WorldWideScience

Sample records for animal imaging eude

  1. Equivalence of Gyn GEC-ESTRO guidelines for image guided cervical brachytherapy with EUD-based dose prescription

    Shaw, William; Rae, William ID; Alber, Markus L

    2013-01-01

    To establish a generalized equivalent uniform dose (gEUD) -based prescription method for Image Guided Brachytherapy (IGBT) that reproduces the Gyn GEC-ESTRO WG (GGE) prescription for cervix carcinoma patients on CT images with limited soft tissue resolution. The equivalence of two IGBT planning approaches was investigated in 20 patients who received external beam radiotherapy (EBT) and 5 concomitant high dose rate IGBT treatments. The GGE planning strategy based on dose to the most exposed 2 cm 3 (D2cc) was used to derive criteria for the gEUD-based planning of the bladder and rectum. The safety of gEUD constraints in terms of GGE criteria was tested by maximizing dose to the gEUD constraints for individual fractions. The gEUD constraints of 3.55 Gy for the rectum and 5.19 Gy for the bladder were derived. Rectum and bladder gEUD-maximized plans resulted in D2cc averages very similar to the initial GGE criteria. Average D2ccs and EUDs from the full treatment course were comparable for the two techniques within both sets of normal tissue constraints. The same was found for the tumor doses. The derived gEUD criteria for normal organs result in GGE-equivalent IGBT treatment plans. The gEUD-based planning considers the entire dose distribution of organs in contrast to a single dose-volume-histogram point

  2. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  3. Animal imaging using immersion

    Kalogerakis, Konstantinos S.; Kotz, Kenneth T.; Rand, Kendra; Faris, Gregory W.

    2003-07-01

    We are using rodent animal models to study and compare contrast mechanisms for detection of breast cancer. These measurements are performed with the animals immersed in a matching scattering medium. The matching scattering medium or liquid tissue phantom comprises a mixture of Ropaque (hollow acrylic/styrene microspheres) and ink. We have previously applied matched imaging to imaging in humans. Surrounding the imaged region with a matched tissue phantom compensates for variations in tissue thickness and geometry, provides more uniform illumination, and allows better use of the dynamic range of the imaging system. If the match is good, the boundaries of the imaged region should almost vanish, enhancing the contrast from internal structure as compared to contrast from the boundaries and surface topography. For our measurements in animals, the immersion plays two additional roles. First, we can readily study tumors through tissue thickness similar to that of a human breast. Although the heterogeneity of the breast is lost, this is a practical method to study the detection of small tumors and monitor changes as they grow. Second, the immersion enhances our ability to quantify the contrast mechanisms for peripheral tumors on the animal because the boundary effects on photon migration are eliminated. We are currently developing two systems for these measurements. One is a continuous-wave (CW) system based on near-infrared LED illumination and a CCD (charge-coupled device) camera. The second system, a frequency domain system, can help quantify the changes observed with the CW system.

  4. Cultural Image of Animal Words

    邓海燕

    2017-01-01

    This paper,after introducing the definition and forms of cultural image,focuses on the detailed comparison and analysis of cultural image of animal words both in English and in Chinese from four aspects,that is,same animal word,same cultural image;same animal word,different cultural images;different animal words,same cultural image;different animal words,different cultural images.

  5. Small animal imaging. Basics and practical guide

    Kiessling, Fabian [Aachen Univ. (RWTH) (Germany). Chair of Experimental Molecular Imaging; Pichler, Bernd J. (eds.) [Tuebingen Univ. (Germany). Lab. for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation

    2011-07-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  6. Small animal imaging. Basics and practical guide

    Kiessling, Fabian; Pichler, Bernd J.

    2011-01-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  7. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  8. EUD-based biological optimization for carbon ion therapy

    Brüningk, Sarah C.; Kamp, Florian; Wilkens, Jan J.

    2015-01-01

    Purpose: Treatment planning for carbon ion therapy requires an accurate modeling of the biological response of each tissue to estimate the clinical outcome of a treatment. The relative biological effectiveness (RBE) accounts for this biological response on a cellular level but does not refer to the actual impact on the organ as a whole. For photon therapy, the concept of equivalent uniform dose (EUD) represents a simple model to take the organ response into account, yet so far no formulation of EUD has been reported that is suitable to carbon ion therapy. The authors introduce the concept of an equivalent uniform effect (EUE) that is directly applicable to both ion and photon therapies and exemplarily implemented it as a basis for biological treatment plan optimization for carbon ion therapy. Methods: In addition to a classical EUD concept, which calculates a generalized mean over the RBE-weighted dose distribution, the authors propose the EUE to simplify the optimization process of carbon ion therapy plans. The EUE is defined as the biologically equivalent uniform effect that yields the same probability of injury as the inhomogeneous effect distribution in an organ. Its mathematical formulation is based on the generalized mean effect using an effect-volume parameter to account for different organ architectures and is thus independent of a reference radiation. For both EUD concepts, quadratic and logistic objective functions are implemented into a research treatment planning system. A flexible implementation allows choosing for each structure between biological effect constraints per voxel and EUD constraints per structure. Exemplary treatment plans are calculated for a head-and-neck patient for multiple combinations of objective functions and optimization parameters. Results: Treatment plans optimized using an EUE-based objective function were comparable to those optimized with an RBE-weighted EUD-based approach. In agreement with previous results from photon

  9. Enclosure for small animals during awake animal imaging

    Goddard, Jr., James S

    2013-11-26

    An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be made with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.

  10. Three dimensional animated images of anorectal malformations

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.

    1996-01-01

    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  11. Advances in Small Animal Imaging Systems

    Loudos, George K.

    2007-01-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  12. Thermoacoustic Molecular Imaging of Small Animals

    Robert A. Kruger

    2003-04-01

    Full Text Available We have designed, constructed, and tested a thermoacoustic computed tomography (TCT scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680–1064 nm and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength subtraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG in a 1-ML volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.

  13. Technology challenges in small animal PET imaging

    Lecomte, Roger

    2004-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging modality allowing biochemical processes to be investigated in vivo with sensitivity in the picomolar range. For this reason, PET has the potential to play a major role in the emerging field of molecular imaging by enabling the study of molecular pathways and genetic processes in living animals non-invasively. The challenge is to obtain a spatial resolution that is appropriate for rat and mouse imaging, the preferred animal models for research in biology, while achieving a sensitivity adequate for real-time measurement of rapid dynamic processes in vivo without violating tracer kinetic principles. An overview of the current state of development of dedicated small animal PET scanners is given, and selected applications are reported and discussed with respect to performance and significance to research in biology

  14. Superiority of Equivalent Uniform Dose (EUD)-Based Optimization for Breast and Chest Wall

    Mihailidis, Dimitris N.; Plants, Brian; Farinash, Lloyd; Harmon, Michael; Whaley, Lewis; Raja, Prem; Tomara, Pelagia

    2010-01-01

    We investigate whether IMRT optimization based on generalized equivalent uniform dose (gEUD) objectives for organs at risk (OAR) results in superior dosimetric outcomes when compared with multiple dose-volume (DV)-based objectives plans for patients with intact breast and postmastectomy chest wall (CW) cancer. Four separate IMRT plans were prepared for each of the breast and CW cases (10 patients). The first three plans used our standard in-house, physician-selected, DV objectives (phys-plan); gEUD-based objectives for the OARs (gEUD-plan); and multiple, 'very stringent,' DV objectives for each OAR and PTV (DV-plan), respectively. The fourth plan was only beam-fluence optimized (FO-plan), without segmentation, which used the same objectives as in the DV-plan. The latter plan was to be used as an 'optimum' benchmark without the effects of the segmentation for deliverability. Dosimetric quantities, such as V 20Gy for the ipsilateral lung and mean dose (D mean ) for heart, contralateral breast, and contralateral lung were used to evaluate the results. For all patients in this study, we have seen that the gEUD-based plans allow greater sparing of the OARs while maintaining equivalent target coverage. The average ipsilateral lung V 20Gy reduced from 22 ± 4.4% for the FO-plan to 18 ± 3% for the gEUD-plan. All other dosimetric quantities shifted towards lower doses for the gEUD-plan. gEUD-based optimization can be used to search for plans of different DVHs with the same gEUDs. The use of gEUD allows selective optimization and reduction of the dose for each OAR and results in a truly individualized treatment plan.

  15. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  16. Learning by playing, animating words and images

    Carpe Pérez, Inmaculada Concepción; Pedersen, Hanne

    2015-01-01

    ? Visual narrative is a "language" as valid as writing or speaking. Sometimes, a more valuable tool when there's an impediment to use verbal communication. Animation is a feeling and visual thinking media which allows us to "translate" words into images, sentences into stories and scripts into movies....... It teaches visual literacy, as any other curricula, together with emotional intelligence. It's a source of knowledge and for producing knowledge. Not only educators but filmmakers, as George Lucas or Martin Scorsese, agree in the importance of teaching how to read images, in the same way we are taught....... The persisting vision). We are aware of the resistance that alternative learning tools suffer from the most traditional school systems, as Sir Ken Robinson claims; we need to change the old teachings paradigms. At the Animated Learning Lab, together, with some of the newest results from other schools...

  17. Diagnostic imaging in companion animal theriogenology

    Root, C.R.; Spaulding, K.A.

    1994-01-01

    Clinical assessment of reproductive problems in companion animals is greatly enhanced by the availability of various imaging modalities. Specifically, survey radiography, contrast radiography, real-time ultrasonography, and ultrasound-guided biopsy and/or aspiration cytology, alone or in various combinations, offer sophisticated methods of extension of the physical examination of the reproductive systems of dogs and cats. In particular, real-time ultrasonography offers invaluable assistance. It is nonionizing, largely noninvasive, rapid, and capable of providing certain dynamic information that is not conveniently available in any other way. Judging from its rapid growth in recent years, it has apparently become an integral part of the complete reproductive assessment of domestic animals. This is not to slight the importance of some of the contrast radiographic procedures that have been developed and refined. Some of them, such as maximum distention retrograde urothrocystography, provide unique information not available with presently routinely used ultrasound techniques. Other imaging modalities, such as magnetic resonance imaging, have heretofore provided limited benefit to theriogenology; that will probably change in years to come

  18. Construction of gender images in Japanese pornographic anime

    Barancovaitė-Skindaravičienė, Kristina

    2013-01-01

    The article explores the means of gender image construction in Japanese pornographic animation (hentai anime). Alongside other genres of Japanese animation, during the last decades hentai anime has gained enormous popularity all over the world. Gender as a category is especially emphasised in the animation of sexually explicit content, therefore hentai anime plays an important role as a visual medium representing the images of Japanese masculinity and femininity on the international level. Ba...

  19. Animal imaging studies of potential brain damage

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  20. Method and apparatus for animal positioning in imaging systems

    Hadjioannou, Arion-Xenofon; Stout, David B.; Silverman, Robert W.

    2013-01-01

    An apparatus for imaging an animal includes a first mounting surface, a bed sized to support the animal and releasably secured to or integral with the first mounting surface. The apparatus also includes a plurality of straps, each having a first end in a fixed position relative to the bed and a second end for tightening around a limb of the animal. A method for in-vivo imaging of an animal includes providing an animal that has limbs, providing a first mounting surface, and providing a bed removably secured to or integral with the mounting surface and sized to support the animal as well as being coupled to a plurality of straps. The method also includes placing the animal on the bed between the plurality of straps and tightening at least two of the plurality of straps around at least two of the limbs such that the animal is substantially secured in place relative to the bed.

  1. Non-Invasive in vivo Imaging in Small Animal Research

    V. Koo

    2006-01-01

    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  2. Esophagus sparing with IMRT in lung tumor irradiation: An EUD-based optimization technique

    Chapet, Olivier; Thomas, Emma; Kessler, Marc L.; Fraass, Benedick A.; Ten Haken, Randall K.

    2005-01-01

    Purpose: The aim of this study was to evaluate (1) the use of generalized equivalent uniform dose (gEUD) to optimize dose escalation of lung tumors when the esophagus overlaps the planning target volume (PTV) and (2) the potential benefit of further dose escalation in only the part of the PTV that does not overlap the esophagus. Methods and Materials: The treatment-planning computed tomography (CT) scans of patients with primary lung tumors located in different regions of the left and right lung were used for the optimization of beamlet intensity modulated radiation therapy (IMRT) plans. In all cases, the PTV overlapped part of the esophagus. The dose in the PTV was maximized according to 7 different primary cost functions: 2 plans that made use of mean dose (MD) (the reference plan, in which the 95% isodose surface covered the PTV and a second plan that had no constraint on the minimum isodose), 3 plans based on maximizing gEUD for the whole PTV with ever increasing assumptions for tumor aggressiveness, and 2 plans that used different gEUD values in 2 simultaneous, overlapping target volumes (the whole PTV and the PTV minus esophagus). Beam arrangements and NTCP-based costlets for the organs at risk (OARs) were kept identical to the original conformal plan for each case. Regardless of optimization method, the relative ranking of the resulting plans was evaluated in terms of the absence of cold spots within the PTV and the final gEUD computed for the whole PTV. Results: Because the MD-optimized plans lacked a constraint on minimum PTV coverage, they resulted in cold spots that affected approximately 5% of the PTV volume. When optimizing over the whole PTV volume, gEUD-optimized plans resulted in higher equivalent uniform PTV doses than did the reference plan while still maintaining normal-tissue constraints. However, only under the assumption of extremely aggressive tumors could cold spots in the PTV be avoided. Generally, high-level overall results are obtained

  3. 2728-IJBCS-Article-Eude O A Goudegnon

    hp

    Lannea microcarpa, an Anacardiaceae species associated to croplands in West Africa is a multipurpose tree used in traditional medicine, human and animal feeding in Sudanian zone of Bénin. This study aimed at evaluating its fruits and pulp yield. Fruit and pulp production and dendrometric variables were collected on 21.

  4. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-01-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  5. Coded Aperture Nuclear Scintigraphy: A Novel Small Animal Imaging Technique

    Dawid Schellingerhout

    2002-10-01

    Full Text Available We introduce and demonstrate the utility of coded aperture (CA nuclear scintigraphy for imaging small animals. CA imaging uses multiple pinholes in a carefully designed mask pattern, mounted on a conventional gamma camera. System performance was assessed using point sources and phantoms, while several animal experiments were performed to test the usefulness of the imaging system in vivo, with commonly used radiopharmaceuticals. The sensitivity of the CA system for 99mTc was 4.2 × 103 cps/Bq (9400 cpm/μCi, compared to 4.4 × 104 cps/Bq (990 cpm/μCi for a conventional collimator system. The system resolution was 1.7 mm, as compared to 4–6 mm for the conventional imaging system (using a high-sensitivity low-energy collimator. Animal imaging demonstrated artifact-free imaging with superior resolution and image quality compared to conventional collimator images in several mouse and rat models. We conclude that: (a CA imaging is a useful nuclear imaging technique for small animal imaging. The advantage in signal-to-noise can be traded to achieve higher resolution, decreased dose or reduced imaging time. (b CA imaging works best for images where activity is concentrated in small volumes; a low count outline may be better demonstrated using conventional collimator imaging. Thus, CA imaging should be viewed as a technique to complement rather than replace traditional nuclear imaging methods. (c CA hardware and software can be readily adapted to existing gamma cameras, making their implementation a relatively inexpensive retrofit to most systems.

  6. Inside out: modern imaging techniques to reveal animal anatomy.

    Henrik Lauridsen; Kasper Hansen; Tobias Wang; Peter Agger; Jonas L Andersen; Peter S Knudsen; Anne S Rasmussen; Lars Uhrenholt; Michael Pedersen

    2011-01-01

    Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI,...

  7. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.

    Balderson, Michael J; Kirkby, Charles

    2015-01-01

    In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of

  8. Molecular imaging of small animals with dedicated PET tomographs

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  9. Cardiovascular Imaging: What Have We Learned From Animal Models?

    Arnoldo eSantos

    2015-10-01

    Full Text Available Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a nondestructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, i the technical development of different imaging tools, ii to test hypothesis generated from human studies and finally, iii to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models.

  10. Fundamental image quality limits for microcomputed tomography in small animals

    Ford, N.L.; Thornton, M.M.; Holdsworth, D.W.

    2003-01-01

    Small-animal imaging has become increasingly more important as transgenic and knockout mice are produced to model human diseases. One imaging technique that has emerged is microcomputed tomography (micro-CT). For live-animal imaging, the precision in the images will be determined by the x-ray dose given to the animal. As a result, we propose a simple method to predict the noise performance of an x-ray micro-CT system as a function of dose and image resolution. An ideal, quantum-noise limited micro-CT scanner, assumed to have perfect resolution and ideal efficiency, was modeled. Using a simplified model, the coefficient of variation (COV) of the linear attenuation coefficient was calculated for a range of entrance doses and isotropic voxel sizes. COV calculations were performed for the ideal case and with simulated imperfections in efficiency and resolution. Our model was validated in phantom studies and mouse images were acquired with a specimen scanner to illustrate the results. A simplified model of noise propagation in the case of isotropic resolution indicates that the COV in the linear attenuation coefficient is proportional to (dose) -1/2 and to the (isotropic voxel size) -2 in the reconstructed volume. Therefore an improvement in the precision can be achieved only by increasing the isotropic voxel size (thereby decreasing the resolution of the image) or by increasing the x-ray dose. For the ideal scanner, a COV of 1% in the linear attenuation coefficient for an image of a mouse exposed to 0.25 Gy is obtained with a minimum isotropic voxel size of 135 μm. However, the same COV is achieved at a dose of 5.0 Gy with a 65 μm isotropic voxel size. Conversely, for a 68 mm diameter rat, a COV of 1% obtained from an image at 5.0 Gy would require an isotropic voxel size of 100 μm. These results indicate that short-term, potentially lethal, effects of ionizing radiation will limit high-resolution live animal imaging. As improvements in detector technology allow the

  11. Molecular Imaging with Small Animal PET/CT

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  12. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.

  13. High-resolution SPECT for small-animal imaging

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  14. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD).

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-07

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.

  15. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD)

    Luxton, Gary; Keall, Paul J; King, Christopher R

    2008-01-01

    To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within ∼0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD 50 , and conversely m and TD 50 are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d ref , n, v eff and the Niemierko equivalent uniform dose (EUD), where d ref and v eff are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data

  16. Monte Carlo simulations in small animal PET imaging

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  17. Bioluminescent system for dynamic imaging of cell and animal behavior

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  18. Bioluminescent system for dynamic imaging of cell and animal behavior

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James

    2012-01-01

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  19. Animal Detection in Natural Images: Effects of Color and Image Database

    Zhu, Weina; Drewes, Jan; Gegenfurtner, Karl R.

    2013-01-01

    The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used. PMID:24130744

  20. Small-Animal Imaging Using Diffuse Fluorescence Tomography.

    Davis, Scott C; Tichauer, Kenneth M

    2016-01-01

    Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

  1. In vivo small animal imaging: Current status and future prospects

    Kagadis, George C.; Loudos, George; Katsanos, Konstantinos; Langer, Steve G.; Nikiforidis, George C.

    2010-01-01

    The use of small animal models in basic and preclinical sciences constitutes an integral part of testing new pharmaceutical agents prior to commercial translation to clinical practice. Whole-body small animal imaging is a particularly elegant and cost-effective experimental platform for the timely validation and commercialization of novel agents from the bench to the bedside. Biomedical imaging is now listed along with genomics, proteomics, and metabolomics as an integral part of biological and medical sciences. Miniaturized versions of clinical diagnostic modalities, including but not limited to microcomputed tomography, micromagnetic resonance tomography, microsingle-photon-emission tomography, micropositron-emission tomography, optical imaging, digital angiography, and ultrasound, have all greatly improved our investigative abilities to longitudinally study various experimental models of human disease in mice and rodents. After an exhaustive literature search, the authors present a concise and critical review of in vivo small animal imaging, focusing on currently available modalities as well as emerging imaging technologies on one side and molecularly targeted contrast agents on the other. Aforementioned scientific topics are analyzed in the context of cancer angiogenesis and innovative antiangiogenic strategies under-the-way to the clinic. Proposed hybrid approaches for diagnosis and targeted site-specific therapy are highlighted to offer an intriguing glimpse of the future.

  2. Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    Lauridsen, Henrik; Hansen, Kasper; Wang, Tobias

    2011-01-01

    allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and mCT to create advanced representation of animal anatomy, including bones, inner organs...... and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different...

  3. GPR Imaging of Prehistoric Animal Bone-beds

    Schneider, Blair Benson

    This research investigates the detection capabilities of Ground-penetrating radar for imaging prehistoric animal bone-beds. The first step of this investigation was to determine the dielectric properties of modern animal bone as a proxy for applying non-invasive ground-penetrating radar (GPR) for detecting prehistoric animal remains. Over 90 thin section samples were cut from four different modern faunal skeleton remains: bison, cow, deer, and elk. One sample of prehistoric mammoth core was also analyzed. Sample dielectric properties (relative permittivity, loss factor, and loss-tangent values) were measured with an impedance analyzer over frequencies ranging from 10 MHz to 1 GHz. The results reveal statistically significant dielectric-property differences among different animal fauna, as well as variation as a function of frequency. The measured sample permittivity values were then compared to modeled sample permittivity values using common dielectric-mixing models. The dielectric mixing models were used to report out new reported values of dry bone mineral of 3-5 in the frequency range of 10 MHz to 1 GHz. The second half of this research collected controlled GPR experiments over a sandbox containing buried bison bone elements to evaluate GPR detection capabilities of buried animal bone. The results of the controlled GPR sandbox tests were then compared to numerical models in order to predict the ability of GPR to detect buried animal bone given a variety of different depositional factors, the size and orientation of the bone target and the degree of bone weathering. The radar profiles show that GPR is an effective method for imaging the horizontal and vertical extent of buried animal bone. However, increased bone weathering and increased bone dip were both found to affect GPR reflection signal strength. Finally, the controlled sandbox experiments were also utilized to investigate the impact of survey design for imaging buried animal bone. In particular, the

  4. Integration of optical imaging with a small animal irradiator

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  5. Prompt gamma-ray imaging for small animals

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  6. Krypton for computed tomography lung ventilation imaging: preliminary animal data.

    Mahnken, Andreas H; Jost, Gregor; Pietsch, Hubertus

    2015-05-01

    The objective of this study was to assess the feasibility and safety of krypton ventilation imaging with intraindividual comparison to xenon ventilation computed tomography (CT). In a first step, attenuation of different concentrations of xenon and krypton was analyzed in a phantom setting. Thereafter, 7 male New Zealand white rabbits (4.4-6.0 kg) were included in an animal study. After orotracheal intubation, an unenhanced CT scan was obtained in end-inspiratory breath-hold. Thereafter, xenon- (30%) and krypton-enhanced (70%) ventilation CT was performed in random order. After a 2-minute wash-in of gas A, CT imaging was performed. After a 45-minute wash-out period and another 2-minute wash-in of gas B, another CT scan was performed using the same scan protocol. Heart rate and oxygen saturation were measured. Unenhanced and krypton or xenon data were registered and subtracted using a nonrigid image registration tool. Enhancement was quantified and statistically analyzed. One animal had to be excluded from data analysis owing to problems during intubation. The CT scans in the remaining 6 animals were completed without complications. There were no relevant differences in oxygen saturation or heart rate between the scans. Xenon resulted in a mean increase of enhancement of 35.3 ± 5.5 HU, whereas krypton achieved a mean increase of 21.9 ± 1.8 HU in enhancement (P = 0.0055). The use of krypton for lung ventilation imaging appears to be feasible and safe. Despite the use of a markedly higher concentration of krypton, enhancement is significantly worse when compared with xenon CT ventilation imaging, but sufficiently high for CT ventilation imaging studies.

  7. Effects of added dopants on various triboluminescent properties of europium dibenzoylmethide triethylammonium (EuD4TEA)

    Owens, Constance; Fontenot, Ross S.; Bhat, Kamala N.; Aggarwal, Mohan D.

    2014-03-01

    A triboluminescent (TL) material is one that emits light upon pressure, impact, friction, or mechanical shock. TL materials are desirable for investigation because they have the potential to be used as the active element for smart impact sensors. While the material europium dibenzoylmethide triethylammonium (EuD4TEA) produces a TL emission yield that can be observed by the naked eye, it is still not sufficiently bright for use in smart sensor devices. Previous studies have shown that additional materials can be combined with EuD4TEA in order to improve the TL emission yield. In this paper, we discuss the effects of doping on EuD4TEA at different concentrations with a variety of materials on the TL emission yield and decay times. The dopants that were used in this study were nicotine, dibutyl phosphate (DBP), and magnesium. We also discuss both the effects of pH on EuD4TEA, and the doping effects on impact energy. For testing triboluminescent properties, we use a custom-built drop tower that generates triboluminescence by fracturing compounds through impact. Collected data is analyzed using specially written LabVIEW programs.

  8. Hyperpolarized singlet NMR on a small animal imaging system

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  9. Animal detection in natural images: effects of color and image database.

    Weina Zhu

    Full Text Available The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.

  10. Filtering and deconvolution for bioluminescence imaging of small animals

    Akkoul, S.

    2010-01-01

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  11. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-01-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  12. Computer-aided pulmonary image analysis in small animal models

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  13. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  14. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  15. Fluorescence Imaging of Fast Retrograde Axonal Transport in Living Animals

    Dawid Schellingerhout

    2009-11-01

    Full Text Available Our purpose was to enable an in vivo imaging technology that can assess the anatomy and function of peripheral nerve tissue (neurography. To do this, we designed and tested a fluorescently labeled molecular probe based on the nontoxic C fragment of tetanus toxin (TTc. TTc was purified, labeled, and subjected to immunoassays and cell uptake assays. The compound was then injected into C57BL/6 mice (N = 60 for in vivo imaging and histologic studies. Image analysis and immunohistochemistry were performed. We found that TTc could be labeled with fluorescent moieties without loss of immunoreactivity or biologic potency in cell uptake assays. In vivo fluorescent imaging experiments demonstrated uptake and retrograde transport of the compound along the course of the sciatic nerve and in the spinal cord. Ex vivo imaging and immunohistochemical studies confirmed the presence of TTc in the sciatic nerve and spinal cord, whereas control animals injected with human serum albumin did not exhibit these features. We have demonstrated neurography with a fluorescently labeled molecular imaging contrast agent based on the TTc.

  16. An integrated multimodality image-guided robot system for small-animal imaging research

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  17. Magnetic resonance imaging for precise radiotherapy of small laboratory animals

    Frenzel, Thorsten [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie; Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Jaeckel, Maria [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Schumacher, Udo [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kruell, Andreas [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie

    2017-05-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6 MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging.

  18. Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies

    Zhang Mutian; Huang Minming; Le, Carl; Zanzonico, Pat B; Ling, C Clifton; Koutcher, Jason A; Humm, John L; Claus, Filip; Kolbert, Katherine S; Martin, Kyle

    2008-01-01

    Dedicated small-animal imaging devices, e.g. positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) scanners, are being increasingly used for translational molecular imaging studies. The objective of this work was to determine the positional accuracy and precision with which tumors in situ can be reliably and reproducibly imaged on dedicated small-animal imaging equipment. We designed, fabricated and tested a custom rodent cradle with a stereotactic template to facilitate registration among image sets. To quantify tumor motion during our small-animal imaging protocols, 'gold standard' multi-modality point markers were inserted into tumor masses on the hind limbs of rats. Three types of imaging examination were then performed with the animals continuously anesthetized and immobilized: (i) consecutive microPET and MR images of tumor xenografts in which the animals remained in the same scanner for 2 h duration, (ii) multi-modality imaging studies in which the animals were transported between distant imaging devices and (iii) serial microPET scans in which the animals were repositioned in the same scanner for subsequent images. Our results showed that the animal tumor moved by less than 0.2-0.3 mm over a continuous 2 h microPET or MR imaging session. The process of transporting the animal between instruments introduced additional errors of ∼0.2 mm. In serial animal imaging studies, the positioning reproducibility within ∼0.8 mm could be obtained.

  19. Using gEUD based plan analysis method to evaluate proton vs. photon plans for lung cancer radiation therapy.

    Xiao, Zhiyan; Zou, Wei J; Chen, Ting; Yue, Ning J; Jabbour, Salma K; Parikh, Rahul; Zhang, Miao

    2018-03-01

    The goal of this study was to exam the efficacy of current DVH based clinical guidelines draw from photon experience for lung cancer radiation therapy on proton therapy. Comparison proton plans and IMRT plans were generated for 10 lung patients treated in our proton facility. A gEUD based plan evaluation method was developed for plan evaluation. This evaluation method used normal lung gEUD(a) curve in which the model parameter "a" was sampled from the literature reported value. For all patients, the proton plans delivered lower normal lung V 5 Gy with similar V 20 Gy and similar target coverage. Based on current clinical guidelines, proton plans were ranked superior to IMRT plans for all 10 patients. However, the proton and IMRT normal lung gEUD(a) curves crossed for 8 patients within the tested range of "a", which means there was a possibility that proton plan would be worse than IMRT plan for lung sparing. A concept of deficiency index (DI) was introduced to quantify the probability of proton plans doing worse than IMRT plans. By applying threshold on DI, four patients' proton plan was ranked inferior to the IMRT plan. Meanwhile if a threshold to the location of curve crossing was applied, 6 patients' proton plan was ranked inferior to the IMRT plan. The contradictory ranking results between the current clinical guidelines and the gEUD(a) curve analysis demonstrated there is potential pitfalls by applying photon experience directly to the proton world. A comprehensive plan evaluation based on radio-biological models should be carried out to decide if a lung patient would really be benefit from proton therapy. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Xie, Tianwu; Zaidi, Habib

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal

  1. Fabrication of a small animal restraint for synchrotron biomedical imaging using a rapid prototyper

    Zhu Ying; Zhang Honglin; McCrea, Richard; Bewer, Brian; Wiebe, Sheldon; Nichol, Helen; Ryan, Christopher; Wysokinski, Tomasz; Chapman, Dean

    2007-01-01

    Biomedical research at synchrotron facilities may involve imaging live animals that must remain motionless for extended periods of time to obtain quality images. Even breathing movements reduce image quality but on the other hand excessive restraint of animals increases morbidity and mortality. We describe a humane animal restraint designed to eliminate head movements while promoting animal survival. This paper describes how an animal restraint that conforms to the shape of an animal's head was fabricated by a 3D prototyper. The method used to translate medical computed tomography (CT) data to a 3D stereolithography format is described and images of its use at the Canadian Light Source (CLS) are shown. This type of restraint holds great promise in improving image quality and repeatability while reducing stress on experimental animals

  2. Implementation and assessment of an animal management system for small-animal micro-CT / micro-SPECT imaging

    Holdsworth, David W.; Detombe, Sarah A.; Chiodo, Chris; Fricke, Stanley T.; Drangova, Maria

    2011-03-01

    Advances in laboratory imaging systems for CT, SPECT, MRI, and PET facilitate routine micro-imaging during pre-clinical investigations. Challenges still arise when dealing with immune-compromised animals, biohazardous agents, and multi-modality imaging. These challenges can be overcome with an appropriate animal management system (AMS), with the capability for supporting and monitoring a rat or mouse during micro-imaging. We report the implementation and assessment of a new AMS system for mice (PRA-3000 / AHS-2750, ASI Instruments, Warren MI), designed to be compatible with a commercial micro-CT / micro-SPECT imaging system (eXplore speCZT, GE Healthcare, London ON). The AMS was assessed under the following criteria: 1) compatibility with the imaging system (i.e. artifact generation, geometric dimensions); 2) compatibility with live animals (i.e. positioning, temperature regulation, anesthetic supply); 3) monitoring capabilities (i.e. rectal temperature, respiratory and cardiac monitoring); 4) stability of co-registration; and 5) containment. Micro-CT scans performed using a standardized live-animal protocol (90 kVp, 40 mA, 900 views, 16 ms per view) exhibited low noise (+/-19 HU) and acceptable artifact from high-density components within the AMS (e.g. ECG pad contacts). Live mice were imaged repeatedly (with removal and replacement of the AMS) and spatial registration was found to be stable to within +/-0.07 mm. All animals tolerated enclosure within the AMS for extended periods (i.e. > one hour) without distress, based on continuous recordings of rectal temperature, ECG waveform and respiratory rate. A sealed AMS system extends the capability of a conventional micro-imaging system to include immune-compromised and biosafety level 2 mouse-imaging protocols.

  3. Imaging modalities used to confirm diaphragmatic hernia in small animals

    Williams, J.; Leveille, R.; Myer, C.W.

    1998-01-01

    When a patient is presented for treatment following a traumatic accident such as being hit by a car, thoracic radiographs are usually an integral part of the overall diagnostic evaluation. Diagnosis at diaphragmatic hernia (DH) is often challenging in small animals. The thorax may contain substantial fluid, thereby masking the presence of cranially displaced abdominal soft tissues (e.g., liver or spleen). The most common cause of decreased radiographic visualization of the diaphragm on survey radiographs is pleural fluid; however, the second most common cause is DH. Obviously, if a gas-filledviscus is identified within the thoracic cavity on survey radiographs, the diagnosis of DH is straightforward and relatively routine. If, however, there is substantial pleural effusion and the herniated structure is a soft tissue parenchymal organ (e.g., liver or spleen), the diagnosis is less clearly defined on survey radiographs. This review discusses the various imaging modalities (survey, positional, and contrast-enhanced radiographs and ultrasonography) that can be used in the diagnosis or confirmation of DH

  4. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  5. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    Gambhir, Sanjiv [Portola Valley, CA; Pritha, Ray [Mountain View, CA

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  6. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  7. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  8. Animals

    Skuterud, L.; Strand, P.; Howard, B.J.

    1997-01-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  9. The motivations and methodology for high-throughput PET imaging of small animals in cancer research.

    Aide, N.; Visser, E.P.; Lheureux, S.; Heutte, N.; Szanda, I.; Hicks, R.J.

    2012-01-01

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has

  10. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  11. State-of-the-art of small animal imaging with high-resolution SPECT

    Nikolaus, S.; Wirrwar, A.; Antke, C.; Kley, K.; Mueller, H.W.

    2005-01-01

    During the recent years, in vivo imaging of small animals using SPECT has become of growing relevance. Along with the development of dedicated high-resolution small animal SPECT cameras, an increasing number of conventional clinical scanners has been equipped with single or multipinhole collimators. This paper reviews the small animal tomographs, which are operating at present and compares their performance characteristics. Furthermore, we describe the in vivo imaging studies, which have been performed so far with the individual scanners and survey current approaches to optimize molecular imaging with small animal SPECT. (orig.)

  12. Development of a SiPM-based PET imaging system for small animals

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  13. Development of a SiPM-based PET imaging system for small animals

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  14. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations

    Kesner, A

    2016-01-01

    Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included: principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over the world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.

  15. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations

    Kesner, A

    2016-06-15

    Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included: principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over the world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.

  16. Animator

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  17. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen Cedex (France); Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Visser, Eric P. [Radboud University Nijmegen Medical Center, Nuclear Medicine Department, Nijmegen (Netherlands); Lheureux, Stephanie [Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Heutte, Natacha [Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Szanda, Istvan [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Hicks, Rodney J. [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia)

    2012-09-15

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the number of groups that will be imaged, and the expected intra-animal variability for a given tracer. We also review how high-throughput studies can be performed in dedicated small-animal PET, high-resolution clinical PET systems and planar positron imaging systems by imaging more than one animal simultaneously. Customized beds designed to image more than one animal in large-bore small-animal PET scanners are described. Physics issues related to the presence of several rodents within the field of view (i.e. deterioration of spatial resolution and sensitivity as the radial and the axial offsets increase, respectively, as well as a larger effect of attenuation and the number of scatter events), which can be assessed by using the NEMA NU 4 image quality phantom, are detailed. (orig.)

  18. Animals

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  19. Establishment study of the in vivo imaging analysis with small animal imaging modalities for bio-durg development

    Jang, Beomsu; Park, Sanghyeon; Choi, Dae Seong; Park, Jeonghoon; Jung, Uhee; Lee, Yun Jong

    2012-01-01

    In this study, we established the image modalities (micro-PET, SPECT/CT) using the experimental animal (mouse) for the development of imaging assessment method for the bio-durg and extramural collaboration proposal. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc tricarbonyl bifunctional chelators and 18 F-clotrimazole derivative. SPECT imaging studies were performed with 99m Tc tricarbonyl BFCs. PET imaging study was performed with 18 F-clotrimazole derivatives. We performed the PET image study of 18 F-clotrimazole derivatives using U87MG tumor bearing mice. Also we tested the intramural and extramural collaboration using small animal imaging modalities and prepared the draft of extramural R and D operation manual for small animal imaging modalities and the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  20. Technical note - Considerations for MR imaging of small animals

    Baker, Martin A.

    2011-01-01

    Routine clinical veterinary use of MR scanning is becoming more common. This article addresses the major technical considerations for radiographers performing MR examinations on small animals and provides practical advice for scanning techniques.

  1. The biological application of small animal PET imaging

    Myers, Ralph

    2001-01-01

    The short history of small animal PET is reviewed in the context of its application in the laboratory. Early work has demonstrated a role for the technique in both drug development and in the in vivo monitoring of neuroreceptor function with time. As spatial resolution approaches 1 mm, challenges in quantification remain. However, the ability to carry out animal PET studies that are analogous to human PET will form an important bridge between laboratory and clinical sciences

  2. Image quality assessment for CT used on small animals

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  3. Combination of radiological and nuclear medical imaging in animals: an overview about the today's possibilities

    Behe, M.; Keil, B.; Kiessling, A.; Heverhagen, J.T.; Alfke, H.; Boehm, I.; Gotthardt, M.

    2007-01-01

    Molecular imaging of small animals has made considerable progress in the last years. Various research fields are interested in imaging small animals due to the lower numbers of animals per experiment. This has advantages with respect to financial, ethical and research aspects. Non-invasive imaging allows examination of one animal several times during the same experiment. This makes it possible to follow a pathological process in the same animal over time. However, the radiological methods used such as magnetic resonance imaging or computed tomography as well as the nuclear medicine methods such as single photon emission computed tomography or positron emission tomography suffer from disadvantages. Molecular aspects are limited in the radiological methods while anatomical localization is difficult in nuclear medicine. The fusion of these methods leads to additional information. This review shows today's possibilities with their advantages as well as disadvantages. (orig.)

  4. Potential of luminescence based molecular animal imaging in research areas pertaining to cancer biology and therapy

    Yadav, Hansa D.; Shetake, Neena G.; Balla Murali, M.S.; Kumar, Amit; Pandey, B.N.

    2017-01-01

    Animal imaging is getting tremendous importance in biomedical research areas including drug delivery, radiobiology and cancer research. Even though, imaging techniques like CT, PET, SPECT, MRI are available for experimental animals, luminescence-based molecular imaging is still considered as crucial and common tool for biomedical laboratories due to easy handling/maintenance, cost effectiveness and various strategies available to manipulate the molecules/cells employed for imaging purposes. The Molecular Animal Imaging System available in our laboratory is being utilized for various cancer research activities including measurement of tumor growth kinetics, angiogenesis, therapeutic efficacy evaluation and metastasis studies. Moreover, the imaging system is also been used for radio-luminescence imaging based on Cherenkov radiation of radio-pharmaceuticals. (author)

  5. Automated identification of animal species in camera trap images

    Yu, X.; Wang, J.; Kays, R.; Jansen, P.A.; Wang, T.; Huang, T.

    2013-01-01

    Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species

  6. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  7. Filtering and deconvolution for bioluminescence imaging of small animals; Filtrage et deconvolution en imagerie de bioluminescence chez le petit animal

    Akkoul, S.

    2010-06-22

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  8. State of the art in both in vitro and in vivo aspects of small animal imaging

    Maziere, B.; Lebars, D.

    2002-01-01

    Full text: In vivo imaging for small animals is dramatically expanding due to the coincidence of mainly three technical factors: 1. the explosion in computer power 2. the enhancement in image processing 3. the accessibility and affordability of digital autoradiography systems and small-animal scanners. Among these imaging techniques let us mention the anatomical imaging techniques such as ultrasonography, X-rays and IRM and the functional imaging radioisotopic techniques SPECT and TEP. The main advantage of the first group of imaging techniques is essentially linked to the high resolution of the anatomical images (with the drawback of the necessity of putting the animal at rest using anaesthesia). The main advantages of SPECT and PET are their high sensitivity and the vast number of functions or metabolism they allow to image. The applications for isotopic functional imaging in small animals are increasing rapidly. Factors contributing to this dramatic expansion include the three previous technical factors plus, at least, three methodological factors: 1. the drug discovery process based on receptor / mechanism of action 2. the increasing number of rodent models of human diseases (SCID mice implanted with human tumors, gene knock-out mice, transgene mice) 3. the advances in isotope and validated tracer availability performances Small animal radioisotopic functional imaging for drug development. In vivo quantification of biological processes to measure the mechanism of action of a potential drug and its concentration at the site of action has become mandatory for developing a drug. Rational and efficient means of confirming mechanisms of action are required. For this purpose, PET and/or SPECT functional - biochemical - molecular imaging in small animals are tools of choice for economical reasons (in the domain of drug development, industry is suffering huge opportunity costs by failing to weed out non-performing new active substances until late phases II and III) and

  9. Cone Beam Micro-CT System for Small Animal Imaging and Performance Evaluation

    Shouping Zhu

    2009-01-01

    in this paper. Experimental results show that the system is suitable for small animal imaging and is adequate to provide high-resolution anatomic information for bioluminescence tomography to build a dual modality system.

  10. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression.

    McIntosh, Allison L; Gormley, Shane; Tozzi, Leonardo; Frodl, Thomas; Harkin, Andrew

    2017-01-01

    Magnetic resonance imaging (MRI) is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  11. Role of nuclear medicine in imaging companion animals

    Currie, Geoffrey M.; Wheat, Janelle M.

    2005-01-01

    The role of equine nuclear medicine in Australia has been previously described in this journal and more recently, Lyall et al. provided a general overview of demographics of veterinary nuclear medicine departments in Australia. Lyall et al. discuss the main clinical applications of nuclear medicine scintigraphy in companion animals; dogs and cats. The aim of this article is to discuss in brief the applications of commonly performed nuclear medicine procedures in humans with respect to veterinary applications. More detailed discussion will also be offered for investigation of pathologies unique to veterinary nuclear medicine or which are more common in animals than humans. Companion animals are living longer today due to advances in both veterinary and human medicine. The problem is, like humans, longevity brings higher incidence of old age morbidity. As a pet owner, one might be initially motivated to extend life expectancy which is followed by the realisation that one also demands quality of life for pets. Early detection through advanced diagnostic tools, like nuclear medicine scintigraphy, allows greater efficacy in veterinary disease. There are limited veterinary nuclear medicine facilities in Australia due to cost and demand. Not surprisingly then, the growth of veterinary nuclear medicine in Australia, and overseas, has been integrally coupled to evaluation of race horses. While these facilities are generally specifically designed for race horses, racing greyhounds, lame family horses and companion animals are being investigated more frequently. In the USA, the American College of Veterinary Radiology (ACVC) is very active clinically and in research. The ACVC journal, Journal of Veterinary Radiology and Ultrasound, is published quarterly and includes a Nuclear Medicine section. Within the ACVR is the Society of Veterinary Nuclear Medicine. Proliferation of veterinary nuclear medicine centres in the USA has been associated with insurance and lifestyle changes

  12. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  13. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals

    Klerk, Clara P. W.; Overmeer, Renée M.; Niers, Tatjana M. H.; Versteeg, Henri H.; Richel, Dick J.; Buckle, Tessa; van Noorden, Cornelis J. F.; van Tellingen, Olaf

    2007-01-01

    A relatively new strategy to longitudinally monitor tumor load in intact animals and the effects of therapy is noninvasive bioluminescence imaging (BLI). The validity of BLI for quantitative assessment of tumor load in small animals is critically evaluated in the present review. Cancer cells are

  14. Operational Data Augmentation in Classifying Single Aerial Images of Animals

    Okafor, Emmanuel; Smit, Rik; Schomaker, Lambertus; Wiering, Marco

    2017-01-01

    In deep learning, data augmentation is important to increase the amount of training images to obtain higher classification accuracies. Most data-augmentation methods adopt the use of the following techniques: cropping, mirroring, color casting, scaling and rotation for creating additional training

  15. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2016-01-15

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  16. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  17. Development of computational small animal models and their applications in preclinical imaging and therapy research

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future

  18. Direct molecular analysis of whole-body animal tissue sections by MALDI imaging mass spectrometry.

    Reyzer, Michelle L; Chaurand, Pierre; Angel, Peggi M; Caprioli, Richard M

    2010-01-01

    The determination of the localization of various compounds in a whole animal is valuable for many applications, including pharmaceutical absorption, distribution, metabolism, and excretion (ADME) studies and biomarker discovery. Imaging mass spectrometry is a powerful tool for localizing compounds of biological interest with molecular specificity and relatively high resolution. Utilizing imaging mass spectrometry for whole-body animal sections offers considerable analytical advantages compared to traditional methods, such as whole-body autoradiography, but the experiment is not straightforward. This chapter addresses the advantages and unique challenges that the application of imaging mass spectrometry to whole-body animal sections entails, including discussions of sample preparation, matrix application, signal normalization, and image generation. Lipid and protein images obtained from whole-body tissue sections of mouse pups are presented along with detailed protocols for the experiments.

  19. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  20. Optical methods and integrated systems for brain imaging in awake, untethered animals

    Murari, Kartikeya

    Imaging is a powerful tool for biomedical research offering non-contact and minimally or non-invasive means of investigating at multiple scales---from single molecules to large populations of cells. Imaging in awake, behaving animals is an emerging field that offers the additional advantage of being able to study physiological processes and structures in a more natural state than what is possible in tissue slices or even in anesthetized animals. To date, most imaging in awake animals has used optical fiber bundles or electrical cables to transfer signals to traditional imaging-system components. However, the fibers or cables tether the animal and greatly limit the kind and duration of animal behavior that can be studied using imaging methods. This work involves three distinct yet related approaches to fulfill the goal of imaging in unanesthetized, unrestrained animals---optical techniques for functional and structural imaging, development of novel photodetectors and the design of miniaturized imaging systems. I hypothesized that the flow within vessels might act as a contrast-enhancing agent and improve the visualization of vascular architecture using laser speckle imaging. When imaging rodent cerebral vasculature I saw a two to four fold increase in the contrast-to-noise ratios and was able to visualize 10--30% more vascular features over reflectance techniques. I designed a complementary metal oxide semiconductor (CMOS) photodetector array that was comparable in sensitivity and noise performance to cooled CCD sensors, able to image fluorescence from a single cell, while running at faster frame rates. Next, I designed an imaging system weighing under 6 grams and occupying less than 4 cm3. The system incorporated multispectral illumination, adjustable focusing optics and the high-sensitivity CMOS imager. I was able to implement a variety of optical modalities with the system and performed reflectance, fluorescence, spectroscopic and laser speckle imaging with my

  1. Synergy of image analysis for animal and human neuroimaging supports translational research on drug abuse

    Guido eGerig

    2011-10-01

    Full Text Available The use of structural magnetic resonance imaging (sMRI and diffusion tensor imaging (DTI in animals models of neuropathology is of increasing interest to the neuroscience community. In this work, we present our approach to create optimal translational studies that include both animal and human neuroimaging data within the frameworks of a study of postnatal neuro-development in intra-uterine cocaine exposure. We propose the use of non-invasive neuroimaging to study developmental brain structural and white matter pathway abnormalities via sMRI and DTI, as advanced MR imaging technology is readily available and automated image analysis methodology have recently been transferred from the human to animal imaging setting. For this purpose, we developed a synergistic, parallel approach to imaging and image analysis for the human and the rodent branch of our study. We propose an equivalent design in both the selection of the developmental assessment stage and the neuroimaging setup. This approach brings significant advantages to study neurobiological features of early brain development that are common to animals and humans but also preserve analysis capabilities only possible in animal research. This paper presents the main framework and individual methods for the proposed cross-species study design, as well as preliminary DTI cross-species comparative results in the intra-uterine cocaine exposure study.

  2. Molecular imaging of retinal endothelial injury in diabetic animals

    Sonja Frimmel

    2017-01-01

    Conclusion: Results indicate that molecular imaging can be used to detect subtle changes in the diabetic retina prior to the occurrence of irreversible pathology. Thus, ICAM-1 could serve as a diagnostic target in patients with diabetes. This study provides a proof of principle for non-invasive subclinical diagnosis in experimental diabetic retinopathy. Further development of this technology could improve management of diabetic complications.

  3. animal trial on imaging appearances of abdominally retained gauze

    Wang Longxia; An Ningyu; Yin Hui; Wang Xiangdong; Li Jia; Bai Ying

    2000-01-01

    Objective: To evaluate the imaging appearances of abdominally retained crumpled gauze with US, CT and MRI and the changes with time. Methods: Eight rabbits were operated and crumpled gauze was put into in their abdominal cavity. US , plain and enhanced CT and MRI scan were performed on the day of operation, and 1 to 7 weeks after operation. The imaging appearances were compared with operation findings. Pathologic examination was done simultaneously. Results: Abdominally retained crumpled gauze was instantly adhesive with omentum and neighboring intestines tightly. Fibro-connective tissue membrane was produced at the adhesion site gradually, spreading out to enclose the crumpled gauze. The enclosure was finished completely in 3 to 4 weeks. Thickened membrane also invaded into the spaces within the gauze. The crumpled gauze was eventually infected. These changes could be revealed on US, CT or MRI scans. The US appearance exhibited a hyper echoic arc zone with broad clean acoustic shadow behind. It appeared as a soft tissue mass to CT and MRI scans. In early stage CT scan could easily show the gas within the crumpled gauze. CT and MRI enhanced scans showed only the enhanced membrane and no enhancement of the crumpled gauze. Conclusion: US, CT and MRI have quite characteristic appearances of the abdominally retained crumpled gauze, especially when combined imaging techniques were employed, which can lead to a correct diagnosis together with a history of operation

  4. X-ray micro-tomography system for small-animal imaging with zoom-in imaging capability

    Chun, In Kon; Cho, Myung Hye; Lee, Sang Chul; Cho, Min Hyoung; Lee, Soo Yeol

    2004-01-01

    Since a micro-tomography system capable of μm-resolution imaging cannot be used for whole-body imaging of a small laboratory animal without sacrificing its spatial resolution, it is desirable for a micro-tomography system to have local imaging capability. In this paper, we introduce an x-ray micro-tomography system capable of high-resolution imaging of a local region inside a small animal. By combining two kinds of projection data, one from a full field-of-view (FOV) scan of the whole body and the other from a limited FOV scan of the region of interest (ROI), we have obtained zoomed-in images of the ROI without any contrast anomalies commonly appearing in conventional local tomography. For experimental verification of the zoom-in imaging capability, we have integrated a micro-tomography system using a micro-focus x-ray source, a 1248 x 1248 flat-panel x-ray detector, and a precision scan mechanism. The mismatches between the two projection data caused by misalignments of the scan mechanism have been estimated with a calibration phantom, and the mismatch effects have been compensated in the image reconstruction procedure. Zoom-in imaging results of bony tissues with a spatial resolution of 10 lp mm -1 suggest that zoom-in micro-tomography can be greatly used for high-resolution imaging of a local region in small-animal studies

  5. Imaging of hypoxia in small animals with 18F fluoromisonidasole

    Kilian Krzysztof

    2016-06-01

    Full Text Available A method of automated synthesis of [18F]fluoromisonidazole ([18F]FMISO for application in preclinical studies on small animals was presented. A remote-controlled synthesizer Synthra RNplus was used for nucleophilic substitution of NITTP (1′-(2′-nitro-1-imidazolyl-2-O-tetrahydropyranyl-3-O-toluenesulfonyl-propanediol with 18F anion. Labeling of 5 mg of precursor was performed in anhydrous acetonitrile at 100°C for 10 min, and the hydrolysis with HCl was performed at 100°C for 5 min. Final purification was done with high-performance liquid chromatography (HPLC and the radiochemical purity of radiotracer was higher than 99%. Proposed [18F]FMISO synthesis was used as a reliable tool in studies on hypoxia in Lewis lung carcinoma (LLC in mouse models.

  6. [Comparation on Haversian system between human and animal bones by imaging analysis].

    Lu, Hui-Ling; Zheng, Jing; Yao, Ya-Nan; Chen, Sen; Wang, Hui-Pin; Chen, Li-Xian; Guo, Jing-Yuan

    2006-04-01

    To explore the differences in Haversian system between human and animal bones through imaging analysis and morphology description. Thirty-five slices grinding from human being as well as dog, pig, cow and sheep bones were observed to compare their structure, then were analysed with the researchful microscope. Plexiform bone or oeston band was not found in human bones; There were significant differences in the shape, size, location, density of Haversian system, between human and animal bones. The amount of Haversian lamella and diameter of central canal in human were the biggest; Significant differences in the central canal diameter and total area percentage between human and animal bones were shown by imaging analysis. (1) Plexiform bone and osteon band could be the exclusive index in human bone; (2) There were significant differences in the structure of Haversian system between human and animal bones; (3) The percentage of central canals total area was valuable in species identification through imaging analysis.

  7. Real-time Avatar Animation from a Single Image.

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  8. Analysis of images of acute human and animal leukaemia

    Feinermann, Emmanuel

    1981-01-01

    This research thesis first proposes a review of the development of stereology: historical backgrounds, basic principles. It discusses the choices regarding instrumentation: Coulter counter (principle and theory), quantitative analysis of particles, image analyser (optical microscope, epidiascope, scanners, detection, electronic pencil, computers, programming and data processing system), and stereo-logical parameters. The author then reports the stereo-logical study of acute human leukaemia: definition, classification, determination of spherical particle size distribution, lympho-blast size distributions. He reports the comparative study of rat L 5222 leukaemia and Brown Norway rat acute myelocytic leukaemia, and discusses their relationship with acute human leukaemia

  9. Three-dimensional modeler for animated images display system

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  10. Techniques necessary for multiple tracer quantitative small-animal imaging studies

    Sharp, Terry L.; Dence, Carmen S.; Engelbach, John A.; Herrero, Pilar; Gropler, Robert J.; Welch, Michael J.

    2005-01-01

    Introduction: An increasing number and variety of studies on rodent models are being conducted using small-animal positron emission tomography scanners. We aimed to determine if animal handling techniques could be developed to perform routine animal imaging in a timely and efficient manner and with minimal effect on animal physiology. These techniques need to be reproducible in the same animal while maintaining hemodynamic and physiological stability. Methods: The necessary techniques include (a) the use of inhalant anesthesia, (b) arterial and venous cannulation for multiple tracer administrations and blood sampling, (c) development of small-volume analytic columns and techniques and (d) measurement of the physiological environment during the imaging session. Results: We provide an example of a cardiac imaging study using four radiotracers ( 15 O-water, 1-[ 11 C]-acetate, 1-[ 11 C]-palmitate and 1-[ 11 C]-glucose) injected into normal rats. Plasma substrates, CO 2 production and total metabolites were measured. The animals remained anesthetized over the entire imaging session, and their physiological state was maintained. Conclusion: The intrastudy stability of the physiological measurements and substrate levels and interstudy reproducibility of the measurements are reported

  11. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals.

    Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L

    2017-07-05

    Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. An automated robot arm system for small animal tissue biopsy under dual-image modality

    Huang, Y.H.; Wu, T.H.; Lin, M.H.; Yang, C.C.; Guo, W.Y.; Wang, Z.J.; Chen, C.L.; Lee, J.S.

    2006-01-01

    The ability to non-invasively monitor cell biology in vivo is one of the most important goals of molecular imaging. Imaging procedures could be inter-subject performed repeatedly at different investigating stages; thereby need not sacrifice small animals during the entire study period. Thus, the ultimate goal of this study was to design a stereotactic image-guided system for small animals and integrated it with an automatic robot arm for in vivo tissue biopsy analysis. The system was composed of three main parts, including one small animal stereotactic frame, one imaging-fusion software and an automatic robot arm system. The system has been thoroughly evaluated with three components; the robot position accuracy was 0.05±0.02 mm, the image registration accuracy was 0.37±0.18 mm and the system integration was satisfactorily within 1.20±0.39 mm of error. From these results, the system demonstrated sufficient accuracy to guide the micro-injector from the planned delivery routes into practice. The entire system accuracy was limited by the image fusion and orientation procedures, due to its nature of the blurred PET imaging obtained from the small objects. The primary improvement is to acquire as higher resolution as possible the fused imaging for localizing the targets in the future

  13. Precise image-guided irradiation of small animals: a flexible non-profit platform

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang; Rimarzig, Bernd; Sobiella, Manfred

    2016-01-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. (paper)

  14. A Protective Eye Shield for Prevention of Media Opacities during Small Animal Ocular Imaging

    Bell, Brent A.; Kaul, Charles; Hollyfield, Joe G.

    2014-01-01

    Optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO) and other non-invasive imaging techniques are increasingly used in eye research to document disease-related changes in rodent eyes. Corneal dehydration is a major contributor to the formation of ocular opacities that can limit the repeated application of these techniques to individual animals. General anesthesia is usually required for imaging, which is accompanied by the loss of the blink reflex. As a consequence, the tear film cannot be maintained, drying occurs and the cornea becomes dehydrated. Without supplemental hydration, structural damage to the cornea quickly follows. Soon thereafter, anterior lens opacities can also develop. Collectively these changes ultimately compromise image quality, especially for studies involving repeated use of the same animal over several weeks or months. To minimize these changes, a protective shield was designed for mice and rats that prevent ocular dehydration during anesthesia. The eye shield, along with a semi-viscous ophthalmic solution, is placed over the corneas as soon as the anesthesia immobilizes the animal. Eye shields are removed for only the brief periods required for imaging and then reapplied before the fellow eye is examined. As a result, the corneal surface of each eye is exposed only for the time required for imaging. The device and detailed methods described here minimize the corneal and lens changes associated with ocular surface desiccation. When these methods are used consistently, high quality images can be obtained repeatedly from individual animals. PMID:25245081

  15. Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles

    Loudos, George; Kagadis, George C.; Psimadas, Dimitris

    2011-01-01

    Small animal molecular imaging is a rapidly expanding efficient tool to study biological processes non-invasively. The use of radiolabeled tracers provides non-destructive, imaging information, allowing time related phenomena to be repeatedly studied in a single animal. In the last decade there has been an enormous progress in related technologies and a number of dedicated imaging systems overcome the limitations that the size of small animal possesses. On the other hand, nanoparticles (NPs) gain increased interest, due to their unique properties, which make them perfect candidates for biological applications. Over the past 5 years the two fields seem to cross more and more often; radiolabeled NPs have been assessed in numerous pre-clinical studies that range from oncology, till HIV treatment. In this article the current status in the tools, applications and trends of radiolabeled NPs reviewed.

  16. Design of a multimodal fibers optic system for small animal optical imaging.

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. MR perfusion/diffusion-weighted imaging of acute ischemia in an animal model with PET correlation

    Pickens, D.R.; Dawson, R.C.; Votaw, J.R.; Lorenz, C.H.; Holburn, G.E.; Price, R.R.

    1990-01-01

    This paper evaluates acute cerebral ischemia in an animal model with MR perfusion/diffusion-sensitive pulse sequences and to compare the results with PET regional cerebral blood flow (rCBF) measurements. An embolizing agent was injected into the proximal middle cerebral artery (MCA) of a dog, and this was followed by DSA. Next, the animal was imaged in a 1.5-T MR system with perfusion/diffusion-sensitive spin-echo pulse sequence. Then, PET imaging was performed with H 2 O 15 at corresponding levels of the brain

  18. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  19. Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light.

    Aarons, Alexandra R; Talan, Amanda; Schiffer, Wynne K

    2012-01-01

    Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior.

  20. Continuous monitoring of arthritis in animal models using optical imaging modalities

    Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk

    2014-10-01

    Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.

  1. Small-animal whole-body imaging using a photoacoustic full ring array system

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  2. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  3. Coil concepts for rapid and motion-compensated MR-Imaging of small animals

    Korn, Matthias

    2009-01-01

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  4. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  5. Micro-computed tomography newly developed for in vivo small animal imaging

    Arai, Yoshinori; Ninomiya, Tadashi; Kato, Takafumi; Masuda, Yuji

    2005-01-01

    The aim of this paper is to report a newly developed micro-computed tomography system for in vivo use. The system was composed of a micro-focus X-ray tube and an image intensifier (I.I.), both of which rotated around the object stage. A guinea pig and a rat were examined. The anesthetized animal was set on the secure object stage. Images of the head of the guinea pig and the tibia knee joint of the rat were taken. In addition, an image of the rat's tail was taken. The reconstruction and the image viewing were carried out using I-View software. The voxel matrix was 512 x 512 x 384. The voxel sizes ranged from 10 x 10 x 10 μm to 100 x 100 x 100 μm. The exposure time was 17 s, and the reconstruction time was 150 s. The head of the guinea pig and the tibia/knee joint of the rat were observed clearly under 100-μm and 30μm voxels, respectively. The trabecular bone of the tail was also observed clearly under a 10 μm voxel. The newly developed micro-computed tomography system makes it possible to obtain images of anesthetized animals set on a secure object stage. Clear bone images of the small animals could be obtained within a short time. (author)

  6. The use of quantimet 720 for quantitative analysis of acute leukemia images in animals and humans

    Feinermann, E.; Langlet, G.A.

    1979-01-01

    Considerable progress has been achieved in the past ten years in the analysis of particle size and form. Automatic and quantitative image analyzers and stereology enabled a comparative study of acute human and animal leukemias. It is obvious that the agreement of results between these two natural and induced categories provides encouragement to continue this investigation by these methods

  7. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  8. Recent Advances in Translational Magnetic Resonance Imaging in Animal Models of Stress and Depression

    Allison L. McIntosh

    2017-05-01

    Full Text Available Magnetic resonance imaging (MRI is a valuable translational tool that can be used to investigate alterations in brain structure and function in both patients and animal models of disease. Regional changes in brain structure, functional connectivity, and metabolite concentrations have been reported in depressed patients, giving insight into the networks and brain regions involved, however preclinical models are less well characterized. The development of more effective treatments depends upon animal models that best translate to the human condition and animal models may be exploited to assess the molecular and cellular alterations that accompany neuroimaging changes. Recent advances in preclinical imaging have facilitated significant developments within the field, particularly relating to high resolution structural imaging and resting-state functional imaging which are emerging techniques in clinical research. This review aims to bring together the current literature on preclinical neuroimaging in animal models of stress and depression, highlighting promising avenues of research toward understanding the pathological basis of this hugely prevalent disorder.

  9. Multi-scale fluorescence imaging of bacterial infections in animal models

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2013-03-01

    Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), currently affects roughly one-third of the world's population. Drug resistant strains of Mtb decrease the effectiveness of current therapeutics and demand the development of new antimicrobial therapies. In addition, the current vaccine, Bacille Calmette Guérin (BCG), has variable efficacy for disease prevention in different populations. Animal studies are often limited by the need to sacrifice at discrete time points for pathology and tissue homogenization, which greatly reduces spatial and temporal resolution. Optical imaging offers the potential for a minimally-invasive solution to imaging on a macroscopic and microscopic scale, allowing for high resolution study of infection. We have integrated a fluorescence microendoscope into a whole-animal optical imaging system, allowing for simultaneous microscopic and macroscopic imaging of tdTomato expressing BCG in vivo. A 535 nm LED was collimated and launched into a 10,000 element fiber bundle with an outer diameter of 0.66 mm. The fiber bundle can be inserted through an intra-tracheal catheter into the lung of a mouse. Fluorescence emission can either be (1) collected by the bundle and imaged onto the surface of a CCD camera for localized detection or (2) the fluorescence can be imaged by the whole animal imaging system providing macroscopic information. Results from internal localized excitation and external whole body detection indicate the potential for imaging bacterial infections down to 100 colony forming units. This novel imaging technique has the potential to allow for functional studies, enhancing the ability to assess new therapeutic agents.

  10. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    Umeda, Izumi O.; Tani, Kotaro; Tsuda, Keisuke

    2012-01-01

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111 In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111 In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111 In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  11. Analyzer-based imaging of spinal fusion in an animal model

    Kelly, M E; Beavis, R C; Allen, L A; Fiorella, David; Schueltke, E; Juurlink, B H; Chapman, L D; Zhong, Z

    2008-01-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs

  12. Analyzer-based imaging of spinal fusion in an animal model

    Kelly, M. E.; Beavis, R. C.; Fiorella, David; Schültke, E.; Allen, L. A.; Juurlink, B. H.; Zhong, Z.; Chapman, L. D.

    2008-05-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs.

  13. In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

    Dawn Cavanaugh

    2004-01-01

    Full Text Available Micro-computed tomography (micro-CT is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.

  14. Phantom and animal imaging studies using PLS synchrotron X-rays

    Hee Joung Kim; Kyu Ho Lee; Hai Jo Jung; Eun Kyung Kim; Jung Ho Je; In Woo Kim; Yeukuang, Hwu; Wen Li Tsai; Je Kyung Seong; Seung Won Lee; Hyung Sik Yoo

    2001-01-01

    Ultra-high resolution radiographs can be obtained using synchrotron X-rays. A collaboration team consisting of K-JIST, POSTECH and YUMC has recently commissioned a new beamline (5C1) at Pohang Light Source (PLS) in Korea for medical applications using phase contrast radiology. Relatively simple image acquisition systems were set up on 5C1 beamline, and imaging studies were performed for resolution test patterns, mammographic phantom, and animals. Resolution test patterns and mammographic phantom images showed much better image resolution and quality with the 5C1 imaging system than the mammography system. Both fish and mouse images with 5C1 imaging system also showed much better image resolution with great details of organs and anatomy compared to those obtained with a conventional mammography system. A simple and inexpensive ultra-high resolution imaging system on 5C1 beamline was successfully implemented. The authors were able to acquire ultra-high resolution images for, resolution test patterns, mammograph...

  15. The anterior bias in visual art: the case of images of animals.

    Bertamini, Marco; Bennett, Kate M; Bode, Carole

    2011-11-01

    Composition is an important topic in visual art. The literature suggests a bias for objects on the right side (Levy, 1976) and two additional biases with respect to positioning of objects within a rectangular frame: a Centre bias and an Inward bias (Palmer, Gardner, & Wickens, 2008). We analysed images of animals from three datasets of works of art: two datasets were from artists well known for their portraits of animals (Bewick, Stubbs) and the third was a medieval bestiary. There was no overall displacement of the subject to the right or to the left of the picture. However, we found a bias consisting of more space in front compared to behind the animal, consistent with Palmer at al.'s findings and with their definition of an Inward bias. Because our animals never face towards the centre we use the term Anterior bias. In addition, we found a modulation of this bias on the basis of the facing direction of the animal, consisting of a stronger Anterior bias for left-facing animals. This asymmetry may originate from a combination of an Anterior bias and a Right bias. Finally, with respect to size we found that the size of the animals predicted the proportion of the picture occupied, an effect known as "canonical size".

  16. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  17. STTARR: a radiation treatment and multi-modal imaging facility for fast tracking novel agent development in small animal models

    Yeung, Ivan; McKee, Trevor; Jaffray, David; Hill, Richard

    2014-01-01

    Small animal models play a pivotal role in the pipeline development of novel agents and strategies in personalized cancer therapy. The Spatio-Temporal Targeting and Amplification of Radiation Response Program (STTARR) consists of an animal imaging and precision radiation facility designed to provide innovative biologic imaging and targeted radiation treatment strategies in small animals. The design is to mirror the imaging and radiation treatment facility in a modern cancer center. The STTARR features imaging equipment of small animal scale including CT, MRI, PET, SPECT, Optical devices as well as image guided irradiators. The fleet of imaging and irradiation equipment provides a platform for identification of biological targets of the specific molecular pathways that influence both tumor progression and a patient's response to radiation therapy. Examples will be given in the utilization of the imaging facilities for development in novel approaches in cancer therapy including a PET-FAZA study for hypoxia measurement in a pancreatic adenocarcinoma xenograft model. In addition, the cone-beam image guided small animal irradiator developed at our institute will also be described. The animal platform (couch) provides motion in 3 dimensions to position the animal to the isocentre of the beam. A pair of rotational arms supporting the X-ray/detector pair enables acquisition of cone-beam images of the animal which give rise to image guided precision of 0.5 mm. The irradiation energy ranges from 50 to 225 kVp at a dose rate from 10-400 cGy/min. The gantry is able to direct X-ray beam of different directions to give conformal radiation treatment to the animal. A dedicated treatment planning system is able to perform treatment planning and provide commonly used clinical metrics in the animal treatment plan. Examples will be given to highlight the use of the image guided irradiator for research of drug/irradiation regimen in animal models. (author)

  18. Dynamic studies of small animals with a four-color diffuse optical tomography imager

    Schmitz, Christoph H.; Graber, Harry L.; Pei Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu Yong; Barbour, Randall L.

    2005-01-01

    We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals

  19. Using human brain imaging studies as a guide towards animal models of schizophrenia

    BOLKAN, Scott S.; DE CARVALHO, Fernanda D.; KELLENDONK, Christoph

    2015-01-01

    Schizophrenia is a heterogeneous and poorly understood mental disorder that is presently defined solely by its behavioral symptoms. Advances in genetic, epidemiological and brain imaging techniques in the past half century, however, have significantly advanced our understanding of the underlying biology of the disorder. In spite of these advances clinical research remains limited in its power to establish the causal relationships that link etiology with pathophysiology and symptoms. In this context, animal models provide an important tool for causally testing hypotheses about biological processes postulated to be disrupted in the disorder. While animal models can exploit a variety of entry points towards the study of schizophrenia, here we describe an approach that seeks to closely approximate functional alterations observed with brain imaging techniques in patients. By modeling these intermediate pathophysiological alterations in animals, this approach offers an opportunity to (1) tightly link a single functional brain abnormality with its behavioral consequences, and (2) to determine whether a single pathophysiology can causally produce alterations in other brain areas that have been described in patients. In this review we first summarize a selection of well-replicated biological abnormalities described in the schizophrenia literature. We then provide examples of animal models that were studied in the context of patient imaging findings describing enhanced striatal dopamine D2 receptor function, alterations in thalamo-prefrontal circuit function, and metabolic hyperfunction of the hippocampus. Lastly, we discuss the implications of findings from these animal models for our present understanding of schizophrenia, and consider key unanswered questions for future research in animal models and human patients. PMID:26037801

  20. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  1. Assessment of hybrid rotation-translation scan schemes for in vivo animal SPECT imaging

    Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Yao Rutao; Deng Xiao

    2013-01-01

    To perform in vivo animal single photon emission computed tomography imaging on a stationary detector gantry, we introduced a hybrid rotation-translation (HRT) tomographic scan, a combination of translational and limited angle rotational movements of the image object, to minimize gravity-induced animal motion. To quantitatively assess the performance of ten HRT scan schemes and the conventional rotation-only scan scheme, two simulated phantoms were first scanned with each scheme to derive the corresponding image resolution (IR) in the image field of view. The IR results of all the scan schemes were visually assessed and compared with corresponding outputs of four scan scheme evaluation indices, i.e. sampling completeness (SC), sensitivity (S), conventional system resolution (SR), and a newly devised directional spatial resolution (DR) that measures the resolution in any specified orientation. A representative HRT scheme was tested with an experimental phantom study. Eight of the ten HRT scan schemes evaluated achieved a superior performance compared to two other HRT schemes and the rotation-only scheme in terms of phantom image resolution. The same eight HRT scan schemes also achieved equivalent or better performance in terms of the four quantitative indices than the conventional rotation-only scheme. As compared to the conventional index SR, the new index DR appears to be a more relevant indicator of system resolution performance. The experimental phantom image obtained from the selected HRT scheme was satisfactory. We conclude that it is feasible to perform in vivo animal imaging with a HRT scan scheme and SC and DR are useful predictors for quantitatively assessing the performance of a scan scheme. (paper)

  2. Performance characteristics of a small animal PET camera for molecular imaging

    Hastings, D.L.; Reader, A.J.; Julyan, P.J.; Zweit, J.; Jeavons, A.P.; Jones, T.

    2007-01-01

    The performance of a novel type of animal PET camera, the quad High-Density Avalanche Chamber (HIDAC) was assessed for a non-rotating 16-module system. Spatial resolution was 1.0 mm, and invariant within a standard deviation ≤5%. Absolute sensitivity was 0.95%, and the scatter-background corrected sensitivity was 0.75%. The count rate capability was linear at typical activities used in animal imaging, with a 20% loss at 11.5 MBq. The camera demonstrates small regions of radiotracer uptake with excellent detail in the mouse

  3. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio, E-mail: ukimura@ieee.or [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2010-07-21

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  4. Differential Visual Processing of Animal Images, with and without Conscious Awareness.

    Zhu, Weina; Drewes, Jan; Peatfield, Nicholas A; Melcher, David

    2016-01-01

    The human visual system can quickly and efficiently extract categorical information from a complex natural scene. The rapid detection of animals in a scene is one compelling example of this phenomenon, and it suggests the automatic processing of at least some types of categories with little or no attentional requirements (Li et al., 2002, 2005). The aim of this study is to investigate whether the remarkable capability to categorize complex natural scenes exist in the absence of awareness, based on recent reports that "invisible" stimuli, which do not reach conscious awareness, can still be processed by the human visual system (Pasley et al., 2004; Williams et al., 2004; Fang and He, 2005; Jiang et al., 2006, 2007; Kaunitz et al., 2011a). In two experiments, we recorded event-related potentials (ERPs) in response to animal and non-animal/vehicle stimuli in both aware and unaware conditions in a continuous flash suppression (CFS) paradigm. Our results indicate that even in the "unseen" condition, the brain responds differently to animal and non-animal/vehicle images, consistent with rapid activation of animal-selective feature detectors prior to, or outside of, suppression by the CFS mask.

  5. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    Johnstone, Chris; Bazalova-Carter, Magdalena [University of Victoria (Australia)

    2016-08-15

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional data sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.

  6. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    Johnstone, Chris; Bazalova-Carter, Magdalena

    2016-01-01

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional data sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.

  7. The effect of animated images on persuasion: The mediator role of hedonic responses and the moderator role of product category

    Hussant-Zebian, Rola

    2004-01-01

    This paper aims to highlight the mediator role of hedonic responses in the relation between animated images and attitudinal responses. It has another objective which is to show off the moderator role of product category. To this purpose, we have manipulated two categories of advertising opposing computer animated to non-computer animated images. We have also seetwo product categories : a high involvement product and a low involvement one.

  8. Imaging of Cerebrovascular Pathology in Animal Models of Alzheimer`s Disease

    Jan eKlohs

    2014-03-01

    Full Text Available In Alzheimer’s disease (AD, vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.

  9. Potential Applications of Flat-Panel Volumetric CT in Morphologic, Functional Small Animal Imaging

    Susanne Greschus

    2005-08-01

    Full Text Available Noninvasive radiologic imaging has recently gained considerable interest in basic, preclinical research for monitoring disease progression, therapeutic efficacy. In this report, we introduce flat-panel volumetric computed tomography (fpVCT as a powerful new tool for noninvasive imaging of different organ systems in preclinical research. The three-dimensional visualization that is achieved by isotropic high-resolution datasets is illustrated for the skeleton, chest, abdominal organs, brain of mice. The high image quality of chest scans enables the visualization of small lung nodules in an orthotopic lung cancer model, the reliable imaging of therapy side effects such as lung fibrosis. Using contrast-enhanced scans, fpVCT displayed the vascular trees of the brain, liver, kidney down to the subsegmental level. Functional application of fpVCT in dynamic contrast-enhanced scans of the rat brain delivered physiologically reliable data of perfusion, tissue blood volume. Beyond scanning of small animal models as demonstrated here, fpVCT provides the ability to image animals up to the size of primates.

  10. Scanning multiple mice in a small-animal PET scanner: Influence on image quality

    Siepel, Francoise J.; Lier, Monique G.J.T.B. van; Chen Mu; Disselhorst, Jonathan A.; Meeuwis, Antoi P.W.; Oyen, Wim J.G.; Boerman, Otto C.; Visser, Eric P.

    2010-01-01

    To achieve high throughput in small-animal positron emission tomography (PET), it may be advantageous to scan more than one animal in the scanner's field of view (FOV) at the same time. However, due to the additional activity and increase of Poisson noise, additional attenuating mass, extra photon scattering, and radial or axial displacement of the animals, a deterioration of image quality can be expected. In this study, the NEMA NU 4-2008 image quality (NU4IQ) phantom and up to three FDG-filled cylindrical 'mouse phantoms' were positioned in the FOV of the Siemens Inveon small-animal PET scanner to simulate scans with multiple mice. Five geometrical configurations were examined. In one configuration, the NU4IQ phantom was scanned separately and placed in the center of the FOV (1C). In two configurations, a mouse phantom was added with both phantoms displaced radially (2R) or axially (2A). In two other configurations, the NU4IQ phantom was scanned along with three mouse phantoms with all phantoms displaced radially (4R), or in a combination of radial and axial displacement (2R2A). Images were reconstructed using ordered subset expectation maximization in 2 dimensions (OSEM2D) and maximum a posteriori (MAP) reconstruction. Image quality parameters were obtained according to the NEMA NU 4-2008 guidelines. Optimum image quality was obtained for the 1C geometry. Image noise increased by the addition of phantoms and was the largest for the 4R configuration. Spatial resolution, reflected in the recovery coefficients for the FDG-filled rods, deteriorated by radial displacement of the NU4IQ phantom (2R, 2R2A, and 4R), most strongly for OSEM2D, and to a smaller extent for MAP reconstructions. Photon scatter, as indicated by the spill-over ratios in the non-radioactive water- and air-filled compartments, increased by the addition of phantoms, most strongly for the 4R configuration. Application of scatter correction substantially lowered the spill-over ratios, but caused an

  11. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging

    Kubo, Naoki; Zhao, Songji; Fujiki, Yutaka

    2005-01-01

    Small animal imaging has recently been focused on basic nuclear medicine. We have designed and built a small animal SPECT imaging system using a semiconductor camera and a newly designed collimator. We assess the performance of this system for small object imaging. We employed an MGC 1500 (Acrorad Co.) camera including a CdTe semiconductor. The pixel size was 1.4 mm/pixel. We designed and produced a parallel-hole collimator with 20-mm hole length. Our SPECT system consisted of a semiconductor camera with the subject holder set on an electric rotating stage controlled by a computer. We compared this system with a conventional small animal SPECT system comprising a SPECT-2000H scanner with four Anger type cameras and pinhole collimators. The count rate linearity for estimation of the scatter was evaluated for a pie-chart phantom containing different concentrations of 99m Tc. We measured the full width half maximum (FWHM) of the 99m Tc SPECT line source along with scatter. The system volume sensitivity was examined using a flood source phantom which was 35 mm long with a 32-mm inside diameter. Additionally, an in vivo myocardial perfusion SPECT study was performed with a rat. With regards to energy resolution, the semiconductor camera (5.6%) was superior to the conventional Anger type camera (9.8%). In the count rate linearity evaluation, the regression lines of the SPECT values were y=0.019x+0.031 (r 2 =0.999) for our system and y=0.018x+0.060 (r 2 =0.997) for the conventional system. Thus, the scatter count using the semiconductor camera was less than that using the conventional camera. FWHMs of our system and the conventional system were 2.9±0.1 and 2.0±0.1 mm, respectively. Moreover, the system volume sensitivity of our system [0.51 kcps/(MBq/ml)/cm] was superior to that of the conventional system [0.44 kcps/(MBq/ml)/cm]. Our system provided clear images of the rat myocardium, sufficient for practical use in small animal imaging. Our SPECT system, utilizing a

  12. Image Quality Improvement on OpenGL-Based Animations by Using CUDA Architecture

    Taner UÇKAN

    2016-04-01

    Full Text Available 2D or 3D rendering technology is used for graphically modelling many physical phenomena occurring in real life by means of the computers. On the other hand, the ever-increasing intensity of the graphics applications require that the image quality of the so-called modellings is enhanced and they are performed more quickly. In this direction, a new software and hardware-based architecture called CUDA has been introduced by Nvidia at the end of 2006. Thanks to this architecture, larger number of graphics processors has started contributing towards the parallel solutions of the general-purpose problems. In this study, this new parallel computing architecture is taken into consideration and an animation application consisting of humanoid robots with different behavioral characteristics is developed using the OpenGL library in C++. This animation is initially implemented on a single serial CPU and then parallelized using the CUDA architecture. Eventually, the serial and the parallel versions of the same animation are compared against each other on the basis of the number of image frames per second. The results reveal that the parallel application is by far the best yielding high quality images.

  13. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  14. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  15. In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis.

    Gutowski, Michal B; Wilson, Leslie; Van Gelder, Russell N; Pepple, Kathryn L

    2017-03-01

    We develop a quantitative bioluminescence assay for in vivo longitudinal monitoring of inflammation in animal models of uveitis. Three models of experimental uveitis were induced in C57BL/6 albino mice: primed mycobacterial uveitis (PMU), endotoxin-induced uveitis (EIU), and experimental autoimmune uveitis (EAU). Intraperitoneal injection of luminol sodium salt, which emits light when oxidized, provided the bioluminescence substrate. Bioluminescence images were captured by a PerkinElmer In Vivo Imaging System (IVIS) Spectrum and total bioluminescence was analyzed using Living Image software. Bioluminescence on day zero was compared to bioluminescence on the day of peak inflammation for each model. Longitudinal bioluminescence imaging was performed in EIU and EAU. In the presence of luminol, intraocular inflammation generates detectable bioluminescence in three mouse models of uveitis. Peak bioluminescence in inflamed PMU eyes (1.46 × 105 photons/second [p/s]) was significantly increased over baseline (1.47 × 104 p/s, P = 0.01). Peak bioluminescence in inflamed EIU eyes (3.18 × 104 p/s) also was significantly increased over baseline (1.09 × 104 p/s, P = 0.04), and returned to near baseline levels by 48 hours. In EAU, there was a nonsignificant increase in bioluminescence at peak inflammation. In vivo bioluminescence may be used as a noninvasive, quantitative measure of intraocular inflammation in animal models of uveitis. Primed mycobacterial uveitis and EIU are both acute models with robust anterior inflammation and demonstrated significant changes in bioluminescence corresponding with peak inflammation. Experimental autoimmune uveitis is a more indolent posterior uveitis and generated a more modest bioluminescent signal. In vivo imaging system bioluminescence is a nonlethal, quantifiable assay that can be used for monitoring inflammation in animal models of uveitis.

  16. Small animal SPECT and its place in the matrix of molecular imaging technologies

    Meikle, Steven R; Kench, Peter; Kassiou, Michael; Banati, Richard B

    2005-01-01

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute ( -10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  17. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications

    Aide, Nicolas; Desmonts, Cedric; Agostini, Denis; Bardet, Stephane; Bouvard, Gerard; Beauregard, Jean-Mathieu; Roselt, Peter; Neels, Oliver; Beyer, Thomas; Kinross, Kathryn; Hicks, Rodney J.

    2010-01-01

    The objective of the study was to evaluate state-of-the-art clinical PET/CT technology in performing static and dynamic imaging of several mice simultaneously. A mouse-sized phantom was imaged mimicking simultaneous imaging of three mice with computation of recovery coefficients (RCs) and spillover ratios (SORs). Fifteen mice harbouring abdominal or subcutaneous tumours were imaged on clinical PET/CT with point spread function (PSF) reconstruction after injection of [18F]fluorodeoxyglucose or [18F]fluorothymidine. Three of these mice were imaged alone and simultaneously at radial positions -5, 0 and 5 cm. The remaining 12 tumour-bearing mice were imaged in groups of 3 to establish the quantitative accuracy of PET data using ex vivo gamma counting as the reference. Finally, a dynamic scan was performed in three mice simultaneously after the injection of 68 Ga-ethylenediaminetetraacetic acid (EDTA). For typical lesion sizes of 7-8 mm phantom experiments indicated RCs of 0.42 and 0.76 for ordered subsets expectation maximization (OSEM) and PSF reconstruction, respectively. For PSF reconstruction, SOR air and SOR water were 5.3 and 7.5%, respectively. A strong correlation (r 2 = 0.97, p 2 = 0.98; slope = 0.89, p 2 = 0.96; slope = 0.62, p 68 Ga-EDTA dynamic acquisition. New generation clinical PET/CT can be used for simultaneous imaging of multiple small animals in experiments requiring high throughput and where a dedicated small animal PET system is not available. (orig.)

  18. Bioluminescence imaging in a medium-sized animal by local injection of d-luciferin

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [Chosun University, Gwangju (Korea, Republic of)

    2005-07-01

    Luciferase is one of the most commonly used reporter enzymes in the field of molecular imaging. D-luciferin is known as the substrate for luciferase enzyme and its cost is very expensive. Therefore, the bioluminescence molecular imaging study has been allowed in small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase. And then was performed different method of chondrocyte cell injection and transplantation into the knee of rabbits. The rabbits underwent imaging by cooled CCD camera after local injection of D-luciferin (3mg) into experimental knee joint as well as contralateral normal knee joint on days 1, 5, 7, 9. We sought whether optimal imaging signal was acquired by using cooled CCD camera after local injection of D-luciferin. We successfully visualized injected or transplanted cells in knee joint by local injection of D-luciferin. Total photon flux (7.86E+08 p/s/cm{sup 2}/sr) from the knee joint transplanted with cells approximately increased 10-fold more than (9.43E+07p/s/cm{sup 2}/sr) that from injected knee joints until 7 day. Imaging signal was observed in transplanted joints until day 9 after surgery while signal from injected knee was observed by day 7 after injection. We successfully carried out bioluminescence imaging study with medium sized animal by local injection of small amount of D-luciferin. Survival of chondrocytes were prolonged when surgically transplanted in joints than when directly injected in joint space.

  19. An investigation of the challenges in reconstructing PET images of a freely moving animal

    Akhtar, Mahmood; Kyme, Andre; Meikle, Steven; Zhou, Victor; Fulton, Roger

    2013-01-01

    Imaging the brain of a freely moving small animal using positron emission tomography (PET) while simultaneously observing its behaviour is an important goal for neuroscience. While we have successfully demonstrated the use of line-of-response (LOR) rebinning to correct the head motion of confined animals, a large proportion of events may need to be discarded because they either 'miss' the detector array after transformation or fall out of the acceptance range of a sinogram. The proportion of events that would have been measured had motion not occurred, so-called 'lost events', is expected to be even larger for freely moving animals. Moreover, the data acquisition in the case of a freely moving animal is further complicated by a complex attenuation field. The aims of this study were (a) to characterise the severity of 'lost events' problem for the freely moving animal scenario, and (b) to investigate the relative impact of attenuation correction errors on quantitative accuracy of reconstructed images. A phantom study was performed to simulate the uncorrelated motion of a target and non-target source volume. A small animal PET scanner was used to acquire list-mode data for different sets of phantom positions. The list-mode data were processed using the standard LOR rebinning approach, and multiple frame variants of this designed to reduce discarded events. We found that LOR rebinning caused up to 86 % 'lost events', and artifacts that we attribute to incomplete projections, when applied to a freely moving target. This fraction was reduced by up to 18 % using the variant approaches, resulting in slightly reduced image artifacts. The effect of the non-target compartment on attenuation correction of the target volume was surprisingly small. However, for certain poses where the target and non-target volumes are aligned transaxially in the field-of-view, the attenuation problem becomes more complex and sophisticated correction methods will be required. We conclude that

  20. Design and testing of a 750MHz CW-EPR digital console for small animal imaging.

    Sato-Akaba, Hideo; Emoto, Miho C; Hirata, Hiroshi; Fujii, Hirotada G

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Design and testing of a 750 MHz CW-EPR digital console for small animal imaging

    Sato-Akaba, Hideo; Emoto, Miho C.; Hirata, Hiroshi; Fujii, Hirotada G.

    2017-11-01

    This paper describes the development of a digital console for three-dimensional (3D) continuous wave electron paramagnetic resonance (CW-EPR) imaging of a small animal to improve the signal-to-noise ratio and lower the cost of the EPR imaging system. A RF generation board, an RF acquisition board and a digital signal processing (DSP) & control board were built for the digital EPR detection. Direct sampling of the reflected RF signal from a resonator (approximately 750 MHz), which contains the EPR signal, was carried out using a band-pass subsampling method. A direct automatic control system to reduce the reflection from the resonator was proposed and implemented in the digital EPR detection scheme. All DSP tasks were carried out in field programmable gate array ICs. In vivo 3D imaging of nitroxyl radicals in a mouse's head was successfully performed.

  2. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    Jeavons, A.P.; Chandler, R.A.; Dettmar, C.A.R.

    1999-01-01

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm 3 ) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  3. Apoptosis imaging studies in various animal models using radio-iodinated peptide.

    Kwak, Wonjung; Ha, Yeong Su; Soni, Nisarg; Lee, Woonghee; Park, Se-Il; Ahn, Heesu; An, Gwang Il; Kim, In-San; Lee, Byung-Heon; Yoo, Jeongsoo

    2015-01-01

    Apoptosis has a role in many medical disorders and treatments; hence, its non-invasive evaluation is one of the most riveting research topics. Currently annexin V is used as gold standard for imaging apoptosis. However, several drawbacks, including high background, slow body clearance, make it a suboptimum marker for apoptosis imaging. In this study, we radiolabeled the recently identified histone H1 targeting peptide (ApoPep-1) and evaluated its potential as a new apoptosis imaging agent in various animal models. ApoPep-1 (CQRPPR) was synthesized, and an extra tyrosine residue was added to its N-terminal end for radiolabeling. This peptide was radiolabeled with (124)I and (131)I and was tested for its serum stability. Surgery- and drug-induced apoptotic rat models were prepared for apoptosis evaluation, and PET imaging was performed. Doxorubicin was used for xenograft tumor treatment in mice, and the induced apoptosis was studied. Tumor metabolism and proliferation were assessed by [(18)F]FDG and [(18)F]FLT PET imaging and compared with ApoPep-1 after doxorubicin treatment. The peptide was radiolabeled at high purity, and it showed reasonably good stability in serum. Cell death was easily imaged by radiolabeled ApoPep-1 in an ischemia surgery model. And, liver apoptosis was more clearly identified by ApoPep-1 rather than [(124)I]annexin V in cycloheximide-treated models. Three doxorubicin doses inhibited tumor growth, which was evaluated by 30-40% decreases of [(18)F]FDG and [(18)F]FLT PET uptake in the tumor area. However, ApoPep-1 demonstrated more than 200% increase in tumor uptake after chemotherapy, while annexin V did not show any meaningful uptake in the tumor compared with the background. Biodistribution data were also in good agreement with the microPET imaging results. All of the experimental data clearly demonstrated high potential of the radiolabeled ApoPep-1 for in vivo apoptosis imaging.

  4. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Laura Sarah Sasportas

    Full Text Available Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  5. [The image of animal magnetism in fictional literature: the cases of Poe, Doyle and Du Maurier].

    Bonet Safont, Juan Marcos

    2014-01-01

    In this article, we focus on the social image of the phenomenon known as mesmerism, or animal magnetism, through analysis of the works: The Facts in the Case of M. Valdemar (1845) by Edgar Allan Poe, The Great Keinplatz Experiment (1885) by Conan Doyle and Trilby (1894) by George Du Maurier. We describe the stereotype of the mesmerist and the uses of mesmerism observed. We pay attention to the spaces and actors of the mesmeric transcript presented in the stories. We consider the reception of these stories by the public and the relationship of the authors with mesmeric and hypnotic knowledge. Nowadays, academic researchers in the discipline of psychology publish articles and books on popular myths about hypnosis in attempts to depict the distorted images related to this phenomenon. This distorted image of the hypnotic process and the hypnotist derives from "circus" hypnotism shows (stage hypnosis), the cinema, television and fictional literature. Works of fiction represent a unique and invaluable source of information, ideas, speculations, concerns and opportunities around animal magnetism and hypnosis, and the exploration and analysis of this literature is an essential chapter in any historical study of this topic. We see how the literary use of mesmerism by Poe, Doyle and Du Maurier is not chance or peripheral, with all three being intellectually interested in and stimulated by these ideas.

  6. Imaging circulating tumor cells in freely moving awake small animals using a miniaturized intravital microscope.

    Sasportas, Laura Sarah; Gambhir, Sanjiv Sam

    2014-01-01

    Metastasis, the cause for 90% of cancer mortality, is a complex and poorly understood process involving the invasion of circulating tumor cells (CTCs) into blood vessels. These cells have potential prognostic value as biomarkers for early metastatic risk. But their rarity and the lack of specificity and sensitivity in measuring them render their interrogation by current techniques very challenging. How and when these cells are circulating in the blood, on their way to potentially give rise to metastasis, is a question that remains largely unanswered. In order to provide an insight into this "black box" using non-invasive imaging, we developed a novel miniature intravital microscopy (mIVM) strategy capable of real-time long-term monitoring of CTCs in awake small animals. We established an experimental 4T1-GL mouse model of metastatic breast cancer, in which tumor cells express both fluorescent and bioluminescent reporter genes to enable both single cell and whole body tumor imaging. Using mIVM, we monitored blood vessels of different diameters in awake mice in an experimental model of metastasis. Using an in-house software algorithm we developed, we demonstrated in vivo CTC enumeration and computation of CTC trajectory and speed. These data represent the first reported use we know of for a miniature mountable intravital microscopy setup for in vivo imaging of CTCs in awake animals.

  7. Use of thermographic imaging in clinical diagnosis of small animal: preliminary notes

    Veronica Redaelli

    2014-06-01

    Full Text Available INTRODUCTION. The authors, after a description of the physics of infrared thermographic technique (IRT, analyze the reading of images and the main applications in the veterinary field, compared to the existing literature on the subject and to their experimental researches. IRT lends itself to countless applications in biology, thanks to its characteristics of versatility, lack of invasiveness and high sensitivity. Probably the major limitation to its application in the animal lies in the ease of use and in its extreme sensitivity. MATERIALS AND METHODS. From September 2009 to October 2010, the experimental investigation with the thermo camera took into consideration 110 animals (92 dogs and 18 cats, without any selection criteria. All patients were brought to the Faculty of Veterinary Medicine in Milan University by the owner, to be examined by a specialist, or to undergo one of the following diagnostic procedures: X-rays, computed tomography, or ultrasound examinations; finally some patients were brought in for surgical procedures. With the consent of the owner, 1 to 10 thermographic images were recorded from each clinical case. Results. In this first experimental investigation, thermography has shown a high sensitivity (100%, but a low specificity (44%. This figure excludes the use of thermal imaging technology to replace other imaging techniques such as radiography, computed tomography and magnetic resonance imaging. Furthermore, it does not show any ability to recognize the etiology of the disease, but only the thermal alteration, and this is restricting its use. However, this experimental study has demonstrated that thermography can be used in veterinary medicine, and specifically in dogs and cats. It is hoped that in the field of targeted diseases this technique will become an important tool for diagnostic purposes by using working protocols validated and repeatable.

  8. Behavioral effects of acclimatization to restraint protocol used for awake animal imaging.

    Reed, Michael D; Pira, Ashley S; Febo, Marcelo

    2013-07-15

    Functional MRI in awake rats involves acclimatization to restraint to minimize motion. We designed a study to examine the effects of an acclimatization protocol (5 days of restraint, 60 min per day) on the emission of 22-kHz ultrasonic vocalizations and performance in a forced swim test (FST). Our results showed that USV calls are reduced significantly by days 3, 4 and 5 of acclimatization. Although the rats showed less climbing activity (and more immobility) in FST on day 5 compared to the 1st day of restraint acclimatization, the difference was not detected once the animals were given a 2-week hiatus. Overall, we showed that animals adapt to the restraint over a five-day period; however, restraint may introduce confounding behavioral outcomes that may hinder the interpretation of results derived from awake rat imaging. The present data warrants further testing of the effects of MRI restraint on behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Gated listmode acquisition with the QuadHIDAC animal PET to image mouse hearts

    Schaefers, K.P.; Lang, N.; Stegger, L.; Schober, O.; Schaefers, M.

    2006-01-01

    Purpose: the aim of this study was to develop ECG and respiratory gating in combination with listmode acquisition for the quadHIDAC small-animal PET scanner. Methods: ECG and respiratory gating was realized with the help of an external trigger device (BioVET) synchronized with the listmode acquisition. Listmode data of a mouse acquisition (injected with 6.5 MBq of 18 F-FDG) were sorted according to three different gating definitions: 12 cardiac gates, 8 respiratory gates and a combination of 8 cardiac and 8 respiratory gates. Images were reconstructed with filtered back-projection (ramp filter), and parameters like left ventricular wall thickness (WT), wall-to-wall separation (WS) and blood to myocardium activity ratios (BMR) were calculated. Results: cardiac gated images show improvement of all parameters (WT 2.6 mm, WS 4.1 mm, BRM 2.3) in diastole compared to ungated images (WT 3.0 mm, WS 3.4 mm, BMR 1.3). Respiratory gating had little effect on calculated parameters. Conclusion: ECG gating with the quadHIDAC can improve myocardial image quality in mice. This could have a major impact on the calculation of an image-derived input function for kinetic modelling. (orig.)

  10. A small animal image guided irradiation system study using 3D dosimeters

    Qian, Xin; Wuu, Cheng-Shie; Admovics, John

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies

  11. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    Jenny B. Lin

    2015-05-01

    Full Text Available Peripheral artery disease (PAD is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.

  12. Multi-modality image reconstruction for dual-head small-animal PET

    Huang, Chang-Han; Chou, Cheng-Ying

    2015-01-01

    The hybrid positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI) has become routine practice in clinics. The applications of multi-modality imaging can also benefit research advances. Consequently, dedicated small-imaging system like dual-head small-animal PET (DHAPET) that possesses the advantages of high detection sensitivity and high resolution can exploit the structural information from CT or MRI. It should be noted that the special detector arrangement in DHAPET leads to severe data truncation, thereby degrading the image quality. We proposed to take advantage of anatomical priors and total variation (TV) minimization methods to reconstruct PET activity distribution form incomplete measurement data. The objective is to solve the penalized least-squares function consisted of data fidelity term, TV norm and medium root priors. In this work, we employed the splitting-based fast iterative shrinkage/thresholding algorithm to split smooth and non-smooth functions in the convex optimization problems. Our simulations studies validated that the images reconstructed by use of the proposed method can outperform those obtained by use of conventional expectation maximization algorithms or that without considering the anatomical prior information. Additionally, the convergence rate is also accelerated.

  13. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  14. [F18]-FDG imaging of experimental animal tumours using a hybrid gamma-camera

    Lausson, S.; Maurel, G.; Kerrou, K.; Montravers, F.; Petegnief, Y.; Talbot, J.N.; Fredelizi, D.

    2001-01-01

    Positron emission tomography (PET) has been widely used in clinical studies. This technology permits detection of compounds labelled with positron emitting radionuclides and in particular, [F18]-fluorodeoxyglucose ([F18]-FDG).[F18]-FDG uptake and accumulation is generally related to malignancy; some recent works have suggested the usefulness of PET camera dedicated to small laboratory animals (micro-PET). Our study dealt with the feasibility of [F18]-FDG imaging of malignant tumours in animal models by means of an hybrid camera dedicated for human scintigraphy. We evaluated the ability of coincidence detection emission tomography (CDET) using this hybrid camera to visualize in vivo subcutaneous tumours grafted to mice or rats. P815 murine mastocytoma grafted in syngeneic DBA/2 mice resulted with foci of very high FDG uptake. Tumours with a diameter of only 3 mm were clearly visualized. Medullary thyroid cancer provoked by rMTC 6/23 and CA77 lines in syngeneic Wag/Rij rat was also detected. The differentiated CA77 tumours exhibited avidity for [F18]-FDG and a tumour, which was just palpable (diameter lower than 2 mm), was identified. In conclusion, CDET-FDG is a non-invasive imaging tool which can be used to follow grafted tumours in the small laboratory animal, even when their size is smaller than 1 cm. It has the potential to evaluate experimental anticancer treatments in small series of animals by individual follow-up. It offers the opportunity to develop experimental PET research within a nuclear medicine or biophysics department, the shift to a dedicated micro-PET device being subsequently necessary. It is indeed compulsory to strictly follow the rules for non contamination and disinfection of the hybrid camera. (authors)

  15. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  16. TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging

    Zhong, Y; Zhang, Y; Shao, Y; Wang, J

    2016-01-01

    Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with the source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm 3 voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.

  17. A 3D- and 4D-ESR imaging system for small animals

    Oikawa, K.; Ogata, T.; Togashi, H.; Yokoyama, H.; Ohya-Nishiguchi, H.; Kamada, H.

    1996-01-01

    A new version of in vivo ESR-CT system composed of custom-made 0.7 GHz ESR spectrometer, air-core magnet with a field-scanning coil, three field-gradient coils, and two computers enables up-and down-field, and rapid magnetic-field scanning linearly controlled by computer. 3D-pictures of distribution of nitroxide radicals injected in brains and livers of rats and mice were obtained in 1.5 min with resolution of 1 mm. We have also succeeded in obtaining spatial-time imagings of the animals. (author)

  18. Implementation and Application of PSF-Based EPI Distortion Correction to High Field Animal Imaging

    Dominik Paul

    2009-01-01

    Full Text Available The purpose of this work is to demonstrate the functionality and performance of a PSF-based geometric distortion correction for high-field functional animal EPI. The EPI method was extended to measure the PSF and a postprocessing chain was implemented in Matlab for offline distortion correction. The correction procedure was applied to phantom and in vivo imaging of mice and rats at 9.4T using different SE-EPI and DWI-EPI protocols. Results show the significant improvement in image quality for single- and multishot EPI. Using a reduced FOV in the PSF encoding direction clearly reduced the acquisition time for PSF data by an acceleration factor of 2 or 4, without affecting the correction quality.

  19. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  20. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.

    Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob

    2016-11-07

    Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  2. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  3. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Endoscopic Cerenkov luminescence imaging: in vivo small animal tumor model validation

    Song, Tianming; Bao, Chengpeng; Hu, Zhenhua; Wang, Kun; Liu, Xia; Tian, Jie

    2015-03-01

    Background: Cerenkov luminescence imaging (CLI) provides a great potential for clinical translation of optical molecular imaging techniques through using clinical approved radiotracers. However, it is difficult to obtain the Cerenkov luminescence signal of deeper biological tissues due to the small magnitude of the signal. To efficiently acquire the weak Cerenkov luminescence, we developed an endoscopic Cerenkov luminescence imaging (ECLI) system to reduce the in vivo imaging depth with minimum invasion, and validated the system on small animal tumor models. Methods: For the ECLI system, the laparoscope was connected to a high sensitive charge-couple device (CCD) camera (DU888+, Andor, UK) by a custom made adapter. We conducted a series of in vitro and in vivo experiments by use of the system. In the in vitro experiment, the endoscopic luminescence images of the 18F-FDG with various activities in EP tubes were acquired using ECLI system, and the sensitivity was compared with conventional CLI system. In the in vivo tumor experiment, 18F-FDG with the activity of 200μCi were intravenously injected into 3 tumor mice. Then the ECLI system was used to acquire the optical images for both non-invasive and invasive conditions. Conclusion: Experimental data showed the ECLI system could detect the 18F-FDG with the activity as low as 1μCi. Furthermore, our preliminary results indicated the possibility of ECLI technique for detecting Cerenkov signals inside the tumor tissue with deeper depth and guiding the surgical operation of tumor excision. We believe that this technique can help to accelerate the clinical translation of CLI.

  5. Evaluation of potassium-43 scintillation images during early myocardial ischemia in an animal model

    Haider, B.; Oldewurtel, H.A.; Moschos, C.B.; Regan, T.J.

    1976-01-01

    To assess the validity of myocardial imaging with potassium-43 ( 43 K) early after the onset of ischemia, the left anterior descending artery was occluded with a balloon tip catheter in 32 intact anesthetized dogs. /sup 99m/Technetium ventriculograms localized the left ventricle. 43 K was administered intravenously and serial images were obtained in four views using an Anger camera with a pinhole collimator. The heart was arrested after 60 minutes and removed for imaging and tissue counts to ascertain extracardiac and geometric factors. In normals (group 1) left ventricular images were relatively homogeneous, except for the thin walled apex, both in vivo and in the isolated heart. Equilibration with 43 K prior to ischemia (group 2) gave similar images to group 1, associated with a small reduction in tissue counts after one hour of ischemia. Group 3 was infused with 43 K after initiation of ischemia. Despite a reduction of 43 K counts in the ischemic area to less than one-fourth of the nonischemic site (P < 0.001), demonstration of a ''cold area'' in vivo was inconstant, occurring in only 34 percent of studies. Lead shielding did not improve accuracy. In the isolated heart the ability to detect the cold area was improved to 73 percent. However, when the left ventricle was incised and spread flat, so that low and high activity areas were contiguous rather than superimposed, a widespread area of ischemia was present without exception in the anterior wall. Use of a rectilinear scanner in seven animals failed to improve diagnostic yield; areas of reduced radioactivity were seen at the apex in normals by both techniques. Thus, while detection of low flow areas in the isolated heart is feasible by isotopic imaging early after the onset of ischemia, both extracardiac and geometric factors can contribute to qualitative and quantitative errors in vivo

  6. Kinetic parametric estimation in animal PET molecular imaging based on artificial immune network

    Chen Yuting; Ding Hong; Lu Rui; Huang Hongbo; Liu Li

    2011-01-01

    Objective: To develop an accurate,reliable method without the need of initialization in animal PET modeling for estimation of the tracer kinetic parameters based on the artificial immune network. Methods: The hepatic and left ventricular time activity curves (TACs) were obtained by drawing ROIs of liver tissue and left ventricle on dynamic 18 F-FDG PET imaging of small mice. Meanwhile, the blood TAC was analyzed by sampling the tail vein blood at different time points after injection. The artificial immune network for parametric optimization of pharmacokinetics (PKAIN) was adapted to estimate the model parameters and the metabolic rate of glucose (K i ) was calculated. Results: TACs of liver,left ventricle and tail vein blood were obtained.Based on the artificial immune network, K i in 3 mice was estimated as 0.0024, 0.0417 and 0.0047, respectively. The average weighted residual sum of squares of the output model generated by PKAIN was less than 0.0745 with a maximum standard deviation of 0.0084, which indicated that the proposed PKAIN method can provide accurate and reliable parametric estimation. Conclusion: The PKAIN method could provide accurate and reliable tracer kinetic modeling in animal PET imaging without the need of initialization of model parameters. (authors)

  7. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-01

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc-MDP, DMSA, and 18 F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, 99m Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined 99 mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and 18 F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  8. Preclinical imaging in animal models of radiation therapy; Praeklinische Bildgebung im Tiermodell bei Strahlentherapie

    Nikolaou, K.; Cyran, C.C.; Reiser, M.F.; Clevert, D.-A. [Klinikum der Ludwig-Maximilians-Universitaet, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Lauber, K. [Klinikum der Ludwig-Maximilians-Universitaet, Klinik und Poliklinik fuer Strahlentherapie, Muenchen (Germany)

    2012-03-15

    Modern radiotherapy benefits from precise and targeted diagnostic and pretherapeutic imaging. Standard imaging modalities, such as computed tomography (CT) offer high morphological detail but only limited functional information on tumors. Novel functional and molecular imaging modalities provide biological information about tumors in addition to detailed morphological information. Perfusion magnetic resonance imaging (MRI) CT or ultrasound-based perfusion imaging as well as hybrid modalities, such as positron emission tomography (PET) CT or MRI-PET have the potential to identify and precisely delineate viable and/or perfused tumor areas, enabling optimization of targeted radiotherapy. Functional information on tissue microcirculation and/or glucose metabolism allow a more precise definition and treatment of tumors while reducing the radiation dose and sparing the surrounding healthy tissue. In the development of new imaging methods for planning individualized radiotherapy, preclinical imaging and research plays a pivotal role, as the value of multimodality imaging can only be assessed, tested and adequately developed in a preclinical setting, i.e. in animal tumor models. New functional imaging modalities will play an increasing role for the surveillance of early treatment response during radiation therapy and in the assessment of the potential value of new combination therapies (e.g. combining anti-angiogenic drugs with radiotherapy). (orig.) [German] Die moderne Strahlentherapie profitiert massgeblich von einer detaillierten wie auch funktionellen praetherapeutischen Bildgebung. Die ueblicherweise praetherapeutisch eingesetzten radiologischen Standardverfahren wie die Computertomographie liefern zwar hochwertige morphologische Details, jedoch keine funktionelle Information. Es ist somit ein zunehmender Bedarf an funktionellen und molekularen Bildgebungsmodalitaeten feststellbar, mit denen ergaenzend zur morphologischen Bildgebung auch biologisch

  9. Animating Flames: Recovering Fire-Gazing as a Moving-Image Technology

    Anne Sullivan

    2017-12-01

    Full Text Available In nineteenth-century England, the industrialization of heat and light rendered fire-gazing increasingly obsolete. Fire-gazing is a form of flame-based reverie that typically involves a solitary viewer who perceives animated, moving images dissolving into and out of view in a wood or coal fire. When fire-gazing, the viewer may perceive arbitrary pictures, fantastic landscapes, or more familiar forms, such as the faces of friends and family. This article recovers fire-gazing as an early and more intimate animation technology by examining remediations of fire-gazing in print. After reviewing why an analysis of fire-gazing requires a joint literary and media history approach, I build from Michael Faraday’s mid-nineteenth-century theorization of flame as a moving image to argue that fire-gazing must be included in the history of animation technologies. I then demonstrate the uneasy connections that form between automatism, mechanical reproduction, and creativity in Leigh Hunt’s description of fire-gazing in his 1811 essay ‘A Day by the Fire’. The tension between conscious and unconscious modes of production culminates in a discussion of fireside scenes of (reanimation in Charles Dickens’s 'Our Mutual Friend' (1864–65, including those featuring one of his more famous fire-gazers, Lizzie Hexam. The article concludes with a brief discussion of the 1908 silent film 'Fireside Reminiscences' as an example of the continued remediations of fire-gazing beyond the nineteenth century.

  10. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  11. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    Angelis, Georgios I.; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-01-01

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  12. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  13. Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex

    Brasch, R.C.; Weinmann, H.J.; Wesbey, G.E.

    1984-01-01

    Gadolinium (Gd)-DTPA complex was assessed as a nuclear magnetic resonance (NMR) contrast-enhancing agent by experimentally imaging normal and diseased animals. After intravenous injection, Gd-DTPA, a strongly paramagnetic complex by virtue of unpaired electrons, was rapidly excreted into the urine of rats, producing an easily observable contrast enhancement on NMR images in kidney parenchyma and urine. Sterile soft-tissue abscesses demonstrated an obvious rim pattern of enhancement. A focus of radiation-induced brain damage in a canine model was only faintly detectable on spin-echo NMR images before contrast administration; after 0.5 mmol/kg Gd-DTPA administration, the lesion intensity increased from 3867 to 5590. In comparison, the normal brain with an intact blood-brain barrier remained unchanged in NMR characterization. Gd-DTPA is a promising new NMR contrast enhancer for the clinical assessment of renal function, of inflammatory lesions, and of focal disruption of the blood-brain barrier

  14. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study

    Mahmoud, Ahmed M; Ding, Xuan; Dutta, Debaditya; Kim, Kang; Singh, Vijay P

    2014-01-01

    Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5–14 MHz) for both imaging and heating and a high-frequency (13–24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼3 s and ∼9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (−0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (−0.124

  15. Sci-Sat AM(1): Imaging-08: Small animal APD PET detector with submillimetric resolution for molecular imaging.

    Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R

    2008-07-01

    Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.

  16. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  17. BEEtag: A Low-Cost, Image-Based Tracking System for the Study of Animal Behavior and Locomotion.

    James D Crall

    Full Text Available A fundamental challenge common to studies of animal movement, behavior, and ecology is the collection of high-quality datasets on spatial positions of animals as they change through space and time. Recent innovations in tracking technology have allowed researchers to collect large and highly accurate datasets on animal spatiotemporal position while vastly decreasing the time and cost of collecting such data. One technique that is of particular relevance to the study of behavioral ecology involves tracking visual tags that can be uniquely identified in separate images or movie frames. These tags can be located within images that are visually complex, making them particularly well suited for longitudinal studies of animal behavior and movement in naturalistic environments. While several software packages have been developed that use computer vision to identify visual tags, these software packages are either (a not optimized for identification of single tags, which is generally of the most interest for biologists, or (b suffer from licensing issues, and therefore their use in the study of animal behavior has been limited. Here, we present BEEtag, an open-source, image-based tracking system in Matlab that allows for unique identification of individual animals or anatomical markers. The primary advantages of this system are that it (a independently identifies animals or marked points in each frame of a video, limiting error propagation, (b performs well in images with complex backgrounds, and (c is low-cost. To validate the use of this tracking system in animal behavior, we mark and track individual bumblebees (Bombus impatiens and recover individual patterns of space use and activity within the nest. Finally, we discuss the advantages and limitations of this software package and its application to the study of animal movement, behavior, and ecology.

  18. Particle image velocimetry (PIV) study of rotating cylindrical filters for animal cell perfusion processes.

    Figueredo-Cardero, Alvio; Chico, Ernesto; Castilho, Leda; de Andrade Medronho, Ricardo

    2012-01-01

    In the present work, the main fluid flow features inside a rotating cylindrical filtration (RCF) system used as external cell retention device for animal cell perfusion processes were investigated using particle image velocimetry (PIV). The motivation behind this work was to provide experimental fluid dynamic data for such turbulent flow using a high-permeability filter, given the lack of information about this system in the literature. The results shown herein gave evidence that, at the boundary between the filter mesh and the fluid, a slip velocity condition in the tangential direction does exist, which had not been reported in the literature so far. In the RCF system tested, this accounted for a fluid velocity 10% lower than that of the filter tip, which could be important for the cake formation kinetics during filtration. Evidence confirming the existence of Taylor vortices under conditions of turbulent flow and high permeability, typical of animal cell perfusion RCF systems, was obtained. Second-order turbulence statistics were successfully calculated. The radial behavior of the second-order turbulent moments revealed that turbulence in this system is highly anisotropic, which is relevant for performing numerical simulations of this system. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  19. Modeling and characterization of a SPECT system with pinhole collimation for the imaging of small animals

    Auer, Benjamin

    2017-01-01

    My thesis work focuses on the development of several quantitative reconstruction methods dedicated to small animal Single Photon Emission Computed Tomography (SPECT). The latter is based on modeling the acquisition process of the 4-heads pinhole SPECT system available at Institut Pluridisciplinaire Hubert Curien (IPHC) and fully integrated to the AMISSA platform using Monte Carlo simulations. The system matrix approach, combined with the OS-EM iterative reconstruction algorithm, enabled to characterize the system performances and to compare it to the state of the art. Sensitivity of about 0,027% in the center of the field of view associated to a tomographic spatial resolution of 0, 875 ± 0, 025 mm were obtained. The major drawbacks of Monte Carlo methods led us to develop an efficient and simplified modeling of the physical effects occurring in the subject. My approach based on a system matrix decomposition, associated to a scatter pre-calculated database method, demonstrated an acceptable time for a daily imaging subject follow-up (∼ 1 h), leading to a personalized imaging reconstruction (article accepted). The inherent approximations of the scatter pre-calculated approach (first order scattering modeling and segmented emission) have a moderate impact on the recovery coefficients results, nevertheless a correction of about 10% was achieved. (author) [fr

  20. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  1. Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction

    Costet, Alexandre; Melki, Lea; Sayseng, Vincent; Hamid, Nadira; Nakanishi, Koki; Wan, Elaine; Hahn, Rebecca; Homma, Shunichi; Konofagou, Elisa

    2017-12-01

    Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n  =  5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.

  2. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-01-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  3. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Deep learning based classification for head and neck cancer detection with hyperspectral imaging in an animal model

    Ma, Ling; Lu, Guolan; Wang, Dongsheng; Wang, Xu; Chen, Zhuo Georgia; Muller, Susan; Chen, Amy; Fei, Baowei

    2017-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.

  5. An application of a new planar positron imaging system (PPIS) in a small animal. MPTP-induced parkinsonism in mouse

    Takamatsu, Hiroyuki; Noda, Akihiro; Kakiuchi, Takeharu

    2004-01-01

    Recent animal PET research has led to the development of PET scanners for small animals. A planar positron imaging system (PPIS) was newly developed to study physiological function in small animals and plants in recent years. To examine the usefulness of PPIS for functional study in small animals, we examined dopaminergic images of mouse striata in MPTP-induced parkinsonism. Male C57BL/6NCrj mice were treated with MPTP 7 days before the PPIS study. Scans were performed to measure dopamine D 1 receptor binding and dopamine transporter availability with [ 11 C]SCH23390 (about 2 MBq) and [ 11 C]β-CFT (about 2 MBq), respectively. After the PPIS study, dopamine content in the striatum was measured by high-performance liquid chromatography (HPLC). The MPTP treatment significantly reduced dopamine content in the striatum 7 days after treatment. In the MPTP-treated group, [ 11 C]β-CFT binding in the striatum was significantly decreased compared with the control group, while striatal [ 11 C]SCH23390 binding was not affected. Dopamine content in the striatum was significantly correlated with the striatal binding of [ 11 C]β-CFT. The present results suggest that PPIS is able to determine brain function in a small animal. Using PPIS, high throughput imaging of small animal brain functions could be achieved. (author)

  6. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    Brix, G. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Doll, J. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Bellemann, M.E. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Trojan, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Haberkorn, U. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmidlin, P. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany); Ostertag, H. [Research Program ``Radiological Diagnostics and Therapy``, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    1997-07-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ``deconvolution`` procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs.

  7. Use of scanner characteristics in iterative image reconstruction for high-resolution positron emission tomography studies of small animals

    Brix, G.; Doll, J.; Bellemann, M.E.; Trojan, H.; Haberkorn, U.; Schmidlin, P.; Ostertag, H.

    1997-01-01

    The purpose of this work was to improve of the spatial resolution of a whole-body PET system for experimental studies of small animals by incorporation of scanner characteristics into the process of iterative image reconstruction. The image-forming characteristics of the PET camera were characterized by a spatially variant line-spread function (LSF), which was determined from 49 activated copper-64 line sources positioned over a field of view (FOV) of 21.0 cm. During the course of iterative image reconstruction, the forward projection of the estimated image was blurred with the LSF at each iteration step before the estimated projections were compared with the measured projections. Moreover, imaging studies of a rat and two nude mice were performed to evaluate the imaging properties of our approach in vivo. The spatial resolution of the scanner perpendicular to the direction of projection could be approximated by a one-dimensional Gaussian-shaped LSF with a full-width at half-maximum increasing from 6.5 mm at the centre to 6.7 mm at a radial distance of 10.5 cm. The incorporation of this blurring kernel into the iteration formula resulted in a significantly improved spatial resolution of about 3.9 mm over the examined FOV. As demonstrated by the phantom and the animal experiments, the high-resolution algorithm not only led to a better contrast resolution in the reconstructed emission scans but also improved the accuracy for quantitating activity concentrations in small tissue structures without leading to an amplification of image noise or image mottle. The presented data-handling strategy incorporates the image restoration step directly into the process of algebraic image reconstruction and obviates the need for ill-conditioned ''deconvolution'' procedures to be performed on the projections or on the reconstructed image. In our experience, the proposed algorithm is of special interest in experimental studies of small animals. (orig./AJ). With 9 figs

  8. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  9. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  10. A method to quantify movement activity of groups of animals using automated image analysis

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  11. Preparation and animal studies of 99Tcm-TRODAT-1 as a dopamine transporter imaging agent

    Fang Ping; Wu Chunying; Chen Zhengping; Zhou Xiang; Wan Weixing; Ji Shuren

    1999-01-01

    Objective: To develop 99 Tc m labelled dopamine transporter (DAT) imaging agent 99 Tc m -(2β-[N,N'-bis(2-mercaptoethyl) ethylenediamin] methyl, 3β-(4-chlorophenyl) tropane (TRODAT-1) for evaluating changes of DAT in patients with Parkinson's disease. Methods: TRODAT-1 was synthesized from cocaine by stepwise reactions adding two aminoethanethiol units. Using SnCl 2 as reducing agent, and in the presence of Naglucoheptonate, 99 Tc m -TRODAT-1 was prepared. Animal studies have been performed in rats and normal monkeys. Results: The structure of TRODAT-1 was confirmed by IR, 1 HNMR and MS. Radiochemical purity of 99 Tc m -TRODAT-1 was over 90%, and stable for 24 h at room temperature. The partition coefficient in octanol and buffer was 132 and 154 at pH 7.0 and 7.4 respectively. Biodistribution displayed relatively low uptake in rat brain (0.28 and 0.12% ID/org at 2 min and 60 min post injection, respectively), but high uptake in liver (16.7% ID/organ at 60 min), steady uptake in kidney (maintained 3% ID/organ). The major radioactivity was excreted by hepatobiliary systems. The distribution in rat's brain showed that striatal uptake were 0.193, 0.189, 0.142 and 0.136% ID/g at 2, 30, 60 and 120 min, respectively. The ratios of striatal to cerebellar, striatal to hippocampal and striatal to cortical were 4.45 2.55 and 3.15 at 120 min post injection, respectively. Brain image studies in monkeys indicated that TRODAT was uptake and retained in the basal ganglia, where containing DAT abundantly. Ratio of regional brain uptakes of striatum/cerebellum was 1.56 as measured by SPECT imaging at 120 min. Conclusions: Above results showed the stable, neutral and lipophilic complex 99 Tc m -TRODAT-1 can cross the blood brain barrier, and be selectively concentrated by the striatal area, where containing DAT abundantly. High quality images of monkeys were also obtained. It suggested that 99 Tc m -TRODAT-1 may be a promising agent for clinical application

  12. Multi-slice Fractional Ventilation Imaging in Large Animals with Hyperpolarized Gas MRI

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Xin, Yi; Profka, Harrilla; Rajaei, Jennia; Kadlecek, Stephen; Ishii, Masaru; Rizi, Rahim R.

    2012-01-01

    Noninvasive assessment of regional lung ventilation is of critical importance in quantifying the severity of disease and evaluating response to therapy in many pulmonary diseases. This work presents for the first time the implementation of a hyperpolarized (HP) gas MRI technique for measuring whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the RF pulse decay effect from ventilatory signal build-up in the airways, regional distribution of flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no inter-scan time delay during a breath-hold at the tail-end of the ventilation sequence. Analysis was performed to assess the multi-slice ventilation model sensitivity to noise, oxygen and number of flip angle images. The optimal α value was determined based on minimizing the error in r estimation; αopt = 5–6° for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27±0.09, 0.35±0.06, 0.40±0.04 for ventral, middle and dorsal slices, respectively, (excluding conductive airways r > 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. Results demonstrate the feasibility of measurements of fractional ventilation in large species, and provides a platform to address technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of human beings. PMID:22290603

  13. Planning pesticides usage for herbal and animal pests based on intelligent classification system with image processing and neural networks

    Dimililer Kamil

    2018-01-01

    Full Text Available Pests are divided into two as herbal and animal pests in agriculture, and detection and use of minimum pesticides are quite challenging task. Last three decades, researchers have been improving their studies on these manners. Therefore, effective, efficient, and as well as intelligent systems are designed and modelled. In this paper, an intelligent classification system is designed for detecting pests as herbal or animal to use of proper pesticides accordingly. The designed system suggests two main stages. Firstly, images are processed using different image processing techniques that images have specific distinguishing geometric patterns. The second stage is neural network phase for classification. A backpropagation neural network is used for training and testing with processed images. System is tested, and experiment results show efficiency and effective classification rate. Autonomy and time efficiency within the pesticide usage are also discussed.

  14. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  15. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  16. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  17. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is

  18. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  19. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    Tsui, B. [Johns Hopkins University (United States)

    2016-06-15

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  20. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    Tsui, B.

    2016-01-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  1. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    Pierce, Greg; Battista, Jerry; Wang, Kevin; Lee, Ting-Yim

    2012-01-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D

  2. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    Balderson, M.J.; Kirkby, C. [Department of Physics and Astronomy, University of Calgary, Calgary, Alberta (Canada); Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta (Canada)

    2014-08-15

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.

  3. Sci—Fri PM: Topics — 04: What if bystander effects influence cell kill within a target volume? Potential consequences of dose heterogeneity on TCP and EUD on intermediate risk prostate patients

    Balderson, M.J.; Kirkby, C.

    2014-01-01

    In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted

  4. Animal MRI Core

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  5. Genetic parameters of Visual Image Analysis primal cut carcass traits of commercial prime beef slaughter animals.

    Moore, K L; Mrode, R; Coffey, M P

    2017-10-01

    Visual Image analysis (VIA) of carcass traits provides the opportunity to estimate carcass primal cut yields on large numbers of slaughter animals. This allows carcases to be better differentiated and farmers to be paid based on the primal cut yields. It also creates more accurate genetic selection due to high volumes of data which enables breeders to breed cattle that better meet the abattoir specifications and market requirements. In order to implement genetic evaluations for VIA primal cut yields, genetic parameters must first be estimated and that was the aim of this study. Slaughter records from the UK prime slaughter population for VIA carcass traits was available from two processing plants. After edits, there were 17 765 VIA carcass records for six primal cut traits, carcass weight as well as the EUROP conformation and fat class grades. Heritability estimates after traits were adjusted for age ranged from 0.32 (0.03) for EUROP fat to 0.46 (0.03) for VIA Topside primal cut yield. Adjusting the VIA primal cut yields for carcass weight reduced the heritability estimates, with estimates of primal cut yields ranging from 0.23 (0.03) for Fillet to 0.29 (0.03) for Knuckle. Genetic correlations between VIA primal cut yields adjusted for carcass weight were very strong, ranging from 0.40 (0.06) between Fillet and Striploin to 0.92 (0.02) between Topside and Silverside. EUROP conformation was also positively correlated with the VIA primal cuts with genetic correlation estimates ranging from 0.59 to 0.84, whereas EUROP fat was estimated to have moderate negative correlations with primal cut yields, estimates ranged from -0.11 to -0.46. Based on these genetic parameter estimates, genetic evaluation of VIA primal cut yields can be undertaken to allow the UK beef industry to select carcases that better meet abattoir specification and market requirements.

  6. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    Kamp, J [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Malyarenko, E [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); Chen, D [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Wydra, A [True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada); Maev, R [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada)

    2015-06-15

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  7. Assessment of biodistribution of 131-IPPA in cardiac and non-cardiac tissues in laboratory animals by imaging

    Moradkani, S.; Sadadi, F.; Matloubi, M.; Jalilian, A. R.; Shafaie, K.; Karimian, A. R.; Daneshvari, S.

    2007-01-01

    The main substrate of myocardial metabolism is fatty acids which constitutes the principal agent for myocardial consumption and provides almost 60-80% of the energy utilized by the heart in the resting state. Evaluation of cardiac metabolism is important for the assessment of some of cardiac disorders such as Ischemic Heart disease (IHD), cardiomyopathy (functional disorders) and Hypertensive cardiac disorders. Today, almost in all of the developed countries, PET is the first step for diagnosis and assessment of cardiac metabolic disorders. It is, however, too expensive to be used in all centers and are not available in all countries. In this regards, 123-IPPA was introduced as a substitute of PET system for evaluation of cardiac function (metabolism) and it is a complementary method for other Para-clinical methods. We decided to have a preliminary study on IPPA and due to the lack of 123-I, we had to use 131-I. The labeling of IPPA by 131-I, purification and sterilization of 131-1PPA done by the Chemistry Group of Cyclotron Ward and the bio-kinetic and imaging of rat, mice (Laboratory Animals) were performed in the Nuclear Medicine Group. After injection of a proper dose of this radiotracer, the imaging was performed in an appropriate time. In our first images, there were intensive accumulation of tracer in animals' thyroid glands, though after the intake of Lugol solution, the thyroid did not appear and we had a number of excellent images of animal heart that was the target organ

  8. Autoradiographic imaging of cerebral ischemia using hypoxic marker: Tc-99m-HL91 in animal models

    Jiang, N.Y.; Zhu, C.S.; Hu, X.K.

    2002-01-01

    Objective: To explore the possibility of Tc-99m-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods: 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected Tc-99m-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result: The ischemic territory accumulated more Tc-99m-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of Tc-99m-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion : Tc-99m-HL91 can be avidly taken up by ischemic penumbra. Tc-99m-HL91 is a potential agent for imaging hypoxic tissue, and Tc-99m-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  9. Autoradiographic imaging of cerebral ischaemia using hypoxic marker: 99mTc-HL91 in animal models

    Ningyi, J.; Cansheng, Z.; Xiaoke, H.

    2002-01-01

    Objective: To explore the possibility of 99mTc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99mTc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result The ischemic territory accumulated more 99mTc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99mTc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion 99mTc-HL91 can be avidly taken up by ischemic penumbra. 99mTc-HL91 is a potential agent for imaging hypoxic tissue, and 99mTc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  10. Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals.

    Mejia, Jorge; Miranda, Ana Claudia Camargo; Durante, Ana Claudia Ranucci; Oliveira, Larissa Rolim de; Barboza, Marycel Rosa Felisa Figols de; Rosell, Katerin Taboada; Jardim, Daniele Pereira; Campos, Alexandre Holthausen; Reis, Marilia Alves Dos; Catanoso, Marcela Forli; Galvis-Alonso, Orfa Yineth; Cabral, Francisco Romero

    2016-01-01

    To present the result of upgrading a clinical gamma-camera to be used to obtain in vivo tomographic images of small animal organs, and its application to register cardiac, renal and neurological images. An updated version of the miniSPECT upgrading device was built, which is composed of mechanical, electronic and software subsystems. The device was attached to a Discovery VH (General Electric Healthcare) gamma-camera, which was retired from the clinical service and installed at the Centro de Imagem Pré-Clínica of the Hospital Israelita Albert Einstein. The combined system was characterized, determining operational parameters, such as spatial resolution, magnification, maximum acceptable target size, number of projections, and acquisition and reconstruction times. Images were obtained with 0.5mm spatial resolution, with acquisition and reconstruction times between 30 and 45 minutes, using iterative reconstruction with 10 to 20 iterations and 4 projection subsets. The system was validated acquiring in vivo tomographic images of the heart, kidneys and brain of normal animals (mice and adult rats), using the radiopharmaceuticals technetium-labeled hexakis-2-methoxy-isobutyl isonitrile (99mTc-Sestamibi), technetium-labeled dimercaptosuccinic acid (99mTc-DMSA) and technetium-labeled hexamethyl propyleneamine oxime (99mTc-HMPAO). This kind of application, which consists in the adaptation for an alternative objective of already existing instrumentation, resulted in a low-cost infrastructure option, allowing to carry out large scale in vivo studies with enhanced quality in several areas, such as neurology, nephrology, cardiology, among others. Apresentar o resultado da adaptação de uma gama câmara clínica para uso dedicado na obtenção de imagens tomográficas in vivo de órgãos de pequenos animais de experimentação, e de sua aplicação na obtenção de imagens cardíacas, renais e neurológicas. Foi construída uma versão atualizada do dispositivo de adapta

  11. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  12. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  13. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  14. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  15. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  16. Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging.

    Gündel, Daniel; Pohle, Ulrike; Prell, Erik; Odparlik, Andreas; Thews, Oliver

    2018-06-01

    Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals. Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals. Both tracers did not bind to blood cells. [ 68 Ga]DPTA but not [ 68 Ga]EDTA showed strong binding to plasma proteins. For this reason, [ 68 Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [ 68 Ga]EDTA was 89 ± 1 %. The calculated GFR using [ 68 Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [ 68 Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR. [ 68 Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [ 68 Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.

  17. Intensity correction method customized for multi-animal abdominal MR imaging with 3 T clinical scanner and multi-array coil

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Fujii, Hirofumi; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T 1 -, T 2 -, and T 2 * -weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T 1 -, T 2 -, and T 2 * -weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T 1 -, T 2 -, or T 2 * -weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation. (author)

  18. A review of treatment planning for precision image-guided photon beam pre-clinical animal radiation studies

    Verhaegen, Frank; Hoof, Stefan van; Granton, Patrick V.; Trani, Daniela

    2014-01-01

    Recently, precision irradiators integrated with a high-resolution CT imaging device became available for pre-clinical studies. These research platforms offer significant advantages over older generations of animal irradiators in terms of precision and accuracy of image-guided radiation targeting. These platforms are expected to play a significant role in defining experiments that will allow translation of research findings to the human clinical setting. In the field of radiotherapy, but also others such as neurology, the platforms create unique opportunities to explore e.g. the synergy between radiation and drugs or other agents. To fully exploit the advantages of this new technology, accurate methods are needed to plan the irradiation and to calculate the three-dimensional radiation dose distribution in the specimen. To this end, dedicated treatment planning systems are needed. In this review we will discuss specific issues for precision irradiation of small animals, we will describe the workflow of animal treatment planning, and we will examine several dose calculation algorithms (factorization, superposition-convolution, Monte Carlo simulation) used for animal irradiation with kilovolt photon beams. Issues such as dose reporting methods, photon scatter, tissue segmentation and motion will also be discussed briefly.

  19. A low-cost universal cumulative gating circuit for small and large animal clinical imaging

    Gioux, Sylvain; Frangioni, John V.

    2008-02-01

    Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.

  20. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I.J.; George, G.N.; Gupta, M.; Chapman, D.

    2008-01-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a 'background' image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor

  1. Hybrid of two-photon microscopy and optical multimodality imaging for multi-scale imaging of small animals

    Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie

    2018-02-01

    Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.

  2. Reproducibility of small animal cine and scar cardiac magnetic resonance imaging using a clinical 3.0 tesla system

    Manka, Robert; Jahnke, Cosima; Hucko, Thomas; Dietrich, Thore; Gebker, Rolf; Schnackenburg, Bernhard; Graf, Kristof; Paetsch, Ingo

    2013-01-01

    To evaluate the inter-study, inter-reader and intra-reader reproducibility of cardiac cine and scar imaging in rats using a clinical 3.0 Tesla magnetic resonance (MR) system. Thirty-three adult rats (Sprague–Dawley) were imaged 24 hours after surgical occlusion of the left anterior descending coronary artery using a 3.0 Tesla clinical MR scanner (Philips Healthcare, Best, The Netherlands) equipped with a dedicated 70 mm solenoid receive-only coil. Left-ventricular (LV) volumes, mass, ejection fraction and amount of myocardial scar tissue were measured. Intra-and inter-observer reproducibility was assessed in all animals. In addition, repeat MR exams were performed in 6 randomly chosen rats within 24 hours to assess inter-study reproducibility. The MR imaging protocol was successfully completed in 32 (97%) animals. Bland-Altman analysis demonstrated high intra-reader reproducibility (mean bias%: LV end-diastolic volume (LVEDV), -1.7%; LV end-systolic volume (LVESV), -2.2%; LV ejection fraction (LVEF), 1.0%; LV mass, -2.7%; and scar mass, -1.2%) and high inter-reader reproducibility (mean bias%: LVEDV, 3.3%; LVESV, 6.2%; LVEF, -4.8%; LV mass, -1.9%; and scar mass, -1.8%). In addition, a high inter-study reproducibility was found (mean bias%: LVEDV, 0.1%; LVESV, -1.8%; LVEF, 1.0%; LV mass, -4.6%; and scar mass, -6.2%). Cardiac MR imaging of rats yielded highly reproducible measurements of cardiac volumes/function and myocardial infarct size on a clinical 3.0 Tesla MR scanner system. Consequently, more widely available high field clinical MR scanners can be employed for small animal imaging of the heart e.g. when aiming at serial assessments during therapeutic intervention studies

  3. Animal Detectives

    Mulvey, Bridget; Warnock, Carly

    2015-01-01

    During a two-week inquiry-based 5E learning cycle unit, children made observations and inferences to guide their explorations of animal traits and habitats (Bybee 2014). The children became "animal detectives" by studying a live-feed webcam and digital images of wolves in their natural habitat, reading books and online sources about…

  4. Small animal PET imaging of HSV1-tk gene expression with {sup 124}IVDU in liver by the hydrodynamic injection

    Song, I. H.; Lee, T. S.; Woo, S. G.; Jeong, J. H.; Kang, J. H.; Kim, K. M.; Chun, K. J.; Choi, C. W.; Lim, S. M. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The liver is an important target organ for gene transfer due to its capacity for synthesizing serum protein and its involvement in numerous genetic diseases. High level of foreign gene expression in liver can be achieved by a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), so called hydrodynamic injection. This study is aimed to evaluate liver specific-gene expression of herpes simplex virus type 1 thymidine kinase(HSV1-tk) by hydrodynamic injection and image HSV1-tk expression using {sup 124}IVDU-PET. We constructed herpes simplex virus type 1 thymidine kinase (HSV1-tk)-expressing pDNA (pHSV1-tk) modified from pEGFP-N1. Hydrodynamic injection was performed using 40 {mu}g of plasmid (pEGFP/N1 or pHSV1-tk) in 2 ml of 0.85% saline solution for 20{approx}22g mice in 5 seconds intravenously. At 1 d post-hydrodynamic injection, biodistribution study was performed at 2 h post-injection of radiolabeled IVDU, fluorescence image was obtained using optical imager and small animal PET image was acquired with {sup 124}IVDU at 2 h post-injection. After PET imaging, digital whole body autoradiography (DWBA) was performed. Expression of HSV1-tk and EGFP was confirmed by RT-PCR in each liver tissue. In liver of pHSV1-tk and pEGFP/N1 injection groups, {sup 123}IVDU uptake was 5.65%ID/g and 0.98%ID/g, respectively. {sup 123}IVDU uptake in liver of pHSV1-tk injection group showed 5.7-fold higher than that of pEGFP/N1 injection group (p<0.01). On the other hand, the liver of pEGFP/N1 injection group showed fluorescence activity. In small animal PET images, {sup 124}IVDU uptake was selectively localized in liver of pHSV1-tk injection group and also checked in DWBA, but showed minimal uptake in liver of pEGFP/N1 injection mice. Hydrodynamic injection was effective to liver-specific delivery of plasmid DNA. Small animal PET image of {sup 124}IVDU could be used in the evaluation of noninvasive reporter gene imaging in liver.

  5. [Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach].

    Drewniak, Tomasz; Rzepecki, Maciej; Juszczak, Kajetan; Kwiatek, Wojciech; Bielecki, Jakub; Zieliński, Krzysztof; Ruta, Andrzej; Czekierda, Łukasz; Moczulskis, Zbigniew

    2011-01-01

    The main problem in nephron sparing surgery (NSS) is to preserve renal tumors oncological purity during the removal of the tumor with a margin of macroscopically unchanged kidney tissue while keeping the largest possible amount of normal parenchyma of the operated kidney. The development of imaging techniques, in particular IGT (Image Guided Therapy) allows precise imaging of the surgical field and, therefore, is essential in improving the effectiveness of NSS (increase of nephron sparing with the optimal radicality). The aim of this study was to develop a method of the three-dimensional (3D) imaging of the kidney tumor and its lodge in the operated kidney using 3D laser scanner during NSS procedure. Additionally, the animal model of visualization was developed. The porcine kidney model was used to test the set built up with HD cameras and linear laser scanner connected to a laptop with graphic software (David Laser Scanner, Germany) showing the surface of the kidney and the lodge after removal the chunk of renal parenchyma. Additionally, the visualization and reconstruction was performed on animal porcine model. Moreover, 5 patients (3 women, 2 men) aged from 37 to 68 years (mean 56), diagnosed with kidney tumors in CT scans with a diameter of 3.7-6.9 cm (mean 4.9) were operated in our Department this year, scanning the surface during the treatment with the kidney tumor and kidney tumor after it is removed with a margin of renal tissue. In one case, the lodge of removed tumor was scanned. Dimensions in 3D reconstruction images of laser scans in the study of animal model and the images obtained intraoperatively were compared with the dimensions evaluated during preoperative CT scans, intraoperative measurements. Three-dimensional imaging laser scanner operating field loge resected tumor and the tumor on the kidney of animal models and during NSS treatments for patients with kidney tumors is possible in real time with an accuracy of -2 mm do +9 mm (+/- 3 mm). The

  6. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging

    Yang Yongfeng; Tai Yuanchuan; Siegel, Stefan; Newport, Danny F; Bai, Bing; Li, Quanzheng; Leahy, Richard M; Cherry, Simon R

    2004-01-01

    MicroPET II is a newly developed PET (positron emission tomography) scanner designed for high-resolution imaging of small animals. It consists of 17 640 LSO crystals each measuring 0.975 x 0.975 x 12.5 mm 3 , which are arranged in 42 contiguous rings, with 420 crystals per ring. The scanner has an axial field of view (FOV) of 4.9 cm and a transaxial FOV of 8.5 cm. The purpose of this study was to carefully evaluate the performance of the system and to optimize settings for in vivo mouse and rat imaging studies. The volumetric image resolution was found to depend strongly on the reconstruction algorithm employed and averaged 1.1 mm (1.4 μl) across the central 3 cm of the transaxial FOV when using a statistical reconstruction algorithm with accurate system modelling. The sensitivity, scatter fraction and noise-equivalent count (NEC) rate for mouse- and rat-sized phantoms were measured for different energy and timing windows. Mouse imaging was optimized with a wide open energy window (150-750 keV) and a 10 ns timing window, leading to a sensitivity of 3.3% at the centre of the FOV and a peak NEC rate of 235 000 cps for a total activity of 80 MBq (2.2 mCi) in the phantom. Rat imaging, due to the higher scatter fraction, and the activity that lies outside of the field of view, achieved a maximum NEC rate of 24 600 cps for a total activity of 80 MBq (2.2 mCi) in the phantom, with an energy window of 250-750 keV and a 6 ns timing window. The sensitivity at the centre of the FOV for these settings is 2.1%. This work demonstrates that different scanner settings are necessary to optimize the NEC count rate for different-sized animals and different injected doses. Finally, phantom and in vivo animal studies are presented to demonstrate the capabilities of microPET II for small-animal imaging studies

  7. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were

  8. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  9. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  10. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  11. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning.......To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  12. QUANTITATIVE FLOW-ANALYSIS AROUND AQUATIC ANIMALS USING LASER SHEET PARTICLE IMAGE VELOCIMETRY

    STAMHUIS, EJ; VIDELER, JJ

    Two alternative particle image velocimetry (PIV) methods have been developed, applying laser light sheet illumination of particle-seeded flows around marine organisms, Successive video images, recorded perpendicular to a light sheet parallel to the main stream, were digitized and processed to map

  13. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  14. Autoradiographic imaging of cerebral ischemia using hypoxic marker: 99mTc-HL91 in animal models

    Zhu Cansheng; Jiang Ningyi; Hu Xiaoke

    2001-01-01

    Objective: To explore the possibility of 99m Tc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods; 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99m Tc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Results: The ischemic territory accumulated more 99m Tc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99m Tc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. The OD ratios (T/N) were 1.2691±0.0189, 1.3542±0.0119, 2.1201±0.0616, 2.5369±0.1214 respectively at 1, 2, 4 hours after 99m Tc-HL91 injection. Conclusion: 99m Tc-HL91 can be avidly taken up by ischemic penumbra. 99m Tc-HL91 is a potential agent for imaging hypoxic tissue, and 99m Tc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  15. Radiolabeling optimization and characterization of (68)Ga labeled DOTA-polyamido-amine dendrimer conjugate - Animal biodistribution and PET imaging results.

    Ghai, Aanchal; Singh, Baljinder; Panwar Hazari, Puja; Schultz, Michael K; Parmar, Ambika; Kumar, Pardeep; Sharma, Sarika; Dhawan, Devinder; Kumar Mishra, Anil

    2015-11-01

    The present study describes the optimization of (68)Ga radiolabeling with PAMAM dendrimer-DOTA conjugate. A conjugate (PAMAM-DOTA) concentration of 11.69µM, provided best radiolabeling efficiency of more than 93.0% at pH 4.0, incubation time of 30.0min and reaction temperature ranging between 90 and 100°C. The decay corrected radiochemical yield was found to be 79.4±0.01%. The radiolabeled preparation ([(68)Ga]-DOTA-PAMAM-D) remained stable (radiolabeling efficiency of 96.0%) at room temperature and in serum for up to 4-h. The plasma protein binding was observed to be 21.0%. After intravenous administration, 50.0% of the tracer cleared from the blood circulation by 30-min and less than 1.0% of the injected activity remained in blood by 1.0h. The animal biodistribution studies demonstrated that the tracer excretes through the kidneys and about 0.33% of the %ID/g accumulated in the tumor at 1h post injection. The animal organ's biodistribution data was supported by animal PET imaging showing good 'non-specific' tracer uptake in tumor and excretion is primarily through kidneys. Additionally, DOTA-PAMAM-D conjugation with αVβ3 receptors targeting peptides and drug loading on the dendrimers may improve the specificity of the (68)Ga labeled product for imaging and treating angiogenesis respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fostering Multimedia Learning of Science: Exploring the Role of an Animated Agent's Image

    Dunsworth, Qi; Atkinson, Robert K.

    2007-01-01

    Research suggests that students learn better when studying a picture coupled with narration rather than on-screen text in a computer-based multimedia learning environment. Moreover, combining narration with the visual presence of an animated pedagogical agent may also encourage students to process information deeper than narration or on-screen…

  17. Images of Couples and Families in Disney Feature-Length Animated Films.

    Tanner, Litsa Renee; Haddock, Shelley A.; Zimmerman, Toni Schindler; Lund, Lori K.

    2003-01-01

    Examines themes about couples and families portrayed in 26 Disney animated classics and recent movies. Four overarching themes were identified: family relationships are a strong priority; families are diverse, but the diversity is often simplified; fathers are elevated, while mothers are marginalized; and couple relationships are created by…

  18. A digital data acquisition scheme for SPECT and PET small animal imaging detectors for Theranostic applications

    Georgiou, M.; Fysikopoulos, E.; Loudos, G.

    2017-11-01

    Nanoparticle based drug delivery is considered as a new, promising technology for the efficient treatment of various diseases. When nanoparticles are radiolabelled it is possible to image them, using molecular imaging techniques. The use of magnetic nanoparticles in hyperthermia is one of the most promising nanomedicine directions and requires the accurate, non-invasive, monitoring of temperature increase and drug release. The combination of imaging and therapy has opened the very promising Theranostics domain. In this work, we present a digital data acquisition scheme for nuclear medicine dedicated detectors for Theranostic applications.

  19. Is it beneficial to selectively boost high-risk tumor subvolumes? A comparison of selectively boosting high-risk tumor subvolumes versus homogeneous dose escalation of the entire tumor based on equivalent EUD plans

    Kim, Yusung; To me, Wolfgang A.

    2008-01-01

    Purpose. To quantify and compare expected local tumor control and expected normal tissue toxicities between selective boosting IMRT and homogeneous dose escalation IMRT for the case of prostate cancer. Methods. Four different selective boosting scenarios and three different high-risk tumor subvolume geometries were designed to compare selective boosting and homogeneous dose escalation IMRT plans delivering the same equivalent uniform dose (EUD) to the entire PTV. For each scenario, differences in tumor control probability between both boosting strategies were calculated for the high-risk tumor subvolume and remaining low-risk PTV, and were visualized using voxel based iso-TCP maps. Differences in expected rectal and bladder complications were quantified using radiobiological indices (generalized EUD (gEUD) and normal tissue complication probability (NTCP)) as well as %-volumes. Results. For all investigated scenarios and high-risk tumor subvolume geometries, selective boosting IMRT improves expected TCP compared to homogeneous dose escalation IMRT, especially when lack of control of the high-risk tumor subvolume could be the cause for tumor recurrence. Employing, selective boosting IMRT significant increases in expected TCP can be achieved for the high-risk tumor subvolumes. The three conventional selective boosting IMRT strategies, employing physical dose objectives, did not show significant improvement in rectal and bladder sparing as compared to their counterpart homogeneous dose escalation plans. However, risk-adaptive optimization, utilizing radiobiological objective functions, resulted in reduction in NTCP for the rectum when compared to its corresponding homogeneous dose escalation plan. Conclusions. Selective boosting is a more effective method than homogeneous dose escalation for achieving optimal treatment outcomes. Furthermore, risk-adaptive optimization increases the therapeutic ratio as compared to conventional selective boosting IMRT

  20. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  1. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  2. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  3. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  4. Image quality assesment using NEMA NU 4/2008 standards in small animal PET scanner

    Gontijo, Rodrigo M.G.; Ferreira, Andréa V.; Silva, Juliana B.; Mamede, Marcelo

    2017-01-01

    In Brazil, there are few micro PET in use and a quality control protocols standardization are needed to harmonize their use in the research field. Thus, the purpose of this study is to characterize the image quality performance of the micro PET scanner (Lab PET 4, GE healthcare Technologies, Waukesha, WI) using the NEMA NU 4/ 2008 standards and specific phantom. The NEMA image-quality (IQ) phantom consists of 3 different regions to analyze distinct characteristics: image noise (%SD), expressed as percentage SD in a uniform region (%SD), recovery coefficient (RC) and Spill-over (SOR) in air and water. The IQ phantom was filled with 18 F-FDG calibrated at the beginning of acquisition, placed in the center of the field-of-view (FOV) and measured with the typical whole body imaging protocol. The images were reconstructed with different reconstruction methods (FBP-2D; MLEM-3D and OSEM-3D); with and without high resolution (HR) when possible. The results were compared. The LabPET 4 system produces appropriate image and with performance according to the literature. The present study is an initial step to verify the NEMA NU 4/2008 use in the Brazilian scenario for further standardization. (author)

  5. Image quality assesment using NEMA NU 4/2008 standards in small animal PET scanner

    Gontijo, Rodrigo M.G.; Ferreira, Andréa V.; Silva, Juliana B.; Mamede, Marcelo, E-mail: rodrigo.gontijo@cdtn.br, E-mail: rodrigogadelhagontijo1@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In Brazil, there are few micro PET in use and a quality control protocols standardization are needed to harmonize their use in the research field. Thus, the purpose of this study is to characterize the image quality performance of the micro PET scanner (Lab PET 4, GE healthcare Technologies, Waukesha, WI) using the NEMA NU 4/ 2008 standards and specific phantom. The NEMA image-quality (IQ) phantom consists of 3 different regions to analyze distinct characteristics: image noise (%SD), expressed as percentage SD in a uniform region (%SD), recovery coefficient (RC) and Spill-over (SOR) in air and water. The IQ phantom was filled with {sup 18}F-FDG calibrated at the beginning of acquisition, placed in the center of the field-of-view (FOV) and measured with the typical whole body imaging protocol. The images were reconstructed with different reconstruction methods (FBP-2D; MLEM-3D and OSEM-3D); with and without high resolution (HR) when possible. The results were compared. The LabPET 4 system produces appropriate image and with performance according to the literature. The present study is an initial step to verify the NEMA NU 4/2008 use in the Brazilian scenario for further standardization. (author)

  6. Prevalencia de enteroparasitosis y factores asociados en niños escolares de la unidad educativa “Eudófilo Álvarez” cantón Sucúa, comunidad de Cumbatza, mayo- octubre 2014.

    Espinoza Díaz, Cristóbal Ignacio; Astudillo González, Odalis; Cabrera Medina, Henry

    2014-01-01

    La parasitosis intestinal es responsable de una morbilidad considerable en el mundo entero, se presenta frecuentemente con síntomas no específicos y altas tasas de prevalencia. Objetivo: Establecer la prevalencia y factores asociados de enteroparásitos en los niños en edad escolar de la Unidad Educativa “Eudófilo Álvarez” comunidad de Cumbatza, cantón Sucúa en el período de Mayo- Octubre de 2014, previo a un Análisis Situacional de Salud realizado. Materiales y métodos: Se realizó un e...

  7. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  8. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-01-01

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm 2 cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be achieved

  9. Validation of an imageable surgical resection animal model of Glioblastoma (GBM).

    Sweeney, Kieron J; Jarzabek, Monika A; Dicker, Patrick; O'Brien, Donncha F; Callanan, John J; Byrne, Annette T; Prehn, Jochen H M

    2014-08-15

    Glioblastoma (GBM) is the most common and malignant primary brain tumour having a median survival of just 12-18 months following standard therapy protocols. Local recurrence, post-resection and adjuvant therapy occurs in most cases. U87MG-luc2-bearing GBM xenografts underwent 4.5mm craniectomy and tumour resection using microsurgical techniques. The cranial defect was repaired using a novel modified cranial window technique consisting of a circular microscope coverslip held in place with glue. Immediate post-operative bioluminescence imaging (BLI) revealed a gross total resection rate of 75%. At censor point 4 weeks post-resection, Kaplan-Meier survival analysis revealed 100% survival in the surgical group compared to 0% in the non-surgical cohort (p=0.01). No neurological defects or infections in the surgical group were observed. GBM recurrence was reliably imaged using facile non-invasive optical bioluminescence (BLI) imaging with recurrence observed at week 4. For the first time, we have used a novel cranial defect repair method to extend and improve intracranial surgical resection methods for application in translational GBM rodent disease models. Combining BLI and the cranial window technique described herein facilitates non-invasive serial imaging follow-up. Within the current context we have developed a robust methodology for establishing a clinically relevant imageable GBM surgical resection model that appropriately mimics GBM recurrence post resection in patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects.

    Wang, Depeng; Lee, Dong Hyeun; Huang, Haoyuan; Vu, Tri; Lim, Rachel Su Ann; Nyayapathi, Nikhila; Chitgupi, Upendra; Liu, Maggie; Geng, Jumin; Xia, Jun; Lovell, Jonathan F

    2018-08-01

    Photoacoustic computed tomography (PACT) is an emerging imaging modality. While many contrast agents have been developed for PACT, these typically cannot immediately be used in humans due to the lengthy regulatory process. We screened two hundred types of ingestible foodstuff samples for photoacoustic contrast with 1064 nm pulse laser excitation, and identified roasted barley as a promising candidate. Twenty brands of roasted barley were further screened to identify the one with the strongest contrast, presumably based on complex chemical modifications incurred during the roasting process. Individual roasted barley particles could be detected through 3.5 cm of chicken-breast tissue and through the whole hand of healthy human volunteers. With PACT, but not ultrasound imaging, a single grain of roasted barley was detected in a field of hundreds of non-roasted particles. Upon oral administration, roasted barley enabled imaging of the gut and peristalsis in mice. Prepared roasted barley tea could be detected through 2.5 cm chicken breast tissue. When barley tea was administered to humans, photoacoustic imaging visualized swallowing dynamics in healthy volunteers. Thus, roasted barley represents an edible foodstuff that should be considered for photoacoustic contrast imaging of swallowing and gut processes, with immediate potential for clinical translation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  12. Hybrid image and blood sampling input function for quantification of small animal dynamic PET data

    Shoghi, Kooresh I.; Welch, Michael J.

    2007-01-01

    We describe and validate a hybrid image and blood sampling (HIBS) method to derive the input function for quantification of microPET mice data. The HIBS algorithm derives the peak of the input function from the image, which is corrected for recovery, while the tail is derived from 5 to 6 optimally placed blood sampling points. A Bezier interpolation algorithm is used to link the rightmost image peak data point to the leftmost blood sampling point. To assess the performance of HIBS, 4 mice underwent 60-min microPET imaging sessions following a 0.40-0.50-mCi bolus administration of 18 FDG. In total, 21 blood samples (blood-sampled plasma time-activity curve, bsPTAC) were obtained throughout the imaging session to compare against the proposed HIBS method. MicroPET images were reconstructed using filtered back projection with a zoom of 2.75 on the heart. Volumetric regions of interest (ROIs) were composed by drawing circular ROIs 3 pixels in diameter on 3-4 transverse planes of the left ventricle. Performance was characterized by kinetic simulations in terms of bias in parameter estimates when bsPTAC and HIBS are used as input functions. The peak of the bsPTAC curve was distorted in comparison to the HIBS-derived curve due to temporal limitations and delay in blood sampling, which affected the rates of bidirectional exchange between plasma and tissue. The results highlight limitations in using bsPTAC. The HIBS method, however, yields consistent results, and thus, is a substitute for bsPTAC

  13. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  14. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    Kabuki, Shigeto, E-mail: kabuki@cr.scphys.kyoto-u.ac.j [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kimura, Hiroyuki; Amano, Hiroo [Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kawashima, Hidekazu [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ueda, Masashi [Radioisotopes Research Labaoratory, Kyoto University Hospital, Kyoto 606-8507 (Japan); Okada, Tomohisa [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki [Department of Radiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji [Application Development Office, Hitachi Medical Corporation, Chiba 277-0804 (Japan); Ogawa, Koichi [Department of Electronic Informatics, Faculty of Engineering, Hosei University, Tokyo 184-8584 (Japan)

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  15. 3D absorbed dose calculation with GATE Monte Carlo simulation for the image-guided radiation therapy dedicated to the small animal

    Noblet, Caroline

    2014-01-01

    Innovating irradiators dedicated to small animal allow to mimic clinical treatments in image-guided radiation therapy. Clinical practice is scaled down to the small animal by reducing beam dimensions (from cm to mm) and energy (from MeV to keV). Millimeter medium energy beams ( [fr

  16. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  17. Experimental results and first {sup 22}Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Gallin-Martel, M.-L., E-mail: mlgallin@lpsc.in2p3.fr [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France); Grondin, Y. [Laboratoire TIMC/IMAG, CNRS et Universite Joseph Fourier, Pavillon Taillefer 38706 La Tronche Cedex (France); Gac, N. [Laboratoire L2S, UMR 8506 CNRS - SUPELEC - Univ Paris-Sud, Gif sur Yvette F-91192 (France); Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, 53 avenue des Martyrs 38026 Grenoble Cedex (France)

    2012-08-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a {sup 22}Na source placed in the experimental setup.

  18. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    Gallin-Martel, M.-L.; Grondin, Y.; Gac, N.; Carcagno, Y.; Gallin-Martel, L.; Grondin, D.; Marton, M.; Muraz, J.-F; Rossetto, O.; Vezzu, F.

    2012-01-01

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22 Na source placed in the experimental setup.

  19. Image-guided small animal radiation research platform: calibration of treatment beam alignment

    Matinfar, Mohammad; Iordachita, Iulian; Kazanzides, Peter; Ford, Eric; Wong, John

    2009-01-01

    Small animal research allows detailed study of biological processes, disease progression and response to therapy with the potential to provide a natural bridge to the clinical environment. The small animal radiation research platform (SARRP) is a portable system for precision irradiation with beam sizes down to approximately 0.5 mm and optimally planned radiation with on-board cone-beam CT (CBCT) guidance. This paper focuses on the geometric calibration of the system for high-precision irradiation. A novel technique for the calibration of the treatment beam is presented, which employs an x-ray camera whose precise positioning need not be known. Using the camera system we acquired a digitally reconstructed 3D 'star shot' for gantry calibration and then developed a technique to align each beam to a common isocenter with the robotic animal positioning stages. The calibration incorporates localization by cone-beam CT guidance. Uncorrected offsets of the beams with respect to the calibration origin ranged from 0.4 mm to 5.2 mm. With corrections, these alignment errors can be reduced to the sub-millimeter range. The calibration technique was used to deliver a stereotactic-like arc treatment to a phantom constructed with EBT Gafchromic films. All beams were shown to intersect at a common isocenter with a measured beam (FWHM) of approximately 1.07 mm using the 0.5 mm collimated beam. The desired positioning accuracy of the SARRP is 0.25 mm and the results indicate an accuracy of 0.2 mm. To fully realize the radiation localization capabilities of the SARRP, precise geometric calibration is required, as with any such system. The x-ray camera-based technique presented here provides a straightforward and semi-automatic method for system calibration.

  20. A pancreas imaging agent-131I-HIPDM: the animal experiment and preliminary clinical application

    Shao Hesheng

    1988-01-01

    131 I-HIPDM has been used clinically for studying regional cerebral perfusion. The [ 131 I] HIPDM was prepared in a kit. The labelling yields were consistently more than 95%, as analyzed by the TLC-Silica gel. The labelled compound is stable in vitro and in vivo. S D Strain rats (170-220 g) and mice (18-22 g) were used. The pancreatic uptake of [ 131 I] HIPDM is rather slow in mice and rats. At 8 hr after iv, the pancreas activity and the pancreas to liver (P/L) ratio are highest in mice and rats. The effect of carrier loading dose from 0.010 to 6.0 mg/kg on blodistribution in mice has been studied. The liver uptake was increased by adding carrier HIPDM. The result indicates that administration between 0.010 and 0.05 mg/kg carrier dose is most suitable for the pancreas imaging. Gamma camera imaging of dog at 6 hr after iv with 300 μCi [ 131 I] HIPMD, 0.05 mg/kg body weight showed clear pancreas image. The P/L ratio of the dog is 0.40. Preliminary clinical tests were satisfactory. Using 1 to 1.5 mCi of [ 131 I] HIPDM, 0.05 mg/kg, the pancreas imaging was operated in 4 cases of volunteers and pancreas cyst respectively with the good diagnostic quality. The authors are of the opinion that this pancreas imaging agent may have potential value for routine use

  1. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  2. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.

  3. An animal experimental study of transient synovitis of hip using three phase bone imaging

    Liang Jiugen; Lu Bing; Lu Xiaohu; Liu Shangli

    1994-01-01

    A model of transient synovitis was established by means of injecting noradrenaline (NA) into the joint cavity of young dogs. Radionuclide three phase bone imaging was then used to observe the local blood supply of femoral head and histological examination was used to understand the natural course of the disease process. The result showed that there were transient synovitis of the hip and decrease of blood supply in the affected femoral head after NA injection, but the changes gradually returned to normal after 4 weeks. No evidence of femoral head necrosis had been noticed. It is suggested that serial quantitative analysis of three phase bone imaging may have good clinical value in the early diagnosis transient hip synovitis, as well as in the assessment of the stage of the disease etc

  4. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  5. Programmable electronics for low-cost small animal PET/SPECT imaging

    Guerra, Pedro; Rubio, Jose L.; Kontaxakis, Georgios; Ortuno, Juan E.; Ledesma, Maria J.; Santos, Andres

    2006-01-01

    This work describes and characterizes the detector module of a novel positron/single photon emission (PET/SPECT) scanner for small animals. This detector consists of a YAP/LSO phoswich, a photomultiplier and acquisition front-end, and will be used as building block of a low-cost hybrid tomograph. The front-end processes data sampled at a fixed frequency, where a state-of-the-art programmable device estimates scintillation pulse parameters by means of digital algorithms. Finally, the estimated properties of the proposed detector module are used to model a rotating four-head scanner. The performance of the proposed PET/SPECT scanner is estimated and first results are promising in both modalities, deserving further research and optimization

  6. Diffusion-weighted MR imaging in animal modil with acute ischemic brain infarction : evaluation of reversible brain injury

    Byun, Woo Mok; Chang, Han Won; Cho, Inn Ho; Hah, Jung Sang; Sung, Eon Gi

    2001-01-01

    To determine whether the analysis of abnormally high signal intensities in ischemic tissue, as revealed by diffusion-weighted MR imaging (DWI) can be used to evaluate reversible brain lesions in a cat model of acute ischemia. Ten cats were divided into two groups of five (Group I and Group II), and in all animals the middle cerebral artery was temporarily occluded. Group I underwent T2-DWI 30 minutes after occlusion, and Group II 120 minutes after occlusion. In both groups, DWI was performed one hour and 24 hours after reperfusion (at one hour, non-T2-weighted; at 24 hours, T2-weighted). Both occlusion and reperfusion were monitored by 99m TC-ECD brain perfusion SPECT. All animals were sacrificed 24 hours later and their brain tissue was stained with TTC. Signal intensity ratios (SIR, signifying average signal intensity within the region of interest divided by that in the contralateral, nonischemic, homologous region) of the two groups, as seen on DWI were compared. The percentage of hemispheric lesions occurring in the two groups was also compared. SIR after occlusion of the middle cerebral artery was 1.29 in Group I and 1.59 in Group II. Twenty-four hours after reperfusion, SIR in Group I was higher than in Group II (p<0.01). After occlusion and reperfusion, the percentage of hemispheric lesions in Group I was less than in Group II. For the latter, the percentage of these lesions revealed by TTC staining and T2-weighted imaging was 48% and 59%, respectively, findings distinctly different from those for Group I. In addition, in group I, infarction was revealed by neither TTC staining nor T2-weighted imaging (p<0.01). The use of DWI to evaluate signal intensity ratios can help determine whether or not brain injury after temporary cerebral ischemia is reversible

  7. An original emission tomograph for in vivo brain imaging of small animals

    Ochoa, A.V.; Ploux, L.; Mastrippolito, R.

    1996-01-01

    The principle of a new tomograph TOHR dedicated for small volume analysis with very high resolution is presented in this paper. We use uncorrelated multi-photons (X or gamma rays) radioisotopes and a large solid angle focusing collimator to make tomographic imaging without reconstruction algorithm. With this original device, detection efficiency and resolution are independent and submillimetric resolution can be achieved. A feasibility study shows that, made achieve the predicted performances of TOHR. We discuss its potential in rat brain tomography by simulating a realistic neuropharmacological experiment using a 1.4 mm resolution prototype of TOHR under development

  8. The Combination of In vivo 124I-PET and CT Small Animal Imaging for Evaluation of Thyroid Physiology and Dosimetry

    Henrik H. El-Ali

    2012-06-01

    Full Text Available Objective: A thyroid rat model combining functional and anatomical information would be of great benefit for better modeling of thyroid physiology and for absorbed dose calculations. Our aim was to show that 124I-PET and CT small animal imaging are useful as a combined model for studying thyroid physiology and dose calculation. Methods: Seven rats were subjects for multiple thyroid 124I-imaging and CT-scans. S-values [mGy/MBqs] for different thyroid sizes were simulated. A phantom with spheres was designed for validation of performances of the small animal PET and CT imaging systems. Results: Small animal image-based measurements of the activity amount and the volumes of the spheres with a priori known volumes showed a good agreement with their corresponding actual volumes. The CT scans of the rats showed thyroid volumes from 34–70 mL. Conclusions: The wide span in volumes of thyroid glands indicates the importance of using an accurate volume-measuring technique such as the small animal CT. The small animal PET system was on the other hand able to accurately estimate the activity concentration in the thyroid volumes. We conclude that the combination of the PET and CT image information is essential for quantitative thyroid imaging and accurate thyroid absorbed dose calculation.

  9. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    Socha, J.; Lee, W.; Chicago Field Museum; Arizona State Univ.

    2007-01-01

    Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage

  10. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-09-01

    A rotatory dual-head positron emission tomography (PET) system with 90o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350-650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  11. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-01-01

    A rotatory dual-head positron emission tomography (PET) system with 90 o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350–650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  12. Application of a semi-automatic ROI setting system for brain PET images to animal PET studies

    Kuge, Yuji; Akai, Nobuo; Tamura, Koji

    1998-01-01

    ProASSIST, a semi-automatic ROI (region of interest) setting system for human brain PET images, has been modified for use with the canine brain, and the performance of the obtained system was evaluated by comparing the operational simplicity for ROI setting and the consistency of ROI values obtained with those by a conventional manual procedure. Namely, we created segment maps for the canine brain by making reference to the coronal section atlas of the canine brain by Lim et al., and incorporated them into the ProASSIST system. For the performance test, CBF (cerebral blood flow) and CMRglc (cerebral metabolic rate in glucose) images in dogs with or without focal cerebral ischemia were used. In ProASSIST, brain contours were defined semiautomatically. In the ROI analysis of the test image, manual modification of the contour was necessary in half cases examined (8/16). However, the operation was rather simple so that the operation time per one brain section was significantly shorter than that in the manual operation. The ROI values determined by the system were comparable with those by the manual procedure, confirming the applicability of the system to these animal studies. The use of the system like the present one would also merit the more objective data acquisition for the quantitative ROI analysis, because no manual procedure except for some specifications of the anatomical features is required for ROI setting. (author)

  13. Design and implementation of a simple multinuclear MRI system for ultra high-field imaging of animals

    Choi, Chang-Hoon; Ha, YongHyun; Veeraiah, Pandichelvam; Felder, Jörg; Möllenhoff, Klaus; Shah, N. Jon

    2016-12-01

    Non-proton MRI has recently garnered gathering interest with the increased availability of ultra high-field MRI system. Assuming the availability of a broadband RF amplifier, performing multinuclear MR experiments essentially requires additional hardware, such as an RF resonator and a T/R switch for each nucleus. A double- or triple-resonant RF probe is typically constructed using traps or PIN-diode circuits, but this approach degrades the signal-to-noise ratio (SNR) and image quality compared to a single-resonant coil and this is a limiting factor. In this work, we have designed the required hardware for multinuclear MR imaging experiments employing six single-resonant coil sets and a purpose-built animal bed; these have been implemented into a home-integrated 9.4 T preclinical MRI scanner. System capabilities are demonstrated by distinguishing concentration differences and sensitivity of X-nuclei imaging and spectroscopy without SNR penalty for any nuclei, no subject interruption and no degradation of the static shim conditions.

  14. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  15. Histopathology Image Analysis in Two Long-Term Animal Experiments with Helical Flow Total Artificial Heart.

    Wotke, Jiri; Homolka, Pavel; Vasku, Jaromír; Dobsak, Petr; Palanova, Petra; Mrkvicova, Veronika; Konecny, Petr; Soska, Vladimir; Pohanka, Michal; Novakova, Marie; Yurimoto, Terumi; Saito, Itsuro; Inoue, Yusuke; Isoyama, Takashi; Abe, Yusuke

    2016-12-01

    Histopathological analysis can provide important information in long-term experiments with total artificial heart (TAH). Recently, a new type of blood pump, the helical flow total artificial heart (HF-TAH) was developed. This study aimed to investigate the changes in selected vital organs in animal experiments with implanted HF-TAH. Samples from lung, liver, and kidneys from two female goats (No. 1301 and No. 1304) with implanted HF-TAH were analyzed. Tissue samples were fixed in 10% formaldehyde and 4 µm thick transverse sections were stained with hematoxylin-eosin (HE). Additional staining was done for detection of connective tissue (Masson-Goldner stain) and for detection of iron (hemosiderin) deposits (Perls stain). Sections were scanned at 100× and 500× magnification with a light microscope. Experiment no. 1301 survived 100 days (cause of termination was heavy damage of the right pump); experimental goat no.1304 survived 68 days and was sacrificed due to severe right hydrodynamic bearing malfunction. Histopathological analysis of liver samples proved signs of chronic venostasis with limited focal necrotic zones. Dilated tubules, proteinaceous material in tubular lumen, and hemosiderin deposits were detected in kidney samples. Contamination of the organs by embolized micro-particles was suspected at the autopsy after discovery of visible damage (scratches) of the pump impeller surface (made from titanium alloy) in both experiments. Sporadic deposits of foreign micro-particles (presumably titanium) were observed in most of the analyzed parenchymal organs. However, the described deposits were not in direct connection with inflammatory reactions in the analyzed tissues. Histopathological analysis showed the presence of minimal contamination of the lung, kidney, and liver tissue samples by foreign material (titanium very likely). The analysis showed only limited pathological changes, especially in liver and kidneys, which might be attributed to the influence of

  16. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging.

    Hsu, Vivian M; Wes, Ari M; Tahiri, Youssef; Cornman-Homonoff, Joshua; Percec, Ivona

    2014-09-01

    The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  17. The Alkaloid Ageladine A, Originally Isolated from Marine Sponges, Used for pH-Sensitive Imaging of Transparent Marine Animals

    Ulf Bickmeyer

    2012-01-01

    Full Text Available The brominated pyrrole-imidazole Ageladine A was used for live imaging of the jellyfish (jellies Nausithoe werneri, the sea anemone Metridium senile and the flatworm Macrostomum lignano. The fluorescence properties of Ageladine A allow for estimation of pH values in tissue and organs in living animals. The results showed that Nausithoe werneri had the most acidic areas in the tentacles and close to the mouth (pH 4–6.5, Metridium senile harbours aggregates of high acidity in the tentacles (pH 5 and in Macrostomum lignano, the rhabdoids, the gonads and areas close to the mouth were the most acidic with values down to pH 5.

  18. Small animal positron emission tomography with gas detectors. Simulations, prototyping, and quantitative image reconstruction

    Vernekohl, Don

    2014-04-15

    plain surfaces, predicted by simulations, was observed. Third, as the production of photon converters is time consuming and expensive, it was investigated whether or not thin gas detectors with single-lead-layer-converters would be an alternative to the HIDAC converter design. Following simulations, those concepts potentially offer impressive coincidence sensitivities up to 24% for plain lead foils and up to 40% for perforated lead foils. Fourth, compared to other PET scanner systems, the HIDAC concept suffers from missing energy information. Consequently, a substantial amount of scatter events can be found within the measured data. On the basis of image reconstruction and correction techniques the influence of random and scatter events and their characteristics on several simulated phantoms were presented. It was validated with the HIDAC simulator that the applied correction technique results in perfectly corrected images. Moreover, it was shown that the simulator is a credible tool to provide quantitatively improved images. Fifth, a new model for the non-collinearity of the positronium annihilation was developed, since it was observed that the model implemented in the GATE simulator does not correspond to the measured observation. The input parameter of the new model was trimmed to match to a point source measurement. The influence of both models on the spatial resolution was studied with three different reconstruction methods. Furthermore, it was demonstrated that the reduction of converter depth, proposed for increased sensitivity, also has an advantage on the spatial resolution and that a reduction of the FOV from 17 cm to 4 cm (with only 2 detector heads) results in a remarkable sensitivity increase of 150% and a substantial increase in spatial resolution. The presented simulations for the spatial resolution analysis used an intrinsic detector resolution of 0.125 x 0.125 x 3.2 mm{sup 3} and were able to reach fair resolutions down to 0.9-0.5 mm, which is an

  19. Small animal magnetic resonance imaging: an efficient tool to assess liver volume and intrahepatic vascular anatomy.

    Melloul, Emmanuel; Raptis, Dimitri A; Boss, Andreas; Pfammater, Thomas; Tschuor, Christoph; Tian, Yinghua; Graf, Rolf; Clavien, Pierre-Alain; Lesurtel, Mickael

    2014-04-01

    To develop a noninvasive technique to assess liver volumetry and intrahepatic portal vein anatomy in a mouse model of liver regeneration. Fifty-two C57BL/6 male mice underwent magnetic resonance imaging (MRI) of the liver using a 4.7 T small animal MRI system after no treatment, 70% partial hepatectomy (PH), or selective portal vein embolization. The protocol consisted of the following sequences: three-dimensional-encoded spoiled gradient-echo sequence (repetition time per echo time 15 per 2.7 ms, flip angle 20°) for volumetry, and two-dimensional-encoded time-of-flight angiography sequence (repetition time per echo time 18 per 6.4 ms, flip angle 80°) for vessel visualization. Liver volume and portal vein segmentation was performed using a dedicated postprocessing software. In animals with portal vein embolization, portography served as reference standard. True liver volume was measured after sacrificing the animals. Measurements were carried out by two independent observers with subsequent analysis by the Cohen κ-test for interobserver agreement. MRI liver volumetry highly correlated with the true liver volume measurement using a conventional method in both the untreated liver and the liver remnant after 70% PH with a high interobserver correlation coefficient of 0.94 (95% confidence interval, 0.80-0.98 for untreated liver [P anatomy was excellent (Cohen κ value = 0.925). This protocol may be used for noninvasive liver volumetry and visualization of portal vein anatomy in mice. It will serve the dynamic study of new strategies to enhance liver regeneration in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  1. Robotic-Assisted Fluorescence Sentinel Lymph Node Mapping Using Multi-Modal Image-Guidance in an Animal Model

    Liss, Michael A.; Stroup, Sean P.; Cand, Zhengtao Qin; Hoh, Carl; Hall, David J.; Vera, David R.; Kane, Christopher J.

    2015-01-01

    Objectives To investigate PET/CT pre-operative imaging and intraoperative detection of a fluorescent-labeled receptor-targeted radiopharmaceutical in a prostate cancer animal model. Methods Three male Beagle dogs underwent an intra-prostatic injection of fluorescent-tagged tilmanocept radio-labeled with both gallium-68 and technetium-99m. One hour after injection a pelvic PET/CT scan was performed for pre-operative sentinel lymph node (SLN) mapping. Definition of SLN was a standardized uptake value (SUV) that exceeded 5% of the lymph node with the highest SUV. Thirty-six hours later we performed robotic-assisted SLN dissection using a fluorescence-capable camera system. Fluorescent lymph nodes were clipped, the abdomen was opened, and the pelvic and retroperitoneal nodes were excised. All excised nodal packets were assayed by in vitro nuclear counting and reported as percent-of-injected dose. Results Pre-operative PET/CT imaging identified a median of three sentinel lymph nodes per animal. All sentinel lymph nodes (100%) identified by the PET/CT were fluorescent during robotic-assisted lymph node dissection. Of all fluorescent nodes visualized by the camera system, 83% (10/12) satisfied the 5%-rule defined by the PET/CT scan. The two lymph nodes that did not qualify accumulated less than 0.002% of the injected dose. Conclusions Fluorescent-labeled tilmanocept has optimal logistical properties to obtain pre-operative PET/CT and subsequent real-time intraoperative confirmation during robotic-assisted sentinel lymph node dissection. PMID:25139676

  2. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  3. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  4. 2D imaging simulations of a small animal PET scanner with DOI measurement. jPET-RD

    Yamaya, Taiga; Hagiwara, Naoki

    2005-01-01

    We present a preliminary study on the design of a high sensitivity small animal depth of interaction (DOI)-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. (author)

  5. Adaptive radiotherapy based on contrast enhanced cone beam CT imaging

    Soevik, Aaste; Skogmo, Hege K.; Roedal, Jan; Lervaag, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2010-01-01

    Cone beam CT (CBCT) imaging has become an integral part of radiation therapy, with images typically used for offline or online patient setup corrections based on bony anatomy co-registration. Ideally, the co-registration should be based on tumor localization. However, soft tissue contrast in CBCT images may be limited. In the present work, contrast enhanced CBCT (CECBCT) images were used for tumor visualization and treatment adaptation. Material and methods. A spontaneous canine maxillary tumor was subjected to repeated cone beam CT imaging during fractionated radiotherapy (10 fractions in total). At five of the treatment fractions, CECBCT images, employing an iodinated contrast agent, were acquired, as well as pre-contrast CBCT images. The tumor was clearly visible in post-contrast minus pre-contrast subtraction images, and these contrast images were used to delineate gross tumor volumes. IMRT dose plans were subsequently generated. Four different strategies were explored: 1) fully adapted planning based on each CECBCT image series, 2) planning based on images acquired at the first treatment fraction and patient repositioning following bony anatomy co-registration, 3) as for 2), but with patient repositioning based on co-registering contrast images, and 4) a strategy with no patient repositioning or treatment adaptation. The equivalent uniform dose (EUD) and tumor control probability (TCP) calculations to estimate treatment outcome for each strategy. Results. Similar translation vectors were found when bony anatomy and contrast enhancement co-registration were compared. Strategy 1 gave EUDs closest to the prescription dose and the highest TCP. Strategies 2 and 3 gave EUDs and TCPs close to that of strategy 1, with strategy 3 being slightly better than strategy 2. Even greater benefits from strategies 1 and 3 are expected with increasing tumor movement or deformation during treatment. The non-adaptive strategy 4 was clearly inferior to all three adaptive strategies

  6. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    Waters James S

    2007-03-01

    Full Text Available Abstract Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns.

  7. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  8. CT with a CMOS flat panel detector integrated on the YAP-(S)PET scanner for in vivo small animal imaging

    Di Domenico, Giovanni; Cesca, Nicola; Zavattini, Guido; Auricchio, Natalia; Gambaccini, Mauro

    2007-01-01

    Several research groups are pursuing multimodality simultaneous functional and morphological imaging. In this line of research the high resolution YAP-(S)PET small animal integrated PET-SPECT imaging system, constructed by our group of medical physics at the University of Ferrara, is being upgraded with a computed tomography (CT). In this way it will be possible to perform in vivo molecular and genomic imaging studies on small animals (such as mice and rats) and at the same time obtain morphological information necessary for both attenuation correction and accurate localization of the region under investigation. We have take simultaneous PET-CT and SPECT-CT images of phantoms obtained with a single scanner

  9. Non-invasive imaging of acute renal allograft rejection in rats using small animal F-FDG-PET.

    Stefan Reuter

    Full Text Available BACKGROUND: At present, renal grafts are the most common solid organ transplants world-wide. Given the importance of renal transplantation and the limitation of available donor kidneys, detailed analysis of factors that affect transplant survival are important. Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection (AR is still a major risk for graft survival. Nowadays, AR can only be definitively by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Most important, they can not be performed in patients taking anticoagulant drugs. METHODOLOGY/PRINCIPAL FINDINGS: We present a non-invasive, entirely image-based method to assess AR in an allogeneic rat renal transplantation model using small animal positron emission tomography (PET and (18F-fluorodeoxyglucose (FDG. 3 h after i.v. injection of 30 MBq FDG into adult uni-nephrectomized, allogeneically transplanted rats, tissue radioactivity of renal parenchyma was assessed in vivo by a small animal PET-scanner (post operative day (POD 1,2,4, and 7 and post mortem dissection. The mean radioactivity (cps/mm(3 tissue as well as the percent injected dose (%ID was compared between graft and native reference kidney. Results were confirmed by histological and autoradiographic analysis. Healthy rats, rats with acute CSA nephrotoxicity, with acute tubular necrosis, and syngeneically transplanted rats served as controls. FDG-uptake was significantly elevated only in allogeneic grafts from POD 1 on when compared to the native kidney (%ID graft POD 1: 0.54+/-0.06; POD 2: 0.58+/-0.12; POD 4: 0.81+/-0.06; POD 7: 0.77+/-0.1; CTR: 0.22+/-0.01, n = 3-28. Renal FDG-uptake in vivo correlated with the results obtained by micro-autoradiography and the degree of inflammatory infiltrates observed in histology. CONCLUSIONS/SIGNIFICANCE: We propose that graft FDG-PET imaging is a new option to non-invasively, specifically, early detect, and follow

  10. Coil concepts for rapid and motion-compensated MR-Imaging of small animals; Spulenkonzepte zur schnellen und bewegungskompensierten MR-Bildgebung von Kleintieren

    Korn, Matthias

    2009-05-06

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  11. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  12. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior

  13. Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience

    Bartoli, Antonietta [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy)]. E-mail: bartoli@df.unipi.it; Belcari, Nicola [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy); Stark, Daniela [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Hoehnemann, Sabine [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Piel, Markus [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Jennewein, Marc [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Schmitt, Ulrich [Department of Psychiatry, University of Mainz, Mainz D-55099 (Germany); Tillmanns, Julia [Institute of Physiology and Pathophysiology, University of Mainz, Mainz D-55099 (Germany); Thews, Oliver [Institute of Physiology and Pathophysiology, University of Mainz, Mainz D-55099 (Germany); Hiemke, Christoph [Department of Psychiatry, University of Mainz, Mainz D-55099 (Germany); Roesch, Frank [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Del Guerra, Alberto [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy)

    2006-12-20

    The new and fully engineered version of the YAP-(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4x4 cm{sup 2} of YAlO{sub 3}:Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axiallyx4 cm o transaxially. In PET mode, the volume resolution is less than 8 mm{sup 3} and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP-PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities.

  14. Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience

    Bartoli, Antonietta; Belcari, Nicola; Stark, Daniela; Hoehnemann, Sabine; Piel, Markus; Jennewein, Marc; Schmitt, Ulrich; Tillmanns, Julia; Thews, Oliver; Hiemke, Christoph; Roesch, Frank; Del Guerra, Alberto

    2006-01-01

    The new and fully engineered version of the YAP-(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4x4 cm 2 of YAlO 3 :Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axiallyx4 cm o transaxially. In PET mode, the volume resolution is less than 8 mm 3 and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP-PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities

  15. Two-photon imaging of formaldehyde in live cells and animals utilizing a lysosome-targetable and acidic pH-activatable fluorescent probe.

    Xie, Xilei; Tang, Fuyan; Shangguan, Xiaoyan; Che, Shiyi; Niu, Jinye; Xiao, Yongsheng; Wang, Xu; Tang, Bo

    2017-06-13

    Lyso-TPFP presents lysosomal targetability and an acidic pH-activatable response toward formaldehyde. Thus, it exclusively visualizes lysosomal formaldehyde and is immune against it in neutral cytosol and other organelles. In addition, two-photon fluorescence imaging endows Lyso-TPFP with the capability of in situ tracking formaldehyde in live cells and animals.

  16. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  17. Live animal assessments of rump fat and muscle score in Angus cows and steers using 3-dimensional imaging.

    McPhee, M J; Walmsley, B J; Skinner, B; Littler, B; Siddell, J P; Cafe, L M; Wilkins, J F; Oddy, V H; Alempijevic, A

    2017-04-01

    The objective of this study was to develop a proof of concept for using off-the-shelf Red Green Blue-Depth (RGB-D) Microsoft Kinect cameras to objectively assess P8 rump fat (P8 fat; mm) and muscle score (MS) traits in Angus cows and steers. Data from low and high muscled cattle (156 cows and 79 steers) were collected at multiple locations and time points. The following steps were required for the 3-dimensional (3D) image data and subsequent machine learning techniques to learn the traits: 1) reduce the high dimensionality of the point cloud data by extracting features from the input signals to produce a compact and representative feature vector, 2) perform global optimization of the signatures using machine learning algorithms and a parallel genetic algorithm, and 3) train a sensor model using regression-supervised learning techniques on the ultrasound P8 fat and the classified learning techniques for the assessed MS for each animal in the data set. The correlation of estimating hip height (cm) between visually measured and assessed 3D data from RGB-D cameras on cows and steers was 0.75 and 0.90, respectively. The supervised machine learning and global optimization approach correctly classified MS (mean [SD]) 80 (4.7) and 83% [6.6%] for cows and steers, respectively. Kappa tests of MS were 0.74 and 0.79 in cows and steers, respectively, indicating substantial agreement between visual assessment and the learning approaches of RGB-D camera images. A stratified 10-fold cross-validation for P8 fat did not find any differences in the mean bias ( = 0.62 and = 0.42 for cows and steers, respectively). The root mean square error of P8 fat was 1.54 and 1.00 mm for cows and steers, respectively. Additional data is required to strengthen the capacity of machine learning to estimate measured P8 fat and assessed MS. Data sets for and continental cattle are also required to broaden the use of 3D cameras to assess cattle. The results demonstrate the importance of capturing

  18. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen; Struys, Tom; Veghel, Daisy van; Evens, Nele; Bormans, Guy; Dresselaers, Tom; Himmelreich, Uwe; Lambrichts, Ivo; Laere, Koen van

    2012-01-01

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB 1 and CB 2 ) have been suggested. The purpose of this study was to evaluate CB 1 and CB 2 receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB 1 and CB 2 microPET imaging was performed at regular time-points up to 2 weeks after stroke using [ 18 F]MK-9470 and [ 11 C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB 1 and CB 2 . Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [ 18 F]MK-9470 PET showed a strong increase in CB 1 binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB 1 immunohistochemical staining. [ 11 C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB 2 revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB 1 + and CB 2 + cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB 1 , but not CB 2 , binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB 1 signalling as the role of CB 2 seems minor in the acute and subacute phases of stroke. (orig.)

  19. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); Struys, Tom [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Veghel, Daisy van; Evens, Nele; Bormans, Guy [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Laboratory of Radiopharmacy, Leuven (Belgium); Dresselaers, Tom; Himmelreich, Uwe [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Lambrichts, Ivo [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); Laere, Koen van [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); UZ Leuven, Division of Nuclear Medicine, Leuven (Belgium)

    2012-11-15

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB{sub 1} and CB{sub 2}) have been suggested. The purpose of this study was to evaluate CB{sub 1} and CB{sub 2} receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB{sub 1} and CB{sub 2} microPET imaging was performed at regular time-points up to 2 weeks after stroke using [{sup 18}F]MK-9470 and [{sup 11}C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB{sub 1} and CB{sub 2}. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [{sup 18}F]MK-9470 PET showed a strong increase in CB{sub 1} binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB{sub 1} immunohistochemical staining. [{sup 11}C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB{sub 2} revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB{sub 1} {sup +} and CB{sub 2} {sup +} cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB{sub 1}, but not CB{sub 2}, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB{sub 1} signalling as the role of CB{sub 2} seems minor in the acute and subacute phases of stroke. (orig.)

  20. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV)

    Qian Ming; Niu Lili; Jiang Bo; Jin Qiaofeng; Jiang Chunxiang; Zheng Hairong; Wang Yanping

    2010-01-01

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  1. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  2. Comprehensive small animal imaging strategies on a clinical 3 T dedicated head MR-scanner; adapted methods and sequence protocols in CNS pathologies.

    Deepu R Pillai

    Full Text Available BACKGROUND: Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. METHODOLOGY AND RESULTS: This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. CONCLUSIONS: The implemented customizations including extensive

  3. Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies

    Pillai, Deepu R.; Heidemann, Robin M.; Lanz, Titus; Dittmar, Michael S.; Sandner, Beatrice; Beier, Christoph P.; Weidner, Norbert; Greenlee, Mark W.; Schuierer, Gerhard; Bogdahn, Ulrich; Schlachetzki, Felix

    2011-01-01

    Background Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution. Methodology and Results This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results. Conclusions The implemented customizations including extensive sequence protocol

  4. Instruments for radiation measurement in life sciences (5). 'Development of imaging Technology in life sciences'. 5. X-ray CT for laboratory animals

    Tamegai, Toshiaki

    2007-01-01

    X-ray computed tomography, commercialized by EMI Co., UK, in 1973 and now used world-widely, is used not only for medical use but also for laboratory animals such as rats and mice to measure bone density and to obtain fine structures of bones. This paper introduces X-ray CT apparatus specifically designed for laboratory animals. Besides general explanations about the method, followed by emphasis on important performance of the measuring system, the paper explains technical aspects for obtaining the CT imaging scan procedure thus showing several photographs as example and introducing some clinical applications. (S. Ohno)

  5. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  6. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Coraline D. Metzger

    2013-05-01

    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  7. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  8. Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging

    Lazaro, D; Buvat, I; Loudos, G; Strul, D; Santin, G; Giokaris, N; Donnarieix, D; Maigne, L; Spanoudaki, V; Styliaris, S; Staelens, S; Breton, V

    2004-01-01

    Monte Carlo simulations are increasingly used in scintigraphic imaging to model imaging systems and to develop and assess tomographic reconstruction algorithms and correction methods for improved image quantitation. GATE (GEANT4 application for tomographic emission) is a new Monte Carlo simulation platform based on GEANT4 dedicated to nuclear imaging applications. This paper describes the GATE simulation of a prototype of scintillation camera dedicated to small-animal imaging and consisting of a CsI(Tl) crystal array coupled to a position-sensitive photomultiplier tube. The relevance of GATE to model the camera prototype was assessed by comparing simulated 99m Tc point spread functions, energy spectra, sensitivities, scatter fractions and image of a capillary phantom with the corresponding experimental measurements. Results showed an excellent agreement between simulated and experimental data: experimental spatial resolutions were predicted with an error less than 100 μm. The difference between experimental and simulated system sensitivities for different source-to-collimator distances was within 2%. Simulated and experimental scatter fractions in a [98-82 keV] energy window differed by less than 2% for sources located in water. Simulated and experimental energy spectra agreed very well between 40 and 180 keV. These results demonstrate the ability and flexibility of GATE for simulating original detector designs. The main weakness of GATE concerns the long computation time it requires: this issue is currently under investigation by the GEANT4 and the GATE collaborations

  9. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals

    Takeuchi, Toshiyuki; Zhang, Shaojuan; Negishi, Kazuya; Yoshihara, Toshitada; Hosaka, Masahiro; Tobita, Seiji

    2010-02-01

    Iridium complex, a promising organic light-emitting diode material for next generation television and computer displays, emits phosphorescence. Phosphorescence is quenched by oxygen. We used this oxygen-quenching feature for imaging tumor hypoxia. Red light-emitting iridium complex Ir(btp)2(acac) (BTP) presented hypoxia-dependent light emission in culture cell lines, whose intensity was in parallel with hypoxia-inducible factor (HIF)-1 expression. BTP was further applied to imaging five nude mouse-transplanted tumors. All tumors presented a bright BTP-emitting image as early as 5 min after the injection. The BTP-dependent tumor image peaked at 1 to 2 h after the injection, and was then removed from tumors within 24 h. The minimal BTP image recognition size was at least 2 mm in diameter. By morphological examination and phosphorescence lifetime measurement, BTP is presumed to localize to the tumor cells, not to stay in the tumor microvessels by binding to albumin. The primary problem on suse of luminescent probe for tumor imaging is its weak penetrance to deep tissues from the skin surface. Since BTP is easily modifiable, we made BTP analogues with a longer excitation/emission wavelength to improve the tissue penetrance. One of them, BTPHSA, displayed 560/720 wavelength, and depicted its clear imaging from tumors transplanted over 6-7 mm deep from the skin surface. We suggest that BTP analogues have a vast potential for imaging hypoxic lesions such as tumor tissues.

  10. Mosquitofish (Gambusia affinis preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth.

    Giovanni Polverino

    Full Text Available Mosquitofish (Gambusia affinis is an example of a freshwater fish species whose remarkable diffusion outside its native range has led to it being placed on the list of the world's hundred worst invasive alien species (International Union for Conservation of Nature. Here, we investigate mosquitofish shoaling tendency using a dichotomous choice test in which computer-animated images of their conspecifics are altered in color, aspect ratio, and swimming level in the water column. Pairs of virtual stimuli are systematically presented to focal subjects to evaluate their attractiveness and the effect on fish behavior. Mosquitofish respond differentially to some of these stimuli showing preference for conspecifics with enhanced yellow pigmentation while exhibiting highly varying locomotory patterns. Our results suggest that computer-animated images can be used to understand the factors that regulate the social dynamics of shoals of Gambusia affinis. Such knowledge may inform the design of control plans and open new avenues in conservation and protection of endangered animal species.

  11. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.

    Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron

    2017-11-01

    The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion

  12. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)

    Mondal, Indranil; Raj, Shipra; Roy, Poulomi; Poddar, Raju

    2018-01-01

    We present noninvasive three-dimensional depth-resolved imaging of animal tissue with a swept-source optical coherence tomography system at 1064 nm center wavelength and silver nanoparticles (AgNPs) as a potential contrast agent. A swept-source laser light source is used to enable an imaging rate of 100 kHz (100 000 A-scans s-1). Swept-source optical coherence tomography is a new variant of the optical coherence tomography (OCT) technique, offering unique advantages in terms of sensitivity, reduction of motion artifacts, etc. To enhance the contrast of an OCT image, AgNPs are utilized as an exogeneous contrast agent. AgNPs are synthesized using a modified Tollens method and characterization is done by UV-vis spectroscopy, dynamic light scattering, scanning electron microscopy and energy dispersive x-ray spectroscopy. In vitro imaging of chicken breast tissue, with and without the application of AgNPs, is performed. The effect of AgNPs is studied with different exposure times. A mathematical model is also built to calculate changes in the local scattering coefficient of tissue from OCT images. A quantitative estimation of scattering coefficient and contrast is performed for tissues with and without application of AgNPs. Significant improvement in contrast and increase in scattering coefficient with time is observed.

  13. Animal urine as painting materials in African rock art revealed by cluster ToF-SIMS mass spectrometry imaging.

    Mazel, Vincent; Richardin, Pascale; Touboul, David; Brunelle, Alain; Richard, Caroline; Laval, Eric; Walter, Philippe; Laprévote, Olivier

    2010-08-01

    The rock art site at the village of Songo in Mali is a very important Dogon ritual place where, since the end of the nineteenth century until today, takes place the ceremony of circumcision. During these ceremonies, paintings are performed on the walls of the shelter with mainly three colors: red, black and white. Ethnological literature mentions the use of animal urine of different species such as birds, lizards or snakes as a white pigment. Urine of these animals is mainly composed of uric acid or urate salts. In this article, time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to compare uric acid, snake urine and a sample of a white pigment of a Dogon painting coming from the rock art site of Songo. ToF-SIMS measurements in both positive and negative ion modes on reference compounds and snake urine proved useful for the study of uric acid and urate salts. This method enables to identify unambiguously these compounds owing to the detection in negative ion mode of the ion corresponding to the deprotonated molecule ([M-H](-) at m/z 167.01) and its fragment ions. Moreover, the mass spectra obtained in positive ion mode permit to differentiate uric acid and urate salts on the basis of specific ions. Applying this method to the Dogon white pigments sample, we show that the sample is entirely composed of uric acid. This proves for the first time, that animal urine was used as a pigment by the Dogon. The presence of uric acid instead of urate salts as normally expected in animal urine could be explained by the preparation of the pigment for its application on the stone. Copyright 2010 John Wiley & Sons, Ltd.

  14. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  15. Accuracy Verification of Magnetic Resonance Imaging (MRI) Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silico...

  16. Biosynthesis of Fluorescent Bi2S3 Nanoparticles and their Application as Dual-Function SPECT-CT Probe for Animal Imaging.

    Uddin, Imran; Ahmad, Absar; Siddiqui, Ejaz Ahmad; Rahaman, Sk Hasanur; Gambhir, Sanjay

    2016-01-01

    Bismuth sulphide (Bi2S3) is an excellent semiconductor and its nanoparticles have numerous significant applications including photovoltaic materials, photodiode arrays, bio-imaging, etc. Nevertheless, these nanoparticles when fabricated by chemical and physical routes tend to easily aggregate in colloidal solutions, are eco-unfriendly, cumbrous and very broad in size distribution. The aim of the present manuscript was to ecologically fabricate water dispersible, safe and stable Bi2S3 nanoparticles such that these may find use in animal imaging, diagnostics, cell labeling and other biomedical applications. Herein, we for the first time have biosynthesized highly fluorescent, natural protein capped Bi2S3 nanoparticles by subjecting the fungus Fusarium oxysporum to bismuth nitrate pentahydrate [Bi(NO3)3.5H2O] alongwith sodium sulphite (Na2SO3) as precursor salts under ambient conditions of temperature, pressure and pH. The nanoparticles were completely characterized using recognized standard techniques. These natural protein capped Bi2S3 nanoparticles are quasi-spherical in shape with an average particle size of 15 nm, maintain long term stability and show semiconductor behavior having blue shift with a band gap of 3.04 eV. Semiconductor nanocrystals are fundamentally much more fluorescent than the toxic fluorescent chemical compounds (fluorophores) which are presently largely employed in imaging, immunohistochemistry, biochemistry, etc. Biologically fabricated fluorescent nanoparticles may replace organic fluorophores and aid in rapid development of biomedical nanotechnology. Thus, biodistribution study of the so-formed Bi2S3 nanoparticles in male Sprague Dawley rats was done by radiolabelling with Technitium-99m (Tc-99m) and clearance time from blood was calculated. The nanoparticles were then employed in SPECT-CT probe for animal imaging where these imparted iodine equivalent contrast.

  17. Wide-field lifetime-based FRET imaging for the assessment of early functional distribution of transferrin-based delivery in breast tumor-bearing small animals

    Sinsuebphon, Nattawut; Rudkouskaya, Alena; Barroso, Margarida; Intes, Xavier

    2016-02-01

    Targeted drug delivery is a critical aspect of successful cancer therapy. Assessment of dynamic distribution of the drug provides relative concentration and bioavailability at the target tissue. The most common approach of the assessment is intensity-based imaging, which only provides information about anatomical distribution. Observation of biomolecular interactions can be performed using Förster resonance energy transfer (FRET). Thus, FRET-based imaging can assess functional distribution and provide potential therapeutic outcomes. In this study, we used wide-field lifetime-based FRET imaging for the study of early functional distribution of transferrin delivery in breast cancer tumor models in small animals. Transferrin is a carrier for cancer drug delivery. Its interaction with its receptor is within a few nanometers, which is suitable for FRET. Alexa Fluor® 700 and Alexa Fluor® 750 were conjugated to holo-transferrin which were then administered via tail vein injection to the mice implanted with T47D breast cancer xenografts. Images were continuously acquired for 60 minutes post-injection. The results showed that transferrin was primarily distributed to the liver, the urinary bladder, and the tumor. The cellular uptake of transferrin, which was indicated by the level of FRET, was high in the liver but very low in the urinary bladder. The results also suggested that the fluorescence intensity and FRET signals were independent. The liver showed increasing intensity and increasing FRET during the observation period, while the urinary bladder showed increasing intensity but minimal FRET. Tumors gave varied results corresponding to their FRET progression. These results were relevant to the biomolecular events that occurred in the animals.

  18. Applying digital particle image velocimetry to animal-generated flows : Traps, hurdles and cures in mapping steady and unsteady flows in Re regimes between 10(-2) and 10(5)

    Stamhuis, EJ; Videler, JJ; van Duren, LA; Muller, UK

    2002-01-01

    Digital particle image velocimetry (DPIV) has been applied to animal-generated flows since 1993 to map the flow patterns and vortex wakes produced by a range of feeding and swimming aquatic animals, covering a Re range of 10(-2)-10(5). In this paper, the special circumstances, problems and some

  19. An imaging informatics-based system to support animal studies for treating pain in spinal cord injury utilizing proton-beam radiotherapy

    Verma, Sneha K.; Liu, Brent J.; Gridley, Daila S.; Mao, Xiao W.; Kotha, Nikhil

    2015-03-01

    In previous years we demonstrated an imaging informatics system designed to support multi-institutional research focused on the utilization of proton radiation for treating spinal cord injury (SCI)-related pain. This year we will demonstrate an update on the system with new modules added to perform image processing on evaluation data using immunhistochemistry methods to observe effects of proton therapy. The overarching goal of the research is to determine the effectiveness of using the proton beam for treating SCI-related neuropathic pain as an alternative to invasive surgical lesioning. The research is a joint collaboration between three major institutes, University of Southern California (data collection/integration and image analysis), Spinal Cord Institute VA Healthcare System, Long Beach (patient subject recruitment), and Loma Linda University and Medical Center (human and preclinical animal studies). The system that we are presenting is one of its kind which is capable of integrating a large range of data types, including text data, imaging data, DICOM objects from proton therapy treatment and pathological data. For multi-institutional studies, keeping data secure and integrated is very crucial. Different kinds of data within the study workflow are generated at different stages and different groups of people who process and analyze them in order to see hidden patterns within healthcare data from a broader perspective. The uniqueness of our system relies on the fact that it is platform independent and web-based which makes it very useful in such a large-scale study.

  20. Evaluation of Online/Offline Image Guidance/Adaptation Approaches for Prostate Cancer Radiation Therapy

    Qin, An; Sun, Ying; Liang, Jian; Yan, Di

    2015-01-01

    Purpose: To evaluate online/offline image-guided/adaptive treatment techniques for prostate cancer radiation therapy with daily cone-beam CT (CBCT) imaging. Methods and Materials: Three treatment techniques were evaluated retrospectively using daily pre- and posttreatment CBCT images on 22 prostate cancer patients. Prostate, seminal vesicles (SV), rectal wall, and bladder were delineated on all CBCT images. For each patient, a pretreatment intensity modulated radiation therapy plan with clinical target volume (CTV) = prostate + SV and planning target volume (PTV) = CTV + 3 mm was created. The 3 treatment techniques were as follows: (1) Daily Correction: The pretreatment intensity modulated radiation therapy plan was delivered after online CBCT imaging, and position correction; (2) Online Planning: Daily online inverse plans with 3-mm CTV-to-PTV margin were created using online CBCT images, and delivered; and (3) Hybrid Adaption: Daily Correction plus an offline adaptive inverse planning performed after the first week of treatment. The adaptive plan was delivered for all remaining 15 fractions. Treatment dose for each technique was constructed using the daily posttreatment CBCT images via deformable image registration. Evaluation was performed using treatment dose distribution in target and critical organs. Results: Treatment equivalent uniform dose (EUD) for the CTV was within [85.6%, 100.8%] of the pretreatment planned target EUD for Daily Correction; [98.7%, 103.0%] for Online Planning; and [99.2%, 103.4%] for Hybrid Adaptation. Eighteen percent of the 22 patients in Daily Correction had a target dose deficiency >5%. For rectal wall, the mean ± SD of the normalized EUD was 102.6% ± 2.7% for Daily Correction, 99.9% ± 2.5% for Online Planning, and 100.6% ± 2.1% for Hybrid Adaptation. The mean ± SD of the normalized bladder EUD was 108.7% ± 8.2% for Daily Correction, 92.7% ± 8.6% for Online Planning, and 89.4% ± 10.8% for Hybrid

  1. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  2. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    Park, S-J; Yu, A R; Lee, Y-J; Kim, Y-S; Kim, H-J

    2014-01-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  3. Diagnostic imaging of herpes simplex virus encephalitis using a radiolabeled antiviral drug: autoradiographic assessment in an animal model

    Saito, Y.; Rubenstein, R.; Price, R.W.; Fox, J.J.; Watanabe, K.A.

    1984-01-01

    To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ([14C]FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional [14C]FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness of the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application

  4. Animal research

    Olsson, I.A.S.; Sandøe, Peter

    2012-01-01

    This article presents the ethical issues in animal research using a combined approach of ethical theory and analysis of scientific findings with bearing on the ethical analysis. The article opens with a general discussion of the moral acceptability of animal use in research. The use of animals...... in research is analyzed from the viewpoint of three distinct ethical approaches: contractarianism, utilitarianism, and animal rights view. On a contractarian view, research on animals is only an ethical issue to the extent that other humans as parties to the social contract care about how research animals...... are faring. From the utilitarian perspective, the use of sentient animals in research that may harm them is an ethical issue, but harm done to animals can be balanced by benefit generated for humans and other animals. The animal rights view, when thoroughgoing, is abolitionist as regards the use of animals...

  5. Optical Imaging of Tumor Hypoxia and Evaluation of Efficacy of a Hypoxia-Targeting Drug in Living Animals

    Hiroshi Harada

    2005-07-01

    Full Text Available Solid tumors containing more hypoxic regions show a more malignant phenotype by increasing the expression of genes encoding angiogenic and metastatic factors. Hypoxia-inducible factor-1 (HIF-1 is a master transcriptional activator of such genes, and thus, imaging and targeting hypoxic tumor cells where HIF-1 is active are important in cancer therapy. In the present study, HIF-1 activity was monitored via an optical in vivo imaging system by using a luciferase reporter gene under the regulation of an artificial HIF-1-dependent promoter, 5HRE. To monitor tumor hypoxia, we isolated a stable reporter-transfectant, HeLa/5HRE-Luc, which expressed more than 100-fold luciferase in response to hypoxic stress, and observed bioluminescence from its xenografts. Immunohistochemical analysis of the xenografts with a hypoxia marker, pimonidazole, confirmed that the luciferase-expressing cells were hypoxic. Evaluation of the efficacy of a hypoxia-targeting prodrug, TOP3, using this optical imaging system revealed that hypoxic cells were significantly diminished by TOP3 treatment. Immunohistochemical analysis of the TOP3-treated xenografts confirmed that hypoxic cells underwent apoptosis and were removed after TOP3 treatment. These results demonstrate that this model system using the 5HRE-luciferase reporter construct provides qualitative information (hypoxic status of solid tumors and enables one to conveniently evaluate the efficacy of cancer therapy on hypoxia in malignant solid tumors.

  6. Intraindividual comparison of image quality in MR urography at 1.5 and 3 Tesla in an animal model

    Regier, M.; Adam, G.; Kemper, J. [Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany); Nolte-Ernsting, C. [Klinik fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Hamburg-Eppendorf (Germany)

    2008-10-15

    Purpose: experimental evaluation of image quality of the upper urinary tract in MR urography (MRU) at 1.5 and 3 Tesla in a porcine model. Materials and methods: in this study four healthy domestic pigs, weighing between 71 and 80 kg (mean 73.6 kg), were examined with a standard T 1w 3D-GRE and a high-resolution (HR) T 1w 3D-GRE sequence at 1.5 and 3 Tesla. Additionally, at 3 Tesla both sequences were performed with parallel imaging (SENSE factor 2). The MR urographic scans were performed after intravenous injection of gadolinium-DTPA (0.1 mmol/kg body weight (bw)) and low-dose furosemide (0.1 mg/kg bw). Image evaluation was performed by two independent radiologists blinded to sequence parameters and field strength. Image analysis included grading of image quality of the segmented collecting system based on a five-point grading scale regarding anatomical depiction and artifacts observed (1: the majority of the segment (> 50%) was not depicted or was obscured by major artifacts; 5: the segment was visualized without artifacts and had sharply defined borders). Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined. Statistical analysis included {kappa}-statistics, Wilcoxon and paired student t-test. Results: the mean scores for MR urographies at 1.5 Tesla were 2.83 for the 3D-GRE and 3.48 for the HR 3D-GRE sequence. Significantly higher values were determined using the corresponding sequences at 3 Tesla, averaging 3.19 for the 3D-GRE (p = 0.047) and 3.92 for the HR 3D-GRE (p = 0.023) sequence. Delineation of the pelvicaliceal system was rated significantly higher at 3 Tesla compared to 1.5 Tesla (3D-GRE: p = 0.015; HR 3D-GRE: p = 0.006). At 3 Tesla the mean SNR and CNR were significantly higher (p < 0.05). A {kappa} of 0.67 indicated good interobserver agreement. (orig.)

  7. Intraindividual comparison of image quality in MR urography at 1.5 and 3 Tesla in an animal model

    Regier, M.; Adam, G.; Kemper, J.; Nolte-Ernsting, C.

    2008-01-01

    Purpose: experimental evaluation of image quality of the upper urinary tract in MR urography (MRU) at 1.5 and 3 Tesla in a porcine model. Materials and methods: in this study four healthy domestic pigs, weighing between 71 and 80 kg (mean 73.6 kg), were examined with a standard T 1w 3D-GRE and a high-resolution (HR) T 1w 3D-GRE sequence at 1.5 and 3 Tesla. Additionally, at 3 Tesla both sequences were performed with parallel imaging (SENSE factor 2). The MR urographic scans were performed after intravenous injection of gadolinium-DTPA (0.1 mmol/kg body weight (bw)) and low-dose furosemide (0.1 mg/kg bw). Image evaluation was performed by two independent radiologists blinded to sequence parameters and field strength. Image analysis included grading of image quality of the segmented collecting system based on a five-point grading scale regarding anatomical depiction and artifacts observed (1: the majority of the segment (> 50%) was not depicted or was obscured by major artifacts; 5: the segment was visualized without artifacts and had sharply defined borders). Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined. Statistical analysis included κ-statistics, Wilcoxon and paired student t-test. Results: the mean scores for MR urographies at 1.5 Tesla were 2.83 for the 3D-GRE and 3.48 for the HR 3D-GRE sequence. Significantly higher values were determined using the corresponding sequences at 3 Tesla, averaging 3.19 for the 3D-GRE (p 0.047) and 3.92 for the HR 3D-GRE (p = 0.023) sequence. Delineation of the pelvicaliceal system was rated significantly higher at 3 Tesla compared to 1.5 Tesla (3D-GRE: p = 0.015; HR 3D-GRE: p = 0.006). At 3 Tesla the mean SNR and CNR were significantly higher (p < 0.05). A κ of 0.67 indicated good interobserver agreement. (orig.)

  8. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    Chantepie, B.

    2008-12-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The ImXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement in image quality and in dose delivered during X-ray examinations of a small animal. After a first prototype of a hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of a auto-zeroing architecture for pixels. The first and second chapters present X-ray medical imaging and particle detection with semi-conductors and its modelling. The third chapter deals with the specifications of electronic circuits for imaging applications first for analog pixels then for digital pixels and describes the general architecture of the integrated circuits. The validation tests are presented in the fourth chapter while the last chapter gives an account of expected changes in pixel electronics

  9. Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique.

    Nilsson, M; Herlin, A H; Ardö, H; Guzhva, O; Åström, K; Bergsten, C

    2015-11-01

    In this paper the feasibility to extract the proportion of pigs located in different areas of a pig pen by advanced image analysis technique is explored and discussed for possible applications. For example, pigs generally locate themselves in the wet dunging area at high ambient temperatures in order to avoid heat stress, as wetting the body surface is the major path to dissipate the heat by evaporation. Thus, the portion of pigs in the dunging area and resting area, respectively, could be used as an indicator of failure of controlling the climate in the pig environment as pigs are not supposed to rest in the dunging area. The computer vision methodology utilizes a learning based segmentation approach using several features extracted from the image. The learning based approach applied is based on extended state-of-the-art features in combination with a structured prediction framework based on a logistic regression solver using elastic net regularization. In addition, the method is able to produce a probability per pixel rather than form a hard decision. This overcomes some of the limitations found in a setup using grey-scale information only. The pig pen is a difficult imaging environment because of challenging lighting conditions like shadows, poor lighting and poor contrast between pig and background. In order to test practical conditions, a pen containing nine young pigs was filmed from a top view perspective by an Axis M3006 camera with a resolution of 640 × 480 in three, 10-min sessions under different lighting conditions. The results indicate that a learning based method improves, in comparison with greyscale methods, the possibility to reliable identify proportions of pigs in different areas of the pen. Pigs with a changed behaviour (location) in the pen may indicate changed climate conditions. Changed individual behaviour may also indicate inferior health or acute illness.

  10. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  11. Accuracy verification of magnetic resonance imaging (MRI) technology for lower-limb prosthetic research: utilising animal soft tissue specimen and common socket casting materials.

    Safari, Mohammad Reza; Rowe, Philip; Buis, Arjan

    2012-01-01

    Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP) and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  12. Accuracy Verification of Magnetic Resonance Imaging (MRI Technology for Lower-Limb Prosthetic Research: Utilising Animal Soft Tissue Specimen and Common Socket Casting Materials

    Mohammad Reza Safari

    2012-01-01

    Full Text Available Lower limb prosthetic socket shape and volume consistency can be quantified using MRI technology. Additionally, MRI images of the residual limb could be used as an input data for CAD-CAM technology and finite element studies. However, the accuracy of MRI when socket casting materials are used has to be defined. A number of six, 46 mm thick, cross-sections of an animal leg were used. Three specimens were wrapped with Plaster of Paris (POP and the other three with commercially available silicone interface liner. Data was obtained by utilising MRI technology and then the segmented images compared to corresponding calliper measurement, photographic imaging, and water suspension techniques. The MRI measurement results were strongly correlated with actual diameter, surface area, and volume measurements. The results show that the selected scanning parameters and the semiautomatic segmentation method are adequate enough, considering the limit of clinical meaningful shape and volume fluctuation, for residual limb volume and the cross-sectional surface area measurements.

  13. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of 18F-Tetrafluoroborate and 18F-FDG in Mice.

    Goetz, Christian; Podein, Matthias; Braun, Friederike; Weber, Wolfgang A; Choquet, Philippe; Constantinesco, André; Mix, Michael

    2017-07-01

    Different environmental conditions under anesthesia may lead to unstable homeostatic conditions in rodents and therefore may alter kinetics. In this study, the impact of different heating conditions on PET imaging quantification was evaluated. Methods: Two groups of 6 adult female BALB/c nude mice with subcutaneously implanted tumors underwent microPET imaging after injection of 18 F-labeled tetrafluoroborate or 18 F-FDG. Dynamic scans were acquired under optimal and suboptimal heating conditions. Time-activity curves were analyzed to calculate uptake and washout time constants. Results: With 18 F-labeled tetrafluoroborate, optimal animal heating led to a stable heart rate during acquisition (515 ± 35 [mean ± SD] beats/min), whereas suboptimal heating led to a lower heart rate and a higher SD (470 ± 84 beats/min). Both uptake and washout time constants were faster ( P heating. Conclusion: Although the difference in heart rates was slight, optimal heating yielded significantly faster uptake and washout kinetics than suboptimal heating in all organs for both tracers. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  14. Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging

    Berradja, Khadidja; Boughanmi, Nabil

    2016-09-01

    In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p corrupted with spillover.

  15. Design and realization of a fast low noise electronics for a hybrid pixel X-ray detector dedicated to small animal imaging

    Chantepie, Benoit

    2008-01-01

    Since the invention of computerized tomography (CT), charge integration detector were widely employed for X-ray biomedical imaging applications. Nevertheless, other options exist. A new technology of direct detection using semiconductors has been developed for high energy physics instrumentation. This new technology, called hybrid pixel detector, works in photon counting mode and allows for selecting the minimum energy of the counted photons. The imXgam research team at CPPM develops the PIXSCAN demonstrator, a CT-scanner using the hybrid pixel detector XPAD. The aim of this project is to evaluate the improvement on image quality and on dose delivered during X-ray examinations of a small animal. After a first prototype of hybrid pixel detector XPAD1 proving the feasibility of the project, a complete imager XPAD2 was designed and integrated in the PIXSCAN demonstrator. Since then, with the evolution of microelectronic industry, important improvements are conceivable. To reducing the size of pixels and to improving the energy resolution of detectors, a third design XPAD3 was conceived and will be soon integrated in a second generation of PIXSCAN demonstrator. In this project, my thesis's work consisted in taking part to the design of the detector readout electronics, to the characterization of the chips and of the hybrid pixel detectors, and also to the definition of an auto-zeroing architecture for pixels. (author) [fr

  16. Measurement of neuronal activity in a macaque monkey in response to animate images using near-infrared spectroscopy (NIRS

    Masumi Wakita

    2010-06-01

    Full Text Available Near-infrared spectroscopy (NIRS has been used extensively for functional neuroimaging over the past decade, in part because it is considered a powerful tool for investigating brain function in human infants and young children, for whom other neuroimaging techniques are not suitable. In particular, several studies have measured hemodynamic responses in the occipital region in infants upon exposure to visual stimuli. In the present study, we used a multi-channel NIRS to measure neuronal activity in a macaque monkey who was trained to watch videos showing various circus animals performing acrobatic activities without fixing the head position of the monkey. Cortical activity from the occipital region was measured first by placing a probe comprising a 3x5 array of emitters and detectors (2 x 4 cm on the area (area 17, and the robustness and stability of the results were confirmed across sessions. Cortical responses were then measured from the dorsofrontal region. The oxygenated hemoglobin signals increased in area 9 and decreased in area 8b in response to viewing the videos. The results suggest that these regions are involved in cognitive processing of visually presented stimuli. The monkey showed positive responsiveness to the stimuli from the affective standpoint, but its attentional response to them was an inhibitory one.

  17. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  18. Gymnasie ikke absolut fravalg af EUD

    Juul, Tilde Mette; Pless, Mette

    2015-01-01

    Den faldende søgning til erhvervsuddannelserne har i medierne og den politiske debat ofte været begrundet med, at de unge ikke ser erhvervsuddannelserne som prestigefyldte. Nyt forskningsprojekt fra Center for Ungdomsforskning viser, at de unges opfattelser af erhvervsuddannelserne er mere nuance...

  19. Gene transfer in rodents and primates as a new tool for modeling diseases in animals and assessing functions by in vivo imaging

    Deglon, N. [Atomic Energy Commission (CEA), Dept. of Medical Research and MIRCen Program, 91 - Orsay (France)

    2006-07-01

    The identification of disease-causing genes in familial forms of neuro-degenerative disorders and the development of genetic models closely replicating human CNS pathologies have drastically changed our understanding of the molecular events leading to neuronal cell death. If these achievements open new opportunities of therapeutic interventions efficient delivery systems taking into account the specificity of the central nervous system are required to administer therapeutic candidates. In addition, there is a need to develop 1) genetic models in large animals that replicate late stages of the diseases and 2) imaging techniques suitable for longitudinal, quantitative and non-invasive evaluation of disease progression and the evaluation of new therapeutic strategies. Over the last few years, we have investigated the potential of lentiviral vectors as tool to model and treat CNS disorders. The use of lentiviral vectors to create animal model of these pathologies holds various advantages compared to classical transgenic approaches. Viral vectors are versatile, highly flexible tools to perform in vivo studies. Multiple genetic models can be created in a short period of time. High transduction efficiencies as well as robust and sustained trans-gene expression lead to the rapid appearance of functional and behavioral abnormalities and severe neuro-degeneration. Targeted injections in different brain areas can be used to investigate the regional specificity of the neuro-pathology and eliminate potential side effects associated with a widespread over-expression of the trans-gene. Finally, models can be established in different mammalian species including non-human primates, thereby providing an opportunity to assess complex behavioral changes and perform longitudinal follow-up of neuro-pathological alterations by imaging. We have demonstrated the proof of principle of this approach for Huntington's disease. We have shown that the intratriatal injection of lentiviral

  20. Gene transfer in rodents and primates as a new tool for modeling diseases in animals and assessing functions by in vivo imaging

    Deglon, N.

    2006-01-01

    The identification of disease-causing genes in familial forms of neuro-degenerative disorders and the development of genetic models closely replicating human CNS pathologies have drastically changed our understanding of the molecular events leading to neuronal cell death. If these achievements open new opportunities of therapeutic interventions efficient delivery systems taking into account the specificity of the central nervous system are required to administer therapeutic candidates. In addition, there is a need to develop 1) genetic models in large animals that replicate late stages of the diseases and 2) imaging techniques suitable for longitudinal, quantitative and non-invasive evaluation of disease progression and the evaluation of new therapeutic strategies. Over the last few years, we have investigated the potential of lentiviral vectors as tool to model and treat CNS disorders. The use of lentiviral vectors to create animal model of these pathologies holds various advantages compared to classical transgenic approaches. Viral vectors are versatile, highly flexible tools to perform in vivo studies. Multiple genetic models can be created in a short period of time. High transduction efficiencies as well as robust and sustained trans-gene expression lead to the rapid appearance of functional and behavioral abnormalities and severe neuro-degeneration. Targeted injections in different brain areas can be used to investigate the regional specificity of the neuro-pathology and eliminate potential side effects associated with a widespread over-expression of the trans-gene. Finally, models can be established in different mammalian species including non-human primates, thereby providing an opportunity to assess complex behavioral changes and perform longitudinal follow-up of neuro-pathological alterations by imaging. We have demonstrated the proof of principle of this approach for Huntington's disease. We have shown that the intratriatal injection of lentiviral vector

  1. Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033

    Dorow, Donna S.; Cullinane, Carleen; Conus, Nelly; Roselt, Peter; Binns, David; McCarthy, Timothy J.; McArthur, Grant A.; Hicks, Rodney J.

    2006-01-01

    This study was designed as ''proof of concept'' for a drug development model utilising multi-tracer serial small animal PET imaging to characterise tumour responses to molecularly targeted therapy. Mice bearing subcutaneous A431 human squamous carcinoma xenografts (n=6-8) were treated with the pan-Erb-B inhibitor CI-1033 or vehicle and imaged serially (days 0, 3 and 6 or 7) with [ 18 F]fluorodeoxyglucose, [ 18 F]fluoro-L-thymidine, [ 18 F]fluoro-azoazomycinarabinoside or [ 18 F]fluoromisonidazole. Separate cohorts (n=3) were treated identically and tumours were assessed ex vivo for markers of glucose metabolism, proliferation and hypoxia. During the study period, mean uptake of all PET tracers generally increased for control tumours compared to baseline. In contrast, tracer uptake into CI-1033-treated tumours decreased by 20-60% during treatment. Expression of the glucose transporter Glut-1 and cell cycle markers was unchanged or increased in control tumours and generally decreased with CI-1033 treatment, compared to baseline. Thymidine kinase activity was reduced in all tumours compared to baseline at day 3 but was sevenfold higher in control versus CI-1033-treated tumours by day 6 of treatment. Uptake of the hypoxia marker pimonidazole was stable in control tumours but was severely reduced following 7 days of CI-1033 treatment. CI-1033 treatment significantly affects tumour metabolism, proliferation and hypoxia as determined by PET. The PET findings correlated well with ex vivo biomarkers for each of the cellular processes studied. These results confirm the utility of small animal PET for evaluation of the effectiveness of molecularly targeted therapies and simultaneously definition of specific cellular processes involved in the therapeutic response. (orig.)

  2. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal

  3. Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation.

    Goodwin, Richard J A; Nilsson, Anna; Borg, Daniel; Langridge-Smith, Pat R R; Harrison, David J; Mackay, C Logan; Iverson, Suzanne L; Andrén, Per E

    2012-08-30

    Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    Huang, P-C; Hsu, C-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Hsiao, I-T [Department Medical Imaging and Radiological Sciences, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, K M [Medical Engineering Research Division, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan (China)], E-mail: cghsu@mx.nthu.edu.tw

    2009-06-15

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  5. Animal Bites

    Wild animals usually avoid people. They might attack, however, if they feel threatened, are sick, or are protecting their ... or territory. Attacks by pets are more common. Animal bites rarely are life-threatening, but if they ...

  6. Animal experimentation

    Laz, Alak; Cholakova, Tanya Stefanova; Vrablova, Sofia; Arshad, Naverawaheed

    2016-01-01

    Animal experimentation is a crucial part of medical science. One of the ways to define it is any scientific experiment conducted for research purposes that cause any kind of pain or suffering to animals. Over the years, the new discovered drugs or treatments are first applied on animals to test their positive outcomes to be later used by humans. There is a debate about violating ethical considerations by exploiting animals for human benefits. However, different ethical theories have been made...

  7. Animal models

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  8. Animal Deliberation

    Driessen, C.P.G.

    2014-01-01

    While much has been written on environmental politics on the one hand, and animal ethics and welfare on the other, animal politics, as the interface of the two, is underexamined. There are key political implications in the increase of animal protection laws, the rights of nature, and political

  9. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  10. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  11. Progress on dedicated animal PET

    Liu Wei

    2002-01-01

    Positron emission tomography, as the leading technology providing molecular imaging of biological processes, is widely used on living laboratory animals. High-resolution dedicated animal PET scanners have been developed. Although the dedicated animal PET faces obstacles and challenges, this advanced technology would play an important role in molecular biomedicine researches, such as diseases study, medicine development, and gene therapy

  12. Design and implementation of the Molecular Imaging Unit for large animals at the National Center for Cardiovascular Research; Diseno y puesta en marcha de la Unidad de Imagen Molecular para animales grandes del Centro Nacional de Investigaciones Cardiovasculares

    Lopez, G.; Delgado Alberquilla, R.; Moreno Lopez, J.; Escudero Toro, R.

    2011-07-01

    in this paper describes the most important imaging techniques to be used with the latest equipment as well as the future of PET-MRI combination, its application in research on large animals and the implications for the design of the units, shielding calculation management sources of radiation and waste. This has required value and integrate the specific requirements of a research center in terms of bio security, care of large animals (pigs), health status of animals in an environment of highly demanding conditions PR.

  13. Two-photon microscopy imaging of thy1GFP-M transgenic mice: a novel animal model to investigate brain dendritic cell subsets in vivo.

    Claudia Laperchia

    Full Text Available Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype.With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity of dendritic cells (DCs, and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions.

  14. Animated Asphalt

    Paldam, Camilla Skovbjerg

    2015-01-01

    to be understood? How does animation differ in different media? And in particular by focusing on and questioning the gender positions inherent in Mitchell’s theory. Animation has an erotic component of seduction and desire, and what pictures want, becomes for Mitchell, what women want. There is of course no simple...

  15. Animal magic

    Denny, Mark

    2017-11-01

    Writing a popular-science book about animal biophysics is hard work. Authors must read through hundreds of research papers as the subject is so multidisciplinary. On both counts of research and writing, Matin Durrani and Liz Kalaugher have done a good to excellent job with their book Furry Logic: the Physics of Animal Life

  16. Animal ethics

    Palmer, Clare; Sandøe, Peter

    2011-01-01

    This chapter describes and discusses different views concerning our duties towards animals. First, we explain why it is necessary to engage in thinking about animal ethics and why it is not enough to rely on feelings alone. Secondly, we present and discuss five different kinds of views about...

  17. ANIMAL code

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  18. Animation & Neurocinematics*

    Carpe Pérez, Inmaculada Concepción

    2015-01-01

    , indeed, can be considered a social/ emotional learning media, which goes beyond the limitations of live action movies. This is due to the diversity of techniques, and its visual plasticity that constructs the impossible. Animators are not real actors but more like the midwife who brings the anima...... into aliveness, which requires knowing how emotions work. Ed Hooks as an expert in training animators and actors, always remarks: “emotions tend to lead to action”. In this paper we want to argue that by producing animated films, as we watch them, cause a stronger effect, not only in our brains, but also in our...... bodies. By using animation as a learning tool we can explore the world of emotions and question beliefs, feelings and actions in order to express our voices and enhance our communication, and well-being, both, internally and with others. Animation can be the visual expression of the emotions in movement...

  19. Design and Characteristics of a Multichannel Front-End ASIC Using Current-Mode CSA for Small-Animal PET Imaging.

    Ollivier-Henry, N; Wu Gao; Xiaochao Fang; Mbow, N A; Brasse, D; Humbert, B; Hu-Guo, C; Colledani, C; Yann Hu

    2011-02-01

    This paper presents the design and characteristics of a front-end readout application-specific integrated circuit (ASIC) dedicated to a multichannel-plate photodetector coupled to LYSO scintillating crystals. In our configuration, the crystals are oriented in the axial direction readout on both sides by individual photodetector channels allowing the spatial resolution and the detection efficiency to be independent of each other. Both energy signals and timing triggers from the photodetectors are required to be read out by the front-end ASIC. A current-mode charge-sensitive amplifier is proposed for this application. This paper presents performance characteristics of a 10-channel prototype chip designed and fabricated in a 0.35-μm complementary metal-oxide semiconductor process. The main results of simulations and measurements are presented and discussed. The gain of the chip is 13.1 mV/pC while the peak time of a CR-RC pulse shaper is 280 ns. The signal-to-noise ratio is 39 dB and the rms noise is 300 μV/√(Hz). The nonlinearity is less than 3% and the crosstalk is about 0.2%. The power dissipation is less than 15 mW/channel. This prototype will be extended to a 64-channel circuit with integrated time-to-digital converter and analog-to-digital converter together for a high-sensitive small-animal positron emission tomography imaging system.

  20. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Accorsi, R.; Autiero, M.; Celentano, L.

    2007-01-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125 I, 27-35 keV, 99m Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  1. Animal experimentation.

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.

  2. Animal Transports

    Diana Ludrovcová

    2016-08-01

    Full Text Available Purpose and Originality: The research is aimed to the animal transports issue, from two points of view – first is the animal cruelty and second is the policy and economic consideration. The goal is to acquaint the readers with the transports risks and its cruelty and evaluation of the economic, political aspects for he involved countries. The study is oriented on more points of view, what is rare in works with a similar theme. Method: This paper examines many issues and examinations from different authors and subsequently summarized the findings with authors own knowledge to one expanded unit. Results: Results proves, that livestock transports have negative impact on animal´s health, environment. Number of transported animals is rising every year. Society: Research familiarize the society with the animal transports, cruelty against animals during them, and influence of transports on some countries, their economy, policy. People get better informed and can form their own opinion on this topic. They may start acting, undertaking some steps to improve the present situation, what could help a lot to animals and environment. Limitations / further research: Future research could show progress and improvement of transports, quality of food supply and economics.

  3. Animal tumors

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  4. Mentalizing animals

    Kasperbauer, Tyler Joshua

    2017-01-01

    Ethicists have tended to treat the psychology of attributing mental states to animals as an entirely separate issue from the moral importance of animals’ mental states. In this paper I bring these two issues together. I argue for two theses, one descriptive and one normative. The descriptive thesis...... holds that ordinary human agents use what are generally called phenomenal mental states (e.g., pain and other emotions) to assign moral considerability to animals. I examine recent empirical research on the attribution of phenomenal states and agential states (e.g., memory and intelligence) to argue...... that phenomenal mental states are the primary factor, psychologically, for judging an animal to be morally considerable. I further argue that, given the role of phenomenal states in assigning moral considerability, certain theories in animal ethics will meet significant psychological resistance. The normative...

  5. An improved optimization algorithm of the three-compartment model with spillover and partial volume corrections for dynamic FDG PET images of small animal hearts in vivo

    Li, Yinlin; Kundu, Bijoy K.

    2018-03-01

    The three-compartment model with spillover (SP) and partial volume (PV) corrections has been widely used for noninvasive kinetic parameter studies of dynamic 2-[18F] fluoro-2deoxy-D-glucose (FDG) positron emission tomography images of small animal hearts in vivo. However, the approach still suffers from estimation uncertainty or slow convergence caused by the commonly used optimization algorithms. The aim of this study was to develop an improved optimization algorithm with better estimation performance. Femoral artery blood samples, image-derived input functions from heart ventricles and myocardial time-activity curves (TACs) were derived from data on 16 C57BL/6 mice obtained from the UCLA Mouse Quantitation Program. Parametric equations of the average myocardium and the blood pool TACs with SP and PV corrections in a three-compartment tracer kinetic model were formulated. A hybrid method integrating artificial immune-system and interior-reflective Newton methods were developed to solve the equations. Two penalty functions and one late time-point tail vein blood sample were used to constrain the objective function. The estimation accuracy of the method was validated by comparing results with experimental values using the errors in the areas under curves (AUCs) of the model corrected input function (MCIF) and the 18F-FDG influx constant K i . Moreover, the elapsed time was used to measure the convergence speed. The overall AUC error of MCIF for the 16 mice averaged  -1.4  ±  8.2%, with correlation coefficients of 0.9706. Similar results can be seen in the overall K i error percentage, which was 0.4  ±  5.8% with a correlation coefficient of 0.9912. The t-test P value for both showed no significant difference. The mean and standard deviation of the MCIF AUC and K i percentage errors have lower values compared to the previously published methods. The computation time of the hybrid method is also several times lower than using just a stochastic

  6. A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus

    Kawamura, Kazunori; Shimoda, Yoko; Yui, Joji; Zhang, Yiding; Yamasaki, Tomoteru; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Fujinaga, Masayuki; Ogawa, Masanao; Kurihara, Yusuke; Nengaki, Nobuki; Zhang, Ming-Rong

    2017-01-01

    Introduction: A positron emission tomography (PET) probe with ultra-high specific radioactivity (SA) enables measuring high receptor specific binding in brain regions by avoiding mass effect of the PET probe itself. It has been reported that PET probe with ultra-high SA can detect small change caused by endogenous or exogenous ligand. Recently, Kealey et al. developed [ 11 C]BU99008, a more potent PET probe for I 2 -imidazoline receptors (I 2 Rs) imaging, with a conventional SA (mean 76 GBq/μmol) showed higher specific binding in the brain. Here, to detect small change of specific binding for I 2 Rs caused by endogenous or exogenous ligand in an extremely small region, such as hypothalamus in the brain, we synthesized and evaluated [ 11 C]BU99008 with ultra-high SA as a useful PET probe for small-animal PET imaging of I 2 Rs. Methods: [ 11 C]BU99008 was prepared by [ 11 C]methylation of N-desmethyl precursor with [ 11 C]methyl iodide. Biodistribution, metabolite analysis, and brain PET studies were conducted in rats. Results: [ 11 C]BU99008 with ultra-high SA in the range of 5400–16,600 GBq/μmol were successfully synthesized (n = 7), and had appropriate radioactivity for in vivo study. In the biodistribution study, the mean radioactivity levels in all investigated tissues except for the kidney did not show significant difference between [ 11 C]BU99008 with ultra-high SA and that with conventional SA. In the metabolite analysis, the percentage of unchanged [ 11 C]BU99008 at 30 min after the injection of probes with ultra-high and conventional SA was similar in rat brain and plasma. In the PET study of rats' brain, radioactivity level (AUC 30–60 min ) in the hypothalamus of rats injected with [ 11 C]BU99008 with ultra-high SA (64 [SUV ∙ min]) was significantly higher than that observed for that with conventional SA (50 [SUV ∙ min]). The specific binding of [ 11 C]BU99008 with ultra-high SA (86% of total binding) for I 2 R was higher than that of

  7. Development of biomarker specific of pancreatic beta cells (incretin radiolabelled) for image of beta functional mass in diabetic and obese: study in animal model

    Seo, Daniele

    2017-01-01

    Increased prevalence of obesity worldwide, has become a vast concern, stimulating investigations focusing prevention and therapy of this condition. The association of type 2 diabetes or insulin resistance aggravates the prognosis of obesity. Even patients successfully submitted to bariatric or metabolic surgery, may not be cured of diabetes, as improvement of circulating values of glucose and insulin not necessarily reflects recovery of pancreatic beta cell mass. There is no consensus about how to estimate beta cell mass in vivo. Available tools suffer from low sensitivity and specificity, often being as well cumbersome and expensive. Radiolabeled incretins, such as glucagon-like-peptide 1 (GLP-1) analogs, seem to be promising options for the measurement of beta cell mass in diabetes and insulinoma. The objective of this study was the development of two conjugates of GLP-1 analog, radiolabeled with 99m Technetium, as a noninvasive imaging method for the estimation of pancreatic beta cell mass, in the presence of obesity. Animal models were selected, including hyperlipidic diet-induced obesity, diet restricted obesity, and as controls, alloxan diabetes. Results indicated that both radiotracers achieved over 97% radiochemical yield. The most successful product was 99m Tc-HYNIC-βAla-Exendin-4. Low beta cell mass uptake occurred in diet-induced obesity. Diet-restricted obesity, with substantial shedding of excess body weight, was followed by remarkable decrease of fasting blood glucose, however beta cell mass uptake was only mildly improved. Future studies are recommended in obesity, type 2 diabetes, and dieting, including bariatric and metabolic operations. (author)

  8. Nuclear medicine imaging instrumentations for molecular imaging

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  9. Animated Reconstruction of Forensic Animation

    Hala, Albert; Unver, Ertu

    1998-01-01

    An animated accident display in court can be significant evidentiary tool. Computer graphics animation reconstructions which can be shown in court are cost effective, save valuable time and illustrate complex and technical issues, are realistic and can prove or disprove arguments or theories with reference to the perplexing newtonian physics involved in many accidents: this technology may well revolutionise accident reconstruction, thus enabling prosecution and defence to be more effective in...

  10. Animal toxicology

    Amdur, M.

    1996-12-31

    The chapter evaluates results of toxicological studies on experimental animals to investigate health effects of air pollutants and examines the animal data have predicted the response to human subject. Data are presented on the comparative toxicity of sulfur dioxide and sulfuric acid. The animal data obtained by measurement of airway resistance in guinea pigs and of bronchial clearance of particles in donkeys predicted clearly that sulfuric acid was more irritant than sulfur dioxide. Data obtained on human subjects confirmed this prediction. These acute studies also correctly predicted the comparative toxicity of the two compounds in two year studies of monkeys. Such chronic studies are not possible in human subjects but it is a reasonable to assume that sulfuric acid would be more toxic than sulfur dioxide. Current findings in epidemiological studies certainly support this assumption.

  11. Animal evolution

    Nielsen, Claus

    This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes it possi......This book provides a comprehensive analysis of evolution in the animal kingdom. It reviews the classical, morphological information from structure and embryology, as well as the new data gained from studies using immune stainings of nerves and muscles and blastomere markings, which makes...

  12. Animal Science.

    VanCleave, Janice

    2001-01-01

    Presents a set of hands-on, outdoor science experiments designed to teach elementary school students about animal adaptation. The experiments focus on: how color camouflage affects an insect population; how spiderlings find a home; and how chameleons camouflage themselves by changing color. (SM)

  13. Animal radiographs

    Anon.

    1993-01-01

    This chapter presents historical x rays of a wide variety of animals taken within 5 years of the discovery of x radiation. Such photos were used as tests or as illustrations for radiographic publications. Numerous historical photographs are included. 10 refs

  14. Animal impacts

    Norbert V. DeByle

    1985-01-01

    The aspen ecosystem is rich in number and species of animals, especially in comparison to associated coniferous forest types. This natural species diversity and richness has been both increased and influenced by the introduction of domestic livestock. The high value of the aspen type as a forage resource for livestock and as forage and cover for wildlife makes the...

  15. Animated symbols

    Frølunde, Lisbeth

    2008-01-01

    an analytic working model called Animated Symbols concerning critical reflection in a dialogic learning process. The model shows dialogue as interactions that involve two types of transformation: inner ‘learning processes' and outer signs and symbols. The classroom-based research study is part of a Ph...

  16. Assessing the predictive capability of optical imaging techniques, Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI), to the gold standard of clinical assessment in a controlled animal model

    Ponticorvo, A.; Rowland, R.; Baldado, M.; Burmeister, D. M.; Christy, R. J.; Bernal, N.; Durkin, A. J.

    2018-02-01

    The current standard for assessment of burn severity and subsequent wound healing is through clinical examination, which is highly subjective. Accurate early assessment of burn severity is critical for dictating the course of wound management. Complicating matters is the fact that burn wounds are often large and can have multiple regions that vary in severity. In order to manage the treatment more effectively, a tool that can provide spatially resolved information related to mapping burn severity could aid clinicians when making decisions. Several new technologies focus on burn care in an attempt to help clinicians objectively determine burn severity. By quantifying perfusion, laser speckle imaging (LSI) has had success in categorizing burn wound severity at earlier time points than clinical assessment alone. Additionally, spatial frequency domain imaging (SFDI) is a new technique that can quantify the tissue structural damage associated with burns to achieve earlier categorization of burn severity. Here we compared the performance of a commercial LSI device (PeriCam PSI, Perimed Inc.), a SFDI device (Reflect RSTM, Modulated Imaging Inc.) and conventional clinical assessment in a controlled (porcine) model of graded burn wound severity over the course of 28 days. Specifically we focused on the ability of each system to predict the spatial heterogeneity of the healed wound at 28 days, based on the images at an early time point. Spatial heterogeneity was defined by clinical assessment of distinct regions of healing on day 28. Across six pigs, 96 burn wounds (3 cm diameter) were created. Clinical assessment at day 28 indicated that 39 had appeared to heal in a heterogeneous manner. Clinical observation at day 1 found 35 / 39 (90%) to be spatially heterogeneous in terms of burn severity. The LSI system was able to detect spatial heterogeneity of burn severity in 14 / 39 (36%) cases on day 1 and 23 / 39 cases (59%) on day 7. By contrast the SFDI system was able to

  17. MAGNETIC-RESONANCE-IMAGING USING A CLINICAL WHOLE-BODY SYSTEM - AN INTRODUCTION TO A USEFUL TECHNIQUE IN SMALL ANIMAL-EXPERIMENTS

    WOLF, RFE; LAM, KH; MOOYAART, EL; BLEICHRODT, RP; NIEUWENHUIS, P; SCHAKENRAAD, JM

    A clinical whole body magnetic resonance imaging (MRI) system with high resolution coils was used to obtain non-invasive images of the living rat. The results demonstrate the feasibility of the set-up and the advantages of this new imaging technique: detailed information, no extra costs,

  18. Animal Welfare in Air Transport

    Boris Popović

    2012-10-01

    Full Text Available Animal welfare is becoming an evermore-important factorfor air carriers from the economical viewpoint, due to its importantimpact on the carrier public image. High standard care hasto be taken of animals during transport in order to satisfy an importantsegment of airline customers, either the Business/Firstclass passengers travelling with pets, or influential shippers ofracing horses, dogs, Zoo species etc.Air transp011 of animals, disregarding other advantages,may pose a threat to their health and welfare being a significantmultifactorial stressor. Along with cardiovascular, endocrineand metabolic abe1mtions, it affects the immune response ofan animal and increases susceptibility to infection. Therefore,strict conditions for air transport of eve1y animal species havebeen imposed. Transport of only healthy animals is approved,as it is necessG/y to prevent the spread of disease during transportand to provide satisfactOJy environment for animals to betransported.

  19. Biotecnologia animal

    Luiz Lehmann Coutinho

    2010-01-01

    Full Text Available A biotecnologia animal tem fornecido novas ferramentas para os programas de melhoramento e, dessa forma, contribuído para melhorar a eficiência da produção dos produtos de origem animal. No entanto, os avanços têm sido mais lentos do que antecipados, especialmente em razão da dificuldade na identificação dos genes responsáveis pelas características fenotípicas de interesse zootécnico. Três estratégias principais têm sido utilizadas para identificar esses genes - mapeamento de QTL, genes candidatos e sequenciamento de DNA e mRNA - e cada uma tem suas vantagens e limitações. O mapeamento de QTL permite determinar as regiões genômicas que contêm genes, mas o intervalo de confiança do QTL pode ser grande e conter muitos genes. A estratégia de genes candidatos é limitada por causa do conhecimento ainda restrito das funções de todos os genes. Os sequenciamentos de genomas e de sequências expressas podem auxiliar na identificação da posição de genes e de vias metabólicas associadas à característica de interesse. A integração dessas estratégias por meio do desenvolvimento de programas de bioinformática permitirá a identificação de novos genes de interesse zootécnico. Assim, os programas de melhoramento genético se beneficiarão pela inclusão da informação obtida diretamente do DNA na avaliação do mérito genético dos plantéis disponíveis.Animal biotechnology is providing new tools for animal breeding and genetics and thus contributing to advances in production efficiency and quality of animal products. However, the progress is slower than anticipated, mainly because of the difficulty involved in identifying genes that control phenotypic characteristics of importance to the animal industry. Three main strategies: QTL mapping, candidate genes and DNA and mRNA sequencing have been used to identify genes of economic interest to animal breeding and each has advantages and disadvantages. QTL mapping allows

  20. Animal facilities

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  1. Animal Locomotion

    Taylor, Graham K; Tropea, Cameron

    2010-01-01

    This book provides a wide-ranging snapshot of the state-of-the-art in experimental research on the physics of swimming and flying animals. The resulting picture reflects not only upon the questions that are of interest in current pure and applied research, but also upon the experimental techniques that are available to answer them. Doubtless, many new questions will present themselves as the scope and performance of our experimental toolbox develops over the coming years.

  2. Animation of Antimicrobial Resistance

    ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  3. Animation of Antimicrobial Resistance

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  4. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  5. Animated war

    Frølunde, Lisbeth

    2012-01-01

    in production: Gzim Rewind (Sweden, 2011) by Knutte Wester, and In-World War (USA, expected 2011) by DJ Bad Vegan. These films have themes of war and include film scenes that are ‘machinima’ (real-time animation made in 3D graphic environments) within live action film scenes. Machinima harnesses...... DIY multimedia storytellers explore new ways to tell and to ‘animate’ stories. The article contains four parts: introduction to machinima and the notions of resemiosis and authorial practice, presentation of DIY filmmaking as a practice that intertwines with new networked economics, analysis...

  6. Animal models.

    Walker, Ellen A

    2010-01-01

    As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.

  7. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    Nazem-Zadeh, Mohammad-Reza; Chapman, Christopher H; Lawrence, Theodore S; Ten Haken, Randall K; Tsien, Christina I; Cao, Yue; Chenevert, Thomas

    2014-01-01

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  8. Small animal radiotherapy research platforms

    Verhaegen, Frank; Granton, Patrick [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Tryggestad, Erik, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 (United States)

    2011-06-21

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  9. Small animal radiotherapy research platforms

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  10. Small animal radiotherapy research platforms

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-01-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  11. A stereotactic method for the three-dimensional registration of multi-modality biologic images in animals: NMR, PET, histology, and autoradiography

    Humm, J.L.; Ballon, D.; Hu, Y.C.; Ruan, S.; Chui, C.; Tulipano, P.K.; Erdi, A.; Koutcher, J.; Zakian, K.; Urano, M.; Zanzonico, P.; Mattis, C.; Dyke, J.; Chen, Y.; Harrington, P.; O'Donoghue, J.A.; Ling, C.C.

    2003-01-01

    The objective of this work was to develop and then validate a stereotactic fiduciary marker system for tumor xenografts in rodents which could be used to co-register magnetic resonance imaging (MRI), PET, tissue histology, autoradiography, and measurements from physiologic probes. A Teflon TM fiduciary template has been designed which allows the precise insertion of small hollow Teflon rods (0.71 mm diameter) into a tumor. These rods can be visualized by MRI and PET as well as by histology and autoradiography on tissue sections. The methodology has been applied and tested on a rigid phantom, on tissue phantom material, and finally on tumor bearing mice. Image registration has been performed between the MRI and PET images for the rigid Teflon phantom and among MRI, digitized microscopy images of tissue histology, and autoradiograms for both tissue phantom and tumor-bearing mice. A registration accuracy, expressed as the average Euclidean distance between the centers of three fiduciary markers among the registered image sets, of 0.2±0.06 mm was achieved between MRI and microPET image sets of a rigid Teflon phantom. The fiduciary template allows digitized tissue sections to be co-registered with three-dimensional MRI images with an average accuracy of 0.21 and 0.25 mm for the tissue phantoms and tumor xenografts, respectively. Between histology and autoradiograms, it was 0.19 and 0.21 mm for tissue phantoms and tumor xenografts, respectively. The fiduciary marker system provides a coordinate system with which to correlate information from multiple image types, on a voxel-by-voxel basis, with sub-millimeter accuracy--even among imaging modalities with widely disparate spatial resolution and in the absence of identifiable anatomic landmarks

  12. Image-quality assessment for several positron emitters using the nema nu 4-2009 standards in the siemens inveon small-animal pet scanner

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, Cornelis H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters 18F, 68Ga, 124I, and 89Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for

  13. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner.

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner

  14. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO for In Vivo MR Imaging of the Liver in an Animal Model.

    Yu-Ting Kuo

    Full Text Available Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI, play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO, with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA enhanced T1-weighted images and (like SPIO T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824, those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086. Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor

  15. Detection of furcation involvement using periapical radiography and 2 cone-beam computed tomography imaging protocols with and without a metallic post: An animal study

    Salineiro, Fernanda Cristina Sales; Gialain, Ivan Onone; Kobayashi-Velasco, Solange; Pannuti, Claudio Mendes; Cavalcanti, Marcelo Gusmao Paraiso [Dept. of Stomatology, School of Dentistry, University of Sao Paulo, Sao Paulo (Brazil)

    2017-03-15

    The purpose of this study was to assess the accuracy, sensitivity, and specificity of the diagnosis of incipient furcation involvement with periapical radiography (PR) and 2 cone-beam computed tomography (CBCT) imaging protocols, and to test metal artifact interference. Mandibular second molars in 10 macerated pig mandibles were divided into those that showed no furcation involvement and those with lesions in the furcation area. Exams using PR and 2 different CBCT imaging protocols were performed with and without a metallic post. Each image was analyzed twice by 2 observers who rated the absence or presence of furcation involvement according to a 5-point scale. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy, sensitivity, and specificity of the observations. The accuracy of the CBCT imaging protocols ranged from 67.5% to 82.5% in the images obtained with a metallic post and from 72.5% to 80% in those without a metallic post. The accuracy of PR ranged from 37.5% to 55% in the images with a metallic post and from 42.5% to 62.5% in those without a metallic post. The area under the ROC curve values for the CBCT imaging protocols ranged from 0.813 to 0.802, and for PR ranged from 0.503 to 0.448. Both CBCT imaging protocols showed higher accuracy, sensitivity, and specificity than PR in the detection of incipient furcation involvement. Based on these results, CBCT may be considered a reliable tool for detecting incipient furcation involvement following a clinical periodontal exam, even in the presence of a metallic post.

  16. Animal Resource Program | Center for Cancer Research

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  17. Animal Resource Program | Center for Cancer Research

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Office:

  18. Bioethical Problems: Animal Welfare, Animal Rights.

    March, B. E.

    1984-01-01

    Discusses various bioethical issues and problems related to animal welfare and animal rights. Areas examined include: Aristotelian views; animal welfare legislation; Darwin and evolutionary theory; animal and human behavior; and vegetarianism. A 14-point universal declaration of the rights of animals is included. (JN)

  19. Animal welfare: an animal science approach.

    Koknaroglu, H; Akunal, T

    2013-12-01

    Increasing world population and demand for animal-derived protein puts pressure on animal production to meet this demand. For this purpose animal breeding efforts were conducted to obtain the maximum yield that the genetic makeup of the animals permits. Under the influence of economics which is the driving force behind animal production, animal farming became more concentrated and controlled which resulted in rearing animals under confinement. Since more attention was given on economics and yield per animal, animal welfare and behavior were neglected. Animal welfare which can be defined as providing environmental conditions in which animals can display all their natural behaviors in nature started gaining importance in recent years. This does not necessarily mean that animals provided with good management practices would have better welfare conditions as some animals may be distressed even though they are in good environmental conditions. Consumers are willing to pay more for welfare-friendly products (e.g.: free range vs caged egg) and this will change the animal production practices in the future. Thus animal scientists will have to adapt themselves for the changing animal welfare rules and regulations that differ for farm animal species and countries. In this review paper, animal welfare is discussed from an animal science standpoint. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  1. Identification and High-Resolution Imaging of α-Tocopherol from Human Cells to Whole Animals by TOF-SIMS Tandem Mass Spectrometry

    Bruinen, Anne L.; Fisher, Gregory L.; Balez, Rachelle; van der Sar, Astrid M.; Ooi, Lezanne; Heeren, Ron M. A.

    2018-06-01

    A unique method for identification of biomolecular components in different biological specimens, while preserving the capability for high speed 2D and 3D molecular imaging, is employed to investigate cellular response to oxidative stress. The employed method enables observing the distribution of the antioxidant α-tocopherol and other molecules in cellular structures via time-of-flight secondary ion mass spectrometry (TOF-SIMS (MS1)) imaging in parallel with tandem mass spectrometry (MS2) imaging, collected simultaneously. The described method is employed to examine a network formed by neuronal cells differentiated from human induced pluripotent stem cells (iPSCs), a model for investigating human neurons in vitro. The antioxidant α-tocopherol is identified in situ within different cellular layers utilizing a 3D TOF-SIMS tandem MS imaging analysis. As oxidative stress also plays an important role in mediating inflammation, the study was expanded to whole body tissue sections of M. marinum-infected zebrafish, a model organism for tuberculosis. The TOF-SIMS tandem MS imaging results reveal an increased presence of α-tocopherol in response to the pathogen. [Figure not available: see fulltext.

  2. Imaging of dopamine transporters with 99Tcm-TRODAT-1, rCBF and MRI in animal model of parkinson disease

    Deng Haoyu; Wang Wei; Li Xinhui; Yu Xiaoping

    2001-01-01

    Objective: To study the relationship between radioactivity distribution and changes of regional cerebral blood flow (rCBF) and tissue structure in the striatum of Parkinson disease (PD) model monkeys with 99 Tc m - TRODAT-1 and to estimate the value of imaging with 99 Tc m -TRODAT-1 in early diagnosis of PD. Methods: 99 Tc m -TRODAT-1 and rCBF imaging were performed on five monkeys before and after being made into a single side PD model. Two of the 5 PD model monkeys also received MRI. Results: In 99 Tc m -TRODAT-1 imaging the radioactivity ratio of striatum to cerebellum (S/C) in the normal monkeys was 1.48 at 180 min after injection of the imaging agent, the ratio of radioactivity in PD model monkeys in their destroyed striatum to that in cerebellum and in normal side striatum were 0.96 and 1.43, respectively. There was no difference in rCBF perfusion between normal and destroyed striatum of the PD model monkeys and between striatum tissue in two hemispheres of the normal monkeys either. The destruction of the tissue structure was not detected in PD model monkeys with MRI. Conclusions: 90 Tc m -TRODAT-1 can specifically bind dopamine transporters (DAT), sensitively display DAT uptake decrease ahead of the structural damage and cerebral blood flow perfusion decrease in PD model monkeys. It could become a useful imaging modality for the early diagnosis of PD

  3. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

    Zhang, Xueli; Tian, Yanli; Zhang, Can; Tian, Xiaoyu; Ross, Alana W.; Moir, Robert D.; Sun, Hongbin; Tanzi, Rudolph E.; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging has been widely applied to monitoring therapy of cancer and other diseases in preclinical studies; however, this technology has not been applied successfully to monitoring therapy for Alzheimer’s disease (AD). Although several NIRF probes for detecting amyloid beta (Aβ) species of AD have been reported, none of these probes has been used to monitor changes of Aβs during therapy. In this article, we demonstrated that CRANAD-3, a curcumin analog, is capable of detecting both soluble and insoluble Aβ species. In vivo imaging showed that the NIRF signal of CRANAD-3 from 4-mo-old transgenic AD (APP/PS1) mice was 2.29-fold higher than that from age-matched wild-type mice, indicating that CRANAD-3 is capable of detecting early molecular pathology. To verify the feasibility of CRANAD-3 for monitoring therapy, we first used the fast Aβ-lowering drug LY2811376, a well-characterized beta-amyloid cleaving enzyme-1 inhibitor, to treat APP/PS1 mice. Imaging data suggested that CRANAD-3 could monitor the decrease in Aβs after drug treatment. To validate the imaging capacity of CRANAD-3 further, we used it to monitor the therapeutic effect of CRANAD-17, a curcumin analog for inhibition of Aβ cross-linking. The imaging data indicated that the fluorescence signal in the CRANAD-17–treated group was significantly lower than that in the control group, and the result correlated with ELISA analysis of brain extraction and Aβ plaque counting. It was the first time, to our knowledge, that NIRF was used to monitor AD therapy, and we believe that our imaging technology has the potential to have a high impact on AD drug development. PMID:26199414

  4. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-01-01

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs

  5. Imaging

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  6. Role of near-infrared fluorescence imaging in the resection of metastatic lymph nodes in an optimized orthotopic animal model of HNSCC.

    Atallah, I; Milet, C; Quatre, R; Henry, M; Reyt, E; Coll, J-L; Hurbin, A; Righini, C A

    2015-12-01

    To study the role of near-infrared fluorescence imaging in the detection and resection of metastatic cervical lymph nodes in head and neck cancer. CAL33 head and neck cancer cells of human origin were implanted in the oral cavity of nude mice. The mice were followed up after tumor resection to detect the development of lymph node metastases. A specific fluorescent tracer for αvβ3 integrin expressed by CAL33 cells was injected intravenously in the surviving mice between the second and the fourth month following tumor resection. A near-infrared fluorescence-imaging camera was used to detect tracer uptake in metastatic cervical lymph nodes, to guide of lymph-node resection for histological analysis. Lymph node metastases were observed in 42.8% of surviving mice between the second and the fourth month following orthotopic tumor resection. Near-infrared fluorescence imaging provided real-time intraoperative detection of clinical and subclinical lymph node metastases. These results were confirmed histologically. Near infrared fluorescence imaging provides real-time contrast between normal and malignant tissue, allowing intraoperative detection of metastatic lymph nodes. This preclinical stage is essential before testing the technique in humans. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  8. Animation of Antimicrobial Resistance

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  9. [123I]Iodobenzamide binding to the rat dopamine D2 receptor in competition with haloperidol and endogenous dopamine - an in vivo imaging study with a dedicated small animal SPECT

    Nikolaus, Susanne; Larisch, Rolf; Wirrwar, Andreas; Jamdjeu-Noune, Marlyse; Antke, Christina; Beu, Markus; Mueller, Hans-Wilhelm; Schramm, Nils

    2005-01-01

    This study assessed [ 123 I]iodobenzamide binding to the rat dopamine D 2 receptor in competition with haloperidol and endogenous dopamine using a high-resolution small animal SPECT. Subsequent to baseline quantifications of D 2 receptor binding, imaging studies were performed on the same animals after pre-treatment with haloperidol and methylphenidate, which block D 2 receptors and dopamine transporters, respectively. Striatal baseline equilibrium ratios (V 3 '' ) of [ 123 I]iodobenzamide binding were 1.42±0.31 (mean±SD). After pre-treatment with haloperidol and methylphenidate, V 3 '' values decreased to 0.54±0.46 (p 123 I]iodobenzamide binding induced by pre-treatment with haloperidol reflects D 2 receptor blockade, whereas the decrease in receptor binding induced by pre-treatment with methylphenidate can be interpreted in terms of competition between [ 123 I]IBZM and endogenous dopamine. Findings show that multiple in vivo measurements of [ 123 I]iodobenzamide binding to D 2 receptors in competition with exogenous and endogenous ligands are feasible in the same animal. This may be of future relevance for the in vivo evaluation of novel radioligands as well as for studying the interrelations between pre- and/or postsynaptic radioligand binding and different levels of endogenous dopamine. (orig.)

  10. The wild animal as a research animal

    Swart, JAA

    2004-01-01

    Most discussions on animal experimentation refer to domesticated animals and regulations are tailored to this class of animals. However, wild animals are also used for research, e. g., in biological field research that is often directed to fundamental ecological-evolutionary questions or to

  11. Animation of Antimicrobial Resistance

    Full Text Available ... Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health ... Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  12. Animation of Antimicrobial Resistance

    Full Text Available ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  13. Learning Anime Studio

    Troftgruben, Chad

    2014-01-01

    Anime Studio is your complete animation program to help you create 2D movies, cartoons, anime, and cut out animations. You can create your own animated shorts and use Anime Studio to produce cartoon animations for film, video, or streaming over the Web, which can be enjoyed on YouTube, Vimeo, and other popular sites. Anime Studio is great for hobbyists and professionals alike, combining tools for both illustration and animation. With Anime Studio's easy-to-use interface, you will be creating an animated masterpiece in no time. This practical, step-by-step guide will provide you with a structur

  14. Using Rose’s metal alloy as a pinhole collimator material in preclinical small-animal imaging: A Monte Carlo evaluation

    Peterson, Mikael; Strand, Sven-Erik; Ljungberg, Michael

    2015-01-01

    Purpose: Pinhole collimation is the most common method of high-resolution preclinical single photon emission computed tomography imaging. The collimators are usually constructed from dense materials with high atomic numbers, such as gold and platinum, which are expensive and not always flexible in the fabrication step. In this work, the authors have investigated the properties of a fusible alloy called Rose’s metal and its potential in pinhole preclinical imaging. When compared to current standard pinhole materials such as gold and platinum, Rose’s metal has a lower density and a relatively low effective atomic number. However, it is inexpensive, has a low melting point, and does not contract when solidifying. Once cast, the piece can be machined with high precision. The aim of this study was to evaluate the imaging properties for Rose’s metal and compare them with those of standard materials. Methods: After validating their Monte Carlo code by comparing its results with published data and the results from analytical calculations, they investigated different pinhole geometries by varying the collimator material, acceptance angle, aperture diameter, and photon incident angle. The penetration-to-scatter and penetration-to-total component ratios, sensitivity, and the spatial resolution were determined for gold, tungsten, and Rose’s metal for two radionuclides, 99 Tc m and 125 I. Results: The Rose’s metal pinhole-imaging simulations show higher penetration/total and scatter/total ratios. For example, the penetration/total is 50% for gold and 75% for Rose’s metal when simulating 99 Tc m with a 0.3 mm aperture diameter and a 60° acceptance angle. However, the degradation in spatial resolution remained below 10% relative to the spatial resolution for gold for acceptance angles below 40° and aperture diameters larger than 0.5 mm. Conclusions: Extra penetration and scatter associated with Rose’s metal contribute to degradation in the spatial resolution, but

  15. Comparison in animal models of 18F-spiroperidol and 18F-haloperidol: potential agents for imaging the dopamine receptor

    Welch, M.J.; Kilbourn, M.R.; Mathias, C.J.; Mintun, M.A.; Raichle, M.E.

    1983-01-01

    Fluorine-18-labeled haloperidol and spiroperidol have been prepared by an exchange reaction using the corresponding non-labeled compound or the nitro analog. Studies in rats have shown that the distribution of labeled spiroperidol has a high striatum to cerebellum ratio which is not observed with haloperidol. A ratio of 10.66 +/- 1.6 is obtained two hours after administration of the 18 F-spiroperidol. When 18 F-spiroperidol was administered to a baboon and tomographic images obtained, the dopamine receptor rich areas were clearly visualized two hours after administration

  16. Comparative binding characteristics of Tc-CPI, Tc-TBI, and Tc-MIBI in cultured heart cells: Correlation with biochemical analysis and animal images

    Piwnica-Worms, D.; Kronauge, J.F.; Holman, B.L.; Davison, A.; Jones, A.G.

    1987-01-01

    Hexakis (isonitrile)technetium (I) complexes are a new class of cationic, lipophilic myocaridal perfusion imaging agents. To better understand their cellular mechanisms of uptake and washout, chick heart cells grown in culture were used as a model myocardial system. Tc-MIBI showed uptake to a plateau at a rate similar to Tc-CPI (t1/2 = 4.1 +- 0.7 minutes); however, the plateau was 63% greater. Tc-TBI uptake approached a plateau 900% greater than Tc-CPI binding. Heart cell studies showed washout of Tc-CPI>Tc-TBI>Tc-MIBI, which correlated with kinetic analysis of rabbit myocardial images. Biochemical in vitro analysis in human plasma demonstrated 75% enzymatic ester hydrolysis of Tc-CPI by 3 minutes, but no hydrolysis of Tc-TBI and Tc-MIBI. The results suggest that metabolism of the ester function of Tc-CPI following myocardial uptake may in part account for the more rapid cellular washout rates of Tc-CPI compared with Tc-TBI and Tc-MIBI

  17. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  18. Investigation of the imaging characteristics of the ALBIRA II small animal PET system for {sup 18}F, {sup 68}Ga and {sup 64}Cu

    Attarwala, Ali Asgar; Hardiansyah, Deni [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Karanja, Yvonne Wanjiku; Romano, Chiara [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Roscher, Mareike; Waengler, Bjoern [Heidelberg Univ., Mannheim (Germany). Molecular Imaging and Radiochemistry; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Ulm Univ. (Germany). Dept. of Nuclear Medicine

    2017-08-01

    In this study the performance characteristics of the Albira II PET sub-system and the response of the system for the following radionuclides {sup 18}F, {sup 68}Ga and {sup 64}Cu was analyzed. The Albira II tri-modal system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) is a pre-clinical device for PET, SPECT and CT. The PET sub-system uses single continuous crystal detectors of lutetium yttrium orthosilicate (LYSO). The detector assembly consists of three rings of 8 detector modules. The transaxial field of view (FOV) has a diameter of 80 mm and the axial FOV is 148 mm. A NEMA NU-4 image quality phantom (Data Spectrum Corporation, Durham, USA) having five rods with diameters of 1, 2, 3, 4 and 5 mm and a uniform central region was used. Measurements with {sup 18}F, {sup 68}Ga and {sup 64}Cu were performed in list mode acquisition over 10 h. Data were reconstructed using a maximum-likelihood expectation-maximization (MLEM) algorithm with iteration numbers between 5 and 50. System sensitivity, count rate linearity, convergence and recovery coefficients were analyzed. The sensitivities for the entire FOV (non-NEMA method) for {sup 18}F, {sup 68}Ga and {sup 64}Cu were (3.78 ± 0.05)%, (3.97 ± 0.18)% and (3.79 ± 0.37)%, respectively. The sensitivity based on the NEMA protocol using the {sup 22}Na point source yielded (5.53 ± 0.06)%. Dead-time corrected true counts were linear for activities ≤7 MBq ({sup 18}F and {sup 68}Ga) and ≤17 MBq ({sup 64}Cu) in the phantom. The radial, tangential and axial full widths at half maximum (FWHMs) were 1.52, 1.47 and 1.48 mm. Recovery coefficients for the uniform region with a total activity of 8 MBq in the phantom were (0.97 ± 0.05), (0.98 ± 0.06), (0.98 ± 0.06) for {sup 18}F, {sup 68}Ga and {sup 64}Cu, respectively. The Albira II pre-clinical PET system has an adequate sensitivity range and the system linearity is suitable for the range of activities used for pre-clinical imaging. Overall, the system showed a favorable image

  19. Role of radiotracer in animal science

    Sivaprasad, N.

    2015-01-01

    Radiotracers have been used as radiopharmaceuticals for diagnosis and treatment of animal diseases in cattle and pet animals. In fact the veterinary nuclear medicine based on radiotracer as radiopharmaceuticals is established medical technique for functional studies and imaging of vital organs such as heart, lung, brain, spleen, liver, kidney etc for diagnosis as well as treatment of diseases such as cancers in animal. Besides, radiation from radioisotopes has been in use for radiation therapy of cancers in animals. The nuclear imaging using positron emitting radiotracer is gaining importance in the evolution of drug in small animals. In this respect, small animals have also contributed significantly in the development of radiopharmaceuticals particularly for biodistribution and bioscan studies. In fact, the quality control of radiopharmaceuticals in animals to test the safety is a mandatory requirement in the production of radiopharmaceuticals. In brief the animal science has contributed in various areas and facets of radiotracer techniques and its application vice versa the radiotracer techniques have contributed towards the progress of animal science. The animal science in combination with radiotracer has also contributed to the progress of other basic and applied sciences. Thus there exists a bond between radiotracer techniques and animal science. Some aspects of mutual dependence of animal science and radiotracer are elaborated

  20. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Animal experimentation, animal welfare and scientific research].

    Tal, H

    2013-10-01

    Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.

  2. Influence of image slice thickness on rectal dose–response relationships following radiotherapy of prostate cancer

    Olsson, C; Thor, M; Apte, A; Deasy, J O; Liu, M; Moissenko, V; Petersen, S E; Høyer, M

    2014-01-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose–response relationships. We investigated this for rectal bleeding using dose–volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman–Kutcher–Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose–response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice

  3. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness

  4. The preparation for an instant kit of 99mTc(V) DMSA as a tumor-seeking imaging agent and animal experimentation

    Li Yunlong; Li Hongyu; Jing Hui; Guo Hongyuan; Liu Yingmei; Zhao Hui

    1997-10-01

    A method for preparing an instant kit of 99m Tc(V) DMSA was described. The effect of pH on labelling efficiency of the kit was investigated. 99m Tc(V) DMSA was characterized by TLC on silica-gel sheets, eluting with n-butanol: acetic acid: water = 3:2:3 (volume ratio). Radiochemical purity and stability of 99m Tc(V) DMSA in vitro were studied. The results clearly demonstrated that the yield of 99m Tc(V) DMSA was more than 95% at pH 8∼8.5 and the agent was stable in 3 h at room temperature. Effect of temperature, moisture and luminosity on the stability of the freeze-dried kit were considered. The biological distributions of 99m Tc(V) DMSA were measured in mice bearing tumor S180. The results indicated that during 1∼6 h after i.v. injection, 99m Tc(V) DMSA was highly up taken in tumor tissue, the ratios of tumor: muscle and tumor: bone were in the ranges of 1.4∼2.4 and 1.2∼1.8, respectively. This peculiarity indicated that 99m Tc(V) DMSA has tumor-seeking property and could be used as a tumor-seeking imaging agent. (9 refs., 11 tabs.)

  5. Phantom and animal studies of a new hepatobiliary agent for MR imaging: comparison of Gd-DTPA-DeA with Gd-EOB-DTPA.

    Yoshikawa, Kohki; Inoue, Yusuke; Akahane, Masaaki; Shimada, Morio; Itoh, Sayaka; Seno, Atsushi; Hayashi, Sanshin

    2003-08-01

    To investigate the characteristics of Gd-DTPA-DeA as a hepatobiliary contrast agent for MR imaging in comparison with those of Gd-EOB-DTPA. We undertook phantom experiments to assess T1 relaxivity for Gd-DTPA-DeA, Gd-EOB-DTPA, and Gd-DTPA in human plasma. For Gd-DTPA-DeA and Gd-EOB-DTPA, we evaluated the contrast effect in rats using an SPGR sequence. The contrast ratios of liver and abdominal aorta were measured up to 21 minutes after intravenous administration of the agents. Visualization of the bile duct and renal pelvis was also assessed. In human plasma, T1 relaxivity was similar for Gd-DTPA-DeA and Gd-EOB-DTPA, and higher than those for Gd-DTPA. Whereas the contrast ratio of liver peaked about five minutes after the injection of Gd-EOB-DTPA and was followed by a subsequent decline, a continuous rise was shown for Gd-DTPA-DeA, resulting in a larger maximal contrast effect. Contrast ratios of the abdominal aorta were larger for Gd-DTPA-DeA. Biliary excretion was observed for both agents but occurred earlier with Gd-EOB-DTPA. While renal excretion was shown for all rats three minutes after the injection of Gd-EOB-DTPA, it was not observed for Gd-DTPA-DeA. Gd-DTPA-DeA may be used as a hepatobiliary contrast agent and shows different pharmacokinetics from Gd-EOB-DTPA. Copyright 2003 Wiley-Liss, Inc.

  6. Animation of Antimicrobial Resistance

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  7. Animation of Antimicrobial Resistance

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  8. Animation of Antimicrobial Resistance

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over ...

  9. Animation of Antimicrobial Resistance

    Full Text Available ... Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & ... back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products

  10. Animal Feeding Operations

    ... type=”submit” value=”Submit” /> Healthy Water Home Animal Feeding Operations Recommend on Facebook Tweet Share Compartir ... of Concentrated Animal Feeding Operations (CAFOs) What are Animal Feeding Operations (AFOs)? According to the United States ...

  11. Using FDG-PET activity as a surrogate for tumor cell density and its effect on equivalent uniform dose calculation

    Zhou Sumin; Wong, Terence Z.; Marks, Lawrence B.

    2004-01-01

    The concept of equivalent uniform dose (EUD) has been suggested as a means to quantitatively consider heterogeneous dose distributions within targets. Tumor cell density/function is typically assumed to be uniform. We herein propose to use 18 F-labeled 2-deoxyglucose (FDG) positron emission tomography (PET) tumor imaging activity as a surrogate marker for tumor cell density to allow the EUD concept to include intratumor heterogeneities and to study its effect on EUD calculation. Thirty-one patients with lung cancer who had computerized tomography (CT)-based 3D planning and PET imaging were studied. Treatment beams were designed based on the information from both the CT and PET scans. Doses were calculated in 3D based on CT images to reflect tissue heterogeneity. The EUD was calculated in two different ways: first, assuming a uniform tumor cell density within the tumor target; second, using FDG-PET activity (counts/cm 3 ) as a surrogate for tumor cell density at different parts of tumor to calculate the functional-imaging-weighted EUD (therefore will be labeled fEUD for convenience). The EUD calculation can be easily incorporated into the treatment planning process. For 28/31 patients, their fEUD and EUD differed by less than 6%. Twenty-one of these twenty-eight patients had tumor volumes 3 . In the three patients with larger tumor volume, the fEUD and EUD differed by 8%-14%. Incorporating information from PET imaging to represent tumor cell density in the EUD calculation is straightforward. This approach provides the opportunity to include heterogeneity in tumor function/metabolism into the EUD calculation. The difference between fEUD and EUD, i.e., whether including or not including the possible tumor cell density heterogeneity within tumor can be significant with large tumor volumes. Further research is needed to assess the usefulness of the fEUD concept in radiation treatment

  12. Seeing the animal

    Harfeld, Jes Lynning; Cornou, Cecile; Kornum, Anna

    2016-01-01

    This article discusses the notion that the invisibility of the animalness of the animal constitutes a fundamental obstacle to change within current production systems. It is discussed whether housing animals in environments that resemble natural habitats could lead to a re-animalization...... of the animals, a higher appreciation of their moral significance, and thereby higher standards of animal welfare. The basic claim is that experiencing the animals in their evolutionary and environmental context would make it harder to objectify animals as mere bioreactors and production systems. It is argued...... that the historic objectification of animals within intensive animal production can only be reversed if animals are given the chance to express themselves as they are and not as we see them through the tunnel visions of economy and quantifiable welfare assessment parameters....

  13. Animal rights, animal minds, and human mindreading.

    Mameli, M; Bortolotti, L

    2006-02-01

    Do non-human animals have rights? The answer to this question depends on whether animals have morally relevant mental properties. Mindreading is the human activity of ascribing mental states to other organisms. Current knowledge about the evolution and cognitive structure of mindreading indicates that human ascriptions of mental states to non-human animals are very inaccurate. The accuracy of human mindreading can be improved with the help of scientific studies of animal minds. However, the scientific studies do not by themselves solve the problem of how to map psychological similarities (and differences) between humans and animals onto a distinction between morally relevant and morally irrelevant mental properties. The current limitations of human mindreading-whether scientifically aided or not-have practical consequences for the rational justification of claims about which rights (if any) non-human animals should be accorded.

  14. Animal Production Research Advances

    Animal Production Research Advances is a peer-review journal established expressly to promote the production of all animal species utilized as food. The journal has an international scope and is intended for professionals in animal production and related sciences. We solicit contributions from animal production and ...

  15. Animal Bites: First Aid

    First aid Animal bites: First aid Animal bites: First aid By Mayo Clinic Staff These guidelines can help you care for a minor animal bite, such ... 26, 2017 Original article: http://www.mayoclinic.org/first-aid/first-aid-animal-bites/basics/ART-20056591 . Mayo ...

  16. Ian Ingram: Next Animals

    2015-01-01

    Ian Ingram: Next Animals is an exhibition catalogue presenting research on the work by Ian Ingram in relation to his exhibition Next Animals at Nikolaj Kunsthal in 2015.......Ian Ingram: Next Animals is an exhibition catalogue presenting research on the work by Ian Ingram in relation to his exhibition Next Animals at Nikolaj Kunsthal in 2015....

  17. Animation of Antimicrobial Resistance

    Full Text Available ... Español Search FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, ... Biologics Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of ...

  18. First Aid: Animal Bites

    ... last rabies vaccination, if known any recent unusual behavior by the animal the animal's location, if known if the animal ... Scratches First Aid: Cuts First Aid: Skin Infections Cat Scratch ... Safe Around Animals Cuts, Scratches, and Abrasions Rabies Cuts, Scratches, and ...

  19. Physics for Animation Artists

    Chai, David; Garcia, Alejandro L.

    2011-01-01

    Animation has become enormously popular in feature films, television, and video games. Art departments and film schools at universities as well as animation programs at high schools have expanded in recent years to meet the growing demands for animation artists. Professional animators identify the technological facet as the most rapidly advancing…

  20. Carotenoids in Marine Animals

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  1. Carotenoids in Marine Animals

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  2. Ethics in Animal Experimentation

    Yusuf Ergun

    2010-08-01

    Full Text Available Experimental animals are frequently used to obtain information for primarily scientific reasons. In the present review, ethics in animal experimentation is examined. At first, the history of animal experimentation and animal rights is outlined. Thereafter, the terms in relation with the topic are defined. Finally, prominent aspects of 3Rs constituting scientific and ethical basis in animal experimentation are underlined. [Archives Medical Review Journal 2010; 19(4.000: 220-235

  3. Animal experiments in radiotherapy. II. Large animals

    Probert, J C; Hughes, D B

    1975-03-01

    A review has been made of factors of importance when using large animals for organ or partial body irradiation research. The problem has been considered from the viewpoint of the clinician. The rabbit, cat, dog, pig and monkey have been examined in detail for suitability as laboratory animals. Dosimetric and volume features have been reviewed.

  4. Sense.me : A EUD environment for social products

    Acerbis, A.; Fogli, D.; Giaccardi, E.

    2014-01-01

    This paper describes a framework that supports the physical prototyping of innovative interactive artifacts. Specifically, the framework allows designing, implementing, and testing “social products,” that is, physical artifacts able to interact with social media platforms such as Facebook, Twitter,

  5. Protection of Embossed Holograms by Computer Animation

    Werner Sobotka

    2000-08-01

    Full Text Available Digital imaging in connection with computer animation is optimizing the counterfeiting security. All preparation work can be done outside the holographic lab and therefore an easier control process for the client is possible. The paper is dealing with a new holographic imaging process using computer animation and combining the results with the holographic stereoscopic technique. The paper is dealing with the holographic mastering and also with the construction of the holographic environment for special stereoscopic holographic imaging techniques. A prototype for producing monochromatic holographic stereograms was developed.

  6. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  7. RETHINKING THE ANIMATE, RE-ANIMATING THOUGHT

    Tim Ingold

    2013-12-01

    Full Text Available Animism is often described as the imputation of life to inert objects. Such imputation is more typical of people in western societies who dream of finding life on other planets than of indigenous peoples to whom the label of animism has classically been applied. These peoples are united not in their beliefs but in a way of being that is alive and open to a world in continuous birth. In this animic ontology, beings do not propel themselves across a ready-made world but rather issue forth through a world-in-formation, along the lines of their relationships. To its inhabitants this weather-world, embracing both sky and earth, is a source of astonishment but not surprise. Re-animating the ‘western’ tradition of thought means recovering the sense of astonishment banished from offi cial science.

  8. Animation of Antimicrobial Resistance

    Full Text Available ... FDA Submit search Popular Content Home Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... by Product Area Product Areas back Food Drugs Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  9. Animation of Antimicrobial Resistance

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  10. Occupational Animal Allergy.

    Stave, Gregg M

    2018-02-16

    This review explores animal allergen exposure in research laboratories and other work settings, focusing on causes and prevention. (1) Consistent with the hygiene hypothesis, there is new evidence that early childhood exposure to pets produces changes in the gut microbiome that likely lead to a lower risk of allergy. (2) Anaphylaxis from laboratory animal bites occurs more frequently than suggested by prior literature. (3) Animal allergens represent an occupational hazard in a wide variety of work settings ranging from fields that work with animals to public settings like schools and public transportation where allergens are brought into or are present in the workplace. Exposure to animal allergens can result in allergy, asthma, and anaphylaxis. Animal allergy has been most studied in the research laboratory setting, where exposure reduction can prevent the development of allergy. Similar prevention approaches need to be considered for other animal work environments and in all settings where animal allergens are present.

  11. Animation of Antimicrobial Resistance

    Full Text Available ... produced material may be copied, reproduced, and distributed as long as FDA's Center for Veterinary Medicine is cited as the corporate author. Animation Animation of Antimicrobial Resistance ( ...

  12. Animal Science Project

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  13. "Name" that Animal

    Laird, Shirley

    2010-01-01

    In this article, the author describes a texture and pattern project. Students started by doing an outline contour drawing of an animal. With the outline drawn, the students then write one of their names to fit "inside" the animal.

  14. Morris Animal Foundation

    ... Yours Today » Give the Gift of Health to Animals This Holiday Season. Until December 31, your gift ... bizarre molecules. Learn More » A Tireless Advocate for Animals and Science. “If it has a heartbeat, I ...

  15. PROTECTIVE COLORATION IN ANIMALS

    Leena Lakhani

    2017-01-01

    Animals have range of defensive markings which helps to the risk of predator detection (camouflage), warn predators of the prey’s unpalatability (aposematism) or fool a predator into mimicry, masquerade. Animals also use colors in advertising, signalling services such as cleaning to animals of other species, to signal sexual status to other members of the same species. Some animals use color to divert attacks by startle (dalmatic behaviour), surprising a predator e.g. with eyespots or other f...