stimulate osseointegration into osteoporotic, appendicular, axial and mandibular bone has intensified. Augmentation of osteopenic lumbar vertebrae with bioactive ceramics (vertebroplasty is another area that will require testing in the appropriate animal model. Using experimental animal models for the study of these different facets of osteoporosis minimizes some of the difficulties associated with studying the disease in humans, namely time and behavioral variability among test subjects. New experimental drug therapies and orthopaedic implants can potentially be tested on large numbers of animals subjected to a level of experimental control impossible in human clinical research.

  15. Modelling Farm Animal Welfare

    Directory of Open Access Journals (Sweden)

    Chérie E. Part

    2013-05-01

    Full Text Available The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested.

  16. Animal Models for the Study of Female Sexual Dysfunction

    Science.gov (United States)

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  17. The safety, efficacy and regulatory triangle in drug development: Impact for animal models and the use of animals.

    Science.gov (United States)

    van Meer, Peter J K; Graham, Melanie L; Schuurman, Henk-Jan

    2015-07-15

    Nonclinical studies in animals are conducted to demonstrate proof-of-concept, mechanism of action and safety of new drugs. For a large part, in particular safety assessment, studies are done in compliance with international regulatory guidance. However, animal models supporting the initiation of clinical trials have their limitations, related to uncertainty regarding the predictive value for a clinical condition. The 3Rs principles (refinement, reduction and replacement) are better applied nowadays, with a more comprehensive application with respect to the original definition. This regards also regulatory guidance, so that opportunities exist to revise or reduce regulatory guidance with the perspective that the optimal balance between scientifically relevant data and animal wellbeing or a reduction in animal use can be achieved. In this manuscript we review the connections in the triangle between nonclinical efficacy/safety studies and regulatory aspects, with focus on in vivo testing of drugs. These connections differ for different drugs (chemistry-based low molecular weight compounds, recombinant proteins, cell therapy or gene therapy products). Regarding animal models and their translational value we focus on regulatory aspects and indications where scientific outcomes warrant changes, reduction or replacement, like for, e.g., biosimilar evaluation and safety testing of monoclonal antibodies. On the other hand, we present applications where translational value has been clearly demonstrated, e.g., immunosuppressives in transplantation. Especially for drugs of more recent date like recombinant proteins, cell therapy products and gene therapy products, a regulatory approach that allows the possibility to conduct combined efficacy/safety testing in validated animal models should strengthen scientific outcomes and improve translational value, while reducing the numbers of animals necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Animal models of contraception: utility and limitations

    Directory of Open Access Journals (Sweden)

    Liechty ER

    2015-04-01

    Full Text Available Emma R Liechty,1 Ingrid L Bergin,1 Jason D Bell2 1Unit for Laboratory Animal Medicine, 2Program on Women's Health Care Effectiveness Research, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA Abstract: Appropriate animal modeling is vital for the successful development of novel contraceptive devices. Advances in reproductive biology have identified novel pathways for contraceptive intervention. Here we review species-specific anatomic and physiologic considerations impacting preclinical contraceptive testing, including efficacy testing, mechanistic studies, device design, and modeling off-target effects. Emphasis is placed on the use of nonhuman primate models in contraceptive device development. Keywords: nonhuman primate, preclinical, in vivo, contraceptive devices

  19. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    Directory of Open Access Journals (Sweden)

    Heinz Feldmann

    2013-05-01

    Full Text Available Tick-borne hemorrhagic fever viruses (TBHFV are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health.

  20. STTARR: a radiation treatment and multi-modal imaging facility for fast tracking novel agent development in small animal models

    International Nuclear Information System (INIS)

    Yeung, Ivan; McKee, Trevor; Jaffray, David; Hill, Richard

    2014-01-01

    Small animal models play a pivotal role in the pipeline development of novel agents and strategies in personalized cancer therapy. The Spatio-Temporal Targeting and Amplification of Radiation Response Program (STTARR) consists of an animal imaging and precision radiation facility designed to provide innovative biologic imaging and targeted radiation treatment strategies in small animals. The design is to mirror the imaging and radiation treatment facility in a modern cancer center. The STTARR features imaging equipment of small animal scale including CT, MRI, PET, SPECT, Optical devices as well as image guided irradiators. The fleet of imaging and irradiation equipment provides a platform for identification of biological targets of the specific molecular pathways that influence both tumor progression and a patient's response to radiation therapy. Examples will be given in the utilization of the imaging facilities for development in novel approaches in cancer therapy including a PET-FAZA study for hypoxia measurement in a pancreatic adenocarcinoma xenograft model. In addition, the cone-beam image guided small animal irradiator developed at our institute will also be described. The animal platform (couch) provides motion in 3 dimensions to position the animal to the isocentre of the beam. A pair of rotational arms supporting the X-ray/detector pair enables acquisition of cone-beam images of the animal which give rise to image guided precision of 0.5 mm. The irradiation energy ranges from 50 to 225 kVp at a dose rate from 10-400 cGy/min. The gantry is able to direct X-ray beam of different directions to give conformal radiation treatment to the animal. A dedicated treatment planning system is able to perform treatment planning and provide commonly used clinical metrics in the animal treatment plan. Examples will be given to highlight the use of the image guided irradiator for research of drug/irradiation regimen in animal models. (author)

  1. Animal models of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  2. Immunogenicity of therapeutic proteins: the use of animal models.

    Science.gov (United States)

    Brinks, Vera; Jiskoot, Wim; Schellekens, Huub

    2011-10-01

    Immunogenicity of therapeutic proteins lowers patient well-being and drastically increases therapeutic costs. Preventing immunogenicity is an important issue to consider when developing novel therapeutic proteins and applying them in the clinic. Animal models are increasingly used to study immunogenicity of therapeutic proteins. They are employed as predictive tools to assess different aspects of immunogenicity during drug development and have become vital in studying the mechanisms underlying immunogenicity of therapeutic proteins. However, the use of animal models needs critical evaluation. Because of species differences, predictive value of such models is limited, and mechanistic studies can be restricted. This review addresses the suitability of animal models for immunogenicity prediction and summarizes the insights in immunogenicity that they have given so far.

  3. Animal models for Ebola and Marburg virus infections

    Science.gov (United States)

    Nakayama, Eri; Saijo, Masayuki

    2013-01-01

    Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics. PMID:24046765

  4. Animal models for Ebola and Marburg virus infections

    Directory of Open Access Journals (Sweden)

    Eri eNakayama

    2013-09-01

    Full Text Available Ebola and Marburg hemorrhagic fevers (EHF and MHF are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus, respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4 pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using nonhuman primates (NHPs and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.

  5. The complete guide to blender graphics computer modeling and animation

    CERN Document Server

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  6. The Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing: Proceedings of a Symposium.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…

  7. Animal Models of Diverticulosis: Review and Recommendations.

    Science.gov (United States)

    Patel, Bhavesh; Guo, Xiaomei; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-06-01

    Diverticulosis is a structural alteration of the colon tissue characterized by the development of pouch-like structures called diverticula. It afflicts a significant portion of the population in Western countries, with a higher prevalence among the elderly. Diverticulosis is believed to be the result of a synergetic interaction between inherent tissue weakness, diet, colonic microstructure, motility, and genetic factors. A validated etiology has, however, not yet been established. Non-surgical treatment is currently lacking due to this poor understanding, and surgical colon resection is the only long-term solution following recurrent complications. With rising prevalence, the burden of diverticulosis on patients and hospital resources has increased over the past several years. More efficient and less invasive treatment approaches are, thus, urgently needed. Animal models of diverticulosis are crucial to enable a preclinical assessment and evaluation of such novel approaches. This review discusses the animal models of diverticulosis that have been proposed to date. The current models require either a significant amount of time to develop diverticulosis, present a relatively low success rate, or seriously deteriorate the animals' systemic health. Recommendations are thus provided to address these pitfalls through the selection of a suitable animal and the combination of multiple risk factors for diverticulosis.

  8. Animal Models for Influenza Viruses: Implications for Universal Vaccine Development

    Directory of Open Access Journals (Sweden)

    Irina Margine

    2014-10-01

    Full Text Available Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.

  9. Animal Models Utilized in HTLV-1 Research

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2013-01-01

    Full Text Available Since the isolation and discovery of human T-cell leukemia virus type 1 (HTLV-1 over 30 years ago, researchers have utilized animal models to study HTLV-1 transmission, viral persistence, virus-elicited immune responses, and HTLV-1-associated disease development (ATL, HAM/TSP. Non-human primates, rabbits, rats, and mice have all been used to help understand HTLV-1 biology and disease progression. Non-human primates offer a model system that is phylogenetically similar to humans for examining viral persistence. Viral transmission, persistence, and immune responses have been widely studied using New Zealand White rabbits. The advent of molecular clones of HTLV-1 has offered the opportunity to assess the importance of various viral genes in rabbits, non-human primates, and mice. Additionally, over-expression of viral genes using transgenic mice has helped uncover the importance of Tax and Hbz in the induction of lymphoma and other lymphocyte-mediated diseases. HTLV-1 inoculation of certain strains of rats results in histopathological features and clinical symptoms similar to that of humans with HAM/TSP. Transplantation of certain types of ATL cell lines in immunocompromised mice results in lymphoma. Recently, “humanized” mice have been used to model ATL development for the first time. Not all HTLV-1 animal models develop disease and those that do vary in consistency depending on the type of monkey, strain of rat, or even type of ATL cell line used. However, the progress made using animal models cannot be understated as it has led to insights into the mechanisms regulating viral replication, viral persistence, disease development, and, most importantly, model systems to test disease treatments.

  10. Development of an Animal Model of Thoracolumbar Burst Fracture-Induced Acute Spinal Cord Injury

    Science.gov (United States)

    2016-07-01

    seven days after injury. Magnetic resonance imaging (MRI) and histology were performed on postoperative day one and seven respectively. Results: The...custom spinal cord impactor delivered consistent, predictable, impacts to the spinal cord. MRI and histology showed a positive correlation between...Accomplishments Specific Aim 1 – Develop and complete proof of concept for a novel animal model of anterior (ventral) spinal cord injury following simulated

  11. Animal models for the study of Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Eliza Miszczyk

    2014-05-01

    Full Text Available The Gram-negative bacillus Helicobacter pylori is widely recognized as a major etiologic agent responsible for chronic active gastritis, peptic ulcers, the development of gastric cancer and mucosa-associated lymphoid tissue (MALT lymphoma. Still, little is known about the natural history of H. pylori infection, since patients usually after many years of not suffering from symptoms of the infection are simply asymptomatic. Since the research investigators carried out on human models has many limitations, there is an urgent need for the development of an animal model optimal and suitable for the monitoring of H. pylori infections. This review summarizes the recent findings on the suitability of animal models used in H. pylori research. Several animal models are useful for the assessment of pathological, microbiological and immunological consequences of infection, which makes it possible to monitor the natural

  12. Henipavirus Infections: Lessons from Animal Models

    Directory of Open Access Journals (Sweden)

    Kévin P. Dhondt

    2013-04-01

    Full Text Available The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.

  13. Animal models of papillomavirus pathogenesis.

    Science.gov (United States)

    Campo, M Saveria

    2002-11-01

    Tumorigenesis due to papillomavirus (PV) infection was first demonstrated in rabbits and cattle early last century. Despite the evidence obtained in animals, the role of viruses in human cancer was dismissed as irrelevant. It took a paradigm shift in the late 1970s for some viruses to be recognised as 'tumour viruses' in humans, and in 1995, more than 60 years after Rous's first demonstration of CRPV oncogenicity, WHO officially declared that 'HPV-16 and HPV-18 are carcinogenic to humans'. Experimental studies with animal PVs have been a determining factor in this decision. Animal PVs have been studied both as agents of disease in animals and as models of human PV infection. In addition to the study of PV infection in whole animals, in vitro studies with animal PV proteins have contributed greatly to the understanding of the mechanisms of cell transformation. Animal PVs cause distressing diseases in both farm and companion animals, such as teat papillomatosis in cattle, equine sarcoids and canine oral papillomatosis and there is an urgent need to understand the pathogenesis of these problematic infections. Persistent and florid teat papillomatosis in cows can lead to mastitis, prevent the suckling of calves and make milking impossible; heavily affected animals are culled and so occasionally are whole herds. Equine sarcoids are often recurrent and untreatable and lead to loss of valuable animals. Canine oral papillomatosis can be very extensive and persistent and lead to great distress. Thus the continuing research in the biology of animal PVs is amply justified. BPVs and CRPV have been for many years the model systems with which to study the biology of HPV. Induction of papillomas and their neoplastic progression has been experimentally demonstrated and reproduced in cattle and rabbits, and virus-cofactor interactions have been elucidated in these systems. With the advancements in molecular and cell culture techniques, the direct study of HPV has become less

  14. Animal models of obesity and diabetes mellitus

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Clemmensen, Christoffer; Hofmann, Susanna M

    2018-01-01

    More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover......, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently...... available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models....

  15. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course

    Science.gov (United States)

    Lufri, L.; Fitri, R.; Yogica, R.

    2018-04-01

    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  16. Animal Cancer Models of Skeletal Metastasis

    Directory of Open Access Journals (Sweden)

    Catherine Hibberd

    2013-01-01

    Full Text Available The bony skeleton is one of the most common sites of metastatic spread of cancer and is a significant source of morbidity in cancer patients, causing pain and pathologic fracture, impaired ambulatory ability, and poorer quality of life. Animal cancer models of skeletal metastases are essential for better understanding of the molecular pathways behind metastatic spread and local growth and invasion of bone, to enable analysis of host-tumor cell interactions, identify barriers to the metastatic process, and to provide platforms to develop and test novel therapies prior to clinical application in human patients. Thus, the ideal model should be clinically relevant, reproducible and representative of the human condition. This review summarizes the current in vivo animal models used in the study of cancer metastases of the skeleton.

  17. Cancer immunotherapy : insights from transgenic animal models

    NARCIS (Netherlands)

    McLaughlin, PMJ; Kroesen, BJ; Harmsen, MC; de Leij, LFMH

    2001-01-01

    A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the

  18. Animal models of GM2 gangliosidosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Lawson CA

    2016-07-01

    Full Text Available Cheryl A Lawson,1,2 Douglas R Martin2,3 1Department of Pathobiology, 2Scott-Ritchey Research Center, 3Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA Abstract: GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. Keywords: GM2 gangliosidosis, Tay–Sachs disease, Sandhoff disease, lysosomal storage disorder, sphingolipidosis, brain disease

  19. The role of disturbed blood flow in the development of pulmonary arterial hypertension: lessons from preclinical animal models.

    Science.gov (United States)

    Dickinson, Michael G; Bartelds, Beatrijs; Borgdorff, Marinus A J; Berger, Rolf M F

    2013-07-01

    Pulmonary arterial hypertension (PAH) is a progressive pulmonary vasoproliferative disorder characterized by the development of unique neointimal lesions, including concentric laminar intima fibrosis and plexiform lesions. Although the histomorphology of neointimal lesions is well described, the pathogenesis of PAH and neointimal development is largely unknown. After three decades of PAH pathobiology research the focus has shifted from vasoconstriction towards a mechanism of cancer-like angioproliferation. In this concept the role of disturbed blood flow is seen as an important trigger in the development of vascular remodeling. For instance, in PAH associated with congenital heart disease, increased pulmonary blood flow (i.e., systemic-to-pulmonary shunt) is an essential trigger for the occurrence of neointimal lesions and PAH development. Still, questions remain about the exact role of these blood flow characteristics in disease progression. PAH animal models are important for obtaining insight in new pathobiological processes and therapeutical targets. However, as for any preclinical model the pathophysiological mechanism and clinical course has to be comparable to the human disease that it mimics. This means that animal models mimicking human PAH ideally are characterized by: a hit recognized in human disease (e.g., altered pulmonary blood flow), specific vascular remodeling resembling human neointimal lesions, and disease progression that leads to right ventriclular dysfunction and death. A review that underlines the current knowledge of PAH due to disturbed flow is still lacking. In this review we will summarize the current knowledge obtained from PAH animal models associated with disturbed pulmonary blood flow and address questions for future treatment strategies for PAH.

  20. Animal Models of Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Domenico Santoro

    2014-12-01

    Full Text Available Allergic diseases have great impact on the quality of life of both people and domestic animals. They are increasing in prevalence in both animals and humans, possibly due to the changed lifestyle conditions and the decreased exposure to beneficial microorganisms. Dogs, in particular, suffer from environmental skin allergies and develop a clinical presentation which is very similar to the one of children with eczema. Thus, dogs are a very useful species to improve our understanding on the mechanisms involved in people’s allergies and a natural model to study eczema. Animal models are frequently used to elucidate mechanisms of disease and to control for confounding factors which are present in studies with patients with spontaneously occurring disease and to test new therapies that can be beneficial in both species. It has been found that drugs useful in one species can also have benefits in other species highlighting the importance of a comprehensive understanding of diseases across species and the value of comparative studies. The purpose of the current article is to review allergic diseases across species and to focus on how these diseases compare to the counterpart in people.

  1. Animal models for evaluation of oral delivery of biopharmaceuticals

    DEFF Research Database (Denmark)

    Harloff-Helleberg, Stine; Nielsen, Line Hagner; Nielsen, Hanne Mørck

    2017-01-01

    of systems for oral delivery of biopharmaceuticals may result in new treatment modalities to increase the patient compliance and reduce product cost. In the preclinical development phase, use of experimental animal models is essential for evaluation of new formulation designs. In general, the limited oral...... bioavailability of biopharmaceuticals, of just a few percent, is expected, and therefore, the animal models and the experimental settings must be chosen with utmost care. More knowledge and focus on this topic is highly needed, despite experience from the numerous studies evaluating animal models for oral drug...... delivery of small molecule drugs. This review highlights and discusses pros and cons of the most currently used animal models and settings. Additionally, it also looks into the influence of anesthetics and sampling methods for evaluation of drug delivery systems for oral delivery of biopharmaceuticals...

  2. Recent advances in the development of new transgenic animal technology.

    Science.gov (United States)

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  3. Animal models to study plaque vulnerability

    NARCIS (Netherlands)

    Schapira, K.; Heeneman, S.; Daemen, M. J. A. P.

    2007-01-01

    The need to identify and characterize vulnerable atherosclerotic lesions in humans has lead to the development of various animal models of plaque vulnerability. In this review, current concepts of the vulnerable plaque as it leads to an acute coronary event are described, such as plaque rupture,

  4. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  5. ANIMAL MODELS OF POST-TRAUMATIC STRESS DISORDER: FACE VALIDITY

    Directory of Open Access Journals (Sweden)

    SONAL eGOSWAMI

    2013-05-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma.

  6. Modelling animal waste pathogen transport from agricultural land to streams

    International Nuclear Information System (INIS)

    Pandey, Pramod K; Soupir, Michelle L; Ikenberry, Charles

    2014-01-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water

  7. Behavioral models of tinnitus and hyperacusis in animals

    Directory of Open Access Journals (Sweden)

    Sarah H Hayes

    2014-09-01

    Full Text Available The phantom perception of tinnitus and reduced sound level tolerance associated with hyperacusis, have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis.

  8. Animal model of thermal injuries

    Directory of Open Access Journals (Sweden)

    F. Bečić

    2003-11-01

    Full Text Available Experimental studies of burns require the use of different animal models with the aim to imitate and reproduce pathophysiological conditions. The aim of this work was to establish experimental model of thermal injury.New Zealand rabbits, weighted from 1.8 kg to 2.3 kg, were utilised during our study. Another, also utilized, animal types were laboratory Rattus rats, species Wistar, albino type, females with body weight of about 232 g. All animals were from our own litter (Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine in Sarajevo. During the experiment, animal were properly situated in adequate cages and rooms, at the controlled temperature (22 ± 2°C, and in the air with normal humidity level. All animals took food and water ad libitum.Rabbits received anesthesia - intravenous pentobarbital sodium in a dose of 60 mg/kg, and then, hair from the upper side of the each rabbit ear was removed and burns were caused by a metal seal in the same manner as in rats. Rats were primarily anesthesied by intraperitoneal pentobarbital sodium in a dose of 35 mg/kg, and then, their hair was removed from the scapula zone (5 cm x 5 cm. Burns were caused by contact with a round metal seal, heated at 80°C in a water bath, during the period of 14 seconds together with contact thermometer control. Round metal seal (radius: 2.5 cm; weight: 100 g; surface: 5 cm2 was just placed on the rat skin without any additional pressure. In order to maintain the microcirculation in the burn wound and to reduce the conversion of partial-thickness skin burns to the burns of the full-thickness skin, all burn wounds were immediately sunk in the 4°C water. Subsequent to that procedure, all animals were individually situated in the proper cages, and left to rest for 4 hours with a constant cautious monitoring of the wound development and animal general state.

  9. Animal models of substance abuse and addiction: implications for science, animal welfare, and society.

    Science.gov (United States)

    Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L

    2010-06-01

    Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.

  10. Cardiovascular Changes in Animal Models of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Alexandre M. Lehnen

    2013-01-01

    Full Text Available Metabolic syndrome has been defined as a group of risk factors that directly contribute to the development of cardiovascular disease and/or type 2 diabetes. Insulin resistance seems to have a fundamental role in the genesis of this syndrome. Over the past years to the present day, basic and translational research has used small animal models to explore the pathophysiology of metabolic syndrome and to develop novel therapies that might slow the progression of this prevalent condition. In this paper we discuss the animal models used for the study of metabolic syndrome, with particular focus on cardiovascular changes, since they are the main cause of death associated with the condition in humans.

  11. Animal Models of Zika Virus

    Science.gov (United States)

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  12. Myeloid leukemias and virally induced lymphomas in miniature inbred swine; development of a large animal tumor model

    Directory of Open Access Journals (Sweden)

    RAIMON eDURAN-STRUUCK

    2015-11-01

    Full Text Available The lack of a large animal transplantable tumor model has limited the study of novel therapeutic strategies for the treatment of liquid cancers. Swine as a species provide a natural option based on their similarities with humans and their already extensive use in biomedical research. Specifically, the MGH miniature swine herd retains unique genetic characteristics that facilitate the study of hematopoietic cell and solid organ transplantation. Spontaneously arising liquid cancers in these swine, specifically myeloid leukemias and B cell lymphomas, closely resemble human malignancies. The ability to establish aggressive tumor cell lines in vitro from these naturally occurring malignancies makes a transplantable tumor model a close reality. Here, we discuss our experience with myeloid and lymphoid tumors in MHC characterized miniature swine and future approaches regarding the development of a large animal transplantable tumor model.

  13. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  14. Using Computational and Mechanical Models to Study Animal Locomotion

    OpenAIRE

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locom...

  15. Potency of Animal Models in KANSEI Engineering

    Science.gov (United States)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  16. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome

    DEFF Research Database (Denmark)

    Sangild, Per Torp; Ney, Denise M; Sigalet, David L

    2014-01-01

    enterocolitis, atresia, gastroschisis, volvulus and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, nutritional interventions and growth factor therapies. Animal studies may......, newborn pigs and weanling rats represent a translational advantage for infant SBS due to their immature intestine. A balance among practical, economical, experimental and ethical constraints determines the choice of SBS model for each clinical or basic research question....

  17. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy

    Science.gov (United States)

    McGreevy, Joe W.; Hakim, Chady H.; McIntosh, Mark A.; Duan, Dongsheng

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. PMID:25740330

  18. Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy.

    Science.gov (United States)

    McGreevy, Joe W; Hakim, Chady H; McIntosh, Mark A; Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs. © 2015. Published by The Company of Biologists Ltd.

  19. How can animal models inform on the transition to chronic symptoms in whiplash?

    Science.gov (United States)

    Winkelstein, Beth A.

    2011-01-01

    Study Design A non-systematic review of the literature. Objective The objective was to present general schema for mechanisms of whiplash pain and review the role of animal models in understanding the development of chronic pain from whiplash injury. Summary of Background Data Extensive biomechanical and clinical studies of whiplash have been performed to understand the injury mechanisms and symptoms of whiplash injury. However, only recently have animal models of this painful disorder been developed based on other pain models in the literature. Methods A non-systematic review was performed and findings were integrated to formulate a generalized picture of mechanisms by chronic whiplash pain develops from mechanical tissue injuries. Results The development of chronic pain from tissue injuries in the neck due to whiplash involves complex interactions between the injured tissue and spinal neuroimmune circuits. A variety of animal models are beginning to define these mechanisms. Conclusion Continued work is needed in developing appropriate animal models to investigate chronic pain from whiplash injuries and care must be taken to determine whether such models aim to model the injury event or the pain symptom. PMID:22020616

  20. Animal Models for Tuberculosis in Translational and Precision Medicine

    Directory of Open Access Journals (Sweden)

    Lingjun Zhan

    2017-05-01

    Full Text Available Tuberculosis (TB is a health threat to the global population. Anti-TB drugs and vaccines are key approaches for TB prevention and control. TB animal models are basic tools for developing biomarkers of diagnosis, drugs for therapy, vaccines for prevention and researching pathogenic mechanisms for identification of targets; thus, they serve as the cornerstone of comparative medicine, translational medicine, and precision medicine. In this review, we discuss the current use of TB animal models and their problems, as well as offering perspectives on the future of these models.

  1. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  2. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model

    NARCIS (Netherlands)

    Brouwer, E.; Huitema, M. G.; Klok, P. A.; de Weerd, H.; Tervaert, J. W.; Weening, J. J.; Kallenberg, C. G.

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  3. ANTIMYELOPEROXIDASE-ASSOCIATED PROLIFERATIVE GLOMERULONEPHRITIS - AN ANIMAL-MODEL

    NARCIS (Netherlands)

    BROUWER, E; HUITEMA, MG; KLOK, PA; DEWEERD, H; TERVAERT, JWC; WEENING, JJ; KALLENBERG, CGM

    1993-01-01

    To develop an animal model for antimyeloperoxidase (MPO)-associated necrotizing crescentic glomerulonephritis (NCGN), we immunized Brown Norway rats with MPO and localized a neutrophil lysosomal enzyme extract, primarily consisting of MPO and elastinolytic enzymes, plus H2O2, the substrate of MPO,

  4. Animal model of human disease. Multiple myeloma

    NARCIS (Netherlands)

    Radl, J.; Croese, J.W.; Zurcher, C.; Enden-Vieveen, M.H.M. van den; Leeuw, A.M. de

    1988-01-01

    Animal models of spontaneous and induced plasmacytomas in some inbred strains of mice have proven to be useful tools for different studies on tumorigenesis and immunoregulation. Their wide applicability and the fact that after their intravenous transplantation, the recipient mice developed bone

  5. Phenotyping animal models of diabetic neuropathy

    DEFF Research Database (Denmark)

    Biessels, G J; Bril, V; Calcutt, N A

    2014-01-01

    NIDDK, JDRF, and the Diabetic Neuropathy Study Group of EASD sponsored a meeting to explore the current status of animal models of diabetic peripheral neuropathy. The goal of the workshop was to develop a set of consensus criteria for the phenotyping of rodent models of diabetic neuropathy...... with a discussion on the merits and limitations of a unified approach to phenotyping rodent models of diabetic neuropathy and a consensus formed on the definition of the minimum criteria required for establishing the presence of the disease. A neuropathy phenotype in rodents was defined as the presence...

  6. From Storyboard to Story: Animation Content Development

    Science.gov (United States)

    Mou, Tsai-Yun; Jeng, Tay-Sheng; Chen, Chien-Hsu

    2013-01-01

    This research focused on a new method in the development of animation story content, which could shorten the creation process and arouse new ideas. Two phases of experiments were conducted to explore this reversed model. The first phase is a pretest of participants' creativity, which was a base for further examination the relationship between…

  7. Animal models of maternal nutrition and altered offspring bone structure – Bone development across the lifecourse

    Directory of Open Access Journals (Sweden)

    SA Lanham

    2011-11-01

    Full Text Available It is widely accepted that the likelihood of offspring developing heart disease, stroke, or diabetes in later life, is influenced by the their in utero environment and maternal nutrition. There is increasing epidemiological evidence that osteoporosis in the offspring may also be influenced by the mother’s nutrition during pregnancy. This review provides evidence from a range of animal models that supports the epidemiological data; suggesting that lifelong bone development and growth in offspring is determined during gestation.

  8. Geospatial forecast model for tsetse-transmitted animal ...

    African Journals Online (AJOL)

    Results indicate that GIS model developed for parasitic diseases based on growing degree day (GDD) concept can be applied to tsetse-transmitted trypanosomosis. GIS for animal trypanosomosis was created using Food and Agriculture Organization – Crop Production System Zones (FAO-CPSZ) database and Normalized ...

  9. Animal models for studying female genital tract infection with Chlamydia trachomatis.

    Science.gov (United States)

    De Clercq, Evelien; Kalmar, Isabelle; Vanrompay, Daisy

    2013-09-01

    Chlamydia trachomatis is a Gram-negative obligate intracellular bacterial pathogen. It is the leading cause of bacterial sexually transmitted disease in the world, with more than 100 million new cases of genital tract infections with C. trachomatis occurring each year. Animal models are indispensable for the study of C. trachomatis infections and the development and evaluation of candidate vaccines. In this paper, the most commonly used animal models to study female genital tract infections with C. trachomatis will be reviewed, namely, the mouse, guinea pig, and nonhuman primate models. Additionally, we will focus on the more recently developed pig model.

  10. Animal models got you puzzled?: think pig.

    Science.gov (United States)

    Walters, Eric M; Agca, Yuksel; Ganjam, Venkataseshu; Evans, Tim

    2011-12-01

    Swine are an excellent large animal model for human health and disease because their size and physiology are similar to humans, in particular, with respect to the skin, heart, gastrointestinal tract, and kidneys. In addition, the pig has many emerging technologies that will only enhance the development of the pig as the nonrodent biomedical model of choice. © 2011 New York Academy of Sciences.

  11. [RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].

    Science.gov (United States)

    Yu, Kaifu; Tan, Hongbo; Xu, Yongqing

    2015-12-01

    To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.

  12. Animal models to improve our understanding and treatment of suicidal behavior

    Science.gov (United States)

    Gould, T D; Georgiou, P; Brenner, L A; Brundin, L; Can, A; Courtet, P; Donaldson, Z R; Dwivedi, Y; Guillaume, S; Gottesman, I I; Kanekar, S; Lowry, C A; Renshaw, P F; Rujescu, D; Smith, E G; Turecki, G; Zanos, P; Zarate, C A; Zunszain, P A; Postolache, T T

    2017-01-01

    Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic–pituitary–adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio. PMID:28398339

  13. Animal-assisted dyadic therapy: A therapy model promoting development of the reflective function in the parent-child bond.

    Science.gov (United States)

    Shani, Liat

    2017-01-01

    Animal-assisted psychotherapy (AAP) inherently incorporates standpoints, interventions, and ways of action promoting the development of the reflective function and mentalization, and thus has special value for parent-child psychotherapy. Two central tools in AAP contribute to this process. The first is the ethical stance of the therapist, who sees the animals as full partners in the therapy situation, respecting them as subjects with needs, desires, and thoughts of their own. The second tool combines nonverbal communication with animals together with the relating, in the here and now, to the understanding and decoding of body language of everyone in the setting. Nonverbal communication in AAP enables access to implicit communication patterns occurring between parent and child. This article provides a survey of theoretical development and research constituting a basis for the development of therapeutic approaches for the improvement of parent-children dynamics, followed by a description of a dyadic therapy model of a mentalization-based treatment originating from a psychoanalytic-relational orientation. Clinical examples are provided to illustrate AAP processes in parent-child psychotherapy (consent was received for examples that were not aggregated).

  14. Development of FAME Animation System

    International Nuclear Information System (INIS)

    Hasegawa, Yukihiro; Hamamatsu, Kiyotaka; Shirai, Hiroshi; Matsuda, Toshiaki; Watanabe, Hideto; Itakura, Hirofumi; Tahata, Yasunori

    1999-02-01

    In order to monitor an animation of magnetohydrodynamic equilibrium calculated by the FAME-II (Fast Analyzer for Magnetohydrodynamic Equilibrium-II) system, a FAME Animation System was developed. This system provides automatically the animation on workstations connected to network with the same period of JT-60U discharge sequence. Then, the system can supply the important information for JT-60U operators to determine control parameters of the succeeding discharge. This report describes the overview of the FAME Animation System. (author)

  15. Animal models for testing anti-prion drugs.

    Science.gov (United States)

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  16. Model systems to study immunomodulation in domestic food animals.

    Science.gov (United States)

    Roth, J A; Flaming, K P

    1990-01-01

    Development of immunomodulators for use in food producing animals is an active area of research. This research has generally incorporated aspects of immunosuppression in model systems. This methodology is appropriate because most of the research has been aimed at developing immunomodulators for certain economically significant diseases in which immunosuppression is believed to be an important component of their pathogenesis. The primary focus has been on stress-associated diseases (especially bovine respiratory disease), infectious diseases in young animals, and mastitis. The model systems used have limitations, but they have demonstrated that immunomodulators are capable of significantly increasing resistance to these important infectious disease syndromes. As our understanding of molecular immunology increases and as more potential immunomodulators become available, the use of relevant model systems should greatly aid advancement in the field of immunomodulation.

  17. Animal models of tic disorders: a translational perspective.

    Science.gov (United States)

    Godar, Sean C; Mosher, Laura J; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-12-30

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Animal models of tic disorders: A translational perspective

    Science.gov (United States)

    Godar, Sean C.; Mosher, Laura J.; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-01-01

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. PMID:25244952

  19. Animal models of exercise and obesity.

    Science.gov (United States)

    Kasper, Christine E

    2013-01-01

    Animal models have been invaluable in the conduct of nursing research for the past 40 years. This review will focus on specific animal models that can be used in nursing research to study the physiologic phenomena of exercise and obesity when the use of human subjects is either scientifically premature or inappropriate because of the need for sampling tissue or the conduct of longitudinal studies of aging. There exists an extensive body of literature reporting the experimental use of various animal models, in both exercise science and the study of the mechanisms of obesity. Many of these studies are focused on the molecular and genetic mechanisms of organ system adaptation and plasticity in response to exercise, obesity, or both. However, this review will narrowly focus on the models useful to nursing research in the study of exercise in the clinical context of increasing performance and mobility, atrophy and bedrest, fatigue, and aging. Animal models of obesity focus on those that best approximate clinical pathology.

  20. The Nuremberg Code subverts human health and safety by requiring animal modeling

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-07-01

    Full Text Available Abstract Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  1. Perinatal Hypoxia and Ischemia in Animal Models of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Dimitri Hefter

    2018-03-01

    Full Text Available Intrauterine or perinatal complications constitute a major risk for psychiatric diseases. Infants who suffered from hypoxia–ischemia (HI are at twofold risk to develop schizophrenia in later life. Several animal models attempt to reproduce these complications to study the yet unknown steps between an insult in early life and outbreak of the disease decades later. However, it is very challenging to find the right type and severity of insult leading to a disease-like phenotype in the animal, but not causing necrosis and focal neurological deficits. By contrast, too mild, repetitive insults may even be protective via conditioning effects. Thus, it is not surprising that animal models of hypoxia lead to mixed results. To achieve clinically translatable findings, better protocols are urgently needed. Therefore, we compare widely used models of hypoxia and HI and propose future directions for the field.

  2. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Directory of Open Access Journals (Sweden)

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  3. Animal Models of Calcific Aortic Valve Disease

    Directory of Open Access Journals (Sweden)

    Krista L. Sider

    2011-01-01

    Full Text Available Calcific aortic valve disease (CAVD, once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the utility of existing models. In this paper, we summarize and critically appraise current small and large animal models of CAVD, discuss the utility of animal models for priority CAVD research areas, and provide recommendations for future animal model studies of CAVD.

  4. Experimental psychiatric illness and drug abuse models: from human to animal, an overview.

    Science.gov (United States)

    Edwards, Scott; Koob, George F

    2012-01-01

    Preclinical animal models have supported much of the recent rapid expansion of neuroscience research and have facilitated critical discoveries that undoubtedly benefit patients suffering from psychiatric disorders. This overview serves as an introduction for the following chapters describing both in vivo and in vitro preclinical models of psychiatric disease components and briefly describes models related to drug dependence and affective disorders. Although there are no perfect animal models of any psychiatric disorder, models do exist for many elements of each disease state or stage. In many cases, the development of certain models is essentially restricted to the human clinical laboratory domain for the purpose of maximizing validity, whereas the use of in vitro models may best represent an adjunctive, well-controlled means to model specific signaling mechanisms associated with psychiatric disease states. The data generated by preclinical models are only as valid as the model itself, and the development and refinement of animal models for human psychiatric disorders continues to be an important challenge. Collaborative relationships between basic neuroscience and clinical modeling could greatly benefit the development of new and better models, in addition to facilitating medications development.

  5. Animal models of attention-deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-07-01

    Full Text Available Abstract Although animals cannot be used to study complex human behaviour such as language, they do have similar basic functions. In fact, human disorders that have animal models are better understood than disorders that do not. ADHD is a heterogeneous disorder. The relatively simple nervous systems of rodent models have enabled identification of neurobiological changes that underlie certain aspects of ADHD behaviour. Several animal models of ADHD suggest that the dopaminergic system is functionally impaired. Some animal models have decreased extracellular dopamine concentrations and upregulated postsynaptic dopamine D1 receptors (DRD1 while others have increased extracellular dopamine concentrations. In the latter case, dopamine pathways are suggested to be hyperactive. However, stimulus-evoked release of dopamine is often decreased in these models, which is consistent with impaired dopamine transmission. It is possible that the behavioural characteristics of ADHD result from impaired dopamine modulation of neurotransmission in cortico-striato-thalamo-cortical circuits. There is considerable evidence to suggest that the noradrenergic system is poorly controlled by hypofunctional α2-autoreceptors in some models, giving rise to inappropriately increased release of norepinephrine. Aspects of ADHD behaviour may result from an imbalance between increased noradrenergic and decreased dopaminergic regulation of neural circuits that involve the prefrontal cortex. Animal models of ADHD also suggest that neural circuits may be altered in the brains of children with ADHD. It is therefore of particular importance to study animal models of the disorder and not normal animals. Evidence obtained from animal models suggests that psychostimulants may not be acting on the dopamine transporter to produce the expected increase in extracellular dopamine concentration in ADHD. There is evidence to suggest that psychostimulants may decrease motor activity by

  6. A novel animal model of dysphagia following stroke.

    Science.gov (United States)

    Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane

    2014-02-01

    Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.

  7. Reducing the variation in animal models by standardizing the gut microbiota

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Hufeldt, Majbritt Ravn; Hansen, Camilla Hartmann Friis

    2011-01-01

    , a large proportion of laboratory animals are used to study such diseases, but inter-individual variation in these animal models leads to the need for larger group sizes to reach statistical significance and adequate power. By standardizing the microbial and immunological status of laboratory animals we...... mice changed the glucose tolerance without affecting weight or mucosal immunity. Further investigations concerning the mechanisms of how GM influences disease development is necessary, but based on these results it seems reasonable to assume that by manipulating the GM we may produce animal models...... may therefore be able to produce animals with a more standardized response and less variation. This would lead to more precise results and a reduced number of animals needed for statistical significance. Denaturing gradient gel electrophoresis (DGGE) - a culture independent approach separating PCR...

  8. An improved mounting device for attaching intracranial probes in large animal models.

    Science.gov (United States)

    Dunster, Kimble R

    2015-12-01

    The rigid support of intracranial probes can be difficult when using animal models, as mounting devices suitable for the probes are either not available, or designed for human use and not suitable in animal skulls. A cheap and reliable mounting device for securing intracranial probes in large animal models is described. Using commonly available clinical consumables, a universal mounting device for securing intracranial probes to the skull of large animals was developed and tested. A simply made mounting device to hold a variety of probes from 500 μm to 1.3 mm in diameter to the skull was developed. The device was used to hold probes to the skulls of sheep for up to 18 h. No adhesives or cements were used. The described device provides a reliable method of securing probes to the skull of animals.

  9. Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development.

    Science.gov (United States)

    Reynolds, L P; Borowicz, P P; Caton, J S; Vonnahme, K A; Luther, J S; Hammer, C J; Maddock Carlin, K R; Grazul-Bilska, A T; Redmer, D A

    2010-04-01

    Developmental programming refers to the programming of various bodily systems and processes by a stressor of the maternal system during pregnancy or during the neonatal period. Such stressors include nutritional stress, multiple pregnancy (i.e., increased numbers of fetuses in the gravid uterus), environmental stress (e.g., high environmental temperature, high altitude, prenatal steroid exposure), gynecological immaturity, and maternal or fetal genotype. Programming refers to impaired function of numerous bodily systems or processes, leading to poor growth, altered body composition, metabolic dysfunction, and poor productivity (e.g., poor growth, reproductive dysfunction) of the offspring throughout their lifespan and even across generations. A key component of developmental programming seems to be placental dysfunction, leading to altered fetal growth and development. We discuss various large animal models of developmental programming and how they have and will continue to contribute to our understanding of the mechanisms underlying altered placental function and developmental programming, and, further, how large animal models also will be critical to the identification and application of therapeutic strategies that will alleviate the negative consequences of developmental programming to improve offspring performance in livestock production and human medicine.

  10. NAFLD, Estrogens, and Physical Exercise: The Animal Model

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lavoie

    2012-01-01

    Full Text Available One segment of the population that is particularly inclined to liver fat accumulation is postmenopausal women. Although nonalcoholic hepatic steatosis is more common in men than in women, after menopause there is a reversal in gender distribution. At the present time, weight loss and exercise are regarded as first line treatments for NAFLD in postmenopausal women, as it is the case for the management of metabolic syndrome. In recent years, there has been substantial evidence coming mostly from the use of the animal model, that indeed estrogens withdrawal is associated with modifications of molecular markers favouring the activity of metabolic pathways ultimately leading to liver fat accumulation. In addition, the use of the animal model has provided physiological and molecular evidence that exercise training provides estrogens-like protective effects on liver fat accumulation and its consequences. The purpose of the present paper is to present information relative to the development of a state of NAFLD resulting from the absence of estrogens and the role of exercise training, emphasizing on the contribution of the animal model on these issues.

  11. Animal Model of Sensorineural Hearing Loss Associated with Lassa Virus Infection.

    Science.gov (United States)

    Yun, Nadezhda E; Ronca, Shannon; Tamura, Atsushi; Koma, Takaaki; Seregin, Alexey V; Dineley, Kelly T; Miller, Milagros; Cook, Rebecca; Shimizu, Naoki; Walker, Aida G; Smith, Jeanon N; Fair, Joseph N; Wauquier, Nadia; Bockarie, Bayon; Khan, Sheik Humarr; Makishima, Tomoko; Paessler, Slobodan

    2015-12-30

    Approximately one-third of Lassa virus (LASV)-infected patients develop sensorineural hearing loss (SNHL) in the late stages of acute disease or in early convalescence. With 500,000 annual cases of Lassa fever (LF), LASV is a major cause of hearing loss in regions of West Africa where LF is endemic. To date, no animal models exist that depict the human pathology of LF with associated hearing loss. Here, we aimed to develop an animal model to study LASV-induced hearing loss using human isolates from a 2012 Sierra Leone outbreak. We have recently established a murine model for LF that closely mimics many features of human disease. In this model, LASV isolated from a lethal human case was highly virulent, while the virus isolated from a nonlethal case elicited mostly mild disease with moderate mortality. More importantly, both viruses were able to induce SNHL in surviving animals. However, utilization of the nonlethal, human LASV isolate allowed us to consistently produce large numbers of survivors with hearing loss. Surviving mice developed permanent hearing loss associated with mild damage to the cochlear hair cells and, strikingly, significant degeneration of the spiral ganglion cells of the auditory nerve. Therefore, the pathological changes in the inner ear of the mice with SNHL supported the phenotypic loss of hearing and provided further insights into the mechanistic cause of LF-associated hearing loss. Sensorineural hearing loss is a major complication for LF survivors. The development of a small-animal model of LASV infection that replicates hearing loss and the clinical and pathological features of LF will significantly increase knowledge of pathogenesis and vaccine studies. In addition, such a model will permit detailed characterization of the hearing loss mechanism and allow for the development of appropriate diagnostic approaches and medical care for LF patients with hearing impairment. Copyright © 2016, American Society for Microbiology. All Rights

  12. Overview on available animal models for application in leukemia research

    International Nuclear Information System (INIS)

    Borkhardt, A.; Sanchez-Garcia, I.; Cobaleda, C.; Hauer, J.

    2015-01-01

    The term ''leukemia'' encompasses a group of diseases with a variable clinical and pathological presentation. Its cellular origin, its biology and the underlying molecular genetic alterations determine the very variable and individual disease phenotype. The focus of this review is to discuss the most important guidelines to be taken into account when we aim at developing an ''ideal'' animal model to study leukemia. The animal model should mimic all the clinical, histological and molecular genetic characteristics of the human phenotype and should be applicable as a clinically predictive model. It should achieve all the requirements to be used as a standardized model adaptive to basic research as well as to pharmaceutical practice. Furthermore it should fulfill all the criteria to investigate environmental risk factors, the role of genomic mutations and be applicable for therapeutic testing. These constraints limit the usefulness of some existing animal models, which are however very valuable for basic research. Hence in this review we will primarily focus on genetically engineered mouse models (GEMMs) to study the most frequent types of childhood leukemia. GEMMs are robust models with relatively low site specific variability and which can, with the help of the latest gene modulating tools be adapted to individual clinical and research questions. Moreover they offer the possibility to restrict oncogene expression to a defined target population and regulate its expression level as well as its timely activity. Until recently it was only possible in individual cases to develop a murin model, which fulfills the above mentioned requirements. Hence the development of new regulatory elements to control targeted oncogene expression should be priority. Tightly controlled and cell specific oncogene expression can then be combined with a knock-in approach and will depict a robust murine model, which enables almost physiologic oncogene

  13. Modelling group dynamic animal movement

    DEFF Research Database (Denmark)

    Langrock, Roland; Hopcraft, J. Grant C.; Blackwell, Paul G.

    2014-01-01

    makes its movement decisions relative to the group centroid. The basic idea is framed within the flexible class of hidden Markov models, extending previous work on modelling animal movement by means of multi-state random walks. While in simulation experiments parameter estimators exhibit some bias......, to date, practical statistical methods which can include group dynamics in animal movement models have been lacking. We consider a flexible modelling framework that distinguishes a group-level model, describing the movement of the group's centre, and an individual-level model, such that each individual......Group dynamic movement is a fundamental aspect of many species' movements. The need to adequately model individuals' interactions with other group members has been recognised, particularly in order to differentiate the role of social forces in individual movement from environmental factors. However...

  14. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives.

    Science.gov (United States)

    Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja

    2016-01-01

    Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  15. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives

    Directory of Open Access Journals (Sweden)

    Mohan Kumar Pasupuleti

    2016-01-01

    Full Text Available Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.

  16. Training for laparoscopic Nissen fundoplication with a newly designed model: a replacement for animal tissue models?

    Science.gov (United States)

    Christie, Lorna; Goossens, Richard; Jakimowicz, Jack J.

    2010-01-01

    Background To bridge the early learning curve for laparoscopic Nissen fundoplication from the clinical setting to a safe environment, training models can be used. This study aimed to develop a reusable, low-cost model to be used for training in laparoscopic Nissen fundoplication procedure as an alternative to the use of animal tissue models. Methods From artificial organs and tissue, an anatomic model of the human upper abdomen was developed for training in performing laparoscopic Nissen fundoplication. The 20 participants and tutors in the European Association for Endoscopic Surgery (EAES) upper gastrointestinal surgery course completed four complementary tasks of laparoscopic Nissen fundoplication with the artificial model, then compared the realism, haptic feedback, and training properties of the model with those of animal tissue models. Results The main difference between the two training models was seen in the properties of the stomach. The wrapping of the stomach in the artificial model was rated significantly lower than that in the animal tissue model (mean, 3.6 vs. 4.2; p = 0.010). The main criticism of the stomach of the artificial model was that it was too rigid for making a proper wrap. The suturing of the stomach wall, however, was regarded as fairly realistic (mean, 3.6). The crura on the artificial model were rated better (mean, 4.3) than those on the animal tissue (mean, 4.0), although the difference was not significant. The participants regarded the model as a good to excellent (mean, 4.3) training tool. Conclusion The newly developed model is regarded as a good tool for training in laparoscopic Nissen fundoplication procedure. It is cheaper, more durable, and more readily available for training and can therefore be used in every training center. The stomach of this model, however, still needs improvement because it is too rigid for making the wrap. PMID:20526629

  17. Character animation fundamentals developing skills for 2D and 3D character animation

    CERN Document Server

    Roberts, Steve

    2012-01-01

    Expand your animation toolkit and remain competitive in the industry with this leading resource for 2D and 3D character animation techniques. Apply the industry's best practices to your own workflows and develop 2D, 3D and hybrid characters with ease. With side by side comparisons of 2D and 3D character design, improve your character animation and master traditional principles and processes including weight and balance, timing and walks. Develop characters inspired by humans, birds, fish, snakes and four legged animals. Breathe life into your character and develop a characters personality w

  18. Evaluation of biotechnology-derived novel proteins for the risk of food-allergic potential: advances in the development of animal models and future challenges.

    Science.gov (United States)

    Ahuja, Varun; Quatchadze, Maria; Ahuja, Vaishali; Stelter, Daniela; Albrecht, Achim; Stahlmann, Ralf

    2010-12-01

    Increasing concern from the public about the safety of genetically modified food has made critical to have suitable methods for recognizing associated potential hazards. Hierarchical approaches to allergenicity determination were proposed, and these include evaluation of the structural and sequence homology and serological identity of novel proteins with existing allergens, measuring the resistance to proteolytic digestion and assessment of sensitizing potential using animal models. Allergic individuals have a predisposed (i.e. atopic) genetic background, and a close resemblance to this setup is therefore desirable in animal models, which is possible by using a strain of an animal species that is prone for allergic disorders. So far, none of the animal model has been validated for the purpose of hazard identification in the context of safety assessment. However, the available knowledge suggests that the judicious use of an appropriate animal model could provide important information about the allergic potential of novel proteins. This paper provides an up-to-date review of the progress made in the field of development of in vivo models in this direction and the further goals that have to be achieved.

  19. Parathyroid diseases and animal models.

    Science.gov (United States)

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  20. The contribution of animal models to the study of obesity.

    Science.gov (United States)

    Speakman, John; Hambly, Catherine; Mitchell, Sharon; Król, Elzbieta

    2008-10-01

    Obesity results from prolonged imbalance of energy intake and energy expenditure. Animal models have provided a fundamental contribution to the historical development of understanding the basic parameters that regulate the components of our energy balance. Five different types of animal model have been employed in the study of the physiological and genetic basis of obesity. The first models reflect single gene mutations that have arisen spontaneously in rodent colonies and have subsequently been characterized. The second approach is to speed up the random mutation rate artificially by treating rodents with mutagens or exposing them to radiation. The third type of models are mice and rats where a specific gene has been disrupted or over-expressed as a deliberate act. Such genetically-engineered disruptions may be generated through the entire body for the entire life (global transgenic manipulations) or restricted in both time and to certain tissue or cell types. In all these genetically-engineered scenarios, there are two types of situation that lead to insights: where a specific gene hypothesized to play a role in the regulation of energy balance is targeted, and where a gene is disrupted for a different purpose, but the consequence is an unexpected obese or lean phenotype. A fourth group of animal models concern experiments where selective breeding has been utilized to derive strains of rodents that differ in their degree of fatness. Finally, studies have been made of other species including non-human primates and dogs. In addition to studies of the physiological and genetic basis of obesity, studies of animal models have also informed us about the environmental aspects of the condition. Studies in this context include exploring the responses of animals to high fat or high fat/high sugar (Cafeteria) diets, investigations of the effects of dietary restriction on body mass and fat loss, and studies of the impact of candidate pharmaceuticals on components of energy

  1. Application of Model Animals in the Study of Drug Toxicology

    Science.gov (United States)

    Song, Yagang; Miao, Mingsan

    2018-01-01

    Drug safety is a key factor in drug research and development, Drug toxicology test is the main method to evaluate the safety of drugs, The body condition of an animal has important implications for the results of the study, Previous toxicological studies of drugs were carried out in normal animals in the past, There is a great deviation from the clinical practice.The purpose of this study is to investigate the necessity of model animals as a substitute for normal animals for toxicological studies, It is expected to provide exact guidance for future drug safety evaluation.

  2. Models of breast cancer: quo vadis, animal modeling?

    International Nuclear Information System (INIS)

    Wagner, Kay-Uwe

    2004-01-01

    Rodent models for breast cancer have for many decades provided unparalleled insights into cellular and molecular aspects of neoplastic transformation and tumorigenesis. Despite recent improvements in the fidelity of genetically engineered mice, rodent models are still being criticized by many colleagues for not being 'authentic' enough to the human disease. Motives for this criticism are manifold and range from a very general antipathy against the rodent model system to well-founded arguments that highlight physiological variations between species. Newly proposed differences in genetic pathways that cause cancer in humans and mice invigorated the ongoing discussion about the legitimacy of the murine system to model the human disease. The present commentary intends to stimulate a debate on this subject by providing the background about new developments in animal modeling, by disputing suggested limitations of genetically engineered mice, and by discussing improvements but also ambiguous expectations on the authenticity of xenograft models to faithfully mimic the human disease

  3. Osteoarthritis: new insights in animal models.

    Science.gov (United States)

    Longo, Umile Giuseppe; Loppini, Mattia; Fumo, Caterina; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Osteoarthritis (OA) is the most frequent and symptomatic health problem in the middle-aged and elderly population, with over one-half of all people over the age of 65 showing radiographic changes in painful knees. The aim of the present study was to perform an overview on the available animal models used in the research field on the OA. Discrepancies between the animal models and the human disease are present. As regards human 'idiopathic' OA, with late onset and slow progression, it is perhaps wise not to be overly enthusiastic about animal models that show severe chondrodysplasia and very early OA. Advantage by using genetically engineered mouse models, in comparison with other surgically induced models, is that molecular etiology is known. Find potential molecular markers for the onset of the disease and pay attention to the role of gender and environmental factors should be very helpful in the study of mice that acquire premature OA. Surgically induced destabilization of joint is the most widely used induction method. These models allow the temporal control of disease induction and follow predictable progression of the disease. In animals, ACL transection and meniscectomy show a speed of onset and severity of disease higher than in humans after same injury.

  4. Animal models for microbicide safety and efficacy testing.

    Science.gov (United States)

    Veazey, Ronald S

    2013-07-01

    Early studies have cast doubt on the utility of animal models for predicting success or failure of HIV-prevention strategies, but results of multiple human phase 3 microbicide trials, and interrogations into the discrepancies between human and animal model trials, indicate that animal models were, and are, predictive of safety and efficacy of microbicide candidates. Recent studies have shown that topically applied vaginal gels, and oral prophylaxis using single or combination antiretrovirals are indeed effective in preventing sexual HIV transmission in humans, and all of these successes were predicted in animal models. Further, prior discrepancies between animal and human results are finally being deciphered as inadequacies in study design in the model, or quite often, noncompliance in human trials, the latter being increasingly recognized as a major problem in human microbicide trials. Successful microbicide studies in humans have validated results in animal models, and several ongoing studies are further investigating questions of tissue distribution, duration of efficacy, and continued safety with repeated application of these, and other promising microbicide candidates in both murine and nonhuman primate models. Now that we finally have positive correlations with prevention strategies and protection from HIV transmission, we can retrospectively validate animal models for their ability to predict these results, and more importantly, prospectively use these models to select and advance even safer, more effective, and importantly, more durable microbicide candidates into human trials.

  5. Animal Models of Human Placentation - A Review

    DEFF Research Database (Denmark)

    Carter, Anthony Michael

    2007-01-01

    This review examines the strengths and weaknesses of animal models of human placentation and pays particular attention to the mouse and non-human primates. Analogies can be drawn between mouse and human in placental cell types and genes controlling placental development. There are, however...... and delivers poorly developed young. Guinea pig is a good alternative rodent model and among the few species known to develop pregnancy toxaemia. The sheep is well established as a model in fetal physiology but is of limited value for placental research. The ovine placenta is epitheliochorial...... and endometrium is similar in macaques and baboons, as is the subsequent lacunar stage. The absence of interstitial trophoblast cells in the monkey is an important difference from human placentation. However, there is a strong resemblance in the way spiral arteries are invaded and transformed in the macaque...

  6. Animal Models of Chemotherapy-induced Mucositis

    DEFF Research Database (Denmark)

    Sangild, Per T; Shen, René Liang; Pontoppidan, Peter Erik Lotko

    2018-01-01

    constitution). Here, we briefly describe CIM pathophysiology, particularly the basic knowledge that has been obtained from CIM animal models. These model studies have indicated potential new preventive and ameliorating interventions, including supplementation with natural bioactive diets (e.g. milk fractions...... easier make clinically-relevant treatment regimens possible. In synergy, animal models improve the basic pathophysiological understanding of CIM and provide new ideas for treatment that are required to make competent decisions in clinical practice....

  7. Animal models of enterovirus 71 infection: applications and limitations

    Science.gov (United States)

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  8. Microscopic transport model animation visualisation on KML base

    Science.gov (United States)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  9. Are animal models predictive for human postmortem muscle protein degradation?

    Science.gov (United States)

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  10. Endometriosis research: animal models for the study of a complex disease.

    Science.gov (United States)

    Tirado-González, Irene; Barrientos, Gabriela; Tariverdian, Nadja; Arck, Petra C; García, Mariana G; Klapp, Burghard F; Blois, Sandra M

    2010-11-01

    Endometriosis is a common gynaecological disease that is characterized and defined as the presence of endometrial tissue outside the uterus, causing painful periods and subfertility in approximately 10% of women. After more than 50 years of research, little is known about the mechanisms underlying the development and establishment of this condition. Animal models allow us to study the temporal sequence of events involved in disease establishment and progression. Also, because this disease occurs spontaneously only in humans and non-human primates and there are practical problems associated with studying the disease, animal models have been developed for the evaluation of endometriosis. This review describes the animal models for endometriosis that have been used to date, highlighting their importance for the investigation of disease mechanisms that would otherwise be more difficult to elucidate, and proposing new alternatives aimed at overcoming some of these limitations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  12. A method of shadow puppet figure modeling and animation

    Institute of Scientific and Technical Information of China (English)

    Xiao-fang HUANG; Shou-qian SUN; Ke-jun ZHANG; Tian-ning XU; Jian-feng WU; Bin ZHU

    2015-01-01

    To promote the development of the intangible cultural heritage of the world, shadow play, many studies have focused on shadow puppet modeling and interaction. Most of the shadow puppet figures are still imaginary, spread by ancients, or carved and painted by shadow puppet artists, without consideration of real dimensions or the appearance of human bodies. This study proposes an algorithm to transform 3D human models to 2D puppet figures for shadow puppets, including automatic location of feature points, automatic segmentation of 3D models, automatic extraction of 2D contours, automatic clothes matching, and animation. Experiment proves that more realistic and attractive figures and animations of the shadow puppet can be generated in real time with this algorithm.

  13. Animal models of pancreatic cancer for drug research.

    Science.gov (United States)

    Kapischke, Matthias; Pries, Alexandra

    2008-10-01

    The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.

  14. Animal models of cardiac cachexia.

    Science.gov (United States)

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk.

    Science.gov (United States)

    Shi, Danni; Vine, Donna F

    2012-07-01

    To review rodent animal models of polycystic ovary syndrome (PCOS), with a focus on those associated with the metabolic syndrome and cardiovascular disease risk factors. Review. Rodent models of PCOS. Description and comparison of animal models. Comparison of animal models to clinical phenotypes of PCOS. Animals used to study PCOS include rodents, mice, rhesus monkeys, and ewes. Major methods to induce PCOS in these models include subcutaneous injection or implantation of androgens, estrogens, antiprogesterone, letrozole, prenatal exposure to excess androgens, and exposure to constant light. In addition, transgenic mice models and spontaneous PCOS-like rodent models have also been developed. Rodents are the most economical and widely used animals to study PCOS and ovarian dysfunction. The model chosen to study the development of PCOS and other metabolic parameters remains dependent on the specific etiologic hypotheses being investigated. Rodent models have been shown to demonstrate changes in insulin metabolism, with or without induction of hyperandrogenemia, and limited studies have investigated cardiometabolic risk factors for type 2 diabetes and cardiovascular disease. Given the clinical heterogeneity of PCOS, the utilization of different animal models may be the best approach to further our understanding of the pathophysiologic mechanisms associated with the early etiology of PCOS and cardiometabolic risk. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Research advances in animal models of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    HUANG Haiyan

    2014-09-01

    Full Text Available In recent years, the incidence of nonalcoholic fatty liver disease (NAFLD has increased gradually along with the rising prevalence of obesity, type 2 diabetes, and hyperlipidemia, and NAFLD has become one of the most common chronic liver diseases in the world and the second major liver disease after chronic viral hepatitis in China. However, its pathogenesis has not yet been clarified. Animal models are playing an important role in researches on NAFLD due to the facts that the development and progression of NAFLD require a long period of time, and ethical limitations exist in conducting drug trials in patients or collecting liver tissues from patients. The animal models with histopathology similar to that of NAFLD patients are reviewed, and their modeling principle, as well as the advantages and disadvantages, are compared. Animal models provide a powerful tool for further studies of NAFLD pathogenesis and drug screening for prevention and treatment of NAFLD.

  17. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  18. The effect of cigarette smoke on fertilization and pre-implantation development: assessment using animal models, clinical data, and stem cells

    Directory of Open Access Journals (Sweden)

    Prue Talbot

    2011-01-01

    Full Text Available Numerous studies have repeatedly shown that women who smoke experience problems establishing and maintaining pregnancies, and recent work has further demonstrated that the in utero effects of smoke may not be manifested until months or even years after birth. The purpose of this review is to examine the recent literature dealing with the effects of cigarette smoke on the earliest stages of human prenatal development. Studies in this area have included the use of animal models, patients undergoing in vitro fertilization, and embryonic stem cell models. Events leading to fertilization, such as cumulus expansion, hyperactivation of sperm motility, and oocyte pick-up by the oviduct are all impaired by smoke exposure in animal models. Steps crucial to fertilization such as the acrosome reaction and sperm binding to the zona pellucida are likewise inhibited by cigarette smoke. Preimplantation embryos and stem cells that model embryos show a number of adverse responses to smoke exposure, including poor adhesion to extracellular matrices, diminished survival and proliferation, and increased apoptosis. The current literature demonstrates that the earliest stages of prenatal development are sensitive to smoke exposure and indicates that pregnant women should be advised not to smoke during this time.

  19. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression.

    Science.gov (United States)

    McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew

    2017-01-01

    Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  20. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression

    Directory of Open Access Journals (Sweden)

    Allison L. McIntosh

    2017-05-01

    Full Text Available Magnetic resonance imaging (MRI is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  1. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  2. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    Science.gov (United States)

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Animation of 3D Model of Human Head

    Directory of Open Access Journals (Sweden)

    V. Michalcin

    2007-04-01

    Full Text Available The paper deals with the new algorithm of animation of 3D model of the human head in combination with its global motion. The designed algorithm is very fast and with low calculation requirements, because it does not need the synthesis of the input videosequence for estimation of the animation parameters as well as the parameters of global motion. The used 3D model Candide generates different expressions using its animation units which are controlled by the animation parameters. These ones are estimated on the basis of optical flow without the need of extracting of the feature points in the frames of the input videosequence because they are given by the selected vertices of the animation units of the calibrated 3D model Candide. The established multiple iterations inside the designed animation algorithm of 3D model of the human head between two successive frames significantly improved its accuracy above all for the large motion.

  4. Animation Augmented Reality Book Model (AAR Book Model) to Enhance Teamwork

    Science.gov (United States)

    Chujitarom, Wannaporn; Piriyasurawong, Pallop

    2017-01-01

    This study aims to synthesize an Animation Augmented Reality Book Model (AAR Book Model) to enhance teamwork and to assess the AAR Book Model to enhance teamwork. Samples are five specialists that consist of one animation specialist, two communication and information technology specialists, and two teaching model design specialists, selected by…

  5. Steroid-associated osteonecrosis animal model in rats

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    2018-04-01

    lower at 6 weeks after SAON induction. Histomorphometry revealed significantly lower osteoblast surface and higher marrow fat fraction and oedema area in SAON group. Hepatic oedema appeared 2 weeks after SAON induction, and lipid accumulation appeared in the liver of SAON rats 6 weeks after SAON induction. Conclusion: The present study successfully induced SAON in rats with pulsed injection of LPS and MPS, which was well simulating the clinical feature and pathology. Apart from available large animal models, such as bipedal emus or quadrupedal rabbits, our current SAON small model in rats could be a cost-effective preclinical experimental model to study body metabolism, molecular mechanism of SAON and potential drugs developed for prevention or treatment of SAON. The translational potential of this article: The present study successfully induced SAON in a small animal model in rats with pulsed injection of LPS and MPS. The evaluation protocols with typical histopathologic ON features and advanced evaluation approaches to identify the metabolic disorders of SAON could be used in future rat SAON studies. The SAON rat model is a suitable and cost-effective animal model to study molecular mechanism of SAON and potential drugs developed for prevention and treatment of SAON. Keywords: Animal model, Corticosteroid, Osteonecrosis

  6. Animal models of cerebral arterial gas embolism

    NARCIS (Netherlands)

    Weenink, Robert P.; Hollmann, Markus W.; van Hulst, Robert A.

    2012-01-01

    Cerebral arterial gas embolism is a dreaded complication of diving and invasive medical procedures. Many different animal models have been used in research on cerebral arterial gas embolism. This review provides an overview of the most important characteristics of these animal models. The properties

  7. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  8. Animal studies on growth and development.

    Science.gov (United States)

    Lerchl, Alexander

    2011-12-01

    Despite the fact that no plausible biological mechanism has yet been identified how electromagnetic fields below recommended exposure limits could negatively affect health of animals or humans, many experiments have been performed in various animal species, mainly mice and rats, to investigate the possible effects on growth and development. While older studies often suffered from sub-optimal exposure conditions, recent investigations, using sophisticated exposure devices and thus preventing thermal effects, have been performed without these limitations. In principle, two types of studies can be addressed: those which have investigated the carcinogenic or co-carcinogenic effects of exposure in developing animals, and those which have been done in developing animals without the focus on carcinogenic or co-carcinogenic effects. In both areas, the vast majority of publications did not show adverse effects. The largest study so far has been done in normal mice which have been chronically exposed to UMTS signals up to 1.3 W/kg SAR, thus 16 times higher than the whole-body exposure limit for humans. Even after four generations, no systematic or dose-dependent alterations in development or fertility could be found, supporting the view that negative effects on humans are very unlikely. Ongoing experiments in our laboratory investigate the effects of head-only exposure in rats (up to 10 W/kg local SAR) which are exposed from 14 days of age daily for 2 h. A battery of behavioral tests is performed in young, adult, and pre-senile animals. The results will help to clarify possible effects of exposure on brain development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Experimental Oral Candidiasis in Animal Models

    Science.gov (United States)

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  10. Inventory of Novel Animal Models Addressing Etiology of Preeclampsia in the Development of New Therapeutic/Intervention Opportunities.

    Science.gov (United States)

    Erlandsson, Lena; Nääv, Åsa; Hennessy, Annemarie; Vaiman, Daniel; Gram, Magnus; Åkerström, Bo; Hansson, Stefan R

    2016-03-01

    Preeclampsia is a pregnancy-related disease afflicting 3-7% of pregnancies worldwide and leads to maternal and infant morbidity and mortality. The disease is of placental origin and is commonly described as a disease of two stages. A variety of preeclampsia animal models have been proposed, but all of them have limitations in fully recapitulating the human disease. Based on the research question at hand, different or multiple models might be suitable. Multiple animal models in combination with in vitro or ex vivo studies on human placenta together offer a synergistic platform to further our understanding of the etiology of preeclampsia and potential therapeutic interventions. The described animal models of preeclampsia divide into four categories (i) spontaneous, (ii) surgically induced, (iii) pharmacologically/substance induced, and (iv) transgenic. This review aims at providing an inventory of novel models addressing etiology of the disease and or therapeutic/intervention opportunities. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Animal models of erectile dysfunction

    Directory of Open Access Journals (Sweden)

    Snehlata V Gajbhiye

    2015-01-01

    Full Text Available Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were "ED and experimental models," "ED and nervous stimulation," "ED and cavernous nerve stimulation," "ED and central stimulation," "ED and diabetes mellitus," "ED and ageing," "ED and hypercholesteremia," "ED and Peyronie′s disease," "radiation induced ED," "telemetric recording," "ED and mating test" and "ED and non-contact erection test."

  12. Animal models for Gaucher disease research

    Directory of Open Access Journals (Sweden)

    Tamar Farfel-Becker

    2011-11-01

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  13. Animal models for Gaucher disease research.

    Science.gov (United States)

    Farfel-Becker, Tamar; Vitner, Einat B; Futerman, Anthony H

    2011-11-01

    Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  14. Final model of multicriterionevaluation of animal welfare

    DEFF Research Database (Denmark)

    Bonde, Marianne; Botreau, R; Bracke, MBM

    One major objective of Welfare Quality® is to propose harmonized methods for the overall assessment of animal welfare on farm and at slaughter that are science based and meet societal concerns. Welfare is a multidimensional concept and its assessment requires measures of different aspects. Welfar......, acceptable welfare and not classified. This evaluation model is tuned according to the views of experts from animal and social sciences, and stakeholders....... Quality® proposes a formal evaluation model whereby the data on animals or their environment are transformed into value scores that reflect compliance with 12 subcriteria and 4 criteria of good welfare. Each animal unit is then allocated to one of four categories: excellent welfare, enhanced welfare...

  15. Animal model of neuropathic tachycardia syndrome

    Science.gov (United States)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  16. Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development.

    Science.gov (United States)

    Möller, M; Swanepoel, T; Harvey, B H

    2015-07-15

    Schizophrenia is a life altering disease with a complex etiology and pathophysiology, and although antipsychotics are valuable in treating the disorder, certain symptoms and/or sufferers remain resistant to treatment. Our poor understanding of the underlying neuropathological mechanisms of schizophrenia hinders the discovery and development of improved pharmacological treatment, so that filling these gaps is of utmost importance for an improved outcome. A vast amount of clinical data has strongly implicated the role of inflammation and oxidative insults in the pathophysiology of schizophrenia. Preclinical studies using animal models are fundamental in our understanding of disease development and pathology as well as the discovery and development of novel treatment options. In particular, social isolation rearing (SIR) and pre- or postnatal inflammation (PPNI) have shown great promise in mimicking the biobehavioral manifestations of schizophrenia. Furthermore, the "dual-hit" hypothesis of schizophrenia states that a first adverse event such as genetic predisposition or a prenatal insult renders an individual susceptible to develop the disease, while a second insult (e.g., postnatal inflammation, environmental adversity, or drug abuse) may be necessary to precipitate the full-blown syndrome. Animal models that emphasize the "dual-hit" hypothesis therefore provide valuable insight into understanding disease progression. In this Review, we will discuss SIR, PPNI, as well as possible "dual-hit" animal models within the context of the redox-immune-inflammatory hypothesis of schizophrenia, correlating such changes with the recognized monoamine and behavioral alterations of schizophrenia. Finally, based on these models, we will review new therapeutic options, especially those targeting immune-inflammatory and redox pathways.

  17. How to become a top model: impact of animal experimentation on human Salmonella disease research.

    Science.gov (United States)

    Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J

    2011-05-01

    Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.

  18. A new small-animal model for the study of acquired heterotopic ossification after hip surgery.

    Science.gov (United States)

    Anthonissen, Joris; Ossendorf, Christian; Hock, Johanna Lisa; Ritz, Ulrike; Hofmann, Alexander; Rommens, Pol Maria

    2015-01-01

    Heterotopic ossification (HO)--the formation of bone in soft tissues--is a frequent problem after surgery of the hip and pelvis, but little is known about its underlying pathogenic mechanisms. It is vital to study the underlying pathogenesis in animal models to develop and evaluate new prophylactic regimens directed against HO. However, previously developed small-animal models for the study of HO imitate neither surgery nor trauma-mechanisms that potentially cause HO. Hence, the goal of this study was to develop a novel small-animal model imitating hip surgery that can reliably produce HO. Twenty male Wistar rats were subjected to surgery of the right hip during which the femoral canal was reamed in three steps up to 2 mm, and a muscle lesion was made. Twelve weeks after surgery, the amount of heterotopic bone was assessed using micro-computed tomography. Eighteen of 20 animals showed HO around the hip 12 weeks after surgery. The amount of heterotopic bone varied from very small particles up to near ankylosis. A rat model of hip/pelvic surgery that does not use exogenous osteogenic stimulus and can reliably produce HO was developed.

  19. Animal models of Alzheimer disease: historical pitfalls and a path forward.

    Science.gov (United States)

    Cavanaugh, Sarah E; Pippin, John J; Barnard, Neal D

    2014-01-01

    Alzheimer disease (AD) is a medically and financially overwhelming condition, and incidence rates are expected to triple by 2050.Despite decades of research in animal models of AD, the disease remains incompletely understood, with few treatment options. This review summarizes historical and current AD research efforts, with emphasis on the disparity between preclinical animal studies and the reality of human disease and how this has impacted clinical trials. Ultimately, we provide a mechanism for shifting the focus of AD research away from animal models to focus primarily on human biology as a means to improve the applicability of research findings to human disease. Implementation of these alternatives may hasten development of improved strategies to prevent, detect, ameliorate, and possibly cure this devastating disease.

  20. Animal Models for Dysphagia Studies: What Have We Learnt So Far.

    Science.gov (United States)

    German, Rebecca Z; Crompton, A W; Gould, Francois D H; Thexton, Allan J

    2017-02-01

    Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes.

  1. Assessing Veterinary and Animal Science Students' Moral Judgment Development on Animal Ethics Issues.

    Science.gov (United States)

    Verrinder, Joy M; Phillips, Clive J C

    2015-01-01

    Little has been done to assess veterinarians' moral judgment in relation to animal ethics issues. Following development of the VetDIT, a new moral judgment measure for animal ethics issues, this study aimed to refine and further validate the VetDIT, and to identify effects of teaching interventions on moral judgment and changes in moral judgment over time. VetDIT-V1 was refined into VetDIT-V2, and V3 was developed as a post-intervention test to prevent repetition. To test these versions for comparability, veterinary and animal science students (n=271) were randomly assigned to complete different versions. The VetDIT discriminates between stages of moral judgment, condensed into three schemas: Personal Interest (PI), Maintaining Norms (MN), and Universal Principles (UP). There were no differences in the scores for MN and UP between the versions, and we equated PI scores to account for differences between versions. Veterinary science students (n=130) who completed a three-hour small-group workshop on moral development theory and ethical decision making increased their use of UP in moral reasoning, whereas students (n=271) who received similar information in a 50-minute lecture did not. A longitudinal comparison of matched first- and third-year students (n=39) revealed no moral judgment development toward greater use of UP. The VetDIT is therefore useful for assessing moral judgment of animal and human ethics issues in veterinary and other animal-related professions. Intensive small-group workshops using moral development knowledge and skills, rather than lectures, are conducive to developing veterinary students' moral judgment.

  2. Tupaia belangeri as an experimental animal model for viral infection.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development.

  3. Osteoarthritis: New Insights in Animal Models

    OpenAIRE

    Longo, Umile Giuseppe; Loppini, Mattia; Fumo, Caterina; Rizzello, Giacomo; Khan, Wasim Sardar; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Osteoarthritis (OA) is the most frequent and symptomatic health problem in the middle-aged and elderly population, with over one-half of all people over the age of 65 showing radiographic changes in painful knees. The aim of the present study was to perform an overview on the available animal models used in the research field on the OA. Discrepancies between the animal models and the human disease are present. As regards human ‘idiopathic’ OA, with late onset and slow progression, it is perha...

  4. Measuring general animal health status: Development of an animal health barometer.

    Science.gov (United States)

    Depoorter, Pieter; Van Huffel, Xavier; Diricks, Herman; Imberechts, Hein; Dewulf, Jeroen; Berkvens, Dirk; Uyttendaele, Mieke

    2015-03-01

    The development of an animal health barometer, an instrument to measure the general health of the Belgian livestock population on a yearly basis and to monitor its evolution over time, is described. The elaboration of a set of 13 animal health indicators (AHIs) as the basis for the animal health barometer is discussed. These indicators were weighted by experts - including scientists, policy makers and agro-industrial representatives - to determine their relative weight in the barometer. The result of the barometer is expressed as a comparison with a previous year. Based on the results of the 13 AHIs, it is concluded that general animal health in Belgium shows a positive evolution since 2008. The animal health barometer provides a composite view of the status of livestock health in Belgium and is a tool to communicate in an intelligible, comprehensible manner on aspects of animal health to consumers and professional stakeholders in the animal production and food chain. Together with the food safety barometer (Baert et al., 2011. Food Res. Int. 44, 940) and the plant health barometer (Wilmart et al., 2014. Eur. J. Plant Pathol. doi: 10.1007/s10658-014-0547-x), the animal health barometer is one of the three instruments to provide a holistic view on the overall status of the safety of the food chain in Belgium. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Osteoporotic Animal Models of Bone Healing: Advantages and Pitfalls.

    Science.gov (United States)

    Calciolari, Elena; Donos, Nikolaos; Mardas, Nikos

    2017-10-01

    The aim of this review was to summarize the advantages and pitfalls of the available osteoporotic animal models of bone healing. A thorough literature search was performed in MEDLINE via OVID and EMBASE to identify animal studies investigating the effect of experimental osteoporosis on bone healing and bone regeneration. The osteotomy model in the proximal tibia is the most popular osseous defect model to study the bone healing process in osteoporotic-like conditions, although other well-characterized models, such as the post-extraction model, might be taken into consideration by future studies. The regenerative potential of osteoporotic bone and its response to biomaterials/regenerative techniques has not been clarified yet, and the critical size defect model might be an appropriate tool to serve this purpose. Since an ideal animal model for simulating osteoporosis does not exist, the type of bone remodeling, the animal lifespan, the age of peak bone mass, and the economic and ethical implications should be considered in our selection process. Furthermore, the influence of animal species, sex, age, and strain on the outcome measurement should be taken into account. In order to make future studies meaningful, standardized international guidelines for osteoporotic animal models of bone healing need to be set up.

  6. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  7. Spatial navigation: implications for animal models, drug development and human studies

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Kubík, Štěpán; Vlček, Kamil; Valeš, Karel

    2014-01-01

    Roč. 63, Suppl.1 (2014), S237-S249 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP303/12/1464; GA MZd(CZ) NT13386; GA MZd(CZ) NT13403; GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204; EC(XE) PIR06-GA/2009-256581 Institutional support: RVO:67985823 Keywords : behavior * rat * animal models Subject RIV: FH - Neurology Impact factor: 1.293, year: 2014

  8. SketchBio: a scientist's 3D interface for molecular modeling and animation.

    Science.gov (United States)

    Waldon, Shawn M; Thompson, Peter M; Hahn, Patrick J; Taylor, Russell M

    2014-10-30

    Because of the difficulties involved in learning and using 3D modeling and rendering software, many scientists hire programmers or animators to create models and animations. This both slows the discovery process and provides opportunities for miscommunication. Working with multiple collaborators, a tool was developed (based on a set of design goals) to enable them to directly construct models and animations. SketchBio is presented, a tool that incorporates state-of-the-art bimanual interaction and drop shadows to enable rapid construction of molecular structures and animations. It includes three novel features: crystal-by-example, pose-mode physics, and spring-based layout that accelerate operations common in the formation of molecular models. Design decisions and their consequences are presented, including cases where iterative design was required to produce effective approaches. The design decisions, novel features, and inclusion of state-of-the-art techniques enabled SketchBio to meet all of its design goals. These features and decisions can be incorporated into existing and new tools to improve their effectiveness.

  9. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models.

    Science.gov (United States)

    Herati, Ramin Sedaghat; Wherry, E John

    2018-04-02

    Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  10. Reviewing model application to support animal health decision making.

    Science.gov (United States)

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Classic and New Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Javier Blesa

    2012-01-01

    Full Text Available Neurological disorders can be modeled in animals so as to recreate specific pathogenic events and behavioral outcomes. Parkinson’s Disease (PD is the second most common neurodegenerative disease of an aging population, and although there have been several significant findings about the PD disease process, much of this process still remains a mystery. Breakthroughs in the last two decades using animal models have offered insights into the understanding of the PD disease process, its etiology, pathology, and molecular mechanisms. Furthermore, while cellular models have helped to identify specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are useful for testing new neuroprotective or neurorestorative strategies. Moreover, significant advances in the modeling of additional PD features have come to light in both classic and newer models. In this review, we try to provide an updated summary of the main characteristics of these models as well as the strengths and weaknesses of what we believe to be the most popular PD animal models. These models include those produced by 6-hydroxydopamine (6-OHDA, 1-methyl-1,2,3,6-tetrahydropiridine (MPTP, rotenone, and paraquat, as well as several genetic models like those related to alpha-synuclein, PINK1, Parkin and LRRK2 alterations.

  12. Elementary of animal model for percutaneous and ocular penetration

    Directory of Open Access Journals (Sweden)

    Kalpesh Chhotalal Ashara

    2016-12-01

    Full Text Available Models of animal are the most appropriate method for assessments of human in-vivo percutaneous and ocular penetrations. Monkey and rodents are used for the same. There are several nuts and bolts of each one, so it is necessary to study each one separately. Monkey, porcine and guinea pig penetration are correlated with that of human skin. The skin of rodents, lupus, pigs, etc. has more penetration properties than human skin. Rabbit, goat and sheep eye are mostly used for ocular penetration. The researcher also used hen’s egg chorioallantoic membrane test for ocular irritation study. The other animals’ cornea, cul-de-sac, eyeballs and prepared corneal epithelial models are very less in practice. Web-based alternative non-animal models are also available instead of animal models too. This article describes characteristics of monkeys, pigs, rats, rabbits, guinea pigs and hairless rodents, HuSki model, Cellophane® membrane, egg membrane, gelatin membrane, animal models for ophthalmic delivery, hen’s egg chorioallantoic membrane test, prepared corneal epithelial models and web-based alternative non-animal database.

  13. Computer-animated model of accommodation and presbyopia.

    Science.gov (United States)

    Goldberg, Daniel B

    2015-02-01

    To understand, demonstrate, and further research the mechanisms of accommodation and presbyopia. Private practice, Little Silver, New Jersey, USA. Experimental study. The CAMA 2.0 computer-animated model of accommodation and presbyopia was produced in collaboration with an experienced medical animator using Autodesk Maya animation software and Adobe After Effects. The computer-animated model demonstrates the configuration and synchronous movements of all accommodative elements. A new classification of the zonular apparatus based on structure and function is proposed. There are 3 divisions of zonular fibers; that is, anterior, crossing, and posterior. The crossing zonular fibers form a scaffolding to support the lens; the anterior and posterior zonular fibers work reciprocally to achieve focused vision. The model demonstrates the important support function of Weiger ligament. Dynamic movement of the ora serrata demonstrates that the forces of ciliary muscle contraction store energy for disaccommodation in the elastic choroid. The flow of aqueous and vitreous provides strong evidence for our understanding of the hydrodynamic interactions during the accommodative cycle. The interaction may result from the elastic stretch in the choroid transmitted to the vitreous rather than from vitreous pressue. The model supports the concept that presbyopia results from loss of elasticity and increasing ocular rigidity in both the lenticular and extralenticular structures. The computer-animated model demonstrates the structures of accommodation moving in synchrony and might enhance understanding of the mechanisms of accommodation and presbyopia. Dr. Goldberg is a consultant to Acevision, Inc., and Bausch & Lomb. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Ocean Tracking Network (OTN): Development of Oceanographic Data Integration with Animal Movement

    Science.gov (United States)

    Bajona, L.

    2016-02-01

    OTN is a $168-million ocean research and technology development platform headquartered at Dalhousie University, Canada. Using acoustic and satellite telemetry to globally document the movements and survival of aquatic animals, and their environmental correlates. The OTN Mission: to foster conservation and sustainability of valued species by generating knowledge on the movement patterns of aquatic species in their changing environment. OTN's ever-expanding global network of acoustic receivers listening for over 90 different key animal species is providing for the data needed in working in collaboration with researchers for the development of oceanographic data integration with animal movement. Presented here is Data Management's work to date, status and challenges in OTN's move towards a community standard to enable sharing between projects nationally and internationally; permitting inter-operability with other large national (e.g. CHONe, ArcticNET) and international (IOOS, IMOS) networks. This work includes co-development of Animal Acoustic Telemetry (AAT) metadata standard and implementation using an ERDDAP data server (NOAA, Environmental Research Division's Data Access Program) facilitating ingestion for modelers (eg. netcdf).

  15. Animal models in plastic and reconstructive surgery simulation-a review.

    Science.gov (United States)

    Loh, Charles Yuen Yung; Wang, Aline Yen Ling; Tiong, Vincent Tze Yang; Athanassopoulos, Thanassi; Loh, Meiling; Lim, Philip; Kao, Huang-Kai

    2018-01-01

    The use of live and cadaveric animal models in surgical training is well established as a means of teaching and improving surgical skill in a controlled setting. We aim to review, evaluate, and summarize the models published in the literature that are applicable to Plastic Surgery training. A PubMed search for keywords relating to animal models in Plastic Surgery and the associated procedures was conducted. Animal models that had cross over between specialties such as microsurgery with Neurosurgery and pinnaplasty with ear, nose, and throat surgery were included as they were deemed to be relevant to our training curriculum. A level of evidence and recommendation assessment was then given to each surgical model. Our review found animal models applicable to plastic surgery training in four major categories namely-microsurgery training, flap raising, facial surgery, and hand surgery. Twenty-four separate articles described various methods of practicing microsurgical techniques on different types of animals. Fourteen different articles each described various methods of conducting flap-based procedures which consisted of either local or perforator flap dissection. Eight articles described different models for practicing hand surgery techniques. Finally, eight articles described animal models that were used for head and neck procedures. A comprehensive summary of animal models related to plastic surgery training has been compiled. Cadaveric animal models provide a readily available introduction to many procedures and ought to be used instead of live models when feasible. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Stress and adaptation : Toward ecologically relevant animal models

    NARCIS (Netherlands)

    Koolhaas, Jaap M.; Boer, Sietse F. de; Buwalda, Bauke

    Animal models have contributed considerably to the current understanding of mechanisms underlying the role of stress in health and disease. Despite the progress made already, much more can be made by more carefully exploiting animals' and humans' shared biology, using ecologically relevant models.

  17. Animal Models for Dysphagia Studies: What have we learnt so far

    Science.gov (United States)

    German, Rebecca Z.; Crompton, A.W.; Gould, Francois D. H.; Thexton, Allan J.

    2017-01-01

    Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes. PMID:28132098

  18. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    Full Text Available

    The narrow host range of infection and lack of suitable tissue culture systems for the propagation of hepatitis B and C viruses are limitations that have prevented a more thorough understanding of persistent infection and the pathogenesis of chronic liver disease.

    Despite decades of intensive research and significant progresses in understanding of viral hepatitis, many basic questions and clinical problems still await to be resolved. For example, the HBV cellular receptor and related mechanisms of viral entry have not yet been identified. Little is also known about the function of certain non-structural viral products, such as the hepatitis B e antigen and the X protein, or about the role of excess hepadnavirus subviral particles circulating in the blood stream during infection. Furthermore, the molecular mechanisms involved in the development of hepatocellular carcinoma and the role of the immune system in determining the fate of infection are not fully understood.

    The reason for these drawbacks is essentially due to the lack of reliable cell-based in vitro infection systems and, most importantly, convenient animal models.

    This lack of knowledge has been partially overcome for hepatitis B virus (HBV, by the discovery and characterization of HBV-like viruses in wild animals while for hepatitis C virus (HCV, related flaviviruses have been used as surrogate systems.

    Other laboratories have developed transgenic mice that express virus gene products and/or support virus replication. Some HBV transgenic mouse models

  19. Development of virtual hands using animation software and graphical modelling; Elaboracao de maos virtuais usando software de animacao e modelagem grafica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Erick da S.; Junior, Alberico B. de C. [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil)

    2016-07-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  20. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    Science.gov (United States)

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  1. Development of Animal Physiology Practical Guidance Oriented Guided Inquiry for Student of Biology Department

    Science.gov (United States)

    Putra, Z. A. Z.; Sumarmin, R.; Violita, V.

    2018-04-01

    The guides used for practicing animal physiology need to be revised and adapted to the lecture material. This is because in the subject of Animal Physiology. The guidance of animal physiology practitioners is still conventional with prescription model instructions and is so simple that it is necessary to develop a practical guide that can lead to the development of scientific work. One of which is through practice guided inquiry guided practicum guide. This study aims to describe the process development of the practical guidance and reveal the validity, practicality, and effectiveness Guidance Physiology Animals guided inquiry inferior to the subject of Animal Physiology for students Biology Department State University of Padang. This type of research is development research. This development research uses the Plomp model. Stages performed are problem identification and analysis stage, prototype development and prototyping stage, and assessment phase. Data analysis using descriptive analysis. The instrument of data collection using validation and practical questionnaires, competence and affective field of competence observation and psychomotor and cognitive domain competence test. The result of this research shows that guidance of Inquiry Guided Initiative Guided Physiology with 3.23 valid category, practicality by lecturer with value 3.30 practical category, student with value 3.37 practical criterion. Affective effectiveness test with 93,00% criterion is very effective, psychomotor aspect 89,50% with very effective criteria and cognitive domain with value of 67, pass criterion. The conclusion of this research is Guided Inquiry Student Guided Protoxial Guidance For Students stated valid, practical and effective.

  2. Diagnosis of abdominal abscess: A large animal model

    International Nuclear Information System (INIS)

    Harper, R.A.; Meek, A.C.; Chidlow, A.D.; Galvin, D.A.J.; McCollum, C.N.

    1988-01-01

    In order to evaluate potential isotopic techniques for the diagnosis of occult sepsis an experimental model in large animals is required. Sponges placed in the abdomen of pigs were injected with mixed colonic bacteria. In 4 animals Kefzol (500 mg IV) and Metronidazole (1 g PR) were administered before the sponges were inserted and compared to 4 given no antibiotics. Finally, in 12 pigs, 20 mls autologous blood was injected into the sponge before antibiotic prophylaxis and bacterial inoculation. 111 In-leucocyte scans and post mortem were then performed 2 weeks later. Without antibiotic cover purulent peritonitis developed in all 4 pigs. Prophylactic antibiotics prevented overwhelming sepsis but at 2 weeks there was only brown fluid surrounding the sponge. Blood added to the sponge produced abscesses in every animal confirmed by leucocytosis of 25.35x10 9 cells/L, 111 In-leucocyte scanning and post mortem. Culturing the thick yellow pus showed a mixed colony of aerobes and anaerobes, similar to those cultured in clinical practice. An intra-abdominal sponge containing blood and faecal organisms in a pig on prophylactic antibiotics reliably produced a chronic abscess. This model is ideal for studies on alternative methods of abscess diagnosis and radiation dosimetry. (orig.)

  3. Towards the development of improved tests for negative symptoms of schizophrenia in a validated animal model.

    Science.gov (United States)

    Sahin, Ceren; Doostdar, Nazanin; Neill, Joanna C

    2016-10-01

    Negative symptoms in schizophrenia remain an unmet clinical need. There is no licensed treatment specifically for this debilitating aspect of the disorder and effect sizes of new therapies are too small to make an impact on quality of life and function. Negative symptoms are multifactorial but often considered in terms of two domains, expressive deficit incorporating blunted affect and poverty of speech and avolition incorporating asociality and lack of drive. There is a clear need for improved understanding of the neurobiology of negative symptoms which can be enabled through the use of carefully validated animal models. While there are several tests for assessing sociability in animals, tests for blunted affect in schizophrenia are currently lacking. Two paradigms have recently been developed for assessing negative affect of relevance to depression in rats. Here we assess their utility for studying negative symptoms in schizophrenia using our well validated model for schizophrenia of sub-chronic (sc) treatment with Phencyclidine (PCP) in adult female rats. Results demonstrate that sc PCP treatment produces a significant negative affect bias in response to a high value reward in the optimistic and affective bias tests. Our results are not easily explained by the known cognitive deficits induced by sc PCP and support the hypothesis of a negative affective bias in this model. We suggest that further refinement of these two tests will provide a means to investigate the neurobiological basis of negative affect in schizophrenia, thus supporting the assessment of efficacy of new targets for this currently untreated symptom domain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An animal model to study regenerative endodontics.

    Science.gov (United States)

    Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh

    2011-02-01

    A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.

  5. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy.

    Science.gov (United States)

    Chang, Renbao; Liu, Xudong; Li, Shihua; Li, Xiao-Jiang

    2015-01-01

    Huntington's disease (HD) is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner.

  6. Computer facial animation

    CERN Document Server

    Parke, Frederic I

    2008-01-01

    This comprehensive work provides the fundamentals of computer facial animation and brings into sharper focus techniques that are becoming mainstream in the industry. Over the past decade, since the publication of the first edition, there have been significant developments by academic research groups and in the film and games industries leading to the development of morphable face models, performance driven animation, as well as increasingly detailed lip-synchronization and hair modeling techniques. These topics are described in the context of existing facial animation principles. The second ed

  7. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    Science.gov (United States)

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  8. A perspective on the contribution of animal models to the pharmacological treatment of posttraumatic stress disorder.

    Science.gov (United States)

    Bertaina-Anglade, Valerie; O'Connor, Susan M; Andriambeloson, Emile

    2017-08-01

    Posttraumatic stress disorder (PTSD) is a prevalent, chronic, disabling disorder that may develop following exposure to a traumatic event. This review summarizes currently used animal models of PTSD and their potential role in the development of better therapeutics. Heterogeneity is one of the main characteristics of PTSD with the consequence that many pharmacological approaches are used to relieve symptoms of PTSD. To address the translational properties of the animal models, we discuss the types of stressors used, the rodent correlates of human PTSD (DSM-5) symptoms, and the efficacy of approved, recommended and off-label drugs used to treat PTSD in 'PTSD-animals'. Currently available animal models reproduce most PTSD symptoms and are validated by existing therapeutics. However, novel therapeutics are needed for this disorder as not one drug alleviates all symptoms and many have side effects that lead to non-compliance among PTSD patients. The true translational power of animal models of PTSD will only be demonstrated when new therapeutics acting through novel mechanisms become available for clinical practice.

  9. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  10. Comparison SPECT-CT with PET-CT in several applications of small-animal models

    International Nuclear Information System (INIS)

    Pan Yifan; Song Shaoli; Huang Gang

    2009-01-01

    With the development of medical science, monitoring dynamic biologic processes in small-animal models of diseases has become one of the most important approaches in medical studies. Important physiologic parameters that traditionally have been characterized by nuclear medicine imaging include blood flow, biochemical metabolism, and cellular receptors. Recently, nuclear medicine has been greatly facilitated by the newer development of dual-modality integrated imaging systems (SPECT-CT and PET-CT), which provide functional and anatomical images in the same scanning session, with the acquired images co-registered by means of the hardware. The purpose of this review is to compare SPECT-CT with PET-CT in several applications of small-animal models. Conclusicn: PET-CT for small animal modes in nledical research in the applications has great advantages, but SPECT-CT is still a very important role, and research low cost. (authors)

  11. Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders.

    Science.gov (United States)

    Konopka, Genevieve; Roberts, Todd F

    2016-01-01

    Disruptions in speech, language, and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language compared with vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. We review animal models of vocal learning and vocal communication and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language, and vocal communication. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Large Animal Stroke Models vs. Rodent Stroke Models, Pros and Cons, and Combination?

    Science.gov (United States)

    Cai, Bin; Wang, Ning

    2016-01-01

    Stroke is a leading cause of serious long-term disability worldwide and the second leading cause of death in many countries. Long-time attempts to salvage dying neurons via various neuroprotective agents have failed in stroke translational research, owing in part to the huge gap between animal stroke models and stroke patients, which also suggests that rodent models have limited predictive value and that alternate large animal models are likely to become important in future translational research. The genetic background, physiological characteristics, behavioral characteristics, and brain structure of large animals, especially nonhuman primates, are analogous to humans, and resemble humans in stroke. Moreover, relatively new regional imaging techniques, measurements of regional cerebral blood flow, and sophisticated physiological monitoring can be more easily performed on the same animal at multiple time points. As a result, we can use large animal stroke models to decrease the gap and promote translation of basic science stroke research. At the same time, we should not neglect the disadvantages of the large animal stroke model such as the significant expense and ethical considerations, which can be overcome by rodent models. Rodents should be selected as stroke models for initial testing and primates or cats are desirable as a second species, which was recommended by the Stroke Therapy Academic Industry Roundtable (STAIR) group in 2009.

  13. Hendra and Nipah viruses: pathogenesis, animal models and recent breakthroughs in vaccination

    Directory of Open Access Journals (Sweden)

    Weingartl HM

    2015-09-01

    Full Text Available Hana M Weingartl National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada Abstract: Hendra and Nipah viruses are two highly pathogenic zoonotic members of the genus Henipavirus, family Paramyxoviridae, requiring work under biosafety level 4 conditions due to a lack of effective therapy and human vaccines. Several vaccine candidates were protective in animal models: recombinant vaccinia virus expressing Nipah virus (NiV F and G proteins in hamsters against NiV; recombinant ALVAC–NiV F and G in swine against NiV; recombinant Hendra virus (HeV soluble G protein (sGHeV against HeV and NiV in cats, ferrets, horses, and African green monkeys (AGM; recombinant vesicular stomatitis virus-based vectors expressing NiV F or G against NiV in hamsters and ferrets; measles virus-based NiV G vaccine candidate in hamsters and AGMs against NiV; and adenoassociated virus expressing NiG protein, which protected hamsters against NiV. The sGHeV was licensed for use in horses (Equivac HeV® in 2012. It is the first vaccine candidate licensed against a biosafety level 4 agent. With the development of suitable animal models (ferret, hamster and, importantly, AGM, progress can be made toward development of a human vaccine.Keywords: henipavirus, equine, swine, human infection, animal models, vaccine candidates

  14. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  15. [Advances in diabetic animal models and its application in the traditional Chinese medicine research].

    Science.gov (United States)

    Cheng, Long; Shen, Zhu-fang; Sun, Gui-bo; Sun, Xiao-bo

    2015-08-01

    The high and continuing soaring incidence of diabetes may become a huge obstacle to China's development. The antidiabetic drug development is one way to solve the problem. Animal model is a powerful tool for drug development. This paper compares and analyzes the three kinds of animal models for antidiabetic drug development in replicating principle, methods and characteristic, then summarized the application in the research of traditional Chinese medicine. At the same time, the analysis of the market, application and clinical advantages of hypoglycemic medicine from traditional Chinese medicine, is given in this paper, based on the literature analysis. From the point of the clinic advantage embodiment and new drug development, this paper will provide advisory and assistance support for the anti-diabetic fighting with traditional Chinese medicine.

  16. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  17. Development of a Novel Large Animal Model to Evaluate Human Dental Pulp Stem Cells for Articular Cartilage Treatment.

    Science.gov (United States)

    Fernandes, Tiago Lazzaretti; Shimomura, Kazunori; Asperti, Andre; Pinheiro, Carla Cristina Gomes; Caetano, Heloísa Vasconcellos Amaral; Oliveira, Claudia Regina G C M; Nakamura, Norimasa; Hernandez, Arnaldo José; Bueno, Daniela Franco

    2018-05-04

    Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. The ability of human Dental Pulp Stem Cells (DPSCs) to differentiate into chondroblasts in vitro suggests that this stem cell type may be useful for tissue bioengineering. However, we have yet to identify a study of large animal models in which DPSCs were used to repair articular cartilage. Therefore, this study aimed to describe a novel treatment for cartilage lesion with DPSCs on a large animal model. Mesenchymal stem cells (MSC) were obtained from deciduous teeth and characterized by flow cytometry. DPSCs were cultured and added to a collagen type I/III biomaterial composite scaffold. Brazilian miniature pig (BR-1) was used. A 6-mm diameter, full-thickness chondral defect was created in each posterior medial condyle. The defects were covered with scaffold alone or scaffold + DPSCs on the contralateral side. Animals were euthanized 6 weeks post-surgery. Cartilage defects were analyzed macroscopically and histology according to modified O'Driscoll scoring system. Flow cytometry confirmed characterization of DPSCs as MSCs. Macroscopic and histological findings suggested that this time period was reasonable for evaluating cartilage repair. To our knowledge, this study provides the first description of an animal model using DPSCs to study the differentiation of hyaline articular cartilage in vivo. The animals tolerated the procedure well and did not show clinical or histological rejection of the DPSCs, reinforcing the feasibility of this descriptive miniature pig model for pre-clinical studies.

  18. Experimental animal models for COPD: a methodological review

    Directory of Open Access Journals (Sweden)

    Vahideh Ghorani

    2017-05-01

    The present review provides various methods used for induction of animal models of COPD, different animals used (mainly mice, guinea pigs and rats and measured parameters. The information provided in this review is valuable for choosing appropriate animal, method of induction and selecting parameters to be measured in studies concerning COPD.

  19. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.

    Science.gov (United States)

    Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte

    2006-08-15

    The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  20. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Directory of Open Access Journals (Sweden)

    Boos Alois

    2006-08-01

    Full Text Available Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  1. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Science.gov (United States)

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787

  2. Lanchester's attrition models and fights among social animals

    OpenAIRE

    Eldridge S. Adams; Michael Mesterton-Gibbons

    2003-01-01

    Lanchester's models of attrition during warfare have served as the basis for several predictions about conflicts between groups of animals. These models and their extensions describe rates of mortality during battles as functions of the number and fighting abilities of individuals in each group, allowing analysis of the determinants of group strength and of the cumulative numbers of casualties. We propose modifications to Lanchester's models to improve their applicability to social animals. I...

  3. Research progress on animal models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wen DONG

    2015-08-01

    Full Text Available Alzheimer's disease (AD is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  4. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications

    Science.gov (United States)

    Pohl, Calvin S.; Medland, Julia E.

    2015-01-01

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. PMID:26451004

  5. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    Science.gov (United States)

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A guinea pig model of acute and chronic asthma using permanently instrumented and unrestrained animals

    NARCIS (Netherlands)

    Meurs, Herman; Santing, Ruud E.; Remie, Rene; van der Mark, Thomas W.; Westerhof, Fiona J.; Zuidhof, Annet B.; Bos, I. Sophie T.; Zaagsma, Johan

    2006-01-01

    To investigate mechanisms underlying allergen-induced asthmatic reactions, airway hyperresponsiveness and remodeling, we have developed a guinea pig model of acute and chronic asthma using unanesthetized, unrestrained animals. To measure airway function, ovalbumin (IgE)-sensitized animals are

  7. Brain Mechanisms Underlying Individual Differences in Reaction to Stress: An Animal Model

    National Research Council Canada - National Science Library

    Siegel, Jerome

    1997-01-01

    .... We developed an animal model of this important dimension of behavior in which we reported that cats and rats who display high levels of exploration, activity, aggression, and risk taking show VEP...

  8. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    Science.gov (United States)

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The idea of animal welfare - developments and tensions

    DEFF Research Database (Denmark)

    Sandøe, Peter; Jensen, Karsten Klint

    2013-01-01

    This paper focuses on developments and tensions within the idea of animal welfare. There is divergence among those who believe in the idea of animal welfare. First, we discuss what it takes for farm animal welfare to be good enough. How far should society go beyond the starting point...... of the Brambell Committee, which was to prevent avoidable suffering? Secondly, we turn to the tricky question of how welfare should be distributed between animals. Here, a tension within the concept of animal welfare, between a focus on the indivudual animal and on the herd, flock or shoal, is pointed out....... Finally, the role of economic considerations is considered, given that animal production takes place in a global market with free trade between countries with various standards of animal welfare....

  10. Animal models of 'anxiety': where next?

    Science.gov (United States)

    Rodgers, R J

    1997-11-01

    Numerous procedures have been developed to facilitate preclinical research on the behavioural pharmacology of anxiety and, as a result of this application, are often referred to as animal models of 'anxiety'. This is an unfortunate misnomer, not only because of the apparent inability of many tests to detect novel anxiolytics consistently, but also because the term implies that anxiety is a unitary emotion. Such difficulties have arisen largely as a consequence of test development strategies which, by emphasizing pharmacological (i.e. benzodiazepine) validation, have yielded models predictive of a specific type of anxiolytic activity. The present review argues that the refinement of existing tests as well as the development of new procedures requires urgent attention to the much neglected issue of behavioural validation. From an evolutionary perspective, normal human anxiety may be conceptualized as a repertoire of defence reactions tailored to meet different forms of threats, and disorders of anxiety as the inappropriate activation or exaggeration of these usually adaptive response patterns. In this context, consideration of the defensive reactions typically observed in our animal models reveals substantially greater commonality in the behavioural effects of benzodiazepine and 5-HT1A anxiolytics than would otherwise be apparent. Therefore, with the exception of the conventional plus-maze paradigm (discussed at some length), better correspondence is seen in tests involving unconditioned response to potential threat (e.g. social interaction, distress vocalizations and light/dark exploration) than in tests of conditioned fear reactions. Even within the latter grouping, however, greater commonality is seen in procedures based on reactions to proximal threat (e.g. freezing, startle, ultrasonic vocalizations, burying) than those involving reactions to distal threat (e.g. avoidance/flight). Significantly, very similar findings have been reported in tests specifically

  11. The science and necessity of using animal models in the study of necrotizing enterocolitis.

    Science.gov (United States)

    Ares, Guillermo J; McElroy, Steven J; Hunter, Catherine J

    2018-02-01

    Necrotizing enterocolitis (NEC) remains one of the highest causes of mortality and of acute and long-term morbidity in premature infants. Multiple factors are involved in the pathophysiology of NEC including the immaturity of the immune system and the complex changing composition of the intestinal microbiome. This is compounded by the fact that the premature infant should ideally still be a developing fetus and has an immature intestinal tract. Because these complexities are beyond the scope of studies in single-cell cultures, animal models are absolutely essential to understand the mechanisms involved in the pathophysiology of NEC and the effects of inflammation on the immature intestinal tract. To this end, investigators have utilized many different species (e.g., rats, mice, rabbits, quails, piglets, and non-human primates) and conditions to develop models of NEC. Each animal has distinct advantages and drawbacks related to its preterm viability, body size, genetic variability, and cost. The choice of animal model is strongly influenced by the scientific question being addressed. While no model perfectly mimics human NEC, each has greatly improved our understanding of disease. Examples of recent discoveries in NEC pathogenesis and prevention underscore the importance of continued animal research in NEC. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Micro RNAs in animal development.

    NARCIS (Netherlands)

    Plasterk, R.H.A.

    2006-01-01

    Micro RNAs (miRNAs) are approximately 22 nucleotide single-stranded noncoding RNA molecules that bind to target messenger RNAs (mRNAs) and silence their expression. This Essay explores the importance of miRNAs in animal development and their possible roles in disease and evolution.

  13. Traditional products: Base for the sustainable development of Serbian animal origin products

    Directory of Open Access Journals (Sweden)

    Stevanović Jasna Lj.

    2016-01-01

    Full Text Available Research results on the diversity of traditional products of animal origin from certain areas of the Republic of Serbia, provides an opportunity to become part of the sustainable quality development, which would be based on their promotion and protection of local resources. Traditional products of animal origin are different and inseparable from the local identity, typical for nation and its food culture. Through confidence-building, and protection from oblivion, the value of domestic products, had preserved trough centuries-old tradition. Nowadays, each domestic product has its own recognisable taste, representing climate of the Republic of Serbia, from which it comes. Universally accepted model of rural institutional structure does not exist. Instead it accommodates and develops in accordance to needs, possibilities and area specific characteristics. By the efficient protection rural models becomes an investment incentives and contribute to general economic and industrial prosperity of the society.

  14. Optogenetics in animal model of alcohol addiction

    Science.gov (United States)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  15. Stop staring facial modeling and animation done right

    CERN Document Server

    Osipa, Jason

    2010-01-01

    The de facto official source on facial animation—now updated!. If you want to do character facial modeling and animation at the high levels achieved in today's films and games, Stop Staring: Facial Modeling and Animation Done Right, Third Edition , is for you. While thoroughly covering the basics such as squash and stretch, lip syncs, and much more, this new edition has been thoroughly updated to capture the very newest professional design techniques, as well as changes in software, including using Python to automate tasks.: Shows you how to create facial animation for movies, games, and more;

  16. The virtual craniofacial patient: 3D jaw modeling and animation.

    Science.gov (United States)

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  17. Debkiss or the quest for the simplest generic model of animal life history.

    NARCIS (Netherlands)

    Jager, T.; Martin, B.T.; Zimmer, E.I.

    2013-01-01

    Understanding the life cycle of individual animals, and how it responds to stress, requires a model that causally links life-history traits (feeding, growth, development and reproduction). Dynamic Energy Budget (DEB) theory offers a powerful and formalised framework for building process-based models

  18. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment.

    Science.gov (United States)

    Mouri, Akihiro; Noda, Yukihiro; Enomoto, Takeshi; Nabeshima, Toshitaka

    2007-01-01

    In humans, phencyclidine (PCP), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, reproduces a schizophrenia-like psychosis including positive symptoms, negative symptoms and cognitive dysfunction. Thus, the glutamatergic neuronal dysfunction hypothesis is one of the main explanatory hypotheses and PCP-treated animals have been utilized as an animal model of schizophrenia. The adult rodents treated with PCP repeatedly exhibit hyperlocomotion as an index of positive symptoms, a social behavioral deficit in a social interaction test and enhanced immobility in a forced swimming test as indices of negative symptoms. They also show a sensorimotor gating deficits and cognitive dysfunctions in several learning and memory tests. Some of these behavioral changes endure after withdrawal from repeated PCP treatment. Furthermore, repeated PCP treatment induces some neurochemical and neuroanatomical changes. On the other hand, the exposure to viral or environmental insult in the second trimester of pregnancy increases the probability of subsequently developing schizophrenia as an adult. NMDA receptor has been implicated in controlling the structure and plasticity of developing brain circuitry. Based on neurodevelopment hypothesis of schizophrenia, schizophrenia model rats treated with PCP at the perinatal stage is developed. Perinatal PCP treatment impairs neuronal development and induces long-lasting schizophrenia-like behaviors in adult period. Many findings suggest that these PCP animal models would be useful for evaluating novel therapeutic candidates and for confirming pathological mechanisms of schizophrenia.

  19. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  20. Modelling severe Staphylococcus aureus sepsis in conscious pigs: are implications for animal welfare justified?

    DEFF Research Database (Denmark)

    Olsen, Helle G; Kjelgaard-Hansen, Mads; Tveden-Nyborg, Pernille

    2016-01-01

    A porcine model of haematogenous Staphylococcus aureus sepsis has previously been established in our research group. In these studies, pigs developed severe sepsis including liver dysfunction during a 48 h study period. As pigs were awake during the study, animal welfare was challenged by the sev......A porcine model of haematogenous Staphylococcus aureus sepsis has previously been established in our research group. In these studies, pigs developed severe sepsis including liver dysfunction during a 48 h study period. As pigs were awake during the study, animal welfare was challenged....... Prior to euthanasia, a galactose elimination capacity test was performed to assess liver function. Pigs were euthanised 48 h post inoculation for necropsy and histopathological evaluation. While infusion times of 6.66 min, and higher, did not induce liver dysfunction (n = 3), the infusion time of 3......, according to humane endpoints. A usable balance between scientific purpose and animal welfare could not be achieved, and we therefore find it hard to justify further use of this conscious porcine sepsis model. In order to make a model of translational relevance for human sepsis, we suggest that future model...

  1. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications.

    Science.gov (United States)

    Pohl, Calvin S; Medland, Julia E; Moeser, Adam J

    2015-12-15

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted. Copyright © 2015 the American Physiological Society.

  2. Advances in environmental radiation protection: re-thinking animal-environment interaction modelling for wildlife dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Beresford, Nicholas A. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Centre for Ecology and Hydrology, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm (Sweden); Gashchak, Sergey [Chornobyl Centre for Nuclear Safety, Radioactive Waste and Radioecology, 07100 Slavutych (Ukraine); Hinton, Thomas G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Centre de Cadarache, 13115 Saint Paul-lez-Durance (France)

    2014-07-01

    Current wildlife dose assessment models adopt simplistic approaches to the representation of animal-environment interaction. The simplest approaches are to assume either that environmental media (e.g. soil, sediment or water) are uniformly contaminated or relating organism exposure to activity concentrations in media collected at the point of sampling of the animal. The external exposure of a reference organism is then estimated by defining the geometric relationship between the organism and the medium. For example, a reference organism within the soil would have a 4p exposure geometry and a reference organism on the soil would have a 2p exposure geometry. At best, the current modelling approaches recognise differences in media activity concentrations by calculating exposure for different areas of contamination and then estimating the fraction of time that an organism spends in each area. In other fields of pollution ecology, for example wildlife risk assessment for chemical pollution, more advanced approaches are being implemented to model animal-environment interaction and estimate exposure. These approaches include individual-based movement modelling and random walk modelling and a variety of software tools have been developed to facilitate the implementation of these models. Although there are more advanced animal-environment interaction modelling approaches that are available, it is questionable whether these should be adopted for use in environmental radiation protection. Would their adoption significantly reduce uncertainty within the assessment process and, if so, by how much? These questions are being addressed within the new TREE (TRansfer - Exposure - Effects) research programme funded by the United Kingdom Natural Environment Research Council (NERC) and within Working Group (WG) 8 of the International Atomic Energy Agency's MODARIA programme. MODARIA WG8 is reviewing some of the alternative approaches that have been developed for animal

  3. An animal model for the neuromodulation of neurogenic bladder dysfunction.

    Science.gov (United States)

    Zvara, P; Sahi, S; Hassouna, M M

    1998-08-01

    To develop an animal model to examine the pathophysiology by which S3 sacral root electrostimulation alters the micturition reflex in patients with bladder hyper-reflexia. Chronic sacral nerve root electrostimulation was applied to spinally transected rats; 21 animals were divided into four groups. The spinal cord was completely transected at the T10-11 level and stainless-steel electrodes implanted into the sacral foramen in 17 animals; these animals were subsequently divided into two groups (1 and 2). Six rats in group 1 underwent sacral root elctrostimulation for 2 h/day and five in group 2 for 6 h/day, for 21 days. The sham group (group 3, six rats) received no stimulation and four rats were used as healthy controls (group 4). Voiding frequency was recorded and each animal was evaluated cystometrically at the end of the stimulation period. The results were compared with the sham and control groups. Spinal cord transection resulted in bladder areflexia and complete urinary retention; 7-9 days after the injury, the bladder recovered its activity. Twenty-one days after transection all animals had evidence of uninhibited bladder contractions. The mean (SD) hourly frequency of urination was 0.66 (0.18) in healthy controls, 0.83 (0.21) in group 1, 0.87 (0.34) in group 2 and 1.1 (0.31) in group 3. There was a significant decrease in eh cystometric signs of bladder hyper-reflexia in groups 1 and 2 when compared with group 3. This work reports and initial study showing that chronic electrostimulation of sacral nerve roots can reduce the signs of bladder hyper-reflexia in the spinally injured rat. To our knowledge, this is the first report describing the rat as an animal model to determine the effects of chronic electrostimulation on the micturition reflex.

  4. [Animal models of autoimmune prostatitis and their evaluation criteria].

    Science.gov (United States)

    Shen, Jia-ming; Lu, Jin-chun; Yao, Bing

    2016-03-01

    Chronic prostatitis is a highly prevalent disease of unclear etiology. Researches show that autoimmune reaction is one cause of the problem. An effective animal model may help a lot to understand the pathogenesis and find proper diagnostic and therapeutic strategies of the disease. Currently used autoimmune prostatitis-related animal models include those of age-dependent spontaneous prostatitis, autoimmune regulator-dependent spontaneous prostatitis, self antigen-induced prostatitis, and steroid-induced prostatitis. Whether an animal model of autoimmune prostatitis is successfully established can be evaluated mainly from the five aspects: histology, morphology, specific antigens, inflammatory factors, and pain intensity.

  5. Developments in undergraduate teaching of small-animal soft-tissue surgical skills at the University of Sydney.

    Science.gov (United States)

    Gopinath, Deepa; McGreevy, Paul D; Zuber, Richard M; Klupiec, Corinna; Baguley, John; Barrs, Vanessa R

    2012-01-01

    This article discusses recent developments in soft-tissue surgery teaching at the University of Sydney, Faculty of Veterinary Science. An integrated teaching program was developed for Bachelor of Veterinary Science (BVSc) students with the aim of providing them with optimal learning opportunities to meet "Day One" small-animal soft-tissue surgical competencies. Didactic lectures and tutorials were introduced earlier into the curriculum to prepare students for live-animal surgery practical. In addition to existing clinics, additional spay/neuter clinics were established in collaboration with animal welfare organizations to increase student exposure to live-animal surgery. A silicon-based, life-like canine ovariohysterectomy model was developed with the assistance of a model-making and special effects company. The model features elastic ovarian pedicles and suspensory ligaments, which can be stretched and broken like those of an actual dog. To monitor the volume and type of student surgical experience, an E-portfolio resource was established. This resource allows for the tracking of numbers of live, student-performed desexing surgeries and incorporates competency-based assessments and reflective tasks to be completed by students. Student feedback on the integrated surgical soft-tissue teaching program was assessed. Respondents were assessed in the fourth year of the degree and will have further opportunities to develop Day One small-animal soft-tissue surgical competencies in the fifth year. Ninety-four percent of respondents agreed or strongly agreed that they were motivated to participate in all aspects of the program, while 78% agreed or strongly agreed that they received an adequate opportunity to develop their skills and confidence in ovariohysterectomy or castration procedures through the fourth-year curriculum.

  6. RASopathies: unraveling mechanisms with animal models

    Directory of Open Access Journals (Sweden)

    Granton A. Jindal

    2015-08-01

    Full Text Available RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment.

  7. [The design and development of a quality system for the diagnosis of exotic animal diseases at the National Centre for Animal and Plant Health in Cuba].

    Science.gov (United States)

    de Oca, N Montes; Villoch, A; Pérez Ruano, M

    2004-12-01

    A quality system for the diagnosis of exotic animal diseases was developed at the national centre for animal and plant health (CENSA), responsible for coordinating the clinical, epizootiological and laboratory diagnosis of causal agents of exotic animal diseases in Cuba. A model was designed on the basis of standard ISO 9001:2000 of the International Organization for Standardization (ISO), standard ISO/IEC 17025:1999 of ISO and the International Electrotechnical Commission, recommendations of the World Organisation for Animal Health (OIE) and other regulatory documents from international and national organisations that deal specifically with the treatment of emerging diseases. Twenty-nine standardised operating procedures were developed, plus 13 registers and a checklist to facilitate the evaluation of the system. The effectiveness of the quality system was confirmed in the differential diagnosis of classical swine fever at an animal virology laboratory in Cuba.

  8. STRESS RESPONSE STUDIES USING ANIMAL MODELS

    Science.gov (United States)

    This presentation will provide the evidence that ozone exposure in animal models induce neuroendocrine stress response and this stress response modulates lung injury and inflammation through adrenergic and glucocorticoid receptors.

  9. The Use of Animal Models in Behavioural Neuroscience Research

    NARCIS (Netherlands)

    Bovenkerk, B.; Kaldewaij, F.

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  10. The Use of Animal Models in Behavioural Neuroscience Research.

    NARCIS (Netherlands)

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  11. Animal models of binge drinking, current challenges to improve face validity.

    Science.gov (United States)

    Jeanblanc, Jérôme; Rolland, Benjamin; Gierski, Fabien; Martinetti, Margaret P; Naassila, Mickael

    2018-05-05

    Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Emotional Eating, Binge Eating and Animal Models of Binge-Type Eating Disorders.

    Science.gov (United States)

    Turton, Robert; Chami, Rayane; Treasure, Janet

    2017-06-01

    The objective of this paper is to review the role that hedonic factors, emotions and self-regulation systems have over eating behaviours from animal models to humans. Evidence has been found to suggest that for some high-risk individuals, obesity/binge eating may develop as an impulsive reaction to negative emotions that over time becomes a compulsive habit. Animal models highlight the neural mechanisms that might underlie this process and suggest similarities with substance use disorders. Emotional difficulties and neurobiological factors have a role in the aetiology of eating and weight disorders. Precise treatments targeted at these mechanisms may be of help for people who have difficulties with compulsive overeating.

  13. Animal models of yellow fever and their application in clinical research.

    Science.gov (United States)

    Julander, Justin G

    2016-06-01

    Yellow fever virus (YFV) is an arbovirus that causes significant human morbidity and mortality. This virus has been studied intensively over the past century, although there are still no treatment options for those who become infected. Periodic and unpredictable yellow fever (YF) outbreaks in Africa and South America continue to occur and underscore the ongoing need to further understand this viral disease and to develop additional countermeasures to prevent or treat cases of illness. The use of animal models of YF is critical to accomplishing this goal. There are several animal models of YF that replicate various aspects of clinical disease and have provided insight into pathogenic mechanisms of the virus. These typically include mice, hamsters and non-human primates (NHP). The utilities and shortcomings of the available animal models of YF are discussed. Information on recent discoveries that have been made in the field of YFV research is also included as well as important future directions in further ameliorating the morbidity and mortality that occur as a result of YFV infection. It is anticipated that these model systems will help facilitate further improvements in the understanding of this virus and in furthering countermeasures to prevent or treat infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Large animals as potential models of human mental and behavioral disorders.

    Science.gov (United States)

    Danek, Michał; Danek, Janusz; Araszkiewicz, Aleksander

    2017-12-30

    Many animal models in different species have been developed for mental and behavioral disorders. This review presents large animals (dog, ovine, swine, horse) as potential models of this disorders. The article was based on the researches that were published in the peer-reviewed journals. Aliterature research was carried out using the PubMed database. The above issues were discussed in the several problem groups in accordance with the WHO International Statistical Classification of Diseases and Related Health Problems 10thRevision (ICD-10), in particular regarding: organic, including symptomatic, disorders; mental disorders (Alzheimer's disease and Huntington's disease, pernicious anemia and hepatic encephalopathy, epilepsy, Parkinson's disease, Creutzfeldt-Jakob disease); behavioral disorders due to psychoactive substance use (alcoholic intoxication, abuse of morphine); schizophrenia and other schizotypal disorders (puerperal psychosis); mood (affective) disorders (depressive episode); neurotic, stress-related and somatoform disorders (posttraumatic stress disorder, obsessive-compulsive disorder); behavioral syndromes associated with physiological disturbances and physical factors (anxiety disorders, anorexia nervosa, narcolepsy); mental retardation (Cohen syndrome, Down syndrome, Hunter syndrome); behavioral and emotional disorders (attention deficit hyperactivity disorder). This data indicates many large animal disorders which can be models to examine the above human mental and behavioral disorders.

  15. Animating climate model data

    Science.gov (United States)

    DaPonte, John S.; Sadowski, Thomas; Thomas, Paul

    2006-05-01

    This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.

  16. Aspects of animal models for major neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Lefter Radu

    2014-01-01

    Full Text Available We will review the main animal models for the major neuropsychiatric disorders, focusing on schizophrenia, Alzheimer’s disease, Parkinson’s disease, depression, anxiety and autism. Although these mental disorders are specifically human pathologies and therefore impossible to perfectly replicate in animals, the use of experimental animals is based on the physiological and anatomical similarities between humans and animals such as the rat, and mouse, and on the fact that 99% of human and murine genomes are shared. Pathological conditions in animals can be assessed by manipulating the metabolism of neurotransmitters, through various behavioral tests, and by determining biochemical parameters that can serve as important markers of disorders.

  17. An intermediate animal model of spinal cord stimulation

    Directory of Open Access Journals (Sweden)

    Thomas Guiho

    2016-06-01

    Full Text Available Spinal cord injuries (SCI result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self- catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session.

  18. An Exploratory Study on the Development of an Animal Model of Acute Pancreatitis Following Nicotine Exposure

    Directory of Open Access Journals (Sweden)

    Chowdhury P

    2003-09-01

    Full Text Available Abstract Cigarette smoking is known to be a major risk factor for pancreatic cancer and pancreatitis is believed to be a predisposed condition for pancreatic cancer. As of this date, there is no established experimental animal model to conduct detailed studies on these two deadly diseases. Our aim is to establish a rodent model by which we can systematically study the pathogenesis of pancreatitis and pancreatic cancer. Methods Adult Male Sprague Dawley rats were exposed to graded doses of nicotine by various routes for periods of three to 16 weeks. Blood samples were measured for hormonal and metabolic parameters. The pancreas was evaluated for histopathological changes and its function was assessed in isolated pancreatic acini upon stimulation with cholecystokinin (CCK or carbachol (Cch. The pancreatic tissue was evaluated further for oncogene expression. Results Body weight, food and fluid intakes, plasma glucose and insulin levels were significantly reduced in animals with nicotine exposure when compared to control. However, CCK and gastrin levels in the blood were significantly elevated. Pancreatic function was decreased significantly with no alteration in CCK receptor binding. Pancreatic histology revealed vacuolation, swelling, cellular pyknosis and karyorrhexis. Mutant oncogene, H-ras, was overexpressed in nicotine-treated pancreatic tissue. Summary and conclusion The results suggest that alterations in metabolic, hormonal and pathologic parameters following nicotine-treatment appear consistent with diagnostic criteria of human pancreatitis. It is proposed that rats could be considered as a potential animal model to study the pathogenesis of pancreatitis.

  19. Invited review: Experimental design, data reporting, and sharing in support of animal systems modeling research.

    Science.gov (United States)

    McNamara, J P; Hanigan, M D; White, R R

    2016-12-01

    The National Animal Nutrition Program "National Research Support Project 9" supports efforts in livestock nutrition, including the National Research Council's committees on the nutrient requirements of animals. Our objective was to review the status of experimentation and data reporting in animal nutrition literature and to provide suggestions for the advancement of animal nutrition research and the ongoing improvement of field-applied nutrient requirement models. Improved data reporting consistency and completeness represent a substantial opportunity to improve nutrition-related mathematical models. We reviewed a body of nutrition research; recorded common phrases used to describe diets, animals, housing, and environmental conditions; and proposed equivalent numerical data that could be reported. With the increasing availability of online supplementary material sections in journals, we developed a comprehensive checklist of data that should be included in publications. To continue to improve our research effectiveness, studies utilizing multiple research methodologies to address complex systems and measure multiple variables will be necessary. From the current body of animal nutrition literature, we identified a series of opportunities to integrate research focuses (nutrition, reproduction and genetics) to advance the development of nutrient requirement models. From our survey of current experimentation and data reporting in animal nutrition, we identified 4 key opportunities to advance animal nutrition knowledge: (1) coordinated experiments should be designed to employ multiple research methodologies; (2) systems-oriented research approaches should be encouraged and supported; (3) publication guidelines should be updated to encourage and support sharing of more complete data sets; and (4) new experiments should be more rapidly integrated into our knowledge bases, research programs and practical applications. Copyright © 2016 American Dairy Science Association

  20. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    Science.gov (United States)

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…

  1. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

    Science.gov (United States)

    Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P

    2018-04-01

    mathematical models describing lactation in cattle, we show how structural identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the discovery of a powerful tool for model construction and experiment design.

  2. Prediction of human pharmacokinetics of activated recombinant factor VII and B-domain truncated factor VIII from animal population pharmacokinetic models of haemophilia

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Juul, Rasmus Vestergaard; Groth, Andreas Velsing

    2018-01-01

    activated factor VII (rFVIIa) and recombinant factor VIII (rFVIII) in several experimental animal models using population PK modelling, and apply a simulation-based approach to evaluate how well the developed animal population PK models predict human PK. PK models were developed for rFVIIa and r...

  3. Realistic Modeling and Animation of Human Body Based on Scanned Data

    Institute of Scientific and Technical Information of China (English)

    Yong-You Ma; Hui Zhang; Shou-Wei Jiang

    2004-01-01

    In this paper we propose a novel method for building animation model of real human body from surface scanned data.The human model is represented by a triangular mesh and described as a layered geometric model.The model consists of two layers: the control skeleton generating body animation from motion capture data,and the simplified surface model providing an efficient representation of the skin surface shape.The skeleton is generated automatically from surface scanned data using the feature extraction,and thena point-to-line mapping is used to map the surface model onto the underlying skeleton.The resulting model enables real-time and smooth animation by manipulation of the skeleton while maintaining the surface detail.Compared with earlier approach,the principal advantages of our approach are the automated generation of body control skeletons from the scanned data for real-time animation,and the automatic mapping and animation of the captured human surface shape.The human model constructed in this work can be used for applications of ergonomic design,garment CAD,real-time simulating humans in virtual reality environment and so on.

  4. Animal models of social anxiety disorder and their validity criteria.

    Science.gov (United States)

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Quevedo, João

    2014-09-26

    Anxiety disorders pose one of the largest threats to global mental health, and they predominantly emerge early in life. Social anxiety disorder, also known as social phobia, is the most common of all anxiety disorders. Moreover, it has severe consequences and is a disabling disorder that can cause an individual to be unable to perform the tasks of daily life. Social anxiety disorder is associated with the subsequent development of major depression and other mental diseases, as well as increased substance abuse. Although some neurobiological alterations have been found to be associated with social anxiety disorder, little is known about this disorder. Animal models are useful tools for the investigation of this disorder, as well as for finding new pharmacological targets for treatment. Thus, this review will highlight the main animal models of anxiety associated with social phobia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  6. Transgenic animal models for study of the pathogenesis of Huntington’s disease and therapy

    Directory of Open Access Journals (Sweden)

    Chang RB

    2015-04-01

    Full Text Available Renbao Chang,1 Xudong Liu,1 Shihua Li,2 Xiao-Jiang Li1,2 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China; 2Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA Abstract: Huntington’s disease (HD is caused by a genetic mutation that results in polyglutamine expansion in the N-terminal regions of huntingtin. As a result, this polyQ expansion leads to the misfolding and aggregation of mutant huntingtin as well as age-dependent neurodegeneration. The genetic mutation in HD allows for generating a variety of animal models that express different forms of mutant huntingtin and show differential pathology. Studies of these animal models have provided an important insight into the pathogenesis of HD. Mouse models of HD include transgenic mice, which express N-terminal or full-length mutant huntingtin ubiquitously or selectively in different cell types, and knock-in mice that express full-length mutant Htt at the endogenous level. Large animals, such as pig, sheep, and monkeys, have also been used to generate animal HD models. This review focuses on the different features of commonly used transgenic HD mouse models as well as transgenic large animal models of HD, and also discusses how to use them to identify potential therapeutics. Since HD shares many pathological features with other neurodegenerative diseases, identification of therapies for HD would also help to develop effective treatment for different neurodegenerative diseases that are also caused by protein misfolding and occur in an age-dependent manner. Keywords: transgenic animal models, Huntington’s disease, pathogenesis, therapy

  7. A novel animal model for hyperdynamic airway collapse.

    Science.gov (United States)

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  8. The Cynomolgus Macaque Natural History Model of Pneumonic Tularemia for Predicting Clinical Efficacy Under the Animal Rule

    Science.gov (United States)

    Guina, Tina; Lanning, Lynda L.; Omland, Kristian S.; Williams, Mark S.; Wolfraim, Larry A.; Heyse, Stephen P.; Houchens, Christopher R.; Sanz, Patrick; Hewitt, Judith A.

    2018-01-01

    Francisella tularensis is a highly infectious Gram-negative bacterium that is the etiologic agent of tularemia in animals and humans and a Tier 1 select agent. The natural incidence of pneumonic tularemia worldwide is very low; therefore, it is not feasible to conduct clinical efficacy testing of tularemia medical countermeasures (MCM) in human populations. Development and licensure of tularemia therapeutics and vaccines need to occur under the Food and Drug Administration's (FDA's) Animal Rule under which efficacy studies are conducted in well-characterized animal models that reflect the pathophysiology of human disease. The Tularemia Animal Model Qualification (AMQ) Working Group is seeking qualification of the cynomolgus macaque (Macaca fascicularis) model of pneumonic tularemia under Drug Development Tools Qualification Programs with the FDA based upon the results of studies described in this manuscript. Analysis of data on survival, average time to death, average time to fever onset, average interval between fever and death, and bacteremia; together with summaries of clinical signs, necropsy findings, and histopathology from the animals exposed to aerosolized F. tularensis Schu S4 in five natural history studies and one antibiotic efficacy study form the basis for the proposed cynomolgus macaque model. Results support the conclusion that signs of pneumonic tularemia in cynomolgus macaques exposed to 300–3,000 colony forming units (cfu) aerosolized F. tularensis Schu S4, under the conditions described herein, and human pneumonic tularemia cases are highly similar. Animal age, weight, and sex of animals challenged with 300–3,000 cfu Schu S4 did not impact fever onset in studies described herein. This study summarizes critical parameters and endpoints of a well-characterized cynomolgus macaque model of pneumonic tularemia and demonstrates this model is appropriate for qualification, and for testing efficacy of tularemia therapeutics under Animal Rule. PMID

  9. Human-animal relationships: from daily life to animal-assisted therapies

    Directory of Open Access Journals (Sweden)

    Marine Grandgeorge

    2011-12-01

    Full Text Available Humans have a long history of relationship with domestic animals and nowadays pets often act as "social substitutes" through bonding. There is some evidence that pet presence at home may induce well being in people and the development of social skills in children. Animal assisted therapies aim at developing these skills in patients on the basis of human animal interactions. Experimental data obtained on animal models suggest that this is indeed a promising line. There is however a lack of clear scientific data that would help defines what the most appropriate procedures or species may be. Improvements are observed, but again sound scientific data are mostly missing. Attention must be given to the welfare of the animals being used.

  10. Development of a Magnetoencephalograph System for Small Animals

    International Nuclear Information System (INIS)

    Kim, J. E.; Kim, I. S.; Kang, C. S.; Kwon, H.; Kim, J. M.; Lee, Y. H.; Kim, K.

    2011-01-01

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/Hz 1/2 /cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

  11. Use of animal models for space flight physiology studies, with special focus on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  12. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.

    Science.gov (United States)

    Kranstauber, Bart; Kays, Roland; Lapoint, Scott D; Wikelski, Martin; Safi, Kamran

    2012-07-01

    1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  13. FDG small animal PET permits early detection of malignant cells in a xenograft murine model

    International Nuclear Information System (INIS)

    Nanni, Cristina; Spinelli, Antonello; Trespidi, Silvia; Ambrosini, Valentina; Castellucci, Paolo; Farsad, Mohsen; Franchi, Roberto; Fanti, Stefano; Leo, Korinne di; Tonelli, Roberto; Pession, Andrea; Pettinato, Cinzia; Rubello, Domenico

    2007-01-01

    The administration of new anticancer drugs in animal models is the first step from in vitro to in vivo pre-clinical protocols. At this stage it is crucial to ensure that cells are in the logarithmic phase of growth and to avoid vascular impairment, which can cause inhomogeneous distribution of the drug within the tumour and thus lead to bias in the final analysis of efficacy. In subcutaneous xenograft murine models, positivity for cancer is visually recognisable 2-3 weeks after inoculation, when a certain amount of necrosis is usually already present. The aim of this study was to evaluate the accuracy of FDG small animal PET for the early detection of malignant masses in a xenograft murine model of human rhabdomyosarcoma. A second goal was to analyse the metabolic behaviour of this xenograft tumour over time. We studied 23 nude mice, in which 7 x 10 6 rhabdomyosarcoma cells (RH-30 cell line) were injected in the dorsal subcutaneous tissues. Each animal underwent four FDG PET scans (GE, eXplore Vista DR) under gas anaesthesia. The animals were studied 2, 5, 14 and 20 days after inoculation. We administered 20 MBq of FDG via the tail vein. Uptake time was 60 min, and acquisition time, 20 min. Images were reconstructed with OSEM 2D iterative reconstruction and the target to background ratio (TBR) was calculated for each tumour. Normal subcutaneous tissue had a TBR of 0.3. Necrosis was diagnosed when one or more cold areas were present within the mass. All the animals were sacrificed and histology was available to verify PET results. PET results were concordant with the findings of necropsy and histology in all cases. The incidence of the tumour was 69.6% (16/23 animals); seven animals did not develop a malignant mass. Ten of the 23 animals had a positive PET scan 2 days after inoculation. Nine of these ten animals developed a tumour; the remaining animal became negative, at the third scan. The positive predictive value of the early PET scan was 90% (9/10 animals

  14. [Advances in animal model and traditional Chinese medicine prevention in coronary microvascular dysfunction].

    Science.gov (United States)

    Li, Lei; Liu, Jian-Xun; Ren, Jian-Xun; Guo, Hao; Lin, Cheng-Ren

    2017-01-01

    Coronary microvascular dysfunction (CMD) is a common mechanism for some heart disease like cardiac X syndrome and no-reflow phenomenon after percutaneous coronary intervention(PCI). With the development of medical imageology, CMD has received increased attention. Animal model of CMD is indispensable tool for the research of pathogenesis and treatment evaluation, therefor choose an appropriate animal model is the first issue to carry out CMD research. Experimental and clinical studies have shown unique effectiveness of traditional Chinese medicine(TCM) in CMD therapy. Clarifying of the TCM therapeutic effect mechanisms and seeking an optimal solution of combination of traditional Chinese and western medicine will be the focus of future research. This paper reviewed the establishment and evaluation of CMD animal model, as well as the intervention study of TCM on CMD. The article aims to provide reference for the basic research of CMD and the TCM experimental study on CMD. Copyright© by the Chinese Pharmaceutical Association.

  15. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.

    Science.gov (United States)

    Wancket, L M

    2015-09-01

    Bone implants and devices are a rapidly growing field within biomedical research, and implants have the potential to significantly improve human and animal health. Animal models play a key role in initial product development and are important components of nonclinical data included in applications for regulatory approval. Pathologists are increasingly being asked to evaluate these models at the initial developmental and nonclinical biocompatibility testing stages, and it is important to understand the relative merits and deficiencies of various species when evaluating a new material or device. This article summarizes characteristics of the most commonly used species in studies of bone implant materials, including detailed information about the relevance of a particular model to human bone physiology and pathology. Species reviewed include mice, rats, rabbits, guinea pigs, dogs, sheep, goats, and nonhuman primates. Ultimately, a comprehensive understanding of the benefits and limitations of different model species will aid in rigorously evaluating a novel bone implant material or device. © The Author(s) 2015.

  16. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree....... Second, we show how this approach can be used to draw inferences from a wide range of animal models using the computer package Winbugs. Finally, we illustrate the approach in a simulation study, in which the data are generated and analyzed using Winbugs according to a linear model with i.i.d errors...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  17. Genetic opportunities to enhance sustainability of pork production in developing countries: A model for food animals

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Golovan, S.P.; Ajakaiye, A.; Fan, M.Z.; Hacker, R.R.; Phillips, J.P.; Meidinger, R.G.; Kelly, J.M.

    2005-01-01

    Currently there is a shortage of food and potable water in many developing countries. Superimposed upon this critical situation, because of the increasing urban wealth in these countries, there is a strong trend of increased consumption of meat, and pork in particular. The consequence of this trend will be increased agricultural pollution, resulting not only from greater use of chemical fertilizer, but also from manure spread on land as fertilizer that may enter freshwater and marine ecosystems causing extensive eutrophication and decreased water quality. The application of transgenic technologies to improve the digestive efficiency and survival of food animals, and simultaneously decreasing their environmental impact is seen as an opportunity to enhance sustainability of animal agriculture without continued capital inputs. Transgenes expressed in pigs that have potential include, for example, genes coding for phytase, lactalbumin and lactoferrin. At the University of Guelph, Escherichia coli phytase has been expressed in the salivary glands of the pig. Selected lines of these pigs utilize plant phytate phosphorus efficiently as a source of phosphorus and excrete faecal material with more than a 60 percent reduction in phosphorus content. Because of their capacity to utilize plant phytate phosphorus and to produce less polluting manure they have a valuable trait that will contribute to enhanced sustainability of pork production in developing countries, where there is less access to either high quality phosphate supplement or phytase enzyme to include in the diet. Issues that require continued consideration as a prelude to the introduction of transgenic animals into developing countries include food and environmental safety, and consumer acceptance of meat products from genetically modified animals. (author)

  18. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  19. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  20. Pig models on intestinal development and therapeutics.

    Science.gov (United States)

    Yin, Lanmei; Yang, Huansheng; Li, Jianzhong; Li, Yali; Ding, Xueqing; Wu, Guoyao; Yin, Yulong

    2017-12-01

    The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.

  1. Scientific Knowledge and Technology, Animal Experimentation, and Pharmaceutical Development.

    Science.gov (United States)

    Kinter, Lewis B; DeGeorge, Joseph J

    2016-12-01

    Human discovery of pharmacologically active substances is arguably the oldest of the biomedical sciences with origins >3500 years ago. Since ancient times, four major transformations have dramatically impacted pharmaceutical development, each driven by advances in scientific knowledge, technology, and/or regulation: (1) anesthesia, analgesia, and antisepsis; (2) medicinal chemistry; (3) regulatory toxicology; and (4) targeted drug discovery. Animal experimentation in pharmaceutical development is a modern phenomenon dating from the 20th century and enabling several of the four transformations. While each transformation resulted in more effective and/or safer pharmaceuticals, overall attrition, cycle time, cost, numbers of animals used, and low probability of success for new products remain concerns, and pharmaceutical development remains a very high risk business proposition. In this manuscript we review pharmaceutical development since ancient times, describe its coevolution with animal experimentation, and attempt to predict the characteristics of future transformations. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    OpenAIRE

    Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von

    2006-01-01

    Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Result...

  3. Evaluation of an animation tool developed to supplement dental student study of the cranial nerves.

    Science.gov (United States)

    Lone, M; McKenna, J P; Cryan, J F; Vagg, T; Toulouse, A; Downer, E J

    2017-12-30

    The structure/function of the cranial nerves is a core topic for dental students. However, due to the perceived complexity of the subject, it is often difficult for students to develop a comprehensive understanding of key concepts using textbooks and models. It is accepted that the acquisition of anatomical knowledge can be facilitated by visualisation of structures. This study aimed to develop and assess a novel cranial nerve animation as a supplemental learning aid for dental students. A multidisciplinary team of anatomists, neuroscientists and a computer scientist developed a novel animation depicting the cranial nerves. The animation was viewed by newly enrolled first-year dental students, graduate entry dental students (year 1) and dental hygiene students (year 1). A simple life scenario employing the use of the cranial nerves was developed using a cartoon-type animation with a viewing time of 3.58 minutes. The animation was developed with emphasis on a life scenario. The animation was placed online for 2 weeks with open access or viewed once in a controlled laboratory setting. Questionnaires were designed to assess the participants' attitude towards the animation and their knowledge of the cranial nerves before and after visualisation. This study was performed before the delivery of core lectures on the cranial nerves. Our findings indicate that the use of the animation can act as a supplemental tool to improve student knowledge of the cranial nerves. Indeed, data indicate that a single viewing of the animation, in addition to 2-week access to the animation, can act as a supplemental learning tool to assist student understanding of the structure and function of cranial nerves. The animation significantly enhanced the student's opinion that their cranial nerve knowledge had improved. From a qualitative point of view, the students described the animation as an enjoyable and useful supplement to reading material/lectures and indicated that the animation was a

  4. Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation.

    Science.gov (United States)

    Ventura-Aquino, Elisa; Paredes, Raúl G

    2017-01-01

    Many different animal models of sexual medicine have been developed, demonstrating the complexity of studying the many interactions that influence sexual responses. A great deal of effort has been invested in measuring sexual motivation using different behavioral models mainly because human behavior is more complex than any model can reproduce. To compare different animal models of male and female behaviors that measure sexual motivation as a key element in sexual medicine and focus on models that use a combination of molecular techniques and behavioral measurements. We review the literature to describe models that evaluate different aspects of sexual motivation. No single test is sufficient to evaluate sexual motivation. The best approach is to evaluate animals in different behavioral tests to measure the motivational state of the subject. Different motivated behaviors such as aggression, singing in the case of birds, and sexual behavior, which are crucial for reproduction, are associated with changes in mRNA levels of different receptors in brain areas that are important in the control of reproduction. Research in animal models is crucial to understand the complexity of sexual behavior and all the mechanisms that influence such an important aspect of human well-being to decrease the physiologic and psychological impact of sexual dysfunctions. In other cases, research in different models is necessary to understand and recognize, not cure, the variability of sexuality, such as asexuality, which is another form of sexual orientation. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  5. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models.

    Science.gov (United States)

    Bøgh, Katrine Lindholm; van Bilsen, Jolanda; Głogowski, Robert; López-Expósito, Iván; Bouchaud, Grégory; Blanchard, Carine; Bodinier, Marie; Smit, Joost; Pieters, Raymond; Bastiaan-Net, Shanna; de Wit, Nicole; Untersmayr, Eva; Adel-Patient, Karine; Knippels, Leon; Epstein, Michelle M; Noti, Mario; Nygaard, Unni Cecilie; Kimber, Ian; Verhoeckx, Kitty; O'Mahony, Liam

    2016-01-01

    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured.

  6. Sleep and Obesity: A focus on animal models

    Science.gov (United States)

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  7. Animal Models of Post-Traumatic Stress Disorder and Recent Neurobiological Insights

    Science.gov (United States)

    Whitaker, Annie M.; Gilpin, Nicholas W.; Edwards, Scott

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to develop PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress- and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often observed combination of PTSD and co-morbid conditions such as alcohol use disorder (AUD). Future studies will continue to refine preclinical PTSD models in hopes of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders. PMID:25083568

  8. [Strategic considerations on the design and choice of animal models for non-clinical investigations of cell-based medicinal products].

    Science.gov (United States)

    Lehmann, Jörg; Schulz, Ronny M; Sanzenbacher, Ralf

    2015-11-01

    For the development of medicinal products animal models are still indispensable to demonstrate efficacy and safety prior to first use in humans. Advanced therapy medicinal products (ATMP), which include cell-based medicinal products (CBMP), differ in their pharmacology and toxicology compared to conventional pharmaceuticals, and thus, require an adapted regime for non-clinical development. Developers are, therefore, challenged to develop particular individual concepts and to reconcile these with regulatory agencies. Guidelines issued by the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA) and other sources can provide direction.The published approaches for non-clinical testing of efficacy document that homologous animal models where the therapeutic effect is investigated in a disease-relevant animal model utilizing cells derived from the same species are commonly used. The challenge is that the selected model should reflect the human disease in all critical features and that the cells should be comparable to the investigated human medicinal product in terms of quality and biological activity. This is not achievable in all cases. In these cases, alternative methods may provide supplemental information. To demonstrate the scientific proof-of-concept (PoC), small animal models such as mice or rats are preferred. During the subsequent product development phase, large animal models (i.e. sheep, minipigs, dogs) must be considered, as they may better reflect the anatomical or physiological situation in humans. In addition to efficacy, those models may also be suitable to prove some safety aspects of ATMP (e.g. regarding dose finding, local tolerance, or undesired interactions and effects of the administered cells in the target tissue). In contrast, for evaluation of the two prominent endpoints for characterizing the safety of ATMP (i.e. biodistribution, tumorigenicity) heterologous small animal models, especially immunodeficient mouse strains

  9. Animal models for the study of hepatitis C virus infection and related liver disease

    DEFF Research Database (Denmark)

    Bukh, Jens

    2012-01-01

    Hepatitis C virus (HCV) causes liver-related death in more than 300,000 people annually. Treatments for patients with chronic HCV are suboptimal, despite the introduction of directly acting antiviral agents. There is no vaccine that prevents HCV infection. Relevant animal models are important...... for HCV research and development of drugs and vaccines. Chimpanzees are the best model for studies of HCV infection and related innate and adaptive host immune responses. They can be used in immunogenicity and efficacy studies of HCV vaccines. The only small animal models of robust HCV infection are T......- and B- cell deficient mice with human chimeric livers. Although these mice cannot be used in studies of adaptive immunity, they have provided new insights into HCV neutralization, interactions between virus and receptors, innate host responses, and therapeutic approaches. Recent progress in developing...

  10. Synchrotron-based intravenous cerebral angiography in a small animal model

    International Nuclear Information System (INIS)

    Kelly, Michael E; Schueltke, Elisabeth; Fiedler, Stephan; Nemoz, Christian; Guzman, Raphael; Corde, Stephanie; Esteve, Francois; LeDuc, Geraldine; Juurlink, Bernhard H J; Meguro, Kotoo

    2007-01-01

    K-edge digital subtraction angiography (KEDSA), a recently developed synchrotron-based technique, utilizes monochromatic radiation and allows acquisition of high-quality angiography images after intravenous administration of contrast agent. We tested KEDSA for its suitability for intravenous cerebral angiography in an animal model. Adult male New Zealand rabbits were subjected to either angiography with conventional x-ray equipment or synchrotron-based intravenous KEDSA, using an iodine-based contrast agent. Angiography with conventional x-ray equipment after intra-arterial administration of contrast agent demonstrated the major intracranial vessels but no smaller branches. KEDSA was able to visualize the major intracranial vessels as well as smaller branches in both radiography mode (planar images) and tomography mode. Visualization was achieved with as little as 0.5 ml kg -1 of iodinated contrast material. We were able to obtain excellent visualization of the cerebral vasculature in an animal model using intravenous injection of contrast material, using synchrotron-based KEDSA

  11. Creating an Animal Model of Tendinopathy by Inducing Chondrogenic Differentiation with Kartogenin.

    Science.gov (United States)

    Yuan, Ting; Zhang, Jianying; Zhao, Guangyi; Zhou, Yiqin; Zhang, Chang-Qing; Wang, James H-C

    2016-01-01

    Previous animal studies have shown that long term rat treadmill running induces over-use tendinopathy, which manifests as proteoglycan accumulation and chondrocytes-like cells within the affected tendons. Creating this animal model of tendinopathy by long term treadmill running is however time-consuming, costly and may vary among animals. In this study, we used a new approach to develop an animal model of tendinopathy using kartogenin (KGN), a bio-compound that can stimulate endogenous stem/progenitor cells to differentiate into chondrocytes. KGN-beads were fabricated and implanted into rat Achilles tendons. Five weeks after implantation, chondrocytes and proteoglycan accumulation were found at the KGN implanted site. Vascularity as well as disorganization in collagen fibers were also present in the same site along with increased expression of the chondrocyte specific marker, collagen type II (Col. II). In vitro studies confirmed that KGN was released continuously from KGN-alginate in vivo beads and induced chondrogenic differentiation of tendon stem/progenitor cells (TSCs) suggesting that chondrogenesis after KGN-bead implantation into the rat tendons is likely due to the aberrant differentiation of TSCs into chondrocytes. Taken together, our results showed that KGN-alginate beads can be used to create a rat model of tendinopathy, which, at least in part, reproduces the features of over-use tendinopathy model created by long term treadmill running. This model is mechanistic (stem cell differentiation), highly reproducible and precise in creating localized tendinopathic lesions. It is expected that this model will be useful to evaluate the effects of various topical treatments such as NSAIDs and platelet-rich plasma (PRP) for the treatment of tendinopathy.

  12. Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light.

    Science.gov (United States)

    Aarons, Alexandra R; Talan, Amanda; Schiffer, Wynne K

    2012-01-01

    Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior.

  13. Precise MRI-based stereotaxic surgery in large animal models

    DEFF Research Database (Denmark)

    Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura

    BACKGROUND: Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical...... and subcortical anatomical differences. NEW METHOD: We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulphate solution or MRI-visible paste from a commercially available...... cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. RESULTS: Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. COMPARISON...

  14. A psycho-behavioral perspective on modelling obsessive-compulsive disorder (OCD) in animals: The role of context

    Science.gov (United States)

    Wolmarans, De Wet; Stein, Dan J; Harvey, Brian H

    2017-05-23

    Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involves rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psycho-behavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans.

    Science.gov (United States)

    van Gestel, M A; Kostrzewa, E; Adan, R A H; Janhunen, S K

    2014-10-01

    Eating disorders, such as anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorders (BED), are described as abnormal eating habits that usually involve insufficient or excessive food intake. Animal models have been developed that provide insight into certain aspects of eating disorders. Several drugs have been found efficacious in these animal models and some of them have eventually proven useful in the treatment of eating disorders. This review will cover the role of monoaminergic neurotransmitters in eating disorders and their pharmacological manipulations in animal models and humans. Dopamine, 5-HT (serotonin) and noradrenaline in hypothalamic and striatal regions regulate food intake by affecting hunger and satiety and by affecting rewarding and motivational aspects of feeding. Reduced neurotransmission by dopamine, 5-HT and noradrenaline and compensatory changes, at least in dopamine D2 and 5-HT(2C/2A) receptors, have been related to the pathophysiology of AN in humans and animal models. Also, in disorders and animal models of BN and BED, monoaminergic neurotransmission is down-regulated but receptor level changes are different from those seen in AN. A hypofunctional dopamine system or overactive α2-adrenoceptors may contribute to an attenuated response to (palatable) food and result in hedonic binge eating. Evidence for the efficacy of monoaminergic treatments for AN is limited, while more support exists for the treatment of BN or BED with monoaminergic drugs. © 2014 The British Pharmacological Society.

  16. Developing and evaluating animations for teaching quantum mechanics concepts

    International Nuclear Information System (INIS)

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J; Gillies, Alastair D; Hooley, Christopher A; Sinclair, Bruce D

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by including animated step-by-step explanations of key points. The animations are freely available, with additional resources available to instructors. We have investigated their educational effectiveness both in terms of student attitude and performance. Questionnaires showed that students are on the whole very positive about the animations and make substantial use of them. A diagnostic survey administered to level 2 and 3 students showed that level 2 students significantly outperformed level 3 students on topics which they had investigated using the animations.

  17. Multisensory-Based Rehabilitation Approach: Translational Insights from Animal Models to Early Intervention

    Directory of Open Access Journals (Sweden)

    Giulia Purpura

    2017-07-01

    Full Text Available Multisensory processes permit combinations of several inputs, coming from different sensory systems, allowing for a coherent representation of biological events and facilitating adaptation to environment. For these reasons, their application in neurological and neuropsychological rehabilitation has been enhanced in the last decades. Recent studies on animals and human models have indicated that, on one hand multisensory integration matures gradually during post-natal life and development is closely linked to environment and experience and, on the other hand, that modality-specific information seems to do not benefit by redundancy across multiple sense modalities and is more readily perceived in unimodal than in multimodal stimulation. In this review, multisensory process development is analyzed, highlighting clinical effects in animal and human models of its manipulation for rehabilitation of sensory disorders. In addition, new methods of early intervention based on multisensory-based rehabilitation approach and their applications on different infant populations at risk of neurodevelopmental disabilities are discussed.

  18. Development of a Magnetoencephalograph System for Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Kim, I. S.; Kang, C. S.; Kwon, H.; Kim, J. M.; Lee, Y. H.; Kim, K. [Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2011-08-15

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/Hz{sup 1/2}/cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

  19. Polycystic ovarian disease: animal models.

    Science.gov (United States)

    Mahajan, D K

    1988-12-01

    The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal

  20. Animal Models of Schizophrenia with a Focus on Models Targeting NMDA Receptors

    Czech Academy of Sciences Publication Activity Database

    Svojanovská, Markéta; Stuchlík, Aleš

    2015-01-01

    Roč. 4, č. 1 (2015), s. 3-18 ISSN 1805-7225 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : schizophrenia * animal models * pharmacological models * genetic models * neurodevelopmental models * preclinical studies Subject RIV: FH - Neurology

  1. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  2. The research methods and model of protein turnover in animal

    International Nuclear Information System (INIS)

    Wu Xilin; Yang Feng

    2002-01-01

    The author discussed the concept and research methods of protein turnover in animal body. The existing problems and the research results of animal protein turnover in recent years were presented. Meanwhile, the measures to improve the models of animal protein turnover were analyzed

  3. Large animal model of functional tricuspid regurgitation in pacing induced end-stage heart failure.

    Science.gov (United States)

    Malinowski, Marcin; Proudfoot, Alistair G; Langholz, David; Eberhart, Lenora; Brown, Michael; Schubert, Hans; Wodarek, Jeremy; Timek, Tomasz A

    2017-06-01

    Functional tricuspid regurgitation (FTR) is common in patients with advanced heart failure and frequently complicates left ventricular assist device implantation yet remains poorly understood. We set out to establish large animal model of FTR that could serve as a research platform to investigate the pathogenesis of FTR associated with end-stage heart failure. : Through right thoracotomy, ten adult sheep underwent implantation of pacemaker with epicardial LV lead, five sonomicrometry crystals on the right ventricle, and left and right ventricular telemetry pressure sensors during a beating heart off-pump procedure. After 5 ± 1 days of recovery, baseline haemodynamic, echocardiographic and sonomicrometry data were collected. Animals were paced thereafter at a rate of 220-240 beats/min until the development of heart failure and concomitant tricuspid regurgitation. : Three animals died during early recovery period and one during the pacing phase. Six surviving animals were paced for a mean of 14 ± 5 days. Cardiac function was significantly depressed compared to baseline, with LV ejection fraction falling from 69 ± 2% to 22 ± 4% ( P  tricuspid annulus (from 29.5 ± 1.6 to 36.5 ± 4.5 mm; P  = 0.01) and right ventricle (from 21.9 ± 0.2 to 30.3 ± 0.6 mm; P  = 0.03). Sonomicrometry derived contractility of RV free wall was depressed and at least moderate tricuspid insufficiency developed in all animals. : Biventricular dysfunction, tricuspid annular dilatation and significant FTR were observed in our model of ovine tachycardia induced cardiomyopathy. This animal model reflects the clinical situation of end-stage heart failure patients presenting for mechanical support. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  4. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Animal models of chronic wound care

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Calum, Henrik

    2016-01-01

    on nonhealing wounds. Relevant hypotheses based on clinical or in vitro observations can be tested in representative animal models, which provide crucial tools to uncover the pathophysiology of cutaneous skin repair in infectious environments. Disposing factors, species of the infectious agent(s), and time...

  6. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    Science.gov (United States)

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. Utility of Small Animal Models of Developmental Programming.

    Science.gov (United States)

    Reynolds, Clare M; Vickers, Mark H

    2018-01-01

    Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.

  8. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition.

    Science.gov (United States)

    Erpel, Fernanda; Restovic, Franko; Arce-Johnson, Patricio

    2016-03-12

    In plant-derived animal feedstuffs, nearly 80 % of the total phosphorus content is stored as phytate. However, phytate is poorly digested by monogastric animals such as poultry, swine and fish, as they lack the hydrolytic enzyme phytase; hence it is regarded as a nutritionally inactive compound from a phosphate bioavailability point of view. In addition, it also chelates important dietary minerals and essential amino acids. Therefore, dietary supplementation with bioavailable phosphate and exogenous phytases are required to achieve optimal animal growth. In order to simplify the obtaining and application processes, we developed a phytase expressing cell-wall deficient Chlamydomonas reinhardtii strain. In this work, we developed a transgenic microalgae expressing a fungal phytase to be used as a food supplement for monogastric animals. A codon optimized Aspergillus niger PhyA E228K phytase (mE228K) with improved performance at pH 3.5 was transformed into the plastid genome of Chlamydomonas reinhardtii in order to achieve optimal expression. We engineered a plastid-specific construction harboring the mE228K gene, which allowed us to obtain high expression level lines with measurable in vitro phytase activity. Both wild-type and cell-wall deficient strains were selected, as the latter is a suitable model for animal digestion. The enzymatic activity of the mE228K expressing lines were approximately 5 phytase units per gram of dry biomass at pH 3.5 and 37 °C, similar to physiological conditions and economically competitive for use in commercial activities. A reference basis for the future biotechnological application of microalgae is provided in this work. A cell-wall deficient transgenic microalgae with phytase activity at gastrointestinal pH and temperature and suitable for pellet formation was developed. Moreover, the associated microalgae biomass costs of this strain would be between US$5 and US$60 per ton of feedstuff, similar to the US$2 per ton of feedstuffs

  9. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  10. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  11. Comparative study between two animal models of extrapyramidal movement disorders: prevention and reversion by pecan nut shell aqueous extract.

    Science.gov (United States)

    Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E

    2011-08-01

    Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Science.gov (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Animal Models of Lymphangioleiomyomatosis (LAM) and Tuberous Sclerosis Complex (TSC)

    Science.gov (United States)

    2010-01-01

    Abstract Animal models of lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC) are highly desired to enable detailed investigation of the pathogenesis of these diseases. Multiple rats and mice have been generated in which a mutation similar to that occurring in TSC patients is present in an allele of Tsc1 or Tsc2. Unfortunately, these mice do not develop pathologic lesions that match those seen in LAM or TSC. However, these Tsc rodent models have been useful in confirming the two-hit model of tumor development in TSC, and in providing systems in which therapeutic trials (e.g., rapamycin) can be performed. In addition, conditional alleles of both Tsc1 and Tsc2 have provided the opportunity to target loss of these genes to specific tissues and organs, to probe the in vivo function of these genes, and attempt to generate better models. Efforts to generate an authentic LAM model are impeded by a lack of understanding of the cell of origin of this process. However, ongoing studies provide hope that such a model will be generated in the coming years. PMID:20235887

  14. Biology of Obesity: Lessons from Animal Models of Obesity

    Directory of Open Access Journals (Sweden)

    Keizo Kanasaki

    2011-01-01

    problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.

  15. Animal models for bone tissue engineering and modelling disease

    Science.gov (United States)

    Griffin, Michelle

    2018-01-01

    ABSTRACT Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches. PMID:29685995

  16. Simple models for studying complex spatiotemporal patterns of animal behavior

    Science.gov (United States)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  17. Instrumental and ethical aspects of experimental research with animal models

    Directory of Open Access Journals (Sweden)

    Mirian Watanabe

    2014-02-01

    Full Text Available Experimental animal models offer possibilities of physiology knowledge, pathogenesis of disease and action of drugs that are directly related to quality nursing care. This integrative review describes the current state of the instrumental and ethical aspects of experimental research with animal models, including the main recommendations of ethics committees that focus on animal welfare and raises questions about the impact of their findings in nursing care. Data show that, in Brazil, the progress in ethics for the use of animals for scientific purposes was consolidated with Law No. 11.794/2008 establishing ethical procedures, attending health, genetic and experimental parameters. The application of ethics in handling of animals for scientific and educational purposes and obtaining consistent and quality data brings unquestionable contributions to the nurse, as they offer subsidies to relate pathophysiological mechanisms and the clinical aspect on the patient.

  18. Animal Surgery and Resources Core

    Data.gov (United States)

    Federal Laboratory Consortium — The ASR services for NHLBI research animals include: animal model development, surgery, surgical support, post-operative care as well as technical services such as...

  19. Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.

    Science.gov (United States)

    Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang

    2018-06-01

    The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Animal models of osteogenesis imperfecta: applications in clinical research

    Directory of Open Access Journals (Sweden)

    Enderli TA

    2016-09-01

    Full Text Available Tanya A Enderli, Stephanie R Burtch, Jara N Templet, Alessandra Carriero Department of Biomedical Engineering, Florida Institute of Technology, Melbourne, FL, USA Abstract: Osteogenesis imperfecta (OI, commonly known as brittle bone disease, is a genetic disease characterized by extreme bone fragility and consequent skeletal deformities. This connective tissue disorder is caused by mutations in the quality and quantity of the collagen that in turn affect the overall mechanical integrity of the bone, increasing its vulnerability to fracture. Animal models of the disease have played a critical role in the understanding of the pathology and causes of OI and in the investigation of a broad range of clinical therapies for the disease. Currently, at least 20 animal models have been officially recognized to represent the phenotype and biochemistry of the 17 different types of OI in humans. These include mice, dogs, and fish. Here, we describe each of the animal models and the type of OI they represent, and present their application in clinical research for treatments of OI, such as drug therapies (ie, bisphosphonates and sclerostin and mechanical (ie, vibrational loading. In the future, different dosages and lengths of treatment need to be further investigated on different animal models of OI using potentially promising treatments, such as cellular and chaperone therapies. A combination of therapies may also offer a viable treatment regime to improve bone quality and reduce fragility in animals before being introduced into clinical trials for OI patients. Keywords: OI, brittle bone, clinical research, mouse, dog, zebrafish

  1. Animal Models of Diabetes Mellitus for Islet Transplantation

    Directory of Open Access Journals (Sweden)

    Naoaki Sakata

    2012-01-01

    Full Text Available Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM: models induced by drugs including streptozotocin (STZ, pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.

  2. An Animal Model for Human EBV-Associated Hemophagocytic Syndrome

    Science.gov (United States)

    Hayashi, Kazuhiko; Ohara, Nobuya; Teramoto, Norihiro; Onoda, Sachiyo; Chen, Hong-Li; Oka, Takashi; Kondo, Eisaku; Yoshino, Tadashi; Takahashi, Kiyoshi; Yates, John; Akagi, Tadaatsu

    2001-01-01

    Epstein-Barr virus-associated hemophagocytic syndrome (EBV-AHS) is often associated with fatal infectious mononucleosis. However, the animal model for EBV-AHS has not been developed. We reported the first animal model for EBV-AHS using rabbits infected with EBV-related herpesvirus of baboon (HVP). Eleven of 13 (85%) rabbits inoculated intravenously with HVP-producing cells developed fatal lymphoproliferative disorders (LPD) between 22 and 105 days after inoculation. LPD was also accompanied by hemophagocytic syndrome (HPS) in nine of these 11 rabbits. The peroral spray of cell-free HVP induced the virus infection with increased anti-EBV-viral capsid antigen-IgG titers in three of five rabbits, and two of these three infected rabbits died of LPD with HPS. Autopsy revealed hepatosplenomegaly and swollen lymph nodes. Atypical lymphoid T cells expressing EBV-encoded small RNA-1 infiltrated diffusely in many organs, frequently involving the lymph nodes, spleen, and liver. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. HVP-DNA was detected in the tissues and peripheral blood from the infected rabbits by polymerase chain reaction or Southern blot analysis. Reverse transcriptase-polymerase chain reaction revealed both HVP-EBNA1 and HVP-EBNA2 transcripts, suggesting latency type III infection. These data indicate that the high rate of rabbit LPD with HPS induction is caused by HVP. This system is useful for studying the pathogenesis, prevention, and treatment of human EBV-AHS. PMID:11290571

  3. Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation.

    Science.gov (United States)

    Cheluvappa, Rajkumar; Scowen, Paul; Eri, Rajaraman

    2017-08-01

    Animals have been used in research and teaching for a long time. However, clear ethical guidelines and pertinent legislation were instated only in the past few decades, even in developed countries with Judeo-Christian ethical roots. We compactly cover the basics of animal research ethics, ethical reviewing and compliance guidelines for animal experimentation across the developed world, "our" fundamentals of institutional animal research ethics teaching, and emerging alternatives to animal research. This treatise was meticulously constructed for scientists interested/involved in animal research. Herein, we discuss key animal ethics principles - Replacement/Reduction/Refinement. Despite similar undergirding principles across developed countries, ethical reviewing and compliance guidelines for animal experimentation vary. The chronology and evolution of mandatory institutional ethical reviewing of animal experimentation (in its pioneering nations) are summarised. This is followed by a concise rendition of the fundamentals of teaching animal research ethics in institutions. With the advent of newer methodologies in human cell-culturing, novel/emerging methods aim to minimise, if not avoid the usage of animals in experimentation. Relevant to this, we discuss key extant/emerging alternatives to animal use in research; including organs on chips, human-derived three-dimensional tissue models, human blood derivates, microdosing, and computer modelling of various hues. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  4. A hidden Markov model for reconstructing animal paths from solar geolocation loggers using templates for light intensity.

    Science.gov (United States)

    Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly

    2015-01-01

    Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.

  5. An Overview of Animal Models for Arthropod-Borne Viruses.

    Science.gov (United States)

    Reynolds, Erin S; Hart, Charles E; Hermance, Meghan E; Brining, Douglas L; Thangamani, Saravanan

    2017-06-01

    Arthropod-borne viruses (arboviruses) have continued to emerge in recent years, posing a significant health threat to millions of people worldwide. The majority of arboviruses that are pathogenic to humans are transmitted by mosquitoes and ticks, but other types of arthropod vectors can also be involved in the transmission of these viruses. To alleviate the health burdens associated with arbovirus infections, it is necessary to focus today's research on disease control and therapeutic strategies. Animal models for arboviruses are valuable experimental tools that can shed light on the pathophysiology of infection and will enable the evaluation of future treatments and vaccine candidates. Ideally an animal model will closely mimic the disease manifestations observed in humans. In this review, we outline the currently available animal models for several viruses vectored by mosquitoes, ticks, and midges, for which there are no standardly available vaccines or therapeutics.

  6. Tissue Engineering in Animal Models for Urinary Diversion: A Systematic Review

    Science.gov (United States)

    Sloff, Marije; de Vries, Rob; Geutjes, Paul; IntHout, Joanna; Ritskes-Hoitinga, Merel

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) approaches may provide alternatives for gastrointestinal tissue in urinary diversion. To continue to clinically translatable studies, TERM alternatives need to be evaluated in (large) controlled and standardized animal studies. Here, we investigated all evidence for the efficacy of tissue engineered constructs in animal models for urinary diversion. Studies investigating this subject were identified through a systematic search of three different databases (PubMed, Embase and Web of Science). From each study, animal characteristics, study characteristics and experimental outcomes for meta-analyses were tabulated. Furthermore, the reporting of items vital for study replication was assessed. The retrieved studies (8 in total) showed extreme heterogeneity in study design, including animal models, biomaterials and type of urinary diversion. All studies were feasibility studies, indicating the novelty of this field. None of the studies included appropriate control groups, i.e. a comparison with the classical treatment using GI tissue. The meta-analysis showed a trend towards successful experimentation in larger animals although no specific animal species could be identified as the most suitable model. Larger animals appear to allow a better translation to the human situation, with respect to anatomy and surgical approaches. It was unclear whether the use of cells benefits the formation of a neo urinary conduit. The reporting of the methodology and data according to standardized guidelines was insufficient and should be improved to increase the value of such publications. In conclusion, animal models in the field of TERM for urinary diversion have probably been chosen for reasons other than their predictive value. Controlled and comparative long term animal studies, with adequate methodological reporting are needed to proceed to clinical translatable studies. This will aid in good quality research with the reduction in

  7. Animal models for clinical and gestational diabetes: maternal and fetal outcomes.

    Science.gov (United States)

    Kiss, Ana Ci; Lima, Paula Ho; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza Vc; Damasceno, Débora C

    2009-10-19

    Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women

  8. Animal models for clinical and gestational diabetes: maternal and fetal outcomes

    Directory of Open Access Journals (Sweden)

    Kiss Ana CI

    2009-10-01

    Full Text Available Abstract Background Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl and mild diabetes (glycemia between 120 and 300 mg/dl on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. Methods On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16, severe (n = 50 and mild diabetes (n = 30. At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Results Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Conclusion Experimental models of severe diabetes during pregnancy

  9. Animal models for cancer and uses thereof

    NARCIS (Netherlands)

    Demaria, Marco; Campisi, Judith; van Deursen, Jan M.; Kirkland, James; Tchkonia, Tamara T.; Baker, Darren J.

    2017-01-01

    Non-human animal cancer models are provided herein for identifying and characterizing agents useful for therapy and prophylaxis of cancers, including agents useful for diminishing side effects related to cancer therapies and reducing metastatic disease.

  10. Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2014-01-01

    Full Text Available The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio.

  11. Modeling Heat-Transfer in Animal Habitats in the Shuttle Orbiter Middeck

    Science.gov (United States)

    Eodice, Michael T.; Sun, Sid (Technical Monitor)

    2000-01-01

    A mathematical model has been developed to evaluate the heat transfer characteristics of an Animal Enclosure Module (AEM) in the microgravity environment. The AEM is a spaceflight habitat that provides life support for up to six rodents in the Space Shuttle Middeck. Currently, temperatures within the AEM are recorded in real time using a solid state data recorder; however, the data are only available for analysis post-flight. This temperature information is useful for characterizing the thermal environment of the AEM for researchers, but is unavailable during flight operations. Because animal health in microgravity is directly linked to the thermal environment, the ability to predict internal AEM temperatures is extremely useful to life science researchers. NASA flight crews typically carry hand-held temperature measurement devices which allow them to provide ground researchers with near real time readings of AEM inlet temperature; however, higher priority operations limit the frequency at which these measurements can be made and subsequently downlinked. The mathematical model developed allows users to predict internal cage volume temperatures based on knowledge of the ambient air temperature entering the AEM air intake ports. Additionally, an average convective heat transfer coefficient for the AEM has been determined to provide engineers with the requisite information to facilitate future design improvements and product upgrades. The model has been validated using empirical data from a series of three Space Shuttle missions.

  12. Developing the Immunology Book for Animal and Human Physiology Subject

    Directory of Open Access Journals (Sweden)

    Zuni Mitasari

    2017-07-01

    Full Text Available he objective of the study was to develop an immunology book for Animal and Human Physiology subject. This book was developed based on the Thiagarajan development model which was modified of: Define, Design, Develop, dan Disseminate (4D. The data expert validation instrument was questionnaire using Likert scales, comments, and recommendation sheets. Expert appraisal was done by material expert and media and design learning expert. The developmental testing was conducted using questionnaire to test the readibility. The expert validation was conducted by material expert as well as design and media learning expert validator; meanwhile, the field test was done to measure the readability. The validity test results were: the material expert state that the material is valid (97.14%, as well as the design and learning media expert (84.88% and field test by students (88.17%.

  13. The intraportal injection model: A practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer

    International Nuclear Information System (INIS)

    Thalheimer, Andreas; Waaga-Gasser, Ana M; Otto, Christoph; Bueter, Marco; Illert, Bertram; Gattenlohner, Stefan; Gasser, Martin; Meyer, Detlef; Fein, Martin; Germer, Christoph T

    2009-01-01

    The development of new therapeutic strategies for treatment of metastasized colorectal carcinoma requires biologically relevant and adequate animal models that generate both reproducible metastasis and the dissemination of tumor cells in the form of so-called minimal residual disease (MRD), an expression of the systemic character of neoplastic disease. We injected immunoincompetent nude mice intraportally with different numbers (1 × 10 5 , 1 × 10 6 and 5 × 10 6 cells) of the human colon carcinoma cell lines HT-29 and SW-620 and investigated by histological studies and CK-20 RT-PCR the occurrence of hematogenous metastases and the dissemination of human tumor cells in bone marrow. Only the injection of 1 × 10 6 cells of each colon carcinoma cell line produced acceptable perioperative mortality with reproducible induction of hepatic metastases in up to 89% of all animals. The injection of 1 × 10 6 cells also generated tumor cell dissemination in the bone marrow in up to 63% of animals with hepatic metastases. The present intraportal injection model in immunoincompetent nude mice represents a biologically relevant and adequate animal model for the induction of both reproducible hepatic metastasis and tumor cell dissemination in the bone marrow as a sign of MRD

  14. Fetal programming of CVD and renal disease: animal models and mechanistic considerations.

    Science.gov (United States)

    Langley-Evans, Simon C

    2013-08-01

    The developmental origins of health and disease hypothesis postulates that exposure to a less than optimal maternal environment during fetal development programmes physiological function, and determines risk of disease in adult life. Much evidence of such programming comes from retrospective epidemiological cohorts, which demonstrate associations between birth anthropometry and non-communicable diseases of adulthood. The assertion that variation in maternal nutrition drives these associations is supported by studies using animal models, which demonstrate that maternal under- or over-nutrition during pregnancy can programme offspring development. Typically, the offspring of animals that are undernourished in pregnancy exhibit a relatively narrow range of physiological phenotypes that includes higher blood pressure, glucose intolerance, renal insufficiency and increased adiposity. The observation that common phenotypes arise from very diverse maternal nutritional insults has led to the proposal that programming is driven by a small number of mechanistic processes. The remodelling of tissues during development as a consequence of maternal nutritional status being signalled by endocrine imbalance or key nutrients limiting processes in the fetus may lead to organs having irreversibly altered structures that may limit their function with ageing. It has been proposed that the maternal diet may impact upon epigenetic marks that determine gene expression in fetal tissues, and this may be an important mechanism connecting maternal nutrient intakes to long-term programming of offspring phenotype. The objective for this review is to provide an overview of the mechanistic basis of fetal programming, demonstrating the critical role of animal models as tools for the investigation of programming phenomena.

  15. Promoting Profit Model Innovation in Animation Project in Northeast Asia: Case Study on Chinese Cultural and Creative Industry

    Directory of Open Access Journals (Sweden)

    Hao Jiao

    2017-12-01

    Full Text Available Building on a case study of three animation companies in the Chinese cultural and creative industry, this study aims to understand how profit model innovation is promoted. Due to the rapidly changing environments and resource scarcity, cultural and creative companies need to select the appropriate profit model according to their own key resources. The study uncovers two critical factors that promote profit model innovation in animation projects: the quantity of consumers and their consumption intention. According to these two dimensions, the authors’ analysis shows profit model innovation in animation projects can be divided into Fans mode, Popular mode, Placement mode, and Failure mode, respectively. This study provides an empirical basis for advocating profit model innovation and discusses the resource requirements of Fan mode, Popular model, and Placement mode in China’s cultural and creative industry. The authors’ research also has managerial implications that might help firms promote profit model innovation. Finally, learning and promoting the profit model of China’s animation industry in the Northeast Asia area will be conducive to Northeast Asia’s cooperation and sustainable development.

  16. Critical overview of all available animal models for abdominal wall hernia research.

    Science.gov (United States)

    Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D

    2017-10-01

    Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.

  17. Mapping behavioral landscapes for animal movement: a finite mixture modeling approach

    Science.gov (United States)

    Tracey, Jeff A.; Zhu, Jun; Boydston, Erin E.; Lyren, Lisa M.; Fisher, Robert N.; Crooks, Kevin R.

    2013-01-01

    Because of its role in many ecological processes, movement of animals in response to landscape features is an important subject in ecology and conservation biology. In this paper, we develop models of animal movement in relation to objects or fields in a landscape. We take a finite mixture modeling approach in which the component densities are conceptually related to different choices for movement in response to a landscape feature, and the mixing proportions are related to the probability of selecting each response as a function of one or more covariates. We combine particle swarm optimization and an Expectation-Maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. We use this approach to analyze data for movement of three bobcats in relation to urban areas in southern California, USA. A behavioral interpretation of the models revealed similarities and differences in bobcat movement response to urbanization. All three bobcats avoided urbanization by moving either parallel to urban boundaries or toward less urban areas as the proportion of urban land cover in the surrounding area increased. However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided urbanization at lower densities and responded strictly by moving parallel to the urban edge. The other two bobcats, which were both residents and occupied similar geographic areas, avoided urban areas using a combination of movements parallel to the urban edge and movement toward areas of less urbanization. However, the resident female appeared to exhibit greater repulsion at lower levels of urbanization than the resident male, consistent with empirical observations of bobcats in southern California. Using the parameterized finite mixture models, we mapped behavioral states to geographic space, creating a representation of a behavioral landscape. This approach can provide guidance for conservation planning based on analysis of animal movement data using

  18. Development and Validation of a Scale to Assess Students' Attitude towards Animal Welfare

    Science.gov (United States)

    Mazas, Beatriz; Rosario Fernández Manzanal, Mª; Zarza, Francisco Javier; Adolfo María, Gustavo

    2013-07-01

    This work presents the development of a scale of attitudes of secondary-school and university students towards animal welfare. A questionnaire was drawn up following a Likert-type scale attitude assessment model. Four components or factors, which globally measure animal welfare, are proposed to define the object of the attitude. The components are animal abuse for pleasure or due to ignorance (C1), leisure with animals (C2), farm animals (C3) and animal abandonment (C4). The final version of the questionnaire contains 29 items that are evenly distributed among the four components indicated, guaranteeing that each component is one-dimensional. A sample of 329 students was used to validate the scale. These students were aged between 11 and 25, and were from secondary schools in Aragon and the University in Zaragoza (Aragon's main and largest city, located in NE Spain). The scale shows good internal reliability, with a Cronbach's alpha value of 0.74. The questionnaire was later given to 1,007 students of similar levels and ages to the sample used in the validation, the results of which are presented in this study. The most relevant results show significant differences in gender and level of education in some of the components of the scale, observing that women and university students rate animal welfare more highly.

  19. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit

    Science.gov (United States)

    Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho

    2017-01-01

    As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.

  20. Pathogenesis of Mycobacterium bovis Infection: the Badger Model As a Paradigm for Understanding Tuberculosis in Animals

    Directory of Open Access Journals (Sweden)

    Eamonn Gormley

    2018-01-01

    Full Text Available Tuberculosis in animals is caused principally by infection with Mycobacterium bovis and the potential for transmission of infection to humans is often the fundamental driver for surveillance of disease in livestock and wild animals. However, with such a vast array of species susceptible to infection, it is often extremely difficult to gain a detailed understanding of the pathogenesis of infection––a key component of the epidemiology in all affected species. This is important because the development of disease control strategies in animals is determined chiefly by an understanding of the epidemiology of the disease. The most revealing data from which to formulate theories on pathogenesis are that observed in susceptible hosts infected by natural transmission. These data are gathered from detailed studies of the distribution of gross and histological lesions, and the presence and distribution of infection as determined by highly sensitive bacteriology procedures. The information can also be used to establish the baseline for evaluating experimental model systems. The European badger (Meles meles is one of a very small number of wild animal hosts where detailed knowledge of the pathogenesis of M. bovis infection has been generated from observations in natural-infected animals. By drawing parallels from other animal species, an experimental badger infection model has also been established where infection of the lower respiratory tract mimics infection and the disease observed in natural-infected badgers. This has facilitated the development of diagnostic tests and testing of vaccines that have the potential to control the disease in badgers. In this review, we highlight the fundamental principles of how detailed knowledge of pathogenesis can be used to evaluate specific intervention strategies, and how the badger model may be a paradigm for understanding pathogenesis of tuberculosis in any affected wild animal species.

  1. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Directory of Open Access Journals (Sweden)

    Aya Nakae

    2011-01-01

    Full Text Available Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models.

  2. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    Science.gov (United States)

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  3. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    Science.gov (United States)

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. © 2015 John Wiley & Sons Ltd.

  4. Animal models in fetal medicine and obstetrics

    DEFF Research Database (Denmark)

    Dahl Andersen, Maria; Alstrup, Aage Kristian Olsen; Duvald, Christina Søndergaard

    2018-01-01

    Animal models remain essential to understand the fundamental mechanisms occurring in fetal medicine and obstetric diseases, such as intrauterine growth restriction, preeclampsia and gestational diabetes. These vary regarding the employed method used for induction of the disease, and vary regardin...

  5. Radiation-induced relief of pain in an animal model with bone invasion from cancer

    International Nuclear Information System (INIS)

    Seong, J.; Kim, J.; Kim, K.H.; Kim, U.J.; Lee, B.W.

    2003-01-01

    In clinic, local radiation is effective for relief of pain from cancer invasion into the bones. This effect is usually observed before the regression of tumor occurs, which implies radiation-induced pain relief by mechanisms other than tumor irradication. In this study, possible mechanisms were explored in animal model system. To establish an animal model, syngeneic hepatocarcinoma, HCa-I was transplanted on femoral periosteum of C3H/HeJ male mice and bone-invasive tumor growth was identified through the histological analysis. Development of tumor-induced pain was assessed by von Frey filament test, acetone test, and radiant heat test. Animals were also irradiated for their tumors. Any change in pain was analyzed by above tests for the quantitative change and by immunohistochemical stain for the expression of molecules such as c-fos, substance P, and calcitonin gene-related peptide (CGRP) in lumbar spinal cord. Cancer invasion into the bone was started from 7th day after transplantation and became evident at day 14. Objective increase of pain in the ipsilateral thigh was observed at day 14 on von Frey filament test and acetone test, while there was no remarkable regression of the tumors. In this model system, local radiation of tumor resulted in decrease in objective pain on von Frey filament test and acetone test. In the immunohistochemical stain for lumbar spinal cord, the expression of substance P and CGRP but not c-fos increased in tumor-bearing animal compared to the control. The expression of these molecules decreased in animals given local radiation. In summary, an animal model system was established for objective pain from cancer invasion into the bones. Local radiation of tumor induced objective pain relief and this effect seems to be mediated not by tumor regression but through altered production of pain-related molecules

  6. Radiation-induced relief of pain in an animal model with bone invasion from cancer

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J; Kim, J; Kim, K H; Kim, U J; Lee, B W [Yonsei University Medical College, (Korea, Republic of)

    2003-07-01

    In clinic, local radiation is effective for relief of pain from cancer invasion into the bones. This effect is usually observed before the regression of tumor occurs, which implies radiation-induced pain relief by mechanisms other than tumor irradication. In this study, possible mechanisms were explored in animal model system. To establish an animal model, syngeneic hepatocarcinoma, HCa-I was transplanted on femoral periosteum of C3H/HeJ male mice and bone-invasive tumor growth was identified through the histological analysis. Development of tumor-induced pain was assessed by von Frey filament test, acetone test, and radiant heat test. Animals were also irradiated for their tumors. Any change in pain was analyzed by above tests for the quantitative change and by immunohistochemical stain for the expression of molecules such as c-fos, substance P, and calcitonin gene-related peptide (CGRP) in lumbar spinal cord. Cancer invasion into the bone was started from 7th day after transplantation and became evident at day 14. Objective increase of pain in the ipsilateral thigh was observed at day 14 on von Frey filament test and acetone test, while there was no remarkable regression of the tumors. In this model system, local radiation of tumor resulted in decrease in objective pain on von Frey filament test and acetone test. In the immunohistochemical stain for lumbar spinal cord, the expression of substance P and CGRP but not c-fos increased in tumor-bearing animal compared to the control. The expression of these molecules decreased in animals given local radiation. In summary, an animal model system was established for objective pain from cancer invasion into the bones. Local radiation of tumor induced objective pain relief and this effect seems to be mediated not by tumor regression but through altered production of pain-related molecules.

  7. Effects of Caffeine and Warrior Stress on Behavioral : An Animal Model

    Science.gov (United States)

    2016-03-14

    typically in the form of food (e.g., chocolate ) and drinks (e.g., coffee, tea, energy drinks, and soft drinks), improves attention and performance...administration in an animal model of neuroleptic therapy . Journal of neuroscience methods 146:159-64 81. Schmidt MV, Muller MB. 2006. Animal models of anxiety

  8. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models.

    Science.gov (United States)

    Nathaniel, Thomas I; Williams-Hernandez, Ashley; Hunter, Anan L; Liddy, Caroline; Peffley, Dennis M; Umesiri, Francis E; Imeh-Nathaniel, Adebobola

    2015-05-01

    The treatment and prevention of hypoxic/ischemic brain injury in stroke patients remain a severe and global medical issue. Numerous clinical studies have resulted in a failure to develop chemical neuroprotection for acute, ischemic stroke. Over 150 estimated clinical trials of ischemic stroke treatments have been done, and more than 200 drugs and combinations of drugs for ischemic and hemorrhagic strokes have been developed. Billions of dollars have been invested for new scientific breakthroughs with only limited success. The revascularization of occluded cerebral arteries such as anti-clot treatments of thrombolysis has proven effective, but it can only be used in a 3-4.5h time frame after the onset of a stroke, and not for every patient. This review is about novel insights on how to resist tissue hypoxia from unconventional animal models. Ability to resist tissue hypoxia is an extraordinary ability that is not common in many laboratory animals such as rat and mouse models. For example, we can learn from a naked mole-rat, Chrysemys picta, how to actively regulate brain metabolic activity to defend the brain against fluctuating oxygen tension and acute bouts of oxidative stress following the onset of a stroke. Additionally, a euthermic arctic ground squirrel can teach us how the brain of a stroke patient can remain well oxygenated during tissue hypoxia with no evidence of cellular stress. In this review, we discuss how these animals provide us with a system to gain insight into the possible mechanisms of tissue hypoxia/ischemia. This issue is of clinical significance to stroke patients. We describe specific physiological and molecular adaptations employed by different animals' models of hypoxia tolerance in aquatic and terrestrial environments. We highlight how these adaptations might provide potential clues on strategies to adapt for the clinical management of tissue hypoxia during conditions such as stroke where oxygen demand fails to match the supply. Copyright

  9. The hypothalamic-pituitary-thyroid axis and biological rhythms: The discovery of TSH's unexpected role using animal models.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2017-10-01

    Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An Animal Model of Abdominal Aortic Aneurysm Created with Peritoneal Patch: Technique and Initial Results

    International Nuclear Information System (INIS)

    Maynar, Manuel; Qian Zhong; Hernandez, Javier; Sun Fei; Miguel, Carmen de; Crisostomo, Veronica; Uson, Jesus; Pineda, Luis-Fernando; Espinoza, Carmen G.; Castaneda, Wilfrido R.

    2003-01-01

    The purpose of this study was to develop an abdominal aortic aneurysm model that more closely resembles themorphology of human aneurysms with potential for further growth of the sac. An infrarenal abdominal aortic aneurysm (AAA) model was created with a double-layered peritoneal patch in 27 domestic swine. The patch,measuring in average from 6 to 12 cm in length and from 2 to 3 cm in width, was sutured to the edge of an aortotomy. Pre- and postsurgical digital subtraction aortograms (DSA) were obtained to document the appearance and dimensions of the aneurysm. All animals were followed with DSA for up to 5 months. Laparoscopic examination enhanced by the use of laparoscopic ultrasound was also carried out in 2 animals to assess the aneurysm at 30 and 60 days following surgery. Histological examination was performed on 4 animals. All the animals that underwent the surgical creation of the AAA survived the surgical procedure.Postsurgical DSA demonstrated the presence of the AAA in all animals,defined as more than 50% increase in diameter. The aneurysmal mean diameter increased from the baseline of 10.27 ± 1.24 to 16.69± 2.29 mm immediately after surgery, to 27.6 ± 6.59 mm at 14 days, 32.45 ± 8.76 mm at 30 days (p <0.01), and subsequently decreased to 25.98 ± 3.75 mm at 60 days. A total of 15 animals died of aneurysmal rupture that occurred more frequently in the long aneurysms (≥6 cm in length) than the short aneurysms (<6 cm in length) during the first 2 weeks after surgery(p < 0.05). No rupture occurred beyond 16 days after surgery. Four animals survived and underwent 60-day angiographic follow-up. Laparoscopic follow-up showed strong pulses, a reddish external appearance and undetectable suture lines on the aneurysmal wall. On pathology, the patches were well incorporated into the aortic wall, the luminal wall appeared almost completely endothelialized, and cellular and matrix proliferation were noted in the aneurysmal wall. A reproducible technique for the

  11. Using animal models to study post-partum psychiatric disorders.

    Science.gov (United States)

    Perani, C V; Slattery, D A

    2014-10-01

    The post-partum period represents a time during which all maternal organisms undergo substantial plasticity in a wide variety of systems in order to ensure the well-being of the offspring. Although this time is generally associated with increased calmness and decreased stress responses, for a substantial subset of mothers, this period represents a time of particular risk for the onset of psychiatric disorders. Thus, post-partum anxiety, depression and, to a lesser extent, psychosis may develop, and not only affect the well-being of the mother but also place at risk the long-term health of the infant. Although the risk factors for these disorders, as well as normal peripartum-associated adaptations, are well known, the underlying aetiology of post-partum psychiatric disorders remains poorly understood. However, there have been a number of attempts to model these disorders in basic research, which aim to reveal their underlying mechanisms. In the following review, we first discuss known peripartum adaptations and then describe post-partum mood and anxiety disorders, including their risk factors, prevalence and symptoms. Thereafter, we discuss the animal models that have been designed in order to study them and what they have revealed about their aetiology to date. Overall, these studies show that it is feasible to study such complex disorders in animal models, but that more needs to be done in order to increase our knowledge of these severe and debilitating mood and anxiety disorders. © 2014 The British Pharmacological Society.

  12. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  13. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

    Science.gov (United States)

    SHAO, Ming; XU, Tian-Rui; CHEN, Ce-Shi

    2016-01-01

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and biomedicine. PMID:27469250

  14. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.

    Science.gov (United States)

    Shao, Ming; Xu, Tian-Rui; Chen, Ce-Shi

    2016-07-18

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.

  15. Reducing the number of laboratory animals used in tissue engineering research by restricting the variety of animal models. Articular cartilage tissue engineering as a case study.

    Science.gov (United States)

    de Vries, Rob B M; Buma, Pieter; Leenaars, Marlies; Ritskes-Hoitinga, Merel; Gordijn, Bert

    2012-12-01

    The use of laboratory animals in tissue engineering research is an important underexposed ethical issue. Several ethical questions may be raised about this use of animals. This article focuses on the possibilities of reducing the number of animals used. Given that there is considerable debate about the adequacy of the current animal models in tissue engineering research, we investigate whether it is possible to reduce the number of laboratory animals by selecting and using only those models that have greatest predictive value for future clinical application of the tissue engineered product. The field of articular cartilage tissue engineering is used as a case study. Based on a study of the scientific literature and interviews with leading experts in the field, an overview is provided of the animal models used and the advantages and disadvantages of each model, particularly in terms of extrapolation to the human situation. Starting from this overview, it is shown that, by skipping the small models and using only one large preclinical model, it is indeed possible to restrict the number of animal models, thereby reducing the number of laboratory animals used. Moreover, it is argued that the selection of animal models should become more evidence based and that researchers should seize more opportunities to choose or create characteristics in the animal models that increase their predictive value.

  16. Technology development activities for housing research animals on Space Station Freedom

    Science.gov (United States)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  17. Current Animal Models of Postoperative Spine Infection and Potential Future Advances

    Directory of Open Access Journals (Sweden)

    Alexandra eStavrakis

    2015-05-01

    Full Text Available Implant related infection following spine surgery is a devastating complication for patients and can potentially lead to significant neurological compromise, disability, morbidity, and even mortality. This paper provides an overview of the existing animal models of postoperative spine infection and highlights the strengths and weaknesses of each model. In addition there is discussion regarding potential modifications to these animal models to better evaluate preventative and treatment strategies for this challenging complication. Current models are effective in simulating surgical procedures but fail to evaluate infection longitudinally using multiple techniques. Potential future modifications to these models include using advanced imaging technologies to evaluate infection, use of bioluminescent bacterial species, and testing of novel treatment strategies against multiple bacterial strains. There is potential to establish a postoperative spine infection model using smaller animals, such as mice, as these would be a more cost-effective screening tool for potential therapeutic interventions.

  18. [Study on recent status of development of genetically modified animals developed not for food purposes].

    Science.gov (United States)

    Nakajima, Osamu; Akiyama, Hiroshi; Teshima, Reiko

    2012-01-01

    Genetically modified (GM) animals can be classified into two groups, those developed for food purposes and those developed not for food purposes. We investigated the recent status of development of GM animals developed not for food purposes. Among the GM animals developed not for food purposes, GM fish, chickens, and pigs were selected because many articles have been published on these organisms. Relevant articles published between 2008 and 2011 were surveyed using PubMed and transgenic fish, chicken, or pig as keywords. Then, studies on organisms that could potentially contaminate the food chain with products from these GM animals were selected and analyzed. Fifteen articles on GM fish were found. These articles were classified into four categories: bioreactor (n = 4), resistance to microorganisms (n = 6), resistance to environmental stresses (n = 1), and detection of chemicals (n = 4). Zebrafish were used in 8 of the articles. Six, three, and three articles were reported from Taiwan, Canada and China. Seven articles on GM chickens were found. These articles were classified into two categories: bioreactor (n = 5), and resistance to pathogens (n = 2). Two articles were reported from Japan and Korea, each. As for GM pigs, 43 articles were found. These articles were classified into three categories: xenotransplantation (n = 36), bioreactor (n = 6), and environmental cleanup (n = 1). Nineteen, seven, six, and five articles were reported from USA, Germany, Korea and Taiwan, respectively. Understanding the recent development of GM animals produced not for food purpose is important for assuring the safety of food.

  19. [Drosophila melanogaster as a model for studying the function of animal viral proteins].

    Science.gov (United States)

    Omelianchuk, L V; Iudina, O S

    2011-07-01

    Studies in which Drosophila melanogaster individuals carrying transgenes of animal viruses were used to analyze the action of animal viral proteins on the cell are reviewed. The data presented suggest that host specificity of viruses is determined by their proteins responsible for the penetration of the virus into the cell, while viral proteins responsible for interactions with the host cell are much less host-specific. Due to this, the model of Drosophila with its developed system of searching for genetic interactions can be used to find intracellular targets for the action of viral proteins of the second group.

  20. Using web-based animations to teach histology.

    Science.gov (United States)

    Brisbourne, Marc A S; Chin, Susan S-L; Melnyk, Erica; Begg, David A

    2002-02-15

    We have been experimenting with the use of animations to teach histology as part of an interactive multimedia program we are developing to replace the traditional lecture/laboratory-based histology course in our medical and dental curricula. This program, called HistoQuest, uses animations to illustrate basic histologic principles, explain dynamic processes, integrate histologic structure with physiological function, and assist students in forming mental models with which to organize and integrate new information into their learning. With this article, we first briefly discuss the theory of mental modeling, principles of visual presentation, and how mental modeling and visual presentation can be integrated to create effective animations. We then discuss the major Web-based animation technologies that are currently available and their suitability for different visual styles and navigational structures. Finally, we describe the process we use to produce animations for our program. The approach described in this study can be used by other developers to create animations for delivery over the Internet for the teaching of histology.

  1. The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease

    Science.gov (United States)

    Graham, Melanie L.; Prescott, Mark J.

    2015-01-01

    Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value. PMID:25823812

  2. Postdependent state in rats as a model for medication development in alcoholism.

    Science.gov (United States)

    Meinhardt, Marcus W; Sommer, Wolfgang H

    2015-01-01

    Rational development of novel therapeutic strategies for alcoholism requires understanding of its underlying neurobiology and pathophysiology. Obtaining this knowledge largely relies on animal studies. Thus, choosing the appropriate animal model is one of the most critical steps in pre-clinical medication development. Among the range of animal models that have been used to investigate excessive alcohol consumption in rodents, the postdependent model stands out. It was specifically developed to test the role of negative affect as a key driving force in a perpetuating addiction cycle for alcoholism. Here, we will describe our approach to make rats dependent via chronic intermittent exposure to alcohol, discuss the validity of this model, and compare it with other commonly used animal models of alcoholism. We will summarize evidence that postdependent rats fulfill several criteria of a 'Diagnostic and Statistical Manual of Mental Disorders IV/V-like' diagnostic system. Importantly, these animals show long-lasting excessive consumption of and increased motivation for alcohol, and evidence for loss of control over alcohol intake. Our conclusion that postdependent rats are an excellent model for medication development for alcoholism is underscored by a summary of more than two dozen pharmacological tests aimed at reversing these abnormal alcohol responses. We will end with open questions on the use of this model. In the tradition of the Sanchis-Segura and Spanagel review, we provide comic strips that illustrate the postdependent procedure and relevant phenotypes in this review. © 2014 Society for the Study of Addiction.

  3. Behavioral measures of tinnitus in laboratory animals.

    Science.gov (United States)

    Turner, Jeremy G

    2007-01-01

    The fact that so little is currently known about the pathophysiology of tinnitus is no doubt partly due to the relatively slow development of an animal model. Not until the work of Jastreboff et al. (1988a, b) did tinnitus researchers have at their disposal a method of determining whether their animals experienced tinnitus. Since then, a variety of additional animal models have been developed. Each of these models will be summarized in this chapter. It is becoming increasingly clear that in order to study tinnitus effectively, researchers need some verification that a drug, noise exposure or other manipulation is causing tinnitus in their animals. As this review will highlight, researchers now have a variety of behavioral options available to them.

  4. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  5. Animal models of extinction-induced depression: loss of reward and its consequences.

    Science.gov (United States)

    Huston, Joseph P; Silva, Maria A de Souza; Komorowski, Mara; Schulz, Daniela; Topic, Bianca

    2013-11-01

    The absence or loss of rewards or reinforcers holds a major role in the development of depression in humans. In spite of the prevalence of extinction-induced depression (EID) in humans, few attempts have been made to establish animal models thereof. Here we present the concept of extinction-related depression and summarize the results of two sets of studies in our attempt to create animal models of EID, one set based on extinction after positive reinforcement in the Skinner-box, the other on extinction after negative reinforcement - escape from water. We found various behaviors emitted during the extinction trials that responded to treatment with antidepressant drugs: Accordingly, the important behavioral marker for EID during extinction of escape from the water was immobility. During extinction after positive reinforcement the important indices for extinction-induced depression are the withdrawal from the former site of reward, biting behavior and rearing up on the hind legs. Avoidance behavior and biting may model aspects of human depressive behavior, which may include withdrawal or avoidance as well as aggressive-like behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A proposed model for the transfer of environmental tritium to man and tritium metabolism in model animals

    International Nuclear Information System (INIS)

    Saito, Masahiro; Ishida, M.R.

    1987-01-01

    To evaluate the accumulated dose in human bodies due to the environmental tritium, it is of required to establish an adequate model for the tritium transfer from the environment to man and to obtain enough information on the metabolic behaviour of tritium in animal bodies using model animal system. In this report, first we describe about a proposed model for the transfer of environmental tritium to man and secondly mention briefly about the recent works on the tritium metabolism in newborn animals which have been treated as a model system of tritium intake through food chain. (author)

  7. When Humans Become Animals: Development of the Animal Category in Early Childhood

    Science.gov (United States)

    Herrmann, Patricia A.; Medin, Douglas L.; Waxman, Sandra R.

    2012-01-01

    The current study examines 3- and 5-year-olds' representation of the concept we label "animal" and its two nested concepts--"animal"[subscript contrastive] (including only non-human animals) and "animal"[subscript inclusive] (including both humans and non-human animals). Building upon evidence that naming promotes object categorization, we…

  8. Translational neuropharmacology and the appropriate and effective use of animal models.

    Science.gov (United States)

    Green, A R; Gabrielsson, J; Fone, K C F

    2011-10-01

    This issue of the British Journal of Pharmacology is dedicated to reviews of the major animal models used in neuropharmacology to examine drugs for both neurological and psychiatric conditions. Almost all major conditions are reviewed. In general, regulatory authorities require evidence for the efficacy of novel compounds in appropriate animal models. However, the failure of many compounds in clinical trials following clear demonstration of efficacy in animal models has called into question both the value of the models and the discovery process in general. These matters are expertly reviewed in this issue and proposals for better models outlined. In this editorial, we further suggest that more attention be made to incorporate pharmacokinetic knowledge into the studies (quantitative pharmacology). We also suggest that more attention be made to ensure that full methodological details are published and recommend that journals should be more amenable to publishing negative data. Finally, we propose that new approaches must be used in drug discovery so that preclinical studies become more reflective of the clinical situation, and studies using animal models mimic the anticipated design of studies to be performed in humans, as closely as possible. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.

    Science.gov (United States)

    Maduwage, Kalana P; Scorgie, Fiona E; Lincz, Lisa F; O'Leary, Margaret A; Isbister, Geoffrey K

    2016-01-01

    Animal models are used to test toxic effects of snake venoms/toxins and the antivenom required to neutralise them. However, venoms that cause clinically relevant coagulopathy in humans may have differential effects in animals. We aimed to investigate the effect of different procoagulant snake venoms on various animal plasmas. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen and D-dimer levels were measured in seven animal plasmas (human, rabbit, cat, guinea pig, pig, cow and rat). In vitro clotting times were then used to calculate the effective concentration (EC50) in each plasma for four snake venoms with different procoagulant toxins: Pseudonaja textilis, Daboia russelli, Echis carinatus and Calloselasma rhodostoma. Compared to human, PT and aPTT were similar for rat, rabbit and pig, but double for cat and cow, while guinea pig had similar aPTT but double PT. Fibrinogen and D-dimer levels were similar for all species. Human and rabbit plasmas had the lowest EC50 for P. textilis (0.1 and 0.4 μg/ml), D. russelli (0.4 and 0.1 μg/ml), E. carinatus (0.6 and 0.1 μg/ml) venoms respectively, while cat plasma had the lowest EC50 for C. rhodostoma (11 μg/ml) venom. Cow, rat, pig and guinea pig plasmas were highly resistant to all four venoms with EC50 10-fold that of human. Different animal plasmas have varying susceptibility to procoagulant venoms, and excepting rabbits, animal models are not appropriate to test procoagulant activity. In vitro assays on human plasma should instead be adopted for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Transcutaneous glomerular filtration rate measurement in a canine animal model of chronic kidney disease.

    Science.gov (United States)

    Mondritzki, Thomas; Steinbach, Sarah M L; Boehme, Philip; Hoffmann, Jessica; Kullmann, Maximilian; Schock-Kusch, Daniel; Vogel, Julia; Kolkhof, Peter; Sandner, Peter; Bischoff, Erwin; Hüser, Jörg; Dinh, Wilfried; Truebel, Hubert

    Quantitative assessment of renal function by measurement of glomerular filtration rate (GFR) is an important part of safety and efficacy evaluation in preclinical drug development. Existing methods are often time consuming, imprecise and associated with animal burden. Here we describe the comparison between GFR determinations with sinistrin (PS-GFR) and fluorescence-labelled sinistrin-application and its transcutaneous detection (TD-GFR) in a large animal model of chronic kidney disease (CKD). TD-GFR measurements compared to a standard method using i.v. sinistrin were performed in a canine model. Animals were treated with one-sided renal wrapping (RW) followed by renal artery occlusion (RO). Biomarker and remote hemodynamic measurements were performed. Plasma sinistrin in comparison to transcutaneous derived GFR data were determined during healthy conditions, after RW and RW+RO. RW alone did not led to any significant changes in renal function, neither with PS-GFR nor TD-GFR. Additional RO showed a rise in blood pressure (+68.0mmHg), plasma urea (+28.8mmol/l), creatinine (+224,4μmol/l) and symmetric dimethylarginine (SDMA™; +12.6μg/dl). Plasma sinistrin derived data confirmed the expected drop (-44.7%, p<0.0001) in GFR. The calculated transcutaneous determined Fluorescein Isothiocyanate (FITC)-sinistrin GFR showed no differences to plasma sinistrin GFR at all times. Both methods were equaly sensitive to diagnose renal dysfunction in the affected animals. Renal function assessment using TD-GFR is a valid method to improve preclinical drug discovery and development. Furthermore, TD-GFR method offers advantages in terms of reduced need for blood sampling and thus decreasing animal burden compared to standard procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

    Science.gov (United States)

    Mulak, Agata; Taché, Yvette

    2011-01-01

    Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response. PMID:21860814

  12. Continuity of Business Plans for Animal Disease Outbreaks: Using a Logic Model Approach to Protect Animal Health, Public Health, and Our Food Supply

    Directory of Open Access Journals (Sweden)

    Heather Allen

    2013-04-01

    Full Text Available Foreign animal diseases can have a devastating impact on the American economy and agriculture system, while significantly disrupting the food supply chain, and affecting animal health and public health. Continuity of business during an animal disease outbreak aims to mitigate these agriculture-related losses by facilitating normal business operations through the managed movement of non-infected animals and non-contaminated animal products. During a foreign animal disease outbreak, there are competing objectives of trying to control and contain the outbreak while allowing non-infected premises to continue normal business operations to the greatest extent possible. Using a logic model approach, this article discusses the importance of continuity of business planning during an animal disease outbreak, providing a detailed and transparent theoretical framework for continuity of business planning for animal agriculture stakeholders. The logic model provides a basis for continuity of business planning, which is rapidly gaining focus and interest in the animal emergency management community. This unique logic model offers a framework for effective planning and subsequent evaluation of continuity of business plans and processes, by identifying explicit stakeholders, inputs, and activities, alongside the desired outputs and outcomes of such planning.

  13. Animal in vivo models of EBV-associated lymphoproliferative diseases: special references to rabbit models.

    Science.gov (United States)

    Hayashi, K; Teramoto, N; Akagi, T

    2002-10-01

    Animal models of human EBV-associated diseases are essential to elucidate the pathogenesis of EBV-associated diseases. Here we review those previous models using EBV or EBV-like herpesviruses and describe the details on our two newly-developed rabbit models of lymphoproliferative diseases (LPD) induced by simian EBV-like viruses. The first is Cynomolgus-EBV-induced T-cell lymphomas in rabbits inoculated intravenously (77-90%) and orally (82-89%) during 2-5 months. EBV-DNA was detected in peripheral blood by PCR from 2 days after oral inoculation, while anti-EBV-VCA IgG was raised 3 weeks later. Rabbit lymphomas and their cell lines contained EBV-DNA and expressed EBV-encoded RNA-1 (EBER-1). Rabbit lymphoma cell lines, most of which have specific chromosomal abnormality, showed tumorigenicity in nude mice. The second is the first animal model for EBV-infected T-cell LPD with virus-associated hemophagocytic syndrome (VAHS), using rabbits infected with an EBV-like herpesvirus, Herpesvirus papio (HVP). Rabbits inoculated intravenously with HVP-producing cells showed increased anti-EBV-VCA-IgG titers, and most (85%) subsequently died of fatal LPD and VAHS, with bleeding and hepatosplenomegaly, during 22-105 days. Peroral spray of cell-free HVP induced viral infection with seroconversion in 3 out of 5 rabbits, with 2 of the 3 infected rabbits dying of LPD with VAHS. Atypical T lymphocytes containing HVP-DNA and expressing EBER-1 were observed in many organs. Hemophagocytic histiocytosis was observed in the lymph nodes, spleen, bone marrow, and thymus. These rabbit models are also useful and inexpensive alternative experimental model systems for studying the biology and pathogenesis of EBV, and prophylactic and therapeutic regimens.

  14. Study of the pathogenesis and treatment of diabetes mellitus through animal models.

    Science.gov (United States)

    Brito-Casillas, Yeray; Melián, Carlos; Wägner, Ana María

    2016-01-01

    Most research in diabetes mellitus (DM) has been conducted in animals, and their replacement is currently a chimera. As compared to when they started to be used by modern science in the 17th century, a very high number of animal models of diabetes is now available, and they provide new insights into almost every aspect of diabetes. Approaches combining human, in vitro, and animal studies are probably the best strategy to improve our understanding of the underlying mechanisms of diabetes, and the choice of the best model to achieve such objective is crucial. Traditionally classified based on pathogenesis as spontaneous or induced models, each has its own advantages and disadvantages. The most common animal models of diabetes are described, and in addition to non-obese diabetic mice, biobreeding diabetes-prone (BB-DP) rats, streptozotocin-induced models, or high-fat diet-induced diabetic C57Bl/6J mice, new valuable models, such as dogs and cats with spontaneous diabetes, are described. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    Science.gov (United States)

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology. © 2016 John Wiley & Sons Ltd.

  16. Philosophy, policy and procedures of the World Organisation for Animal Health for the development of standards in animal welfare.

    Science.gov (United States)

    Petrini, A; Wilson, D

    2005-08-01

    Animal welfare was identified as a priority for the World Organisation for Animal Health (OIE) in the 2001-2005 OIE Strategic Plan. Member Countries recognised that, as animal protection is a complex, multi-faceted public policy issue which includes important scientific, ethical, economic and political dimensions, the OIE needed to develop a detailed vision and strategy incorporating and balancing these dimensions. A permanent working group on animal welfare was established in order to provide guidance to the OIE in its work on the development of science-based standards and guidelines. The Working Group decided to give priority to the welfare of animals used in agriculture and aquaculture, and that, within those groups, the topics of transportation, slaughter for human consumption and killing for disease control purposes would be addressed first. Some guiding principles were approved by the International Committee of OIE Member Countries during the 72nd General Session in May 2004, and these have been followed by four specific guidelines on the priority topics listed above.

  17. Modelos animais de aneurisma de aorta Animal models of aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Rodrigo Argenta

    2009-06-01

    Full Text Available Os modelos experimentais em animais vêm sendo utilizados em cirurgia vascular há décadas. O desenvolvimento de novas técnicas para tratamento endovascular dos aneurismas requer a criação de bons modelos experimentais para testar esses dispositivos e estudar seu impacto sobre a progressão da doença. Este artigo tem por objetivo revisar os modelos de aneurisma arterial descritos atualmente. Entre os diversos modelos descritos, nenhum reúne todas as características de um modelo ideal de aneurisma. Os modelos em animais de grande porte são adequados para treino, estudo de alterações em parâmetros fisiológicos durante e após a liberação dos dispositivos e integração do mesmo à parede do vaso. Algumas desvantagens significantes incluem dificuldade do manejo, alto custo, difícil manutenção e regulamentações legais, dificultando a disponibilidade de diversas espécies animais. Modelos em animais menores, como os coelhos e camundongos, embora sejam menos caros e de fácil obtenção, não são adequados para estudos de técnicas endovasculares pelas pequenas dimensões de seus vasos. Nenhum modelo descrito até o momento consegue reproduzir todas as características dos aneurismas observados em humanos. Modelos disponíveis são descritos nesta revisão, e suas vantagens e desvantagens são discutidas.Experimental animal models have been used in vascular surgery for decades. The development of new interventional techniques in the endovascular treatment of aneurysms requires the creation of good experimental models to test these devices and study their impact on disease progression. The aim of this article was to review arterial aneurysm models currently available. Several distinct models have been described but none of them satisfies all the requirements of an ideal aneurysm model. Large animal models are appropriate for training, study of alterations in physiological parameters during and after device delivery, and integration

  18. The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission

    Science.gov (United States)

    Infants and children with tuberculosis (TB) account for more than 20% of cases in endemic countries. Current animal models study TB during adulthood but animal models for adolescent and infant TB are scarce. Here we propose that minipigs can be used as an animal model to study adult, adolescent and ...

  19. [Recent developments on the European ban on animal experiments for cosmetics].

    Science.gov (United States)

    Ruhdel, I W

    2001-01-01

    For the second time the European Commission has postponed the sales ban on cosmetics products that have been developed and tested in animal experiments now until 2002. In the meantime the Commission wants to adopt the Seventh Amendment of the EU Cosmetics Directive. In its draft the Commission proposes to scrap the sales ban and replace it with an animal testing ban. This change would avoid possible conflicts with the WTO, however, from the animal welfare point of view would result in animal testing moving into third countries instead of avoiding them. This is because cosmetics products tested on animals outside the EU could be sold in the EU without any restrictions. As a consequence this measure would take the pressure from authorities and industry to further develop and adopt alternative methods. Other proposed measures are not acceptable from the animal welfare point of view, e.g. because they contradict Directive 86/609 and would result in a delay of the application of validated alternative methods. The Deutscher Tierschutzbund therefore still demands an immediate and complete sales ban in connection with an animal testing ban within the EU.

  20. Inverse modeling and animation of growing single-stemmed trees at interactive rates

    Science.gov (United States)

    S. Rudnick; L. Linsen; E.G. McPherson

    2007-01-01

    For city planning purposes, animations of growing trees of several species can be used to deduce which species may best fit a particular environment. The models used for the animation must conform to real measured data. We present an approach for inverse modeling to fit global growth parameters. The model comprises local production rules, which are iteratively and...

  1. Analyzing animal movements using Brownian bridges.

    Science.gov (United States)

    Horne, Jon S; Garton, Edward O; Krone, Stephen M; Lewis, Jesse S

    2007-09-01

    By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.

  2. A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference Genetics Selection Evolution 2010, 42:29

    DEFF Research Database (Denmark)

    Ødegård, Jørgen; Meuwissen, Theo HE; Heringstad, Bjørg

    2010-01-01

    Background In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where...... records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model). Conclusions The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal...... individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework. Methods In the proposed algorithm, individuals are classified as either "informative...

  3. Spontaneous appearance of Tay-Sachs disease in an animal model.

    Science.gov (United States)

    Zeng, B J; Torres, P A; Viner, T C; Wang, Z H; Raghavan, S S; Alroy, J; Pastores, G M; Kolodny, E H

    2008-01-01

    Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of beta-hexosaminidase A (Hex A). Deficiency of Hex A in TSD is caused by a defect of the alpha-subunit resulting from mutations of the HEXA gene. To date, there is no effective treatment for TSD. Animal models of genetic diseases, similar to those known to exist in humans, are valuable and essential research tools for the study of potentially effective therapies. However, there is no ideal animal model of TSD available for use in therapeutic trials. In the present study, we report an animal model (American flamingo; Phoenicopterus ruber) of TSD with Hex A deficiency occurring spontaneously in nature, with accumulation of G(M2)-ganglioside, deficiency of Hex A enzymatic activity, and a homozygous P469L mutation in exon 12 of the hexa gene. In addition, we have isolated the full-length cDNA sequence of the flamingo, which consists of 1581 nucleotides encoding a protein of 527 amino acids. Its coding sequence indicates approximately 71% identity at the nucleotide level and about 72.5% identity at the amino acid level with the encoding region of the human HEXA gene. This animal model, with many of the same features as TSD in humans, could represent a valuable resource for investigating therapy of TSD.

  4. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    Directory of Open Access Journals (Sweden)

    Joseph W. Golden

    2015-01-01

    Full Text Available Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.

  5. Histopathologic evaluation of an animal model for Barrett's esophagus and adenocarcinoma of the distal esophagus

    NARCIS (Netherlands)

    Buskens, Christianne J.; Hulscher, Jan B. F.; van Gulik, Thomas M.; ten Kate, Fiebo J.; van Lanschot, J. Jan B.

    2006-01-01

    INTRODUCTION: Barrett's esophagus and adenocarcinoma of the esophagus are related to long-standing duodeno-gastroesophageal reflux. The development of an animal model in which Barrett's esophagus and/or carcinoma is induced by duodeno-(gastro-)esophageal reflux could provide better understanding of

  6. Understanding animal fears: a comparison of the cognitive vulnerability and harm-looming models

    Directory of Open Access Journals (Sweden)

    Armfield Jason M

    2007-12-01

    Full Text Available Abstract Background The Cognitive Vulnerability Model holds that both clinical and sub-clinical manifestations of animal fears are a result of how an animal is perceived, and can be used to explain both individual differences in fear acquisition and the uneven distribution of fears in the population. This study looked at the association between fear of a number of animals and perceptions of the animals as uncontrollable, unpredictable, dangerous and disgusting. Also assessed were the perceived loomingness, prior familiarity, and negative evaluation of the animals as well as possible conditioning experiences. Methods 162 first-year University students rated their fear and perceptions of four high-fear and four low-fear animals. Results Perceptions of the animals as dangerous, disgusting and uncontrollable were significantly associated with fear of both high- and low-fear animals while perceptions of unpredictability were significantly associated with fear of high-fear animals. Conditioning experiences were unrelated to fear of any animals. In multiple regression analyses, loomingness did not account for a significant amount of the variance in fear beyond that accounted for by the cognitive vulnerability variables. However, the vulnerability variables accounted for between 20% and 51% of the variance in all animals fears beyond that accounted for by perceptions of the animals as looming. Perceptions of dangerousness, uncontrollability and unpredictability were highly predictive of the uneven distribution of animal fears. Conclusion This study provides support for the Cognitive Vulnerability Model of the etiology of specific fears and phobias and brings into question the utility of the harm-looming model in explaining animal fear.

  7. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  8. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  9. Animal models for the study of arterial hypertension

    Indian Academy of Sciences (India)

    1Research in Biological Sciences - NUPEB, 2Department of Foods, School of Nutrition, Ouro Preto University, ..... ical (large) doses of drug required, (2) the requirement for .... Animal models can lead to understanding of the interactions.

  10. Adapting Animal-Assisted Therapy Trials to Prison-Based Animal Programs.

    Science.gov (United States)

    Allison, Molly; Ramaswamy, Megha

    2016-09-01

    Prison-based animal programs have shown promise when it comes to increased sociability, responsibility, and levels of patience for inmates who participate in these programs. Yet there remains a dearth of scientific research that demonstrates the impact of prison-based animal programs on inmates' physical and mental health. Trials of animal-assisted therapy interventions, a form of human-animal interaction therapy most often used with populations affected by depression/anxiety, mental illness, and trauma, may provide models of how prison-based animal program research can have widespread implementation in jail and prison settings, whose populations have high rates of mental health problems. This paper reviews the components of prison-based animal programs most commonly practiced in prisons today, presents five animal-assisted therapy case studies, evaluates them based on their adaptability to prison-based animal programs, and discusses the institutional constraints that act as barriers for rigorous prison-based animal program research implementation. This paper can serve to inform the development of a research approach to animal-assisted therapy that nurses and other public health researchers can use in working with correctional populations. © 2016 Wiley Periodicals, Inc.

  11. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  12. Review: Animal model and the current understanding of molecule dynamics of adipogenesis.

    Science.gov (United States)

    Campos, C F; Duarte, M S; Guimarães, S E F; Verardo, L L; Wei, S; Du, M; Jiang, Z; Bergen, W G; Hausman, G J; Fernyhough-Culver, M; Albrecht, E; Dodson, M V

    2016-06-01

    Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.

  13. Aggression, Social Stress, and the Immune System in Humans and Animal Models

    Directory of Open Access Journals (Sweden)

    Aki Takahashi

    2018-03-01

    Full Text Available Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  14. Aggression, Social Stress, and the Immune System in Humans and Animal Models.

    Science.gov (United States)

    Takahashi, Aki; Flanigan, Meghan E; McEwen, Bruce S; Russo, Scott J

    2018-01-01

    Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.

  15. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects

    Science.gov (United States)

    2013-01-01

    Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research. PMID:24274743

  16. Cynomolgus macaque as an animal model for severe acute respiratory syndrome.

    Directory of Open Access Journals (Sweden)

    James V Lawler

    2006-05-01

    Full Text Available The emergence of severe acute respiratory syndrome (SARS in 2002 and 2003 affected global health and caused major economic disruption. Adequate animal models are required to study the underlying pathogenesis of SARS-associated coronavirus (SARS-CoV infection and to develop effective vaccines and therapeutics. We report the first findings of measurable clinical disease in nonhuman primates (NHPs infected with SARS-CoV.In order to characterize clinically relevant parameters of SARS-CoV infection in NHPs, we infected cynomolgus macaques with SARS-CoV in three groups: Group I was infected in the nares and bronchus, group II in the nares and conjunctiva, and group III intravenously. Nonhuman primates in groups I and II developed mild to moderate symptomatic illness. All NHPs demonstrated evidence of viral replication and developed neutralizing antibodies. Chest radiographs from several animals in groups I and II revealed unifocal or multifocal pneumonia that peaked between days 8 and 10 postinfection. Clinical laboratory tests were not significantly changed. Overall, inoculation by a mucosal route produced more prominent disease than did intravenous inoculation. Half of the group I animals were infected with a recombinant infectious clone SARS-CoV derived from the SARS-CoV Urbani strain. This infectious clone produced disease indistinguishable from wild-type Urbani strain.SARS-CoV infection of cynomolgus macaques did not reproduce the severe illness seen in the majority of adult human cases of SARS; however, our results suggest similarities to the milder syndrome of SARS-CoV infection characteristically seen in young children.

  17. What We Have Learned from Animal Models of Dry Eye

    Science.gov (United States)

    Stern, Michael E.; Pflugfelder, Stephen C.

    2017-01-01

    Animal models have proved valuable to investigate the pathogenesis of dry eye disease, identify therapeutic targets and the efficacy of candidate therapeutics for dry eye. Pharmacological inhibition of the lacrimal functional unit and exposure of the mouse eye to desiccating stress was found to activate innate immune pathways, promote dendritic cell maturation and initiate an adaptive T cell response to ocular surface antigens. Disease relevant mediators and pathways have been identified through use of genetically altered mice, specific inhibitors and adoptive transfer of desiccating stress primed CD4+ T cells to naïve recipients. Findings from mouse models have elucidated the mechanism of action of cyclosporine A and the rationale for developing lifitegrast, the two currently approved therapeutics in the US. PMID:28282318

  18. The Efficacy of Trastuzumab in Animal Models of Breast Cancer: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Jiarong Chen

    Full Text Available Breast cancer is the most frequent cancers and is the second leading cause of cancer death among women. Trastuzumab is an effective treatment, the first monoclonal antibody directed against the human epidermal growth factor receptor 2 (HER2. To inform the development of other effective treatments we report summary estimates of efficacy of trastuzumab on survival and tumour volume in animal models of breast cancer.We searched PubMed and EMBASE systematically to identify publications testing trastuzumab in animal models of breast cancer. Data describing tumour volume, median survival and animal features were extracted and we assessed quality using a 12-item checklist. We analysed the impact of study design and quality and evidence for publication bias.We included data from 83 studies reporting 169 experiments using 2076 mice. Trastuzumab treatment caused a substantial reduction in tumour growth, with tumours in treated animals growing to 32.6% of the volume of tumours in control animals (95%CI 27.8%-38.2%. Median survival was prolonged by a factor of 1.45 (1.30-1.62. Many study design and quality features accounted for between-study heterogeneity and we found evidence suggesting publication bias.We have found trastuzumab to be effective in animal breast cancer models across a range of experimental circumstances. However the presence of publication bias and a low prevalence of measures to reduce bias provide a focus for future improvements in preclinical breast cancer research.

  19. Percutaneous radiofrequency ablation of lung tumors in a large animal model.

    Science.gov (United States)

    Ahrar, Kamran; Price, Roger E; Wallace, Michael J; Madoff, David C; Gupta, Sanjay; Morello, Frank A; Wright, Kenneth C

    2003-08-01

    Percutaneous radiofrequency ablation (RFA) is accepted therapy for liver tumors in the appropriate clinical setting, but its use in lung neoplasms remains investigational. We undertook this study to evaluate the feasibility and immediate effectiveness of RFA for treatment of both solitary pulmonary nodules and clusters of lung tumors in a large animal model. Percutaneous RFA of 14 lung tumors in five dogs was performed under CT guidance. Animals were euthanatized 8-48 hours after the procedure. The lungs and adjacent structures were harvested for gross and histopathologic evaluation. Five solitary pulmonary nodules (range, 17-26 mm) and three clusters of three nodules each (range, 7-17 mm per nodule) were treated with RFA. All ablations were technically successful. Perilesional ground-glass opacity and small asymptomatic pneumothoraces (n = 4) were visualized during the RFA sessions. One dog developed a large pneumothorax treated with tube thoracostomy but was euthanatized 8 hours post-RFA for persistent pneumothorax and continued breathing difficulty. Follow-up CT 48 hours post-RFA revealed opacification of the whole lung segment. Gross and histopathologic evaluation showed complete thermal coagulation necrosis of all treated lesions without evidence of any viable tumor. The region of thermal coagulation necrosis typically extended to the lung surface. Small regions of pulmonary hemorrhage and congestion often surrounded the areas of coagulation necrosis. RFA can be used to treat both solitary pulmonary nodules and clusters of tumor nodules in the canine lung tumor model. This model may be useful for development of specific RFA protocols for human lung tumors.

  20. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease.

    Science.gov (United States)

    Wang, He Joe; Murray, Gary J; Jung, Mary Katherine

    2015-01-01

    Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed.

  1. Animated-simulation modeling facilitates clinical-process costing.

    Science.gov (United States)

    Zelman, W N; Glick, N D; Blackmore, C C

    2001-09-01

    Traditionally, the finance department has assumed responsibility for assessing process costs in healthcare organizations. To enhance process-improvement efforts, however, many healthcare providers need to include clinical staff in process cost analysis. Although clinical staff often use electronic spreadsheets to model the cost of specific processes, PC-based animated-simulation tools offer two major advantages over spreadsheets: they allow clinicians to interact more easily with the costing model so that it more closely represents the process being modeled, and they represent cost output as a cost range rather than as a single cost estimate, thereby providing more useful information for decision making.

  2. 3Rs-respecting animal models in radiopharmaceutical research with a special emphasis to monoclonal antibodies

    International Nuclear Information System (INIS)

    Balogh, Lajos; Thuróczy, Julianna; Pöstényi, Zita; Kovács-Haász, Veronika; Lovas, Melinda; Polyák, András; Jánoki, Győző A.; Leyva Montana, René

    2016-01-01

    In better developed human medical centres hybrid (or fusion) diagnostic imaging (PET/CT, SPECT/CT, PET/MRI …) is available for clinicians to detect, localize, stage and follow-up theire patients suffering a wide variety (oncological, cardiovascular, neurological, orthopaedic …) of diseases. Easy to understand that not only human and veterinary clinical but numerous research applications could be implemented using these novel digital imaging methods. The use of hybrid equipments is not simply an expensive toy in researcher’s hands but and effective tool that serves 2 out of the 3 Rs (Refinement and Reduction) requirements as well. Hybrid (fusion) imaging method allows high-resolution pictures including correct anatomical structures and quantized functional data as altogether after radiolabelled ligand applications. Serial images could be taken using only one single anesthetized animal that must not be exterminated at the end of process. The re-use of laboratory animals allowing us to compare the characteristics of different labelled molecules in the very same biological model. Spontaneously diseased canine, feline and exotic animals is a constant source of animal models for the biomedical research and represents a great choice to replace laboratory animals. Osteosarcoma, mammary gland carcinoma, thyroid carcinoma, brain tumours and a few others in dogs or cats might be the best known animal models of the appropriate human diseases. Diagnosing and then treating them with the most promising human methods (including cold MoAbs, immunotherapy, radiolabelled ligands ...) is a chance for the suffering animals, a new hope for owners and referral vets - and parallel applicable data for human oncologists and translational researchers. Authors wish to share with audience their 20 years expert in the field and hope to find friends and co-operators among them. (author)

  3. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model.

    Science.gov (United States)

    Chakraborty, Nabarun; Meyerhoff, James; Jett, Marti; Hammamieh, Rasha

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A

  4. Food allergy: What do we learn from animal models?

    NARCIS (Netherlands)

    Knippels, L.M.J.; Wijk, F. van; Penninks, A.H.

    2004-01-01

    Purpose of review This review summarizes selected articles on animal models of food allergy published in 2003. The research areas that are covered include mechanistic studies, the search for new therapies, as well as screening models for hazard identification of potential allergens. Recent findings

  5. Small and large animal models in cardiac contraction research: advantages and disadvantages.

    Science.gov (United States)

    Milani-Nejad, Nima; Janssen, Paul M L

    2014-03-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. © 2013.

  6. Ensuring due process in the IACUC and animal welfare setting: considerations in developing noncompliance policies and procedures for institutional animal care and use committees and institutional officials.

    Science.gov (United States)

    Hansen, Barbara C; Gografe, Sylvia; Pritt, Stacy; Jen, Kai-Lin Catherine; McWhirter, Camille A; Barman, Susan M; Comuzzie, Anthony; Greene, Molly; McNulty, Justin A; Michele, Daniel Eugene; Moaddab, Naz; Nelson, Randall J; Norris, Karen; Uray, Karen D; Banks, Ron; Westlund, Karin N; Yates, Bill J; Silverman, Jerald; Hansen, Kenneth D; Redman, Barbara

    2017-10-01

    Every institution that is involved in research with animals is expected to have in place policies and procedures for the management of allegations of noncompliance with the Animal Welfare Act and the U.S. Public Health Service Policy on the Humane Care and Use of Laboratory Animals. We present here a model set of recommendations for institutional animal care and use committees and institutional officials to ensure appropriate consideration of allegations of noncompliance with federal Animal Welfare Act regulations that carry a significant risk or specific threat to animal welfare. This guidance has 3 overarching aims: 1 ) protecting the welfare of research animals; 2 ) according fair treatment and due process to an individual accused of noncompliance; and 3 ) ensuring compliance with federal regulations. Through this guidance, the present work seeks to advance the cause of scientific integrity, animal welfare, and the public trust while recognizing and supporting the critical importance of animal research for the betterment of the health of both humans and animals.-Hansen, B. C., Gografe, S., Pritt, S., Jen, K.-L. C., McWhirter, C. A., Barman, S. M., Comuzzie, A., Greene, M., McNulty, J. A., Michele, D. E., Moaddab, N., Nelson, R. J., Norris, K., Uray, K. D., Banks, R., Westlund, K. N., Yates, B. J., Silverman, J., Hansen, K. D., Redman, B. Ensuring due process in the IACUC and animal welfare setting: considerations in developing noncompliance policies and procedures for institutional animal care and use committees and institutional officials. © FASEB.

  7. Delayed development of radiation sickness in animals following partial exposure

    International Nuclear Information System (INIS)

    Vershinina, S.F.; Markochev, A.V.

    1995-01-01

    Causes of reduction of the life span of animals after partial exposure of the head, thorax, and abdomen are analyzed. Pulmonosclerosis and cardiosclerosis were mainly responsible for animal death following partial radiation exposure of the thorax; these conditions appreciably shortened the life span of the animals. After exposure of the head deaths were due to pneumonias which negligibly reduced the duration of life. Exposure of the abdomen led to the development of diabetes mellitus which shortened the life span by half. 18 refs., 1 tab

  8. Fundamental Moral Attitudes to Animals and Their Role in Judgment: An Empirical Model to Describe Fundamental Moral Attitudes to Animals and Their Role in Judgment on the Culling of Healthy Animals During an Animal Disease Epidemic

    NARCIS (Netherlands)

    Cohen, N.E.; Brom, F.W.A.; Stassen, E.N.

    2009-01-01

    In this paper, we present and defend the theoretical framework of an empirical model to describe people’s fundamental moral attitudes (FMAs) to animals, the stratification of FMAs in society and the role of FMAs in judgment on the culling of healthy animals in an animal disease epidemic. We used

  9. Hypothalamic expression of inflammatory mediators in an animal model of binge eating.

    Science.gov (United States)

    Alboni, Silvia; Micioni Di Bonaventura, Maria Vittoria; Benatti, Cristina; Giusepponi, Maria Elena; Brunello, Nicoletta; Cifani, Carlo

    2017-03-01

    Binge eating episodes are characterized by uncontrollable, distressing eating of a large amount of highly palatable food and represent a central feature of bingeing related eating disorders. Research suggests that inflammation plays a role in the onset and maintenance of eating-related maladaptive behavior. Markers of inflammation can be selectively altered in discrete brain regions where they can directly or indirectly regulate food intake. In the present study, we measured expression levels of different components of cytokine systems (IL-1, IL-6, IL-18, TNF-α and IFN-ɣ) and related molecules (iNOS and COX2) in the preoptic and anterior-tuberal parts of the hypothalamus of a validated animal model of binge eating. In this animal model, based on the exposure to both food restriction and frustration stress, binge-like eating behavior for highly palatable food is not shown when animals are exposed to the frustration stress during the estrus phase. We found a characteristic down-regulation of the IL-18/IL-18 receptor system (with increased expression of the inhibitor of the pro-inflammatory cytokine IL-18, IL-18BP, together with a decreased expression of the binding chain of the IL-18 receptor) and a three-fold increase in the expression of iNOS specifically in the anterior-tuberal region of the hypothalamus of animals that develop a binge-like eating behavior. Differently, when food restricted animals were stressed during the estrus phase, IL-18 expression increased, while iNOS expression was not significantly affected. Considering the role of this region of the hypothalamus in controlling feeding related behavior, this can be relevant in eating disorders and obesity. Our data suggest that by targeting centrally selected inflammatory markers, we may prevent that disordered eating turns into a full blown eating disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Immune-mediated animal models of Tourette syndrome

    Science.gov (United States)

    Hornig, Mady; Lipkin, W. Ian

    2014-01-01

    An autoimmune diathesis has been proposed in Tourette syndrome (TS) and related neuropsychiatric disorders such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism and anorexia nervosa. Environmental triggers including infection and xenobiotics are hypothesized to lead to the production of brain-directed autoantibodies in a subset of genetically susceptible individuals. Although much work has focused on Group A Streptococcus (GAS), the role of this common childhood infection remains controversial. Animal model studies based on immune and autoantibody findings in TS have demonstrated immunoglobulin (Ig) deposits and stereotypic movements and related behavioral disturbances reminiscent of TS following exposure to GAS and other activators of host anti-microbial responses, soluble immune mediators and anti-GAS or anti-neuronal antibodies. Demonstration of the ability to recreate these abnormalities through passive transfer of serum IgG from GAS-immunized mice into naïve mice and abrogation of this activity through depletion of IgG has provided compelling evidence in support of the autoimmune hypothesis. Immunologically-based animal models of TS are a potent tool for dissecting the pathogenesis of this serious neuropsychiatric syndrome. PMID:23313649

  11. Weight Gain, Schizophrenia and Antipsychotics: New Findings from Animal Model and Pharmacogenomic Studies

    Directory of Open Access Journals (Sweden)

    Fabio Panariello

    2011-01-01

    Full Text Available Excess body weight is one of the most common physical health problems among patients with schizophrenia that increases the risk for many medical problems, including type 2 diabetes mellitus, coronary heart disease, osteoarthritis, and hypertension, and accounts in part for 20% shorter life expectancy than in general population. Among patients with severe mental illness, obesity can be attributed to an unhealthy lifestyle, personal genetic profile, as well as the effects of psychotropic medications, above all antipsychotic drugs. Novel “atypical” antipsychotic drugs represent a substantial improvement on older “typical” drugs. However, clinical experience has shown that some, but not all, of these drugs can induce substantial weight gain. Animal models of antipsychotic-related weight gain and animal transgenic models of knockout or overexpressed genes of antipsychotic receptors have been largely evaluated by scientific community for changes in obesity-related gene expression or phenotypes. Moreover, pharmacogenomic approaches have allowed to detect more than 300 possible candidate genes for antipsychotics-induced body weight gain. In this paper, we summarize current thinking on: (1 the role of polymorphisms in several candidate genes, (2 the possible roles of various neurotransmitters and neuropeptides in this adverse drug reaction, and (3 the state of development of animal models in this matter. We also outline major areas for future research.

  12. Using Computational and Mechanical Models to Study Animal Locomotion

    Science.gov (United States)

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  13. Opportunities for improving animal welfare in rodent models of epilepsy and seizures.

    Science.gov (United States)

    Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J

    2016-02-15

    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. New frontiers in animal research of psychiatric illness.

    Science.gov (United States)

    Kaffman, Arie; Krystal, John H; Krystal, John J

    2012-01-01

    Alterations in neurodevelopment are thought to modify risk of numerous psychiatric disorders, including schizophrenia, autism, ADHD, mood and anxiety disorders, and substance abuse. However, little is known about the cellular and molecular changes that guide these neurodevelopmental changes and how they contribute to mental illness. In this review, we suggest that elucidating this process in humans requires the use of model organisms. Furthermore, we advocate that such translational work should focus on the role that genes and/or environmental factors play in the development of circuits that regulate specific physiological and behavioral outcomes in adulthood. This emphasis on circuit development, as a fundamental unit for understanding behavior, is distinct from current approaches of modeling psychiatric illnesses in animals in two important ways. First, it proposes to replace the diagnostic and statistical manual of mental disorders (DSM) diagnostic system with measurable endophenotypes as the basis for modeling human psychopathology in animals. We argue that a major difficulty in establishing valid animal models lies in their reliance on the DSM/International Classification of Diseases conceptual framework, and suggest that the Research Domain Criteria project, recently proposed by the NIMH, provides a more suitable system to model human psychopathology in animals. Second, this proposal emphasizes the developmental origin of many (though clearly not all) psychiatric illnesses, an issue that is often glossed over in current animal models of mental illness. We suggest that animal models are essential to elucidate the mechanisms by which neurodevelopmental changes program complex behavior in adulthood. A better understanding of this issue, in animals, is the key for defining human psychopathology, and the development of earlier and more effective interventions for mental illness.

  15. Development of experimental alloxan model of diabetes mellitus

    Directory of Open Access Journals (Sweden)

    V.V. Semenko

    2017-05-01

    Full Text Available Background. One of the main causes that lead to the disability of diabetic patients is diabetic retinopathy (DR. The relevance of the problem of DR necessitates the development of optimal experimental models on experimental animals to find effective ways of correcting this pathology. The purpose of our work was to develop an experimental alloxan model of type 1 diabetes mellitus (DM for the study of DR, which would not result in the lethal outcome of experimental animals under the action of alloxan; histological examination of changes in the tissues of the eyeball in the reproduction of the DM model for the selection of new effective methods for the metabolic treatment of DR in the early stages. Materials and methods. The experiment was carried out on white outbred Wistar rats weighing 180–200 g. The first group consisted of 20 animals that were not subjected to any influence, served as a control; second group — 30 animals, in which DM was modeled by administration of alloxan and fructose. Results. When modeling DR, vessel changes in the form of wall fibrosis, edema of the endothelium and vasospasm were found. There was also a decrease in the amount of pigment granules, dystrophic changes in the cells of the ganglionic layer and a layer of retinal rods and cones, which coincides with the descriptions of damage to the coats of the eyeball in patients with DM. Conclusions. In our studies, we have calculated the optimal dose of alloxan administration, which does not lead to the death of rats (the lethality of rats was absent and is an effective model not only of DM in general, but also of DR.

  16. How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making.

    Science.gov (United States)

    Tilles, Paulo F C; Petrovskii, Sergei V

    2016-07-01

    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement.

  17. Towards an ethological animal model of depression? A study on horses.

    Directory of Open Access Journals (Sweden)

    Carole Fureix

    Full Text Available Recent reviews question current animal models of depression and emphasise the need for ethological models of mood disorders based on animals living under natural conditions. Domestic horses encounter chronic stress, including potential stress at work, which can induce behavioural disorders (e.g. "apathy". Our pioneering study evaluated the potential of domestic horses in their usual environment to become an ethological model of depression by testing this models' face validity (i.e. behavioural similarity with descriptions of human depressive states.We observed the spontaneous behaviour of 59 working horses in their home environment, focusing on immobility bouts of apparent unresponsiveness when horses displayed an atypical posture (termed withdrawn hereafter, evaluated their responsiveness to their environment and their anxiety levels, and analysed cortisol levels. Twenty-four percent of the horses presented the withdrawn posture, also characterized by gaze, head and ears fixity, a profile that suggests a spontaneous expression of "behavioural despair". When compared with control "non-withdrawn" horses from the same stable, withdrawn horses appeared more indifferent to environmental stimuli in their home environment but reacted more emotionally in more challenging situations. They exhibited lower plasma cortisol levels. Withdrawn horses all belonged to the same breed and females were over-represented.Horse might be a useful potential candidate for an animal model of depression. Face validity of this model appeared good, and potential genetic input and high prevalence of these disorders in females add to the convergence. At a time when current animal models of depression are questioned and the need for novel models is expressed, this study suggests that novel models and biomarkers could emerge from ethological approaches in home environments.

  18. Understanding in vivo modelling of depression in non-human animals: a systematic review protocol

    DEFF Research Database (Denmark)

    Bannach-Brown, Alexandra; Liao, Jing; Wegener, Gregers

    2016-01-01

    experimental model(s) to induce or mimic a depressive-like phenotype. Data that will be extracted include the model or method of induction; species and gender of the animals used; the behavioural, anatomical, electrophysiological, neurochemical or genetic outcome measure(s) used; risk of bias......The aim of this study is to systematically collect all published preclinical non-human animal literature on depression to provide an unbiased overview of existing knowledge. A systematic search will be carried out in PubMed and Embase. Studies will be included if they use non-human animal......-analysis of the preclinical studies modelling depression-like behaviours and phenotypes in animals....

  19. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    Science.gov (United States)

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  20. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition.

    Science.gov (United States)

    Woodward, Bill

    2016-04-11

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition.

  1. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  2. Brain in flames – animal models of psychosis: utility and limitations

    Directory of Open Access Journals (Sweden)

    Mattei D

    2015-05-01

    Full Text Available Daniele Mattei,1 Regina Schweibold,1,2 Susanne A Wolf1 1Department of Cellular Neuroscience, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; 2Department of Neurosurgery, Helios Clinics, Berlin, Germany Abstract: The neurodevelopmental hypothesis of schizophrenia posits that schizophrenia is a psychopathological condition resulting from aberrations in neurodevelopmental processes caused by a combination of environmental and genetic factors which proceed long before the onset of clinical symptoms. Many studies discuss an immunological component in the onset and progression of schizophrenia. We here review studies utilizing animal models of schizophrenia with manipulations of genetic, pharmacologic, and immunological origin. We focus on the immunological component to bridge the studies in terms of evaluation and treatment options of negative, positive, and cognitive symptoms. Throughout the review we link certain aspects of each model to the situation in human schizophrenic patients. In conclusion we suggest a combination of existing models to better represent the human situation. Moreover, we emphasize that animal models represent defined single or multiple symptoms or hallmarks of a given disease. Keywords: inflammation, schizophrenia, microglia, animal models 

  3. Animal models for addiction medicine: From vulnerable phenotypes to addicted individuals.

    Science.gov (United States)

    Nader, Michael A

    2016-01-01

    This chapter highlights the use of several animal models of abuse liability. The overall goal is to describe the most frequently used methods, unconditioned behaviors and conditioned behaviors, and how investigators can use these techniques to compare drugs and to understand the mechanisms of action mediating abuse liability. Thus, for each type of animal model described, research will be highlighted on three general features related to the use of the model: (1) determine abuse potential, (2) treatment efficacy, and (3) brain-related changes associated with drug administration. © 2016 Elsevier B.V. All rights reserved.

  4. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A developing country perspective on recent developments in animal ...

    African Journals Online (AJOL)

    Animal breeding and genetics have changed markedly, resembling those that have already taken place in the plant sector. These changes are going to be larger with sequenced genomes, transgenic livestock and cloned animals. Animal scientists have now started to protect their intellectual property and these protective ...

  6. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  7. Animal models for Gaucher disease research

    OpenAIRE

    Farfel-Becker, Tamar; Vitner, Einat B.; Futerman, Anthony H.

    2011-01-01

    Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display sympt...

  8. The Use of Animal Models to Decipher Physiological and Neurobiological Alterations of Anorexia Nervosa Patients

    Science.gov (United States)

    Méquinion, Mathieu; Chauveau, Christophe; Viltart, Odile

    2015-01-01

    Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa. PMID:26042085

  9. Testing flow diversion in animal models: a systematic review.

    Science.gov (United States)

    Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E

    2016-04-01

    Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.

  10. Animal Models in Forensic Science Research: Justified Use or Ethical Exploitation?

    Science.gov (United States)

    Mole, Calvin Gerald; Heyns, Marise

    2018-05-01

    A moral dilemma exists in biomedical research relating to the use of animal or human tissue when conducting scientific research. In human ethics, researchers need to justify why the use of humans is necessary should suitable models exist. Conversely, in animal ethics, a researcher must justify why research cannot be carried out on suitable alternatives. In the case of medical procedures or therapeutics testing, the use of animal models is often justified. However, in forensic research, the justification may be less evident, particularly when research involves the infliction of trauma on living animals. To determine how the forensic science community is dealing with this dilemma, a review of literature within major forensic science journals was conducted. The frequency and trends of the use of animals in forensic science research was investigated for the period 1 January 2012-31 December 2016. The review revealed 204 original articles utilizing 5050 animals in various forms as analogues for human tissue. The most common specimens utilized were various species of rats (35.3%), pigs (29.3%), mice (17.7%), and rabbits (8.2%) although different specimens were favored in different study themes. The majority of studies (58%) were conducted on post-mortem specimens. It is, however, evident that more needs to be done to uphold the basic ethical principles of reduction, refinement and replacement in the use of animals for research purposes.

  11. Modeling DNA structure and processes through animation and kinesthetic visualizations

    Science.gov (United States)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  12. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    Science.gov (United States)

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  13. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  14. Development of Methods for Genetic Assessment of Antibiotic Resistance In Animal Herds

    DEFF Research Database (Denmark)

    Schmidt, Gunilla Veslemøy

    with a parallel selection for resistant bacteria. Since the hazards related to antibiotic resistance development have been recognized, the prudent use of antibiotics has been in focus, especially concerning their use in animal production. For many years antibiotics have been, and still are, recklessly used...... in the animal production especially in the form of growth promoters. Due to the associated risks of resistant zoonotic bacteria transmission from animals to humans, it is of interest to keep antibiotic use and antibiotic resistance under strict surveillance.This PhD study was based on the development of real......-time PCR (qPCR) assays that supply an easy and rapid method for quantifying antibiotic resistance levels in animal herds. The pig production is accountable for a large portion of the antibiotics used for food producing animals in Denmark. Therefore, the antibiotic resistance genes included in this study...

  15. Animal models for oral transmission of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Sarah E F D'Orazio

    2014-02-01

    Full Text Available Listeria monocytogenes has been recognized as a food borne pathogen in humans since the 1980s, but we still understand very little about oral transmission of L. monocytogenes or the host factors that determine susceptibility to gastrointestinal infection, due to the lack of an appropriate small animal model of oral listeriosis. Early feeding trials suggested that many animals were highly resistant to oral infection, and the more reproducible intravenous or intraperitoneal routes of inoculation soon came to be favored. There are a fair number of previously published studies using an oral infection route, but the work varies widely in terms of bacterial strain choice, the methods used for oral transmission, and various manipulations used to enhance infectivity. This mini review will summarize the published literature using oral routes of L. monocytogenes infection and will highlight recent technological advances that have made oral infection a more attractive model system.

  16. A review of animal models used to evaluate potential allergenicity of genetically modified organisms (GMOs)

    DEFF Research Database (Denmark)

    Marsteller, Nathan; Bøgh, Katrine Lindholm; Goodman, Richard E.

    2017-01-01

    Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...... of genetically modified organisms (GMOs).......Food safety regulators request prediction of allergenicity for newly expressed proteins in genetically modified (GM) crops and in novel foods. Some have suggested using animal models to assess potential allergenicity. A variety of animal models have been used in research to evaluate sensitisation...

  17. Animal models of ischaemic stroke and characterisation of the ischaemic penumbra.

    Science.gov (United States)

    McCabe, Christopher; Arroja, Mariana M; Reid, Emma; Macrae, I Mhairi

    2017-09-18

    Over the past forty years, animal models of focal cerebral ischaemia have allowed us to identify the critical cerebral blood flow thresholds responsible for irreversible cell death, electrical failure, inhibition of protein synthesis, energy depletion and thereby the lifespan of the potentially salvageable penumbra. They have allowed us to understand the intricate biochemical and molecular mechanisms within the 'ischaemic cascade' that initiate cell death in the first minutes, hours and days following stroke. Models of permanent, transient middle cerebral artery occlusion and embolic stroke have been developed each with advantages and limitations when trying to model the complex heterogeneous nature of stroke in humans. Yet despite these advances in understanding the pathophysiological mechanisms of stroke-induced cell death with numerous targets identified and drugs tested, a lack of translation to the clinic has hampered pre-clinical stroke research. With recent positive clinical trials of endovascular thrombectomy in acute ischaemic stroke the stroke community has been reinvigorated, opening up the potential for future translation of adjunctive treatments that can be given alongside thrombectomy/thrombolysis. This review discusses the major animal models of focal cerebral ischaemia highlighting their advantages and limitations. Acute imaging is crucial in longitudinal pre-clinical stroke studies in order to identify the influence of acute therapies on tissue salvage over time. Therefore, the methods of identifying potentially salvageable ischaemic penumbra are discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Reviews on Physically Based Controllable Fluid Animation

    Directory of Open Access Journals (Sweden)

    Pizzanu Kanongchaiyos

    2010-04-01

    Full Text Available In computer graphics animation, animation tools are required for fluid-like motions which are controllable by users or animator, since applying the techniques to commercial animations such as advertisement and film. Many developments have been proposed to model controllable fluid simulation with the need in realistic motion, robustness, adaptation, and support more required control model. Physically based models for different states of substances have been applied in general in order to permit animators to almost effortlessly create interesting, realistic, and sensible animation of natural phenomena such as water flow, smoke spread, etc. In this paper, we introduce the methods for simulation based on physical model and the techniques for control the flow of fluid, especially focus on particle based method. We then discuss the existing control methods within three performances; control ability, realism, and computation time. Finally, we give a brief of the current and trend of the research areas.

  19. Animal Models of Autism: An Epigenetic and Environmental Viewpoint

    Directory of Open Access Journals (Sweden)

    Keiko Iwata

    2010-01-01

    Full Text Available Autism is a neurodevelopmental disorder of social behavior, which is more common in males than in females. The causes of autism are unknown; there is evidence for a substantial genetic component, but it is likely that a combination of genetic, environmental and epigenetic factors contribute to its complex pathogenesis. Rodent models that mimic the behavioral deficits of autism can be useful tools for dissecting both the etiology and molecular mechanisms. This review discusses animal models of autism generated by prenatal or neonatal environmental challenges, including virus infection and exposure to valproic acid (VPA or stress. Studies of viral infection models suggest that interleukin-6 can influence fetal development and programming. Prenatal exposure to the histone deacetylase inhibitor VPA has been linked to autism in children, and male VPA-exposed rats exhibit a spectrum of autistic-like behaviors. The experience of prenatal stress produces male-specific behavioral abnormalities in rats. These effects may be mediated by epigenetic modifications such as DNA methylation and histone acetylation resulting in alterations to the transcriptome.

  20. Animal models of autism with a particular focus on the neural basis of changes in social behaviour: an update article.

    Science.gov (United States)

    Olexová, Lucia; Talarovičová, Alžbeta; Lewis-Evans, Ben; Borbélyová, Veronika; Kršková, Lucia

    2012-12-01

    Research on autism has been gaining more and more attention. However, its aetiology is not entirely known and several factors are thought to contribute to the development of this neurodevelopmental disorder. These potential contributing factors range from genetic heritability to environmental effects. A significant number of reviews have already been published on different aspects of autism research as well as focusing on using animal models to help expand current knowledge around its aetiology. However, the diverse range of symptoms and possible causes of autism have resulted in as equally wide variety of animal models of autism. In this update article we focus only on the animal models with neurobehavioural characteristics of social deficit related to autism and present an overview of the animal models with alterations in brain regions, neurotransmitters, or hormones that are involved in a decrease in sociability. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica

    2017-04-01

    Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  2. Brain glucose metabolism in an animal model of depression.

    Science.gov (United States)

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-04

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  3. A NEW ANIMAL-MODEL FOR HUMAN PREECLAMPSIA - ULTRA-LOW-DOSE ENDOTOXIN INFUSION IN PREGNANT RATS

    NARCIS (Netherlands)

    FAAS, MM; SCHUILING, GA; BALLER, JFW; VISSCHER, CA; BAKKER, WW

    OBJECTIVE: An animal model for preeclampsia was developed by means of an ultra-low-dose endotoxin infusion protocol in conscious pregnant rats. STUDY DESIGN: Rats received a permanent jugular vein cannula on day 0 of pregnancy, through which endotoxin (1.0 mu/kg body weight) (n = 10) or saline

  4. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  5. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development