WorldWideScience

Sample records for animal imaging resource

  1. Animal Models for imaging

    OpenAIRE

    Croft, Barbara Y.

    2002-01-01

    Animal models can be used in the study of disease. This chapter discusses imaging animal models to elucidate the process of human disease. The mouse is used as the primary model. Though this choice simplifies many research choices, it necessitates compromises for in vivo imaging. In the future, we can expect improvements in both animal models and imaging techniques.

  2. Small Animal Retinal Imaging

    Science.gov (United States)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  3. Whole animal imaging

    OpenAIRE

    Sandhu, Gurpreet Singh; Solorio, Luis; Broome, Ann-Marie; Salem, Nicolas; Kolthammer, Jeff; Shah, Tejas; Flask, Chris; Duerk, Jeffrey L.

    2010-01-01

    Translational research plays a vital role in understanding the underlying pathophysiology of human diseases, and hence development of new diagnostic and therapeutic options for their management. After creating an animal disease model, pathophysiologic changes and effects of a therapeutic intervention on them are often evaluated on the animals using immunohistologic or imaging techniques. In contrast to the immunohistologic techniques, the imaging techniques are noninvasive and hence can be us...

  4. Animal Images and Metaphors in Animal Farm

    OpenAIRE

    Ping Sun

    2015-01-01

    In literary works animal images are frequently used as the “source domain” of a metaphor to disclose the natures of the “target domain”, human beings. This is called “cross-domain mapping” or “conceptual metaphor” in cognitive linguistics, which is based on the similar qualities between animals and human beings. Thus the apparent descriptions of the animals are really the deep revelations of the human beings. Animal Farm is one exemplary product of this special expressing way. Diversified ani...

  5. Animal Surgery and Resources Core

    Data.gov (United States)

    Federal Laboratory Consortium — The ASR services for NHLBI research animals include: animal model development, surgery, surgical support, post-operative care as well as technical services such as...

  6. Imaging of Ancient Egyptian Animal Mummies.

    Science.gov (United States)

    McKnight, Lidija M; Atherton-Woolham, Stephanie D; Adams, Judith E

    2015-01-01

    Human mummies have long been studied by using imaging as a primary investigative method. Mummified animal remains from ancient Egypt are less well researched, yet much can be learned about species diversity and the methods of preservation. Noninvasive imaging methods enable mummy bundles to remain intact, with no detrimental physical effects, thus ensuring protection of a valuable archaeological resource. This article is based on the research experience gathered during 13 years (2000-2012) with 152 animal mummies held in the collections of 17 museums in the United Kingdom. Conventional radiography, computed radiography, digital radiography, and computed tomography (CT) available in the clinical setting were used to assess the value of each imaging modality in the study of animal mummies and related material. Radiography proved to be an excellent research method that provided initial insight into the contents of the mummy bundle, and CT contributed additional useful detail in some cases. Paleoradiologic analyses enabled information on mummy bundle contents to be proved, including the nature of the skeletal remains and the methods of mummification. An optimum method involving radiography and CT is described. PMID:26562240

  7. The farm animal genetic resources of Montenegro

    OpenAIRE

    Marković Božidarka; Marković M.; Adžić N.

    2007-01-01

    The review of farm animal genetic resources, degree of danger of extinction and way of preservation of certain autochthonous breeds of livestock in Montenegro was the aim of this article. Origin, geographical distribution, population size, morphological and productive traits of the important populations of livestock, as brachyceros breed of cattle - Busha, coarse wool domestic breeds of sheep (Pivska, Zetska zuja, Ljaba, Bardoka), domestic hilly horse breed and donkey were presented. .

  8. Small animal imaging. Basics and practical guide

    International Nuclear Information System (INIS)

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  9. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    OpenAIRE

    Henrik Lauridsen; Kasper Hansen; Tobias Wang; Peter Agger; Andersen, Jonas L.; Knudsen, Peter S.; Rasmussen, Anne S.; Lars Uhrenholt; Michael Pedersen

    2011-01-01

    Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI,...

  10. Enclosure for small animals during awake animal imaging

    Science.gov (United States)

    Goddard, Jr., James S

    2013-11-26

    An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be made with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.

  11. Imaging the Gastrointestinal Tract of Small Animals

    OpenAIRE

    Jelicks, Linda A.

    2010-01-01

    Animal models of human diseases are increasingly available and are invaluable for studies of organ pathophysiology. Megacolon, abnormal dilatation of the colon not caused by mechanical obstruction, involves the destruction of the autonomic nervous system innervating the colon. Animal models of megacolon include mouse models of Chagas disease and Hirschprung’s disease. Small animal imaging has become an important research tool and recent advances in preclinical imaging modalities have enhanced...

  12. Noninvasive Bioluminescence Imaging in Small Animals

    OpenAIRE

    Zinn, Kurt R.; Chaudhuri, Tandra R.; Szafran, April Adams; O’Quinn, Darrell; Weaver, Casey; Dugger, Kari; Lamar, Dale; Kesterson, Robert A.; Wang, Xiangdong; Frank, Stuart J.

    2008-01-01

    There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase...

  13. Bioluminescence imaging in live cells and animals.

    Science.gov (United States)

    Tung, Jack K; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E

    2016-04-01

    The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.

  14. How Phoenix Creates Color Images (Animation)

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This simple animation shows how a color image is made from images taken by Phoenix. The Surface Stereo Imager captures the same scene with three different filters. The images are sent to Earth in black and white and the color is added by mission scientists. By contrast, consumer digital cameras and cell phones have filters built in and do all of the color processing within the camera itself. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASAaE(TM)s Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Technology challenges in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Roger E-mail: roger.lecomte@usherbrooke.ca

    2004-07-11

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging modality allowing biochemical processes to be investigated in vivo with sensitivity in the picomolar range. For this reason, PET has the potential to play a major role in the emerging field of molecular imaging by enabling the study of molecular pathways and genetic processes in living animals non-invasively. The challenge is to obtain a spatial resolution that is appropriate for rat and mouse imaging, the preferred animal models for research in biology, while achieving a sensitivity adequate for real-time measurement of rapid dynamic processes in vivo without violating tracer kinetic principles. An overview of the current state of development of dedicated small animal PET scanners is given, and selected applications are reported and discussed with respect to performance and significance to research in biology.

  16. Study on Dynamic Information of Animal Genetic Resources in China

    Institute of Scientific and Technical Information of China (English)

    MA Yue-hui; XU Gui-fang; WANG Duan-yun; LIU Hai-liang; YANG Yan

    2003-01-01

    The dynamic information of 331 animal genetic resources in 17 important animal genetic re-source provinces (regions) was analyzed. According to the population inbreeding coefficient, combiningwith the information of population dynamic change trend and cross degree, these genetic resources forthreatened degrees were classified. The results indicated that the population size of 138 breeds had in-creased, 147 breeds had decreased, 3 breeds were constant, 7 breeds (or varieties) were extinct, 9 breeds(or varieties) were critically endangered and needed urgently conserve, 50 breeds (or varieties) were endan-gered and should be conserved. We put forward a conservation and utilization plan for animal genetic re-sources.

  17. Noninvasive bioluminescence imaging in small animals.

    Science.gov (United States)

    Zinn, Kurt R; Chaudhuri, Tandra R; Szafran, April Adams; O'Quinn, Darrell; Weaver, Casey; Dugger, Kari; Lamar, Dale; Kesterson, Robert A; Wang, Xiangdong; Frank, Stuart J

    2008-01-01

    There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase enzyme with its substrate. Most imaging systems provide 2-dimensional (2D) information in rodents, showing the locations and intensity of light emitted from the animal in pseudo-color scaling. A 3-dimensional (3D) capability for bioluminescence imaging is now available, but is more expensive and less efficient; other disadvantages include the requirement for genetically encoded luciferase, the injection of the substrate to enable light emission, and the dependence of light signal on tissue depth. All of these problems make it unlikely that the method will be extended to human studies. However, in small animal models, bioluminescence imaging is now routinely applied to serially detect the location and burden of xenografted tumors, or identify and measure the number of immune or stem cells after an adoptive transfer. Bioluminescence imaging also makes it possible to track the relative amounts and locations of bacteria, viruses, and other pathogens over time. Specialized applications of bioluminescence also follow tissue-specific luciferase expression in transgenic mice, and monitor biological processes such as signaling or protein interactions in real time. In summary, bioluminescence imaging has become an important component of biomedical research that will continue in the future.

  18. Animal Rights: Selected Resources and Suggestions for Further Study.

    Science.gov (United States)

    Davidoff, Donald J.

    1989-01-01

    Presents an annotated list of selected resources intended to serve as a guide to the growing amount of material on animal rights. Suggestions to aid in additional research include subject headings used to find books, indexes used to locate periodical articles, sources for locating organizations, and a selected list of animal rights organizations.…

  19. Imaging Histone Methylations in Living Animals.

    Science.gov (United States)

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Histone modifications (methylation, acetylation, phosphorylation, sumoylation, etc.,) are at the heart of cellular regulatory mechanisms, which control expression of genes in an orderly fashion and control the entire cellular regulatory networks. Histone lysine methylation has been identified as one of the several posttranslational histone modifications that plays crucial role in regulating gene expressions in facultative heterochromatic DNA regions while maintaining structural integrity in constitutive heterochromatic DNA regions. Since histone methylation is dysregulated in various cellular diseases, it has been considered a potential therapeutic target for drug development. Currently there is no simple method available to screen and preclinically evaluate drugs modulating this cellular process, we recently developed two different methods by adopting reporter gene technology to screen drugs and to preclinically evaluate them in living animals. Method detects and quantitatively monitors the level of histone methylations in intact cells, is of a prerequisite to screen small molecules that modulate histone lysine methylation. Here, we describe two independent optical imaging sensors developed to image histone methylations in cells and in living animals. Since we used standard PCR-based cloning strategies to construct different plasmid vectors shown in this chapter, we are not providing any details regarding the construction methods, instead, we focus on detailing various methods used for measuring histone methylation-assisted luciferase quantitation in cells and imaging in living animals. PMID:27424907

  20. Tri-modality small animal imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  1. Potential Development of Local Animal Genetic Resources in Maluku

    OpenAIRE

    J.F Salamena; MALLE, D.; LATUPEIRISSA C. Ch. E.; SIWA I. P.

    2014-01-01

    Maluku has been well known as an archipelagic province consisting of small islands which are rich in natural resources such as exotic animals. Moa buffalo, Lakor goat, and Kisar sheep are local genetic resources of livestock from Maluku which have been endorsed by the Ministry of Agriculture of the Republic of Indonesia to be protected, conserved, and sustainably utilized for human welfare purposes. These three species have been a part of the local people life as food, income, savings, and or...

  2. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  3. Resources for flow and image cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, M.

    1990-01-01

    This paper describes resources available to the flow and image cytometry community. I have been asked to limit the discussion to resources available in the United States, so reference to resources exclusively available in Japan, Europe, or Australia are not included. It is not the intention of this paper to include each and every resource available, rather, to describe the types available and give some examples. Included in this manuscript are listings of some of the examples of resources which readers may find useful. Addresses of commercial companies are not included in the interest of space. Most of the examples listed advertise on a regular basis in journals publishing in cytometry fields. The resources to be described are divided into five categories: instrument resources, computer and software resources, standards, physical or user'' resources, and instructional resources. Each of these resources will be discussed separately. 4 tabs.

  4. Can individual and social patterns of resource use buffer animal populations against resource decline?

    Science.gov (United States)

    Banks, Sam C; Lindenmayer, David B; Wood, Jeff T; McBurney, Lachlan; Blair, David; Blyton, Michaela D J

    2013-01-01

    Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing), as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater's possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1:1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species' biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance. PMID:23320100

  5. Can individual and social patterns of resource use buffer animal populations against resource decline?

    Directory of Open Access Journals (Sweden)

    Sam C Banks

    Full Text Available Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing, as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater's possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1:1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species' biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance.

  6. Validation of an Animal Isolation Imaging Chamber for Use in Animal Biosafety Level-3 Containment

    OpenAIRE

    Alderman, T. Scott; Frothingham, Richard; Sempowski, Gregory D.

    2010-01-01

    Live imaging of animals infected with pathogenic microbes poses a contamination risk to equipment, personnel and other animals. A Caliper animal isolation chamber designed for the IVIS® Spectrum imaging system was tested as a containment device for mice infected with microbes assigned to animal biosafety level-3 (ABSL-3). A testing protocol was developed by adapting two published standards to test other equipment in high containment environments. The protocol included quantitative leak-testin...

  7. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.;

    2011-01-01

    Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this achie...... small animal PET/CT for studies of muscle and tendon in exercise models. © 2011 Bentham Science Publishers Ltd.......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However, with this...... this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume...

  8. Animal Images in The Call of the Wild

    Institute of Scientific and Technical Information of China (English)

    赵秀丽; 陶阳

    2014-01-01

    There is a long history of animal images in literature. What we have known about animal literature is confined into the Greek mythology, Aesop’s Fables and some fairy tales. But in the 20th century, the development of animal literary which focuses on the real animals is great. The Call of the Wild by Jack London is a representative work of describing real animals. This paper will discuss two different images of Buck by means of two archetypes based on Archetype Theory of Carl G. Jung, shadow and hero, in order to study how Buck changed from a dog to a wolf.

  9. Non-Invasive in vivo Imaging in Small Animal Research

    Directory of Open Access Journals (Sweden)

    V. Koo

    2006-01-01

    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  10. Method and apparatus for animal positioning in imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  11. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    International Nuclear Information System (INIS)

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  12. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    Science.gov (United States)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-07-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  13. An image guided small animal stereotactic radiotherapy system

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  14. An image guided small animal stereotactic radiotherapy system.

    Science.gov (United States)

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  15. Small Animal Radionuclide Imaging With Focusing Gamma-Ray Optics

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R; Decker, T; Epstein, M; Ziock, K; Pivovaroff, M J; Craig, W W; Jernigan, J G; Barber, W B; Christensen, F E; Funk, T; Hailey, C J; Hasegawa, B H; Taylor, C

    2004-02-27

    Significant effort currently is being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. While physiological function in small animals can be localized and imaged using conventional radionuclide imaging techniques such as single-photon emission tomography (SPECT) and positron emission tomography (PET), these techniques inherently are limited to spatial resolutions of 1-2 mm. For this reason, we are developing a small animal radionuclide imaging system (SARIS) using grazing incidence optics to focus gamma-rays emitted by {sup 125}I and other radiopharmaceuticals. We have developed a prototype optic with sufficient accuracy and precision to focus the 27.5 keV photons from {sup 125}I onto a high-resolution imaging detector. Experimental measurements from the prototype have demonstrated that the optic can focus X-rays from a microfocus X-ray tube to a spot having physical dimensions (approximately 1500 microns half-power diameter) consistent with those predicted by theory. Our theoretical and numerical analysis also indicate that an optic can be designed and build that ultimately can achieve 100 {micro}m spatial resolution with sufficient efficiency to perform in vivo single photon emission imaging studies in small animal.

  16. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  17. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  18. Monte Carlo simulations in small animal PET imaging

    International Nuclear Information System (INIS)

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using -F and [18F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies

  19. Infrared thermal image for assessing animal health and welfare

    OpenAIRE

    Irenilza de Alencar Nääs; Rodrigo Garófallo Garcia; Fabiana Ribeiro Caldara

    2014-01-01

    Infrared thermal imaging is a non-destructive testing technology that can be used to determine the superficial temperature of objects. This technology has an increasing use in detecting diseases and distress in animal husbandry within the poultry, pig and dairy production. The process can identify changes in peripheral blood flow from the resulting changes in heat loss and; therefore, have been a useful tool for evaluating the presence of disease, edema, and stress in animals. This paper revi...

  20. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  1. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  2. Hyperpolarized singlet NMR on a small animal imaging system

    OpenAIRE

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.; Brown, Lynda J.; Brown, Richard C. D.; Levitt, Malcolm H.; Ardenkjaer-Larsen, Jan H.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet populations of spin-1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites...

  3. Anatomic and functional imaging of tagged molecules in animals

    Science.gov (United States)

    Weisenberger, Andrew G.; Majewski, Stanislaw; Paulus, Michael J.; Gleason, Shaun S.

    2007-04-24

    A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.

  4. Additional resource for diabetes diagnostics in animals and humans

    Directory of Open Access Journals (Sweden)

    Vladimir Vitalyevich Drozdov

    2012-09-01

    Full Text Available Veterinary doctors often observe cases of unexplained elevated glucose and ketones in urine of domestic animals without any other signs of diabetes. We studies these effects from the standpoint of the phenomenon of interdependent conditions in animals and humans, described by T.V.Novosadyuk in 2000. She was the first to provide a theoretical and practical foundation for clinical cases of simultaneously developing similar diseases in domestic animals and their owners. During the last 5 years we studied health of humans in families where domestic animals are affected by the laboratory abnormalities described above. In vast majority of cases it has been found out that animal owners have diabetes mellitus of variable severity. At the same time there were no disorders of carbohydrate metabolism in animal owners in 11 cases. We recommended members of these families to undergo a specialized examination. In all of these cases latent diabetes mellitus was found in humans who had especially close relationships with animals. These findings led to initiation of treatment in humans. At the same time animals were treated with a collar with a linen sack attached containing Peganum Harmala 30 globules. Repeated laboratory tests were performed after one month of such treatment. Normalization of laboratory variables was observed in all of the cases. Based on the study results we developed an algorhythm of activities that helps to diagnose early and latent forms of diabetes mellitus in domestic animals and their owners. This algorhythm includes: - test for glucose and/or ketones in animal urine after correction of feeding and care defects. - blood and urine glucose tests in family members of animal owners. In cases of deviations from normal values we recommended them to consult appropriate specialists and begin treatment immediately. - animals are given collars with Peganum Harmala 30 globules in a linen sack attached. - granules are removed when

  5. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Hansen, Kasper; Wang, Tobias;

    2011-01-01

    and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different...

  6. Image-based red cell counting for wild animals blood.

    Science.gov (United States)

    Mauricio, Claudio R M; Schneider, Fabio K; Dos Santos, Leonilda Correia

    2010-01-01

    An image-based red blood cell (RBC) automatic counting system is presented for wild animals blood analysis. Images with 2048×1536-pixel resolution acquired on an optical microscope using Neubauer chambers are used to evaluate RBC counting for three animal species (Leopardus pardalis, Cebus apella and Nasua nasua) and the error found using the proposed method is similar to that obtained for inter observer visual counting method, i.e., around 10%. Smaller errors (e.g., 3%) can be obtained in regions with less grid artifacts. These promising results allow the use of the proposed method either as a complete automatic counting tool in laboratories for wild animal's blood analysis or as a first counting stage in a semi-automatic counting tool. PMID:21096766

  7. International Council for Laboratory Animal Science: International activities. Institute of Laboratory Animal Resources annual report, 1993--1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    In late 1987, the Interagency Research Animal Committee (IRAC) requested that the Institute of Laboratory Animal Resources (ILAR), National Research Council (NRC), National Academy of Sciences, reestablish US national membership in the International Council for Laboratory Animal Science (ICLAS). The ICLAS is the only worldwide organization whose goal is to foster the humane use of animals in medical research and testing. ILAR`s Mission Statement reflects its commitment to producing highly respected documents covering a wide range of scientific issues, including databases in genetic stocks, species specific management guides, guidelines for humane care of animals, and position papers on issues affecting the future of the biological sciences. As such, ILAR is recognized nationally and internationally as an independent, scientific authority in the development of animal sciences in biomedical research.

  8. Preclinical imaging in animal models of radiation therapy

    International Nuclear Information System (INIS)

    Modern radiotherapy benefits from precise and targeted diagnostic and pretherapeutic imaging. Standard imaging modalities, such as computed tomography (CT) offer high morphological detail but only limited functional information on tumors. Novel functional and molecular imaging modalities provide biological information about tumors in addition to detailed morphological information. Perfusion magnetic resonance imaging (MRI) CT or ultrasound-based perfusion imaging as well as hybrid modalities, such as positron emission tomography (PET) CT or MRI-PET have the potential to identify and precisely delineate viable and/or perfused tumor areas, enabling optimization of targeted radiotherapy. Functional information on tissue microcirculation and/or glucose metabolism allow a more precise definition and treatment of tumors while reducing the radiation dose and sparing the surrounding healthy tissue. In the development of new imaging methods for planning individualized radiotherapy, preclinical imaging and research plays a pivotal role, as the value of multimodality imaging can only be assessed, tested and adequately developed in a preclinical setting, i.e. in animal tumor models. New functional imaging modalities will play an increasing role for the surveillance of early treatment response during radiation therapy and in the assessment of the potential value of new combination therapies (e.g. combining anti-angiogenic drugs with radiotherapy). (orig.)

  9. Gamma-Ray Focusing Optics for Small Animal Imaging

    Science.gov (United States)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  10. Animal nutrition and optimized utilization of locally available resources

    International Nuclear Information System (INIS)

    Rice straw is the most abundant among crop residues. Actually, rice straw is the most important roughage in Myanmar for ruminant feeding. Like other fibrous residues, it is a poor quality feed. The major cause of low productivity of livestock in tropical regions is the inadequate and poor quality of feed. The nutritional limitations of rice straw may be overcome by supplementation with concentrates, urea or green forage. Supplementation of rice straw with concentrate would improve the utilization of rice straw. Supplementation of by-product, which may increase intake and/or digestion, and/or utilization of the basal diet are the condition directly related to microbial activity, which is required to optimize rumen digestion. The microbes within the rumen grow efficiently when ammonia nitrogen in the rumen is adequate. In Myanmar, sesame meal is one of the common feed supplements for the draft cattle and crossbred dairy cows fed rice straw. Sesame meal is highly degradable (88.7%) in the rumen. Therefore, degradation of protein is a considerable factor when the protein sources are supplemented. Several processing treatments (heat, tannin, formaldehyde, etc.) have been used to increase the proportion of dietary protein, which is not degraded in the rumen. Protections of highly degradable feed protein by the heat treatment and formaldehyde have already been reported. However, little information is available about the effect of tannin included in tree foliages for the protein protection. Conventionally, tree foliages have been fed together with agricultural by-products, mainly crop-residues, containing low levels of nitrogen to enhance rumen microbial fermentation and hence the animal productivity. Tanniferous trees and shrubs are important in animal production because they can provide significant protein supplements. Forages containing leucocephala, Ziziphus mauritiana, Albizia chinensis, Manihot esculenta, Terminalia oblongata, etc. Tree legume forages offer a cheap

  11. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  12. Integration of optical imaging with a small animal irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Weersink, Robert A., E-mail: robert.weersink@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Ansell, Steve; Wang, An; Wilson, Graham [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Shah, Duoaud [Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Lindsay, Patricia E. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Techna Institute, University Health Network, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1 (Canada)

    2014-10-15

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  13. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.;

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  14. Micro-computed tomography for small animal imaging: Technological details

    Institute of Scientific and Technical Information of China (English)

    Hao Li; Hui Zhang; Zhiwei Tang; Guangshu Hu

    2008-01-01

    The high-resolution micro-computed tomography(micro-CT)system has now become an important tool for biological research.The micro-CT system enables a non-invasive inspection to screen anatomical changes in small animals.The promising advantages include high-spatial resolution,high sensitivity to bone and lung,short scan time and cost-effectiveness.The dose received by the small animal might be a critical concern in the research.In this article,the choice of the components,fundamental physical problems,the image reconstruction algorithm and the representative applications of micro-CT are summarized.Some results from our research group are also presented to show high-resolution images obtained by the micro-CT system.

  15. Animal detection in natural images: effects of color and image database.

    Directory of Open Access Journals (Sweden)

    Weina Zhu

    Full Text Available The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.

  16. Conservation and sustainable use of animal genetic resources

    OpenAIRE

    Hiemstra, S.J.

    2013-01-01

    Brochure over de activiteiten en contacten van het Centrum voor Genetische Bronnen, Nederland (CGN)Genetic diversity is the basis of agriculture. Adapting populations of domestic animals through breeding is impossible withot genetic diversity. Genetic diversity is part of the history of mankind and is essential for future improvements in agricultural production.

  17. Conservation and sustainable use of animal genetic resources

    NARCIS (Netherlands)

    Hiemstra, S.J.

    2013-01-01

    Brochure over de activiteiten en contacten van het Centrum voor Genetische Bronnen, Nederland (CGN)Genetic diversity is the basis of agriculture. Adapting populations of domestic animals through breeding is impossible withot genetic diversity. Genetic diversity is part of the history of mankind and

  18. Filtering and deconvolution for bioluminescence imaging of small animals

    International Nuclear Information System (INIS)

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  19. Computer-aided pulmonary image analysis in small animal models

    International Nuclear Information System (INIS)

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases

  20. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  1. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    International Nuclear Information System (INIS)

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  2. Small Animal [{sup 18}F]FDG PET Imaging for Tumor Model Study

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong [Radiological and Medical Sciences Research Institute, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2008-02-15

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [{sup 18}F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [{sup 18}F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [{sup 18}F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model.

  3. An integrated multimodality image-guided robot system for small-animal imaging research

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wen-Lin [Department of Radiology, Tzu-Chi University and Radiation Oncology, Buddhist Tzu-Chi General Hospital Hualien, Taiwan (China); Hsin Wu, Tung [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Hsu, Shih-Ming [Department of Biomedical Imaging and Radiological Sciences, China Medical University, Taichung, Taiwan (China); Chen, Chia-Lin [Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan (China); Huang, Yung-Hui, E-mail: yhhuang@isu.edu.tw [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China)

    2011-10-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO{sub 2} probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153{+-}0.042 mm of desired placement; the phantom simulation errors were within 0.693{+-}0.128 mm. In small-animal studies, the pO{sub 2} probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  4. Multimodal imaging of orthotopic hepatocellular carcinoma using small animal PET, bioluminescence and contrast enhanced CT imaging

    International Nuclear Information System (INIS)

    Molecular imaging with small-animal PET and bioluminescence imaging has been used as an important tool in cancer research. One of the disadvantages of these imaging modalities is the lack of anatomic information. To obtain fusion images with both molecular and anatomical information, small-animal PET and bioluminescence images fused with contrast enhance CT image in orthotopic hepatocellular carcinoma (HCC) model. We retrovially transfected dual gene (HSV1-tk and firefly luciferase) to morris hepatoma cells. The expression of HSV1-tk and luciferase was checked by optical imager and in vitro radiolabeled FIAU uptake, respectively and also checked by RT-PCR analysis. MCA-TL cells (5X105/ 0.05 ml) mixed with matrigel (1: 10) injected into left lobe of liver in nude mice. 124I-FIAU-PET, bioluminescence and contrast enhanced CT images were obtained in the orthotopic HCC model and digital whole body autoradiography (DWBA) was performed. Small animal PET image was obtained at 2 h post injection of 124I-FIAU and contrast enhanced CT image was obtained at 3 h post injection of Fenestra LC (0.3 ml). MCA-TL cells showed more specific 124I-FIAU uptake and higher luminescent activity than parental cells. The orthotopic HCC was detected by 124I-FIAU PET, contrast enhanced CT, and BLI and confirmed by DWBA. Registered image in orthotopic HCC t models showed a good correlation of images from both PET and CT. Contrast enhanced CT image delineated margin of HCC. Multimodal imaging with 124I-FIAU PET, bioluminescence and contrast enhanced CT allows a precise and improved detection of tumor in orthotopic hepatocellular carcinoma model. Multimodal imaging is potentially useful for monitoring progression of hepatic metastasis and for the evaluation of cancer treatments

  5. Economic Evaluation and Biodiversity Conservation of Animal Genetic Resources

    OpenAIRE

    Roosen, Jutta; Fadlaoui, Aziz; Bertaglia, Marco

    2003-01-01

    Rapidly declining biodiversity has made international and national policies focus on the question of how best to protect genetic resources. Loss of biodiversity does not only concern wildlife, but equally affects agriculturally used species. These species, of foremost importance for the subsistence of humankind, are subject to pressures sometimes similar and sometimes very distinct from those of their wild counterparts. And so are the losses implied by this decline in diversity. This handbook...

  6. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors.

    Science.gov (United States)

    Zhang, Hong-Mei; Liu, Teng; Liu, Chun-Jie; Song, Shuangyang; Zhang, Xiantong; Liu, Wei; Jia, Haibo; Xue, Yu; Guo, An-Yuan

    2015-01-01

    Transcription factors (TFs) are key regulators for gene expression. Here we updated the animal TF database AnimalTFDB to version 2.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/). Using the improved prediction pipeline, we identified 72 336 TF genes, 21 053 transcription co-factor genes and 6502 chromatin remodeling factor genes from 65 species covering main animal lineages. Besides the abundant annotations (basic information, gene model, protein functional domain, gene ontology, pathway, protein interaction, ortholog and paralog, etc.) in the previous version, we made several new features and functions in the updated version. These new features are: (i) gene expression from RNA-Seq for nine model species, (ii) gene phenotype information, (iii) multiple sequence alignment of TF DNA-binding domains, and the weblogo and phylogenetic tree based on the alignment, (iv) a TF prediction server to identify new TFs from input sequences and (v) a BLAST server to search against TFs in AnimalTFDB. A new nice web interface was designed for AnimalTFDB 2.0 allowing users to browse and search all data in the database. We aim to maintain the AnimalTFDB as a solid resource for TF identification and studies of transcription regulation and comparative genomics.

  7. Whole-animal imaging with high spatio-temporal resolution

    Science.gov (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  8. Multimode optical imaging of small animals: development and applications

    Science.gov (United States)

    Hwang, J. Y.; Moffatt-Blue, C.; Equils, O.; Fujita, M.; Jeong, J.; Khazenzon, N. M.; Lindsley, E.; Ljubimova, J.; Nowatzyk, A. G.; Farkas, D. L.; Wachsmann-Hogiu, S.

    2007-02-01

    We present an optical system for small animal imaging that can combine various in vivo imaging modalities, including fluorescence (intensity and lifetime), spectral, and trans-illumination imaging. This system consists of light-tight box with ultrafast pulsed or cw laser light excitation, motorized translational and rotational stages, a telecentric lens for detection, and a cooled CCD camera that can be coupled to an ultrafast time-gated intensifier. All components are modular, making possible laser excitation at various wavelengths and pulse lengths, and signal detection in a variety of ways (multimode). Results of drug nanoconjugate carrier delivery studies in mice are presented. Conventional and spectrally-resolved fluorescence images reveal details of in vivo drug nanoconjugate carrier accumulation within the tumor region and several organs in real time. By multi-spectral image analysis of ex vivo specimens from the same mice, we were able to evaluate the extent and topology of drug nanoconjugate carrier distribution into specific organs and the tumor itself.

  9. The Animal Genetic Resource Information Network (AnimalGRIN) Database: A Database Design & Implementation Case

    Science.gov (United States)

    Irwin, Gretchen; Wessel, Lark; Blackman, Harvey

    2012-01-01

    This case describes a database redesign project for the United States Department of Agriculture's National Animal Germplasm Program (NAGP). The case provides a valuable context for teaching and practicing database analysis, design, and implementation skills, and can be used as the basis for a semester-long team project. The case demonstrates the…

  10. Evaluation of the respiratory motion effect in small animal PET images with GATE Monte Carlo simulations

    OpenAIRE

    Branco, Susana; Almeida, Pedro; Jan, Sébastien

    2011-01-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability....

  11. Resource estimation in high performance medical image computing.

    Science.gov (United States)

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

  12. A Gamma Ray Imaging Device for Small-Animal Studies

    Science.gov (United States)

    Saunders, Robert; Bradley, Eric; Majewski, Stan; Saha, Margaret S.; Weisenberger, Andrew G.; Welsh, Robert E.

    1999-11-01

    A novel, modular nuclear imaging device for in vivo imaging of small animals is described. A segmented scintillator is coupled to a position-sensitive photomultiplier. This combination is used to view the living system under study with a variety of collimators employed to limit the angular acceptance. A personal computer is coupled to a CAMAC electronic system for event-by-event data acquisition and subsequent selective data analysis. The system has been designed to exploit the availability of a wide range of ligands tagged with the isotope 125I. It has most recently been employed for a study of the transport of the cocaine analog, RTI-55, to the brain of a mouse. Results of studies to date and options for future expansion of the system will be described.

  13. Developing an online orientation resource for users of institutional animal housing facilities.

    Science.gov (United States)

    Dryman, Amy L; Alworth, Leanne C

    2015-08-01

    Institutions can share information and orientation materials easily and effectively using modern media and communications technology. For this reason the Office of Animal Care and Use at the University of Georgia developed an online orientation resource for users of its animal housing facilities. Here the authors describe the resource and the planning and project management that accompanied its development. The authors explain the rationale behind each of their decisions and describe select organizational methods that contributed to the success of the project. They describe their own experience, in the context of their institutional circumstances, for the benefit of other institutions that might consider developing a similar resource. PMID:26200086

  14. Microwave thermal imaging of scanned focused ultrasound heating: animal experiments

    Science.gov (United States)

    Zhou, Tian; Meaney, Paul M.; Hoopes, P. Jack; Geimer, Shireen D.; Paulsen, Keith D.

    2011-03-01

    High intensity focused ultrasound (HIFU) uses focused ultrasound beams to ablate localized tumors noninvasively. Multiple clinical trials using HIFU treatment of liver, kidney, breast, pancreas and brain tumors have been conducted, while monitoring the temperature distribution with various imaging modalities such as MRI, CT and ultrasound. HIFU has achieved only minimal acceptance partially due to insufficient guidance from the limited temperature monitoring capability and availability. MR proton resonance frequency (PRF) shift thermometry is currently the most effective monitoring method; however, it is insensitive in temperature changes in fat, susceptible to motion artifacts, and is high cost. Exploiting the relationship between dielectric properties (i.e. permittivity and conductivity) and tissue temperature, in vivo dielectric property distributions of tissue during heating were reconstructed with our microwave tomographic imaging technology. Previous phantom studies have demonstrated sub-Celsius temperature accuracy and sub-centimeter spatial resolution in microwave thermal imaging. In this paper, initial animal experiments have been conducted to further investigate its potential. In vivo conductivity changes inside the piglet's liver due to focused ultrasound heating were observed in the microwave images with good correlation between conductivity changes and temperature.

  15. Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies

    Science.gov (United States)

    Zhang, Mutian; Huang, Minming; Le, Carl; Zanzonico, Pat B.; Claus, Filip; Kolbert, Katherine S.; Martin, Kyle; Ling, C. Clifton; Koutcher, Jason A.; Humm, John L.

    2008-10-01

    Dedicated small-animal imaging devices, e.g. positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) scanners, are being increasingly used for translational molecular imaging studies. The objective of this work was to determine the positional accuracy and precision with which tumors in situ can be reliably and reproducibly imaged on dedicated small-animal imaging equipment. We designed, fabricated and tested a custom rodent cradle with a stereotactic template to facilitate registration among image sets. To quantify tumor motion during our small-animal imaging protocols, 'gold standard' multi-modality point markers were inserted into tumor masses on the hind limbs of rats. Three types of imaging examination were then performed with the animals continuously anesthetized and immobilized: (i) consecutive microPET and MR images of tumor xenografts in which the animals remained in the same scanner for 2 h duration, (ii) multi-modality imaging studies in which the animals were transported between distant imaging devices and (iii) serial microPET scans in which the animals were repositioned in the same scanner for subsequent images. Our results showed that the animal tumor moved by less than 0.2-0.3 mm over a continuous 2 h microPET or MR imaging session. The process of transporting the animal between instruments introduced additional errors of ~0.2 mm. In serial animal imaging studies, the positioning reproducibility within ~0.8 mm could be obtained.

  16. Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies

    International Nuclear Information System (INIS)

    Dedicated small-animal imaging devices, e.g. positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) scanners, are being increasingly used for translational molecular imaging studies. The objective of this work was to determine the positional accuracy and precision with which tumors in situ can be reliably and reproducibly imaged on dedicated small-animal imaging equipment. We designed, fabricated and tested a custom rodent cradle with a stereotactic template to facilitate registration among image sets. To quantify tumor motion during our small-animal imaging protocols, 'gold standard' multi-modality point markers were inserted into tumor masses on the hind limbs of rats. Three types of imaging examination were then performed with the animals continuously anesthetized and immobilized: (i) consecutive microPET and MR images of tumor xenografts in which the animals remained in the same scanner for 2 h duration, (ii) multi-modality imaging studies in which the animals were transported between distant imaging devices and (iii) serial microPET scans in which the animals were repositioned in the same scanner for subsequent images. Our results showed that the animal tumor moved by less than 0.2-0.3 mm over a continuous 2 h microPET or MR imaging session. The process of transporting the animal between instruments introduced additional errors of ∼0.2 mm. In serial animal imaging studies, the positioning reproducibility within ∼0.8 mm could be obtained.

  17. Importance of Attenuation Correction (AC for Small Animal PET Imaging

    Directory of Open Access Journals (Sweden)

    Henrik H. El Ali

    2012-10-01

    Full Text Available The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7 were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II. CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9–21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9–17%, for kidneys 20 ± 1% (19–21%, and for bladder 18 ± 3% (15–21%. The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. Conclusions: The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.

  18. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    OpenAIRE

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned anima...

  19. Optimising rigid motion compensation for small animal brain PET imaging

    Science.gov (United States)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  20. Dependency on floral resources determines the animals' responses to floral scents

    OpenAIRE

    Junker, Robert R; Blüthgen, Nico

    2010-01-01

    Animal-pollinated angiosperms either depend on cross-pollination or may also reproduce after self-pollination—the former are thus obligately, the latter facultatively dependent on the service of animal-pollinators. Analogously, flower visitors either solely feed on floral resources or complement their diet with these, and are hence dependent or not on the flowers they visit. We assume that obligate flower visitors evolved abilities that enable them to effectively forage on flowers including m...

  1. Regional issues on animal genetic resources: trends, policies and networking in Europe

    OpenAIRE

    Mäki-Tanila, A.; Hiemstra, S.J.

    2010-01-01

    European countries are individually and in collaboration carrying out active work on animal genetic resources (AnGR). The region has a very good starting point for work on AnGR: The breed concept was developed in Europe; current European mainstream breeds are derived from local breeds and, in many species, have further formed the core of the international breeds; there has always been very active research in Europe on farm animal genetics and breeding, including sustainable utilization and ma...

  2. IND Regulatory & Manufacturing Resources - Cancer Imaging Program

    Science.gov (United States)

    The Cancer Imaging Program has been creating Investigational New Drug Applications (IND) for imaging agents in order to engage in multi-center clinical trials of these materials. A subset of the documents filed is being made available to the research community to implement routine synthesis of tracers at their own facilities and to assist investigators with the filing of their own INDs. The first of these document sets is for F-18 fluorothymidine (FLT).

  3. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models.

    Science.gov (United States)

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE(-/-) and ApoE(-/-)Fbn1C1039G(+/-) mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  4. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    Science.gov (United States)

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  5. Property rights and the management of animal genetic resources: how to secure access to drylands resources for multiple users

    OpenAIRE

    Anderson, Simon; Centose, Roberta

    2006-01-01

    "Genetic erosion in animal genetic resources (AnGR) is of concern where livelihoods of the poor are affected and option values for society are being lost. The poor often live in marginal areas and their livestock maintain adaptive characteristics. However, processes leading to genetic erosion do not precipitate adaptation through natural selection. This paper explores how local property rights systems in poor communities for AnGR are organized. The dynamism and dialectical aspects of these sy...

  6. Alternatives to animal testing: information resources via the Internet and World Wide Web.

    Science.gov (United States)

    Hakkinen, P J Bert; Green, Dianne K

    2002-04-25

    Many countries, including the United States, Canada, European Union member states, and others, require that a comprehensive search for possible alternatives be completed before beginning some or all research involving animals. Completing comprehensive alternatives searches and keeping current with information associated with alternatives to animal testing is a challenge that will be made easier as people throughout the world gain access to the Internet and World Wide Web. Numerous Internet and World Wide Web resources are available to provide guidance and other information on in vitro and other alternatives to animal testing. A comprehensive Web site is Alternatives to Animal Testing on the Web (Altweb), which serves as an online clearinghouse for resources, information, and news about alternatives to animal testing. Examples of other important Web sites include the joint one for the (US) Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and the National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) and the Norwegian Reference Centre for Laboratory Animal Science and Alternatives (The NORINA database). Internet mailing lists and online access to bulletin boards, discussion areas, newsletters, and journals are other ways to access and share information to stay current with alternatives to animal testing. PMID:11955681

  7. Animal genetic resources in Brazil: result of five centuries of natural selection.

    Science.gov (United States)

    Mariante, A da S; Egito, A A

    2002-01-01

    Brazil has various species of domestic animals, which developed from breeds brought by the Portuguese settlers soon after their discovery. For five centuries, these breeds have been subjected to natural selection in specific environments. Today, they present characteristics adapted to the specific Brazilian environmental conditions. These breeds developed in Brazil are known as "Crioulo," "local," or naturalized. From the beginning of the 20th century, some exotic breeds, selected in temperate regions, have begun to be imported. Although more productive, these breeds do not have adaptive traits, such as resistance to disease and parasites found in breeds considered to be "native." Even so, little by little, they replaced the native breeds, to such an extent that the latter are in danger of extinction. In 1983, to avoid the loss of this important genetic material, the National Research Center for Genetic Resources and Biotechnology (Cenargen) of the Brazilian Agricultural Research Corporation (Embrapa) decided to include conservation of animal genetic resources in its research program Conservation and Utilization of Genetic Resources. Until this time, they were only concerned with conservation of native plants. Conservation has been carried out by various research centers of Embrapa, universities, state research corporations, and private farmers, with a single coordinator at the national level, Cenargen. Specifically, conservation is being carried out by conservation nuclei, which are specific herds in which the animals are being conserved, situated in the habitats where the animals have been subjected to natural selection. This involves storage of semen and embryos from cattle, horses, buffaloes, donkeys, goats, sheep, and pigs. The Brazilian Animal Germplasm Bank is kept at Cenargen, which is responsible for the storage of semen and embryos of various breeds of domestic animals threatened with extinction, where almost 45,000 doses of semen and more than 200

  8. Importance of animal feed resources in developing countries and current constraints on their utilization

    International Nuclear Information System (INIS)

    Inadequacy and poor utilization of animal feed resources are the main limiting factors on animal production in most developing countries. The bulk of ruminant foodstuffs consists of poor quality fodder, such as pasture and rangeland grass, crop residues and fibrous by-products. It is very rarely possible to use cereals as supplements, since most developing countries at present need to import cereals for human consumption. This has not prevented many development agencies from recommending that cereals and other concentrate feeds be imported to boost monogastric production, reproducing the model developed for temperate countries where there is a cereal surplus. In most cases, the types of feed available locally do not allow high levels of individual animal performance. However, this does not mean that it is impossible to improve animal production in developing countries. During the last two decades, much research on animal nutrition has been successfully conducted and the results are being applied in practice. The most significant of these concern the utilization by animals of sugar-cane and its by-products, the use of non-conventional animal feeds and the treatment of straw and other fibrous materials. In all cases, supplements are required. Livestock feeding systems could also be improved if it were possible to use more of those by-products which are at present exported. New livestock feeding strategies must be developed based on currently or potentially available local resources. It is more logical and profitable for developing countries to adapt animal production systems to available feed resources than vice versa. (author)

  9. 西夏动物资源述论%The Animal Resources In Tangut

    Institute of Scientific and Technical Information of China (English)

    王守权

    2012-01-01

    In the Song Dynasty,the region of Tangut had sheep,cattle,horses,camel,dogs,chickens and other domestic animals.At the same time,there were wild beasts,birds and fish.Thus,the district of Tangut had rich animal resources in the Song Dynasty.Lots of animal resources had a tremendous impact on diet structure and foreign relations.%宋时西夏地区既有羊、牛、马、骆驼、狗、鸡等畜牧家养类动物,亦有野生动物类的走兽、飞禽和鱼类,因而西夏地区的动物资源十分丰富。西夏各类动物的大量存在对西夏的饮食结构和对外交往产生了深远而巨大的影响。

  10. Evaluation of Animal and Plant Resources Status Quo after the Reservoir Construction in Turks River and Protection Measures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to assess the status quo of animal and plant resources in Turks River after the construction of the reservoir.[Method] Through field investigation,document check and sample identification,the distribution of animal and plants resources in Turks River after the construction of the reservoir was studied and corresponding protection measures were proposed.[Result] Under the influence of reservoir,there were fifteen types of rare animals,one species of national primary protected animals,...

  11. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Science.gov (United States)

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  12. [The popular zootherapy in Bahia State: registration of new animal species used as medicinal resources].

    Science.gov (United States)

    Neto, Eraldo Medeiros Costa

    2011-01-01

    This article deals with the use of animals as medicinal resources in Bahia State, Northeastern Brazil. The data come from a processional evaluation of academic performance, since it was an exercise requested by the professor of the discipline Ethnobiology (2007.2 semester) to the students of the course Bahia State Teachers' Undergraduation of Feira de Santana State University. They were asked to make a brief survey, in their respective cities, on the use of animals as medicines. Forty-one students, from 21 cities of the country of Bahia State, have participated with data. A total of 95 animals (common names) were recorded, from which 17 are new additions to the list of medicinal animal species already published. The recording of the use of animals as folk medicines in the state of Bahia provides a significant contribution to the phenomenon of zootherapy, because it opens a space to debate about conservation biology, health public policies, sustainable management of natural resources, bioprospection, and patent. It is necessary to carry out more ethnozoological studies both to comprehend the true importance of zootherapy to the traditional communities and to develop some strategies of sustainable management and use of animal species, especially for those under risk of extinction. PMID:21503516

  13. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  14. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  15. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    Science.gov (United States)

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  16. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively

  17. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  18. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Kang-Hsin Wang, Ken; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  19. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  20. Images of Animals: Interpreting Three-Dimensional, Life-Sized 'Representations' of Animals--Zoo, Museum and Robotic Animals.

    Science.gov (United States)

    Tunnicliffe, Sue Dale

    A visit to the natural history museum is part of many pupils' educational program. One way of investigating what children learn about animals is to examine the mental models they reveal through their talk when they come face to face with animal representations. In this study, representations were provided by: (1) robotic models in a museum; (2)…

  1. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    OpenAIRE

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-01-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tom...

  2. On the Chinese-English Translation of Animal Idioms-Analysis of the Figurative Images of Animals

    Institute of Scientific and Technical Information of China (English)

    周扬眉

    2013-01-01

    Idiom, the cream of the language, is a fixed group of words or a single word, or even a sentence with a special mean⁃ing that cannot be guessed from the literal meaning of its components. In the long history, animals and human beings coexist on the earth, interact on each other and depend on each other. While animals are closely linked to the life of human beings in the whole history, gradually, people are inclined to associate some animals with certain qualities or characteristics with human beings also with the same features, then, a number of animal idioms get into human’s language. In this thesis, the author will accomplish the purpose by finding out the duality of human evolution, more animal idioms and analyze the reasons for the different figura⁃tive images such as living environment, religions and customs.

  3. Detection of pork and poultry meat and bone meals in animal feed using hyperspectral imaging

    Science.gov (United States)

    Animal feed with meat and bone meal (MBM) has been the source of bovine spongiform encephalopathy (BSE) in cattle and other livestock animals. Many countries have banned the use MBM as an animal feed ingredient. Spectral imaging techniques have shown potential for rapid assessment and authentication...

  4. Prospects and challenges for the conservation of farm animal genomic resources, 2015-2025

    OpenAIRE

    Bruford, Michael W.; Ginja, Catarina; Hoffmann, Irene; Joost, Stéphane; Orozco-terWengel, Pablo; Alberto, Florian J; Andreia J Amaral; Barbato, Mario; Biscarini, Filippo; Colli, Licia; Costa, Mafalda; Curik, Ino; Duruz, Solange; Ferenčaković, Maja; Fischer, Daniel

    2015-01-01

    Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional dat...

  5. The geographical dimension of genetic diversity: a GIScience contribution for the conservation of animal genetic resources

    OpenAIRE

    Joost, Stéphane; Golay, François; Ajmone-Marsan, Paolo

    2007-01-01

    In its natural framework, genetic information is embedded within a geographic context. Plants and animals are directly influenced by the specific characteristics of their surrounding environment. Therefore, spatial information is a potentially important element to be considered in trying to understand genetic resources. For many years, Geographical Information Science (GIScience) turned toward environmental modelling, generally to demonstrate how GIS basic features could be efficiently applie...

  6. Estimating animal resource selection from telemetry data using point process models

    Science.gov (United States)

    Johnson, Devin S.; Hooten, Mevin B.; Kuhn, Carey E.

    2013-01-01

    Analyses of animal resource selection functions (RSF) using data collected from relocations of individuals via remote telemetry devices have become commonplace. Increasing technological advances, however, have produced statistical challenges in analysing such highly autocorrelated data. Weighted distribution methods have been proposed for analysing RSFs with telemetry data. However, they can be computationally challenging due to an intractable normalizing constant and cannot be aggregated (i.e. collapsed) over time to make space-only inference.

  7. The farm animal genetic resources of Turkey: sheep – I – common and rare breeds

    OpenAIRE

    Yılmaz, Orhan; Wilson, Richard Trevor; Kor, Aşkın; Ertuğrul, Mehmet; Cengiz, Fırat

    2012-01-01

    Biodiversity richness indicates the economic and genetic wealth of a country. Turkey is like a bridge between Europe and Asia; hence it has been used by traders, travelers or intruders for centuries which cause existence of considerable different kinds of domestic animals. Although some of genotypes extinct or crucially under extinction risk, domestic livestock resources of Turkey have not been adequately appraised. On one hand new breeds are domesticated by human, on the other hand much more...

  8. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  9. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  10. The image of the city cultural cognitive resources

    Institute of Scientific and Technical Information of China (English)

    王秋婉

    2015-01-01

    the city is the cradle of civilization, is the accelerator of social development, is the crystallization of cultural evolution, is the life style of furnishings. The status of a city in history and their own cultural heritage, is a city's image of one of the most precious, most authoritative, the most famous and the most development value of historical culture resources.

  11. Bush animal attacks: management of complex injuries in a resource-limited setting

    Directory of Open Access Journals (Sweden)

    Mitchell Katrina B

    2011-12-01

    Full Text Available Abstract Introduction Though animal-related injuries and fatalities have been documented throughout the world, the variety of attacks by wild animals native to rural East Africa are less commonly described. Given the proximity of our northwestern Tanzania hospital to Lake Victoria, Lake Tanganyika, and the Serengeti National Park, and presentation of several patients attacked by bush animals and suffering a variety of complex injuries, we sought to report the pattern of attacks and surgical management in a resource-limited setting. Materials and methods Four patients who were admitted to the northwestern Tanzania tertiary referral hospital, Bugando Medical Centre (BMC, in 2010-2011 suffered attacks by different bush animals: hyena, elephant, crocodile, and vervet monkey. These patients were triaged as trauma patients in the Casualty Ward, then admitted for inpatient monitoring and treatment. Their outcomes were followed to discharge. Results The age and gender of the patients attacked was variable, though all but the pediatric patient were participating in food gathering or guarding activities in rural locations at the time of the attacks. All patients required surgical management of their injuries, which included debridement and closure of wounds, chest tube insertion, amputation, and external fixation of an extremity fracture. All patients survived and were discharged home. Discussion Though human injuries secondary to encounters with undomesticated animals such as cows, moose, and camel are reported, they often are indirect traumas resulting from road traffic collisions. Snake attacks are well documented and common. However, this series of unique bush animal attacks describes the initial and surgical management of human injuries in the resource-limited setting of the developing world. Conclusion Animal attacks are common throughout the world, but their pattern may vary in Africa throughout jungle and bush environmental settings. It is

  12. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    OpenAIRE

    Aide, Nicolas; Visser, Eric P.; Lheureux, Stéphanie; Heutte, Natacha; Szanda, Istvan; Hicks, Rodney J.

    2012-01-01

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the num...

  13. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    International Nuclear Information System (INIS)

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the number of groups that will be imaged, and the expected intra-animal variability for a given tracer. We also review how high-throughput studies can be performed in dedicated small-animal PET, high-resolution clinical PET systems and planar positron imaging systems by imaging more than one animal simultaneously. Customized beds designed to image more than one animal in large-bore small-animal PET scanners are described. Physics issues related to the presence of several rodents within the field of view (i.e. deterioration of spatial resolution and sensitivity as the radial and the axial offsets increase, respectively, as well as a larger effect of attenuation and the number of scatter events), which can be assessed by using the NEMA NU 4 image quality phantom, are detailed. (orig.)

  14. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen Cedex (France); Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Visser, Eric P. [Radboud University Nijmegen Medical Center, Nuclear Medicine Department, Nijmegen (Netherlands); Lheureux, Stephanie [Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Heutte, Natacha [Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Szanda, Istvan [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Hicks, Rodney J. [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia)

    2012-09-15

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the number of groups that will be imaged, and the expected intra-animal variability for a given tracer. We also review how high-throughput studies can be performed in dedicated small-animal PET, high-resolution clinical PET systems and planar positron imaging systems by imaging more than one animal simultaneously. Customized beds designed to image more than one animal in large-bore small-animal PET scanners are described. Physics issues related to the presence of several rodents within the field of view (i.e. deterioration of spatial resolution and sensitivity as the radial and the axial offsets increase, respectively, as well as a larger effect of attenuation and the number of scatter events), which can be assessed by using the NEMA NU 4 image quality phantom, are detailed. (orig.)

  15. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  16. Image quality assessment for CT used on small animals

    Science.gov (United States)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  17. Small animal optoacoustic tomography system for molecular imaging of contrast agents

    Science.gov (United States)

    Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.

    2016-03-01

    We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (bioluminescence based modalities for molecular imaging in live mice.

  18. Automated identification of animal species in camera trap images

    NARCIS (Netherlands)

    Yu, X.; Wang, J.; Kays, R.; Jansen, P.A.; Wang, T.; Huang, T.

    2013-01-01

    Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species identif

  19. Development of animal models for hepatobiliary nuclear imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hee; Park, Yun Hee; Ryu, Yeon Mi; Shin, Eun Kyung; Kim, Meyoung Kon [Korea University Medical College, Seoul (Korea, Republic of)

    2002-07-01

    Animal models for hepatobiliary disorders were classified into 2 different types: parenchymal hepatotoxicity and biliary-tract cholestasis. The purpose of this study was to develop animal models for hepatobiliary scintigraphy in evaluating a novel agents, such as {sup 99m}Tc-mercaptoacetyl triglycine(MAG3)-biocytin. Animal models were prepared by use of female Balb/c mice. Those were treated with 0.1, 0.5, and 2.5 ml/kg of carbon tetrachloride (CCl4) intraperitoneally for hepatotoxicity and with 30, 150, and 750 mg/kg of {alpha}-naphthylisothiocyanate (ANIT) to induce cholestasis. Dose of optimum was 0.5 ml/kg and 150 mg/kg for each model but lower (0.1 ml/kg and 30 mg/kg) and higher (2.5ml/kg and 750 mg/kg)were not be compatible for hepatobiliary models. Using these hepatobiliary models, {sup 99m}Tc-MAG3-biocytin scintigraphy was successfully carried out by using 4 parameters, e.g., peak liver/heat ratio (Rmax), peak ratio time (Tmax), half clearance time (HCT), and hepatic extraction fraction (HEF) for hepatotoxicity and cholestasis. Additionally, biochemical and histological analysis also resulted in confirming these animal models. Thus, we concluded that these animal models were highly likely to be efficient in evaluating hepatobiliary scintigraphic agent such as {sup 99m}Tc-MAG3-biocytin.

  20. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  1. Animal movement constraints improve resource selection inference in the presence of telemetry error

    Science.gov (United States)

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  2. In vivo photoacoustic imaging of osteosarcoma on animal model

    Energy Technology Data Exchange (ETDEWEB)

    Yu Menglei; Hu Jun [Department of Orthopaedics, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041 (China); Ye Fei, E-mail: hjzkm@yahoo.com.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2011-01-01

    Osteosarcoma is the commonest primary malignant tumor of bone, and the second highest cause of cancer-related death in the paediatric age group. Although there are several methods for osteosarcoma detection, e.g. X-ray, CT, MRI and bone scan, they are not satisfied methods because they can hardly detect osteosarcoma in early stage. Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that is noninvasive, nonionizing, with high sensitivity, satisfactory imaging depth and good temporal and spatial resolution. In order to explore this new method to detect osteosarcoma, we established SD rat models with osteosarcoma and utilized PAI to reconstruct the osteosarcoma image in vivo. This is the first time detecting osteosarcoma in vivo using PAI, and the results suggested that PAI has potential clinical application for detecting osteosarcoma in the early stage.

  3. Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources

    Directory of Open Access Journals (Sweden)

    Eraldo M. Costa-Neto

    2005-03-01

    Full Text Available Animals have been used as medicinal resources for the treatment and relieve of a myriad of illnesses and diseases in practically every human culture. Although considered by many as superstition, the pertinence of traditional medicine based on animals cannot be denied since they have been methodically tested by pharmaceutical companies as sources of drugs to the modern medical science. The phenomenon of zootherapy represents a strong evidence of the medicinal use of animal resources. Indeed, drug companies and agribusiness firms have been evaluating animals for decades without paying anything to the countries from where these genetic resources are found. The use of animals' body parts as folk medicines is relevant because it implies additional pressure over critical wild populations. It is argued that many animal species have been overexploited as sources of medicines for the traditional trade. Additionally, animal populations have become depleted or endangered as a result of their use as experimental subjects or animal models. Research on zootherapy should be compatible with the welfare of the medicinal animals, and the use of their by-products should be done in a sustainable way. It is discussed that sustainability is now required as the guiding principle for biological conservation.Os animais são utilizados como recursos medicinais para o tratamento e alívio de um gama de doenças e enfermidades em praticamente toda cultura humana. A pertinência da medicina tradicional baseada em animais, embora considerada como superstição, não deve ser negada uma vez que os animais têm sido testados metodicamente pelas companhias farmacêuticas como fontes de drogas para a ciência médica moderna. O fenômeno da zooterapia representa uma forte evidência do uso medicinal de recursos animais. De fato, as indústrias farmacêuticas e de agronegócios há décadas vêm avaliando animais sem pagar tributos aos países detentores desses recursos gen

  4. State of the art in both in vitro and in vivo aspects of small animal imaging

    International Nuclear Information System (INIS)

    Full text: In vivo imaging for small animals is dramatically expanding due to the coincidence of mainly three technical factors: 1. the explosion in computer power 2. the enhancement in image processing 3. the accessibility and affordability of digital autoradiography systems and small-animal scanners. Among these imaging techniques let us mention the anatomical imaging techniques such as ultrasonography, X-rays and IRM and the functional imaging radioisotopic techniques SPECT and TEP. The main advantage of the first group of imaging techniques is essentially linked to the high resolution of the anatomical images (with the drawback of the necessity of putting the animal at rest using anaesthesia). The main advantages of SPECT and PET are their high sensitivity and the vast number of functions or metabolism they allow to image. The applications for isotopic functional imaging in small animals are increasing rapidly. Factors contributing to this dramatic expansion include the three previous technical factors plus, at least, three methodological factors: 1. the drug discovery process based on receptor / mechanism of action 2. the increasing number of rodent models of human diseases (SCID mice implanted with human tumors, gene knock-out mice, transgene mice) 3. the advances in isotope and validated tracer availability performances Small animal radioisotopic functional imaging for drug development. In vivo quantification of biological processes to measure the mechanism of action of a potential drug and its concentration at the site of action has become mandatory for developing a drug. Rational and efficient means of confirming mechanisms of action are required. For this purpose, PET and/or SPECT functional - biochemical - molecular imaging in small animals are tools of choice for economical reasons (in the domain of drug development, industry is suffering huge opportunity costs by failing to weed out non-performing new active substances until late phases II and III) and

  5. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    Science.gov (United States)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  6. Construction of gender images in Japanese pornographic anime

    OpenAIRE

    Barancovaitė-Skindaravičienė, Kristina

    2013-01-01

    Straipsnyje tyrinėjamos vyriškumo ir moteriškumo įvaizdžių kūrimo priemonės japoniškoje pornografinėje animacijoje (jap. k. hentai anime). Hentai animacija, kaip ir kiti japoniškos animacijos žanrai, pastaraisiais dešimtmečiais sulaukė didžiulio populiarumo visame pasaulyje. Pornografinio turinio animaciniuose filmuose lytiškumas yra ypatingai pabrėžiamas, todėl šio žanro anime yra svarbi vizualinė priemonė, pristatanti japoniško vyriškumo ir moteriškumo įvaizdžius tarptautiniu lygmeniu. Stra...

  7. Resources

    Science.gov (United States)

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  8. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    OpenAIRE

    MartinAndreasStyner; GuidoGerig; MatthewMcMurray; HongyuAn; JoohwiLee

    2011-01-01

    The use of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain struct...

  9. Small animal image-guided radiotherapy: status, considerations and potential for translational impact

    OpenAIRE

    Butterworth, K. T.; Prise, K M; Verhaegen, F

    2014-01-01

    Radiation biology is being transformed by the implementation of small animal image-guided precision radiotherapy into pre-clinical research programmes worldwide. We report on the current status and developments of the small animal radiotherapy field, suggest criteria for the design and execution of effective studies and contend that this powerful emerging technology, used in combination with relevant small animal models, holds much promise for translational impact in radiation oncology.

  10. Role of nuclear medicine in imaging companion animals

    International Nuclear Information System (INIS)

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  11. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals

    Science.gov (United States)

    Sarcinelli, Michelle Alvares; Albernaz, Marta de Souza; Szwed, Marzena; Iscaife, Alexandre; Leite, Kátia Ramos Moreira; Junqueira, Mara de Souza; Bernardes, Emerson Soares; da Silva, Emerson Oliveira; Tavares, Maria Ines Bruno; Santos-Oliveira, Ralph

    2016-01-01

    Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose) administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA)/polyvinyl alcohol (PVA)/montmorillonite (MMT)/trastuzumab nanoparticles labeled with technetium-99m (99mTc) for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200–500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta potential of −14,6 mV. The cytotoxicity results demonstrated that the nanoparticles were capable of reaching breast cancer cells. The biodistribution data demonstrated that the PLA/PVA/MMT/trastuzumab nanoparticles labeled with 99mTc have great renal clearance and also a high uptake by the lesion, as ~45% of the PLA/PVA/MMT/trastuzumab nanoparticles injected were taken up by the lesion. The data support PLA/PVA/MMT/trastuzumab labeled with 99mTc nanoparticles as nanoradiopharmaceuticals for breast cancer imaging. PMID:27713638

  12. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  13. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future. PMID:26745904

  14. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    Science.gov (United States)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  15. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  16. Counter Rotating Open Rotor Animation using Particle Image Velocimetry

    CERN Document Server

    Roosenboom, E W M; Geisler, R; Pallek, D; Agocs, J; Neitzke, K -P

    2011-01-01

    This article describes the two accompanying fluid dynamics videos for the "Counter rotating open rotor flow field investigation using stereoscopic Particle Image Velocimetry" presented at the 64th Annual Meeting of the APS Division of Fluid Dynamics in Baltimore, Maryland, November 20-22, 2011.

  17. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær;

    2012-01-01

    concentration in the same organ with and without AC revealed an overall attenuation recovery of 9–21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9–17%), for kidneys 20 ± 1% (19...

  18. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Directory of Open Access Journals (Sweden)

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  19. Prospects and Challenges for the Conservation of Farm Animal Genomic Resources, 2015-2025

    Directory of Open Access Journals (Sweden)

    Michael William Bruford

    2015-10-01

    Full Text Available Livestock conservation practice is changing rapidly in light of policy, climate change and market demands. The last decade saw a step change in technological and analytical approaches to define, manage and conserve Farm Animal Genomic Resources (FAnGR. These changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and the methodologies needed to exploit new, multidimensional data. The ESF Genomic Resources program final conference addressed these problems attempting to contribute to the development of the research and policy agenda for the next decade. We broadly identified four areas related to methodological and analytical challenges, data management and conservation. The overall conclusion is that there is a need for the use of current state-of-the-art tools to characterise the state of genomic resources in non-commercial and local breeds. The livestock genomic sector, which has been relatively well-organised in applying such methodologies so far, needs to make a concerted effort in the coming decade to enable to the democratisation of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.

  20. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  1. 动画影片中动物形象设计研究%Research on Animal Image Design in Animated Films

    Institute of Scientific and Technical Information of China (English)

    罗玲鑫

    2012-01-01

    动物作为动画片中的卡通形象,越来越被广泛运用,一个好的卡通形象是影视动画片成功与否的关键。本文从动物卡通形象的绘画、动物形象分类,以及动画影片中成功案例分析造型设计。%Animals as the animated cartoon image,more and more extensive use of a good cartoon image is the key to the film and television animation success.From animal cartoon image of the painting,animal images classification,as well as case studies of successful animated films design.

  2. Introduction to the physics of molecular imaging with radioactive tracers in small animals.

    Science.gov (United States)

    King, Michael A; Pretorius, P Hendrik; Farncombe, Troy; Beekman, Freek J

    2002-01-01

    Recent advances have greatly enhanced the three-dimensional (3D) imaging of radioactive tracers in living animals. this article introduces the physics of imaging behind the imaging methods. The article first discusses the selection of the radiation emitted from the tracer and then the process of tomographic reconstruction or how 3D images are made from imaging around the outside of the animal. The technique of single photon emission computed tomography (SPECT) in which the detection of one X-ray or gamma ray at a time is employed for image formation is then described. Finally, positron emission tomography (PET) which relies on the simultaneous detection of the pair of gamma-rays formed when the positron annihilates is presented.

  3. Low resource processing algorithms for laser Doppler blood flow imaging.

    Science.gov (United States)

    Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; He, Diwei; Morgan, Stephen P

    2011-07-01

    The emergence of full field laser Doppler blood flow imaging systems based on CMOS camera technology means that a large amount of data from each pixel in the image needs to be processed rapidly and system resources need to be used efficiently. Conventional processing algorithms that are utilized in single point or scanning systems are therefore not an ideal solution as they will consume too much system resource. Two processing algorithms that address this problem are described and efficiently implemented in a field programmable gate array. The algorithms are simple enough to use low system resource but effective enough to produce accurate flow measurements. This enables the processing unit to be integrated entirely in an embedded system, such as in an application-specific integrated circuit. The first algorithm uses a short Fourier transformation length (typically 8) but averages the output multiple times (typically 128). The second method utilizes an infinite impulse response filter with a low number of filter coefficients that operates in the time domain and has a frequency-weighted response. The algorithms compare favorably with the reference standard 1024 point fast Fourier transform in terms of both resource usage and accuracy. The number of data words per pixel that need to be stored for the algorithms is 1024 for the reference standard, 8 for the short length Fourier transform algorithm and 5 for the algorithm based on the infinite impulse response filter. Compared to the reference standard the error in the flow calculation is 1.3% for the short length Fourier transform algorithm and 0.7% for the algorithm based on the infinite impulse response filter. PMID:21316289

  4. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin

    2012-01-01

    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  5. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  6. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    DEFF Research Database (Denmark)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling;

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects...... to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation....... Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic...

  7. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author)

  8. Nanoradiopharmaceuticals for breast cancer imaging: development, characterization, and imaging in inducted animals

    Directory of Open Access Journals (Sweden)

    Sarcinelli MA

    2016-09-01

    Full Text Available Michelle Alvares Sarcinelli,1,2 Marta de Souza Albernaz,3 Marzena Szwed,4 Alexandre Iscaife,2 Kátia Ramos Moreira Leite,2 Mara de Souza Junqueira,5 Emerson Soares Bernardes,6 Emerson Oliveira da Silva,1 Maria Ines Bruno Tavares,1 Ralph Santos-Oliveira7 1Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; 2Laboratory of Medical Investigation, Faculty of Medicine, São Paulo University, São Paulo, Brazil; 3Radiopharmacy Sector, University Hospital Clementino Fraga Filho, Rio de Janeiro, Brazil; 4Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; 5Laboratory of Experimental Oncology, Faculty of Medicine, São Paulo University, São Paulo, Brazil; 6Radiopharmacy Center, Instituto de Pesquisas Energéticas e Nucleares (IPEN, São Paulo, Brazil; 7Laboratory of Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, Brazil Abstract: Monoclonal antibodies as polymeric nanoparticles are quite interesting and endow this new drug category with many advantages, especially by reducing the number of adverse reactions and, in the case of radiopharmaceuticals, also reducing the amount of radiation (dose administered to the patient. In this study, a nanoradiopharmaceutical was developed using polylactic acid (PLA/polyvinyl alcohol (PVA/montmorillonite (MMT/trastuzumab nanoparticles labeled with technetium-99m (99mTc for breast cancer imaging. In order to confirm the nanoparticle formation, atomic force microscopy and dynamic light scattering were performed. Cytotoxicity of the nanoparticle and biodistribution with 99mTc in healthy and inducted animals were also measured. The results from atomic force microscopy showed that the nanoparticles were spherical, with a size range of ~200–500 nm. The dynamic light scattering analysis demonstrated that over 90% of the nanoparticles produced had a size of 287 nm with a zeta

  9. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    Directory of Open Access Journals (Sweden)

    Juha eKantanen

    2015-02-01

    Full Text Available Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources.There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment.Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4 emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection.Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programmes for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.

  10. Hardware-specific image compression techniques for the animation of CFD data

    Science.gov (United States)

    Jones, Stephen C.; Moorhead, Robert J., II

    1992-06-01

    The visualization and animation of computational fluid dynamics (CFD) data is vital in understanding the varied parameters that exist in the solution field. Scientists need accurate and efficient visualization techniques. The animation of CFD data is not only computationally expensive but also expensive in the allocation of memory, both RAM and disk. Preserving animations of the CFD data visualizations is useful, since recreation of the animation is expensive when dealing with extremely large data structures. Researchers of CFD data may wish to follow a particle trace over an experimental fuselage design, but are unable to retain the animation for efficient retrieval without rendering or consuming a considerable amount of disk space. The spatial image resolution is reduced from 1280 X 1024 to 512 X 480 in going from the workstation format to a video format, therefore, a desire to save these animations on disk results. Saving on disk allows the animation to maintain the spatial and intensity quality of the rendered image and allows the display of the animation at approximately 30 frames/sec, the standard video rate. The goal is to develop optimal image compression algorithms that allow visualization animations, captures as independent RGB images, to be recorded to tape or disk. If recorded to disk, the image sequence is compressed in non-realtime with a technique which allows subsequent decompression at approximately 30 frames/sec to simulate the temporal resolution of video. Initial compression is obtained through mapping RGB colors in each frame to a 12-bit colormap image. The colormap is animation sequence dependent and is created by histogramming the colors in the animation sequence and mapping those colors with relation to specific regions of the L*a*b* color coordinate system to take advantage of the uniform nature of the L*a*b* color system. Further compression is obtained by taking interframe differences, specifically comparing respective blocks between

  11. A comparison of animated versus static images in an instructional multimedia presentation.

    Science.gov (United States)

    Daly, C J; Bulloch, J M; Ma, M; Aidulis, D

    2016-06-01

    Sophisticated three-dimensional animation and video compositing software enables the creation of complex multimedia instructional movies. However, if the design of such presentations does not take account of cognitive load and multimedia theories, then their effectiveness as learning aids will be compromised. We investigated the use of animated images versus still images by creating two versions of a 4-min multimedia presentation on vascular neuroeffector transmission. One version comprised narration and animations, whereas the other animation comprised narration and still images. Fifty-four undergraduate students from level 3 pharmacology and physiology undergraduate degrees participated. Half of the students watched the full animation, and the other half watched the stills only. Students watched the presentation once and then answered a short essay question. Answers were coded and marked blind. The "animation" group scored 3.7 (SE: 0.4; out of 11), whereas the "stills" group scored 3.2 (SE: 0.5). The difference was not statistically significant. Further analysis of bonus marks, awarded for appropriate terminology use, detected a significant difference in one class (pharmacology) who scored 0.6 (SE: 0.2) versus 0.1 (SE: 0.1) for the animation versus stills group, respectively (P = 0.04). However, when combined with the physiology group, the significance disappeared. Feedback from students was extremely positive and identified four main themes of interest. In conclusion, while increasing student satisfaction, we do not find strong evidence in favor of animated images over still images in this particular format. We also discuss the study design and offer suggestions for further investigations of this type. PMID:27105738

  12. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications.

    Science.gov (United States)

    Denny, Ellen G; Gerst, Katharine L; Miller-Rushing, Abraham J; Tierney, Geraldine L; Crimmins, Theresa M; Enquist, Carolyn A F; Guertin, Patricia; Rosemartin, Alyssa H; Schwartz, Mark D; Thomas, Kathryn A; Weltzin, Jake F

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  13. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    Science.gov (United States)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A. F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-05-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  14. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications

    Science.gov (United States)

    Denny, Ellen G.; Gerst, Katharine L.; Miller-Rushing, Abraham J.; Tierney, Geraldine L.; Crimmins, Theresa M.; Enquist, Carolyn A.F.; Guertin, Patricia; Rosemartin, Alyssa H.; Schwartz, Mark D.; Thomas, Kathryn A.; Weltzin, Jake F.

    2014-01-01

    Phenology offers critical insights into the responses of species to climate change; shifts in species’ phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological “status”, or the ability to track presence–absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.

  15. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    Science.gov (United States)

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  16. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    Science.gov (United States)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  17. Precise image-guided irradiation of small animals: a flexible non-profit platform

    Science.gov (United States)

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Rimarzig, Bernd; Sobiella, Manfred; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang

    2016-04-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks.

  18. Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Loudos, George, E-mail: gloudos@teiath.gr [Department of Medical Instruments Technology, Technological Educational Institute of Athens, AG. Spyridonos 28, Egaleo 12210 (Greece); Kagadis, George C., E-mail: gkagad@gmail.com [Department of Medical Physics, School of Medicine, University of Patras, P.O. Box 13273, GR-265 04 Rion (Greece); Psimadas, Dimitris, E-mail: dpsimad@chem.uoa.gr [Department of Medical Instruments Technology, Technological Educational Institute of Athens, AG. Spyridonos 28, Egaleo 12210 (Greece); Institute of Radioisotopes and Radiodiagnostic Products, National Center of Scientific Research ' Demokritos' , P.O. 60228, 153 10 Agia Paraskevi, Athens (Greece)

    2011-05-15

    Small animal molecular imaging is a rapidly expanding efficient tool to study biological processes non-invasively. The use of radiolabeled tracers provides non-destructive, imaging information, allowing time related phenomena to be repeatedly studied in a single animal. In the last decade there has been an enormous progress in related technologies and a number of dedicated imaging systems overcome the limitations that the size of small animal possesses. On the other hand, nanoparticles (NPs) gain increased interest, due to their unique properties, which make them perfect candidates for biological applications. Over the past 5 years the two fields seem to cross more and more often; radiolabeled NPs have been assessed in numerous pre-clinical studies that range from oncology, till HIV treatment. In this article the current status in the tools, applications and trends of radiolabeled NPs reviewed.

  19. Integration of the denoising, inpainting and local harmonic Bz algorithm for MREIT imaging of intact animals

    Science.gov (United States)

    Jeon, Kiwan; Kim, Hyung Joong; Lee, Chang-Ock; Seo, Jin Keun; Woo, Eung Je

    2010-12-01

    Conductivity imaging based on the current-injection MRI technique has been developed in magnetic resonance electrical impedance tomography. Current injected through a pair of surface electrodes induces a magnetic flux density distribution inside an imaging object, which results in additional magnetic field inhomogeneity. We can extract phase changes related to the current injection and obtain an image of the induced magnetic flux density. Without rotating the object inside the bore, we can measure only one component Bz of the magnetic flux density B = (Bx, By, Bz). Based on a relation between the internal conductivity distribution and Bz data subject to multiple current injections, one may reconstruct cross-sectional conductivity images. As the image reconstruction algorithm, we have been using the harmonic Bz algorithm in numerous experimental studies. Performing conductivity imaging of intact animal and human subjects, we found technical difficulties that originated from the MR signal void phenomena in the local regions of bones, lungs and gas-filled tubular organs. Measured Bz data inside such a problematic region contain an excessive amount of noise that deteriorates the conductivity image quality. In order to alleviate this technical problem, we applied hybrid methods incorporating ramp-preserving denoising, harmonic inpainting with isotropic diffusion and ROI imaging using the local harmonic Bz algorithm. These methods allow us to produce conductivity images of intact animals with best achievable quality. We suggest guidelines to choose a hybrid method depending on the overall noise level and existence of distinct problematic regions of MR signal void.

  20. Small-animal whole-body imaging using a photoacoustic full ring array system

    Science.gov (United States)

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  1. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Sohlberg, Antti [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Lensu, Sanna [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Department of Environmental Health, National Public Health Institute, Kuopio (Finland); Jolkkonen, Jukka [Department of Neuroscience and Neurology, University of Kuopio, Kuopio (Finland); Tuomisto, Leena [Department of Pharmacology and Toxicology, University of Kuopio, Kuopio (Finland); Ruotsalainen, Ulla [Institute of Signal Processing, DMI, Tampere University of Technology, Tampere (Finland); Kuikka, Jyrki T. [Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, P.O. Box 1777, 70211, Kuopio (Finland); Niuvanniemi Hospital, Kuopio (Finland)

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with {sup 123}I-epidepride and {sup 99m}Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  2. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction

    International Nuclear Information System (INIS)

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with 123I-epidepride and 99mTc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. (orig.)

  3. Improving the quality of small animal brain pinhole SPECT imaging by Bayesian reconstruction.

    Science.gov (United States)

    Sohlberg, Antti; Lensu, Sanna; Jolkkonen, Jukka; Tuomisto, Leena; Ruotsalainen, Ulla; Kuikka, Jyrki T

    2004-07-01

    The possibility of using existing hardware makes pinhole single-photon emission computed tomography (SPECT) attractive when pursuing the ultra-high resolution required for small animal brain imaging. Unfortunately, the poor sensitivity and the heavy weight of the collimator hamper the use of pinhole SPECT in animal studies by generating noisy and misaligned projections. To improve the image quality we have developed a new Bayesian reconstruction method, pinhole median root prior (PH-MRP), which prevents the excessive noise accumulation from the projections to the reconstructed image. The PH-MRP algorithm was used to reconstruct data acquired with our small animal rotating device, which was designed to reduce the rotation orbit misalignments. Phantom experiments were performed to test the device and compare the PH-MRP with the conventional Feldkamp-Davis-Kress (FDK) and pinhole ordered subsets maximum likelihood expectation maximisation (PH-OSEM) reconstruction algorithms. The feasibility of the system for small animal brain imaging was studied with Han-Wistar rats injected with (123)I-epidepride and (99m)Tc-hydroxy methylene diphosphonate. Considering all the experiments, no shape distortions due to orbit misalignments were encountered and remarkable improvements in noise characteristics and also in overall image quality were observed when the PH-MRP was applied instead of the FDK or PH-OSEM. In addition, the proposed methods utilise existing hardware and require only a certain amount of construction and programming work, making them easy to implement. PMID:14991246

  4. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  5. The labelling and animal study of tumor positive imaging agent 5-18F-fluorouracil

    International Nuclear Information System (INIS)

    Objective: To synthesize and label a tumor positive imaging agent 18F-fluorouracil (FU) and the animal study on the product was also undertaken. Methods: 18F-FU was synthesized and labelled. Its biodistribution analysis was done on normal and tumor bearing nude mice. PET imaging was performed on normal and tumor bearing rabbits. Results: HPLC analysis and other quality control test results guaranteed the possibility of animal study and clinical usage of 18F-FU. Biodistribution analysis and PET imaging also demonstrated a high accumulation of the tracer in tumor tissue. Conclusion: 18F-FU is a kind of potential tumor positive imaging agents which can be used to assess the effects of chemotherapy

  6. To eat and not be eaten: modelling resources and safety in multi-species animal groups.

    Directory of Open Access Journals (Sweden)

    Umesh Srinivasan

    Full Text Available Using mixed-species bird flocks as an example, we model the payoffs for two types of species from participating in multi-species animal groups. Salliers feed on mobile prey, are good sentinels and do not affect prey capture rates of gleaners; gleaners feed on prey on substrates and can enhance the prey capture rate of salliers by flushing prey, but are poor sentinels. These functional types are known from various animal taxa that form multi-species associations. We model costs and benefits of joining groups for a wide range of group compositions under varying abundances of two types of prey-prey on substrates and mobile prey. Our model predicts that gleaners and salliers show a conflict of interest in multi-species groups, because gleaners benefit from increasing numbers of salliers in the group, whereas salliers benefit from increasing gleaner numbers. The model also predicts that the limits to size and variability in composition of multi-species groups are driven by the relative abundance of different types of prey, independent of predation pressure. Our model emphasises resources as a primary driver of temporal and spatial group dynamics, rather than reproductive activity or predation per se, which have hitherto been thought to explain patterns of multi-species group formation and cohesion. The qualitative predictions of the model are supported by empirical patterns from both terrestrial and marine multi-species groups, suggesting that similar mechanisms might underlie group dynamics in a range of taxa. The model also makes novel predictions about group dynamics that can be tested using variation across space and time.

  7. Stable Small Animal Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    OpenAIRE

    Jacob, Richard E.; Lamm, Wayne J.

    2011-01-01

    Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes), over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward dri...

  8. Reporter enzyme fluorescence (REF) imaging and quantification of tuberculosis in live animals

    OpenAIRE

    Kong, Ying; Cirillo, Jeffrey D

    2010-01-01

    The slow growth rate of Mycobacterium tuberculosis hinders research progress, since estimating the bacterial numbers present in all experiments normally relies on determination of colony forming units on agar plates. M. tuberculosis colonies can take as long as four to six weeks to become visible. Whole animal imaging is an emerging technology that has broad applications in all areas of biological sciences, including monitoring infections. Imaging allows bacterial numbers to be determined in ...

  9. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    OpenAIRE

    Nabeela Nathoo; V Wee Yong; Dunn, Jeff F.

    2014-01-01

    There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future resear...

  10. Fast image reconstruction experiments using small-bore MRI for animals

    International Nuclear Information System (INIS)

    Fast image reconstruction experiments were done using a high-speed image processor utilizing a digital signal processor chip (TMS320C30, Texas Instruments Inc) and a 4.7 T MR imager for animals (Biospec 47/40, Bruker Medizintechnik Gmbh). An image refresh time of 3.2s for a 128 x 128 matrix image was achieved using a fast gradient-echo sequence with a TR/TE/flip-angle of 20ms/6ms/30deg. MR images of a phantom and a rat were obtained repetitively and recorded on videotape over a long period. This system shows great promise for interventional MRI and also for the study of non-phasic motion such as movements of the gastrointestinal tract. (author)

  11. Coil concepts for rapid and motion-compensated MR-Imaging of small animals

    International Nuclear Information System (INIS)

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  12. Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury

    Science.gov (United States)

    Hoyt, Kenneth; Warram, Jason M.; Wang, Dezhi; Ratnayaka, Sithira; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Purpose The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. Procedures A population of rats underwent 30 min of renal ischemia (acute kidney injury, N=6) or sham injury (N=4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. Results Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. Conclusions Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted. PMID:25905474

  13. A High-Frequency High Frame Rate Duplex Ultrasound Linear Array Imaging System for Small Animal Imaging

    Science.gov (United States)

    Zhang, Lequan; Xu, Xiaochen; Hu, Changhong; Sun, Lei; Yen, Jesse T.; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    High-frequency (HF) ultrasound imaging has been shown to be useful for non-invasively imaging anatomical structures of the eye and small animals in biological and pharmaceutical research, achieving superior spatial resolution. Cardiovascular research utilizing mice requires not only real-time B-scan imaging, but also ultrasound Doppler to evaluate both anatomy and blood flow of the mouse heart. This paper reports the development of a high frequency ultrasound duplex imaging system capable of both B-mode imaging and Doppler flow measurements, using a 64-element linear array. The system included a HF pulsed-wave Doppler module, a 32-channel HF B-mode imaging module, a PC with a 200 MS/s 14-bit A/D card, and real-time LabView software. A 50dB signal-to-noise ratio (SNR) and a depth of penetration of larger than 12 mm were achieved using a 35 MHz linear array with 50 μm pitch. The two-way beam widths were determined to be 165 μm to 260 μm and the clutter energy to total energy ratio (CTR) were 9.1 dB to 12 dB, when the array was electronically focused at different focal points at depths from 4.8 mm to 9.6 mm. The system is capable of acquiring real-time B-mode images at a rate greater than 400 frames per second (fps) for a 4.8 × 13 mm field of view, using a 30 MHz 64-element linear array with 100 μm pitch. Sample in vivo cardiac high frame rate images and duplex images of mouse hearts are shown to assess its current imaging capability and performance for small animals. PMID:20639149

  14. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery

    Science.gov (United States)

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei

    2015-12-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  15. Changing values of farm animal genomic resources. from historical breeds to the Nagoya Protocol.

    Science.gov (United States)

    Tamminen, Sakari

    2015-01-01

    The paper reviews the history of Animal genetic resources (AnGRs) and claims that over the course of history they have been conceptually transformed from economic, ecologic and scientific life forms into political objects, reflecting in the way in which any valuation of AnGRs is today inherently imbued with national politics and its values enacted by legally binding global conventions. Historically, the first calls to conservation were based on the economic, ecological and scientific values of the AnGR. While the historical arguments are valid and still commonly proposed values for conservation, the AnGR have become highly politicized since the adoption of the Convention of Biological Diversity (CBD), the subsequent Interlaken Declaration, the Global Plan for Action (GPA) and the Nagoya Protocol. The scientific and political definitions of the AnGRs were creatively reshuffled within these documents and the key criteria by which they are now identified and valued today were essentially redefined. The criteria of "in situ condition" has become the necessary starting point for all valuation efforts of AnGRs, effectively transforming their previous nature as natural property and global genetic commons into objects of national concern pertaining to territorially discrete national genetic landscapes, regulated by the sovereign powers of the parties to the global conventions. PMID:26442098

  16. Scatter Characterization and Correction for Simultaneous Multiple Small-Animal PET Imaging

    NARCIS (Netherlands)

    Prasad, Rameshwar; Zaidi, Habib

    2014-01-01

    The rapid growth and usage of small-animal positron emission tomography (PET) in molecular imaging research has led to increased demand on PET scanner's time. One potential solution to increase throughput is to scan multiple rodents simultaneously. However, this is achieved at the expense of deterio

  17. The use of quantimet 720 for quantitative analysis of acute leukemia images in animals and humans

    International Nuclear Information System (INIS)

    Considerable progress has been achieved in the past ten years in the analysis of particle size and form. Automatic and quantitative image analyzers and stereology enabled a comparative study of acute human and animal leukemias. It is obvious that the agreement of results between these two natural and induced categories provides encouragement to continue this investigation by these methods

  18. Magnetic resonance imaging of monocyte infiltration in an animal model of multiple sclerosis

    NARCIS (Netherlands)

    Oude Engberink, R.D.

    2008-01-01

    The aim of this research was to study neuroinflammatory processes and more specifically the infiltration of monocytes in the central nervous system (CNS) in an animal model of multiple sclerosis (MS) using magnetic resonance imaging (MRI). Monocytes play a key role in MS pathology, and the study of

  19. Aerial-image enables diagrams and animation to be inserted in motion pictures

    Science.gov (United States)

    Andrews, S. J., Jr.; Tressel, G. W.

    1967-01-01

    Aerial-image unit makes it possible to insert diagrams and animation into live motion pictures, and also lift an element from a confusing background by suppressing general details. The unit includes a combination of two separate lens systems, the camera-projector system and the field lens system.

  20. Fully automated image-guided needle insertion: application to small animal biopsies.

    Science.gov (United States)

    Ayadi, A; Bour, G; Aprahamian, M; Bayle, B; Graebling, P; Gangloff, J; Soler, L; Egly, J M; Marescaux, J

    2007-01-01

    The study of biological process evolution in small animals requires time-consuming and expansive analyses of a large population of animals. Serial analyses of the same animal is potentially a great alternative. However non-invasive procedures must be set up, to retrieve valuable tissue samples from precisely defined areas in living animals. Taking advantage of the high resolution level of in vivo molecular imaging, we defined a procedure to perform image-guided needle insertion and automated biopsy using a micro CT-scan, a robot and a vision system. Workspace limitations in the scanner require the animal to be removed and laid in front of the robot. A vision system composed of a grid projector and a camera is used to register the designed animal-bed with to respect to the robot and to calibrate automatically the needle position and orientation. Automated biopsy is then synchronised with respiration and performed with a pneumatic translation device, at high velocity, to minimize organ deformation. We have experimentally tested our biopsy system with different needles.

  1. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  2. Investigating the dopaminergic synapse in vivo. II. Molecular imaging studies in small laboratory animals.

    Science.gov (United States)

    Nikolaus, Susanne; Larisch, Rolf; Beu, Markus; Antke, Christina; Kley, Konstantin; Forutan, Farhad; Wirrwar, Andreas; Müller, Hans-Wilhelm

    2007-01-01

    Dopaminergic synaptic function may be assessed either at the presynaptic terminal or at the postsynaptic binding sites using molecular in vivo imaging methods. Apart from the density of binding sites, parameters such as alterations in dopamine synthesis, dopamine storage or dopamine release can be quantified either by application of specific radiotracers or by assessing the competition between the exogenous radioligand and endogenous dopamine. The performance of animal studies allows the induction of specific short-term or long-term synaptic conditions via pharmacological challenges or infliction of neurotoxic lesions. Therefore, small laboratory animals such as rats and mice have become invaluable models for a variety of human disorders. This article gives an overview of those small animal studies which have been performed so far on dopaminergic neurotransmission using in vivo imaging methods, with a special focus on the relevance of findings within the functional entity of the dopaminergic synapse. Taken together, in vivo investigations on animal models of Parkinson's disease showed decreases of dopamine storage, dopamine release and dopamine transporter binding, no alterations of dopamine synthesis and DA release, and either increases or no alterations of D2 receptor binding, while in vivo investigations of animal models of Huntington's disease. showed decreases of DAT and D1 receptor binding. For D2 receptor binding, both decreases and increases have been reported, dependent on the radioligand employed. Substances of abuse, such as alcohol, amphetamine and methylphenidate, led to an increase of dopamine release in striatal regions. This held for the acute application of substances to both healthy animals and animal models of drug abuse. Findings also showed that chronic application of cocaine induced long-term reductions of both D1 and D2 receptor binding, which disappeared after several weeks of withdrawal. Finally, preliminary results yielded the first

  3. Development of a combined microSPECT/CT system for small animal imaging

    Science.gov (United States)

    Sun, Mingshan

    Modern advances in the biomedical sciences have placed increased attention on small animals such as mice and rats as models of human biology and disease in biological research and pharmaceutical development. Their small size and fast breeding rate, their physiologic similarity to human, and, more importantly, the availability of sophisticated genetic manipulations, all have made mice and rats the laboratory mammals of choice in these experimental studies. However, the increased use of small animals in biomedical research also calls for new instruments that can measure the anatomic and metabolic information noninvasively with adequate spatial resolution and measurement sensitivity to facilitate these studies. This dissertation describes the engineering development of a combined single photon emission computed tomography (SPECT) and X-ray computed tomography (CT) system dedicated for small animals imaging. The system aims to obtain both the anatomic and metabolic images with submillimeter spatial resolution in a way that the data can be correlated to provide improved image quality and to offer more complete biological evaluation for biomedical studies involving small animals. The project requires development of complete microSPECT and microCT subsystems. Both subsystems are configured with a shared gantry and animal bed with integrated instrumentation for data acquisition and system control. The microCT employs a microfocus X-ray tube and a CCD-based detector for low noise, high resolution imaging. The microSPECT utilizes three semiconductor detectors coupled with pinhole collimators. A significant contribution of this dissertation project is the development of iterative algorithms with geometrical compensation that allows radionuclide images to be reconstructed at submillimeter spatial resolution, but with significantly higher detection efficiency than conventional methods. Both subsystems are capable of helical scans, offering lengthened field of view and improved

  4. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    Science.gov (United States)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  5. Analyzer-based imaging of spinal fusion in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M E [Division of Neurosurgery, Royal University Hospital, University of Saskatchewan, Saskatoon, SK (Canada); Beavis, R C; Allen, L A [Division of Orthopedic Surgery, Royal University Hospital, University of Saskatchewan, Saskatoon, SK (Canada); Fiorella, David [Department of Neuroradiology, Cleveland Clinic, Cleveland, OH (United States); Schueltke, E; Juurlink, B H; Chapman, L D [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Zhong, Z [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY (United States)], E-mail: kellym@ccf.org

    2008-05-21

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs.

  6. Analyzer-based imaging of spinal fusion in an animal model

    Science.gov (United States)

    Kelly, M. E.; Beavis, R. C.; Fiorella, David; Schültke, E.; Allen, L. A.; Juurlink, B. H.; Zhong, Z.; Chapman, L. D.

    2008-05-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs.

  7. Phantom and animal imaging studies using PLS synchrotron X-rays

    CERN Document Server

    Hee Joung Kim; Kyu Ho Lee; Hai Jo Jung; Eun Kyung Kim; Jung Ho Je; In Woo Kim; Yeukuang, Hwu; Wen Li Tsai; Je Kyung Seong; Seung Won Lee; Hyung Sik Yoo

    2001-01-01

    Ultra-high resolution radiographs can be obtained using synchrotron X-rays. A collaboration team consisting of K-JIST, POSTECH and YUMC has recently commissioned a new beamline (5C1) at Pohang Light Source (PLS) in Korea for medical applications using phase contrast radiology. Relatively simple image acquisition systems were set up on 5C1 beamline, and imaging studies were performed for resolution test patterns, mammographic phantom, and animals. Resolution test patterns and mammographic phantom images showed much better image resolution and quality with the 5C1 imaging system than the mammography system. Both fish and mouse images with 5C1 imaging system also showed much better image resolution with great details of organs and anatomy compared to those obtained with a conventional mammography system. A simple and inexpensive ultra-high resolution imaging system on 5C1 beamline was successfully implemented. The authors were able to acquire ultra-high resolution images for, resolution test patterns, mammograph...

  8. Progress of Focusing X-ray and Gamma-ray Optics for Small Animal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pivovaroff, M J; Funk, T; Barber, W C; Ramsey, B D; Hasegawa, B H

    2005-08-05

    Significant effort is currently being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. Ideally, one would like to discern these functional and metabolic relationships with in vivo radionuclide imaging at spatial resolutions approaching those that can be obtained using the anatomical imaging techniques (i.e., <100 {micro}m), which would help to answer outstanding questions in many areas of biomedicine. In this paper, we report progress on our effort to develop high-resolution focusing X-ray and gamma-ray optics for small-animal radionuclide imaging. The use of reflective optics, in contrast to methods that rely on absorptive collimation like single- or multiple-pinhole cameras, decouples spatial resolution from sensitivity (efficiency). Our feasibility studies have refined and applied ray-tracing routines to design focusing optics for small animal studies. We also have adopted a replication technique to manufacture the X-ray mirrors, and which in experimental studies have demonstrated a spatial resolution of {approx}190 {micro}m. We conclude that focusing optics can be designed and fabricated for gamma-ray energies, and with spatial resolutions, and field of view suitable for in vivo biological studies. While the efficiency of a single optic is limited, fabrication methods now are being developed that may make it possible to develop imaging systems with multiple optics that could collect image data over study times that would be practical for performing radionuclide studies of small animals.

  9. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  10. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  11. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    Science.gov (United States)

    Xia, Yan; Yao, Rutao; Deng, Xiao; Liu, Yaqiang; Wang, Shi; Ma, Tianyu

    2013-02-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme.

  12. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    International Nuclear Information System (INIS)

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  13. Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish.

    Science.gov (United States)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G; Chiarotti, Flavia; Butail, Sachit; Macrì, Simone; Porfiri, Maurizio

    2015-06-01

    Emotional disturbances constitute a major health issue affecting a considerable portion of the population in western countries. In this context, animal models offer a relevant tool to address the underlying biological determinants and to screen novel therapeutic strategies. While rodents have traditionally constituted the species of choice, zebrafish are now becoming a viable alternative. As zebrafish gain momentum in biomedical sciences, considerable efforts are being devoted to developing high-throughput behavioral tests. Here, we present a comparative study of zebrafish behavioral response to fear-evoking stimuli offered via three alternative methodologies. Specifically, in a binary-choice test, we exposed zebrafish to an allopatric predator Astronotus ocellatus, presented in the form of a live subject, a robotic replica, and a computer-animated image. The robot's design and operation were inspired by the morphology and tail-beat motion of its live counterpart, thereby offering a consistent three-dimensional stimulus to focal fish. The computer-animated image was also designed after the live subject to replicate its appearance. We observed that differently from computer-animated images, both the live predator and its robotic replica elicited robust avoidance response in zebrafish. In addition, in response to the robot, zebrafish exhibited increased thrashing behavior, which is considered a valid indicator of fear. Finally, inter-individual response to a robotic stimulus is more consistent than that shown in response to live stimuli and animated images, thereby increasing experimental statistical power. Our study supports the view that robotic stimuli can constitute a promising experimental tool to elicit targeted behavioral responses in zebrafish. PMID:25734228

  14. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio, E-mail: ukimura@ieee.or [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2010-07-21

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  15. First report on the state of the world's animal genetic resources: Views on biotechnologies as expressed in country reports

    International Nuclear Information System (INIS)

    The Food and Agriculture Organization of the United Nations (FAO) has been requested by its member countries to develop and implement the Global Strategy for the Management of Farm Animal Genetic Resources. The global livestock sector is faced with the challenge of the fast increasing demand for animal products in developing countries. FAO has estimated that demand for meat will double by 2030 (2000 basis) and demand for milk will more than double in this 30-year period. On the other hand, animal genetic resources worldwide are disappearing rapidly. Over the past 15 years, 300 out of 6000 breeds identified by FAO have become extinct. Successful genetic improvement programs in adapted indigenous breeds are less than a handful. Although in many developing countries there have been considerable efforts in training professionals in animal genetics, breeding programs applied to livestock under low input farming systems have largely failed. As part of this country-driven strategy for the management of farm animal genetic resources, FAO has invited 188 countries to participate in the First Report on the State of the World's Animal Genetic Resources, to be completed before 2006. To date 145 countries have accepted to submit country reports. The analysis of country reports may also serve to estimate the gaps in biotechnology application between developed and developing countries. In September 2003, 41 country reports had officially been submitted to FAO. For this paper, 30 country reports representing all regions were analysed with regard to information on biotechnologies used in animal breeding and reproduction, in conservation of animal genetic resources and for commercial uses. In addition, the information gained from discussions in regional workshops in Latin and Central America, covering 20 countries, was included. The West Africa region was represented by 12 country reports. With few exceptions, all use AI (artificial insemination), mostly in cattle, but at a very low

  16. Multiple routes to mental animation: language and functional relations drive motion processing for static images.

    Science.gov (United States)

    Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred

    2013-08-01

    When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation.

  17. Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging

    Science.gov (United States)

    Zhang, Xiaofeng; Badea, Cristian; Jacob, Mathews; Johnson, G. Allan

    2009-02-01

    Fluorescence imaging is an important tool for tracking molecular-targeting probes in preclinical studies. It offers high sensitivity, but nonetheless low spatial resolution compared to other leading imaging methods such CT and MRI. We demonstrate our methodological development in small animal in vivo whole-body imaging using fluorescence tomography. We have implemented a noncontact fluid-free fluorescence diffuse optical tomography system that uses a raster-scanned continuous-wave diode laser as the light source and an intensified CCD camera as the photodetector. The specimen is positioned on a motorized rotation stage. Laser scanning, data acquisition, and stage rotation are controlled via LabVIEW applications. The forward problem in the heterogeneous medium is based on a normalized Born method, and the sensitivity function is determined using a Monte Carlo method. The inverse problem (image reconstruction) is performed using a regularized iterative algorithm, in which the cost function is defined as a weighted sum of the L-2 norms of the solution image, the residual error, and the image gradient. The relative weights are adjusted by two independent regularization parameters. Our initial tests of this imaging system were performed with an imaging phantom that consists of a translucent plastic cylinder filled with tissue-simulating liquid and two thin-wall glass tubes containing indocyanine green. The reconstruction is compared to the output of a finite element method-based software package NIRFAST and has produced promising results.

  18. Whole-animal functional and developmental imaging with isotropic spatial resolution.

    Science.gov (United States)

    Chhetri, Raghav K; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C; Keller, Philipp J

    2015-12-01

    Imaging fast cellular dynamics across large specimens requires high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To meet these requirements, we developed isotropic multiview (IsoView) light-sheet microscopy, which rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. Combining these four views by means of high-throughput multiview deconvolution yields images with high resolution in all three dimensions. We demonstrate whole-animal functional imaging of Drosophila larvae at a spatial resolution of 1.1-2.5 μm and temporal resolution of 2 Hz for several hours. We also present spatially isotropic whole-brain functional imaging in Danio rerio larvae and spatially isotropic multicolor imaging of fast cellular dynamics across gastrulating Drosophila embryos. Compared with conventional light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  19. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Directory of Open Access Journals (Sweden)

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  20. Dual-Energy Technique at Low Tube Voltages for Small Animal Imaging*

    OpenAIRE

    CHO, Seungryong; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2010-01-01

    We investigate the feasibility of dual-energy method for image contrast enhancement in small animal studies using a low kV X-ray radiographic system. A robust method for X-ray spectrum estimation from transmission measurements, based on expectation-maximization (EM) method, is applied to an X-ray specimen radiographic system for dual energy imaging of a mouse. From transmission measurements of two known attenuators at two different X-ray tube voltages, the X-ray energy spectra are reconstruct...

  1. Magnetic Resonance Imaging of Atherosclerotic Lesion with New Devised Animal Surface Coil

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bing-hui; LI Ming-hua; ZHAO Qing; CHENG Ying-sheng; XIAO Yun-feng; ZHAO Jia-min

    2008-01-01

    The ability of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) with a new devised animal surface coil was analyzed in identifying atherosclerotic plaques in the rabbit medium-sized iliac artery (IA).Then a comparative analysis of multi-detector computed tomography (MDCT) and DCE MRI was clone in discerning morphology and components of 80 atherosclerotic plaques identified by histopathology.It shows that the DCE MRI may be an emerging noninvasive and economic way to characterize atherosclerotic plaques at present.What's more,a new devised animal surface coil would further improve the signal-to-noise ratio (SNR) and the quality of imaging.However,CT angiography (CTA) may be better than MR angiography(MRA) in detecting vessel stenosis.

  2. Utilization of Magnetic Resonance Imaging in Research Involving Animal Models of Fetal Alcohol Spectrum Disorders

    OpenAIRE

    Wang, Xiaojie; Kroenke, Christopher D.

    2015-01-01

    It is well recognized that fetal alcohol exposure can profoundly damage the developing brain. The term fetal alcohol spectrum disorder (FASD) describes the range of deficits that result from prenatal alcohol exposure. Over the past two decades, researchers have used magnetic resonance imaging (MRI) as a noninvasive technique to characterize anatomical, physiological, and metabolic changes in the human brain that are part of FASD. As using animal models can circumvent many of the complications...

  3. Initial results from a PET/planar small animal imaging system

    OpenAIRE

    Siegel, Stefan; Vaquero, Juan José; Aloj, L; Seidel, Jürgen; Jagoda, E.; Gandler, William R.; Eckelman, W. C.; Green, Michael V.

    1999-01-01

    A pair of stationary, opposed scintillation detectors in time coincidence is being used to create planar projection or tomographic images of small animals injected with positronemitting radiotracers. The detectors are comprised of arrays of individual crystals of bismuth germanate coupled to position-sensitive photomultiplier tubes. The system uses FERA (LeCroy Research Systems) charge-sensitive ADCs and a low cost digital YO board as a E R A bus-to-host bridge. In pro...

  4. Implications of respiratory motion for small animal image-guided radiotherapy

    OpenAIRE

    Hill, MA; Vojnovic, B

    2016-01-01

    Image-guided small animal irradiators have the potential to make a significant impact on facilitating the translation of radiobiological research into the clinic. To fully exploit the improved precision in dose delivery to the target/tumour while minimising dose to surrounding tissues, minimal positional error in the target is required. However, for many sites within the thorax and abdomen, respiratory motion may be a critical factor in limiting accuracy of beam delivery and until now, very l...

  5. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  6. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare

    OpenAIRE

    Tremoleda, Jordi L.; Kerton, Angela; Gsell, Willy

    2012-01-01

    The implementation of imaging technologies has dramatically increased the efficiency of preclinical studies, enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time and testing new therapies. The ability to image live animals is one of the most important advantages of these technologies. However, this also represents an important challenge as, in contrast to human studies, imaging of animals generally requires anaesthesia to restrain t...

  7. Bioluminescence imaging in a medium-sized animal by local injection of d-luciferin

    International Nuclear Information System (INIS)

    Luciferase is one of the most commonly used reporter enzymes in the field of molecular imaging. D-luciferin is known as the substrate for luciferase enzyme and its cost is very expensive. Therefore, the bioluminescence molecular imaging study has been allowed in small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase. And then was performed different method of chondrocyte cell injection and transplantation into the knee of rabbits. The rabbits underwent imaging by cooled CCD camera after local injection of D-luciferin (3mg) into experimental knee joint as well as contralateral normal knee joint on days 1, 5, 7, 9. We sought whether optimal imaging signal was acquired by using cooled CCD camera after local injection of D-luciferin. We successfully visualized injected or transplanted cells in knee joint by local injection of D-luciferin. Total photon flux (7.86E+08 p/s/cm2/sr) from the knee joint transplanted with cells approximately increased 10-fold more than (9.43E+07p/s/cm2/sr) that from injected knee joints until 7 day. Imaging signal was observed in transplanted joints until day 9 after surgery while signal from injected knee was observed by day 7 after injection. We successfully carried out bioluminescence imaging study with medium sized animal by local injection of small amount of D-luciferin. Survival of chondrocytes were prolonged when surgically transplanted in joints than when directly injected in joint space

  8. The farm animal genetic resources of Turkey: sheep – II – crossbreed and extinct genotypes/breeds

    OpenAIRE

    Yılmaz, Orhan; Wilson, Richard Trevor; Cengiz, Fırat; Ertuğrul, Mehmet

    2012-01-01

    Biodiversity richness indicates the economic and genetic wealth of a country. Turkey is like a bridge between Europe and Asia; hence it has been used by traders, travellers or intruders for centuries which resulted with the existence of considerably different kinds of domestic animals. Although some of the genotypes are extinct or are crucially under the risk of extinction, the domestic livestock resources of Turkey have not been adequately appraised. On one hand new breeds are created by hum...

  9. An investigation of the challenges in reconstructing PET images of a freely moving animal

    International Nuclear Information System (INIS)

    Imaging the brain of a freely moving small animal using positron emission tomography (PET) while simultaneously observing its behaviour is an important goal for neuroscience. While we have successfully demonstrated the use of line-of-response (LOR) rebinning to correct the head motion of confined animals, a large proportion of events may need to be discarded because they either 'miss' the detector array after transformation or fall out of the acceptance range of a sinogram. The proportion of events that would have been measured had motion not occurred, so-called 'lost events', is expected to be even larger for freely moving animals. Moreover, the data acquisition in the case of a freely moving animal is further complicated by a complex attenuation field. The aims of this study were (a) to characterise the severity of 'lost events' problem for the freely moving animal scenario, and (b) to investigate the relative impact of attenuation correction errors on quantitative accuracy of reconstructed images. A phantom study was performed to simulate the uncorrelated motion of a target and non-target source volume. A small animal PET scanner was used to acquire list-mode data for different sets of phantom positions. The list-mode data were processed using the standard LOR rebinning approach, and multiple frame variants of this designed to reduce discarded events. We found that LOR rebinning caused up to 86 % 'lost events', and artifacts that we attribute to incomplete projections, when applied to a freely moving target. This fraction was reduced by up to 18 % using the variant approaches, resulting in slightly reduced image artifacts. The effect of the non-target compartment on attenuation correction of the target volume was surprisingly small. However, for certain poses where the target and non-target volumes are aligned transaxially in the field-of-view, the attenuation problem becomes more complex and sophisticated correction methods will be required. We conclude that

  10. Exprerimental Evaluation of a Dedicated Pinhole SPECT System for Small Animal Imaging and Scintimammography

    Directory of Open Access Journals (Sweden)

    G. Loudos

    2011-02-01

    Full Text Available Nuclear medicine (SPECT and PET provides functional information, which is complementary to the structural. In cancer imaging radiopharmaceuticals allow visualization of cancer cells functionality, thus small cell population can be imaged. This allows early diagnosis, as well as fast assessment of response to therapy. Our system is a single head gamma camera based on an R3292 position sensitive photomultiplier tube (PSPMT, coupled to a 10cm in diameter CsI:Tl crystal. We have assessed two CsI:Tl crystals with pixel size of 2x2mm2 and 3x3mm2 respectively. Three collimators were tested: a a hexagonal, 1.1mm in diameter, general purpose parallel hole collimator b a 1mm pinhole and c a 2mm pinhole. Systems were tested using capillary phantoms. All measurements were carried out in photon counting mode with gamma radiation produced by 99mTc. Using the 2x2mm2 crystal and the 1mm pinhole collimator - a resolution better than 1mm was achieved. This allows very detailed imaging of small animals. Using the 3x3mm2 and the 2mm pinhole collimator a resolution of 1.3mm was possible with suitable sensitivity for breast imaging. Those results indicate that this system is suitable for animal and breast studies. The next step will be clinical evaluation of the camera.

  11. Quantitative Diagnosis of Tongue Cancer from Histological Images in an Animal Model

    Science.gov (United States)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo Georgia; Fei, Baowei

    2016-01-01

    We developed a chemically-induced oral cancer animal model and a computer aided method for tongue cancer diagnosis. The animal model allows us to monitor the progress of the lesions over time. Tongue tissue dissected from mice was sent for histological processing. Representative areas of hematoxylin and eosin (H&E) stained tissue from tongue sections were captured for classifying tumor and non-tumor tissue. The image set used in this paper consisted of 214 color images (114 tumor and 100 normal tissue samples). A total of 738 color, texture, morphometry and topology features were extracted from the histological images. The combination of image features from epithelium tissue and its constituent nuclei and cytoplasm has been demonstrated to improve the classification results. With ten iteration nested cross validation, the method achieved an average sensitivity of 96.5% and a specificity of 99% for tongue cancer detection. The next step of this research is to apply this approach to human tissue for computer aided diagnosis of tongue cancer.

  12. Mid-Range Coil Array for Magnetic Resonance Imaging of Small Animals

    Science.gov (United States)

    Solis, S. E.; Tomasi, D.; Rodríguez, A. O.

    2008-08-01

    The vast majority of articles on MRI RF coils over the past two decades have focused on large coils, where sample losses dominate, or on micro-coils, where sample and capacitor losses are negligible. Few have addressed the mid-range coils, seen in the majority of small-animal applications, where all the sources of loss are important, for example, mouse brain and body coils from 125 to 750 MHz. We developed a four-saddle coil array for magnetic resonance imaging of small animals. The saddle coil elements in the array were evenly distributed to cover the rat's head. The coil array was tuned to the resonant frequency of 170 MHz. Due to the close proximity of the coil elements, it was necessary to decouple the coil array using nonmagnetic trimmers and, it was operated in the transceiver mode and quadrature-driven. To test the coil array performance at high field, phantom images were acquired with our saddle coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Ex vivo brain images of a rat were also acquired, and proved the feasibility of the scaled version of a saddle coil array and, its compatibility with standard pulse sequences when used in a high field magnetic resonance imager.

  13. A Comparison of Imaging Techniques to Monitor Tumor Growth and Cancer Progression in Living Animals

    Directory of Open Access Journals (Sweden)

    Anne-Laure Puaux

    2011-01-01

    Full Text Available Introduction and Purpose. Monitoring solid tumor growth and metastasis in small animals is important for cancer research. Noninvasive techniques make longitudinal studies possible, require fewer animals, and have greater statistical power. Such techniques include FDG positron emission tomography (FDG-PET, magnetic resonance imaging (MRI, and optical imaging, comprising bioluminescence imaging (BLI and fluorescence imaging (FLI. This study compared the performance and usability of these methods in the context of mouse tumor studies. Methods. B16 tumor-bearing mice (n=4 for each study were used to compare practicality, performance for small tumor detection and tumor burden measurement. Using RETAAD mice, which develop spontaneous melanomas, we examined the performance of MRI (n=6 mice and FDG-PET (n=10 mice for tumor identification. Results. Overall, BLI and FLI were the most practical techniques tested. Both BLI and FDG-PET identified small nonpalpable tumors, whereas MRI and FLI only detected macroscopic, clinically evident tumors. FDG-PET and MRI performed well in the identification of tumors in terms of specificity, sensitivity, and positive predictive value. Conclusion. Each of the four methods has different strengths that must be understood before selecting them for use.

  14. Feasibility study of small animal imaging using clinical PET/CT scanner

    Science.gov (United States)

    Hsu, Wen-Lin; Chen, Chia-Lin; Wang, Ze-Jing; Wu, Tung-Hsin; Liu, Dai-Wei; Lee, Jason J. S.

    2007-02-01

    The feasibility of small animal imaging using a clinical positron emission tomography/computed tomography (PET/CT) scanner with [F-18]-fluoro-2-deoxy- D-glucose (FDG) was evaluated. Two protocols in PET/CT system, single-mouse high-resolution mode (SHR) and multi-mouse high throughput mode (MHT) protocol were employed to investigate the ability of the scanner and also explored the performance differences between microPET and clinical PET/CT. In this study, we have found that even the clinical PET/CT scanner could not compete with the microPET scanner, especially in spatial resolution; the high-resolution CT image could advance the anatomical information to sub-millimeter level. Besides, CT-based attenuation correction can improve the image uniformity characteristics and quantification accuracy, and the large bore of a human whole-body scanner broadens the possibility of high throughput studies. Considering all the benefits, clinical PET/CT imaging might be a potential alternative for small animal study.

  15. Trophic niche-space imaging, using resource and consumer traits

    OpenAIRE

    Leopold A. J. Nagelkerke; Rossberg, Axel G.

    2014-01-01

    Abstract The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits from empirical data was recently proposed. Here we demonstrate this approach for a group of 14 consumer fish species (Labeobarbus spp., Cyprinidae) and 11 aquatic resource categor...

  16. A portable device for small animal SPECT imaging in clinical gamma-cameras

    International Nuclear Information System (INIS)

    Molecular imaging is reshaping clinical practice in the last decades, providing practitioners with non-invasive ways to obtain functional in-vivo information on a diversity of relevant biological processes. The use of molecular imaging techniques in preclinical research is equally beneficial, but spreads more slowly due to the difficulties to justify a costly investment dedicated only to animal scanning. An alternative for lowering the costs is to repurpose parts of old clinical scanners to build new preclinical ones. Following this trend, we have designed, built, and characterized the performance of a portable system that can be attached to a clinical gamma-camera to make a preclinical single photon emission computed tomography scanner. Our system offers an image quality comparable to commercial systems at a fraction of their cost, and can be used with any existing gamma-camera with just an adaptation of the reconstruction software

  17. A combined micro-PET/CT scanner for small animal imaging

    International Nuclear Information System (INIS)

    A micro-PET/CT system was developed by combination of an in-house micro-CT and a microPET[reg] R4 scanner. The cone-beam micro-CT consists of a rotational gantry that fits an X-ray tube, a CCD-based X-ray detector, and motor-driven linear stages. The gantry was designed to be coaxial with the scanner of microPET'' (registered) R4. It can be moved for the convenience of mounting the Ge-68 point-source holder for PET's calibration. The image volumes obtained from two modalities is registered by a pre-determined, inherent spatial transformation function. This hardware-approach fusion, which provides accurate and no labor-intensive alignment, is suitable for mass scanning. The micro-PET/CT system has been operated successfully. Merging the anatomical and functional images benefit studies of the small animal imaging

  18. Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals

    Institute of Scientific and Technical Information of China (English)

    Gang Hu; Junjie Yao; Jing Bai

    2008-01-01

    To provide a valuable experimental platform for in vivo biomedical research of small animal model with fluorescence mediated approach, we developed a whole-body near-infrared fluorescence molecular imaging system as described in this paper. This system is based on a sensitive CCD camera and has the ability to achieve 360° full-angle source illuminations and projections capture of the targets to obtain the dense sampling by performing rotational scan. The measurement accuracy is validated from cylinder phantom experiments by the comparison between the experimental data and theoretical predictions. Finally, we also present typical in vivo images of fluorescent tube implanted into the mouse body. The results are promising and have proved the system imaging performance for macroscopic optical biomedical research.

  19. Phase-selective image reconstruction of the lungs in small animals using micro-CT

    Science.gov (United States)

    Johnston, S. M.; Perez, B. A.; Kirsch, D. G.; Badea, C. T.

    2010-04-01

    Gating in small animal imaging can compensate for artifacts due to physiological motion. This paper presents a strategy for sampling and image reconstruction in the rodent lung using micro-CT. The approach involves rapid sampling of freebreathing mice without any additional hardware to detect respiratory motion. The projection images are analyzed postacquisition to derive a respiratory signal, which is used to provide weighting factors for each projection that favor a selected phase of the respiration (e.g. end-inspiration or end-expiration) for the reconstruction. Since the sampling cycle and the respiratory cycle are uncorrelated, the sets of projections corresponding to any of the selected respiratory phases do not have a regular angular distribution. This drastically affects the image quality of reconstructions based on simple filtered backprojection. To address this problem, we use an iterative reconstruction algorithm that combines the Simultaneous Algebraic Reconstruction Technique with Total Variation minimization (SART-TV). At each SART-TV iteration, backprojection is performed with a set of weighting factors that favor the desired respiratory phase. To reduce reconstruction time, the algorithm is implemented on a graphics processing unit. The performance of the proposed approach was investigated in simulations and in vivo scans of mice with primary lung cancers imaged with our in-house developed dual tube/detector micro-CT system. We note that if the ECG signal is acquired during sampling, the same approach could be used for phase-selective cardiac imaging.

  20. A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging

    International Nuclear Information System (INIS)

    A prototype small animal imaging system was created for coupling fluorescence tomography (FT) with x-ray microcomputed tomography (microCT). The FT system has the potential to provide synergistic information content resultant from using microCT images as prior spatial information and then allows overlay of the FT image onto the original microCT image. The FT system was designed to use single photon counting to provide maximal sensitivity measurements in a noncontact geometry. Five parallel detector locations are used, each allowing simultaneous sampling of the fluorescence and transmitted excitation signals through the tissue. The calibration and linearity range performance of the system are outlined in a series of basic performance tests and phantom studies. The ability to image protoporphyrin IX in mouse phantoms was assessed and the system is ready for in vivo use to study biological production of this endogenous marker of tumors. This multimodality imaging system will have a wide range of applications in preclinical cancer research ranging from studies of the tumor microenvironment and treatment efficacy for emerging cancer therapeutics.

  1. Open Feedlots Listed in the Iowa Department of Natural Resources Animal Feeding Operations Database

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Currently, the Animal Feeding Operations (AFO) database does not allow facilities to be queried by watershed, therefore, this coverage was developed to assist with...

  2. Preclinical imaging and treatment of cancer: the use of animal models beyond rodents.

    Science.gov (United States)

    Axiak-Bechtel, S M; Maitz, C A; Selting, K A; Bryan, J N

    2015-09-01

    The development of novel radiopharmaceutical agents for imaging and therapy of neoplastic diseases relies on accurate and reproducible animal models. Rodent models are often used to demonstrate the proof-of-principle tracer and therapeutic agent development, but their small size can make tissue sampling challenging. The dosimetry of decay emissions in the much smaller rodent tumors do not model dosimetry in human tumors well. In addition, rodent models of cancer represent a simplified version of a very complex process. Spontaneous tumors are heterogenous and the response to intervention can be unpredictable; tumor cells can adopt alternate signaling pathways and modify their interaction with the microenvironment. These inconsistencies, while present in humans, are difficult to fully reproduce in a genetically-engineered rodent model. Companion animals, primarily dogs and cats, offer translational models that more accurately reflect the intricate nature of spontaneous neoplasia in humans. Their larger size facilitates tissue and blood sampling when needed, and allows radiopharmaceutical tracers to be studied on human-scale imaging systems to better mimic the clinical application of the agent. This article will review the growing body of literature surrounding the use of radiopharmaceutical agents for both imaging and therapy in companion dogs and cats. Previous investigations have been performed both for the advancement of routine, high-level veterinary care, and in the context of translational research from which the results of imaging and treatment can be readily applied to people. Studies utilizing the spontaneously occurring cancer model in companion animals involving positron emission tomography, radiotracers, dosimetry, theranostics, targeted radiopharmaceuticals, brachytherapy, and boron neutron capture therapy are discussed. PMID:26200223

  3. Preclinical imaging and treatment of cancer: the use of animal models beyond rodents

    International Nuclear Information System (INIS)

    The development of novel radiopharmaceutical agents for imaging and therapy of neoplastic diseases relies on accurate and reproducible animal models. Rodent models are often used to demonstrate the proof-of-principle tracer and therapeutic agent development, but their small size can make tissue sampling challenging. The dosimetry of decay emissions in the much smaller rodent tumors do not model dosimetry in human tumors well. In addition, rodent models of cancer represent a simplified version of a very complex process. Spontaneous tumors are heterogenous and the response to intervention can be unpredictable; tumor cells can adopt alternate signaling pathways and modify their interaction with the microenvironment. These inconsistencies, while present in humans, are difficult to fully reproduce in a genetically-engineered rodent model. Companion animals, primarily dogs and cats, offer translational models that more accurately reflect the intricate nature of spontaneous neoplasia in humans. Their larger size facilitates tissue and blood sampling when needed, and allows radiopharmaceutical tracers to be studied on human-scale imaging systems to better mimic the clinical application of the agent. This article will review the growing body of literature surrounding the use of radiopharmaceutical agents for both imaging and therapy in companion dogs and cats. Previous investigations have been performed both for the advancement of routine, high-level veterinary care, and in the context of translational research from which the results of imaging and treatment can be readily applied to people. Studies utilizing the spontaneously occurring cancer model in companion animals involving positron emission tomography, radiotracers, dosimetry, theranostics, targeted radiopharmaceuticals, brachytherapy, and boron neutron capture therapy are discussed.

  4. Trophic niche-space imaging, using resource and consumer traits

    NARCIS (Netherlands)

    Nagelkerke, L.A.J.; Rossberg, A.G.

    2014-01-01

    The strength of trophic (feeding) links between two species depends on the traits of both the consumer and the resource. But which traits of consumer and resource have to be measured to predict link strengths, and how many? A novel theoretical framework for systematically determining trophic traits

  5. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    International Nuclear Information System (INIS)

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm3) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  6. Application of portfolio theory to risk-based allocation of surveillance resources in animal populations.

    Science.gov (United States)

    Prattley, D J; Morris, R S; Stevenson, M A; Thornton, R

    2007-09-14

    Distribution of finite levels of resources between multiple competing tasks can be a challenging problem. Resources need to be distributed across time periods and geographic locations to increase the probability of detection of a disease incursion or significant change in disease pattern. Efforts should focus primarily on areas and populations where risk factors for a given disease reach relatively high levels. In order to target resources into these areas, the overall risk level can be evaluated periodically across locations to create a dynamic national risk landscape. Methods are described to integrate the levels of various risk factors into an overall risk score for each area, to account for the certainty or variability around those measures and then to allocate surveillance resources across this risk landscape. In addition to targeting resources into high risk areas, surveillance continues in lower risk areas where there is a small yet positive chance of disease occurrence. In this paper we describe the application of portfolio theory concepts, routinely used in finance, to design surveillance portfolios for a series of examples. The appropriate level of resource investment is chosen for each disease or geographical area and time period given the degree of disease risk and uncertainty present.

  7. Singapore National Medical Image Resource Centre (SN.MIRC): a world wide web resource for radiology education.

    Science.gov (United States)

    Yang, Guo-Liang; Lim, C C Tchoyoson

    2006-08-01

    Radiology education is heavily dependent on visual images, and case-based teaching files comprising medical images can be an important tool for teaching diagnostic radiology. Currently, hardcopy film is being rapidly replaced by digital radiological images in teaching hospitals, and an electronic teaching file (ETF) library would be desirable. Furthermore, a repository of ETFs deployed on the World Wide Web has the potential for e-learning applications to benefit a larger community of learners. In this paper, we describe a Singapore National Medical Image Resource Centre (SN.MIRC) that can serve as a World Wide Web resource for teaching diagnostic radiology. On SN.MIRC, ETFs can be created using a variety of mechanisms including file upload and online form-filling, and users can search for cases using the Medical Image Resource Center (MIRC) query schema developed by the Radiological Society of North America (RSNA). The system can be improved with future enhancements, including multimedia interactive teaching files and distance learning for continuing professional development. However, significant challenges exist when exploring the potential of using the World Wide Web for radiology education. PMID:17006584

  8. Use of thermographic imaging in clinical diagnosis of small animal: preliminary notes

    Directory of Open Access Journals (Sweden)

    Veronica Redaelli

    2014-06-01

    Full Text Available INTRODUCTION. The authors, after a description of the physics of infrared thermographic technique (IRT, analyze the reading of images and the main applications in the veterinary field, compared to the existing literature on the subject and to their experimental researches. IRT lends itself to countless applications in biology, thanks to its characteristics of versatility, lack of invasiveness and high sensitivity. Probably the major limitation to its application in the animal lies in the ease of use and in its extreme sensitivity. MATERIALS AND METHODS. From September 2009 to October 2010, the experimental investigation with the thermo camera took into consideration 110 animals (92 dogs and 18 cats, without any selection criteria. All patients were brought to the Faculty of Veterinary Medicine in Milan University by the owner, to be examined by a specialist, or to undergo one of the following diagnostic procedures: X-rays, computed tomography, or ultrasound examinations; finally some patients were brought in for surgical procedures. With the consent of the owner, 1 to 10 thermographic images were recorded from each clinical case. Results. In this first experimental investigation, thermography has shown a high sensitivity (100%, but a low specificity (44%. This figure excludes the use of thermal imaging technology to replace other imaging techniques such as radiography, computed tomography and magnetic resonance imaging. Furthermore, it does not show any ability to recognize the etiology of the disease, but only the thermal alteration, and this is restricting its use. However, this experimental study has demonstrated that thermography can be used in veterinary medicine, and specifically in dogs and cats. It is hoped that in the field of targeted diseases this technique will become an important tool for diagnostic purposes by using working protocols validated and repeatable.

  9. [The image of animal magnetism in fictional literature: the cases of Poe, Doyle and Du Maurier].

    Science.gov (United States)

    Bonet Safont, Juan Marcos

    2014-01-01

    In this article, we focus on the social image of the phenomenon known as mesmerism, or animal magnetism, through analysis of the works: The Facts in the Case of M. Valdemar (1845) by Edgar Allan Poe, The Great Keinplatz Experiment (1885) by Conan Doyle and Trilby (1894) by George Du Maurier. We describe the stereotype of the mesmerist and the uses of mesmerism observed. We pay attention to the spaces and actors of the mesmeric transcript presented in the stories. We consider the reception of these stories by the public and the relationship of the authors with mesmeric and hypnotic knowledge. Nowadays, academic researchers in the discipline of psychology publish articles and books on popular myths about hypnosis in attempts to depict the distorted images related to this phenomenon. This distorted image of the hypnotic process and the hypnotist derives from "circus" hypnotism shows (stage hypnosis), the cinema, television and fictional literature. Works of fiction represent a unique and invaluable source of information, ideas, speculations, concerns and opportunities around animal magnetism and hypnosis, and the exploration and analysis of this literature is an essential chapter in any historical study of this topic. We see how the literary use of mesmerism by Poe, Doyle and Du Maurier is not chance or peripheral, with all three being intellectually interested in and stimulated by these ideas.

  10. A restraint-free small animal SPECT imaging system with motion tracking

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.; Kross, B.; Majewski, S.; Meikle, S.R.; Paulus, M.J.; Pomper, M.; Popov, V.; Smith, M.F.; Welch, B.L.; Wojcik, R.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels while retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.

  11. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  12. Ultrasound Biomicroscopy in Small Animal Research: Applications in Molecular and Preclinical Imaging

    Directory of Open Access Journals (Sweden)

    A. Greco

    2012-01-01

    Full Text Available Ultrasound biomicroscopy (UBM is a noninvasive multimodality technique that allows high-resolution imaging in mice. It is affordable, widely available, and portable. When it is coupled to Doppler ultrasound with color and power Doppler, it can be used to quantify blood flow and to image microcirculation as well as the response of tumor blood supply to cancer therapy. Target contrast ultrasound combines ultrasound with novel molecular targeted contrast agent to assess biological processes at molecular level. UBM is useful to investigate the growth and differentiation of tumors as well as to detect early molecular expression of cancer-related biomarkers in vivo and to monitor the effects of cancer therapies. It can be also used to visualize the embryological development of mice in uterus or to examine their cardiovascular development. The availability of real-time imaging of mice anatomy allows performing aspiration procedures under ultrasound guidance as well as the microinjection of cells, viruses, or other agents into precise locations. This paper will describe some basic principles of high-resolution imaging equipment, and the most important applications in molecular and preclinical imaging in small animal research.

  13. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    Directory of Open Access Journals (Sweden)

    Jenny B. Lin

    2015-05-01

    Full Text Available Peripheral artery disease (PAD is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.

  14. A small animal image guided irradiation system study using 3D dosimeters

    Science.gov (United States)

    Qian, Xin; Admovics, John; Wuu, Cheng-Shie

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  15. Novel high resolution SPECT instrumentation and techniques for molecular imaging of small animals

    International Nuclear Information System (INIS)

    The main purpose of the project is the development and tuning of an advanced detector system for molecular imaging with radionuclides on small animal. The equipment has sub-millimeter spatial resolution, adequate sensitivity and field of view, It is designed for studies, on animal models, of diagnostic and/or therapeutic techniques in cardiovascular diseases, such as detection and identification of vulnerable plaques in atherosclerosis and stem cell therapy for cardiac repair. The present activities is carried on in collaboration with groups from Johns Hopkins University (Baltimore), Jefferson Lab (Newport News), Istituto Nazionale Fisica Nucleare (INFN) and ISS (Dept. Technology and Health and Dept. Therapeutic Research and Medicines Evaluation). The main results of the last two years are summarized as follows: development of the SPECT system prototype; set up of the technique for vulnerable plaques detection;demonstration of detectability of the cardiac perfusion via peritoneum injection of the radiotracer

  16. Behavioral effects of acclimatization to restraint protocol used for awake animal imaging.

    Science.gov (United States)

    Reed, Michael D; Pira, Ashley S; Febo, Marcelo

    2013-07-15

    Functional MRI in awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 min per day) on the emission of 22-kHz ultrasonic vocalizations and performance in a forced swim test (FST). Our results showed that USV calls are reduced significantly by days 3, 4 and 5 of acclimatization. Although the rats showed less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference was not detected once the animals were given a 2-week hiatus. Overall, we showed that animals adapt to the restraint over a five-day period; however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrants further testing of the effects of MRI restraint on behavior. PMID:23562621

  17. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.

    Science.gov (United States)

    Wang, Kemin; He, Xiaoxiao; Yang, XiaoHai; Shi, Hui

    2013-07-16

    Going in vivo, including living cells and the whole body, is very important for gaining a better understanding of the mystery of life and requires specialized imaging techniques. The diversity, composition, and temporal-spatial variation of life activities from cells to the whole body require the analysis techniques to be fast-response, noninvasive, highly sensitive, and stable, in situ and in real-time. Functionalized nanoparticle-based fluorescence imaging techniques have the potential to meet such needs through real-time and noninvasive visualization of biological events in vivo. Functionalized silica nanoparticles (SiNPs) doped with fluorescent dyes appear to be an ideal and flexible platform for developing fluorescence imaging techniques used in living cells and the whole body. We can select and incorporate different dyes inside the silica matrix either noncovalently or covalently. These form the functionalized hybrid SiNPs, which support multiplex labeling and ratiometric sensing in living systems. Since the silica matrix protects dyes from outside quenching and degrading factors, this enhances the photostability and biocompatibility of the SiNP-based probes. This makes them ideal for real-time and long-time tracking. One nanoparticle can encapsulate large numbers of dye molecules, which amplifies their optical signal and temporal-spatial resolution response. Integrating fluorescent dye-doped SiNPs with targeting ligands using various surface modification techniques can greatly improve selective recognition. Along with the endocytosis, functionalized SiNPs can be efficiently internalized into cells for noninvasive localization, assessment, and monitoring. These unique characteristics of functionalized SiNPs substantially support their applications in fluorescence imaging in vivo. In this Account, we summarize our efforts to develop functionalized dye-doped SiNPs for fluorescence imaging at the cell and small animal levels. We first discuss how to design and

  18. [F18]-FDG imaging of experimental animal tumours using a hybrid gamma-camera

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) has been widely used in clinical studies. This technology permits detection of compounds labelled with positron emitting radionuclides and in particular, [F18]-fluorodeoxyglucose ([F18]-FDG).[F18]-FDG uptake and accumulation is generally related to malignancy; some recent works have suggested the usefulness of PET camera dedicated to small laboratory animals (micro-PET). Our study dealt with the feasibility of [F18]-FDG imaging of malignant tumours in animal models by means of an hybrid camera dedicated for human scintigraphy. We evaluated the ability of coincidence detection emission tomography (CDET) using this hybrid camera to visualize in vivo subcutaneous tumours grafted to mice or rats. P815 murine mastocytoma grafted in syngeneic DBA/2 mice resulted with foci of very high FDG uptake. Tumours with a diameter of only 3 mm were clearly visualized. Medullary thyroid cancer provoked by rMTC 6/23 and CA77 lines in syngeneic Wag/Rij rat was also detected. The differentiated CA77 tumours exhibited avidity for [F18]-FDG and a tumour, which was just palpable (diameter lower than 2 mm), was identified. In conclusion, CDET-FDG is a non-invasive imaging tool which can be used to follow grafted tumours in the small laboratory animal, even when their size is smaller than 1 cm. It has the potential to evaluate experimental anticancer treatments in small series of animals by individual follow-up. It offers the opportunity to develop experimental PET research within a nuclear medicine or biophysics department, the shift to a dedicated micro-PET device being subsequently necessary. It is indeed compulsory to strictly follow the rules for non contamination and disinfection of the hybrid camera. (authors)

  19. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies

    Science.gov (United States)

    Xu, Heng; Springett, Roger; Dehghani, Hamid; Pogue, Brian W.; Paulsen, Keith D.; Dunn, Jeff F.

    2005-04-01

    A novel magnetic-resonance-coupled broadband near-infrared (NIR) tomography system for small animal brain studies is described. Several features of the image formation approach are new in NIR tomography and represent major advances in the path to recovering high-resolution hemoglobin and oxygen saturation images of tissue. The NIR data were broadband and continuous wave and were used along with a second-derivative-based estimation of the path length from water absorption. The path length estimation from water was then used along with the attenuation spectrum to recover absorption and reduced scattering coefficient images at multiple wavelengths and then to recover images of total hemoglobin and oxygen saturation. Going beyond these basics of NIR tomography, software has been developed to allow inclusion of structures derived from MR imaging (MRI) for the external and internal tissue boundaries, thereby improving the accuracy and spatial resolution of the properties in each tissue type. The system has been validated in both tissue-simulating phantoms, with 10% accuracy observed, and in a rat cranium imaging experiment. The latter experiment used variation in inspired oxygen (FiO2) to vary the observed hemoglobin and oxygen saturation images. Quantitative agreement was observed between the changes in deoxyhemoglobin values derived from NIR and the changes predicted with blood-oxygen-level-dependent (BOLD) MRI. This system represents the initial stage in what will likely be a larger role for NIR tomography, coupled to MRI, and illustrates that the technological challenges of using continuous-wave broadband data and inclusion of a priori structural information can be met with careful phantom studies.

  20. In Vivo Bioluminescent Imaging (BLI: Noninvasive Visualization and Interrogation of Biological Processes in Living Animals

    Directory of Open Access Journals (Sweden)

    Steven Ripp

    2010-12-01

    Full Text Available In vivo bioluminescent imaging (BLI is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. This article will review the various bioreporter/biosensor integrations of BLI and discuss how BLI is being applied towards a new visual understanding of biological processes within the living organism.

  1. Functional magnetic resonance imaging in an animal model of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Robert; J; Lewandowski; Aaron; C; Eifler; David; J; Bentrem; Johnathan; C; Chung; Gayle; E; Woloschak; Robert; Ryu; Riad; Salem; Andrew; C; Larson; Reed; A; Omary

    2010-01-01

    AIM: To test the hypotheses that diffusion weighed (DW)and transcatheter intraarterial perfusion (TRIP)magnetic resonance imaging (MRI) can each be used to assess regional differences in tumor function in an animal pancreatic cancer model.METHODS: VX2 tumors were implanted in pancreata of 6 rabbits. MRI and digital subtraction angiography (DSA) were performed 3 wk following implantation. With a 2-French catheter secured in the rabbit's gastroduodenal artery, each rabbit was transferred to an adjacent 1.5T M...

  2. The potential of cryopreservation and reproductive technologies for animal genetic resources conservation strategies

    NARCIS (Netherlands)

    Hiemstra, S.J.; Lende, van der T.; Woelders, H.

    2006-01-01

    This chapter focuses on ex situ conservation. An overview of the state of the art cryopreservation and reproductive technology for farm animals and fish is followed by a discussion on the implications of ex situ conservation strategies. Ex situ conservation of genetic material from livestock and fis

  3. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  4. Implementation and Application of PSF-Based EPI Distortion Correction to High Field Animal Imaging

    Directory of Open Access Journals (Sweden)

    Dominik Paul

    2009-01-01

    Full Text Available The purpose of this work is to demonstrate the functionality and performance of a PSF-based geometric distortion correction for high-field functional animal EPI. The EPI method was extended to measure the PSF and a postprocessing chain was implemented in Matlab for offline distortion correction. The correction procedure was applied to phantom and in vivo imaging of mice and rats at 9.4T using different SE-EPI and DWI-EPI protocols. Results show the significant improvement in image quality for single- and multishot EPI. Using a reduced FOV in the PSF encoding direction clearly reduced the acquisition time for PSF data by an acceleration factor of 2 or 4, without affecting the correction quality.

  5. Stages in the development of a dedicated positron emission tomography system for imaging small animals

    International Nuclear Information System (INIS)

    The stages in the development of a small diameter positron emission tomograph for the study of small animals are described. Initial experiments were performed with a pair of commercial, 4 mm multicrystal detectors at an inter-detector separation of 100 mm. The system's performance in this geometry was evaluated using physical and biological studies. These indicated the feasibility of using such detectors at this separation to delineate regional tracer kinetic information from small experimental animals. A small diameter, septa-less tomograph incorporating the detectors was simulated and biological data acquired which indicated the benefits of tomography compared with planar studies for imaging small animals. A tomograph incorporating 16 of the latest generation of block detector (3 mm crystals) in a ring diameter of 115 mm was constructed. The detectors were mounted on a 1 m2 vertical gantry and the system incorporated commercial hardware and software for data acquisition. The physical performance of the tomograph indicated that the spatial resolutions expected from the crystal size could be achieved at the centre of the field of view for all axes. However, the small diameter of the system resulted in larger degradation of the spatial resolution off-axis due to non-uniformity of detector sampling and photon penetration into neighbouring crystals. In spite of the physical problems posed by the small diameter of the system, useful in vivo studies on small animals are being routinely performed which assist in the development of novel radioligands and the interpretation of clinical positron emission tomography data and, in addition, provide a unique methodology to study the serial aspects of animal models of human disease. (author). 15 refs, 7 figs, 2 tabs

  6. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    International Nuclear Information System (INIS)

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  7. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  8. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    International Nuclear Information System (INIS)

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01–0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4− xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in

  9. Un-collimated single-photon imaging system for high-sensitivity small animal and plant imaging

    Science.gov (United States)

    Walker, Katherine L.; Judenhofer, Martin S.; Cherry, Simon R.; Mitchell, Gregory S.

    2015-01-01

    In preclinical single-photon emission computed tomography (SPECT) system development the primary objective has been to improve spatial resolution by using novel parallel-hole or multi-pinhole collimator geometries. However, such high-resolution systems have relatively poor sensitivity (typically 0.01-0.1%). In contrast, a system that does not use collimators can achieve very high-sensitivity. Here we present a high-sensitivity un-collimated detector single-photon imaging (UCD-SPI) system for the imaging of both small animals and plants. This scanner consists of two thin, closely spaced, pixelated scintillator detectors that use NaI(Tl), CsI(Na), or BGO. The performance of the system has been characterized by measuring sensitivity, spatial resolution, linearity, detection limits, and uniformity. With 99mTc (140 keV) at the center of the field of view (20 mm scintillator separation), the sensitivity was measured to be 31.8% using the NaI(Tl) detectors and 40.2% with CsI(Na). The best spatial resolution (FWHM when the image formed as the geometric mean of the two detector heads, 20 mm scintillator separation) was 19.0 mm for NaI(Tl) and 11.9 mm for CsI(Na) at 140 keV, and 19.5 mm for BGO at 1116 keV, which is somewhat degraded compared to the cm-scale resolution obtained with only one detector head and a close source. The quantitative accuracy of the system’s linearity is better than 2% with detection down to activity levels of 100 nCi. Two in vivo animal studies (a renal scan using 99mTc MAG-3 and a thyroid scan with 123I) and one plant study (a 99mTcO4- xylem transport study) highlight the unique capabilities of this UCD-SPI system. From the renal scan, we observe approximately a one thousand-fold increase in sensitivity compared to the Siemens Inveon SPECT/CT scanner. UCD-SPI is useful for many imaging tasks that do not require excellent spatial resolution, such as high-throughput screening applications, simple radiotracer uptake studies in tumor

  10. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    Science.gov (United States)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  11. Preliminary evaluation of the tomographic performance of the mediSPECT small animal imaging system

    Science.gov (United States)

    Accorsi, Roberto; Curion, Assunta Simona; Frallicciardi, Paola; Lanza, Richard C.; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2007-02-01

    We report on the tests of a prototype (MediSPECT) system developed at University & INFN Napoli, for Single Photon Emission Computed Tomography (SPECT) imaging on small animals with a small Field of View (FoV) and high spatial resolution. MediSPECT is a SPECT imaging system based on a 1-mm-thick CdTe pixel detector, bump-bonded to the Medipix2 CMOS readout circuit operating in single-photon counting. The CdTe detector has 256×256 square array of pixels arranged with a 55 μm pitch, for a sensitive area of 14×14 mm 2. In its present version, this system implements a single detector head, mounted on a rotating gantry. For preliminary testing and calibration of the acquisition equipment and image reconstruction algorithms, 90 projections of a γ-ray point source ( 109Cd) through a single pinhole (diameter 0.4 mm; radius of rotation about 2.5 cm; focal length about 4.5 cm) were acquired for 20 min each in a step-and-shoot mode. Capillaries, 800 μm in diameter, were arranged in a Y-shape to form a more complex phantom ( 125I, 1 mm pinhole diameter, 45 projections, each acquired for 25 min). Images were reconstructed with a custom algorithm implementing standard OS-EM with center of rotation correction and spatial resolution of 0.2 mm over a FoV of 2 mm was obtained.

  12. Detecting myocardial ischemia with 2-D CVIB imaging method--an in vivo animal experiment study

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong; BAI Jing; YING Kui; CHENG Kezheng; YU Can

    2004-01-01

    A 2-D cyclic variation of integrated backscatter (CVIB) imaging method was established for detecting myocardial ischemia. To demonstrate the feasibility and validity of this method, animal experiments were conducted. Acute myocardial ischemia was induced by occluding left anterior descending coronary artery in 10 anesthetized open-chest dogs. While scanning the normal hearts and the ischemic hearts with a B scanner, digital radiofrequency data were acquired by a real-time acquisition system in synchronism. The offline analysis to the radio-frequency signal with the 2-D CVIB imaging method was performed to verify the consistency between the imaging result and the design of the experiment. In addition, 4 dogs in experiment were treated with the heart pacemaker in order to investigate the influence of changing in heart rate on the detection of ischemic myocardium with the proposed method. The experimental result showed that the 2-D CVIB imaging method succeeded in detecting the ischemic myocardium and is a new non-invasive way for the cardiologists to both quantitatively and visually evaluate the contractile performance of the myocardium.

  13. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Science.gov (United States)

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. PMID:26427958

  14. Digital image processing for the earth resources technology satellite data.

    Science.gov (United States)

    Will, P. M.; Bakis, R.; Wesley, M. A.

    1972-01-01

    This paper discusses the problems of digital processing of the large volumes of multispectral image data that are expected to be received from the ERTS program. Correction of geometric and radiometric distortions are discussed and a byte oriented implementation is proposed. CPU timing estimates are given for a System/360 Model 67, and show that a processing throughput of 1000 image sets per week is feasible.

  15. Evaluation of potassium-43 scintillation images during early myocardial ischemia in an animal model

    International Nuclear Information System (INIS)

    To assess the validity of myocardial imaging with potassium-43 (43K) early after the onset of ischemia, the left anterior descending artery was occluded with a balloon tip catheter in 32 intact anesthetized dogs. /sup 99m/Technetium ventriculograms localized the left ventricle. 43K was administered intravenously and serial images were obtained in four views using an Anger camera with a pinhole collimator. The heart was arrested after 60 minutes and removed for imaging and tissue counts to ascertain extracardiac and geometric factors. In normals (group 1) left ventricular images were relatively homogeneous, except for the thin walled apex, both in vivo and in the isolated heart. Equilibration with 43K prior to ischemia (group 2) gave similar images to group 1, associated with a small reduction in tissue counts after one hour of ischemia. Group 3 was infused with 43K after initiation of ischemia. Despite a reduction of 43K counts in the ischemic area to less than one-fourth of the nonischemic site (P < 0.001), demonstration of a ''cold area'' in vivo was inconstant, occurring in only 34 percent of studies. Lead shielding did not improve accuracy. In the isolated heart the ability to detect the cold area was improved to 73 percent. However, when the left ventricle was incised and spread flat, so that low and high activity areas were contiguous rather than superimposed, a widespread area of ischemia was present without exception in the anterior wall. Use of a rectilinear scanner in seven animals failed to improve diagnostic yield; areas of reduced radioactivity were seen at the apex in normals by both techniques. Thus, while detection of low flow areas in the isolated heart is feasible by isotopic imaging early after the onset of ischemia, both extracardiac and geometric factors can contribute to qualitative and quantitative errors in vivo

  16. Endoscopic Cerenkov luminescence imaging: in vivo small animal tumor model validation

    Science.gov (United States)

    Song, Tianming; Bao, Chengpeng; Hu, Zhenhua; Wang, Kun; Liu, Xia; Tian, Jie

    2015-03-01

    Background: Cerenkov luminescence imaging (CLI) provides a great potential for clinical translation of optical molecular imaging techniques through using clinical approved radiotracers. However, it is difficult to obtain the Cerenkov luminescence signal of deeper biological tissues due to the small magnitude of the signal. To efficiently acquire the weak Cerenkov luminescence, we developed an endoscopic Cerenkov luminescence imaging (ECLI) system to reduce the in vivo imaging depth with minimum invasion, and validated the system on small animal tumor models. Methods: For the ECLI system, the laparoscope was connected to a high sensitive charge-couple device (CCD) camera (DU888+, Andor, UK) by a custom made adapter. We conducted a series of in vitro and in vivo experiments by use of the system. In the in vitro experiment, the endoscopic luminescence images of the 18F-FDG with various activities in EP tubes were acquired using ECLI system, and the sensitivity was compared with conventional CLI system. In the in vivo tumor experiment, 18F-FDG with the activity of 200μCi were intravenously injected into 3 tumor mice. Then the ECLI system was used to acquire the optical images for both non-invasive and invasive conditions. Conclusion: Experimental data showed the ECLI system could detect the 18F-FDG with the activity as low as 1μCi. Furthermore, our preliminary results indicated the possibility of ECLI technique for detecting Cerenkov signals inside the tumor tissue with deeper depth and guiding the surgical operation of tumor excision. We believe that this technique can help to accelerate the clinical translation of CLI.

  17. Dairy farms typology and management of animal genetic resources in the peri-urban zone of Bamako (Mali

    Directory of Open Access Journals (Sweden)

    Abdoulaye Toure

    2015-05-01

    Full Text Available Facing growth in demand, dairy production in peri-urban areas of developing countries is changing rapidly. To characterise this development around Bamako (Mali, this study establishes a typology of dairy production systems with a special focus on animal genetic resources. The survey included 52 dairy cattle farms from six peri-urban sites. It was conducted in 2011 through two visits, in the dry and harvest seasons. The median cattle number per farm was 17 (range 5–118 and 42% of farmers owned cropland (8.3± 7.3 ha, minimum 1 ha, maximum 25 ha. Feeding strategy was a crucial variable in farm characterisation, accounting for about 85% of total expenses. The use of artificial insemination and a regular veterinary follow-up were other important parameters. According to breeders’ answers, thirty genetic profiles were identified, from local purebreds to different levels of crossbreds. Purebred animals raised were Fulani Zebu (45.8 %, Maure Zebu (9.2 %, Holstein (3.0 %, Azawak Zebu (1.3 %, Mere Zebu (0.5% and Kuri taurine (0.1 %. Holstein crossbred represented 30.5% of the total number of animals (19.0% Fulani-Holstein, 11.2% Maure-Holstein and 0.3% Kuri-Holstein. Montbéliarde, Normande and Limousin crossbreds were also found (6.6 %, 0.7% and 0.3 %, respectively. A multivariate analysis helped disaggregate the diversity of management practices. The high diversity of situations shows the need for consideration of typological characteristics for an appropriate intervention. Although strongly anchored on local breeds, the peri-urban dairy systems included a diversity of exotic cattle, showing an uncoordinated quest of breeders for innovation. Without a public intervention, this dynamic will result in an irremediable erosion of indigenous animal genetic resources.

  18. Characterization of a rotating slat collimator system dedicated to small animal imaging

    Science.gov (United States)

    Boisson, F.; Bekaert, V.; El Bitar, Z.; Wurtz, J.; Steibel, J.; Brasse, D.

    2011-03-01

    Some current investigations based on small animal models are dedicated to functional cerebral imaging. They represent a fundamental tool to understand the mechanisms involved in neurodegenerative diseases. In the radiopharmaceutical development approach, the main challenge is to measure the radioactivity distribution in the brain of a subject with good temporal and spatial resolutions. Classical SPECT systems mainly use parallel hole or pinhole collimators. In this paper we investigate the use of a rotating slat collimator system for small animal brain imaging. The proposed prototype consists of a 64-channel multi-anode photomultiplier tube (H8804, Hamamatsu Corp.) coupled to a YAP:Ce crystal highly segmented into 32 strips of 0.575 × 18.4 × 10 mm3. The parameters of the rotating slat collimator are optimized using GATE Monte Carlo simulations. The performance of the proposed prototype in terms of spatial resolution, detection efficiency and signal-to-noise ratio is compared to that obtained with a gamma camera equipped with a parallel hole collimator. Preliminary experimental results demonstrate that a spatial resolution of 1.54 mm can be achieved with a detection efficiency of 0.012% for a source located at 20 mm, corresponding to the position of the brain in the prototype field of view.

  19. Kinetic parametric estimation in animal PET molecular imaging based on artificial immune network

    International Nuclear Information System (INIS)

    Objective: To develop an accurate,reliable method without the need of initialization in animal PET modeling for estimation of the tracer kinetic parameters based on the artificial immune network. Methods: The hepatic and left ventricular time activity curves (TACs) were obtained by drawing ROIs of liver tissue and left ventricle on dynamic 18F-FDG PET imaging of small mice. Meanwhile, the blood TAC was analyzed by sampling the tail vein blood at different time points after injection. The artificial immune network for parametric optimization of pharmacokinetics (PKAIN) was adapted to estimate the model parameters and the metabolic rate of glucose (Ki) was calculated. Results: TACs of liver,left ventricle and tail vein blood were obtained.Based on the artificial immune network, Ki in 3 mice was estimated as 0.0024, 0.0417 and 0.0047, respectively. The average weighted residual sum of squares of the output model generated by PKAIN was less than 0.0745 with a maximum standard deviation of 0.0084, which indicated that the proposed PKAIN method can provide accurate and reliable parametric estimation. Conclusion: The PKAIN method could provide accurate and reliable tracer kinetic modeling in animal PET imaging without the need of initialization of model parameters. (authors)

  20. Diffuse fluorescence tomography based on the radiative transfer equation for small animal imaging

    Science.gov (United States)

    Wang, Yihan; Zhang, Limin; Zhao, Huijuan; Gao, Feng; Li, Jiao

    2014-02-01

    Diffuse florescence tomography (DFT) as a high-sensitivity optical molecular imaging tool, can be applied to in vivo visualize interior cellular and molecular events for small-animal disease model through quantitatively recovering biodistributions of specific molecular probes. In DFT, the radiative transfer equation (RTE) and its approximation, such as the diffuse equation (DE), have been used as the forward models. The RTE-based DFT methodology is more suitable for biological tissue having void-like regions and the near-source area as in the situations of small animal imaging. We present a RTE-based scheme for the steady state DFT, which combines the discrete solid angle method and the finite difference method to obtain numerical solutions of the 2D steady RTE, with the natural boundary condition and collimating light source model. The approach is validated using the forward data from the Monte Carlo simulation for its better performances in the spatial resolution and reconstruction fidelity compared to the DE-based scheme.

  1. Multislice computed tomography perfusion imaging for visualization of acute pulmonary embolism: animal experience

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, Joachim Ernst; Spuentrup, Elmar; Mahnken, Andreas H.; Guenther, Rolf W. [University Hospital, RWTH Aachen, Department of Diagnostic Radiology, Aachen (Germany); Klotz, Ernst; Ditt, Hendrik [Computed Tomography, Siemens Medical Solutions, Forchheim (Germany)

    2005-07-01

    The purpose of our animal study was to evaluate a new computed tomography (CT) subtraction technique for visualization of perfusion defects within the lung parenchyma in subsegmental pulmonary embolism (PE). Seven healthy pigs were entered into a prospective trial. Acute PE was artificially induced by fresh clot material prior to the CT scans. Within a single breath-hold, whole thorax CT scans were performed with a 16-slice multidetector-row CT scanner (SOMATOM Sensation 16; Siemens, Forchheim, Germany) before and after intravenous application of 80 ml of contrast medium with a flow rate of 4 ml/s, followed by a saline chaser. The scan parameters were 120 kV and 100 mAs{sub eff}, using a thin collimation of 16 x 0.75 mm and a table speed/rotation of 15-18 mm (pitch, 1.25-1.5; rotation time, 0.5 s). Axial source images were reconstructed with an effective slice thickness of 1 mm (overlap, 30%). A new automatic subtraction technique was used. After 3D segmentation of the lungs in the plain and contrast-enhanced series, threshold-based extraction of major airways and vascular structures in the contrast images was performed. This segmentation was repeated in the plain CT images segmenting the same number of vessels and airways as in the contrast images. Both scans were registered onto each other using nonrigid registration. After registration both image sets were filtered in a nonlinear fashion excluding segmented airways and vessels. After subtracting the plain CT data from the contrast data the resulting enhancement images were color-encoded and overlaid onto the contrast-enhanced CT angiography (CTA) images. This color-encoded combined display of parenchymal enhancement of the lungs was evaluated interactively on a workstation (Leonardo, Siemens) in axial, coronal and sagittal plane orientations. Axial contrast-enhanced CTA images were rated first, followed by an analysis of the combination images. Finally, CTA images were reread focusing on areas with perfusion

  2. CRYOBANKING OF SOMATIC CELLS IN CONSERVATION OF ANIMAL GENETIC RESOURCES: PROSPECTS AND SUCCESSES (review)

    OpenAIRE

    G.N. SINGINA; N.A. VOLKOVA; V.A. BAGIROV; N.A. Zinovieva

    2014-01-01

    Extinction of many species is irreversible and is a part of the natural evolution, but human activities have influenced this process, making it much faster comparing to speciation. According to FAO, approximately 20 % of the breeds of cattle, goats, pigs, horses and poultry in the world are currently at risk of disappearance, many have died in the past few years, as a result their genetic characteristics lost forever. The role of banks in the management of genetic resources and the conservati...

  3. ABDOMINAL LYMPHOMA: IMAGING WORK UP CHALLENGES AND RECOMMENDATIONS IN RESOURCE LIMITED SETUP.

    Science.gov (United States)

    Kebede, Asfaw Atnafu; Bekele, Frehiwot; Assefa, Getachew

    2014-10-01

    Lymphoma management begins with an accurate diagnosis & staging. Major advances in imaging techniques, make cross sectional imaging and nuclear medicine technique an excellent tool for patient work up. However, limited access to modern imaging modality in resource limited set up and luck of standardized imaging work up challenged patient's management. Assess the local lymphoma imaging work up and management challenges in patients with lymphoma and develop local imaging and reporting guideline. A semistructured qualitative interview to six conveniently selected physicians (hematologists, oncologists & pathologists) who primarily takes care of lymphoma patient and literature review on the role of various imaging modalities, recommendation and experience of other countries were used as a methodology Conventional and basic imaging modalities are used in the work up of patient in our set up. The imaging recommendation for these patients requires at least CT of the chest, abdomen and pelvis for initial diagnosis and FDG-PET and/or PET-CTfor follow up and recurrence. Due to the comparable diagnostic potentials of US and its wide spread availability, makes US still the primary imaging modality. Luck of required information's and inconsistency in the radiologists report found to challenge physicians in their patient management. The study concluded that US should still stay as the most important imaging modality in the initial treatment, staging and follow up patients in resource limited set up. It also recommended the general imaging work up and reporting framework. PMID:26410993

  4. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  5. Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

    OpenAIRE

    2014-01-01

    Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR) image from its low resolution (LR) counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from ...

  6. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); Fulton, Roger R. [Faculty of Health Sciences and Brain and Mind Research Institute, The University of Sydney, Sydney, NSW 2006 (Australia); School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Department of Medical Physics, Westmead Hospital, Sydney, NSW 2145 (Australia)

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  7. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  8. Hyperspectral Imaging of Forest Resources: The Malaysian Experience

    Science.gov (United States)

    Mohd Hasmadi, I.; Kamaruzaman, J.

    2008-08-01

    Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.

  9. Stable Small Animal Mechanical Ventilation for Dynamic Lung Imaging to Support Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rick E.; Lamm, W. J.

    2011-11-08

    Pulmonary computational fluid dynamics models require 3D images to be acquired over multiple points in the dynamic breathing cycle, with no breath holds or changes in ventilatory mechanics. With small animals, these requirements result in long imaging times ({approx}90 minutes), over which lung mechanics, such as compliance, can gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for pulmonary CT imaging throughout the dynamic breathing cycle. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in peak inspiratory pressure and flow provide diagnostics of changes in breathing mechanics.

  10. Stable small animal ventilation for dynamic lung imaging to support computational fluid dynamics models.

    Directory of Open Access Journals (Sweden)

    Richard E Jacob

    Full Text Available Pulmonary computational fluid dynamics models require that three-dimensional images be acquired over multiple points in the dynamic breathing cycle without breath holds or changes in ventilatory mechanics. With small animals, these requirements can result in long imaging times (∼90 minutes, over which lung mechanics, such as compliance, may gradually change if not carefully monitored and controlled. These changes, caused by derecruitment of parenchymal tissue, are manifested as an upward drift in peak inspiratory pressure (PIP or by changes in the pressure waveform and/or lung volume over the course of the experiment. We demonstrate highly repeatable mechanical ventilation in anesthetized rats over a long duration for dynamic lung x-ray computed tomography (CT imaging. We describe significant updates to a basic commercial ventilator that was acquired for these experiments. Key to achieving consistent results was the implementation of periodic deep breaths, or sighs, of extended duration to maintain lung recruitment. In addition, continuous monitoring of breath-to-breath pressure and volume waveforms and long-term trends in PIP and flow provide diagnostics of changes in breathing mechanics.

  11. Performance evaluation of a parallel-hole collimated detector module for animal SPECT imaging

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-Chao; WANG Ying-Jie; WEI Long; SHAN Bao-Ci; WANG Bao-Yi; ZHANG Zhi-Ming; LI Dao-Wu; TANG Hao-Hui; LI Ting; LIAO Yan-Fei; LIU Jun-Hui; WANG Pei-Lin; CHEN Yan

    2011-01-01

    We have built and investigated a detector module for animal SPECT imaging,especially for use in large field of view (FOV) conditions.The module consists of a PMT-based detector and a parallel-hole collimator with an effective area of 80 mm × 80 mm.The detector is composed of a NaI scintillation crystal array coupled to four H8500 position sensitive photomultiplier tubes (PS-PMT).The intrinsic energy resolution of the detector is 11.5% at 140 keV on average.The planar spatial resolution of the module changes from 2.2 mm to 5.1 mm at different source-to-collimator distances with an unchanged sensitivity of about 34cps/MBq.Additionally,the SPECT Micro Deluxe Phantom imaging was performed with a radius of rotation (ROR)of 40 mm.Using the FBP reconstruction algorithm,a high performance image was obtained,indicating the feasibility of this detector module.

  12. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    International Nuclear Information System (INIS)

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5–14 MHz) for both imaging and heating and a high-frequency (13–24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼3 s and ∼9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (−0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (−0.124

  13. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ding, Xuan; Dutta, Debaditya; Singh, Vijay P.; Kim, Kang

    2014-02-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ˜3 s and ˜9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (-0.065 ± 0.079%) were significantly (p livers (-0.124 ± 0.037%). Using histology as a gold standard to classify

  14. Therapeutic imaging window of cerebral infarction revealed by multisequence magnetic resonance imaging An animal and clinical study

    Institute of Scientific and Technical Information of China (English)

    Hong Lu; Hui Hu; Zhanping He; Xiangjun Han; Jing Chen; Rong Tu

    2012-01-01

    In this study, we established a Wistar rat model of right middle cerebral artery occlusion and observed pathological imaging changes (T2-weighted imaging [T2WI], T2FLAIR, and diffusion-weighted imaging [DWI]) following cerebral infarction. The pathological changes were divided into three phases: early cerebral infarction, middle cerebral infarction, and late cerebral infarction. In the early cerebral infarction phase (less than 2 hours post-infarction), there was evidence of intracellular edema, which improved after reperfusion. This improvement was defined as the ischemic penumbra. In this phase, a high DWI signal and a low apparent diffusion coefficient were observed in the right basal ganglia region. By contrast, there were no abnormal T2WI and T2FLAIR signals. For the middle cerebral infarction phase (2–4 hours post-infarction), a mixed edema was observed. After reperfusion, there was a mild improvement in cell edema, while the angioedema became more serious. A high DWI signal and a low apparent diffusion coefficient signal were observed, and some rats showed high T2WI and T2FLAIR signals. For the late cerebral infarction phase (4–6 hours post-infarction), significant angioedema was visible in the infarction site. After reperfusion, there was a significant increase in angioedema, while there was evidence of hemorrhage and necrosis. A mixed signal was observed on DWI, while a high apparent diffusion coefficient signal, a high T2WI signal, and a high T2FLAIR signal were also observed. All 86 cerebral infarction patients were subjected to T2WI, T2FLAIR, and DWI. MRI results of clinic data similar to the early infarction phase of animal experiments were found in 51 patients, for which 10 patients (10/51) had an onset time greater than 6 hours. A total of 35 patients had MRI results similar to the middle and late infarction phase of animal experiments, of which eight patients (8/35) had an onset time less than 6 hours. These data suggest that defining the

  15. Investigations on x-ray luminescence CT for small animal imaging

    Science.gov (United States)

    Badea, C. T.; Stanton, I. N.; Johnston, S. M.; Johnson, G. A.; Therien, M. J.

    2012-03-01

    X-ray Luminescence CT (XLCT) is a hybrid imaging modality combining x-ray and optical imaging in which x-ray luminescent nanophosphors (NPs) are used as emissive imaging probes. NPs are easily excited using common CT energy x-ray beams, and the NP luminescence is efficiently collected using sensitive light-based detection systems. XLCT can be recognized as a close analog to fluorescence diffuse optical tomography (FDOT). However, XLCT has remarkable advantages over FDOT due to the substantial excitation penetration depths provided by x-rays relative to laser light sources, long-term photo-stability of NPs, and the ability to tune NP emission within the NIR spectral window. Since XCLT uses an x-ray pencil beam excitation, the emitted light can be measured and back-projected along the x-ray path during reconstruction, where the size of the x-ray pencil beam determines the resolution for XLCT. In addition, no background signal competes with NP luminescence (i.e., no auto fluorescence) in XLCT. Currently, no small animal XLCT system has been proposed or tested. This paper investigates an XLCT system built and integrated with a dual source micro-CT system. A novel sampling paradigms that results in more efficient scanning is proposed and tested via simulations. Our preliminary experimental results in phantoms indicate that a basic CT-like reconstruction is able to recover a map of the NP locations and differences in NP concentrations. With the proposed dual source system and faster scanning approaches, XLCT has the potential to revolutionize molecular imaging in preclinical studies.

  16. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  17. Improved automated synthesis and preliminary animal PET/CT imaging of 11C-acetate

    International Nuclear Information System (INIS)

    To study a simple and rapid automated synthetic technology of 11C-acetate (11C- AC), automated synthesis of 11C-AC was performed by carboxylation of MeMgBr/tetrahydrofuran (THF) on a polyethylene loop with 11C-CO2, followed by hydrolysis and purification on solid-phase extraction cartridges using a 11C-Choline/Methionine synthesizer made in China. A high and reproducible radiochemical yield of above 40% (decay corrected) was obtained within the whole synthesis time about 8 min from 11C-CO2. The radiochemical purity of 11C-AC was over 95%. The novel, simple and rapid on-column hydrolysis-purification procedure should adaptable to the fully automated synthesis of 11C-AC at several commercial synthesis module. 11C-AC injection produced by the automated procedure is safe and effective, and can be used for PET imaging of animals and humans. (authors)

  18. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    International Nuclear Information System (INIS)

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 µm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents. - Highlights: • We developed a new micro-CT scanner for small animal imaging. • Application of Timepix technology to obtain enhanced soft tissue contrast. • Spatial resolution below 30 µm achieved. • Performance demonstrated using a tissue equivalent phantom and biological samples

  19. X-ray micro-CT scanner for small animal imaging based on Timepix detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, Jan, E-mail: jan.dudak@utef.cvut.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague, Nam. Sitna 3105, 272 00 Kladno (Czech Republic); Zemlicka, Jan; Krejci, Frantisek; Polansky, Stepan; Jakubek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Mrzilkova, Jana; Patzelt, Matej; Trnka, Jan [Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague (Czech Republic)

    2015-02-11

    We describe a newly developed compact micro-CT scanner with rotating gantry equipped with a Timepix Quad hybrid pixel semiconductor detector and a micro-focus X-ray tube providing spatial resolution down to 30 µm. The resolving power of the device in relation to soft tissue sensitivity is demonstrated using a tissue-equivalent phantom and different types of biological samples. The results demonstrate that the use of noiseless particle counting detectors is a promising way to achieve sufficient soft tissue contrast even without any contrast agents. - Highlights: • We developed a new micro-CT scanner for small animal imaging. • Application of Timepix technology to obtain enhanced soft tissue contrast. • Spatial resolution below 30 µm achieved. • Performance demonstrated using a tissue equivalent phantom and biological samples.

  20. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion.

    Directory of Open Access Journals (Sweden)

    James D Crall

    Full Text Available A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames. These tags can be located within images that are visually complex, making them particularly well suited for longitudinal studies of animal behavior and movement in naturalistic environments. While several software packages have been developed that use computer vision to identify visual tags, these software packages are either (a not optimized for identification of single tags, which is generally of the most interest for biologists, or (b suffer from licensing issues, and therefore their use in the study of animal behavior has been limited. Here, we present BEEtag, an open-source, image-based tracking system in Matlab that allows for unique identification of individual animals or anatomical markers. The primary advantages of this system are that it (a independently identifies animals or marked points in each frame of a video, limiting error propagation, (b performs well in images with complex backgrounds, and (c is low-cost. To validate the use of this tracking system in animal behavior, we mark and track individual bumblebees (Bombus impatiens and recover individual patterns of space use and activity within the nest. Finally, we discuss the advantages and limitations of this software package and its application to the study of animal movement, behavior, and ecology.

  1. Particle image velocimetry (PIV) study of rotating cylindrical filters for animal cell perfusion processes.

    Science.gov (United States)

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda; de Andrade Medronho, Ricardo

    2012-01-01

    In the present work, the main fluid flow features inside a rotating cylindrical filtration (RCF) system used as external cell retention device for animal cell perfusion processes were investigated using particle image velocimetry (PIV). The motivation behind this work was to provide experimental fluid dynamic data for such turbulent flow using a high-permeability filter, given the lack of information about this system in the literature. The results shown herein gave evidence that, at the boundary between the filter mesh and the fluid, a slip velocity condition in the tangential direction does exist, which had not been reported in the literature so far. In the RCF system tested, this accounted for a fluid velocity 10% lower than that of the filter tip, which could be important for the cake formation kinetics during filtration. Evidence confirming the existence of Taylor vortices under conditions of turbulent flow and high permeability, typical of animal cell perfusion RCF systems, was obtained. Second-order turbulence statistics were successfully calculated. The radial behavior of the second-order turbulent moments revealed that turbulence in this system is highly anisotropic, which is relevant for performing numerical simulations of this system.

  2. Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging

    Science.gov (United States)

    Kujala, Naresh Gandhi

    Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The

  3. Medical Image Resource Center--making electronic teaching files from PACS.

    Science.gov (United States)

    Lim, C C Tchoyoson; Yang, Guo Liang; Nowinski, Wieslaw L; Hui, Francis

    2003-12-01

    A picture archive and communications system (PACS) is a rich source of images and data suitable for creating electronic teaching files (ETF). However, the potential for PACS to support nonclinical applications has not been fully realized: at present there is no mechanism for PACS to identify and store teaching files; neither is there a standardized method for sharing such teaching images. The Medical Image Resource Center (MIRC) is a new central image repository that defines standards for data exchange among different centers. We developed an ETF server that retrieves digital imaging and communication in medicine (DICOM) images from PACS, and enables users to create teaching files that conform to the new MIRC schema. We test-populated our ETF server with illustrative images from the clinical case load of the National Neuroscience Institute, Singapore. Together, PACS and MIRC have the potential to benefit radiology teaching and research.

  4. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    Science.gov (United States)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  5. Non-invasive optical imaging of tumor growth in intact animals

    Science.gov (United States)

    Lu, Jinling; Li, Pengcheng; Luo, Qingming; Zhu, Dan

    2003-12-01

    We describe here a system for rapidly visualizing tumor growth in intact rodent mice that is simple, rapid, and eminently accessible and repeatable. We have established new rodent tumor cell line -- SP2/0-GFP cells that stably express high level of green fluorescent protein (GFP) by transfected with a plasmid that encoded GFP using electroporation and selected with G418 for 3 weeks. 1 x 104 - 1x107 SP2/0-GFP mouse melanoma cells were injected s.c. in the ears and legs of 6- to 7-week-old syngeneic male BALB/c mice, and optical images visualized real-time the engrafted tumor growth. The tumor burden was monitored over time by cryogenically cooled charge coupled device (CCD) camera focused through a stereo microscope. The results show that the fluorescence intensity of GFP-expressing tumor is comparably with the tumor growth and/or depress. This in vivo optical imaging based on GFP is sensitive, external, and noninvasive. It affords continuous visual monitoring of malignant growth within intact animals, and may comprise an ideal tool for evaluating antineoplastic therapies.

  6. Molecular imaging of nuclear factor-Y transcriptional activity maps proliferation sites in live animals.

    Science.gov (United States)

    Goeman, Frauke; Manni, Isabella; Artuso, Simona; Ramachandran, Balaji; Toietta, Gabriele; Bossi, Gianluca; Rando, Gianpaolo; Cencioni, Chiara; Germoni, Sabrina; Straino, Stefania; Capogrossi, Maurizio C; Bacchetti, Silvia; Maggi, Adriana; Sacchi, Ada; Ciana, Paolo; Piaggio, Giulia

    2012-04-01

    In vivo imaging involving the use of genetically engineered animals is an innovative powerful tool for the noninvasive assessment of the molecular and cellular events that are often targets of therapy. On the basis of the knowledge that the activity of the nuclear factor-Y (NF-Y) transcription factor is restricted in vitro to proliferating cells, we have generated a transgenic reporter mouse, called MITO-Luc (for mitosis-luciferase), in which an NF-Y-dependent promoter controls luciferase expression. In these mice, bioluminescence imaging of NF-Y activity visualizes areas of physiological cell proliferation and regeneration during response to injury. Using this tool, we highlight for the first time a role of NF-Y activity on hepatocyte proliferation during liver regeneration. MITO-Luc reporter mice should facilitate investigations into the involvement of genes in cell proliferation and provide a useful model for studying aberrant proliferation in disease pathogenesis. They should be also useful in the development of new anti/proproliferative drugs and assessment of their efficacy and side effects on nontarget tissues. PMID:22379106

  7. Entry, Descent, Landing Animation (Animation)

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for Entry, Descent, Landing animation This animation illustrates the path the Stardust return capsule will follow once it enters Earth's atmosphere.

  8. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sajedi, Salar; Zeraatkar, Navid [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Moji, Vahideh; Farahani, Mohammad Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Sarkar, Saeed [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Arabi, Hossein [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Teymoorian, Behnoosh [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Parto Negar Persia Co, Tehran (Iran, Islamic Republic of); Ghafarian, Pardis [Chronic Respiratory Disease Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahmim, Arman [Department of Radiology, Johns Hopkins University, Baltimore, MD (United States); Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD (United States); Reza Ay, Mohammad, E-mail: mohammadreza_ay@sina.tums.ac.ir [Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-21

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT.

  9. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  10. Dosimetry for spectral molecular imaging of small animals with MARS-CT

    Science.gov (United States)

    Ganet, Noémie; Anderson, Nigel; Bell, Stephen; Butler, Anthony; Butler, Phil; Carbonez, Pierre; Cook, Nicholas; Cotterill, Tony; Marsh, Steven; Panta, Raj Kumar; Laban, John; Walker, Sophie; Yeabsley, Adam; Damet, Jérôme

    2015-03-01

    The Medipix All Resolution Scanner (MARS) spectral CT is intended for small animal, pre-clinical imaging and uses an x-ray detector (Medipix) operating in single photon counting mode. The MARS system provides spectrometric information to facilitate differentiation of tissue types and bio-markers. For longitudinal studies of disease models, it is desirable to characterise the system's dosimetry. This dosimetry study is performed using three phantoms each consisting of a 30 mm diameter homogeneous PMMA cylinder simulating a mouse. The imaging parameters used for this study are derived from those used for gold nanoparticle identification in mouse kidneys. Dosimetry measurement are obtained with thermo-luminescent Lithium Fluoride (LiF:CuMgP) detectors, calibrated in terms of air kerma and placed at different depths and orientations in the phantoms. Central axis TLD air kerma rates of 17.2 (± 0.71) mGy/min and 18.2 (± 0.75) mGy/min were obtained for different phantoms and TLD orientations. Validation measurements were acquired with a pencil ionization chamber, giving an air-kerma rate of 20.3 (±1) mGy/min and an estimated total air kerma of 81.2 (± 4) mGy for a 720 projection acquisition. It is anticipated that scanner design improvements will significantly decrease future dose requirements. The procedures developed in this work will be used for further dosimetry calculations when optimizing image acquisition for the MARS system as it undergoes development towards human clinical applications.

  11. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  12. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    International Nuclear Information System (INIS)

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ''deconvolution'' procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs

  13. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    Science.gov (United States)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  14. Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues.

    Science.gov (United States)

    Biela, Ewa; Galas, Jerzy; Lee, Brian; Johnson, Gary L; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W

    2013-06-01

    A new low-molecular-weight fluorescent probe, Col-F, that exhibits affinity to collagen and elastin, was used successfully in imaging of extracellular matrix in freshly excised animal tissues. Col-F readily penetrates between live cells into tissues and binds to fibers of collagen and elastin by a noncovalent mechanism. Fibers of collagen and elastin have been stained in a variety of tissues, including tendon, skeletal muscle, connective tissue, and arteries. Cells migrating in a Col-F-stained collagenous biomaterial were also imaged. No phototoxic effects were detected when live keratocytes were imaged in the in vitro culture in the presence of Col-F. In conclusion, Col-F provides a simple and convenient tool for fluorescence three-dimensional imaging of intricate collagenous and elastic structures in live and fixed animal tissues, as well as in collagen-containing biomaterials.

  15. Analysis of laboratory animal strain resources in USA%美国实验动物品种资源现状分析

    Institute of Scientific and Technical Information of China (English)

    孔琪; 夏霞宇; 赵永坤

    2015-01-01

    实验动物是生命科学和生物医药创新研究等重要的支撑条件. 随着生命科学和生物医药产业的快速发展,实验动物、动物模型资源数量和种类都快速增加. 据统计,世界各地共培育着200多种共计26 000多个品系的实验动物,其中有2607个品系为常规实验动物. 美国是世界上实验动物资源大国,拥有最全的实验动物品系品种资源和保藏机构. 本文首次对美国实验动物资源进行了系统分析归类,以便为我国实验动物资源发展提供借鉴.%Laboratory animal is an important support condition in life science and biomedical research .With the rapid development of life science and biomedical industry, laboratory animals, and quantity and variety of animal model resource are rapidly increasing.According to the statistics, there are more than 200 kinds of a total of more than 26000 strains, including 2607 strains of conventional laboratory animals in the world .USA is a big country of laboratory animal resource in the world , with most of the laboratory animal breed resources and preservation organization .In this paper, we analyzed American laboratory animal re-sources, and provided references for the development of laboratory animal resource in China .

  16. A method to quantify movement activity of groups of animals using automated image analysis

    Science.gov (United States)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  17. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  18. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  19. Workshop on molecular animation.

    Science.gov (United States)

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E

    2010-10-13

    From February 25 to 26, 2010, in San Francisco, the Resource for Biocomputing, Visualization, and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for producing high-quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories.

  20. Performance Evaluation of microPET: A High-Resolution Lutetium Oxyorthosilicate PET Scanner for Animal Imaging

    OpenAIRE

    Chatziioannou, Arion F.; Cherry, Simon R.; Shao, Yiping; Silverman, Robert W.; Meadors, Ken; Farquhar, Thomas H.; Pedarsani, Marjan; Phelps, Michael E.

    1999-01-01

    A new dedicated PET scanner, microPET, was designed and developed at the University of California, Los Angeles, for imaging small laboratory animals. The goal was to provide a compact system with superior spatial resolution at a fraction of the cost of a clinical PET scanner.

  1. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    NARCIS (Netherlands)

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is presente

  2. 国家啮齿类实验动物种子中心简介%A Brief Introduction to National Resource Center for Rodent Laboratory Animal

    Institute of Scientific and Technical Information of China (English)

    岳秉飞

    2003-01-01

    National Resource Center (NRLARC) for Rodent Laboratory Animal was established in 1998, ratified by State Commission of Science and Technology. Subordinated to laboratory animal center For National Institute for the Control of Pharmaceutical and Biological Products. The major aims are: importing, collecting and conserving the variety of LA and strain of LA, studying new LA protection techniques, developing the new strain and varieties of LA and supplying the standard breeding of LA to several client both at home and abroad.

  3. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    International Nuclear Information System (INIS)

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  4. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    Science.gov (United States)

    Pierce, Greg; Wang, Kevin; Battista, Jerry; Lee, Ting-Yim

    2012-06-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  5. In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography

    International Nuclear Information System (INIS)

    High-resolution single photon emission computed tomography (SPECT) provides a unique capability to image the biodistribution of radiolabeled molecules in small laboratory animals. Thus, we applied the high-resolution SPECT to in vivo imaging of the brain dopaminergic neurotransmission system in common marmosets using two radiolabeled ligands, [123I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) as a dopamine transporter(DAT) ligand and [123I]iodobenzamide (IBZM) as a dopamine D2 receptor (D2R) ligand. Specific images of the striatum, a region with a high density of dopaminergic synapses, were obtained at 240 min and 60 min after injection of [123I]β-CIT and [123I]IBZM, respectively. Furthermore, a significantly low accumulation of [123I]β-CIT in the striatum was observed in MPTP-treated animals compared with results for a control group, and a similar accumulation in the control group was observed with the pretreatment of deprenyl in the MPTP-treated animals. However, the striatal accumulation of [123I]IBZM showed no changes among the control, MPTP-treated, and deprenyl-MPTP-treated groups. These SPECT imaging results agreed well with those of DA concentration and motor behavior. Since MPTP destroys nigrostriatal dopamine nerves and produces irreversible neurodegeneration associated with Parkinsonian syndrome, SPECDT imaging data in this study demonstrated that deprenyl shows its neuroprotective effect on Parkinsonism by protecting against the destruction of presynaptic dopamine neutrons. (author)

  6. Animation company "Fast Forwards" production with HP Utility Data Center; film built using Adaptive Enterprise framework enabled by shared, virtual resource

    CERN Multimedia

    2003-01-01

    Hewlett Packard have produced a commercial-quality animated film using an experimental rendering service from HP Labs and running on an HP Utility Data Center (UDC). The project demonstrates how computing resources can be managed virtually and illustrates the value of utility computing, in which an end-user taps into a large pool of virtual resources, but pays only for what is used (1 page).

  7. Investigation on wild animal resource in Sunan and Subei counties%肃南肃北草原野生动物资源调查研究

    Institute of Scientific and Technical Information of China (English)

    赵忠; 王军; 张卫军; 郭金梅; 柴永青; 泽德; 那·巴特尔; 何毅; 杨鹏翼; 李青; 金赐福; 贾生福; 杨学兰; 孙晓云; 顾自林

    2011-01-01

    By 3-year investigation and study on wild animal resource in Sunan and Subei counties, the result indicated that the major wild terrestrial vertebrate on the grassland area in the Qilianshan Mountains and Mazongshah Mountains could be divided into 5 faunae, alpine desert animal fauna, alpine meadow animal faunal, desert animal fauna, marsh animal fauna and village-farmland animal faunal; More than 800 animal species embracing ungulate, carnivore, reptile, amphibian, fish, rodent, avifauna and insect were located in the area; Among the wild animals, 24 species were the national protective animal, accounting for 26 % of total wild animal and bird species in Sunan and Subei counties. Out of the protective animals, 10 species were the first class national protective animal; 24 species were the second class national protective animal.%通过对肃南、肃北草原野生动物资源3年的调查研究分析,结果表明,祁连山地及马鬃山区草原地带活动的主要陆生脊椎野生动物种群可划分为5个类群,高山寒漠动物群、高山草甸动物群、荒漠动物群、沼泽动物群和村庄农田动物群,有蹄类、食肉类、爬行类、两栖类、鱼类、啮齿类、鸟类及昆虫类约有800多种;国家级保护动物共有34种,占肃南、肃北鸟兽种数的26%.其中国家一级保护动物有10种;国家二级保护动物有24种.

  8. PLANT IMAGES IN PAINTINGS OF ARTISTS AS A RESOURCE OF INFORMATION ON THE HISTORY OF AGRONOMY

    Directory of Open Access Journals (Sweden)

    Tsatsenko L. V.

    2015-11-01

    Full Text Available The article discusses the use of illustrations based on works of art as a resource for information on the history of science and of agronomy is plant breeding in particular. In our work, we used the works of art as a separate independent resource of information in multiple tasks: as a resource for archaeogenetic variety of agricultural crops (pumpkin, gourd, squash, Luffa as a tool of visual notes in plant breeding, as an independent material analysis introduction agricultural plants. The task of our study was to create base images of agricultural plants on the basis of works of art of past centuries, as a demonstration of the development of scientific breeding of agricultural plants. In this regard, to achieve this goal, we have been collected images of agricultural plants from the 15th to the 21st century, given their modern counterparts. Paintings in the educational process in courses of such disciplines as "History of agronomy" can be regarded as the object of analysis; material for study; a tool for gathering information, the resource information on individual characteristics. A common criterion of the approach to painting, as a tool of analysis, is the fact that an illustration, an image or other biological phenomena, recreate the form, the essence of the research object or phenomenon. It is shown, that the use of paintings as documentary, the changes of plants, in our opinion is interesting and relevant methodical approach in the modern educational technology. The analysis of paintings allows students to penetrate deeper into the image of the investigated object, to enquire about the time of the creation of the painting, to be an independent creative activity in search of information resource

  9. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P. E., E-mail: Patricia.Lindsay@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Granton, P. V.; Hoof, S. van; Hermans, J. [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Gasparini, A. [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Jelveh, S. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Clarkson, R. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); Mid-South Radiation Physics, Inc., 1801 South 54th Street, Paragould, Arkansas 72450 (United States); Kaas, J.; Wittkamper, F.; Sonke, J.-J. [Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Verhaegen, F. [Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montreal, Québec H3G 1A4 (Canada); Jaffray, D. A. [Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1 (Canada); The TECHNA Institute for the Advancement of Technology for Health, Toronto, Ontario M5G 1P5 (Canada)

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the

  10. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm2 field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm2, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the dosimetric

  11. Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuehai Wang

    2014-01-01

    Full Text Available Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR image from its low resolution (LR counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery, consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image itself, and propose a new combined self-similarity superresolution (SR solution, with low computation cost and high recover performance. In the self-similarity image super resolution model (SSIR, a small size sparse dictionary is learned from the image itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the effectiveness and efficiency of this double self-learning method in the image super resolution.

  12. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    International Nuclear Information System (INIS)

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  13. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, J [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Malyarenko, E [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); Chen, D [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Wydra, A [True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada); Maev, R [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada)

    2015-06-15

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  14. Evaluation of liver function and electroacupuncture efficacy of animals with alcoholic liver injury by the novel imaging methods

    Science.gov (United States)

    Zhang, Dong; Song, Xiao-jing; Li, Shun-yue; Wang, Shu-you; Chen, Bing-jun; Bai, Xiao-Dong; Tang, Li-mei

    2016-01-01

    Imaging methods to evaluate hepatic microcirculation (HM) and liver function (LF) by directly monitoring overall liver tissue remain lacking. This study establish imaging methods for LF that combines Laser speckle perfusion imaging (LSPI) and in vivo optical imaging (IVOI) technologies to investigate changes of hepatic microcirculation and reserve function in the animals gavaged with 50% ethanol (15 ml/kg·bw) for a model of acute alcoholic liver injury (ALI), and for evaluation of electroacupuncture (EA) effect. The liver blood perfusion and indocyanine green (ICG) distribution were observe by LSPI and IVOI separately. After EA, the livers were collected to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), thromboxane A (TXA2), prostacyclin (PGI2) and endothelin (ET). The acquisitions of newly established LSPI of liver and ICG in vivo fluorescence imaging (ICG-IVFI), combining the results of other indexes showed: hepatic microcirculation perfusion (HMP) significantly reduced, ICG metabolism reduced, and ALT/AST increased in animal model with acute ALI. EA can reverse these changes. The use of LSPI of liver and ICG-IVFI, which was novel imaging methods for LF established in this study, could display the LF characteristics of ALI and the EA efficacy. PMID:27443832

  15. Whole-animal imaging of bacterial infection using endoscopic excitation of β-lactamase (BlaC)-specific fluorogenic probe

    Science.gov (United States)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-03-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.

  16. Autoradiographic imaging of cerebral ischaemia using hypoxic marker: 99mTc-HL91 in animal models

    International Nuclear Information System (INIS)

    Objective: To explore the possibility of 99mTc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99mTc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result The ischemic territory accumulated more 99mTc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99mTc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion 99mTc-HL91 can be avidly taken up by ischemic penumbra. 99mTc-HL91 is a potential agent for imaging hypoxic tissue, and 99mTc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  17. Autoradiographic imaging of cerebral ischemia using hypoxic marker: Tc-99m-HL91 in animal models

    International Nuclear Information System (INIS)

    Objective: To explore the possibility of Tc-99m-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods: 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected Tc-99m-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result: The ischemic territory accumulated more Tc-99m-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of Tc-99m-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion : Tc-99m-HL91 can be avidly taken up by ischemic penumbra. Tc-99m-HL91 is a potential agent for imaging hypoxic tissue, and Tc-99m-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  18. A role of advanced image data logger systems in marine animal studies

    OpenAIRE

    Naito, Yasuhiko

    2006-01-01

    To fulfill information gaps of underwater animal behavior, variety of animal-borne observation systems have been developed in last several decades, which revealed diving behavior, foraging behavior of many endotherms, particularly seals and penguins by providing information on many dive parameters, such as dive depth, dive angles, dive profiles, swim speed, body motion, body postures, ambient temperatures, 3D dive paths and so on. Above advanced animal-borne systems supported us to obtain rel...

  19. Theory and Technology of Preservation in Domestic Animal Genetic Resources%畜禽遗传资源保存的理论与技术

    Institute of Scientific and Technical Information of China (English)

    吴常信

    2001-01-01

    Recent research progresses on the theory and technology ofdomestic animal genetic resource preservation were presented in this paper. Furthermore, it was pointed out that reasonable utilization of domestic animal genetic resources is necessary for sustainable development of Chinese animal husbandry in 21st century.%本文阐述了中国在畜禽遗传资源保存理论与技术研究方面取得的成果,并系统评述了这些成果的内容、特色和水平,同时指出要在21世纪实现畜牧业的可持续发展,中国必须重视畜禽遗传资源的保存与合理利用。

  20. Multispectral and Photoplethysmography Optical Imaging Techniques Identify Important Tissue Characteristics in an Animal Model of Tangential Burn Excision.

    Science.gov (United States)

    Thatcher, Jeffrey E; Li, Weizhi; Rodriguez-Vaqueiro, Yolanda; Squiers, John J; Mo, Weirong; Lu, Yang; Plant, Kevin D; Sellke, Eric; King, Darlene R; Fan, Wensheng; Martinez-Lorenzo, Jose A; DiMaio, J Michael

    2016-01-01

    Burn excision, a difficult technique owing to the training required to identify the extent and depth of injury, will benefit from a tool that can cue the surgeon as to where and how much to resect. We explored two rapid and noninvasive optical imaging techniques in their ability to identify burn tissue from the viable wound bed using an animal model of tangential burn excision. Photoplethysmography (PPG) imaging and multispectral imaging (MSI) were used to image the initial, intermediate, and final stages of burn excision of a deep partial-thickness burn. PPG imaging maps blood flow in the skin's microcirculation, and MSI collects the tissue reflectance spectrum in visible and infrared wavelengths of light to classify tissue based on a reference library. A porcine deep partial-thickness burn model was generated and serial tangential excision accomplished with an electric dermatome set to 1.0 mm depth. Excised eschar was stained with hematoxylin and eosin to determine the extent of burn remaining at each excision depth. We confirmed that the PPG imaging device showed significantly less blood flow where burn tissue was present, and the MSI method could delineate burn tissue in the wound bed from the viable wound bed. These results were confirmed independently by a histological analysis. We found these devices can identify the proper depth of excision, and their images could cue a surgeon as to the preparedness of the wound bed for grafting. These image outputs are expected to facilitate clinical judgment in the operating room.

  1. Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT

    NARCIS (Netherlands)

    Harteveld, A.A.; Meeuwis, A.P.W.; Disselhorst, J.A.; Slump, C.H.; Oyen, W.J.G.; Boerman, O.C.; Visser, E.P.

    2011-01-01

    Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 sta

  2. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Ma, Tianyu, E-mail: maty@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China)

    2015-06-21

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  3. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  4. A low-cost, universal, and cumulative gating circuit for small and large animal clinical imaging

    OpenAIRE

    Gioux, Sylvain; Frangioni, John V.

    2008-01-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0–5 V) ima...

  5. Potential of fodder tree/shrub legumes as a feed resource for dry season supplementation of smallholder ruminant animals

    International Nuclear Information System (INIS)

    Fodder tree/shrub legumes have the potential for alleviating some of the feed shortages and nutritional deficiencies experienced in the dry season on smallholder farms. Zambia has a wide range of naturally occurring tree/shrub species that can be used as fodder for ruminants. Over the years a number of trees have been selected for their agronomic qualities and are currently being used in arable farming systems to promote soil fertility and erosion control. There is a need to evaluate them for use as fodder for ruminants in the dry season. Because of their high content of protein, minerals and vitamins and availability in the dry season, fodder tree/shrub legumes have the capacity to complement the feeding of crop-residues and natural pastures. Tree/shrub legumes also have other advantages in that they are available on-farm and can also be used as a source of food, timber and medicines at village level. Being deep rooted, fodder trees are rarely affected by seasonal climatic changes. The main limitation to their use as a feed resource for ruminants is the high tannin content which may have detrimental effects on the performance of animals. A number of techniques including, wilting, sun-drying, treatment with chemicals and ammoniation have been developed to minimize their adverse effects. Controlled intake through stall feeding or mixing of tree/shrub fodder with basal diets could also be used to mitigate their toxic effects. Research is currently under way to establish rumen microbes that have capacity to detoxify tannins. To promote increased use of fodder trees on smallholder farms, farmers must be provided with information on the good quality fodder trees and the approaches to effectively utilise them. They should also be encouraged to start planting fodder trees in their food crop farming systems or establishing fodder gardens on fallow lands. (author)

  6. View-based matching can be more than image matching:The importance of considering an animal's perspective

    OpenAIRE

    Wystrach, Antoine; Graham, Paul

    2012-01-01

    Using vision for navigation is important for many animals and a common debate is the extent to which spatial performance can be explained by "simple" view-based matching strategies. We discuss, in the context of recent work, how confusion between image-matching algorithms and the broader class of view-based navigation strategies, is hindering the debate around the use of vision in spatial cognition. A proper consideration of view-based matching strategies requires an understanding of the visu...

  7. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies

    International Nuclear Information System (INIS)

    Recently, precision irradiators integrated with a high-resolution CT imaging device became available for pre-clinical studies. These research platforms offer significant advantages over older generations of animal irradiators in terms of precision and accuracy of image-guided radiation targeting. These platforms are expected to play a significant role in defining experiments that will allow translation of research findings to the human clinical setting. In the field of radiotherapy, but also others such as neurology, the platforms create unique opportunities to explore e.g. the synergy between radiation and drugs or other agents. To fully exploit the advantages of this new technology, accurate methods are needed to plan the irradiation and to calculate the three-dimensional radiation dose distribution in the specimen. To this end, dedicated treatment planning systems are needed. In this review we will discuss specific issues for precision irradiation of small animals, we will describe the workflow of animal treatment planning, and we will examine several dose calculation algorithms (factorization, superposition-convolution, Monte Carlo simulation) used for animal irradiation with kilovolt photon beams. Issues such as dose reporting methods, photon scatter, tissue segmentation and motion will also be discussed briefly.

  8. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, Frank; Hoof, Stefan van; Granton, Patrick V.; Trani, Daniela [Maastricht University Medical Center (Netherlands). Dept. of Radiation Oncology (MAASTRO)

    2014-07-01

    Recently, precision irradiators integrated with a high-resolution CT imaging device became available for pre-clinical studies. These research platforms offer significant advantages over older generations of animal irradiators in terms of precision and accuracy of image-guided radiation targeting. These platforms are expected to play a significant role in defining experiments that will allow translation of research findings to the human clinical setting. In the field of radiotherapy, but also others such as neurology, the platforms create unique opportunities to explore e.g. the synergy between radiation and drugs or other agents. To fully exploit the advantages of this new technology, accurate methods are needed to plan the irradiation and to calculate the three-dimensional radiation dose distribution in the specimen. To this end, dedicated treatment planning systems are needed. In this review we will discuss specific issues for precision irradiation of small animals, we will describe the workflow of animal treatment planning, and we will examine several dose calculation algorithms (factorization, superposition-convolution, Monte Carlo simulation) used for animal irradiation with kilovolt photon beams. Issues such as dose reporting methods, photon scatter, tissue segmentation and motion will also be discussed briefly.

  9. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    Science.gov (United States)

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  10. Non-Invasive imaging of small-animal tumors: high-frequency ultrasound vs. MicroPET.

    Science.gov (United States)

    Liao, Ai-Ho; Li, Chen-Han; Cheng, Weng-Fang; Li, Pai-Chi

    2005-01-01

    Tumor volume measurement on small animals is important but currently invasive. We employ ultrasonic micro-imaging (UMI) in this study and demonstrate its feasibility. In addition, we use small animal positron emission tomography (microPET) as a preliminary effort to develop multi-modality small animal imaging techniques. The tumor growth curve from UMI is also compared to radioactivity from microPET. Both UMI and [18F] FDG microPET imaging were performed on C57BL/6J black mice bearing WF-3 ovary cancer cells at various stages from the second week till up to the eighth week. Segmentation and 3D reconstruction were also done. The growth curve was obtained in vivo noninvasively by UMI. The cell doubling time was 7.46 days according to UMI. This result was compared with vernier caliper measurement and radioactivity counting by microPET. In microPET, we obtained the time-activity curves from the tumor and the tumor-surrounding tissue. The tumor-to-normal-tissues ratios reached maximum at the fifth week after tumor cell implantation. PMID:17281549

  11. Reproducibility of small animal cine and scar cardiac magnetic resonance imaging using a clinical 3.0 tesla system

    International Nuclear Information System (INIS)

    To evaluate the inter-study, inter-reader and intra-reader reproducibility of cardiac cine and scar imaging in rats using a clinical 3.0 Tesla magnetic resonance (MR) system. Thirty-three adult rats (Sprague–Dawley) were imaged 24 hours after surgical occlusion of the left anterior descending coronary artery using a 3.0 Tesla clinical MR scanner (Philips Healthcare, Best, The Netherlands) equipped with a dedicated 70 mm solenoid receive-only coil. Left-ventricular (LV) volumes, mass, ejection fraction and amount of myocardial scar tissue were measured. Intra-and inter-observer reproducibility was assessed in all animals. In addition, repeat MR exams were performed in 6 randomly chosen rats within 24 hours to assess inter-study reproducibility. The MR imaging protocol was successfully completed in 32 (97%) animals. Bland-Altman analysis demonstrated high intra-reader reproducibility (mean bias%: LV end-diastolic volume (LVEDV), -1.7%; LV end-systolic volume (LVESV), -2.2%; LV ejection fraction (LVEF), 1.0%; LV mass, -2.7%; and scar mass, -1.2%) and high inter-reader reproducibility (mean bias%: LVEDV, 3.3%; LVESV, 6.2%; LVEF, -4.8%; LV mass, -1.9%; and scar mass, -1.8%). In addition, a high inter-study reproducibility was found (mean bias%: LVEDV, 0.1%; LVESV, -1.8%; LVEF, 1.0%; LV mass, -4.6%; and scar mass, -6.2%). Cardiac MR imaging of rats yielded highly reproducible measurements of cardiac volumes/function and myocardial infarct size on a clinical 3.0 Tesla MR scanner system. Consequently, more widely available high field clinical MR scanners can be employed for small animal imaging of the heart e.g. when aiming at serial assessments during therapeutic intervention studies

  12. SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs.

    Science.gov (United States)

    Blyth, Karen; Carter, Phil; Morrissey, Bethny; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie

    2016-04-01

    Animal models have contributed to our understanding of breast cancer, with publication of results in high-impact journals almost invariably requiring extensive in vivo experimentation. As such, many laboratories hold large collections of surplus animal material, with only a fraction being used in publications relating to the original projects. Despite being developed at considerable cost, this material is an invisible and hence an underutilised resource, which often ends up being discarded. Within the breast cancer research community there is both a need and desire to make this valuable material available for researchers. Lack of a coordinated system for visualisation and localisation of this has prevented progress. To fulfil this unmet need, we have developed a novel initiative called Sharing Experimental Animal Resources: Coordinating Holdings-Breast (SEARCHBreast) which facilitates sharing of archival tissue between researchers on a collaborative basis and, de facto will reduce overall usage of animal models in breast cancer research. A secure searchable database has been developed where researchers can find, share, or upload materials related to animal models of breast cancer, including genetic and transplant models. SEARCHBreast is a virtual compendium where the physical material remains with the original laboratory. A bioanalysis pipeline is being developed for the analysis of transcriptomics data associated with mouse models, allowing comparative study with human and cell line data. Additionally, SEARCHBreast is committed to promoting the use of humanised breast tissue models as replacement alternatives to animals. Access to this unique resource is freely available to all academic researchers following registration at https://searchbreast.org . PMID:27083180

  13. SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs.

    Science.gov (United States)

    Blyth, Karen; Carter, Phil; Morrissey, Bethny; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie

    2016-04-01

    Animal models have contributed to our understanding of breast cancer, with publication of results in high-impact journals almost invariably requiring extensive in vivo experimentation. As such, many laboratories hold large collections of surplus animal material, with only a fraction being used in publications relating to the original projects. Despite being developed at considerable cost, this material is an invisible and hence an underutilised resource, which often ends up being discarded. Within the breast cancer research community there is both a need and desire to make this valuable material available for researchers. Lack of a coordinated system for visualisation and localisation of this has prevented progress. To fulfil this unmet need, we have developed a novel initiative called Sharing Experimental Animal Resources: Coordinating Holdings-Breast (SEARCHBreast) which facilitates sharing of archival tissue between researchers on a collaborative basis and, de facto will reduce overall usage of animal models in breast cancer research. A secure searchable database has been developed where researchers can find, share, or upload materials related to animal models of breast cancer, including genetic and transplant models. SEARCHBreast is a virtual compendium where the physical material remains with the original laboratory. A bioanalysis pipeline is being developed for the analysis of transcriptomics data associated with mouse models, allowing comparative study with human and cell line data. Additionally, SEARCHBreast is committed to promoting the use of humanised breast tissue models as replacement alternatives to animals. Access to this unique resource is freely available to all academic researchers following registration at https://searchbreast.org.

  14. Let there be bioluminescence: development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models.

    Science.gov (United States)

    Merritt, Justin; Senpuku, Hidenobu; Kreth, Jens

    2016-01-01

    In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual-species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model.

  15. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    CERN Document Server

    Prevedel, R; Hoffmann, M; Pak, N; Wetzstein, G; Kato, S; Schrödel, T; Raskar, R; Zimmer, M; Boyden, E S; Vaziri, A

    2014-01-01

    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.

  16. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  17. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  18. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  19. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues

    Directory of Open Access Journals (Sweden)

    Metscher Brian D

    2009-06-01

    Full Text Available Abstract Background Comparative, functional, and developmental studies of animal morphology require accurate visualization of three-dimensional structures, but few widely applicable methods exist for non-destructive whole-volume imaging of animal tissues. Quantitative studies in particular require accurately aligned and calibrated volume images of animal structures. X-ray microtomography (microCT has the potential to produce quantitative 3D images of small biological samples, but its widespread use for non-mineralized tissues has been limited by the low x-ray contrast of soft tissues. Although osmium staining and a few other techniques have been used for contrast enhancement, generally useful methods for microCT imaging for comparative morphology are still lacking. Results Several very simple and versatile staining methods are presented for microCT imaging of animal soft tissues, along with advice on tissue fixation and sample preparation. The stains, based on inorganic iodine and phosphotungstic acid, are easier to handle and much less toxic than osmium, and they produce high-contrast x-ray images of a wide variety of soft tissues. The breadth of possible applications is illustrated with a few microCT images of model and non-model animals, including volume and section images of vertebrates, embryos, insects, and other invertebrates. Each image dataset contains x-ray absorbance values for every point in the imaged volume, and objects as small as individual muscle fibers and single blood cells can be resolved in their original locations and orientations within the sample. Conclusion With very simple contrast staining, microCT imaging can produce quantitative, high-resolution, high-contrast volume images of animal soft tissues, without destroying the specimens and with possibilities of combining with other preparation and imaging methods. Such images are expected to be useful in comparative, developmental, functional, and quantitative studies of

  20. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    NARCIS (Netherlands)

    STAMHUIS, EJ; VIDELER, JJ

    1995-01-01

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map th

  1. Animal Detectives

    Science.gov (United States)

    Mulvey, Bridget; Warnock, Carly

    2015-01-01

    During a two-week inquiry-based 5E learning cycle unit, children made observations and inferences to guide their explorations of animal traits and habitats (Bybee 2014). The children became "animal detectives" by studying a live-feed webcam and digital images of wolves in their natural habitat, reading books and online sources about…

  2. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy.

    Science.gov (United States)

    Dooley, Kathryn A; Lomax, Suzanne; Zeibel, Jason G; Miliani, Costanza; Ricciardi, Paola; Hoenigswald, Ann; Loew, Murray; Delaney, John K

    2013-09-01

    In situ chemical imaging techniques are being developed to provide information on the spatial distribution of artists' pigments used in polychrome works of art such as paintings. The new methods include reflectance imaging spectroscopy and X-ray fluorescence mapping. Results from these new methods have extended the knowledge obtained from site-specific chemical analyses widely in use. While these mapping methods have aided in determining the distribution of pigments, there is a growing interest to develop methods capable of identifying and mapping organic paint binders as well. Near infrared (NIR) reflectance spectroscopy has been extensively used in the remote sensing field as well as in the chemical industry to detect organic compounds. NIR spectroscopy provides a rapid method to assay organics by utilizing vibrational overtones and combination bands of fundamental absorptions that occur in the mid-IR. Here we explore the utility of NIR reflectance imaging spectroscopy to map organic binders in situ by examining a series of panel paintings known to have been painted using distemper (animal skin glue) and tempera (egg yolk) binders as determined by amino acid analysis of samples taken from multiple sites on the panels. In this report we demonstrate the success in identifying and mapping these binders by NIR reflectance imaging spectroscopy in situ. Three of the four panel paintings from Cosimo Tura's The Annunciation with Saint Francis and Saint Louis of Toulouse (ca. 1475) are imaged using a highly sensitive, line-scanning hyperspectral imaging camera. The results show an animal skin glue binder was used for the blue skies and blue robe of the Virgin Mary, and egg yolk tempera was used for the red robes and brown landscape. The mapping results show evidence for the use of both egg yolk and animal skin glue in the faces of the figures. The strongest absorption associated with lipidic egg yolk features visually correlates with areas that appear to have white

  3. An optical biopsy system with miniaturized Raman and spectral imaging probes; in vivo animal and ex vivo clinical application studies

    Science.gov (United States)

    Sato, Hidetoshi; Suzuki, Toshiaki; Andriana, Bibin B.; Morita, Shin'ichi; Maruyama, Atsushi; Shinzawa, Hideyuki; Komachi, Yuichi; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Matsuura, Yuji; Toi, Masakazu; Shimosegawa, Toru; Ozaki, Yukihiro

    2009-02-01

    An optical biopsy system which equips miniaturized Raman probes, a miniaturized endoscope and a fluorescent image probe has been developed for in vivo studies of live experimental animals. The present report describes basic optical properties of the system and its application studies for in vivo cancer model animals and ex vivo human cancer tissues. It was developed two types of miniaturized Raman probes, micro Raman probe (MRP) made of optical fibers and ball lens hollow optical fiber Raman probe (BHRP) made of single hollow optical fiber (HOF) with a ball lens. The former has rather large working distance (WD), up to one millimeter. The latter has small WD (~300μm) which depends on the focal length of the ball lens. Use of multiple probes with different WD allows one to obtain detailed information of subsurface tissues in the totally noninvasive manner. The probe is enough narrow to be inserted into a biopsy needle (~19G), for observations of the lesion at deeper inside bodies. The miniaturized endoscope has been applied to observe progression of a stomach cancer in the same rat lesion. It was succeeded to visualize structure of non-stained cancer tissue in live model animals by the fluorescent image technique. The system was also applied to ex vivo studies of human breast and stomach cancers.

  4. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  5. Resources.

    Science.gov (United States)

    Stewart, John; MacDonald, Ian

    1980-01-01

    Presents a guide to resources on television drama available to teachers for classroom use in television curriculum. Lists American and British television drama videorecordings of both series and individual presentations and offers a bibliography of "one-off" single fiction plays produced for British television. (JMF)

  6. Implementing Natural Resources Cadastral Plan in Pasargadae District of Iran by Using Quick Bird Images

    Science.gov (United States)

    Azhdari, G. H.; Deilami, K.; Firooznia, E.

    2015-12-01

    Natural Resources are essential for security and sustainable development of each country. Therefore, in order to reach sustainable development, conservation as well as optimum utilization of natural resources, executing of natural resources cadastral plan is necessary and essential. Governments conduct lands management in Iran, so there is a need for comprehensive plan with arranged program for best evaluation. In this research as a pilot, Pasargadae city is opted. Pasargadae region is located in north-east of Shiraz in Fars province with Latitude and longitude of 30° 15 ´ 53 ° N and 53° 13 ´ 29 ° E respectively. In order to generate the cadastral maps, Firstly, images from QuickBird satellite with 50-60 centimeters resolution were georeferenced by utilizing ground control points with accurate GPS coordinates. In addition to satellite images, old paper maps with 1:10000 scale in local coordinate system from agriculture ministry in 1963 were digitized according to 1:25000 scale map from army geographical organization with AutoCad software. Beside, paper maps with 1:50000 scale and Google Earth were used to find the changes during time. All the above maps were added to QuickBird images as new layers by using ArcMap software. These maps also were utilized to determine the different land-uses. Thus, by employing ArcMap software lands divide into 2 groups: firstly, lands with official document, which is owned by either natural or legal persons, and secondly national lands under different uses such as forestry, range management and desertification plans. Consequently, the generation of cadastral maps leads to better difference between private and national lands. In addition, producing cadastral maps prevent the destruction and illegal possession of natural lands by individuals.

  7. IMPLEMENTING NATURAL RESOURCES CADASTRAL PLAN IN PASARGADAE DISTRICT OF IRAN BY USING QUICK BIRD IMAGES

    Directory of Open Access Journals (Sweden)

    G. H. Azhdari

    2015-12-01

    Full Text Available Natural Resources are essential for security and sustainable development of each country. Therefore, in order to reach sustainable development, conservation as well as optimum utilization of natural resources, executing of natural resources cadastral plan is necessary and essential. Governments conduct lands management in Iran, so there is a need for comprehensive plan with arranged program for best evaluation. In this research as a pilot, Pasargadae city is opted. Pasargadae region is located in north-east of Shiraz in Fars province with Latitude and longitude of 30° 15 ́ 53 ̋ N and 53° 13 ́ 29 ̋ E respectively. In order to generate the cadastral maps, Firstly, images from QuickBird satellite with 50-60 centimeters resolution were georeferenced by utilizing ground control points with accurate GPS coordinates. In addition to satellite images, old paper maps with 1:10000 scale in local coordinate system from agriculture ministry in 1963 were digitized according to 1:25000 scale map from army geographical organization with AutoCad software. Beside, paper maps with 1:50000 scale and Google Earth were used to find the changes during time. All the above maps were added to QuickBird images as new layers by using ArcMap software. These maps also were utilized to determine the different land-uses. Thus, by employing ArcMap software lands divide into 2 groups: firstly, lands with official document, which is owned by either natural or legal persons, and secondly national lands under different uses such as forestry, range management and desertification plans. Consequently, the generation of cadastral maps leads to better difference between private and national lands. In addition, producing cadastral maps prevent the destruction and illegal possession of natural lands by individuals.

  8. The First Shared Online Curriculum Resources for Veterinary Undergraduate Learning and Teaching in Animal Welfare and Ethics in Australia and New Zealand

    Directory of Open Access Journals (Sweden)

    Jane Johnson

    2015-05-01

    Full Text Available The need for undergraduate teaching of Animal Welfare and Ethics (AWE in Australian and New Zealand veterinary courses reflects increasing community concerns and expectations about AWE; global pressures regarding food security and sustainability; the demands of veterinary accreditation; and fears that, unless students encounter AWE as part of their formal education, as veterinarians they will be relatively unaware of the discipline of animal welfare science. To address this need we are developing online resources to ensure Australian and New Zealand veterinary graduates have the knowledge, and the research, communication and critical reasoning skills, to fulfill the AWE role demanded of them by contemporary society. To prioritize development of these resources we assembled leaders in the field of AWE education from the eight veterinary schools in Australia and New Zealand and used modified deliberative polling. This paper describes the role of the poll in developing the first shared online curriculum resource for veterinary undergraduate learning and teaching in AWE in Australia and New Zealand. The learning and teaching strategies that ranked highest in the exercise were: scenario-based learning; a quality of animal life assessment tool; the so-called ‘Human Continuum’ discussion platform; and a negotiated curriculum.

  9. Magnetic Resonance Imaging of Cerebral Blood Flow in Animal Stroke Models

    OpenAIRE

    Shen, Qiang; Duong, Timothy Q.

    2016-01-01

    Perfusion could provide useful information on metabolic and functional status of tissue and organs. This review summarizes the most commonly used perfusion measurement methods: dynamic susceptibility weighted contrast (DSC) and arterial spin labeling (ASL) and their applications in experimental stroke. Some new developments of CBF techniques in animal models are also discussed.

  10. Images of Couples and Families in Disney Feature-Length Animated Films.

    Science.gov (United States)

    Tanner, Litsa Renee; Haddock, Shelley A.; Zimmerman, Toni Schindler; Lund, Lori K.

    2003-01-01

    Examines themes about couples and families portrayed in 26 Disney animated classics and recent movies. Four overarching themes were identified: family relationships are a strong priority; families are diverse, but the diversity is often simplified; fathers are elevated, while mothers are marginalized; and couple relationships are created by "love…

  11. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  12. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging.

    Science.gov (United States)

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:T1 (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 microm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 1p/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 1p/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented. PMID:14727760

  13. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    International Nuclear Information System (INIS)

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  14. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections.

    Science.gov (United States)

    Cronan, Mark R; Rosenberg, Allison F; Oehlers, Stefan H; Saelens, Joseph W; Sisk, Dana M; Jurcic Smith, Kristen L; Lee, Sunhee; Tobin, David M

    2015-12-01

    Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique) methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF) within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ. PMID:26449262

  15. CLARITY and PACT-based imaging of adult zebrafish and mouse for whole-animal analysis of infections

    Directory of Open Access Journals (Sweden)

    Mark R. Cronan

    2015-12-01

    Full Text Available Visualization of infection and the associated host response has been challenging in adult vertebrates. Owing to their transparency, zebrafish larvae have been used to directly observe infection in vivo; however, such larvae have not yet developed a functional adaptive immune system. Cells involved in adaptive immunity mature later and have therefore been difficult to access optically in intact animals. Thus, the study of many aspects of vertebrate infection requires dissection of adult organs or ex vivo isolation of immune cells. Recently, CLARITY and PACT (passive clarity technique methodologies have enabled clearing and direct visualization of dissected organs. Here, we show that these techniques can be applied to image host-pathogen interactions directly in whole animals. CLARITY and PACT-based clearing of whole adult zebrafish and Mycobacterium tuberculosis-infected mouse lungs enables imaging of mycobacterial granulomas deep within tissue to a depth of more than 1 mm. Using established transgenic lines, we were able to image normal and pathogenic structures and their surrounding host context at high resolution. We identified the three-dimensional organization of granuloma-associated angiogenesis, an important feature of mycobacterial infection, and characterized the induction of the cytokine tumor necrosis factor (TNF within the granuloma using an established fluorescent reporter line. We observed heterogeneity in TNF induction within granuloma macrophages, consistent with an evolving view of the tuberculous granuloma as a non-uniform, heterogeneous structure. Broad application of this technique will enable new understanding of host-pathogen interactions in situ.

  16. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin;

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  17. 4D micro-CT-based perfusion imaging in small animals

    Science.gov (United States)

    Badea, C. T.; Johnston, S. M.; Lin, M.; Hedlund, L. W.; Johnson, G. A.

    2009-02-01

    Quantitative in-vivo imaging of lung perfusion in rodents can provide critical information for preclinical studies. However, the combined challenges of high temporal and spatial resolution have made routine quantitative perfusion imaging difficult in rodents. We have recently developed a dual tube/detector micro-CT scanner that is well suited to capture first-pass kinetics of a bolus of contrast agent used to compute perfusion information. Our approach is based on the paradigm that the same time density curves can be reproduced in a number of consecutive, small (i.e. 50μL) injections of iodinated contrast agent at a series of different angles. This reproducibility is ensured by the high-level integration of the imaging components of our system, with a micro-injector, a mechanical ventilator, and monitoring applications. Sampling is controlled through a biological pulse sequence implemented in LabVIEW. Image reconstruction is based on a simultaneous algebraic reconstruction technique implemented on a GPU. The capabilities of 4D micro-CT imaging are demonstrated in studies on lung perfusion in rats. We report 4D micro-CT imaging in the rat lung with a heartbeat temporal resolution of 140 ms and reconstructed voxels of 88 μm. The approach can be readily extended to a wide range of important preclinical models, such as tumor perfusion and angiogenesis, and renal function.

  18. Imaging of cardiac perfusion of free-breathing small animals using dynamic phase-correlated micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Sawall, Stefan; Kuntz, Jan; Socher, Michaela; Knaup, Michael; Hess, Andreas; Bartling, Soenke; Kachelriess, Marc [Institute of Medical Physics, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Animal Laboratory Services Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Medical Physics, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, 91052 Erlangen (Germany); Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, 91052 Erlangen (Germany); Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Medical Physics, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2012-12-15

    Purpose:Mouse models of cardiac diseases have proven to be a valuable tool in preclinical research. The high cardiac and respiratory rates of free breathing mice prohibit conventional in vivo cardiac perfusion studies using computed tomography even if gating methods are applied. This makes a sacrification of the animals unavoidable and only allows for the application of ex vivo methods. Methods: To overcome this issue the authors propose a low dose scan protocol and an associated reconstruction algorithm that allows for in vivo imaging of cardiac perfusion and associated processes that are retrospectively synchronized to the respiratory and cardiac motion of the animal. The scan protocol consists of repetitive injections of contrast media within several consecutive scans while the ECG, respiratory motion, and timestamp of contrast injection are recorded and synchronized to the acquired projections. The iterative reconstruction algorithm employs a six-dimensional edge-preserving filter to provide low-noise, motion artifact-free images of the animal examined using the authors' low dose scan protocol. Results: The reconstructions obtained show that the complete temporal bolus evolution can be visualized and quantified in any desired combination of cardiac and respiratory phase including reperfusion phases. The proposed reconstruction method thereby keeps the administered radiation dose at a minimum and thus reduces metabolic inference to the animal allowing for longitudinal studies. Conclusions: The authors' low dose scan protocol and phase-correlated dynamic reconstruction algorithm allow for an easy and effective way to visualize phase-correlated perfusion processes in routine laboratory studies using free-breathing mice.

  19. Assessment of glucose metabolism from the projections using the wavelet technique in small animal pet imaging.

    Science.gov (United States)

    Arhjoul, Lahcen; Bentourkia, M'hamed

    2007-04-01

    The dynamic positron emission tomography (PET) images are usually modeled to extract the physiological parameters. However, to avoid reconstruction of the dynamic sequence of images with subjective data filtering, it is advantageous to apply the kinetic modeling in the projection space and to reconstruct single parametric image slices. Using the advantage of the wavelets to compress the data and to filter the noise in the sinogram, we applied the graphical analysis method (Patlak) to generate a single parametric sinogram (WAV-SINO) from PET data acquired in seven normal rats measured with fluorodeoxyglucose (FDG) in the heart. The same data set was analysed with the graphical method in the spatial domain from the sinograms (USUAL-SINO), and also from images reconstructed with non-filtered backprojection (USUAL-nFBP) and filtered backprojection (USUAL-FBP). The myocardial metabolic rates for glucose (MMRG) obtained with USUAL-nFBP, USUAL-FBP, USUAL-SINO and WAV-SINO were found to be, respectively, 7.54, 6.75, 6.52 and 6.98micromol/100g/min. While the variance with respect to USUAL-FBP was about 142% for USUAL-nFBP, 99.6% for USUAL-SINO and 101.9% for WAV-SINO, the spatial resolution as assessed from the profiles through the myocardial walls of the reconstructed images was 112% for USUAL-FBP and 105% for WAV-SINO relative to the high resolution USUAL-nFBP. The WAV-SINO parametric images showed slightly better visual quality than those obtained from the spatial domain. Finally, the wavelet filtering technique allowed to reduce the computing time, the storage space and particularly the variance in the MMRG parametric images while preserving the spatial resolution.

  20. A microPET/CT system for invivo small animal imaging

    Science.gov (United States)

    Liang, H.; Yang, Y.; Yang, K.; Wu, Y.; Boone, J. M.; Cherry, S. R.

    2007-07-01

    A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 µm. The detector was a 5 × 5 cm2 photodiode detector incorporating 48 µm pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown.

  1. A microPET/CT system for invivo small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Yang, Y [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Yang, K [Department of Radiology, UC Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory, Sacramento, CA 95817 (United States); Wu, Y [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Boone, J M [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States); Cherry, S R [Department of Biomedical Engineering, University of California, Davis, GBSF Building, 451 East Health Sciences Drive, Davis, CA 95616 (United States)

    2007-07-07

    A microCT scanner was designed, fabricated and integrated with a previously reported microPET II scanner (Tai et al 2003 Phys. Med. Biol. 48 1519, Yang et al 2004 Phys. Med. Biol. 49 2527), forming a dual modality system for in vivo anatomic and molecular imaging of the mouse. The system was designed to achieve high-spatial-resolution and high-sensitivity PET images with adequate CT image quality for anatomic localization and attenuation correction with low x-ray dose. The system also has relatively high throughput for screening, and a flexible gantry and user interface. X-rays were produced by a 50 kVp, 1.5 mA fixed tungsten anode tube, with a focal spot size of 70 {mu}m. The detector was a 5 x 5 cm{sup 2} photodiode detector incorporating 48 {mu}m pixels on a CMOS array and a fast gadolinium oxysulfide (GOS) intensifying screen. The microCT system has a flexible C-arm gantry design with adjustable detector positioning, which acquires CT projection images around the common microPET/CT bed. The design and the initial characterization of the microCT system is described, and images of the first mouse scans with microPET/CT scanning protocols are shown.

  2. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance.

    Directory of Open Access Journals (Sweden)

    Qi Gan

    Full Text Available We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD camera, a host computer, a projector, a proximity sensor and a Complementary metal-oxide-semiconductor (CMOS camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG. The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery.

  3. Benchtop and Animal Validation of a Projective Imaging System for Potential Use in Intraoperative Surgical Guidance

    Science.gov (United States)

    Gan, Qi; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Hu, Chuanzhen; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    We propose a projective navigation system for fluorescence imaging and image display in a natural mode of visual perception. The system consists of an excitation light source, a monochromatic charge coupled device (CCD) camera, a host computer, a projector, a proximity sensor and a Complementary metal–oxide–semiconductor (CMOS) camera. With perspective transformation and calibration, our surgical navigation system is able to achieve an overall imaging speed higher than 60 frames per second, with a latency of 330 ms, a spatial sensitivity better than 0.5 mm in both vertical and horizontal directions, and a projection bias less than 1 mm. The technical feasibility of image-guided surgery is demonstrated in both agar-agar gel phantoms and an ex vivo chicken breast model embedding Indocyanine Green (ICG). The biological utility of the system is demonstrated in vivo in a classic model of ICG hepatic metabolism. Our benchtop, ex vivo and in vivo experiments demonstrate the clinical potential for intraoperative delineation of disease margin and image-guided resection surgery. PMID:27391764

  4. Sodium trimetaphosphate as a bone-imaging agent. I. Animal studies.

    Science.gov (United States)

    Nelson, M F; Melton, R E; Wazer, J R

    1975-11-01

    When used is conjunction with stannous ion and 99Tc, the nonsequestering, cyclic, trimeric phosphate anion, (P309)3-, introduced in the form of its sodium salt, exhibits admirable properties as a bone-visualizing agent as demonstrated by animal studies. These studies show that this combinatation is easily prepared reproducibly and, compared to the agents described in the recent literature (all based on sequestering phosphates), is at least equivalent for bone visualization while being considerably less toxic. PMID:1185266

  5. Image analysis platforms for exploring genetic and neuronal mechanisms regulating animal behavior

    OpenAIRE

    Asadulina, Albina

    2015-01-01

    An important aim of neuroscience is to understand how gene interactions and neuronal networks regulate animal behavior. The larvae of the marine annelid Platynereis dumerilii provide a convenient system for such integrative studies. These larvae exhibit a wide range of behaviors, including phototaxis, chemotaxis and gravitaxis and at the same time exhibit relatively simple nervous system organization. Due to its small size and transparent body, the Platynereis larva is compatible with whole-b...

  6. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  7. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke;

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu......Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular...... and cellular levels in living systems, this technology represents an opportunity to investigate some of these questions in vivo. In addition, molecular imaging may be translated into clinical use and eventually pave the way for more personalized treatment regimes in patients. Here, we review the current...

  8. In vivo macroscopic HPD fluorescence reflectance imaging on small animals bearing surface ARO/NPA tumor

    Science.gov (United States)

    Autiero, Maddalena; Celentano, Luigi; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Montesi, Maria C.; Riccio, Patrizia; Russo, Paolo; Roberti, Giuseppe

    2005-08-01

    Recently multimodal imaging systems have been devised because the combination of different imaging modalities results in the complementarity and integration of the techniques and in a consequent improvement of the diagnostic capabilities of the multimodal system with respect to each separate imaging modality. We developed a simple and reliable HematoPorphyrin (HP) mediated Fluorescence Reflectance Imaging (FRI) system that allows for in vivo real time imaging of surface tumors with a large field of view. The tumor cells are anaplastic human thyroid carcinoma-derived ARO cells, or human papillary thyroid carcinoma-derived NPA cells. Our measurements show that the optical contrast of the tumor region image is increased by a simple digital subtraction of the background fluorescence and that HP fluorescence emissivity of ARO tumors is about 2 times greater than that of NPA tumors, and about 4 times greater than that of healthy tissues. This is also confirmed by spectroscopic measurements on histological sections of tumor and healthy tissues. It was shown also the capability of this system to distinguish the tumor type on the basis of the different intensity of the fluorescence emission, probably related to the malignancy degree. The features of this system are complementary with those ones of a pixel radionuclide detection system, which allows for relatively time expensive, narrow field of view measurements, and applicability to tumors also deeply imbedded in tissues. The fluorescence detection could be used as a large scale and quick analysis tool and could be followed by narrow field, higher resolution radionuclide measurements on previously determined highly fluorescent regions.

  9. Small animal PET imaging of HSV1-tk gene expression with 124IVDU in liver by the hydrodynamic injection

    International Nuclear Information System (INIS)

    The liver is an important target organ for gene transfer due to its capacity for synthesizing serum protein and its involvement in numerous genetic diseases. High level of foreign gene expression in liver can be achieved by a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), so called hydrodynamic injection. This study is aimed to evaluate liver specific-gene expression of herpes simplex virus type 1 thymidine kinase(HSV1-tk) by hydrodynamic injection and image HSV1-tk expression using 124IVDU-PET. We constructed herpes simplex virus type 1 thymidine kinase (HSV1-tk)-expressing pDNA (pHSV1-tk) modified from pEGFP-N1. Hydrodynamic injection was performed using 40 μg of plasmid (pEGFP/N1 or pHSV1-tk) in 2 ml of 0.85% saline solution for 20∼22g mice in 5 seconds intravenously. At 1 d post-hydrodynamic injection, biodistribution study was performed at 2 h post-injection of radiolabeled IVDU, fluorescence image was obtained using optical imager and small animal PET image was acquired with 124IVDU at 2 h post-injection. After PET imaging, digital whole body autoradiography (DWBA) was performed. Expression of HSV1-tk and EGFP was confirmed by RT-PCR in each liver tissue. In liver of pHSV1-tk and pEGFP/N1 injection groups, 123IVDU uptake was 5.65%ID/g and 0.98%ID/g, respectively. 123IVDU uptake in liver of pHSV1-tk injection group showed 5.7-fold higher than that of pEGFP/N1 injection group (p124IVDU uptake was selectively localized in liver of pHSV1-tk injection group and also checked in DWBA, but showed minimal uptake in liver of pEGFP/N1 injection mice. Hydrodynamic injection was effective to liver-specific delivery of plasmid DNA. Small animal PET image of 124IVDU could be used in the evaluation of noninvasive reporter gene imaging in liver

  10. Detecting inflammation and fibrosis in bowel wall with photoacoustic imaging in a Crohn's disease animal model

    Science.gov (United States)

    Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding

    2015-03-01

    Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.

  11. Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    OpenAIRE

    Pitkonen, Miia; Hippeläinen, Eero; Raki, Mari; Andressoo, Jaan-Olle; Urtti, Arto; Männistö, Pekka T.; Savolainen, Sauli; Saarma, Mart; Bergström, Kim

    2012-01-01

    Background Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT. Methods The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intrav...

  12. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22Na source placed in the experimental setup.

  13. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    Directory of Open Access Journals (Sweden)

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  14. Breathing motion compensated reconstruction for C-arm cone beam CT imaging: initial experience based on animal data

    Science.gov (United States)

    Schäfer, D.; Lin, M.; Rao, P. P.; Loffroy, R.; Liapi, E.; Noordhoek, N.; Eshuis, P.; Radaelli, A.; Grass, M.; Geschwind, J.-F. H.

    2012-03-01

    C-arm based tomographic 3D imaging is applied in an increasing number of minimal invasive procedures. Due to the limited acquisition speed for a complete projection data set required for tomographic reconstruction, breathing motion is a potential source of artifacts. This is the case for patients who cannot comply breathing commands (e.g. due to anesthesia). Intra-scan motion estimation and compensation is required. Here, a scheme for projection based local breathing motion estimation is combined with an anatomy adapted interpolation strategy and subsequent motion compensated filtered back projection. The breathing motion vector is measured as a displacement vector on the projections of a tomographic short scan acquisition using the diaphragm as a landmark. Scaling of the displacement to the acquisition iso-center and anatomy adapted volumetric motion vector field interpolation delivers a 3D motion vector per voxel. Motion compensated filtered back projection incorporates this motion vector field in the image reconstruction process. This approach is applied in animal experiments on a flat panel C-arm system delivering improved image quality (lower artifact levels, improved tumor delineation) in 3D liver tumor imaging.

  15. Preparation and animal studies of a novel potential cerebral perfusion imaging agent

    International Nuclear Information System (INIS)

    Objective: To investigate a novel potential SPECT cerebral blood flow perfusion imaging agent. Methods: N2S tridentate α-mercaptol-propyl-1, 2-benzenediamine (MPBDA) was obtained from chemical synthesis IR and was labelled with 99Tcm. Biodistribution analysis in 25 mice was performed after intravenous injection of 100 μL 555 - 740 kBq of 99Tcm-MPBDA. Dynamic acquisition was performed after rapid intravenous injection of 218.3 - 333 MBq 99Tc-MPBDA or 99Tcm-ECD, while whole body imaging and brain perfusion imaging were done after 70 min in 2 normal monkeys. Preclinical studies including toxicity and pyrogen tests in mice and rabbits were undertaken. Results: The radiochemical synthetic yield and radiochemical purity of MPBDA labelled with 99Tcm were more than 95% and 97%, respectively. Mice biodistribution test showed the 99Tcm-MPBDA can concentrate in brain with good retention, and blood clearance Ty2 99Tcm-ECD (2.9% ID). SPECT imaging of cerebral gray and white matter showed good contrast with a clear contour. No toxic side affect in mice and rabbits after 99Tcm-MPBDA injection was found. Conclusion: Investigated 99Tcm-MPBDA has almost the same property as 99Tcm-ECD. It is safe and reliable in vivo

  16. Image-guided small animal radiation research platform: calibration of treatment beam alignment

    International Nuclear Information System (INIS)

    Small animal research allows detailed study of biological processes, disease progression and response to therapy with the potential to provide a natural bridge to the clinical environment. The small animal radiation research platform (SARRP) is a portable system for precision irradiation with beam sizes down to approximately 0.5 mm and optimally planned radiation with on-board cone-beam CT (CBCT) guidance. This paper focuses on the geometric calibration of the system for high-precision irradiation. A novel technique for the calibration of the treatment beam is presented, which employs an x-ray camera whose precise positioning need not be known. Using the camera system we acquired a digitally reconstructed 3D 'star shot' for gantry calibration and then developed a technique to align each beam to a common isocenter with the robotic animal positioning stages. The calibration incorporates localization by cone-beam CT guidance. Uncorrected offsets of the beams with respect to the calibration origin ranged from 0.4 mm to 5.2 mm. With corrections, these alignment errors can be reduced to the sub-millimeter range. The calibration technique was used to deliver a stereotactic-like arc treatment to a phantom constructed with EBT Gafchromic films. All beams were shown to intersect at a common isocenter with a measured beam (FWHM) of approximately 1.07 mm using the 0.5 mm collimated beam. The desired positioning accuracy of the SARRP is 0.25 mm and the results indicate an accuracy of 0.2 mm. To fully realize the radiation localization capabilities of the SARRP, precise geometric calibration is required, as with any such system. The x-ray camera-based technique presented here provides a straightforward and semi-automatic method for system calibration.

  17. The multi-module multi-resolution SPECT system: A tool for variable-pinhole small-animal imaging

    Science.gov (United States)

    Hesterman, Jacob Yost

    The multi-module, multi-resolution SPECT system (M 3R) was developed and evaluated at the University of Arizona's Center for Gamma-Ray Imaging (CGRI). The system consists of four modular gamma cameras stationed around a Cerrobend shielding assembly. Slots machined into the shielding allow for the easy interchange of pinhole apertures, providing M3R with excellent hardware flexibility. Motivation for the system included serving as a prototype for a tabletop, small-animal SPECT system, acting as a testbed for image quality by enabling the experimental validation of imaging theory, and aiding in the development of techniques for the emerging field of adaptive SPECT imaging. Development of the system included design and construction of the shielding assembly and pinhole apertures. The issue of pinhole design and evaluation represents a recurring theme of the presented work. Existing calibration methods were adapted for use with M3R. A new algorithm, the contracting grid-search algorithm, that is capable of being executed in hardware was developed for use in position estimation. The algorithm was successfully applied in software and progress was made in hardware implementation. Special equipment and interpolation techniques were also developed to deal with M3R's unique system design and calibration requirements. A code library was created to simplify the many image processing steps required to realize successful analysis of measured image and calibration data and to achieve reconstruction. Observer studies were performed using both projection data and reconstructed images. These observer studies sought to explore signal-detection and activity estimation for various pinhole apertures. Special attention was paid to object variability, including the development and statistical analysis of a phantom capable of generating multiple realizations of a random, textured background. The results of these studies indicate potential for multiple-pinhole, multiplexed apertures but

  18. Acupuncture for Parkinson's Disease: a review of clinical, animal, and functional Magnetic Resonance Imaging studies.

    Science.gov (United States)

    Xiao, Danqing

    2015-12-01

    Acupuncture has been commonly used as an adjuvant therapy or monotherapy in the treatment of Parkinson's disease in China and in other countries. Animal studies have consistently show that this treatment is both neuroprotective, protecting dopaminergic neurons from degeneration and also restorative, restoring tyrosine hydroxylase positive dopaminergic terminals in striatum, resulting in improvements in motor performance in animal models of Parkinsonism. Studies show that this protection is mediated through the same common mechanisms as other neuroprotective agents, including anti-oxidative stress, anti-inflammatory and anti-apoptotic pathways at molecular and cellular levels. Restoration of function seems to involve activation of certain compensatory brain regions as a mechanism at the network level to correct the imbalances to the nervous system resulting from loss of dopaminergic neurons in substantia nigra. Clinical studies in China and Korea, in particular, have shown a positive benefit of acupuncture in treating Parkinson's disease, especially in reducing the doses of dopaminergic medications and the associated side effects. However, large and well-controlled clinical trials are still needed to further demonstrate the efficacy and effectiveness of acupuncture in the treatment of Parkinson's disease.

  19. Imaging morphogenesis of Candida albicans during infection in a live animal

    Science.gov (United States)

    Mitra, Soumya; Dolan, Kristy; Foster, Thomas H.; Wellington, Melanie

    2010-01-01

    Candida albicans is an opportunistic human fungal pathogen that requires an intact host immune response to prevent disease. Thus, studying host-pathogen interactions is critical to understanding and preventing this disease. We report a new model infection system in which ongoing C. albicans infections can be imaged at high spatial resolution in the ears of living mice. Intradermal inoculation into mouse ears with a C. albicans strain expressing green fluorescent protein results in systemic C. albicans infection that can be imaged in vivo using confocal microscopy. We observed filamentous growth of the organism in vivo as well as formation of microabscesses. This model system will allow us to gain significant new information about C. albicans pathogenesis through studies of host-C. albicans interactions in the native environment.

  20. Design and performance of a small-animal imaging system using synthetic collimation

    OpenAIRE

    Havelin, R J; Miller, B W; Barrett, H. H.; Furenlid, L.R.; Murphy, J M; Foley, M J

    2013-01-01

    This work outlines the design and construction of a single-photon emission computed tomography (SPECT) imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through forty-six pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from th...

  1. Preparation and animal imaging of 153Sm-EDTMP as a bone seeking radiopharmaceutical

    International Nuclear Information System (INIS)

    Ethylenediamine- tetra methylenephosphonic acid (EDTMP) has widely used chelator for the labeling of bone seeking radiopharmaceuticals complexed with radio metals. 153Sm can be produced by the HANARO reactor at the Korea Atomic Energy Research Institute, Taejon, Korea. 153Sm has favourable radiation characteristics T1/2=46.7 h, β max=0.81 MeV (20%), 0.71 MeV (49%), 0.64 MeV (30%) and γ=103 keV (30%) emission which is suitable for imaging purposes during therapy. We investigated the labeling condition of 153Sm-Emptied and imaging of 153Sm-EDTMP in normal rats. EDTMP 20 mg was solved in 0.1 mL 2 M NaOH. 153SmCl3 was added to EDTMP solution and pH of the reaction mixtures was adjusted to 8 and 12, respectively. Radiochemical purity was determined with paper chromatography. After 30 min. reaction, reaction mixtures were neutralized to pH 7.4 and the stability was estimated upto 120 hrs. Imaging studies of each reaction were performed in normal rats (37 MBq/0.1 mL). The labeling yield of 153Sm-EDTMP was 99%. The stability of pH 8 reaction at 60, 96 and 120 hr was 99%,95%,89% and that of pH 12 at 36, 60, 96, and 120 hr was 99%, 95%, 88%, 66%, respectively. The 153Sm-EDTMP showed constantly higher bone uptake from 2 to 48 hr after injection. 153Sm-EDTMP, labeled at pH 8 reaction condition, has been stably maintained. Image of 153Sm-EDTMP at 2, 24, 48 hr after injection, demonstrate that 153Sm-EDTMP is a good bone seeking radiopharmaceuticals

  2. In vivo small animal lung speckle imaging with a benchtop in-line XPC system

    Science.gov (United States)

    Garson, A. B.; Gunsten, S.; Vasireddi, S.; Brody, S.; Anastasio, M. A.

    2016-04-01

    X-ray phase-contrast (XPC) images of mouse lungs were acquired in vivo with a benchtop XPC system employing a conventional microfocus source. A strong speckled intensity pattern was present in lung regions of the XPC radiographs, previously only observed in synchroton experiments and in situ benchtop studies. We showed how the texture characteristics of the speckle is influenced by the amount of air present in the lungs at different points in the breathing cycle.

  3. Image reconstruction on point cloud-based tetrahedral meshes in small animal SPECT with pinhole collimation

    International Nuclear Information System (INIS)

    Irregular tetrahedral meshes based on adaptively distributed point clouds are used as the object space data representation method to reconstruct SPECT images in pinhole geometry. In the object space, a tetrahedron is defined by the positions and intensities of its four vertices; image intensity inside a tetrahedron is a linear combination of the vertex intensities. For the parallel projection geometry, the projection of a tetrahedron is conveniently expressed in terms of an integral that is solved analytically. For the pinhole case, the vertices are first projected onto the detector plane and the geometric magnification factor is computed. Then, a virtual tetrahedron is formed in the detector space and projected onto the detector using exact analytical formulae developed for the parallel geometry. In order to compute the system matrix, point cloud geometry and acquisition geometry is adjusted using geometric calibration expressed in terms of 24 parameters determined from a special calibration study. The 3D images are reconstructed using a standard MLEM algorithm. Initial reconstruction is performed on a uniform finely-spaced cloud. Then, the points are adaptively removed or merged in constant intensity regions and moved to better outline the boundaries. The density of the point cloud is adjusted adaptively after each reconstruction so that the number of unknowns in the inverse problem is reduced by an order of magnitude. (orig.)

  4. Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Soumya S Yandamuri

    2016-05-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease characterized by chronic neuroinflammation, demyelination, and axonal damage. Infiltration of activated lymphocytes and myeloid cells are thought to be primarily responsible for white matter damage and axonopathy. Over time, this neurologic damage manifests clinically as debilitating motor and cognitive symptoms. Existing MS therapies focus on symptom relief and delay of disease progression through reduction of neuroinflammation. However, long-term strategies to remyelinate, protect, or regenerate axons have remained elusive, posing a challenge to treating progressive forms of MS. Preclinical mouse models and techniques such as immunohistochemistry, flow cytometry, and genomic and proteomic analysis have provided advances in our understanding of discrete time-points of pathology following disease induction. More recently, in vivo and in situ two-photon microscopy (2P has made it possible to visualize continuous real-time cellular behavior and structural changes occurring within the CNS during neuropathology. Research utilizing 2P imaging to study axonopathy in neuroinflammatory demyelinating disease has focused on five areas: (1 axonal morphologic changes (2 organelle transport and health, (3 relationship to inflammation, (4 neuronal excitotoxicity, and (5 regenerative therapies. 2P imaging may also be used to identify novel therapeutic targets via identification and clarification of dynamic cellular and molecular mechanisms of axonal regeneration and remyelination. Here, we review tools that have made 2P accessible for imaging neuropathologies and advances in our understanding of axonal degeneration and repair in preclinical models of demyelinating diseases.

  5. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals

    Institute of Scientific and Technical Information of China (English)

    Huaqiang Fang; Min Chen; Yi Ding; Wei Shang; Jiejia Xu; Xing Zhang; Wanrui Zhang

    2011-01-01

    The mitochondrion is essential for energy metabolism and production of reactive oxygen species (ROS).In intact cells,respiratory mitochondria exhibit spontaneous "superoxide flashes",the quantal ROS-producing events consequential to transient mitochondrial permeability transition (tMPT).Here we perform the first in vivo imaging of mitochondrial superoxide flashes and tMPT activity in living mice expressing the superoxide biosensor mt-cpYFP,and demonstrate their coupling to whole-body glucose metabolism.Robust tMPT/superoxide flash activity occurred in skeletal muscle and sciatic nerve of anesthetized transgenic mice.In skeletal muscle,imaging tMPT/superoxide flashes revealed labyrinthine three-dimensional networks of mitochondria that operate synchronously.The tMPT/superoxide flash activity surged in response to systemic glucose challenge or insulin stimulation,in an apparently frequency-modulated manner and involving also a shift in the gating mode of tMPT.Thus,in vivo imaging of tMPT-dependent mitochondrial ROS signals and the discovery of the metabolism-tMPT-superoxide flash coupling mark important technological and conceptual advances for the study of mitochondrial function and ROS signaling in health and disease.

  6. Influence of respiratory gating, image filtering, and animal positioning on high-resolution electrocardiography-gated murine cardiac single-photon emission computed tomography

    NARCIS (Netherlands)

    Wu, Chao; Vaissier, Pieter E. B.; Vastenhouw, Brendan; de Jong, Johan R.; Slart, Riemer H. J. A.; Beekman, Freek J.

    2015-01-01

    Cardiac parameters obtained from single-photon emission computed tomographic (SPECT) images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were inject

  7. A Longitudinal Evaluation of Partial Lung Irradiation in Mice by Using a Dedicated Image-Guided Small Animal Irradiator

    International Nuclear Information System (INIS)

    Purpose: In lung cancer radiation therapy, the dose constraints are determined mostly by healthy lung toxicity. Preclinical microirradiators are a new tool to evaluate treatment strategies closer to clinical irradiation devices. In this study, we quantified local changes in lung density symptomatic of radiation-induced lung fibrosis (RILF) after partial lung irradiation in mice by using a precision image-guided small animal irradiator integrated with micro-computed tomography (CT) imaging. Methods and Materials: C57BL/6 adult male mice (n=76) were divided into 6 groups: a control group (0 Gy) and groups irradiated with a single fraction of 4, 8, 12, 16, or 20 Gy using 5-mm circular parallel-opposed fields targeting the upper right lung. A Monte Carlo model of the small animal irradiator was used for dose calculations. Following irradiation, all mice were imaged at regular intervals over 39 weeks (10 time points total). Nonrigid deformation was used to register the initial micro-CT scan to all subsequent scans. Results: Significant differences could be observed between the 3 highest (>10 Gy) and 3 lowest irradiation (<10 Gy) dose levels. A mean difference of 120 ± 10 HU between the 0- and 20-Gy groups was observed at week 39. RILF was found to be spatially limited to the irradiated portion of the lung. Conclusions: The data suggest that the severity of RILF in partial lung irradiation compared to large field irradiation in mice for the same dose is reduced, and therefore higher doses can be tolerated

  8. A Longitudinal Evaluation of Partial Lung Irradiation in Mice by Using a Dedicated Image-Guided Small Animal Irradiator

    Energy Technology Data Exchange (ETDEWEB)

    Granton, Patrick V.; Dubois, Ludwig; Elmpt, Wouter van; Hoof, Stefan J. van; Lieuwes, Natasja G. [Department of Radiation Oncology (MAASTRO), GROW–School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); De Ruysscher, Dirk [Department of Radiation Oncology (MAASTRO), GROW–School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Radiation Oncology, University Hospitals Leuven/KU Leuven (Belgium); Verhaegen, Frank, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology (MAASTRO), GROW–School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec (Canada)

    2014-11-01

    Purpose: In lung cancer radiation therapy, the dose constraints are determined mostly by healthy lung toxicity. Preclinical microirradiators are a new tool to evaluate treatment strategies closer to clinical irradiation devices. In this study, we quantified local changes in lung density symptomatic of radiation-induced lung fibrosis (RILF) after partial lung irradiation in mice by using a precision image-guided small animal irradiator integrated with micro-computed tomography (CT) imaging. Methods and Materials: C57BL/6 adult male mice (n=76) were divided into 6 groups: a control group (0 Gy) and groups irradiated with a single fraction of 4, 8, 12, 16, or 20 Gy using 5-mm circular parallel-opposed fields targeting the upper right lung. A Monte Carlo model of the small animal irradiator was used for dose calculations. Following irradiation, all mice were imaged at regular intervals over 39 weeks (10 time points total). Nonrigid deformation was used to register the initial micro-CT scan to all subsequent scans. Results: Significant differences could be observed between the 3 highest (>10 Gy) and 3 lowest irradiation (<10 Gy) dose levels. A mean difference of 120 ± 10 HU between the 0- and 20-Gy groups was observed at week 39. RILF was found to be spatially limited to the irradiated portion of the lung. Conclusions: The data suggest that the severity of RILF in partial lung irradiation compared to large field irradiation in mice for the same dose is reduced, and therefore higher doses can be tolerated.

  9. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  10. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function.

    Energy Technology Data Exchange (ETDEWEB)

    Socha, J.; Lee, W.; Chicago Field Museum; Arizona State Univ.

    2007-03-01

    Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage.

  11. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    International Nuclear Information System (INIS)

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies

  12. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    Energy Technology Data Exchange (ETDEWEB)

    Qian, X; Wuu, C [Columbia University, NY, NY (United States); Admovics, J [Rider University, Lawrencsville, NJ (United States)

    2014-06-01

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360° with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90°, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360° to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 ± 0.1 mm and mouse stage rotation isocentricity is about 0.91 ± 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 ± 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 ± 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  13. Design and performance of a small-animal imaging system using synthetic collimation.

    Science.gov (United States)

    Havelin, R J; Miller, B W; Barrett, H H; Furenlid, L R; Murphy, J M; Dwyer, R M; Foley, M J

    2013-05-21

    This work outlines the design and construction of a single-photon emission computed tomography imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through 46 pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from the collimator to increase the magnification of the system. The object distance remains constant, and each new detector distance is a new system configuration. The level of overlap of the pinhole projections increases as the system magnification increases, but the number of projections subtended by the detector is reduced. There is no rotation in the system; a single tomographic angle is used in each system configuration. Image reconstruction is performed using maximum-likelihood expectation-maximization and an experimentally measured system matrix. The system matrix is measured for each configuration on a coarse grid, using a point source. The pinholes are individually identified and tracked, and a Gaussian fit is made to each projection. The coefficients of these fits are used to interpolate the system matrix. The system is validated experimentally with a hot-rod phantom. The Fourier crosstalk matrix is also measured to provide an estimate of the average spatial resolution along each axis over the entire FOV. The 3D synthetic-collimator image is formed by estimating the activity distribution within the FOV and summing the activities in the voxels along the axis perpendicular to the collimator face. PMID:23618819

  14. The Combination of In vivo 124I-PET and CT Small Animal Imaging for Evaluation of Thyroid Physiology and Dosimetry

    Directory of Open Access Journals (Sweden)

    Henrik H. El-Ali

    2012-06-01

    Full Text Available Objective: A thyroid rat model combining functional and anatomical information would be of great benefit for better modeling of thyroid physiology and for absorbed dose calculations. Our aim was to show that 124I-PET and CT small animal imaging are useful as a combined model for studying thyroid physiology and dose calculation. Methods: Seven rats were subjects for multiple thyroid 124I-imaging and CT-scans. S-values [mGy/MBqs] for different thyroid sizes were simulated. A phantom with spheres was designed for validation of performances of the small animal PET and CT imaging systems. Results: Small animal image-based measurements of the activity amount and the volumes of the spheres with a priori known volumes showed a good agreement with their corresponding actual volumes. The CT scans of the rats showed thyroid volumes from 34–70 mL. Conclusions: The wide span in volumes of thyroid glands indicates the importance of using an accurate volume-measuring technique such as the small animal CT. The small animal PET system was on the other hand able to accurately estimate the activity concentration in the thyroid volumes. We conclude that the combination of the PET and CT image information is essential for quantitative thyroid imaging and accurate thyroid absorbed dose calculation.

  15. Experimental Results and Predictive Calculations for Pinhole Collimators Used in Small Animal Nuclear Imaging*

    Science.gov (United States)

    Ng, Luke; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randolph

    2001-04-01

    Biological ligands tagged with ^125 I have been used in studies including comparisons between normal and diabetic mice in vivo. In order to enhance the image of the mouse pancreas we have tested a number of pinhole collimators coupled to two types of position sensitive photomultiplier tube. Various shapes of pinhole have been tested. Results will be described and discussed. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation, The Virginia Commonwealth Health Research Board and the Thomas F. and Kate Miller Jeffress Memorial Trust.

  16. Methods for effective fluorophore injection and imaging of lymphatics in small animals

    Science.gov (United States)

    DSouza, Alisha V.; Marra, Kayla A.; Gunn, Jason R.; Samkoe, Kimberley S.; Tichauer, Kenneth M.; Pogue, Brian W.

    2016-03-01

    Morbidity and complexity involved in lymph node staging via surgical resection and biopsy calls for staging techniques that are less invasive. While visible blue dyes are commonly used in locating sentinel lymph nodes, since they follow tumor-draining lymphatic vessels, they do not provide a metric to evaluate presence of cancer. An area of active research is to use fluorescent dyes to assess tumor burden of sentinel and secondary lymph nodes. The goal of this work was to successfully perform fluorescence imaging of IRDye®680RD in the lymphatics, in a repeatable manner.

  17. A radiopharmaceutical for imaging areas of lymphocytic infiltration: [sup 123]I-interleukin-2. Labelling procedure and animal studies

    Energy Technology Data Exchange (ETDEWEB)

    Signore, A.; Chianelli, M.; Toscano, A.; Monetini, L.; Ronga, G.; Pozzilli, P.; Negri, M. (Policlinico Umberto, Rome (Italy). Clinica Medica 2); Nimmon, C.C.; Britton, K.E. (Saint Bartholomew' s Hospital, London (United Kingdom). Dept. of Nuclear Medicine)

    1992-10-01

    The labelling of interleukin-2 (IL-2) with [sup 123]I and its in vivo application for imaging chronic pathological lymphocytic infiltrations are described. The lactoperoxidase/glucoseoxidase technique was the labelling method of choice leading to immunoreactive IL-2 with high specific activity. Labelled IL-2 was injected in diabetes-prone non-obese diabetic (NOD) mice with pancreatic lymphocytic infiltration. As control animals, Balb/c mice were used. As specificity control, monoclonal antibodies AMT13 and UCHT1, bovine serum albumin and [alpha]-lactalbumin were radioiodinated and injected in mice. Eighteen NOD mice and four control Balb/c mice were used for gamma camera imaging experiments. Fifty-four NOD and 20 Balb/c mice were used for time course single organ counting and autoradiography. Gamma camera images showed that radioactivity accumulated in the pancreatic region from the 10th minute onwards in NOD mice injected with [sup 123]I-IL-2 but not in Balb/c mice, or in NOD mice injected with control radiopharmaceuticals. These findings were confirmed by counting the radioactivity present in single organs. Autoradiography of NOD pancreas, after injection of labelled IL-2, showed that radioactivity was specifically associated with infiltrating lymphocytes. In conclusion, this technique is highly specific and easy to perform and we suggest its application in humans for in vivo detection of areas of lymphocytic infiltration. (Author).

  18. Application of a semi-automatic ROI setting system for brain PET images to animal PET studies

    International Nuclear Information System (INIS)

    ProASSIST, a semi-automatic ROI (region of interest) setting system for human brain PET images, has been modified for use with the canine brain, and the performance of the obtained system was evaluated by comparing the operational simplicity for ROI setting and the consistency of ROI values obtained with those by a conventional manual procedure. Namely, we created segment maps for the canine brain by making reference to the coronal section atlas of the canine brain by Lim et al., and incorporated them into the ProASSIST system. For the performance test, CBF (cerebral blood flow) and CMRglc (cerebral metabolic rate in glucose) images in dogs with or without focal cerebral ischemia were used. In ProASSIST, brain contours were defined semiautomatically. In the ROI analysis of the test image, manual modification of the contour was necessary in half cases examined (8/16). However, the operation was rather simple so that the operation time per one brain section was significantly shorter than that in the manual operation. The ROI values determined by the system were comparable with those by the manual procedure, confirming the applicability of the system to these animal studies. The use of the system like the present one would also merit the more objective data acquisition for the quantitative ROI analysis, because no manual procedure except for some specifications of the anatomical features is required for ROI setting. (author)

  19. The Combination of In vivo (124)I-PET and CT Small Animal Imaging for Evaluation of Thyroid Physiology and Dosimetry

    DEFF Research Database (Denmark)

    El-Ali, Henrik H; Eckerwall, Martin; Skovgaard, Dorthe;

    2012-01-01

    OBJECTIVE: A thyroid rat model combining functional and anatomical information would be of great benefit for better modeling of thyroid physiology and for absorbed dose calculations. Our aim was to show that (124)I-PET and CT small animal imaging are useful as a combined model for studying thyroid...... physiology and dose calculation. METHODS: Seven rats were subjects for multiple thyroid (124)I-imaging and CT-scans. S-values [mGy/MBqs] for different thyroid sizes were simulated. A phantom with spheres was designed for validation of performances of the small animal PET and CT imaging systems. RESULTS......: Small animal image-based measurements of the activity amount and the volumes of the spheres with a priori known volumes showed a good agreement with their corresponding actual volumes. The CT scans of the rats showed thyroid volumes from 34-70 mL. CONCLUSIONS: The wide span in volumes of thyroid glands...

  20. Economic principles for resource allocation decisions at national level to mitigate the effects of disease in farm animal populations

    OpenAIRE

    Howe, K. S.; HÄSLER, B.; K. D. C. Stärk

    2012-01-01

    SUMMARY This paper originated in a project to develop a practical, generic tool for the economic evaluation of surveillance for farm animal diseases at national level by a state veterinary service. Fundamental to that process is integration of epidemiological and economic perspectives. Using a generalized example of epidemic disease, we show that an epidemic curve maps into its economic equivalent, a disease mitigation function, that traces the relationship between value losses avoided and mi...

  1. WETLAND RESOURCES INVESTIGATION IN URBAN PARKS BASED ON QUICKBIRD REMOTE SENSING IMAGE IN JINAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    FEI Xian-Yun; ZHANG Zhi-Guo

    2006-01-01

    Wetlands in urban area are an important part of environment. The status of wetland is tightly related with the security and sustainable development of urban ecosystem and society. Jinan is the capital of Shandong province, China. It is the centre of culture and economy of this province and famous for its springs. So it has important meaning to survey the wetland resources of the urban parks. In this study, the quantity and location of various vegetation types and water areas were obtained using manual classification on QUICKBIRD images. Study results showed that arbor vegetation was domain green land type in the urban parks, so the vegetation structure in parks was reasonable; water quality of the wetlands in the parks was poor, and eutrophication phenomena was obvious in some water areas; the quantity of the water areas has been declined. Through the surveying, we should think that it is a big challenge for the government to protect and restore wetland resources in the parks from 2 respects of quantity and quality in urban area.

  2. Simulation of PIXSCAN, a photon counting micro-CT for small animal imaging

    International Nuclear Information System (INIS)

    A main challenge in the development of new detectors is the achievement of a satisfactory comprehension of the instrument behaviour. We present the simulation work developed to understand and characterize an innovative micro-CT scanner. The PIXSCAN scanner is a photon counting device based on hybrid pixel detectors. Its working principle is expected to improve the contrast for soft tissues and to reduce both the scan duration and the dose absorbed by the animal. A prototype of the scanner, PIXSCAN-XPAD2, has been assembled and studied in order to achieve a proof of principle of the system. Simulations by analytical and Monte Carlo methods of the prototype and of the evaluation phantoms have been developed to ensure a satisfactory comprehension of the data. The Monte Carlo simulation was based on the GATE package. It included the complete simulation of photon propagation in matter, together with the modelling of the source spectrum, the scanner geometry and the sensor response. The analytical simulation is much more approximate, but its merit is the rapidity which permits fast preliminary results. Several figures of merit are studied and show good agreement with real data. Hence, the developed simulations can be used as a valid tool for the estimation of the ultimate PIXSCAN performances, in terms of spatial resolution, contrast measurement and dose reduction.

  3. Examining the gastrointestinal transit of lipid-based liquid crystalline systems using whole-animal imaging.

    Science.gov (United States)

    Pham, Anna C; Nguyen, Tri-Hung; Nowell, Cameron J; Graham, Bim; Boyd, Ben J

    2015-12-01

    Lipid-based liquid crystalline (LC) systems have the potential to sustain the oral absorption of poorly water-soluble drugs in vivo, facilitating slow drug release from their complex internal structure. To further evaluate the dynamic relationship between gastric retention and sustained drug absorption for these systems, this study aimed to explore non-invasive X-ray micro-CT imaging as an approach to assess gastric retention. Pharmacokinetic studies were also conducted with cinnarizine-loaded LC formulations to correlate gastric retention of the formulation to drug absorption. The in vivo studies demonstrated the interplay between gastric retention and drug absorption based on the digestibility of the LC structures. An increase in non-digestible phytantriol (PHY) composition in the formulation relative to digestible glyceryl monooleate (GMO) increased the gastric retention, with 68 ± 4 % of formulation intensity remaining at 8 h for 85 % w/w PHY, and 26 ± 9 % for 60 % w/w PHY. Interestingly, it was found that PHY 30 % w/w in GMO provided the highest bioavailability for cinnarizine (CZ) amongst the other combinations, including GMO alone. The studies demonstrated that combining digestible and non-digestible lipids into LC systems allowed for an optimal balance between sustaining drug absorption whilst increasing plasma concentration (C max) over time, leading to enhanced oral bioavailability. The results demonstrate the potential for utilising non-invasive X-ray micro-CT imaging to dynamically assess the GI transit of orally administered liquid crystal-forming formulations.

  4. Examining the gastrointestinal transit of lipid-based liquid crystalline systems using whole-animal imaging.

    Science.gov (United States)

    Pham, Anna C; Nguyen, Tri-Hung; Nowell, Cameron J; Graham, Bim; Boyd, Ben J

    2015-12-01

    Lipid-based liquid crystalline (LC) systems have the potential to sustain the oral absorption of poorly water-soluble drugs in vivo, facilitating slow drug release from their complex internal structure. To further evaluate the dynamic relationship between gastric retention and sustained drug absorption for these systems, this study aimed to explore non-invasive X-ray micro-CT imaging as an approach to assess gastric retention. Pharmacokinetic studies were also conducted with cinnarizine-loaded LC formulations to correlate gastric retention of the formulation to drug absorption. The in vivo studies demonstrated the interplay between gastric retention and drug absorption based on the digestibility of the LC structures. An increase in non-digestible phytantriol (PHY) composition in the formulation relative to digestible glyceryl monooleate (GMO) increased the gastric retention, with 68 ± 4 % of formulation intensity remaining at 8 h for 85 % w/w PHY, and 26 ± 9 % for 60 % w/w PHY. Interestingly, it was found that PHY 30 % w/w in GMO provided the highest bioavailability for cinnarizine (CZ) amongst the other combinations, including GMO alone. The studies demonstrated that combining digestible and non-digestible lipids into LC systems allowed for an optimal balance between sustaining drug absorption whilst increasing plasma concentration (C max) over time, leading to enhanced oral bioavailability. The results demonstrate the potential for utilising non-invasive X-ray micro-CT imaging to dynamically assess the GI transit of orally administered liquid crystal-forming formulations. PMID:26328930

  5. The Alkaloid Ageladine A, Originally Isolated from Marine Sponges, Used for pH-Sensitive Imaging of Transparent Marine Animals

    Directory of Open Access Journals (Sweden)

    Ulf Bickmeyer

    2012-01-01

    Full Text Available The brominated pyrrole-imidazole Ageladine A was used for live imaging of the jellyfish (jellies Nausithoe werneri, the sea anemone Metridium senile and the flatworm Macrostomum lignano. The fluorescence properties of Ageladine A allow for estimation of pH values in tissue and organs in living animals. The results showed that Nausithoe werneri had the most acidic areas in the tentacles and close to the mouth (pH 4–6.5, Metridium senile harbours aggregates of high acidity in the tentacles (pH 5 and in Macrostomum lignano, the rhabdoids, the gonads and areas close to the mouth were the most acidic with values down to pH 5.

  6. The alkaloid Ageladine A, originally isolated from marine sponges, used for pH-sensitive imaging of transparent marine animals.

    Science.gov (United States)

    Bickmeyer, Ulf

    2012-01-01

    The brominated pyrrole-imidazole Ageladine A was used for live imaging of the jellyfish (jellies) Nausithoe werneri, the sea anemone Metridium senile and the flatworm Macrostomum lignano. The fluorescence properties of Ageladine A allow for estimation of pH values in tissue and organs in living animals. The results showed that Nausithoe werneri had the most acidic areas in the tentacles and close to the mouth (pH 4-6.5), Metridium senile harbours aggregates of high acidity in the tentacles (pH 5) and in Macrostomum lignano, the rhabdoids, the gonads and areas close to the mouth were the most acidic with values down to pH 5. PMID:22363232

  7. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  8. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    International Nuclear Information System (INIS)

    plain surfaces, predicted by simulations, was observed. Third, as the production of photon converters is time consuming and expensive, it was investigated whether or not thin gas detectors with single-lead-layer-converters would be an alternative to the HIDAC converter design. Following simulations, those concepts potentially offer impressive coincidence sensitivities up to 24% for plain lead foils and up to 40% for perforated lead foils. Fourth, compared to other PET scanner systems, the HIDAC concept suffers from missing energy information. Consequently, a substantial amount of scatter events can be found within the measured data. On the basis of image reconstruction and correction techniques the influence of random and scatter events and their characteristics on several simulated phantoms were presented. It was validated with the HIDAC simulator that the applied correction technique results in perfectly corrected images. Moreover, it was shown that the simulator is a credible tool to provide quantitatively improved images. Fifth, a new model for the non-collinearity of the positronium annihilation was developed, since it was observed that the model implemented in the GATE simulator does not correspond to the measured observation. The input parameter of the new model was trimmed to match to a point source measurement. The influence of both models on the spatial resolution was studied with three different reconstruction methods. Furthermore, it was demonstrated that the reduction of converter depth, proposed for increased sensitivity, also has an advantage on the spatial resolution and that a reduction of the FOV from 17 cm to 4 cm (with only 2 detector heads) results in a remarkable sensitivity increase of 150% and a substantial increase in spatial resolution. The presented simulations for the spatial resolution analysis used an intrinsic detector resolution of 0.125 x 0.125 x 3.2 mm3 and were able to reach fair resolutions down to 0.9-0.5 mm, which is an increase of

  9. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, Don

    2014-04-15

    plain surfaces, predicted by simulations, was observed. Third, as the production of photon converters is time consuming and expensive, it was investigated whether or not thin gas detectors with single-lead-layer-converters would be an alternative to the HIDAC converter design. Following simulations, those concepts potentially offer impressive coincidence sensitivities up to 24% for plain lead foils and up to 40% for perforated lead foils. Fourth, compared to other PET scanner systems, the HIDAC concept suffers from missing energy information. Consequently, a substantial amount of scatter events can be found within the measured data. On the basis of image reconstruction and correction techniques the influence of random and scatter events and their characteristics on several simulated phantoms were presented. It was validated with the HIDAC simulator that the applied correction technique results in perfectly corrected images. Moreover, it was shown that the simulator is a credible tool to provide quantitatively improved images. Fifth, a new model for the non-collinearity of the positronium annihilation was developed, since it was observed that the model implemented in the GATE simulator does not correspond to the measured observation. The input parameter of the new model was trimmed to match to a point source measurement. The influence of both models on the spatial resolution was studied with three different reconstruction methods. Furthermore, it was demonstrated that the reduction of converter depth, proposed for increased sensitivity, also has an advantage on the spatial resolution and that a reduction of the FOV from 17 cm to 4 cm (with only 2 detector heads) results in a remarkable sensitivity increase of 150% and a substantial increase in spatial resolution. The presented simulations for the spatial resolution analysis used an intrinsic detector resolution of 0.125 x 0.125 x 3.2 mm{sup 3} and were able to reach fair resolutions down to 0.9-0.5 mm, which is an

  10. Establishment of a trimodality analytical platform for tracing, imaging and quantification of gold nanoparticles in animals by radiotracer techniques.

    Science.gov (United States)

    Chen, Chien-Hung; Lin, Fong-Sian; Liao, Wei-Neng; Liang, Sanching L; Chen, Min-Hua; Chen, Yo-Wen; Lin, Wan-Yu; Hsu, Ming-Hua; Wang, Mei-Ya; Peir, Jinn-Jer; Chou, Fong-In; Chen, Ching-Ya; Chen, Sih-Yu; Huang, Su-Chin; Yang, Mo-Hsiung; Hueng, Dueng-Yuan; Hwu, Yeukuang; Yang, Chung-Shi; Chen, Jen-Kun

    2015-01-01

    This study aims to establish a (198)Au-radiotracer technique for in vivo tracing, rapid quantification, and ex vivo visualization of PEGylated gold nanoparticles (GNPs) in animals, organs and tissue dissections. The advantages of GNPs lie in its superior optical property, biocompatibility and versatile conjugation chemistry, which are promising to develop diagnostic probes and drug delivery systems. (198)Au is used as a radiotracer because it simultaneously emits beta and gamma radiations with proper energy and half-life; therefore, (198)Au can be used for bioanalytical purposes. The (198)Au-tagged radioactive gold nanoparticles ((198)Au-GNPs) were prepared simply by irradiating the GNPs in a nuclear reactor through the (197)Au(n,γ)(198)Au reaction and subsequently the (198)Au-GNPs were subjected to surface modification with polyethylene glycol to form PEGylated (198)Au-GNPs. The (198)Au-GNPs retained physicochemical properties that were the same as those of GNP before neutron irradiation. Pharmacokinetic and biodisposition studies were performed by intravenously injecting three types of (198)Au-GNPs with or without PEGylation into mice; the γ radiation in blood specimens and dissected organs was then measured. The (198)Au-radiotracer technique enables rapid quantification freed from tedious sample preparation and shows more than 95% recovery of injected GNPs. Clinical gamma scintigraphy was proved feasible to explore spatial- and temporal-resolved biodisposition of (198)Au-GNPs in living animals. Moreover, autoradiography, which recorded beta particles from (198)Au, enabled visualizing the heterogeneous biodisposition of (198)Au-GNPs in different microenvironments and tissues. In this study, the (198)Au-radiotracer technique facilitated creating a trimodality analytical platform for tracing, quantifying and imaging GNPs in animals. PMID:25424326

  11. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  12. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    Directory of Open Access Journals (Sweden)

    Waters James S

    2007-03-01

    Full Text Available Abstract Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns.

  13. Use of DES-treated rats as an animal model for assessment of pituitary adenoma imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Otto, C.A.; Marshall, J.C.; Lloyd, R.V.; Sherman, P.S.; Fisher, S.J.; Valoppi, V.L.; Rogers, W.L.; Wieland, D.M.

    1986-01-01

    Prolactin (PRL) secreting pituitary adenomas are the most common type of pituitary tumors. An imaging agent which specifically localized in prolactinomas would be of considerable clinical value. Tritiated spiroperidol (/sup 3/HSp) was selected for initial evaluation as a possible imaging agent based on: (1) demonstrated localization in the pituitary and (2) demonstrated binding to human PRL-secreting tumor tissue. DES was implanted in Fischer F344 rats which induced prolactinoma formation. /sup 3/HSp concentrations in pituitary and other tissues of DES-treated rats were assessed in female rats and correlation studies showed that a 5-fold increase in serum PRL was associated with a 6-fold increase in both pituitary weight and % dose/organ accumulation of /sup 3/HSp. The number of pituitary D/sub 2/ receptors per mg of protein in tissue homogenates was similar in both normal and DES-treated females. A blocking study with (+)-butaclamol demonstrated a D/sub 2/ receptor-mediated component to /sup 3/HSp localization. In summary, an animal model for prolactinoma was characterized. An assessment of /sup 3/HSp accumulation indicates that radiolabelled spiroperidol shows excellent potential for detecting PRL-secreting tumors of the pituitary.

  14. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging.

    Science.gov (United States)

    Hudson, Parisa; Hudson, Stephen D; Handler, William B; Scholl, Timothy J; Chronik, Blaine A

    2010-04-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method.

  15. Design considerations for a C-shaped PET system, dedicated to small animal brain imaging, using GATE Monte Carlo simulations

    Science.gov (United States)

    Efthimiou, N.; Papadimitroulas, P.; Kostou, T.; Loudos, G.

    2015-09-01

    Commercial clinical and preclinical PET scanners rely on the full cylindrical geometry for whole body scans as well as for dedicated organs. In this study we propose the construction of a low cost dual-head C-shaped PET system dedicated for small animal brain imaging. Monte Carlo simulation studies were performed using GATE toolkit to evaluate the optimum design in terms of sensitivity, distortions in the FOV and spatial resolution. The PET model is based on SiPMs and BGO pixelated arrays. Four different configurations with C- angle 0°, 15°, 30° and 45° within the modules, were considered. Geometrical phantoms were used for the evaluation process. STIR software, extended by an efficient multi-threaded ray tracing technique, was used for the image reconstruction. The algorithm automatically adjusts the size of the FOV according to the shape of the detector's geometry. The results showed improvement in sensitivity of ∼15% in case of 45° C-angle compared to the 0° case. The spatial resolution was found 2 mm for 45° C-angle.

  16. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings.

    Science.gov (United States)

    Gebreyes, Wondwossen A; Dupouy-Camet, Jean; Newport, Melanie J; Oliveira, Celso J B; Schlesinger, Larry S; Saif, Yehia M; Kariuki, Samuel; Saif, Linda J; Saville, William; Wittum, Thomas; Hoet, Armando; Quessy, Sylvain; Kazwala, Rudovick; Tekola, Berhe; Shryock, Thomas; Bisesi, Michael; Patchanee, Prapas; Boonmar, Sumalee; King, Lonnie J

    2014-01-01

    Zoonotic infectious diseases have been an important concern to humankind for more than 10,000 years. Today, approximately 75% of newly emerging infectious diseases (EIDs) are zoonoses that result from various anthropogenic, genetic, ecologic, socioeconomic, and climatic factors. These interrelated driving forces make it difficult to predict and to prevent zoonotic EIDs. Although significant improvements in environmental and medical surveillance, clinical diagnostic methods, and medical practices have been achieved in the recent years, zoonotic EIDs remain a major global concern, and such threats are expanding, especially in less developed regions. The current Ebola epidemic in West Africa is an extreme stark reminder of the role animal reservoirs play in public health and reinforces the urgent need for globally operationalizing a One Health approach. The complex nature of zoonotic diseases and the limited resources in developing countries are a reminder that the need for implementation of Global One Health in low-resource settings is crucial. The Veterinary Public Health and Biotechnology (VPH-Biotec) Global Consortium launched the International Congress on Pathogens at the Human-Animal Interface (ICOPHAI) in order to address important challenges and needs for capacity building. The inaugural ICOPHAI (Addis Ababa, Ethiopia, 2011) and the second congress (Porto de Galinhas, Brazil, 2013) were unique opportunities to share and discuss issues related to zoonotic infectious diseases worldwide. In addition to strong scientific reports in eight thematic areas that necessitate One Health implementation, the congress identified four key capacity-building needs: (1) development of adequate science-based risk management policies, (2) skilled-personnel capacity building, (3) accredited veterinary and public health diagnostic laboratories with a shared database, and (4) improved use of existing natural resources and implementation. The aim of this review is to highlight

  17. The global one health paradigm: challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Wondwossen A Gebreyes

    Full Text Available Zoonotic infectious diseases have been an important concern to humankind for more than 10,000 years. Today, approximately 75% of newly emerging infectious diseases (EIDs are zoonoses that result from various anthropogenic, genetic, ecologic, socioeconomic, and climatic factors. These interrelated driving forces make it difficult to predict and to prevent zoonotic EIDs. Although significant improvements in environmental and medical surveillance, clinical diagnostic methods, and medical practices have been achieved in the recent years, zoonotic EIDs remain a major global concern, and such threats are expanding, especially in less developed regions. The current Ebola epidemic in West Africa is an extreme stark reminder of the role animal reservoirs play in public health and reinforces the urgent need for globally operationalizing a One Health approach. The complex nature of zoonotic diseases and the limited resources in developing countries are a reminder that the need for implementation of Global One Health in low-resource settings is crucial. The Veterinary Public Health and Biotechnology (VPH-Biotec Global Consortium launched the International Congress on Pathogens at the Human-Animal Interface (ICOPHAI in order to address important challenges and needs for capacity building. The inaugural ICOPHAI (Addis Ababa, Ethiopia, 2011 and the second congress (Porto de Galinhas, Brazil, 2013 were unique opportunities to share and discuss issues related to zoonotic infectious diseases worldwide. In addition to strong scientific reports in eight thematic areas that necessitate One Health implementation, the congress identified four key capacity-building needs: (1 development of adequate science-based risk management policies, (2 skilled-personnel capacity building, (3 accredited veterinary and public health diagnostic laboratories with a shared database, and (4 improved use of existing natural resources and implementation. The aim of this review is to

  18. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    OpenAIRE

    Socha, John J; Westneat, Mark W.; Harrison, Jon F.; Waters, James S.; Lee, Wah-Keat

    2007-01-01

    Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, b...

  19. Rapid, non-invasive imaging of alphaviral brain infection: Reducing animal numbers and morbidity to identify efficacy of potential vaccines and antivirals

    OpenAIRE

    Patterson, Michael; Poussard, Allison; Taylor, Katherine; Seregin, Alexey; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Linde, Jenna; Smith, Jennifer; Salazar, Milagros; Paessler, Slobodan

    2011-01-01

    Rapid and accurate identification of disease progression are key factors in testing novel vaccines and antivirals against encephalitic alphaviruses. Typical efficacy studies utilize a large number of animals and severe morbidity or mortality as an endpoint. New technologies provide a means to reduce and refine the animal use as proposed in Hume’s 3Rs (replacement, reduction, refinement) described by Russel and Burch. In vivo imaging systems (IVIS) and bioluminescent enzyme technologies accomp...

  20. Using the Internet as a Classroom Information and Image Resource for the Development of a Television Advertising Campaign.

    Science.gov (United States)

    Murray, Michael

    This report describes the use of the Internet as an image and information resource in an introductory television and radio production class (COMM 223: Principles of Radio and Television Production) at Western Illinois University. The report states that the class's two lab sections spent the first half of the semester preparing a television…

  1. Animal learning.

    Science.gov (United States)

    Castro, Leyre; Wasserman, Edward A

    2010-01-01

    Pavlov and Thorndike pioneered the experimental study of animal learning and provided psychologists with powerful tools to unveil its underlying mechanisms. Today's research developments and theoretical analyses owe much to the pioneering work of these early investigators. Nevertheless, in the evolution of our knowledge about animal learning, some initial conceptions have been challenged and revised. We first review the original experimental procedures and findings of Pavlov and Thorndike. Next, we discuss critical research and consequent controversies which have greatly shaped animal learning theory. For example, although contiguity seemed to be the only condition that is necessary for learning, we now know that it is not sufficient; the conditioned stimulus (CS) also has to provide information about the occurrence of the unconditioned stimulus (US). Also, animals appear to learn different things about the same stimuli when circumstances vary. For instance, when faced with situations in which the meaning of a CS changes, as in the case of acquisition and later extinction, animals seem to preserve the original knowledge (CS-US) in addition to learning about the new conditions (CS-noUS). Finally, we discuss how parallels among Pavlovian conditioning, operant conditioning, and human causal judgment suggest that causal knowledge may lie at the root of both human and animal learning. All of these empirical findings and theoretical developments prove that animal learning is more complex and intricate than was once imagined. Copyright © 2009 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. PMID:26272842

  2. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  3. Modeling of Solar Resource from VIS Images of Meteosat First Generation over India

    Science.gov (United States)

    Cony, M.; Singal, L.; Martin, L.; Polo, J.

    2012-04-01

    The commencement of India's ambitious program to install a power generation capacity of 20 GW from solar PV and CSP technologies by 2022 requires detailed study of the solar resource over India especially in view of the non-availability of accurate and qualified data. This is further compounded by the presence of aerosols due to anthropogenic emissions and dynamic presence of water vapour in the atmosphere, particularly affecting direct normal irradiation when no measured DNI historical data is available. The use of satellite images as an input for deriving solar irradiance time series is accepted as a reliable methodology with good accuracy. There are several models aimed at this objective and the use of Heliosat-2 and Heliosat-3 methods, based on the first and second generation of Meteosat satellites is widespread in Europe. This approach with a modified model was proposed with the inclusion of additional independent variables to the cloud index, such as the movements of the cloud index distribution and the air mass; and daily turbidity values between others variables. This paper is aimed at describing the work with Heliosat-3 based on MFG images and characteristics. A comparison with 51 ground data for 2011 was performed and the results were similar to studies in Europe, that is, less than 10% RMSE in global horizontal and direct normal irradiance. Further, the data was compared with other methodologies used, particularly NASA averages from years 1985 - 2005 and NREL data for years 2002 - 2007. 1. DATA India sites (51 C-WET) 2. RESULTS The DNI data using adopted modifications of the Heliostat models was found to be the closest to data from 51 ground stations. Data from satellite modeling was closest to measured data emphasized the large loading of aerosols when measuring DNI. GHI data exhibited insignificant impact from aerosols. 3. COMMENTS AND CONCLUSIONS The results emphasize the importance of the knowledge of aerosol loading especially in countries with high

  4. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners

    International Nuclear Information System (INIS)

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners

  5. Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT CT scanners

    Science.gov (United States)

    Di Filippo, Frank P.

    2008-08-01

    A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.

  6. I-124 labeled recombinant human annexin V produced by E. coli for apoptosis image using small animal PET

    International Nuclear Information System (INIS)

    Annexin V labeled with radioisotope and optical probe has been used to detect apoptosis. To evaluate annexin V as a multimodal apoptosis imaging agent, large-scale preparation of Annexin V (AV) is preliminary. The aim of this study is to produce and purify recombinant human Annexin V (rh-AV) in E. coli system and radiolabeled rh-AV evaluate in vitro and in vivo apoptosis model system. Annexin V cDNA was obtained from human placenta and rh-AV cloning vector used fusion E. coli vector. Expression vector was based on the E. coli pET system. Induction of rh-AV was used Isopropyl--D-thiogalactoside (IPTG) and purification was used TALON metal affinity resin and T7 - Taq. Purification yield confirmed through SDS-PAGE. In camptothecin (0, 50, 100 uM) induced Jurkat T cell apoptosis model, AV-PI flow cytometry analysis and in vitro binding assay of I-124 labeled rh - AV were performed and compared. Small animal PET images of I-124 labeled rh-AV were obtained in Fas-mediated hepatic apoptosis model. Optimum expression condition was at 37, 250 rpm, 8 hr in 2X YT media including 1mM IPTG, Through two step purification process, rh-AV confirmed about 35 Kd single band by SDS-PAGE. As camptothecin concentration increasing, annexin V-FITC positive % increased in flow cytometry analysis and uptake of I-124 labeled rh-AV also increased. Annexin V-FITC positive % was correlated with and uptake of I-124 labeled rh-AV (R2=0.99). In Fas-mediated hepatic apoptosis model, I-124 labeled rh-AV was selectively localized in liver region in PET image. Recombinant Human annexin V was produced by E. coli system and purified using two step affinity chromatography. Radiolabeled rh-AV was useful for the evaluation of apoptosis in vitro and in vivo model. Recombinant human annexin V could be used as apoptosis imaging agent with various radiolabel and optical probe

  7. I-124 labeled recombinant human annexin V produced by E. coli for apoptosis image using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. H.; Lee, I. S.; Woo, S. K.; Woo, G. S.; Chung, W. S.; Kang, J. H.; Cheon, G. J.; Choi, C. W.; Urn, S. M. [Korea Institute of Radiological and Medical Sciences, Daejeon (Korea, Republic of)

    2007-07-01

    Annexin V labeled with radioisotope and optical probe has been used to detect apoptosis. To evaluate annexin V as a multimodal apoptosis imaging agent, large-scale preparation of Annexin V (AV) is preliminary. The aim of this study is to produce and purify recombinant human Annexin V (rh-AV) in E. coli system and radiolabeled rh-AV evaluate in vitro and in vivo apoptosis model system. Annexin V cDNA was obtained from human placenta and rh-AV cloning vector used fusion E. coli vector. Expression vector was based on the E. coli pET system. Induction of rh-AV was used Isopropyl--D-thiogalactoside (IPTG) and purification was used TALON metal affinity resin and T7 - Taq. Purification yield confirmed through SDS-PAGE. In camptothecin (0, 50, 100 uM) induced Jurkat T cell apoptosis model, AV-PI flow cytometry analysis and in vitro binding assay of I-124 labeled rh - AV were performed and compared. Small animal PET images of I-124 labeled rh-AV were obtained in Fas-mediated hepatic apoptosis model. Optimum expression condition was at 37, 250 rpm, 8 hr in 2X YT media including 1mM IPTG, Through two step purification process, rh-AV confirmed about 35 Kd single band by SDS-PAGE. As camptothecin concentration increasing, annexin V-FITC positive % increased in flow cytometry analysis and uptake of I-124 labeled rh-AV also increased. Annexin V-FITC positive % was correlated with and uptake of I-124 labeled rh-AV (R{sup 2}=0.99). In Fas-mediated hepatic apoptosis model, I-124 labeled rh-AV was selectively localized in liver region in PET image. Recombinant Human annexin V was produced by E. coli system and purified using two step affinity chromatography. Radiolabeled rh-AV was useful for the evaluation of apoptosis in vitro and in vivo model. Recombinant human annexin V could be used as apoptosis imaging agent with various radiolabel and optical probe.

  8. NASA Space Imaging is a Great Resource to Teach Science Topics in Professional Development Courses

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Long, T.; Edwards, S.; Ofman, L.; Brosius, J. W.; Gordon, D.; St Cyr, O. C.; Krotkov, N. A.; Fatoyinbo, T. E.

    2013-12-01

    Our multi- component project aims to develop and test NASA educational resource materials, provide training for pre- and in-service elementary school teachers in STEM disciplines needed in Washington DC area. We use physics and math in a hands-on enquiry based setting and make extensive use of imagery from NASA space missions (SDO, SOHO, STEREO) to develop instructional modules focusing on grades, PK-8. Our two years of effort culminated in developing three modules: The Sun - the nearest star Students learn about the Sun as the nearest star. Students make outdoor observations during the day and all year round. At night, they observe and record the motion of the moon and stars. Students learn these bodies move in regular and predictable ways. Electricity & Magnetism - From your classroom to the Sun Students investigate electricity and magnetism in the classroom and see large scale examples of these concepts on the Sun's surface, interplanetary space, and the Earth's magnetosphere as revealed from NASA space missions. Solar Energy The Sun is the primary source of energy for Earth's climate system. Students learn about wavelength and frequency and develop skills to do scientific inquiry, including how to use math as a tool. They use optical, UV, EUV, and X-ray images to trace out the energetic processes of the Sun. Each module includes at least one lesson plan, vocabulary, activities and children book for each grade range PK-3; 4-5; 6-8

  9. Non-invasive imaging of acute renal allograft rejection in rats using small animal F-FDG-PET.

    Directory of Open Access Journals (Sweden)

    Stefan Reuter

    Full Text Available BACKGROUND: At present, renal grafts are the most common solid organ transplants world-wide. Given the importance of renal transplantation and the limitation of available donor kidneys, detailed analysis of factors that affect transplant survival are important. Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection (AR is still a major risk for graft survival. Nowadays, AR can only be definitively by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Most important, they can not be performed in patients taking anticoagulant drugs. METHODOLOGY/PRINCIPAL FINDINGS: We present a non-invasive, entirely image-based method to assess AR in an allogeneic rat renal transplantation model using small animal positron emission tomography (PET and (18F-fluorodeoxyglucose (FDG. 3 h after i.v. injection of 30 MBq FDG into adult uni-nephrectomized, allogeneically transplanted rats, tissue radioactivity of renal parenchyma was assessed in vivo by a small animal PET-scanner (post operative day (POD 1,2,4, and 7 and post mortem dissection. The mean radioactivity (cps/mm(3 tissue as well as the percent injected dose (%ID was compared between graft and native reference kidney. Results were confirmed by histological and autoradiographic analysis. Healthy rats, rats with acute CSA nephrotoxicity, with acute tubular necrosis, and syngeneically transplanted rats served as controls. FDG-uptake was significantly elevated only in allogeneic grafts from POD 1 on when compared to the native kidney (%ID graft POD 1: 0.54+/-0.06; POD 2: 0.58+/-0.12; POD 4: 0.81+/-0.06; POD 7: 0.77+/-0.1; CTR: 0.22+/-0.01, n = 3-28. Renal FDG-uptake in vivo correlated with the results obtained by micro-autoradiography and the degree of inflammatory infiltrates observed in histology. CONCLUSIONS/SIGNIFICANCE: We propose that graft FDG-PET imaging is a new option to non-invasively, specifically, early detect, and follow

  10. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small animal imaging

    CERN Document Server

    Lazaro, D; Loudos, G; Strul, D; Santin, G; Giokaris, N; Donnarieix, D; Maigne, L; Spanoudaki, V; Styliaris, S; Staelens, S; Breton, V

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT 4 Application for Tomographic Emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small animal imaging and consisting of a CsI(Tl) crystal array coupled to a position sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99mTc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 mu m. The difference between experimental...

  11. Coil concepts for rapid and motion-compensated MR-Imaging of small animals; Spulenkonzepte zur schnellen und bewegungskompensierten MR-Bildgebung von Kleintieren

    Energy Technology Data Exchange (ETDEWEB)

    Korn, Matthias

    2009-05-06

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  12. The application of LANDSAT remote sensing technology to natural resources management. Section 1: Introduction to VICAR - Image classification module. Section 2: Forest resource assessment of Humboldt County.

    Science.gov (United States)

    Fox, L., III (Principal Investigator); Mayer, K. E.

    1980-01-01

    A teaching module on image classification procedures using the VICAR computer software package was developed to optimize the training benefits for users of the VICAR programs. The field test of the module is discussed. An intensive forest land inventory strategy was developed for Humboldt County. The results indicate that LANDSAT data can be computer classified to yield site specific forest resource information with high accuracy (82%). The "Douglas-fir 80%" category was found to cover approximately 21% of the county and "Mixed Conifer 80%" covering about 13%. The "Redwood 80%" resource category, which represented dense old growth trees as well as large second growth, comprised 4.0% of the total vegetation mosaic. Furthermore, the "Brush" and "Brush-Regeneration" categories were found to be a significant part of the vegetative community, with area estimates of 9.4 and 10.0%.

  13. Improving animal productivity and reproductive efficiency: Strategic supplementation of feeds with legume forages and non-conventional plant resources

    International Nuclear Information System (INIS)

    Identification and evaluation of potential plant resources and their dissemination among rural farmers have been attempted. The work was done in three phases. In the first phase, laboratory evaluation of proximate components, in vitro digestibility and energy contents was carried out. Fifteen plant species were evaluated in this phase. Some of the plant species (Sesbania, Dhaincha, Lathyrus, Crotalaria and Leucaena) were promising, containing relatively large amounts of protein (18 - 34%) and having high digestibility values (53 - 60%). Some species contained reasonably good levels of metabolizd energy (6.5- 8.5 MJ/kg). In the second phase, four promising species (Sesbania, Lathyrus, Crotalaria and Leucaena) were offered as supplements to lactating and growing cattle, in four in vivo feeding trials carried out on-station. Supplementation with Sesbania gave significantly (P <0.01) higher milk yields, resulting from increased feed intake and digestibility of organic matter (OM) and crude fibre (CF). Lathyrus also gave similar results in terms of milk yield and digestibility but had little effect on feed intake. Leucaena supplementation also significantly (P <0.05) increased milk yield but not feed intake or digestibility. Crotalaria gave a significant (P <0.05) increase in live-weight gain of growing calves. In the third phase, Sesbania, Lthyrus and Leucaena forages were grown by rural smallholders for feeding to their cattle. The forages were fed to lactating cows as supplements to straw-based diets. All the forage supplements resulted in increased milk yield compared to the control diets, however, Sesbania gave the best result in terms of output. The practice of cultivating legume forages and feeding to cattle receiving straw diets created enormous interest among the farmers as the increase in milk yield was cost effective. (author)

  14. Development of a high resolution gamma imager for cancerology: from surgery treatment of cancer to the study on small animals

    International Nuclear Information System (INIS)

    In the context of the surgical treatment of cancer, counting probes of radioactivity have been introduced in a theater bloc to assist the surgeon in real time for the excision of the radio-labeled tumors. This technique of radio-guided surgery allows to reach the precise localization and the complete excision of pathological tissues. To reinforce this surgical practice we developed a mini gamma-camera called POCI (Per-Operative Compact Imager). The objective of this work was to determine the role of this new generation of detectors to assist the surgeon in the excision of tumors and to also approach cancer research involving studies on small animals. From the instrumental point of view, the principle of detection based on the photodiode with intensified localization has been validated in a first prototype which was extended to a large field of analysis imagery without degrading the spatial performances and with miniaturizing the dimensions of the camera. The prototype of the realized camera has a 40 mm diameter field of view and a total weight of 1.2 kg. At 140 keV, the spatial resolution is 2.1 mm for an efficiency of 2.8 10-4%. POCI was estimated through the sentinel node protocol in breast cancer staging according to two approaches: one based on a comparative study of the performances of detection of a probe and POCI and an other one based on a clinical evaluation in collaboration with Institute Gustave Roussy. This study has permit to establish the complementarity between the imager and the probe considering various clinical configurations. The detection performances of POCI were also estimated in mice to study the biodistribution of iodine in the thyroid and the mammary glands. All these encouraging results allows to consider the use of the detector in a wider frame of investigations clinical as well as biological. (author)

  15. How do HIV and AIDS impact the use of natural resources by poor rural populations? The case of wild animal products

    Directory of Open Access Journals (Sweden)

    Charles M. Shackleton

    2012-01-01

    Full Text Available As a result of heightened financial and food insecurity, populations adversely affected by HIV and/or AIDS may be more likely to utilise wild natural resources to supplement their diet and livelihoods. Should this effect be pronounced, HIV and AIDS may pose a serious environmental threat. We explored the hypothesis that the presence of factors in the household, such as chronic illness in and recent mortality of individuals in a high HIV-risk age group, as well as the fostering of orphans, are associated with increased utilisation of wild animal products (WAPs at the household level. We randomly surveyed 519 households from four sites in rural South Africa, recording household socio-economic status, the utilisation of wild animal products and health and demographic factors attributed to HIV or AIDS. Binary logistic regressions were used to test if households with markers of HIV and/or AIDS affliction were more likely to have a higher incidence and frequency of WAP utilisation relative to non-afflicted households, after adjusting for socio-economic and demographic variables. We found that, although households with markers of HIV and/or AIDS were generally poorer and had higher dependency ratios, there was no evidence to support the hypothesis that WAP harvesting was associated with either poverty, or markers of HIV and/or AIDS affliction. Our findings suggest that generalisations about a possible interaction between HIV and/or AIDS and the environment may not uniformly apply to all categories of natural resources or to all user groups.

  16. Evaluation of Threatening Degree of the Animal Genetic Resources in China%畜禽遗传资源受威胁程度评价

    Institute of Scientific and Technical Information of China (English)

    马月辉; 吴常信

    2001-01-01

    The threatened situation of 231 animal genetic resources in China Was analysed in this paper. The result showed that 16 animal genetic resources were seriously endangered and need to be urgently conserved; 9 endangered normally should be conserved; 17 threatened minimally should be conserved necessarily; 57 endangered potentially need to be paid close attention; and 132 were safe.%本文用群体遗传学、保护生物学原理,建立了畜禽遗传资源受威胁评价方法,并对我国231个畜禽遗传资源进行了分析。结果表明,有16个畜禽遗传资源为受严重威胁资源,建议由国家采取保种场方式进行紧急保护;9个遗传资源为受威胁资源,必须采取相应措施进行保护,可采取保种场或划定保护区的方式进行保护;17个遗传资源为最低威胁资源,需视具体情况有必要进行保护,可采取由省、市、县级进行保护;57个遗传资源为潜在受威胁资源,需进行特别关注,要求在生产和利用过程中,密切监测群体的动态和性能变化;132个遗传资源为安全遗传资源。

  17. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W., E-mail: gaowu@nwpu.edu.cn [Institute of Microelectronics, School of Computer S and T, Northwestern Polytechnical University, Xi’an (China); Liu, H., E-mail: newhui.cn@gmail.com [Institute of Microelectronics, School of Computer S and T, Northwestern Polytechnical University, Xi’an (China); Gan, B., E-mail: shadow524@163.com [Institute of Microelectronics, School of Computer S and T, Northwestern Polytechnical University, Xi’an (China); Hu, Y., E-mail: Yann.Hu@ires.in2p3.fr [Institut Pluridisciplinaire Hubert Curien, IN2P3/CNRS/UDS, Strasbourg (France)

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e{sup −} to 180,000e{sup −}, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e{sup −} at zero farad plus 5.4 e{sup −} per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  18. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    Energy Technology Data Exchange (ETDEWEB)

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior.

  19. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    Science.gov (United States)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  20. Monte-Carlo simulation of pinhole collimator of a small field of view gamma camera for small animal imaging

    Institute of Scientific and Technical Information of China (English)

    ZHU Jie; MA Wenyan; ZHU Yufeng; MA Hongguang; WU Yuelei; HU Huasi; ZHANG Boping; HUO Yonggang; LIU Silu; JIAN Bin; WANG Zhaomin

    2009-01-01

    Needs in scintimammography applications,especially for small animal cardiac imaging,lead to develop a small field of view,high spatial resolution gamma camera with a pinhole collimator.However the ideal pinhole collimator must keep a compromise between spatial resolution and sensitivity.In order to design a pinhole collimator with an optimized sensitivity and spatial resolution,the spatial resolution and the geometric sensitivity response as a function of the source to collimator distance has been obtained by means of Monte-Carlo simulation for a small field of view gamma camera with a pinhole collimator of various-hole diameters.The results show that the camera with pinhole of 1 mm,1.5 mm and 2 mm diameter has respectively spatial resolution of 1.5 mm,2.25 mm and 3 mm and geometric sensitivity of 0.016%,0.022% and 0.036%,while the source to collimator distance is 3 cm.We chose the pinhole collimator with hole diameter size of 1.2 mm for our the gamma camera designed based on the wade-off between sensitivity and resolution.

  1. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    International Nuclear Information System (INIS)

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e− to 180,000e−, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e− at zero farad plus 5.4 e− per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel

  2. Illuminating the Effects of Stroke on the Diabetic Brain: Insights From Imaging Neural and Vascular Networks in Experimental Animal Models.

    Science.gov (United States)

    Reeson, Patrick; Jeffery, Andrew; Brown, Craig E

    2016-07-01

    Type 1 diabetes is known to cause circulatory problems in the eyes, heart, and limbs, and the brain is no exception. Because of the insidious effects of diabetes on brain circulation, patients with diabetes are two to four times more likely to have an ischemic stroke and are less likely to regain functions that are lost. To provide a more mechanistic understanding of this clinically significant problem, imaging studies have focused on how stroke affects neural and vascular networks in experimental models of type 1 diabetes. The emerging picture is that diabetes leads to maladaptive changes in the cerebrovascular system that ultimately limit neuronal rewiring and recovery of functions after stroke. At the cellular and systems level, diabetes is associated with abnormal cerebral blood flow in surviving brain regions and greater disruption of the blood-brain barrier. The abnormal vascular responses to stroke can be partly attributed to aberrant vascular endothelial growth factor (VEGF) signaling because genetic or pharmacological inhibition of VEGF signaling can mitigate vascular dysfunction and improve stroke recovery in diabetic animals. These experimental studies offer new insights and strategies for optimizing stroke recovery in diabetic populations. PMID:27329953

  3. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    International Nuclear Information System (INIS)

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  4. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    CERN Document Server

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  5. Evaluation of spineless cactus (Opuntia ficus-indicus) as an alternative animal feed and water resource during dry season in Eritrea

    International Nuclear Information System (INIS)

    Animal feed and water shortage is one of the main constraints for the livestock sector in arid and semi arid region of Eritrea. The major feed resource comes from the rangeland pasture and crop residue. The quality and availability of these feed resources decreases rapidly following the rainy season. This fluctuating pattern of animal feed supply results in a pattern of gain and loss in animal growth and performance. In a country like Eritrea where feed shortage is such a serious problem, utilization of multipurpose trees and shrubs such as cactus that can cope with low and erratic rain fall, high temperature poor soils, and required low energy inputs can serve as an alternative strategy to reduce the chronic animal feed and water shortage (Barbera et al., 1995). Therefore the aim of this research was to assess the potential of spineless cactus (Opuntia ficusindica) as an alternative source feed and water for ruminant animals fed poor quality crop residues during the dry season in Eritrea. A randomized complete block design was used to allocate 24 fat tailed Highland male sheep with initial mean live weight of 21.1kg in two replications and one of four feed treatment groups. Animal in T1 received ad libitum amount of urea treated barley straw alone, while those in T2, T3 and T4 received ad libitum urea treated barley straw supplemented with 175g, 350g and 525g of spineless cactus (DM basis), respectively. At the end of the feeding trial, four sheep were transferred to metabolic crates for the digestibility trial. Data were analyzed using standard analysis of variance (ANOVA) with help of GENSTAT statistical producer software. Spineless cactus cladodes were high in water and ash content but low in crude protein and low in crude fibre. The energy content of cactus was 65% more than the urea treated straw. The effect of increasing level of spineless cactus on feed and water intake and weight gain is presented. With increasing level of cactus, there were significant

  6. Assessment of Off-shore Wind Energy Resource in China using QuikSCAT Satellite data and SAR Satellite Images

    DEFF Research Database (Denmark)

    Xiuzhi, Zhang; Yanbo, Shen; Jingwei, Xu;

    2010-01-01

    From August 2008 to August 2009, the project ‘Off-Shore Wind Energy Resource Assessment and Feasibility Study of Off-Shore Wind Farm Development in China’ was carried out by China Meteorological Administration (CMA), which was funded by the EU-China Energy and Environment Programme (EEP). As one...... part of the project, off-shore wind energy resource in China was assessed with QuikSCAT Satellite data and SAR Satellite Images. In this paper, the results from these two ways were introduced....

  7. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of Landsat 7 scenes created for aesthetic purposes rather than scientific...

  8. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    International Nuclear Information System (INIS)

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB1 and CB2) have been suggested. The purpose of this study was to evaluate CB1 and CB2 receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB1 and CB2 microPET imaging was performed at regular time-points up to 2 weeks after stroke using [18F]MK-9470 and [11C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB1 and CB2. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [18F]MK-9470 PET showed a strong increase in CB1 binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB1 immunohistochemical staining. [11C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB2 revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB1+ and CB2+ cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB1, but not CB2, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB1 signalling as the role of CB2 seems minor in the acute and subacute phases of stroke. (orig.)

  9. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); Struys, Tom [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Veghel, Daisy van; Evens, Nele; Bormans, Guy [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Laboratory of Radiopharmacy, Leuven (Belgium); Dresselaers, Tom; Himmelreich, Uwe [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Lambrichts, Ivo [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); Laere, Koen van [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); UZ Leuven, Division of Nuclear Medicine, Leuven (Belgium)

    2012-11-15

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB{sub 1} and CB{sub 2}) have been suggested. The purpose of this study was to evaluate CB{sub 1} and CB{sub 2} receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB{sub 1} and CB{sub 2} microPET imaging was performed at regular time-points up to 2 weeks after stroke using [{sup 18}F]MK-9470 and [{sup 11}C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB{sub 1} and CB{sub 2}. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [{sup 18}F]MK-9470 PET showed a strong increase in CB{sub 1} binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB{sub 1} immunohistochemical staining. [{sup 11}C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB{sub 2} revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB{sub 1} {sup +} and CB{sub 2} {sup +} cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB{sub 1}, but not CB{sub 2}, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB{sub 1} signalling as the role of CB{sub 2} seems minor in the acute and subacute phases of stroke. (orig.)

  10. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.

    Directory of Open Access Journals (Sweden)

    Philippe Andrey

    Full Text Available In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.

  11. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    Directory of Open Access Journals (Sweden)

    Deepu R Pillai

    Full Text Available BACKGROUND: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. METHODOLOGY AND RESULTS: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. CONCLUSIONS: The implemented customizations including extensive

  12. La imagen de la mujer japonesa en el manga y el animé: diseño de un servicio de recursos electrónicos e identificación de estereotipos

    OpenAIRE

    Giménez López, Mónica; Esteban Navarro, Miguel Ángel

    2005-01-01

    The image of women in Japanese anime & comics: design of a management service and gender stereotypes. The main goal of this project is to develop a website about Japanese Anime & Comics in Spanish Language. A searchable directory of thousands of documents, images and other resources for the study of the Japanese comics & anime culture.

  13. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    Science.gov (United States)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode

  14. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion

    OpenAIRE

    Crall, James D.; Gravish, Nick; Mountcastle, Andrew M.; Stacey A Combes

    2015-01-01

    A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology invo...

  15. Worldwide Implementation of Digital Imaging in Radiology. A Resource Guide. In Cooperation with the World Health Organization

    International Nuclear Information System (INIS)

    This publication provides a basic introduction to digital technology and digital networks as well as an overview of the issues to consider when implementing such technology in diagnostic radiology. In an area that is under rapid development, it provides a careful analysis of the principles and advice on implementation and sustainability of digital imaging and teleradiology. The transition from film to digitally based medical imaging is complex and requires knowledge and planning to be successful. This comprehensive resource guide contains information on the needs and implications of a transition to digital imaging with case studies for different facilities requiring different levels of communication connectivity. It is aimed at hospital administrators and managers, radiologists and radiographers/technologists, medical physicists and clinical engineers as well as information technology staff

  16. Brand Management of Anime Image from the Cultural Creativity Perspective%基于文化创意的动漫形象品牌管理研究

    Institute of Scientific and Technical Information of China (English)

    董彦

    2012-01-01

    As the powerful boost of the ACG ( Animation Comic Game) industry, the anime image brand can add to the additional value of the ACG products and drive the effective integration the ACG industry chain, thereby promoting the sound development of the ACG industry. Yet in the development process of China's ani- mation industry, there is a deficiency of cartoon images and brands with distinctive Chinese national style, lack of our independent brands and their effective promotion. Animation brand requires the multi - channel efforts and multi- faceted cooperation, in view of the current existing problems of China~s animation brand manage- ment, it is essential to build the animation industry brand system with the cultural and creative means ,promote the anime image brand and adopt the anime image branding and brand management from the perspective of cultural creativity and brand communication to boom the ACG industry development in an all -round way.%动漫品牌是动漫产业发展的强大推进器,可增加动漫产品的附加价值,带动动漫产业链的有效整合和延伸,从而推动我国动漫产业的健康发展。但我国动漫产业在其发展过程中,至今尚未出现具有鲜明中国民族风格的动漫形象及品牌,动漫产业缺乏自主品牌的潜心塑造和有效推广。动漫品牌需要多渠道和多方面的努力与合作,针对我国目前动漫品牌管理的现存问题,必须强力借助文化创意手段,构建动漫产业品牌系统,形成国际化、品牌化、民族化特点。通过动漫形象品牌打造产业链,提升动漫产业发展,从文化创意和品牌传播等视角系统探讨动漫形象塑造和品牌管理。

  17. The EU Physical Agents (EMF) Directive and its impact on MRI imaging in animal experiments: a submission by FRAME to the HSE.

    Science.gov (United States)

    Hudson, Michelle

    2006-06-01

    The EU Physical Agents (EMF) Directive, Directive 2004/40/EC, which threatens to greatly restrict the use of magnetic resonance imaging (MRI) in both clinical and research situations, will come into force on 30 April 2008. This could severely affect experimental animal welfare and scientific progress, as well as patient care. FRAME made a submission to a Health and Safety Executive round-table discussion about the Directive, held in January 2006, detailing concerns about the implications that the legislation would have on implementing the Three Rs in animal-based research and testing, and the subsequent consequences for animal welfare and the quality of scientific output. The submission is reproduced here, with additional comments on the outcome of the meeting and recommendations for further research into the consequences of the Directive.

  18. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of forty-five new scenes developed for their aesthetic beauty, rather than for...

  19. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the Earth as Art Three exhibit, which provides fresh and inspiring glimpses of different parts of...

  20. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Directory of Open Access Journals (Sweden)

    Coraline D. Metzger

    2013-05-01

    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  1. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked &apos

  2. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    International Nuclear Information System (INIS)

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  3. 闽南文化中本土动画创作资源的开发与利用%Development and Utilization of Local Animation Creative resources in Minnan Culture

    Institute of Scientific and Technical Information of China (English)

    刘萍

    2013-01-01

    Aiming at the development dilemma of local animation creative resources in Minnan culture, this paper argued that local animation creation should fully exploit the available resources and learn advanced design concept and design thinking from the west so as to create the animation works with its own characteristics which can be recognized by society and market.%  针对闽南本土动画发展面临的困境,指出本土动画创作要充分挖掘闽南文化中可利用的资源,学习西方先进的设计理念和设计思维,创作出社会和市场所认可的具有自身特色的动画作品。

  4. Evoluation of Landsat-4 image quality for the interpretation of forest, agricultural and soil resources

    Science.gov (United States)

    Degloria, S. D.; Benson, A. S.; Colwell, R. N.

    1984-01-01

    Landsat-4 Multispectral Scanner (MSS) and Thematic Mapper (TM) sensor performance is being evaluated through the analysis of images generated by computer-compatible tape data and commercially available film products. Natural targets are used to evaluate spectral variability, spatial resolution, radiometric sensitivity, and geometric fidelity. Spectral characteristics are being evaluated through the interpretation of the image tone and texture variability of known features, while spatial characteristics are evaluated through lineal and areal estimates of similar features and the plotting and analysis of residual errors derived from regressions between relative image coordinates and map coordinates.

  5. Offshore wind resource estimation using satellite images: what are the challenges?

    Science.gov (United States)

    Bay Hasager, Charlotte; Badger, Merete; Mouche, Alexis; Astrup, Poul; Stoffelen, Ad; Karagali, Ioanna

    2010-05-01

    In the EU-Norsewind project (2008-2012) short for ‘Northern Seas Wind Index Database' the aim is to produce state-of-the-art offshore wind atlas. The method builds on combining information from around 15 ground-based wind lidars on offshore platforms, several meteorological masts, satellite information and modeling in the area of interest - Baltic, Irish and North Sea. An advantage of lidar is observation at several heights providing wind profile information also at the height of wind turbines. The information is however only valid in the observation point. Similar situation exists for tall met-masts. Both lidar and met-mast data collection are rather costly, yet in progress in the Norsewind project in the coming 1.5 years. Meanwhile satellite information provides series of spatial snap-shots of the area of interest at limited cost. Finally meteorological modeling will tie together all information. The satellite data will be used for verification of the spatial results of the wind atlas. At present, the Norsewind satellite image archive includes Envisat ASAR (Advanced Synthetic Aperture Radar) in wide swath mode (WSM), passive microwave SSM/I and scatterometer QuikSCAT and ASCAT images. The three different satellite remote sensing principles provide a unique opportunity to map with 1) high spatial scale though with only 300-1000 samples for each point of interest (ASAR); 2) twice daily temporal scale for 10 years at low spatial scale (QuikSCAT) and followed by ASCAT in same or better spatial scale; 3) several times per day for 20 years at low spatial scale, but wind speed only far from the coasts (SSM/I). The passive microwave SSM/I and the scatterometers are in orbit in space with the prime task of mapping ocean winds. The challenges using satellite remote sensing in wind energy are mainly five: 1) number of samples; 2) Weibull fitting at conditional data; 3) diurnal variation; 4) 10 m versus hub-height; 5) satellite wind retrieval. Each of the challenges is

  6. Let there be bioluminescence – Development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models

    Science.gov (United States)

    Merritt, Justin; Senpuku, Hidenobu; Kreth, Jens

    2016-01-01

    Summary In the current study, we describe a novel biophotonic imaging-based reporter system that is particularly useful for the study of virulence in polymicrobial infections and interspecies interactions within animal models. A suite of luciferase enzymes was compared using three early colonizing species of the human oral flora (Streptococcus mutans, Streptococcus gordonii, and Streptococcus sanguinis) to determine the utility of the different reporters for multiplexed imaging studies in vivo. Using the multiplex approach, we were able to track individual species within a dual species oral infection model in mice with both temporal and spatial resolution. We also demonstrate how biophotonic imaging of multiplexed luciferase reporters could be adapted for real-time quantification of bacterial gene expression in situ. By creating an inducible dual-luciferase expressing reporter strain of S. mutans, we were able to exogenously control and measure expression of nlmAB (encoding the bacteriocin mutacin IV) within mice to assess its importance for the persistence ability of S. mutans in the oral cavity. The imaging system described in the current study circumvents many of the inherent limitations of current animal model systems, which should now make it feasible to test hypotheses that were previously impractical to model. PMID:26119252

  7. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging

    Science.gov (United States)

    Lazaro, D.; Buvat, I.; Loudos, G.; Strul, D.; Santin, G.; Giokaris, N.; Donnarieix, D.; Maigne, L.; Spanoudaki, V.; Styliaris, S.; Staelens, S.; Breton, V.

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT4 application for tomographic emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small-animal imaging and consisting of a CsI(Tl) crystal array coupled to a position-sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99mTc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 µm. The difference between experimental and simulated system sensitivities for different source-to-collimator distances was within 2%. Simulated and experimental scatter fractions in a [98-182 keV] energy window differed by less than 2% for sources located in water. Simulated and experimental energy spectra agreed very well between 40 and 180 keV. These results demonstrate the ability and flexibility of GATE for simulating original detector designs. The main weakness of GATE concerns the long computation time it requires: this issue is currently under investigation by the GEANT4 and the GATE collaborations.

  8. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    International Nuclear Information System (INIS)

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  9. Impact of iterative reconstruction on CNR and SNR in dynamic myocardial perfusion imaging in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Gramer, B.M.; Muenzel, D.; Leber, V.; Rummeny, E.J.; Huber, A.M. [Klinikum rechts der Isar der Technischen Universitaet Muenchen, Institut fuer Radiologie, Muenchen (Germany); Thaden, A.K. von [ZPF - Zentrum fuer praeklinische Forschung des Klinikum rechts der Isar der Technischen Universitaet Muenchen, Muenchen (Germany); Feussner, H.; Schneider, A. [Research Group MITI des Klinikums rechts der Isar der Technischen Universitaet Muenchen, Muenchen (Germany); Vembar, M. [Philips Healthcare, Clinical Science (Computed Tomography), Cleveland, OH (United States); Soni, N. [Philips Healthcare, Physics (Computed Tomography), Cleveland, OH (United States)

    2012-12-15

    To evaluate a new iterative reconstruction (IR) algorithm for radiation dose, image quality (IQ), signal-to-noise-ratio (SNR), and contrast-to-noise-ratio (CNR) in multidetector computed tomography (MDCT) dynamic myocardial perfusion imaging (MPI). ECG-gated 256-slice MDCT dynamic MPI was performed in six pigs after subtotal balloon occlusion of one artery. Two 100 kVp protocols were compared: high dose (HD): 150 mAs; low dose (LD): 100 mAs. HD images were reconstructed with filtered back projection (FBP), LD images with FBP and different strengths of IR (L1, L4, and L7). IQ (5-point scale), SNR, and CNR (ischemic vs. normal myocardium) values derived from the HD (FBP) images and the different LD images were compared. Mean SNR values for myocardium were 16.3, 11.3, 13.1, 17.1, and 28.9 for the HD, LD (FBP), LD (L1), LD (L4), and LD (L7) reconstructions, respectively. Mean CNR values were 8.9, 6.3, 7.8, 9.3, and 12.8. IQ was scored as 4.6, 3.3, 4.4, 4.7, and 3.4, respectively. A significant loss of IQ was observed for the LD (L7) images compared to the HD (FBP) images (P < 0.05). Appropriate levels of iterative reconstruction can improve SNR and CNR, facilitating radiation dose savings in CT-MPI without influencing diagnostic quality. (orig.)

  10. Impact of iterative reconstruction on CNR and SNR in dynamic myocardial perfusion imaging in an animal model

    International Nuclear Information System (INIS)

    To evaluate a new iterative reconstruction (IR) algorithm for radiation dose, image quality (IQ), signal-to-noise-ratio (SNR), and contrast-to-noise-ratio (CNR) in multidetector computed tomography (MDCT) dynamic myocardial perfusion imaging (MPI). ECG-gated 256-slice MDCT dynamic MPI was performed in six pigs after subtotal balloon occlusion of one artery. Two 100 kVp protocols were compared: high dose (HD): 150 mAs; low dose (LD): 100 mAs. HD images were reconstructed with filtered back projection (FBP), LD images with FBP and different strengths of IR (L1, L4, and L7). IQ (5-point scale), SNR, and CNR (ischemic vs. normal myocardium) values derived from the HD (FBP) images and the different LD images were compared. Mean SNR values for myocardium were 16.3, 11.3, 13.1, 17.1, and 28.9 for the HD, LD (FBP), LD (L1), LD (L4), and LD (L7) reconstructions, respectively. Mean CNR values were 8.9, 6.3, 7.8, 9.3, and 12.8. IQ was scored as 4.6, 3.3, 4.4, 4.7, and 3.4, respectively. A significant loss of IQ was observed for the LD (L7) images compared to the HD (FBP) images (P < 0.05). Appropriate levels of iterative reconstruction can improve SNR and CNR, facilitating radiation dose savings in CT-MPI without influencing diagnostic quality. (orig.)

  11. Digital correction of motion artefacts in microscopy image sequences collected from living animals using rigid and nonrigid registration.

    Science.gov (United States)

    Lorenz, K S; Salama, P; Dunn, K W; Delp, E J

    2012-02-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artefacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and nonrigid components. The rigid registration component corrects global image translations, whereas the nonrigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung and salivary gland of living rodents.

  12. Gigapixel imaging as a resource for geoscience teaching, research, and outreach

    Science.gov (United States)

    Bentley, C.; Pitts, A.; Rohrback, R. C.; Dudek, M.

    2015-12-01

    The Mid-Atlantic Geo-Image Collection is a repository of gigapixel-resolution geologic imagery intended as a tool for geoscience professionals, educators, students, & researchers (http://gigapan.com/groups/100/galleries). GigaPan provides a unique combination of context & detail, with images that maintain a high level of resolution through every level of magnification. Using geological GigaPans, physically disabled students can participate in virtual field trips, instructors can bring inaccessible outcrops into the classroom, & students can zoom in on hand samples without expensive microscopes. Because GigaPan images permit detailed visual examination of geologic, MAGIC is particularly suitable for use in online geology courses. The images are free to use and tag. Our 10 contributors (3 faculty, 2 graduate students, & 6 undergraduates) use 4 models of mobile robot cameras (outcrop/landscape), 2 laboratory-based GIGAmacro imaging systems (hand samples) & 2 experimental units: 1 for thin sections, 1 for GigaPans of scanning electron microscopy. Each of these has strengths & weaknesses. MAGIC has suites of images of Appalachian structure & stratigraphy, Rocky Mountains, Snowball Earth hypothesis, & doomed outcrops of Miocene strata on Chesapeake Bay. Virtual field trips with our imagery have been developed for: Billy Goat Trail, MD; Helen Lake, AB; Wind River Canyon, WY; the Canadian Rockies; El Paso, TX; glaciation around the world; and Corridor H, WV (a GSA field trip in Nov. 2015). Virtual sample sets have been developed for introductory minerals, igneous, sedimentary, & metamorphic rocks, the stratigraphy of VA's physiographic provinces, & the Snowball Earth hypothesis. The virtual field trips have been tested in both online & onsite courses. There are close to a thousand images in the collection, each averaging about 0.9 gigapixels in size, with close to 900,000 views total. A new viewer for GigaPans was released this year by GIGAmacro. This new viewer allows

  13. Small-Animal PET Imaging of Tau Pathology with 18F-THK5117 in 2 Transgenic Mouse Models.

    Science.gov (United States)

    Brendel, Matthias; Jaworska, Anna; Probst, Federico; Overhoff, Felix; Korzhova, Viktoria; Lindner, Simon; Carlsen, Janette; Bartenstein, Peter; Harada, Ryuichi; Kudo, Yukitsuka; Haass, Christian; Van Leuven, Fred; Okamura, Nobuyuki; Herms, Jochen; Rominger, Axel

    2016-05-01

    Abnormal accumulation of tau aggregates in the brain is one of the hallmarks of Alzheimer disease neuropathology. We visualized tau deposition in vivo with the previously developed 2-arylquinoline derivative (18)F-THK5117 using small-animal PET in conjunction with autoradiography and immunohistochemistry gold standard assessment in 2 transgenic mouse models expressing hyperphosphorylated tau. Small-animal PET recordings were obtained in groups of P301S (n = 11) and biGT mice (n = 16) of different ages, with age-matched wild-type (WT) serving as controls. After intravenous administration of 16 ± 2 MBq of (18)F-THK5117, a dynamic 90-min emission recording was initiated for P301S mice and during 20-50 min after injection for biGT mice, followed by a 15-min transmission scan. After coregistration to the MRI atlas and scaling to the cerebellum, we performed volume-of-interest-based analysis (SUV ratio [SUVR]) and statistical parametric mapping. Small-animal PET results were compared with autoradiography ex vivo and in vitro and further validated with AT8 staining for neurofibrillary tangles. SUVRs calculated from static recordings during the interval of 20-50 min after tracer injection correlated highly with estimates of binding potential based on the entire dynamic emission recordings (R = 0.85). SUVR increases were detected in the brain stem of aged P301S mice (+11%; P parametric mapping analysis. Saturable binding of the tracer was verified by autoradiographic blocking studies. In the first dedicated small-animal PET study in 2 different transgenic tauopathy mouse models using the tau tracer (18)F-THK5117, the temporal and spatial progression could be visualized in good correlation with gold standard assessments of tau accumulation. The serial small-animal PET method could afford the means for preclinical testing of novel therapeutic approaches by accommodating interanimal variability at baseline, while detection thresholds in young animals have to be considered.

  14. Small-Animal PET Imaging of Tau Pathology with 18F-THK5117 in 2 Transgenic Mouse Models.

    Science.gov (United States)

    Brendel, Matthias; Jaworska, Anna; Probst, Federico; Overhoff, Felix; Korzhova, Viktoria; Lindner, Simon; Carlsen, Janette; Bartenstein, Peter; Harada, Ryuichi; Kudo, Yukitsuka; Haass, Christian; Van Leuven, Fred; Okamura, Nobuyuki; Herms, Jochen; Rominger, Axel

    2016-05-01

    Abnormal accumulation of tau aggregates in the brain is one of the hallmarks of Alzheimer disease neuropathology. We visualized tau deposition in vivo with the previously developed 2-arylquinoline derivative (18)F-THK5117 using small-animal PET in conjunction with autoradiography and immunohistochemistry gold standard assessment in 2 transgenic mouse models expressing hyperphosphorylated tau. Small-animal PET recordings were obtained in groups of P301S (n = 11) and biGT mice (n = 16) of different ages, with age-matched wild-type (WT) serving as controls. After intravenous administration of 16 ± 2 MBq of (18)F-THK5117, a dynamic 90-min emission recording was initiated for P301S mice and during 20-50 min after injection for biGT mice, followed by a 15-min transmission scan. After coregistration to the MRI atlas and scaling to the cerebellum, we performed volume-of-interest-based analysis (SUV ratio [SUVR]) and statistical parametric mapping. Small-animal PET results were compared with autoradiography ex vivo and in vitro and further validated with AT8 staining for neurofibrillary tangles. SUVRs calculated from static recordings during the interval of 20-50 min after tracer injection correlated highly with estimates of binding potential based on the entire dynamic emission recordings (R = 0.85). SUVR increases were detected in the brain stem of aged P301S mice (+11%; P parametric mapping analysis. Saturable binding of the tracer was verified by autoradiographic blocking studies. In the first dedicated small-animal PET study in 2 different transgenic tauopathy mouse models using the tau tracer (18)F-THK5117, the temporal and spatial progression could be visualized in good correlation with gold standard assessments of tau accumulation. The serial small-animal PET method could afford the means for preclinical testing of novel therapeutic approaches by accommodating interanimal variability at baseline, while detection thresholds in young animals have to be considered

  15. The influence of the image reconstruction in relative quantification in SPECT/PET/CT animal; A influencia da reconstrucao da imagem na quantificacao relativa em SPECT/PET/CT animal

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, Sarah; Sa, Lidia Vasconcellos de, E-mail: sarahsoriano@bolsista.ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Sergio; Barboza, Thiago [Hospital Universitario Clementino Fraga Filho (HUCFF/UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The objective of this study is to evaluate the spatial resolution of the equipment SPECT/PET/CT animal to different reconstruction methods and the influence of this parameter in the mouse dosimetry C57BL6, aimed at development of new radiopharmaceuticals for use in humans. CT and SPECT images were obtained from a simulator composed of four spheres of different diameters (d), which simulate captating lesions by the equipment FLEX ™ Triumph ™ Pre-Clinical Imaging System used for preclinical studies in the Hospital Universitario (HU/UFRJ). In order to simulate a real study, the total volume of the simulator (body) was filled with a solution of {sup 99m}Tc diluted in water and the spheres were filled with concentrations four time higher than the body of the simulator. From the gross SPECT images it was used filtered backprojection method (FBP) with application of different filters: Hamming, Hann and Ramp, ranging the cutoff frequencies. The resolution of the equipment found in the study was 9.3 to 9.4 mm, very below the value provided by the manufacturer of 1.6mm. Thus, the protocol for mice can be optimized as being the FBP reconstruction method of Hamming filter, cutoff of 0.5 to yield a resolution from 9.3 to 9.4mm. This value indicates that captating regions of diameter below 9.3 mm are not properly quantified.

  16. Mosquitofish (Gambusia affinis preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth.

    Directory of Open Access Journals (Sweden)

    Giovanni Polverino

    Full Text Available Mosquitofish (Gambusia affinis is an example of a freshwater fish species whose remarkable diffusion outside its native range has led to it being placed on the list of the world's hundred worst invasive alien species (International Union for Conservation of Nature. Here, we investigate mosquitofish shoaling tendency using a dichotomous choice test in which computer-animated images of their conspecifics are altered in color, aspect ratio, and swimming level in the water column. Pairs of virtual stimuli are systematically presented to focal subjects to evaluate their attractiveness and the effect on fish behavior. Mosquitofish respond differentially to some of these stimuli showing preference for conspecifics with enhanced yellow pigmentation while exhibiting highly varying locomotory patterns. Our results suggest that computer-animated images can be used to understand the factors that regulate the social dynamics of shoals of Gambusia affinis. Such knowledge may inform the design of control plans and open new avenues in conservation and protection of endangered animal species.

  17. A new animal model for the imaging of melanoma: correlation of FDG PET with clinical outcome, macroscopic aspect and histological classification in Melanoblastoma-bearing Libechov Minipigs

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the Melanoblastoma-bearing Libechov Minipigs (MeLiM) as an animal model of melanoma for in vivo imaging. Serial whole-body 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG PET) scans were conducted on five MeLiM. In order to explore different clinical stages of the tumoural lesions, each animal was scanned two to four times, at intervals of 30-155 days. PET images were analysed by a semiquantitative method based on the tumour to muscle metabolic ratio. Histology was performed on biopsies taken between or after the scans and the histological grading of the tumours was compared with the FDG uptake. The overall sensitivity of FDG PET for the detection of cutaneous melanoma was 75%; 62.5% of involved lymph nodes were positive. Sensitivity was better for tumours with vertical growth than for flat lesions. FDG PET did not detect tumours with epidermal involvement only, nor did it detect small metastatic foci. The metabolic ratio was correlated with the evolution of the melanoma. FDG PET is effective in the staging of cutaneous melanoma and the follow-up of tumoural extension and regression in Melanoblastoma-bearing Libechov Minipigs. The results obtained in this animal model correlate well with those described in human melanoma. Accordingly, this model may be useful in testing new tracers specific for melanoma and in helping to detect molecules expressed early during tumoural regression. (orig.)

  18. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    Science.gov (United States)

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  19. Animals: Disease Risks for People

    Science.gov (United States)

    ... the Knowledge Base Browse AVMA Policies Browse by Animal/Species Browse by Topic Browse by Discipline Resources ... Your Veterinarian Pet Care Currently selected Emergency Care Animal Welfare Veterinary Careers Public Health Disease Risks for ...

  20. " Animal, trop animal "

    OpenAIRE

    Potestà, Andréa

    2010-01-01

    Dans la tradition philosophique, on trouve plusieurs définitions de l’homme. La célèbre définition aristotélicienne, zoon logon echon (animal doué du langage ou animal rationnel) fournit le paradigme ainsi que la méthode de toutes les définitions successives. Il s’agit d’ajouter au vivant, à l’animal, quelque chose d’autre, quelque chose de plus, qui permette de le caractériser et le fasse entendre comme différent des bêtes. Cette diversité peut être conçue différemment : en tant qu’élévation...