WorldWideScience

Sample records for animal diseases host-pathogen

  1. Use of isotopes for research and control of vectors of animal diseases, host-pathogen relationships and the environmental impact of control procedures

    International Nuclear Information System (INIS)

    Full text: To cope with the world-wide problems of famine, malnutrition and environmental pollution it is imperative that all techniques and resources for the protection of animals and plants be utilized. As an example, nagana alone (animal trypanosomiasis) profoundly affects socioeconomic development in Africa. Its vector, the tsetse fly, is widespread and prevents agricultural development over much of the more than 7 million square kilometres where it is present. The need to control this disease has been emphasized by a mandate from the 1974 World Food Conference of the United Nations. If this disease alone could be eliminated, the cattle population could be increased by at least 120 million head with a resultant yearly increase in meat production of 1.5 million tons having a value totalling 750 million US dollars. The symposium was convened to discuss the various research and control aspects of nagana and related diseases and was the first of its kind to be convened by the sponsoring organizations The symposium amply demonstrated the value and usefulness of isotopes in the research and control of vectors of animal diseases, the elucidation of host-pathogen relationships and the degradation of pesticides. The symposium received an enthusiastic response, reflected in the large number of papers presented, which covered a variety of topics, including the sterile insect technique (SIT) as applied to tsetse flies. Several papers were presented covering its different aspects such as mass-rearing, sterility induction, ecology, behaviour and computer modelling. Other topics emphasized were pathogenesis and immunology of vector borne diseases such as trypanosomiasis, anaplasmosis, babesiosis and leishmaniasis. Also included were presentations on insect repellents and the biotransformation and degradation of labelled pesticides. The technical sessions began with 3 review papers, one on the FAO Animal Health Division's field research on tsetse flies, the second on the

  2. MODELING HOST-PATHOGEN INTERACTIONS: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS FOR INFECTIOUS DISEASE RESEARCH (Session introduction)

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.; Hyduke, Daniel R.

    2011-12-01

    Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactions is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.

  3. Studying Host-Pathogen Interactions In 3-D: Organotypic Models For Infectious Disease And Drug Development

    Science.gov (United States)

    Nickerson, Cheryl A.; Richter, Emily G.; Ott, C. Mark

    2006-01-01

    Representative, reproducible and high-throughput models of human cells and tissues are critical for a meaningful evaluation of host-pathogen interactions and are an essential component of the research developmental pipeline. The most informative infection models - animals, organ explants and human trials - are not suited for extensive evaluation of pathogenesis mechanisms and screening of candidate drugs. At the other extreme, more cost effective and accessible infection models such as conventional cell culture and static co-culture may not capture physiological and three-dimensional aspects of tissue biology that are important in assessing pathogenesis, and effectiveness and cytotoxicity of therapeutics. Our lab has used innovative bioengineering technology to establish biologically meaningful 3-D models of human tissues that recapitulate many aspects of the differentiated structure and function of the parental tissue in vivo, and we have applied these models to study infectious disease. We have established a variety of different 3-D models that are currently being used in infection studies - including small intestine, colon, lung, placenta, bladder, periodontal ligament, and neuronal models. Published work from our lab has shown that our 3-D models respond to infection with bacterial and viral pathogens in ways that reflect the infection process in vivo. By virtue of their physiological relevance, 3-D cell cultures may also hold significant potential as models to provide insight into the neuropathogenesis of HIV infection. Furthermore, the experimental flexibility, reproducibility, cost-efficiency, and high throughput platform afforded by these 3-D models may have important implications for the design and development of drugs with which to effectively treat neurological complications of HIV infection.

  4. Update on host-pathogen interactions in cystic fibrosis lung disease.

    Science.gov (United States)

    Hector, Andreas; Frey, Nina; Hartl, Dominik

    2016-12-01

    Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new "emerging" pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease. PMID:26905568

  5. Update on host-pathogen interactions in cystic fibrosis lung disease

    OpenAIRE

    Hector, Andreas; Frey, Nina; Hartl, Dominik

    2016-01-01

    Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new “emerging” pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause...

  6. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    OpenAIRE

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widel...

  7. Tick Genome Assembled: New Opportunities for Research on Tick-Host-Pathogen Interactions

    Science.gov (United States)

    de la Fuente, José; Waterhouse, Robert M.; Sonenshine, Daniel E.; Roe, R. Michael; Ribeiro, Jose M.; Sattelle, David B.; Hill, Catherine A.

    2016-01-01

    As tick-borne diseases are on the rise, an international effort resulted in the sequence and assembly of the first genome of a tick vector. This result promotes research on comparative, functional and evolutionary genomics and the study of tick-host-pathogen interactions to improve human, animal and ecosystem health on a global scale. PMID:27695689

  8. Scaling up complexity in host-pathogens interaction models. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    Science.gov (United States)

    Aguiar, Maíra

    2015-12-01

    Caused by micro-organisms that are pathogenic to the host, infectious diseases have caused debilitation and premature death to large portions of the human population, leading to serious social-economic concerns. The persistence and increase in the occurrence of infectious diseases as well the emergence or resurgence of vector-borne diseases are closely related with demographic factors such as the uncontrolled urbanization and remarkable population growth, political, social and economical changes, deforestation, development of resistance to insecticides and drugs and increased human travel. In recent years, mathematical modeling became an important tool for the understanding of infectious disease epidemiology and dynamics, addressing ideas about the components of host-pathogen interactions. Acting as a possible tool to understand, predict the spread of infectious diseases these models are also used to evaluate the introduction of intervention strategies like vector control and vaccination. Many scientific papers have been published recently on these topics, and most of the models developed try to incorporate factors focusing on several different aspects of the disease (and eventually biological aspects of the vector), which can imply rich dynamic behavior even in the most basic dynamical models. As one example to be cited, there is a minimalistic dengue model that has shown rich dynamic structures, with bifurcations (Hopf, pitchfork, torus and tangent bifurcations) up to chaotic attractors in unexpected parameter regions [1,2], which was able to describe the large fluctuations observed in empirical outbreak data [3,4].

  9. Host-pathogen interactions in bacterial meningitis.

    Science.gov (United States)

    Doran, Kelly S; Fulde, Marcus; Gratz, Nina; Kim, Brandon J; Nau, Roland; Prasadarao, Nemani; Schubert-Unkmeir, Alexandra; Tuomanen, Elaine I; Valentin-Weigand, Peter

    2016-02-01

    Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host-pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host-pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood-brain and blood-cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces. PMID:26744349

  10. Tick-host-pathogen interactions in Lyme borreliosis

    NARCIS (Netherlands)

    J.W.R. Hovius

    2009-01-01

    Since its discovery approximately 30 years ago, Lyme borreliosis has become the most important vector-borne disease in the Western world. This thesis describes in molecular detail novel tick-host-pathogen interactions in Lyme borreliosis, contributing to the understanding of the pathogenesis of this

  11. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  12. Modelling the dynamics of an experimental host-pathogen microcosm within a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    David Lunn

    Full Text Available The advantages of Bayesian statistical approaches, such as flexibility and the ability to acknowledge uncertainty in all parameters, have made them the prevailing method for analysing the spread of infectious diseases in human or animal populations. We introduce a Bayesian approach to experimental host-pathogen systems that shares these attractive features. Since uncertainty in all parameters is acknowledged, existing information can be accounted for through prior distributions, rather than through fixing some parameter values. The non-linear dynamics, multi-factorial design, multiple measurements of responses over time and sampling error that are typical features of experimental host-pathogen systems can also be naturally incorporated. We analyse the dynamics of the free-living protozoan Paramecium caudatum and its specialist bacterial parasite Holospora undulata. Our analysis provides strong evidence for a saturable infection function, and we were able to reproduce the two waves of infection apparent in the data by separating the initial inoculum from the parasites released after the first cycle of infection. In addition, the parameter estimates from the hierarchical model can be combined to infer variations in the parasite's basic reproductive ratio across experimental groups, enabling us to make predictions about the effect of resources and host genotype on the ability of the parasite to spread. Even though the high level of variability between replicates limited the resolution of the results, this Bayesian framework has strong potential to be used more widely in experimental ecology.

  13. Animal Diseases and Your Health

    Science.gov (United States)

    Animal diseases that people can catch are called zoonoses. Many diseases affecting humans can be traced to animals or animal products. You can get a disease directly from an animal, or indirectly, through the ...

  14. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Seyed E Hasnain; Rasheeda Begum; K V A Ramaiah; Sudhir Sahdev; E M Shajil; Tarvinder K Taneja; Manjari Mohan; M Athar; Nand K Sah; M Krishnaveni

    2003-04-01

    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.

  15. Competition for Manganese at the Host-Pathogen Interface.

    Science.gov (United States)

    Kelliher, J L; Kehl-Fie, T E

    2016-01-01

    Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria. PMID:27571690

  16. Animals: Disease Risks for People

    Science.gov (United States)

    ... the Knowledge Base Browse AVMA Policies Browse by Animal/Species Browse by Topic Browse by Discipline Resources ... Your Veterinarian Pet Care Currently selected Emergency Care Animal Welfare Veterinary Careers Public Health Disease Risks for ...

  17. Association and host selectivity in multi-host pathogens.

    Directory of Open Access Journals (Sweden)

    José M Malpica

    Full Text Available The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens.

  18. HOST-PATHOGEN INTERACTIONS: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  19. Animal models of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Fabiola Mara Ribeiro

    2013-01-01

    Full Text Available The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD and Parkinson's disease (PD, increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.

  20. Chlamydia psittaci: new insights into genomic diversity, clinical pathology, host-pathogen interaction and anti-bacterial immunity.

    Science.gov (United States)

    Knittler, Michael R; Berndt, Angela; Böcker, Selina; Dutow, Pavel; Hänel, Frank; Heuer, Dagmar; Kägebein, Danny; Klos, Andreas; Koch, Sophia; Liebler-Tenorio, Elisabeth; Ostermann, Carola; Reinhold, Petra; Saluz, Hans Peter; Schöfl, Gerhard; Sehnert, Philipp; Sachse, Konrad

    2014-10-01

    The distinctive and unique features of the avian and mammalian zoonotic pathogen Chlamydia (C.) psittaci include the fulminant course of clinical disease, the remarkably wide host range and the high proportion of latent infections that are not leading to overt disease. Current knowledge on associated diseases is rather poor, even in comparison to other chlamydial agents. In the present paper, we explain and summarize the major findings of a national research network that focused on the elucidation of host-pathogen interactions in vitro and in animal models of C. psittaci infection, with the objective of improving our understanding of genomics, pathology, pathophysiology, molecular pathogenesis and immunology, and conceiving new approaches to therapy. We discuss new findings on comparative genome analysis, the complexity of pathophysiological interactions and systemic consequences, local immune response, the role of the complement system and antigen presentation pathways in the general context of state-of-the-art knowledge on chlamydial infections in humans and animals and single out relevant research topics to fill remaining knowledge gaps on this important yet somewhat neglected pathogen.

  1. Animal models for human diseases.

    Science.gov (United States)

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  2. Small animal disease surveillance: respiratory disease

    OpenAIRE

    Sánchez-Vizcaíno, Fernando; Daly, Janet M.; Philip H Jones; Dawson, Susan; Gaskell, Rosalind; Menacere, Tarek; Heayns, Bethaney; Wardeh, Maya; Newman, Jenny; Everitt, Sally; Day, Michael J.; McConnell, Katie; Noble, Peter J.M.; Radford, Alan D

    2016-01-01

    This second Small Animal Disease Surveillance report focuses on syndromic surveillance of i) respiratory disease in veterinary practice and ii) feline calicivirus (FCV) based on laboratory diagnosis, in a large veterinary-visiting pet population of the UK between January 2014 and December 2015. Presentation for respiratory disease comprised 1.7%, 2.3% and 2.5% of canine, feline and rabbit consultations, respectively. In dogs, the most frequent respiratory sign reported was coughing (71.1% of ...

  3. Animal Diseases and Your Health

    Science.gov (United States)

    ... cause Lyme disease. Some wild animals may carry rabies. Enjoy wildlife from a distance. Pets can also make you sick. Reptiles pose a particular risk. Turtles, snakes and iguanas can transmit Salmonella bacteria to their owners. You can get rabies from an infected dog or toxoplasmosis from handling ...

  4. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rishi

    2009-12-01

    Full Text Available Abstract Background RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time. Results Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway. Conclusions Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.

  5. Animal Models for Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Helieh S. Oz

    2011-01-01

    Full Text Available Animal models and cell cultures have contributed new knowledge in biological sciences, including periodontology. Although cultured cells can be used to study physiological processes that occur during the pathogenesis of periodontitis, the complex host response fundamentally responsible for this disease cannot be reproduced in vitro. Among the animal kingdom, rodents, rabbits, pigs, dogs, and nonhuman primates have been used to model human periodontitis, each with advantages and disadvantages. Periodontitis commonly has been induced by placing a bacterial plaque retentive ligature in the gingival sulcus around the molar teeth. In addition, alveolar bone loss has been induced by inoculation or injection of human oral bacteria (e.g., Porphyromonas gingivalis in different animal models. While animal models have provided a wide range of important data, it is sometimes difficult to determine whether the findings are applicable to humans. In addition, variability in host responses to bacterial infection among individuals contributes significantly to the expression of periodontal diseases. A practical and highly reproducible model that truly mimics the natural pathogenesis of human periodontal disease has yet to be developed.

  6. Metallobiology of host-pathogen interactions: an intoxicating new insight.

    Science.gov (United States)

    Botella, Hélène; Stadthagen, Gustavo; Lugo-Villarino, Geanncarlo; de Chastellier, Chantal; Neyrolles, Olivier

    2012-03-01

    Iron, zinc and copper, among others, are transition metals with multiple biological roles that make them essential elements for life. Beyond the strict requirement of transition metals by the vertebrate immune system for its proper functioning, novel mechanisms involving direct metal intoxication of microorganisms are starting to be unveiled as important components of the immune system, in particular against Mycobacterium tuberculosis. In parallel, metal detoxification systems in bacteria have been recently characterized as crucial microbial virulence determinants. Here, we will focus on these exciting advancements implicating copper- and zinc-mediated microbial poisoning as a novel innate immune mechanism against microbial pathogens, shedding light on an emerging field in the metallobiology of host-pathogen interactions. PMID:22305804

  7. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions

    Institute of Scientific and Technical Information of China (English)

    Lin LI; Hai Shan LI; C.David PAUZA; Michael BUKRINSKY; Richard Y ZHAO

    2005-01-01

    Active host-pathogen interactions take place during infection of human immunodeficiency virus type 1 (HIV-1).Outcomes of these interactions determine the efficiency of viral infection and subsequent disease progression. HIV-infected cells respond to viral invasion with various defensive strategies such as innate, cellular and humoral immune antiviral mechanisms. On the other hand, the virus has also developed various offensive tactics to suppress these host cellular responses. Among many of the viral offensive strategies, HIV- 1 viral auxiliary proteins (Tat, Rev, Nef, Vif, Vpr and Vpu) play important roles in the host-pathogen interaction and thus have significant impacts on the outcome of HIV infection. One of the best examples is the interaction of Vif with a host cytidine deaminase APOBEC3G. Although specific roles of other auxiliary proteins are not as well described as Vif-APOBEC3G interaction, it is the goal of this brief review to summarize some of the preliminary findings with the hope to stimulate further discussion and investigation in this exhilarating area of research.

  8. HPIDB 2.0: a curated database for host-pathogen interactions.

    Science.gov (United States)

    Ammari, Mais G; Gresham, Cathy R; McCarthy, Fiona M; Nanduri, Bindu

    2016-01-01

    Identification and analysis of host-pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host-pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct

  9. Leptospira spp.: Novel insights into host-pathogen interactions.

    Science.gov (United States)

    Fernandes, Luis G; Siqueira, Gabriela H; Teixeira, Aline R F; Silva, Lucas P; Figueredo, Jupciana M; Cosate, Maria R; Vieira, Monica L; Nascimento, Ana L T O

    2016-08-01

    Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests. PMID:26727033

  10. Engineering large animal models of human disease

    OpenAIRE

    Whitelaw, C. Bruce A.; Timothy P Sheets; Lillico, Simon G; Telugu, Bhanu P.

    2015-01-01

    Abstract The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site‐specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of...

  11. An overview of animal prion diseases.

    Science.gov (United States)

    Imran, Muhammad; Mahmood, Saqib

    2011-01-01

    Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases. PMID:22044871

  12. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  13. An overview of animal prion diseases

    OpenAIRE

    Imran Muhammad; Mahmood Saqib

    2011-01-01

    Abstract Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encep...

  14. Animal health: foot-and-mouth disease

    Science.gov (United States)

    Foot-and-mouth disease (FMD) is one of the most contagious viral diseases that can affect cloven-hoofed livestock and wild animals. Outbreaks of FMD have caused devastating economic losses and the slaughter of millions of animals in many regions of the world affecting the food chain and global devel...

  15. Worldwide risks of animal diseases: introduction.

    Science.gov (United States)

    Pearson, J E

    2006-01-01

    Animal diseases impact food supplies, trade and commerce, and human health and well-being in every part of the world. Outbreaks draw the attention of those in agriculture, regulatory agencies, and government, as well as the general public. This was demonstrated by the 2000-2001 foot and mouth disease (FMD) outbreaks that occurred in Europe, South America, Asia and Africa and by the recent increased occurrence of emerging diseases transmitted from animals to humans. Examples of these emerging zoonotic diseases are highly pathogenic avian influenza, bovine spongiform encephalopathy, West Nile virus and severe acute respiratory syndrome. There is also the risk of well-known and preventable zoonotic diseases, such as rabies, brucellosis, leishmaniasis, and echinococcosis/hydatidosis, in certain countries; these diseases have a high morbidity with the potential for a very high mortality. Animal agriculturalists should have a global disease awareness of disease risks and develop plans of action to deal with them; in order to better respond to these diseases, they should develop the skills and competencies in politics, media interactions, and community engagement. This issue of Veterinaria Italiana presents information on the risk of animal diseases; their impact on animals and humans at the international, national, industry, and societal levels; and the responses to them. In addition, specific information is provided on national and international disease monitoring, surveillance and reporting, the risk of spread of disease by bioterrorism and on import risk analysis.

  16. Disease and animal research: a meeting review

    Institute of Scientific and Technical Information of China (English)

    Ling V. Sun

    2011-01-01

    @@ Animal models have been playing an important role in disease research.They have advanced our knowledge about the genetics, development, environmental effects, and in turn, the mechanism of diseases.A recent review has pointed out that one-third of the high-impact animal research published in seven leading jourhals has been through clinical trial, and one-tenth of these studies have succeeded and been applied to disease treatment (Hackam and Redelmeier, 2006; van der Worp et al., 2010).

  17. Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.

    Science.gov (United States)

    Masri, Leila; Branca, Antoine; Sheppard, Anna E; Papkou, Andrei; Laehnemann, David; Guenther, Patrick S; Prahl, Swantje; Saebelfeld, Manja; Hollensteiner, Jacqueline; Liesegang, Heiko; Brzuszkiewicz, Elzbieta; Daniel, Rolf; Michiels, Nicolaas K; Schulte, Rebecca D; Kurtz, Joachim; Rosenstiel, Philip; Telschow, Arndt; Bornberg-Bauer, Erich; Schulenburg, Hinrich

    2015-06-01

    Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system. PMID:26042786

  18. Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.

    Directory of Open Access Journals (Sweden)

    Leila Masri

    2015-06-01

    Full Text Available Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i high virulence was specifically favoured during pathogen-host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen's genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host-pathogen interaction system.

  19. Animal models for diseases of respiratory system

    Directory of Open Access Journals (Sweden)

    R. Adil

    2012-07-01

    Full Text Available Latest trends in understanding of respiratory diseases in human beings can be derived from thorough clinical studies of these diseases occurring in man, but conducting such studies in man is difficult in terms of experimental manipulation. In the last 2 decades, various types of experimental respiratory disease models has been developed and utilized by investigators, which have contributed a lot to the understanding of respiratory diseases in man, but only little investigation has been done on the naturally occurring pulmonary diseases of animals as potential models which could have added to our knowledge. There are certain selected examples of spontaneous pulmonary disease in animals that may serve as exploitable models for human chronic bronchitis, bronchiectasis, emphysema, interstitial lung disease, hypersensitivity pneumonitis, hyaline membrane disease, and bronchial asthma.

  20. Transgenic animals resistant to infectious diseases.

    Science.gov (United States)

    Tiley, L

    2016-04-01

    The list of transgenic animals developed to test ways of producing livestock resistant to infectious disease continues to grow. Although the basic techniques for generating transgenic animals have not changed very much in the ten years since they were last reviewed for the World Organisation for Animal Health, one recent fundamental technological advance stands to revolutionise genome engineering. The advent of technically simple and efficient site-specific gene targeting has profound implications for genetically modifying livestock species.

  1. Bioterrorism: intentional introduction of animal disease.

    Science.gov (United States)

    Clarke, N P; Rinderknecht, J L

    2011-04-01

    The possibility of the intentional introduction of animal disease as an act of bioterrorism adds a new dimension to the development of strategies for assessment, prevention, response and recovery from exotic diseases, including the zoonoses. The vulnerability of livestock operations, the likelihood of success, the possibility of the use of genetically engineered organisms and limited resources to handle multiple outbreaks place new pressures on policy-makers and emergency responders to make best use of limited resources. The methods for managing a natural occurrence or accidental introduction of high-consequence diseases are generally applicable to containment and recovery from outbreaks of intentionally introduced animal diseases. Zoonotic agents increase the complexity at both international and national levels. Modern biology provides both increased threat of new disease entities and methods for earlier and more effective detection and intervention. Improved methods are emerging for defining trade restrictions and animal movement and for determining when it is safe to resume normal trade.

  2. An overview of animal prion diseases

    Directory of Open Access Journals (Sweden)

    Imran Muhammad

    2011-11-01

    Full Text Available Abstract Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC. Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases.

  3. Limitations of Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    J. A. Potashkin

    2011-01-01

    Full Text Available Most cases of Parkinson's disease (PD are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of the disease and provide a means for testing new treatments. However, the current animal models often fall short in replicating the true pathophysiology occurring in idiopathic PD, and thus results from animal models often do not translate to the clinic. In this paper we will explain the limitations of animal models of PD and why their use is inappropriate for the study of some aspects of PD.

  4. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community.

    Science.gov (United States)

    Fernández-Beaskoetxea, S; Bosch, J; Bielby, J

    2016-02-11

    The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission. PMID:26865231

  5. Host-pathogen interactome mapping for HTLV-1 and -2 retroviruses

    Directory of Open Access Journals (Sweden)

    Simonis Nicolas

    2012-03-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL, whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression. Results We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway. Conclusions This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.

  6. Infection and transmission heterogeneity of a multi-host pathogen (Batrachochytrium dendrobatidis) within an amphibian community.

    Science.gov (United States)

    Fernández-Beaskoetxea, S; Bosch, J; Bielby, J

    2016-02-11

    The majority of parasites infect multiple hosts. As the outcome of the infection is different in each of them, most studies of wildlife disease focus on the few species that suffer the most severe consequences. However, the role that each host plays in the persistence and transmission of infection can be crucial to understanding the spread of a parasite and the risk it poses to the community. Current theory predicts that certain host species can modulate the infection in other species by amplifying or diluting both infection prevalence and infection intensity, both of which have implications for disease risk within those communities. The fungus Batrachochytrium dendrobatidis (Bd), the causal agent of the disease chytridiomycosis, has caused global amphibian population declines and extinctions. However, not all infected species are affected equally, and thus Bd is a good example of a multi-host pathogen that must ultimately be studied with a community approach. To test whether the common midwife toad Alytes obstetricans is a reservoir and possible amplifier of infection of other species, we used experimental approaches in captive and wild populations to determine the effect of common midwife toad larvae on infection of other amphibian species found in the Peñalara Massif, Spain. We observed that the most widely and heavily infected species, the common midwife toad, may be amplifying the infection loads in other species, all of which have different degrees of susceptibility to Bd infection. Our results have important implications for performing mitigation actions focused on potential 'amplifier' hosts and for better understanding the mechanisms of Bd transmission.

  7. Small animal disease surveillance: respiratory disease.

    Science.gov (United States)

    Sánchez-Vizcaíno, Fernando; Daly, Janet M; Jones, Philip H; Dawson, Susan; Gaskell, Rosalind; Menacere, Tarek; Heayns, Bethaney; Wardeh, Maya; Newman, Jenny; Everitt, Sally; Day, Michael J; McConnell, Katie; Noble, Peter J M; Radford, Alan D

    2016-04-01

    Presentation for respiratory disease comprised 1.7 per cent, 2.3 per cent and 2.5 per cent of canine, feline and rabbit consultations, respectively, between January 2014 and December 2015Coughing was the most frequent respiratory sign reported in dogs (71.1 per cent of consultations); in cats it was sneezing (42.6 per cent)Mean percentage of samples testing positive for feline calicivirus (FCV) was 30.1 per cent in 2014 and 27.9 per cent in 2015January was the month with the highest percentage of FCV-positive samples in both 2014 and 2015. PMID:27056810

  8. Protozoa lectins and their role in host-pathogen interactions.

    Science.gov (United States)

    Singh, Ram Sarup; Walia, Amandeep Kaur; Kanwar, Jagat Rakesh

    2016-01-01

    Lectins are proteins/glycoproteins of non-immune origin that agglutinate red blood cells, lymphocytes, fibroblasts, etc., and bind reversibly to carbohydrates present on the apposing cells. They have at least two carbohydrate binding sites and their binding can be inhibited by one or more carbohydrates. Owing to carbohydrate binding specificity of lectins, they mediate cell-cell interactions and play role in protozoan adhesion and host cell cytotoxicity, thus are central to the pathogenic property of the parasite. Several parasitic protozoa possess lectins which mediate parasite adherence to host cells based on their carbohydrate specificities. These interactions could be exploited for development of novel therapeutics, targeting the adherence and thus helpful in eradicating wide spread of protozoan diseases. The current review highlights the present state knowledge with regard to protozoal lectins with an emphasis on their haemagglutination activity, carbohydrate specificity, characteristics and also their role in pathogenesis notably as adhesion molecules, thereby aiding the pathogen in disease establishment. PMID:27268207

  9. Limitations of Animal Models of Parkinson's Disease

    OpenAIRE

    J. A. Potashkin; Blume, S. R.; Runkle, N. K.

    2011-01-01

    Most cases of Parkinson's disease (PD) are sporadic. When choosing an animal model for idiopathic PD, one must consider the extent of similarity or divergence between the physiology, anatomy, behavior, and regulation of gene expression between humans and the animal. Rodents and nonhuman primates are used most frequently in PD research because when a Parkinsonian state is induced, they mimic many aspects of idiopathic PD. These models have been useful in our understanding of the etiology of t...

  10. Animal models for Gaucher disease research

    Directory of Open Access Journals (Sweden)

    Tamar Farfel-Becker

    2011-11-01

    Full Text Available Gaucher disease (GD, the most common lysosomal storage disorder (LSD, is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display symptoms correlating with human disease and also died soon after birth. Recently, conditional knockout mice that mimic some features of the human disease have become available. Here, we review the contribution of all currently available animal models to examining pathological pathways underlying GD and to testing the efficacy of new treatment modalities, and propose a number of criteria for the generation of more appropriate animal models of GD.

  11. 9 CFR 95.3 - Byproducts from diseased animals prohibited.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Byproducts from diseased animals prohibited. 95.3 Section 95.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  12. Animal and cellular models of human disease

    OpenAIRE

    Arends, Mark; White, Eric; Whitelaw, Christopher

    2016-01-01

    In this eighteenth (2016) Annual Review Issue of The Journal of Pathology, we present a collection of 19 invited review articles that cover different aspects of cellular and animal models of disease. These include genetically-engineered models, chemically-induced models, naturally-occurring models, and combinations thereof, with the focus on recent methodological and conceptual developments across a wide range of human diseases.

  13. Animal Models of Calcific Aortic Valve Disease

    OpenAIRE

    Sider, Krista L.; Blaser, Mark C.; Simmons, Craig A.

    2011-01-01

    Calcific aortic valve disease (CAVD), once thought to be a degenerative disease, is now recognized to be an active pathobiological process, with chronic inflammation emerging as a predominant, and possibly driving, factor. However, many details of the pathobiological mechanisms of CAVD remain to be described, and new approaches to treat CAVD need to be identified. Animal models are emerging as vital tools to this end, facilitated by the advent of new models and improved understanding of the u...

  14. Metal ion homeostasis in Listeria monocytogenes and importance in host-pathogen interactions.

    Science.gov (United States)

    Jesse, Helen E; Roberts, Ian S; Cavet, Jennifer S

    2014-01-01

    Listeria monocytogenes is responsible for one of the most life-threatening food-borne infections and the leading cause of food-poisoning associated deaths in the UK. Infection may be of the unborn/newly born infant where disease may manifest as listeric abortion, stillbirth or late-onset neonatal listeriosis, while in adults, infection usually affects the central nervous system causing meningitis. Crucial to the survival of L. monocytogenes, both inside and outside the host, is its ability to acquire metals which act as cofactors for a broad range of its cellular proteins. However, L. monocytogenes must also protect itself against the innate toxicity of metals. The importance of metals in host-pathogen interactions is illustrated by the restriction of metals (including zinc and iron) in vertebrates in response to infection and the use of high levels of metals (copper and zinc) as part of the antimicrobial defences within host phagocytes. As such, L. monocytogenes is equipped with various mechanisms to tightly control its cellular metal pools and avoid metal poisoning. These include multiple DNA-binding metal-responsive transcription factors, metal-acquisition, metal-detoxification and metal-storage systems, some of which represent key L. monocytogenes virulence determinants. This review discusses current knowledge of the role of metals in L. monocytogenes infections, with a focus on the mechanisms that contribute to zinc and copper homeostasis in this organism. The requirement to precisely control cellular metal levels may impose a vulnerability to L. monocytogenes which can be exploited in antimicrobials and therapeutics.

  15. Metal ion homeostasis in Listeria monocytogenes and importance in host-pathogen interactions.

    Science.gov (United States)

    Jesse, Helen E; Roberts, Ian S; Cavet, Jennifer S

    2014-01-01

    Listeria monocytogenes is responsible for one of the most life-threatening food-borne infections and the leading cause of food-poisoning associated deaths in the UK. Infection may be of the unborn/newly born infant where disease may manifest as listeric abortion, stillbirth or late-onset neonatal listeriosis, while in adults, infection usually affects the central nervous system causing meningitis. Crucial to the survival of L. monocytogenes, both inside and outside the host, is its ability to acquire metals which act as cofactors for a broad range of its cellular proteins. However, L. monocytogenes must also protect itself against the innate toxicity of metals. The importance of metals in host-pathogen interactions is illustrated by the restriction of metals (including zinc and iron) in vertebrates in response to infection and the use of high levels of metals (copper and zinc) as part of the antimicrobial defences within host phagocytes. As such, L. monocytogenes is equipped with various mechanisms to tightly control its cellular metal pools and avoid metal poisoning. These include multiple DNA-binding metal-responsive transcription factors, metal-acquisition, metal-detoxification and metal-storage systems, some of which represent key L. monocytogenes virulence determinants. This review discusses current knowledge of the role of metals in L. monocytogenes infections, with a focus on the mechanisms that contribute to zinc and copper homeostasis in this organism. The requirement to precisely control cellular metal levels may impose a vulnerability to L. monocytogenes which can be exploited in antimicrobials and therapeutics. PMID:25476765

  16. Use of mutants to study host/pathogen relations

    International Nuclear Information System (INIS)

    Forty-six mutants with changed reactions in powdery mildew resistance were selected after EMS treatment of seeds from three cultivars of spring barley. Recently, further experiments for the induction of new mutants were successfully run with EMS again and with sodium azide (NaN3); but no mutants were obtained in the same experiment after application of sublethal doses of N-methyl-N'-nitro-N-nitrosoguanidine. The original cultivars were characterized by a medium grade of resistance in the field. Mutations were expected to be of major and monogenic effect and consequently to be primarily race-specific in nature. A detailed analysis of resistance was started, both in the field and under spore-proof conditions of environment-controlled growth cabinets. In the field, the progress of disease was recorded during three summer periods on an individual plant basis. Specific mutants were clearly identified by their changed reactions to the natural epidemics, i.e. by (a) lower or (b) higher susceptibility; by (c) adult plant, or (d) by young plant resistance. Degrees of chlorosis or necrosis were estimated on the infected leaves and the influence of the attack on yield components was studied. By controlled infections with eight different isolates of mildew, race-specificity of resistance reactions was determined for all the 46 mutants. The results were unexpected in that they did not show clear-cut vertical relations between mutants and single pathogen races. In some instances, the general level of resistance appeared to be shifted from the original medium level to higher or lower degrees; in other cases, increase of severity of attack was recorded with some pathotypes and decrease with others on the same mutant host

  17. Large genetic animal models of Huntington's Disease.

    Science.gov (United States)

    Morton, A Jennifer; Howland, David S

    2013-01-01

    The dominant nature of the Huntington's disease gene mutation has allowed genetic models to be developed in multiple species, with the mutation causing an abnormal neurological phenotype in all animals in which it is expressed. Many different rodent models have been generated. The most widely used of these, the transgenic R6/2 mouse, carries the mutation in a fragment of the human huntingtin gene and has a rapidly progressive and fatal neurological phenotype with many relevant pathological changes. Nevertheless, their rapid decline has been frequently questioned in the context of a disease that takes years to manifest in humans, and strenuous efforts have been made to make rodent models that are genetically more 'relevant' to the human condition, including full length huntingtin gene transgenic and knock-in mice. While there is no doubt that we have learned, and continue to learn much from rodent models, their usefulness is limited by two species constraints. First, the brains of rodents differ significantly from humans in both their small size and their neuroanatomical organization. Second, rodents have much shorter lifespans than humans. Here, we review new approaches taken to these challenges in the development of models of Huntington's disease in large brained, long-lived animals. We discuss the need for such models, and how they might be used to fill specific niches in preclinical Huntington's disease research, particularly in testing gene-based therapeutics. We discuss the advantages and disadvantages of animals in which the prodromal period of disease extends over a long time span. We suggest that there is considerable 'value added' for large animal models in preclinical Huntington's disease research. PMID:25063426

  18. Animal models for Gaucher disease research

    OpenAIRE

    Tamar Farfel-Becker; Vitner, Einat B.; Futerman, Anthony H.

    2011-01-01

    Gaucher disease (GD), the most common lysosomal storage disorder (LSD), is caused by the defective activity of the lysosomal hydrolase glucocerebrosidase, which is encoded by the GBA gene. Generation of animal models that faithfully recapitulate the three clinical subtypes of GD has proved to be more of a challenge than first anticipated. The first mouse to be produced died within hours after birth owing to skin permeability problems, and mice with point mutations in Gba did not display sympt...

  19. Phaeohyphomycoses, Emerging Opportunistic Diseases in Animals

    OpenAIRE

    Seyedmousavi, S.; Guillot, J; Hoog, de, G.S.

    2013-01-01

    Emerging fungal diseases due to black yeasts and relatives in domestic or wild animals and in invertebrates or cold- and warm-blooded vertebrates are continually being reported, either as novel pathogens or as familiar pathogens affecting new species of hosts. Different epidemiological situations can be distinguished, i.e., occurrence as single infections or as zoonoses, and infection may occur sporadically in otherwise healthy hosts. Such infections are found mostly in mammals but also in co...

  20. Foreign animal disease outbreaks, the animal welfare implications for Canada: Risks apparent from international experience

    OpenAIRE

    Whiting, Terry L.

    2003-01-01

    Any outbreak of an Office International des Épizooties List A disease, such as classical swine fever or foot and mouth disease, has severe consequences for animal welfare, livestock production, exports of animals and animal products, and the environment. The public concern with the animal welfare effects of methods of disease eradication that result in the destruction of large numbers of uninfected animals has initiated a reconsideration of disease eradication policy in Europe. In many recent...

  1. GPS-Prot: a web-based visualization platform for integrating host-pathogen interaction data

    OpenAIRE

    Rao Kanury; Shapiro Alex; Kumar Dhiraj; Pache Lars; Jäger Stefanie; Mahon Cathal; Bennett Melanie J; Fahey Marie E; Chanda Sumit K; Craik Charles S; Frankel Alan D; Krogan Nevan J

    2011-01-01

    Abstract Background The increasing availability of HIV-host interaction datasets, including both physical and genetic interactions, has created a need for software tools to integrate and visualize the data. Because these host-pathogen interactions are extensive and interactions between human proteins are found within many different databases, it is difficult to generate integrated HIV-human interaction networks. Results We have developed a web-based platform, termed GPS-Prot http://www.gpspro...

  2. Challenges for risk management related to emerging animal diseases

    OpenAIRE

    Aaltonen, Taina

    2010-01-01

    The uncertainties related to climate change and its effects on the spreading of animal diseases causes the most difficulties for the risk management. Preparedness and contingency planning for serious animal diseases in EU has mainly focused on conventional animal diseases, like foot- and-mouth-disease, classical swine fever and avian influenza.

  3. Animal models for genetic neuromuscular diseases.

    Science.gov (United States)

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  4. Animal Models of Cardiac Disease and Stem Cell Therapy

    OpenAIRE

    Ou, Lailiang; Li, Wenzhong; Liu, Yi; Zhang, Yue(Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, U.S.A.); Jie, Shen; Kong, Deling; Steinhoff, Gustav; Ma, Nan

    2010-01-01

    Animal models that mimic cardiovascular diseases are indispensable tools for understanding the mechanisms underlying the diseases at the cellular and molecular level. This review focuses on various methods in preclinical research to create small animal models of cardiac diseases, such as myocardial infarction, dilated cardiomyopathy, heart failure, myocarditis and cardiac hypertrophy, and the related stem cell treatment for these diseases.

  5. GPS-Prot: A web-based visualization platform for integrating host-pathogen interaction data

    Directory of Open Access Journals (Sweden)

    Rao Kanury

    2011-07-01

    Full Text Available Abstract Background The increasing availability of HIV-host interaction datasets, including both physical and genetic interactions, has created a need for software tools to integrate and visualize the data. Because these host-pathogen interactions are extensive and interactions between human proteins are found within many different databases, it is difficult to generate integrated HIV-human interaction networks. Results We have developed a web-based platform, termed GPS-Prot http://www.gpsprot.org, that allows for facile integration of different HIV interaction data types as well as inclusion of interactions between human proteins derived from publicly-available databases, including MINT, BioGRID and HPRD. The software has the ability to group proteins into functional modules or protein complexes, generating more intuitive network representations and also allows for the uploading of user-generated data. Conclusions GPS-Prot is a software tool that allows users to easily create comprehensive and integrated HIV-host networks. A major advantage of this platform compared to other visualization tools is its web-based format, which requires no software installation or data downloads. GPS-Prot allows novice users to quickly generate networks that combine both genetic and protein-protein interactions between HIV and its human host into a single representation. Ultimately, the platform is extendable to other host-pathogen systems.

  6. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Brogaard, Louise; Schou, Kirstine Klitgaard; Heegaard, Peter M. H.;

    2015-01-01

    Background: Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense...

  7. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples.

    Science.gov (United States)

    Buron-Moles, G; López-Pérez, M; González-Candelas, L; Viñas, I; Teixidó, N; Usall, J; Torres, R

    2012-11-15

    Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.

  8. Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system.

    Directory of Open Access Journals (Sweden)

    Sébastien Kicka

    Full Text Available Tuberculosis is considered to be one of the world's deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches.

  9. The effects of radioactive pollution on the dynamics of infectious diseases in wildlife.

    Science.gov (United States)

    Morley, N J

    2012-04-01

    The interactions between infectious diseases and chemical pollution are well known and recognised as important factors in regulating the way wild animals respond to contaminant exposure. However, the impact of ionising radiation and radionuclides has often been overlooked when assessing host-pathogen interactions in polluted habitats, despite often occurring together with chemical contamination. Nevertheless, a comprehensive body of literature exists from laboratory and field studies on host-pathogen relationships under radiation exposure, and with a renewed interest in radioecology developing; an evaluation of infectious disease dynamics under these conditions would be timely. The present study assesses the impact of external ionising radiation and radionuclides on animal hosts and pathogens (viruses, bacteria, protozoans, helminths, arthropods) in laboratory studies and collates the data from field studies, including the large number of investigations undertaken after the Chernobyl accident. It is apparent that radiation exposure has substantial effects on host-pathogen relationships. Although damage to the host immune system is a major factor other variables, such as damage to host tissue barriers and inhibition of pathogen viability are also important in affecting the prevalence and intensity of parasitic diseases. Field studies indicate that the occurrence of host-pathogen associations in radioactively contaminated sites is complex with a variety of biotic and abiotic factors influencing both pathogen and host(s), resulting in changes to the dynamics of infectious diseases.

  10. Effects of Biotic and Abiotic Setting on a Host-Pathogen Relationship: How Environmental and Community Characteristics Influence Infection Prevalence and Intensity of Amphibian Chytrid on California's Central Coast

    OpenAIRE

    Hemingway, Valentine

    2015-01-01

    In the face of swift anthropogenic change, it is essential to examine the broad ecological context for species of concern using a variety of approaches in order to understand their interactions in a natural context. Host-pathogen relationships offer a close interaction to examine how each are acted upon by biotic and abiotic conditions. Batrachochytrium dendrobatidis, an emerging infectious disease of amphibians, has been implicated with wholesale loss and marked declines in amphibian speci...

  11. Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber.

    Science.gov (United States)

    Jafari, Nazila V; Kuehne, Sarah A; Minton, Nigel P; Allan, Elaine; Bajaj-Elliott, Mona

    2016-02-01

    Clostridium difficile infection is one of the leading causes of healthcare associated diarrhoea in the developed world. Although the contribution of C. difficile toxins to disease pathogenesis is now well understood, many facets of host-pathogen interactions between the human intestinal epithelia and the C. difficile bacterium that may contribute to asymptomatic carriage and/or clinical disease remain less clear. Herein, we tested the hypothesis that C. difficile strains mediate intestinal epithelial cell (IEC) antimicrobial immunity via toxin dependent and independent means and that the 'anaerobic' environment has a significant impact on bacterial-IEC interactions. Crosstalk between three C. difficile PCR ribotypes (RT) [RT027 (strain R20291), RT012 (strain 630) and RT017 (strains M68 and CF5)] and IEC cell-lines were investigated. All RTs showed significant engagement with human Toll-like receptors (TLR)-5, TLR2-CD14 and TLR2/6 as measured by IL-8 release from TLR-transfected HEK cells. Co-culture studies indicated minimal impact of R20291 and 630 TcdA and TcdB on bacterial adherence to Caco-2 cells. An apical anaerobic environment had a major effect on C. difficile-T84 crosstalk as significantly greater cytokine immunity and trans-epithelial electrical resistance (TEER) dysfunction was recorded when co-cultures were performed in an Ussing chamber system compared to standard 5% CO2 conditions. Overall, this study suggests that anaerobic C. difficile engagement with human IECs is a complex interplay that involves bacterial and toxin-mediated cellular events. PMID:26708704

  12. Joint diseases in animal paleopathology: Veterinary approach

    OpenAIRE

    Oliver Stevanović,; Maciej Janeczek,; Aleksander Chrószcz; Nemanja Marković

    2015-01-01

    Animal paleopathology is not a very well known scientific discipline within veterinary science, but it has great importance for historical and archaeological investigations. In this paper, authors attention is focused on the description of one of the most common findings on the skeletal remains of animals - osteoarthropathies. This review particularly emphasizes the description and classification of the most common pathological changes in synovial joints. The authors have provided their obser...

  13. Risk and economic consequences of contagious animal disease introduction.

    OpenAIRE

    Horst, H.S.

    1998-01-01

    IntroductionWithin the European Union, epidemics of contagious animal diseases such as Classical Swine Fever (CSF) and Foot-and-Mouth Disease (FMD) are to be eradicated according to strict EU- prescriptions including stamping-out of infected herds, establishment of control and surveillance zones with complete standstill of animals and possible export bans on live animals. Epidemics clearly have a serious impact, in particular on countries with a high farm density and an export- oriented produ...

  14. Proteomic profiling of serologic response to Candida albicans during host-commensal and host-pathogen interactions.

    Science.gov (United States)

    Pitarch, Aida; Nombela, César; Gil, Concha

    2009-01-01

    Candida albicans is a commensal inhabitant of the normal human microflora that can become pathogenic and invade almost all body sites and organs in response to both host-mediated and fungus-mediated mechanisms. Serologic responses to C. albicans that underlie its dichotomist relationship with the host (host-commensal and host-pathogen interactions) display a high degree of heterogeneity, resulting in distinct serum anti-Candida antibody signatures (molecular fingerprints of anti-Candida antibodies in serum) that can be used to discriminate commensal colonization from invasive disease. We describe the typical proteomic strategy to globally and integratively profile these host antibody responses and determine serum antibody signatures. This approach is based on the combination of classic immunoproteomics or serologic proteome analysis (two-dimensional electrophoresis followed by quantitative Western blotting and mass spectrometry) with data mining procedures. This global proteomic stratagem is a useful tool not only for obtaining an overview of different anti-Candida antibodies that are being elicited during the host-fungus interaction and, consequently, of the complex C. albicans immunome (the subset of the C. albicans proteome targeted by the immune system), but also for evaluating how this pathogen organism interacts with its host to trigger infection. In contrast with genomics and transcriptomics, this proteomic technology has the potential to detect antigenicity associated with posttranslational modification, subcellular localization, and other functional aspects that can be relevant in the host immune response. Furthermore, this strategy to define molecular fingerprints of serum anti-Candida antibodies may hopefully bring to light potential candidates for diagnosis, prognosis, risk stratification, clinical follow-up, therapeutic monitoring, and/or immunotherapy of candidiasis, especially of its life-threatening systemic forms. PMID:19089396

  15. Host-pathogen interactions in Lyme disease and their application in diagnostics

    NARCIS (Netherlands)

    Burgel, Nathalie Daniëlle van

    2013-01-01

    B. burgdorferi has a wide variety of strategies to hide from the host immune system. Complement regulatory binding proteins have been described for almost all complement resistant B. burgdorferi sl, except for the complement resistant B. bavariensis, one of the species that is known to frequently ca

  16. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions.

    Science.gov (United States)

    Tenor, Jennifer L; McCormick, Beth A; Ausubel, Frederick M; Aballay, Alejandro

    2004-06-01

    A Caenorhabditis elegans-Salmonella enterica host-pathogen model was used to identify both novel and previously known S. enterica virulence factors (HilA, HilD, InvH, SptP, RhuM, Spi4-F, PipA, VsdA, RepC, Sb25, RfaL, GmhA, LeuO, CstA, and RecC), including several related to the type III secretion system (TTSS) encoded in Salmonella pathogenicity island 1 (SPI-1). Mutants corresponding to presumptive novel virulence-related genes exhibited diminished ability to invade epithelial cells and/or to induce polymorphonuclear leukocyte migration in a tissue culture model of mammalian enteropathogenesis. When expressed in C. elegans intestinal cells, the S. enterica TTSS-exported effector protein SptP inhibited a conserved p38 MAPK signaling pathway and suppressed the diminished pathogenicity phenotype of an S. enterica sptP mutant. These results show that C. elegans is an attractive model to study the interaction between Salmonella effector proteins and components of the innate immune response, in part because there is a remarkable overlap between Salmonella virulence factors required for human and nematode pathogenesis.

  17. Assessing Student Understanding of Host Pathogen Interactions Using a Concept Inventory

    Directory of Open Access Journals (Sweden)

    Gili Marbach-Ad

    2009-12-01

    Full Text Available As a group of faculty with expertise and research programs in the area of host-pathogen interactions (HPI, we are concentrating on students’ learning of HPI concepts. As such we developed a concept inventory to measure level of understanding relative to HPI after completion of a set of microbiology courses (presently eight courses. Concept inventories have been useful tools for assessing student learning, and our interest was to develop such a tool to measure student learning progression in our microbiology courses. Our teaching goal was to create bridges between our courses which would eliminate excessive overlap in our offerings and support a model where concepts and ideas introduced in one course would become the foundation for concept development in successive courses. We developed our HPI concept inventory in several phases. The final product was an 18-question multiple-choice concept inventory. In Fall 2006 and Spring 2007 we administered the 18-question concept inventory in six of our courses. We collected pre- and postcourse surveys from 477 students. We found that students taking presurveys in the advanced courses retained the level of understanding gained in the General Microbiology prerequisite course. Also, in two of our courses there was significant improvement on the scores from presurvey to postsurvey. As we move forward, we will concentrate on exploring the range of HPI concepts addressed in each course and determine and/or create effective methods for meaningful student learning of HPI aspects of microbiology.

  18. Mycobacterial PE/PPE Proteins at the Host-Pathogen Interface

    Science.gov (United States)

    Sampson, Samantha L.

    2011-01-01

    The mycobacterial PE/PPE proteins have attracted much interest since their formal identification just over a decade ago. It has been widely speculated that these proteins may play a role in evasion of host immune responses, possibly via antigenic variation. Although a cohesive understanding of their function(s) has yet to be established, emerging data increasingly supports a role for the PE/PPE proteins at multiple levels of the infectious process. This paper will delineate salient features of the families revealed by comparative genomics, bioinformatic analyses and genome-wide screening approaches and will summarise existing knowledge of subcellular localization, secretion pathways, and protein structure. These characteristics will be considered in light of findings on innate and adaptive host responses to PE/PPE proteins, and we will review the increasing body of data on B and T cell recognition of these proteins. Finally, we will consider how current knowledge and future explorations may contribute to a more comprehensive understanding of these intriguing proteins and their involvement in host pathogen interactions. Ultimately this information could underpin future intervention strategies, for example, in the area of new and improved diagnostic tools and vaccine candidates. PMID:21318182

  19. Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii.

    Science.gov (United States)

    Asplund, Maria E; Baden, Susanne P; Russ, Sarah; Ellis, Robert P; Gong, Ningping; Hernroth, Bodil E

    2014-04-01

    Ocean acidification (OA) can shift the ecological balance between interacting organisms. In this study, we have used a model system to illustrate the interaction between a calcifying host organism, the blue mussel Mytilus edulis and a common bivalve bacterial pathogen, Vibrio tubiashii, with organisms being exposed to a level of acidification projected to occur by the end of the 21st century. OA exposures of the mussels were carried out in relative long-term (4 months) and short-term (4 days) experiments. We found no effect of OA on the culturability of V. tubiashii, in broth or in seawater. OA inhibited mussel shell growth and impaired crystalline shell structures but did not appear to affect mussel immune parameters (i.e haemocyte counts and phagocytotic capacity). Despite no evident impact on host immunity or growth and virulence of the pathogen, V. tubiashii was clearly more successful in infecting mussels exposed to long-term OA compared to those maintained under ambient conditions. Moreover, OA exposed V. tubiashii increased their viability when exposed to haemocytes of OA-treated mussel. Our findings suggest that even though host organisms may have the capacity to cope with periods of OA, these conditions may alter the outcome of host-pathogen interactions, favouring the success of the latter.

  20. Exploring host-pathogen interactions through genome wide protein microarray analysis.

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-06-15

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.

  1. Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis.

    Science.gov (United States)

    Taerum, Stephen J; Cafaro, Matías J; Little, Ainslie E F; Schultz, Ted R; Currie, Cameron R

    2007-08-22

    Host-parasite associations are shaped by coevolutionary dynamics. One example is the complex fungus-growing ant-microbe symbiosis, which includes ancient host-parasite coevolution. Fungus-growing ants and the fungi they cultivate for food have an antagonistic symbiosis with Escovopsis, a specialized microfungus that infects the ants' fungus gardens. The evolutionary histories of the ant, cultivar and Escovopsis are highly congruent at the deepest phylogenetic levels, with specific parasite lineages exclusively associating with corresponding groups of ants and cultivar. Here, we examine host-parasite specificity at finer phylogenetic levels, within the most derived clade of fungus-growing ants, the leaf-cutters (Atta spp. and Acromyrmex spp.). Our molecular phylogeny of Escovopsis isolates from the leaf-cutter ant-microbe symbiosis confirms specificity at the broad phylogenetic level, but reveals frequent host-switching events between species and genera of leaf-cutter ants. Escovopsis strains isolated from Acromyrmex and Atta gardens occur together in the same clades, and very closely related strains can even infect the gardens of both ant genera. Experimental evidence supports low host-parasite specificity, with phylogenetically diverse strains of Escovopsis being capable of overgrowing all leaf-cutter cultivars examined. Thus, our findings indicate that this host-pathogen association is shaped by the farming ants having to protect their cultivated fungus from phylogenetically diverse Escovopsis garden pathogens. PMID:17550881

  2. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    Science.gov (United States)

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  3. Exploring host-pathogen interactions through genome wide protein microarray analysis

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F.; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J.; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-01-01

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis. PMID:27302108

  4. Exploring host-pathogen interactions through genome wide protein microarray analysis.

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-01-01

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis. PMID:27302108

  5. Animal Models of Human Granulocyte Diseases

    OpenAIRE

    Schäffer, Alejandro A.; Klein, Christoph

    2012-01-01

    In vivo animal models have proven very useful to understand basic biological pathways of the immune system, a prerequisite for the development of innovate therapies. This manuscript addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve di...

  6. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome

    DEFF Research Database (Denmark)

    Sangild, Per Torp; Ney, Denise M; Sigalet, David L;

    2014-01-01

    enterocolitis, atresia, gastroschisis, volvulus and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, nutritional interventions and growth factor therapies. Animal studies may...

  7. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Science.gov (United States)

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H; Blaustein, Andrew R

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  8. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen.

    Directory of Open Access Journals (Sweden)

    Stephanie Gervasi

    Full Text Available Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla displayed "dose-dependent" responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae. Western toads (Anaxyrus boreas displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.

  9. Cost-benefit analysis in animal disease control

    International Nuclear Information System (INIS)

    Animal health economics is a relatively new discipline which is progressively developing a solid framework of concepts, procedures and data to support the decision making process in optimizing animal health management. Research in this field deals primarily with three interrelated aspects: (1) quantifying the financial effects of animal diseases, (2) developing methods for optimizing decisions when individual animals, herds or populations are affected, and (3) determining the costs and benefits of disease control measures. In the paper the four most common economic modelling techniques in animal health economics (i.e. partial budgeting, cost-benefit analysis, decision analysis, and systems simulation) are described and applied on three levels of veterinary decision making: the animal, herd and national level. Outcomes so far are summarized, and shortcomings indicated and discussed. The importance of a close link between economics and epidemiology is stressed for future development, as well as the need for, and possibilities of, an international exchange of models and procedures. (author)

  10. Zoonotic disease concerns in animal-assisted therapy and animal visitation programs

    OpenAIRE

    Waltner-Toews, David

    1993-01-01

    A survey was done of 150 systematically selected United States animal care agencies and 74 Canadian humane societies to determine the prevalence of animal assisted therapy (AAT) programs; concerns about, and experience with, zoonotic diseases; and precautions taken to prevent zoonotic disease transmission. Of the 69 US agencies and 49 Canadian societies that reported having AAT programs, 94% used dogs and/or cats in their programs, 28% used rabbits, 15% used “pocket pets” (hamsters, gerbils, ...

  11. Humane killing of animals for disease control purposes.

    Science.gov (United States)

    Thornber, P M; Rubira, R J; Styles, D K

    2014-04-01

    Killing for disease control purposes is an emotional issue for everyone concerned. Large-scale euthanasia or depopulation of animals may be necessary for the emergency control or eradication of animal diseases, to remove animals from a compromised situation (e.g. following flood, storm, fire, drought or a feed contamination event), to effect welfare depopulation when there is an oversupply due to a dysfunctional or closed marketing channel, or to depopulate and dispose of animals with minimal handling to decrease the risk of a zoonotic disease infecting humans. The World Organisation for Animal Health (OIE) developed international standards to provide advice on humane killing for various species and situations. Some fundamental issues are defined, such as competency of animal handling and implementation of humane killing techniques. Some of these methods have been used for many years, but novel approaches for the mass killing of particular species are being explored. Novel vaccines and new diagnostic techniques that differentiate between vaccinated and infected animals will save many animals from being killed as part of biosecurity response measures. Unfortunately, the destruction of affected livestock will still be required to control diseases whilst vaccination programmes are activated or where effective vaccines are not available. This paper reviews the principles of humane destruction and depopulation and explores available techniques with their associated advantages and disadvantages. It also identifies some current issues that merit consideration, such as legislative conflicts (emergency disease legislation versus animal welfare legislation, occupational health and safety), media issues, opinions on the future approaches to killing for disease control, and animal welfare.

  12. Humane killing of animals for disease control purposes.

    Science.gov (United States)

    Thornber, P M; Rubira, R J; Styles, D K

    2014-04-01

    Killing for disease control purposes is an emotional issue for everyone concerned. Large-scale euthanasia or depopulation of animals may be necessary for the emergency control or eradication of animal diseases, to remove animals from a compromised situation (e.g. following flood, storm, fire, drought or a feed contamination event), to effect welfare depopulation when there is an oversupply due to a dysfunctional or closed marketing channel, or to depopulate and dispose of animals with minimal handling to decrease the risk of a zoonotic disease infecting humans. The World Organisation for Animal Health (OIE) developed international standards to provide advice on humane killing for various species and situations. Some fundamental issues are defined, such as competency of animal handling and implementation of humane killing techniques. Some of these methods have been used for many years, but novel approaches for the mass killing of particular species are being explored. Novel vaccines and new diagnostic techniques that differentiate between vaccinated and infected animals will save many animals from being killed as part of biosecurity response measures. Unfortunately, the destruction of affected livestock will still be required to control diseases whilst vaccination programmes are activated or where effective vaccines are not available. This paper reviews the principles of humane destruction and depopulation and explores available techniques with their associated advantages and disadvantages. It also identifies some current issues that merit consideration, such as legislative conflicts (emergency disease legislation versus animal welfare legislation, occupational health and safety), media issues, opinions on the future approaches to killing for disease control, and animal welfare. PMID:25000803

  13. The enduring importance of animal modelsin understanding periodontal disease

    OpenAIRE

    Hajishengallis, George; Lamont, Richard J.; Graves, Dana T.

    2015-01-01

    Whereas no single animal model can reproduce the complexity of periodontitis, different aspects of the disease can be addressed by distinct models. Despite their limitations, animal models are essential for testing the biological significance of in vitro findings and for establishing cause-and-effect relationships relevant to clinical observations, which are typically correlative. We provide evidence that animal-based studies have generated a durable framework for dissecting the mechanistic b...

  14. The rat as an animal model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Kloskowska, Ewa; Winblad, Bengt

    2009-01-01

    As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer's disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind...... that of mice. In recent years, the rat has been making a comeback as an Alzheimer's disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to the existing mouse models. This review summarizes the contributions and current status of the rat...... as an animal model of Alzheimer's disease....

  15. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    Directory of Open Access Journals (Sweden)

    Justyna Nowakowska

    2014-08-01

    Full Text Available The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI animal models that closely resemble human disease are needed. Applications of the tissue cage and catheter abscess foreign body infection models in the mouse will be discussed herein. Both models allow the investigation of biofilm and virulence of various bacterial species and a comprehensive insight into the host response at the same time. They have also been proven to serve as very suitable tools to study the anti-adhesive and anti-infective efficacy of different biomaterial coatings. The tissue cage model can additionally be used to determine pharmacokinetics, efficacy and cytotoxicity of antimicrobial compounds as the tissue cage fluid can be aspirated repeatedly without the need to sacrifice the animal. Moreover, with the advance in innovative imaging systems in rodents, these models may offer new diagnostic measures of infection. In summary, animal foreign body infection models are important tools in the development of new antimicrobials against IAI and can help to elucidate the complex interactions between bacteria, the host immune system, and prosthetic materials.

  16. Infectious diseases among animals : combining models with data

    OpenAIRE

    de Koeijer, A.A.

    2003-01-01

    To eradicate or control the spread of infectious diseases, knowledge on the spread of the infection between (groups of) animals is necessary. Models can include such information and can subsequently be used to observe the efficacy of various control measures in fighting the infection. However, the availability of information and data to build and quantify these models is essential for applying such models in real life. In this thesis, models on the spread of infectious diseases in animals are...

  17. Research progress on animal models of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Wen DONG

    2015-08-01

    Full Text Available Alzheimer's disease (AD is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  18. Research progress on animal models of Alzheimer's disease

    OpenAIRE

    Dong, Wen; Wang, Rong

    2015-01-01

    Alzheimer's disease (AD) is a degenerative disease of the central nervous system, and its pathogenesis is complex. Animal models play an important role in study on pathogenesis and treatment of AD. This paper summarized methods of building models, observation on animal models and evaluation index in recent years, so as to provide related evidence for basic and clinical research in future. DOI: 10.3969/j.issn.1672-6731.2015.08.003

  19. Animal diseases of public health importance.

    OpenAIRE

    Orriss, G. D.

    1997-01-01

    The Food and Agriculture Organization's (FAO) interest in emerging diseases caused by foodborne pathogens derives from its role as the leading United Nations agency with a mandate for food quality and safety matters. The Food Quality and Standards Service of FAO's Food and Nutrition Division is active in all areas related to food safety and implements the FAO/World Health Organization Food Standards Program. Its activities include providing assistance to FAO's member nations in addressing pro...

  20. Animal models of primary myocardial diseases.

    OpenAIRE

    Liu, S. K.; Tilley, L. P.

    1980-01-01

    Feline and canine cardiomyopathies (primary myocardial diseases) were reviewed and divided into three groups based on the clinical, hemodynamic, angiocardiographic, and pathologic findings: (1) feline and canine hypertrophic cardiomyopathy, (2) feline and canine congestive (dilated) cardiomyopathy, and (3) feline restrictive cardiomyopathy. All three groups consisted predominantly of mature adult male cats and dogs. Cardiomyopathy in the hamster and turkey was also reviewed. The most common p...

  1. Engineering Large Animal Species to Model Human Diseases.

    Science.gov (United States)

    Rogers, Christopher S

    2016-01-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. PMID:27367161

  2. Notification of animal and human diseases: the global legal basis.

    Science.gov (United States)

    Vallat, B; Thiermann, A; Ben Jebara, K; Dehove, A

    2013-08-01

    The successful control of a disease, and a possible epidemic, depends on rapid access to complete information on the disease situation. To ensure a timely response, diseases must be immediately notified in a transparent manner. The rapid exchange of information about animal diseases, including zoonoses, was the key objective in the establishment of the World Organisation for Animal Health (OIE) in 1924. For diseases concerning humans, a set of new rules dealing with the quick reporting of infectious diseases--the International Health Regulations--was adopted by Members of the World Health Organization (OMS) in 2005. The article explains these two systems of notification, which make information accessible to the public and allow decision-makers to better manage the risks related to the diseases concerned.

  3. Genetics of animal health and disease in cattle

    Directory of Open Access Journals (Sweden)

    Berry Donagh P

    2011-03-01

    Full Text Available Abstract There have been considerable recent advancements in animal breeding and genetics relevant to disease control in cattle, which can now be utilised as part of an overall programme for improved cattle health. This review summarises the contribution of genetic makeup to differences in resistance to many diseases affecting cattle. Significant genetic variation in susceptibility to disease does exist among cattle suggesting that genetic selection for improved resistance to disease will be fruitful. Deficiencies in accurately recorded data on individual animal susceptibility to disease are, however, currently hindering the inclusion of health and disease resistance traits in national breeding goals. Developments in 'omics' technologies, such as genomic selection, may help overcome some of the limitations of traditional breeding programmes and will be especially beneficial in breeding for lowly heritable disease traits that only manifest themselves following exposure to pathogens or environmental stressors in adulthood. However, access to large databases of phenotypes on health and disease will still be necessary. This review clearly shows that genetics make a significant contribution to the overall health and resistance to disease in cattle. Therefore, breeding programmes for improved animal health and disease resistance should be seen as an integral part of any overall national disease control strategy.

  4. Risk and economic consequences of contagious animal disease introduction.

    NARCIS (Netherlands)

    Horst, H.S.

    1998-01-01

    IntroductionWithin the European Union, epidemics of contagious animal diseases such as Classical Swine Fever (CSF) and Foot-and-Mouth Disease (FMD) are to be eradicated according to strict EU- prescriptions including stamping-out of infected herds, establishment of control and surve

  5. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    R.A. Bem; J.B. Domachowske; H.F. Rosenberg

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for n

  6. Effect of Foot-and-Mouth Disease Virus Infection on the Frequency, Phenotype and Function of Circulating Dendritic Cells in Cattle

    OpenAIRE

    Janet J Sei; Waters, Ryan A.; Kenney, Mary; John W Barlow; Golde, William T.

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms develop within 2 to 3 days of exposure and include fever and vesicular lesions on the tongue and hooves. Dendritic cells (DC) play an essential role in protective immune responses against pathogens. Therefore, investigating their role during FMDV infection would lead to a better understanding of host-pathogen interactions. In this study, ...

  7. Gene expression profiling in host-pathogen interactions and identification of the molecular mechanisms involved in dendrictic cells activation

    OpenAIRE

    Torri,, M.

    2009-01-01

    In this thesis we used a functional genomic approach to study host-pathogen interactions [1]. We analyzed the interaction from the host point of view and in particular from the dendritic cells point of view. Dendritic cells (DCs) constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity [2]. In the first part of this thesis we explored the possibility to use dendritic cell transcriptomes to generate biomarkers of inflamma...

  8. The social and political impact of animal diseases.

    Science.gov (United States)

    Evans, B

    2006-01-01

    The twenty-first century is characterised by 'epidemiological globalisation' on an unprecedented scale with resulting impacts at the interface of economic, scientific, social and political forces arising from the emergence and re-emergence of animal diseases. Throughout history, animals have served as a source to humankind of food, transportation, medicines, entertainment, clothing, fuel, military advantage and financial security. It is therefore not at all surprising that animal diseases have resulted in significant social and political impacts that have shaped and continue to shape the course of national and international events. The social impacts can be expressed as indirect health consequences or behavioural changes, changes in societal values and changes in social standing and can be felt at the individual, family or community level. The political impact of major disease outbreaks can include loss of public and consumer confidence, resistance to investments in disease surveillance, reluctance to report disease detections in a timely or transparent manner, failure to implement science-based international standards for safe trade (which protect animal, human and ecosystem health) and the removal of government officials. The magnitude of these impacts would support that social and political impacts warrant their inclusion in the consequence assessment of a robust animal disease risk analysis framework. PMID:20429074

  9. Critical Behavior in a Cellular Automata Animal Disease Transmission Model

    CERN Document Server

    Morley, P D; Chang, Julius

    2003-01-01

    Using a cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared on a farm, there is mandatory slaughter (culling) of all livestock on an infected premise (IP). Those farms that neighbor an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor iteractions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The non-local disease transport probability can be as low as .01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fissio...

  10. Host-pathogen dynamics of squirrelpox virus infection in red squirrels (Sciurus vulgaris).

    Science.gov (United States)

    Fiegna, C; Dagleish, M P; Coulter, L; Milne, E; Meredith, A; Finlayson, J; Di Nardo, A; McInnes, C J

    2016-01-01

    To improve our understanding of squirrelpox virus (SQPV) infection in the susceptible host, three red squirrels were challenged with wild-type SQPV via scarification of the hind-limb skin. All squirrels seroconverted to the infection by the end of the experiment (17 days post-challenge). Challenged animals suffered disease characterised by the development of multiple skin and oral lesions with rapid progression of skin lesions at the infection site by day 10 post-challenge. No internal pathological changes were found at post-mortem examination. A novel SQPV Taqman(®) Real-time PCR detected viral DNA from multiple organs, with the largest amounts consistently associated with the primary and secondary skin and oral lesions where viral replication was most likely occurring. Immunohistochemistry clearly detected viral antigen in the stratified squamous epithelium of the epidermis, tongue and the oropharyngeal mucosa-associated lymphoid tissue and was consistently associated with histological changes resulting from viral replication. The lack of internal pathological changes and the detection of relatively low levels of viral DNA when compared with primary and secondary skin lesions argue against systemic disease, although systemic spread of the virus cannot be ruled out. This study allowed a comprehensive investigation of the clinical manifestation and progression of SQPV infection with a quantitative and qualitative analysis of virus dissemination and shedding. These findings suggest two separate routes of SQPV transmission under natural conditions, with both skin and saliva playing key roles in infected red squirrels.

  11. Infectious disease in animal metapopulations: the importance of environmental transmission

    OpenAIRE

    Park, Andrew W.

    2012-01-01

    Motivated by an array of infectious diseases that threaten wildlife populations, a simple metapopulation model (subpopulations connected by animal movement) is developed, which allows for both movement-based and environmental transmission. The model demonstrates that for a range of plausible parameterizations of environmental transmission, increased movement rate of animals between discrete habitats can lead to a decrease in the overall proportion of sites that are occupied. This can limit th...

  12. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    Science.gov (United States)

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729. PMID:27066769

  13. CONTROL OF ANIMAL DISEASES CAUSED BY BACTERIA: PRINCIPLES AND APPROACHES

    Directory of Open Access Journals (Sweden)

    K. Ahmad

    2005-10-01

    Full Text Available To continue to exist, a bacterial pathogen must reproduce and be disseminated among its hosts. Thus, an important aspect of bacterial disease control is a consideration of how reproduction and dissemination of the organism occur. One must identify components of bacterial dissemination that are primarily responsible for a particular disease. Control measures should be directed toward that part of the cycle which is most susceptible to control the weakest links in the chain of disease process. Reducing or eliminating the source or reservoir of infection, breaking the connection between the source of the infection and susceptible animals and reducing the number of susceptible animals by raising the general level of herd immunity with immunization are three main kinds of control measures against bacterial diseases.

  14. Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds

    DEFF Research Database (Denmark)

    Barh, Debmalya; Gupta, Krishnakant; Jain, Neha;

    2013-01-01

    were predicted to inhibit Ack activity. One of these Piper betel compounds found to inhibit E. coli O157:H7 growth similar to penicillin. The target specificity of these betel compounds, their effects on other studied pathogens, and other in silico results are currently being validated and the results...... generate a conserved host-pathogen interaction (HP-PPI) network considering human, goat, sheep, bovine, and horse as hosts. The HP-PPI network was validated, and acetate kinase (Ack) was identified as a novel broad spectrum target. Ceftiofur, penicillin, and two natural compounds derived from Piper betel...

  15. Critical Behavior in Cellular Automata Animal Disease Transmission Model

    Science.gov (United States)

    Morley, P. D.; Chang, Julius

    Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.

  16. Impact of animal diseases on livestock productivity and economic losses

    International Nuclear Information System (INIS)

    The most serious impact of animal disease on livestock productivity in developing countries derives from its effect on overall livestock production and trade development rather than from the direct losses it causes. The global importance of major infectious diseases such as foot and mouth disease, rinderpest and African swine fever is reviewed. The impact of major livestock diseases in tropical Africa on livestock productivity and economic losses is analysed, and the importance of in-depth analysis of the disease impact on livestock and rural development is stressed. Lack of diagnosis facilities that are needed to acquire reliable information on the distribution of disease is often a major constraint to cost-benefit analysis of control options. However, enough evidence exists to substantiate the fact that improved disease control is a prerequisite for progress towards increased productivity based on the adoption of more intensive production systems and use of animals of improved genotype. Veterinary services in developing countries are at various stages of development, and the priority order of infra-structure, manpower and technological development for disease control programmes should be carefully planned and be based on socio-economic, cost-benefit and feasibility studies. (author)

  17. Infectious diseases among animals : combining models with data

    NARCIS (Netherlands)

    Koeijer, A.A. de

    2003-01-01

    To eradicate or control the spread of infectious diseases, knowledge on the spread of the infection between (groups of) animals is necessary. Models can include such information and can subsequently be used to observe the efficacy of various control measures in fighting the infection. However, the a

  18. Regulatory T Cells and Their Role in Animal Disease.

    Science.gov (United States)

    Veiga-Parga, T

    2016-07-01

    In humans and mouse models, Foxp3(+) regulatory T cells are known to control all aspects of immune responses. However, only limited information exists on these cells' role in diseases of other animals. In this review, we cover the most important features and different types of regulatory T cells, which include those that are thymus-derived and peripherally induced, the mechanisms by which they control immune responses by targeting effector T cells and antigen-presenting cells, and most important, their role in animal health and diseases including cancer, infections, and other conditions such as hypersensitivities and autoimmunity. Although the literature regarding regulatory T cells in domestic animal species is still limited, multiple articles have recently emerged and are discussed. Moreover, we also discuss the evidence suggesting that regulatory T cells might limit the magnitude of effector responses, which can have either a positive or negative result, depending on the context of animal and human disease. In addition, the issue of plasticity is discussed because plasticity in regulatory T cells can result in the loss of their protective function in some microenvironments during disease. Lastly, the manipulation of regulatory T cells is discussed in assessing the possibility of their use as a treatment in the future. PMID:26945003

  19. Phenotypic Variation Is Almost Entirely Independent of the Host-Pathogen Relationship in Clinical Isolates of S. aureus.

    Directory of Open Access Journals (Sweden)

    Adrian D Land

    Full Text Available A key feature of Staphylococcus aureus biology is its ability to switch from an apparently benign colonizer of ~30% of the population to a cutaneous pathogen, to a deadly invasive pathogen. Little is known about the mechanisms driving this transition or the propensity of different S. aureus strains to engender different types of host-pathogen interactions. At the same time, significant weight has been given to the role of specific in vitro phenotypes in S. aureus virulence. Biofilm formation, hemolysis and pigment formation have all been associated with virulence in mice.To determine if there is a correlation between in vitro phenotype and the three types of host-pathogen relationships commonly exhibited by S. aureus in the context of its natural human host, we assayed 300 clinical isolates for phenotypes implicated in virulence including hemolysis, sensitivity to autolysis, and biofilm formation. For comparative purposes, we also assayed phenotype in 9 domesticated S. aureus strains routinely used for analysis of virulence determinants in laboratory settings.Strikingly, the clinical strains exhibited significant phenotypic uniformity in each of the assays evaluated in this study. One exception was a small, but significant, correlation between an increased propensity for biofilm formation and isolation from skin and soft tissue infections (SSTIs. In contrast, we observed a high degree of phenotypic variation between common laboratory strains that exhibit virulence in mouse models. These data suggest the existence of significant evolutionary pressure on the S. aureus genome and highlight a role for host factors as a strong determinant of the host-pathogen relationship. In addition, the high degree of variation between laboratory strains emphasizes the need for caution when applying data obtained in one lab strain to the analysis of another.

  20. Educational preparedness of veterinarians for foreign animal diseases.

    Science.gov (United States)

    Thurmond, Mark C; Gibbs, E Paul J; Brown, Corrie C; Wagner, G Gale; Wilson, Terry M; Lautner, Beth A

    2003-05-15

    Veterinary medical education in FADs has been and will continue to be critically important if veterinarians are expected to fulfill the profession's primary obligations to society--those of protecting our animals' health, conserving our animal resources, and promoting public health. It is imperative that curricula and instruction in veterinary schools and colleges provide the depth and breadth of knowledge and understanding necessary to prepare all veterinarians, including those in private practice, for their key role in defending against FADs. Development and implementation of governmental and military programs to diagnose, prevent, control, and eradicate FADs will require a dedicated cadre of public sector veterinarians who have a solid educational foundation in FADs and understand the contemporary issues and global challenges we face. Animal-related industries, associations, and organizations will increasingly rely on well-educated veterinarians to help guide them in ways that will protect animals, clientele, consumers, and trading partners from effects of FADs. Agencies and organizations concerned with conservation of animal resources will require veterinary expertise necessary to prevent FADs in a multitude of animal species, including marine animals, wildlife, endangered species, zoologic specimens, and important genetic lines as well as our domestic companion and livestock species. Species affected by FADs also include human beings for those disease agents with zoonotic potential; thus, veterinary education also plays a key role in public health. PMID:12762377

  1. Animal models for Alzheimer's disease and frontotemporal dementia: a perspective

    Directory of Open Access Journals (Sweden)

    Jürgen Götz

    2009-11-01

    Full Text Available In dementia research, animal models have become indispensable tools. They not only model aspects of the human condition, but also simulate processes that occur in humans and hence provide insight into how disease is initiated and propagated. The present review discusses two prominent human neurodegenerative disorders, Alzheimer's disease and frontotemporal dementia. It discusses what we would like to model in animals and highlights some of the more recent achievements using species as diverse as mice, fish, flies and worms. Advances in imaging and therapy are explored. We also discuss some anticipated new models and developments. These will reveal how key players in the pathogenesis of Alzheimer's disease and frontotemporal dementia, such as the peptide Aβ (amyloid β and the protein tau, cause neuronal dysfunction and eventually, neuronal demise. Understanding these processes fully will lead to early diagnosis and therapy.

  2. Prion and prion-like diseases in animals.

    Science.gov (United States)

    Aguilar-Calvo, Patricia; García, Consolación; Espinosa, Juan Carlos; Andreoletti, Olivier; Torres, Juan María

    2015-09-01

    Transmissible spongiform encephalopaties (TSEs) are fatal neurodegenerative diseases characterized by the aggregation and accumulation of the misfolded prion protein in the brain. Other proteins such as β-amyloid, tau or Serum Amyloid-A (SAA) seem to share with prions some aspects of their pathogenic mechanism; causing a variety of so called prion-like diseases in humans and/or animals such as Alzheimer's, Parkinson's, Huntington's, Type II diabetes mellitus or amyloidosis. The question remains whether these misfolding proteins have the ability to self-propagate and transmit in a similar manner to prions. In this review, we describe the prion and prion-like diseases affecting animals as well as the recent findings suggesting the prion-like transmissibility of certain non-prion proteins.

  3. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Science.gov (United States)

    Buck, Julia C; Hua, Jessica; Brogan, William R; Dang, Trang D; Urbina, Jenny; Bendis, Randall J; Stoler, Aaron B; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd), a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas) from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan) or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D) or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs). Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load. This result

  4. Effects of Pesticide Mixtures on Host-Pathogen Dynamics of the Amphibian Chytrid Fungus.

    Directory of Open Access Journals (Sweden)

    Julia C Buck

    Full Text Available Anthropogenic and natural stressors often interact to affect organisms. Amphibian populations are undergoing unprecedented declines and extinctions with pesticides and emerging infectious diseases implicated as causal factors. Although these factors often co-occur, their effects on amphibians are usually examined in isolation. We hypothesized that exposure of larval and metamorphic amphibians to ecologically relevant concentrations of pesticide mixtures would increase their post-metamorphic susceptibility to the fungus Batrachochytrium dendrobatidis (Bd, a pathogen that has contributed to amphibian population declines worldwide. We exposed five anuran species (Pacific treefrog, Pseudacris regilla; spring peeper, Pseudacris crucifer; Cascades frog, Rana cascadae; northern leopard frog, Lithobates pipiens; and western toad, Anaxyrus boreas from three families to mixtures of four common insecticides (chlorpyrifos, carbaryl, permethrin, and endosulfan or herbicides (glyphosate, acetochlor, atrazine, and 2,4-D or a control treatment, either as tadpoles or as newly metamorphic individuals (metamorphs. Subsequently, we exposed animals to Bd or a control inoculate after metamorphosis and compared survival and Bd load. Bd exposure significantly increased mortality in Pacific treefrogs, spring peepers, and western toads, but not in Cascades frogs or northern leopard frogs. However, the effects of pesticide exposure on mortality were negligible, regardless of the timing of exposure. Bd load varied considerably across species; Pacific treefrogs, spring peepers, and western toads had the highest loads, whereas Cascades frogs and northern leopard frogs had the lowest loads. The influence of pesticide exposure on Bd load depended on the amphibian species, timing of pesticide exposure, and the particular pesticide treatment. Our results suggest that exposure to realistic pesticide concentrations has minimal effects on Bd-induced mortality, but can alter Bd load

  5. Animal models of Parkinson's disease and their applications

    Directory of Open Access Journals (Sweden)

    Park HJ

    2016-07-01

    Full Text Available Hyun Jin Park, Ting Ting Zhao, Myung Koo LeeDepartment of Pharmacy, Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea Abstract: Parkinson's disease (PD is a progressive neurodegenerative disorder that occurs mainly due to the degeneration of dopaminergic neuronal cells in the substantia nigra. l-3,4-Dihydroxyphenylalanine (L-DOPA is the most effective known therapy for PD. However, chronic L-DOPA administration results in a loss of drug efficacy and irreversible adverse effects, including L-DOPA-induced dyskinesia, affective disorders, and cognitive function disorders. To study the motor and non-motor symptomatic dysfunctions in PD, neurotoxin and genetic animal models of PD have been widely applied. However, these animal models do not exhibit all of the pathophysiological symptoms of PD. Regardless, neurotoxin rat and mouse models of PD have been commonly used in the development of bioactive components from natural herbal medicines. Here, the main animal models of PD and their applications have been introduced in order to aid the development of therapeutic and adjuvant agents. Keywords: Parkinson's disease, neurotoxin animal models, genetic animal models, adjuvant therapeutics

  6. Animal models of skin disease for drug discovery

    Science.gov (United States)

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  7. The Cambridge MRI database for animal models of Huntington disease.

    Science.gov (United States)

    Sawiak, Stephen J; Morton, A Jennifer

    2016-01-01

    We describe the Cambridge animal brain magnetic resonance imaging repository comprising 400 datasets to date from mouse models of Huntington disease. The data include raw images as well as segmented grey and white matter images with maps of cortical thickness. All images and phenotypic data for each subject are freely-available without restriction from (http://www.dspace.cam.ac.uk/handle/1810/243361/). Software and anatomical population templates optimised for animal brain analysis with MRI are also available from this site.

  8. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Ludovic Tailleux

    Full Text Available BACKGROUND: Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells. METHODOLOGY/PRINCIPAL FINDINGS: In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification. CONCLUSIONS/SIGNIFICANCE: This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.

  9. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection.

    Directory of Open Access Journals (Sweden)

    Brooke L Deatherage Kaiser

    Full Text Available The potential for commensal microorganisms indigenous to a host (the 'microbiome' or 'microbiota' to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics "systems" approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus. Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium's lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

  10. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Jones, Marcus B.; Peterson, Christine; Peterson, Scott N.; Frank, Bryan C.; Purvine, Samuel O.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2013-06-26

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

  11. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis

    Institute of Scientific and Technical Information of China (English)

    Yoshihisa Takahashi; Yurie Soejima; Toshio Fukusato

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat accumulates in the liver of a patient without a history of alcohol abuse.Nonalcoholic steatohepatitis (NASH),a severe form of NAFLD,can progress to liver cirrhosis and hepatocellular carcinoma.NAFLD is regarded as a hepatic manifestation of metabolic syndrome and incidence has been increasing worldwide in line with the increased prevalence of obesity,type 2 diabetes,and hyperlipemia.Animal models of NAFLD/NASH give crucial information,not only in elucidating pathogenesis of NAFLD/NASH but also in examining therapeutic effects of various agents.An ideal model of NAFLD/NASH should correctly reflect both hepatic histopathology and pathophysiology of human NAFLD/NASH.Animal models of NAFLD/NASH are divided into genetic,dietary,and combination models.In this paper,we review commonly used animal models of NAFLD/NASH referring to their advantages and disadvantages.

  12. On the surveillance for animal diseases in small herds

    DEFF Research Database (Denmark)

    Greiner, Matthias; Dekker, Aldo

    2005-01-01

    Small herds may present a problem in surveillance for infectious animal diseases because typical levels of a within-herd design prevalence are not directly applicable. We suggest a definition of small herds as those smaller than 2/(within-herd design prevalence) on the basis that such herds would...... be expected to have less than two (i.e. only one) infected animals. Consequently, the probability of detecting small herds cannot be improved by choosing a larger sample size within the herd. We derive necessary sample sizes of herds and the probability ("confidence") of detecting disease within a stratum...... of small herds, given the among-herd design prevalence and test diagnostic sensitivity. Both a binomial model and a Poisson model can be used to establish the confidence for a given sample size of herds (and vice versa). The results of a simulation study suggest that the Poisson model provides more...

  13. Mobile technologies for disease surveillance in humans and animals.

    Science.gov (United States)

    Mwabukusi, Mpoki; Karimuribo, Esron D; Rweyemamu, Mark M; Beda, Eric

    2014-01-01

    A paper-based disease reporting system has been associated with a number of challenges. These include difficulties to submit hard copies of the disease surveillance forms because of poor road infrastructure, weather conditions or challenging terrain, particularly in the developing countries. The system demands re-entry of the data at data processing and analysis points, thus making it prone to introduction of errors during this process. All these challenges contribute to delayed acquisition, processing and response to disease events occurring in remote hard to reach areas. Our study piloted the use of mobile phones in order to transmit near to real-time data from remote districts in Tanzania (Ngorongoro and Ngara), Burundi (Muyinga) and Zambia (Kazungula and Sesheke). Two technologies namely, digital and short messaging services were used to capture and transmit disease event data in the animal and human health sectors in the study areas based on a server-client model. Smart phones running the Android operating system (minimum required version: Android 1.6), and which supported open source application, Epicollect, as well as the Open Data Kit application, were used in the study. These phones allowed collection of geo-tagged data, with the opportunity of including static and moving images related to disease events. The project supported routine disease surveillance systems in the ministries responsible for animal and human health in Burundi, Tanzania and Zambia, as well as data collection for researchers at the Sokoine University of Agriculture, Tanzania. During the project implementation period between 2011 and 2013, a total number of 1651 diseases event-related forms were submitted, which allowed reporters to include GPS coordinates and photographs related to the events captured. It was concluded that the new technology-based surveillance system is useful in providing near to real-time data, with potential for enhancing timely response in rural remote areas of

  14. Large Animal Models for Batten Disease: A Review

    OpenAIRE

    Weber, Krystal; Pearce, David A.

    2013-01-01

    The neuronal ceroid lipofuscinoses, collectively referred to as Batten disease, make up a group of inherited childhood disorders that result in blindness, motor and cognitive regression, brain atrophy, and seizures, ultimately leading to premature death. So far more than 10 genes have been implicated in different forms of the neuronal ceroid lipofuscinoses. Most related research has involved mouse models, but several naturally occurring large animal models have recently been discovered. In th...

  15. Tuberculosis: a re-emerging disease in animals and humans

    Directory of Open Access Journals (Sweden)

    Charles O. Thoen, DVM, PhD

    2009-03-01

    Full Text Available Tuberculosis continues to be an important disease both in humans and animals. It causes morbidity, mortality and economic loss worldwide. The occurrence of Mycobacterium bovis disease in humans, domesticated and wild animals confirms the relevance of this zoonosis. M. bovis in humans continues to be reported in industrialised countries and in immigrants from regions of the world where tuberculosis in cattle is endemic. The real incidence of M. bovis in humans in developing countries continues to be roughly under-estimated due to the scarcity of appropriate laboratory facilities to isolate and to differentiate M. bovis strains. In Latin America, less than 1% of tuberculosis cases are reported as being due to M. bovis. However, the economic relevance that meat and dairy industries play in these countries stimulates the promotion of bovine tuberculosis eradication programmes. Human-to-human airborne transmission of M. bovis does occur and it may be important where human immunodeficiency virus (HIV infection in humans is prevalent, M. bovis infection in cattle is enzootic and pasteurisation of dairy products is not routinely practised. Eradication of M. bovis in cattle and pasteurisation of dairy products are the cornerstones of prevention of human disease. Measures should be developed to identify and control M. bovis infection in wild animals as these may be important reservoirs of infection for domesticated food-producing animals. There is a need for medical and veterinary professionals to cooperate on disease outbreaks. The information presented herein strongly supports the ‘One World/One Health/One Medicine’ concept.

  16. Infectious disease in animal metapopulations: the importance of environmental transmission.

    Science.gov (United States)

    Park, Andrew W

    2012-07-01

    Motivated by an array of infectious diseases that threaten wildlife populations, a simple metapopulation model (subpopulations connected by animal movement) is developed, which allows for both movement-based and environmental transmission. The model demonstrates that for a range of plausible parameterizations of environmental transmission, increased movement rate of animals between discrete habitats can lead to a decrease in the overall proportion of sites that are occupied. This can limit the ability of the rescue effect to ensure locally extinct populations become recolonized and can drive metapopulations down in size so that extinction by mechanisms other than disease may become more likely. It further highlights that, in the context of environmental transmission, the environmental persistence time of pathogens and the probability of acquiring infection by environmental transmission can affect host metapopulations both qualitatively and quantitatively. Additional spillover sources of infection from alternate reservoir hosts are also included in the model and a synthesis of all three types of transmission, acting alone or in combination, is performed revealing that movement-based transmission is the only necessary condition for a decline in the proportion of occupied sites with increasing movement rate, but that the presence of other types of transmission can reverse this qualitative result. By including the previously neglected role of environmental transmission, this work contributes to the general discussion of when dispersal by wild animals is beneficial or detrimental to populations experiencing infectious disease. PMID:22957148

  17. Malarial birds: modeling infectious human disease in animals.

    Science.gov (United States)

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  18. Infectious animal diseases: the wildlife/livestock interface.

    Science.gov (United States)

    Bengis, R G; Kock, R A; Fischer, J

    2002-04-01

    The long-standing conflict between livestock owners and animal health authorities on the one hand, and wildlife conservationists on the other, is largely based on differing attitudes to controlling diseases of livestock which are associated with wildlife. The authors have attempted to highlight the fact that these disease problems are frequently bi-directional at the wildlife/livestock interface. The different categories of diseases involved are presented. A new dimension being faced by veterinary regulatory authorities is the spectre of emerging sylvatic foci of diseases, such as bovine tuberculosis, bovine brucellosis and possibly rinderpest; these diseases threaten to undermine national and international eradication schemes, which have been implemented and executed with significant success, and at great cost. Conversely, wildlife-based ecotourism world-wide has expanded rapidly over the past decade and is the source of lacking foreign revenue for many developing countries. Traditional subsistence farming is still the largest source of much-needed protein on some continents and this, together with the growth and hunger of historically disadvantaged communities for land, is forcing enterprises and communities with markedly different objectives and land-use practices to operate effectively in close proximity. Some land-users rely exclusively on wildlife, others on livestock and/or agronomy, while yet others need to combine these activities. The net result may be an expansion or intensification of the interface between wildlife and domestic livestock, which will require innovative control strategies that permit differing types of wildlife/livestock interaction, and that do not threaten the land-use options of neighbours, or the ability of a country to market animals and animal products profitably.

  19. Identifying the Achilles heel of multi-host pathogens: the concept of keystone ‘host’ species illustrated by Mycobacterium ulcerans transmission

    International Nuclear Information System (INIS)

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abundant taxa for this category of pathogen is not an optimal strategy to decrease the transmission of the mycobacterium within aquatic ecosystems. On the contrary, we reveal that the removal of some taxa, especially Oligochaeta worms, can clearly reduce rates of pathogen transmission, and these should be considered as keystone organisms for its transmission because they lead to a substantial reduction in pathogen prevalence regardless of the network topology. Besides their potential application for the understanding of M. ulcerans ecology, we discuss how networks of species interactions can modulate transmission of multi-host pathogens. (letter)

  20. MeCP2-Related Diseases and Animal Models

    Directory of Open Access Journals (Sweden)

    Chinelo D. Ezeonwuka

    2014-01-01

    Full Text Available The role of epigenetics in human disease has become an area of increased research interest. Collaborative efforts from scientists and clinicians have led to a better understanding of the molecular mechanisms by which epigenetic regulation is involved in the pathogenesis of many human diseases. Several neurological and non-neurological disorders are associated with mutations in genes that encode for epigenetic factors. One of the most studied proteins that impacts human disease and is associated with deregulation of epigenetic processes is Methyl CpG binding protein 2 (MeCP2. MeCP2 is an epigenetic regulator that modulates gene expression by translating epigenetic DNA methylation marks into appropriate cellular responses. In order to highlight the importance of epigenetics to development and disease, we will discuss how MeCP2 emerges as a key epigenetic player in human neurodevelopmental, neurological, and non-neurological disorders. We will review our current knowledge on MeCP2-related diseases, including Rett Syndrome, Angelman Syndrome, Fetal Alcohol Spectrum Disorder, Hirschsprung disease, and Cancer. Additionally, we will briefly discuss about the existing MeCP2 animal models that have been generated for a better understanding of how MeCP2 impacts certain human diseases.

  1. REVIEW ON IMPORTANT HELMINTHIC DISEASES IN ANIMAL IN INDONESIA

    Directory of Open Access Journals (Sweden)

    I.G. P. Suweta

    2012-09-01

    Full Text Available Helminthic diseases are widely spread throughout the world. In Indonesia, the cases in animals are primarily associated with the condition of the field, although the intensity of the infestations are also affected by various factors inside the body of the host. In general, the tropical and humid conditions in Indonesia, optimally support the development and spreading of the parasites, so that the prevalence of the infestations are usually high except in the very dry areas. In Indonesia, important helminthic diseases found in livestock are mostly caused by nematodes and trematodes, and there is a lack of information regarding cestode infestations, except infestation by immature stages of the worm such as cysticercosis in ruminants and swine. On the other hand, dogs and cats are usually infested by cestodes and nematodes. Here, the negative influence of helminthic infestation on live stock is mostiy shown by failure of growth, decrease of body weight and body resistance, damage of organs infested by the parasites, but it is not rare that the disease cause death of the infested animals such as haemonchiasis in sheep, ascariasis in young swine and calves, etc. The integrated system of farming combined with periodic anthelminthic treatments were favourable in the effort of controlling the disease.

  2. Foreign Body Infection Models to Study Host-Pathogen Response and Antimicrobial Tolerance of Bacterial Biofilm

    OpenAIRE

    Justyna Nowakowska; Regine Landmann; Nina Khanna

    2014-01-01

    The number of implanted medical devices is steadily increasing and has become an effective intervention improving life quality, but still carries the risk of infection. These infections are mainly caused by biofilm-forming staphylococci that are difficult to treat due to the decreased susceptibility to both antibiotics and host defense mechanisms. To understand the particular pathogenesis and treatment tolerance of implant-associated infection (IAI) animal models that closely resemble human d...

  3. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas;

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...... and 2003) of the chronic lung infection of one CF patient using the seaweed alginate embedment model. The results showed that the non-mucoid clones reduced their virulence over time, resulting in faster clearing of the bacteria from the lungs, improved pathology and reduced pulmonary production...

  4. Defective membrane remodeling in neuromuscular diseases: insights from animal models.

    Directory of Open Access Journals (Sweden)

    Belinda S Cowling

    Full Text Available Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1, and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1 a common molecular pathway underlying these different neuromuscular diseases, and (2 tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches.

  5. Animal genomics and infectious disease resistance in poultry.

    Science.gov (United States)

    Smith, J; Gheyas, A; Burt, D W

    2016-04-01

    Avian pathogens are responsible for major costs to society, both in terms of huge economic losses to the poultry industry and their implications for human health. The health and welfare of millions of birds is under continued threat from many infectious diseases, some of which are increasing in virulence and thus becoming harder to control, such as Marek's disease virus and avian influenza viruses. The current era in animal genomics has seen huge developments in both technologies and resources, which means that researchers have never been in a better position to investigate the genetics of disease resistance and determine the underlying genes/mutations which make birds susceptible or resistant to infection. Avian genomics has reached a point where the biological mechanisms of infectious diseases can be investigated and understood in poultry and other avian species. Knowledge of genes conferring disease resistance can be used in selective breeding programmes or to develop vaccines which help to control the effects of these pathogens, which have such a major impact on birds and humans alike. PMID:27217172

  6. Animal genomics and infectious disease resistance in poultry.

    Science.gov (United States)

    Smith, J; Gheyas, A; Burt, D W

    2016-04-01

    Avian pathogens are responsible for major costs to society, both in terms of huge economic losses to the poultry industry and their implications for human health. The health and welfare of millions of birds is under continued threat from many infectious diseases, some of which are increasing in virulence and thus becoming harder to control, such as Marek's disease virus and avian influenza viruses. The current era in animal genomics has seen huge developments in both technologies and resources, which means that researchers have never been in a better position to investigate the genetics of disease resistance and determine the underlying genes/mutations which make birds susceptible or resistant to infection. Avian genomics has reached a point where the biological mechanisms of infectious diseases can be investigated and understood in poultry and other avian species. Knowledge of genes conferring disease resistance can be used in selective breeding programmes or to develop vaccines which help to control the effects of these pathogens, which have such a major impact on birds and humans alike.

  7. Mobile technologies for disease surveillance in humans and animals

    Directory of Open Access Journals (Sweden)

    Mpoki Mwabukusi

    2014-04-01

    Full Text Available A paper-based disease reporting system has been associated with a number of challenges. These include difficulties to submit hard copies of the disease surveillance forms because of poor road infrastructure, weather conditions or challenging terrain, particularly in the developing countries. The system demands re-entry of the data at data processing and analysis points, thus making it prone to introduction of errors during this process. All these challenges contribute to delayed acquisition, processing and response to disease events occurring in remote hard to reach areas. Our study piloted the use of mobile phones in order to transmit near to real-time data from remote districts in Tanzania (Ngorongoro and Ngara, Burundi (Muyinga and Zambia (Kazungula and Sesheke. Two technologies namely, digital and short messaging services were used to capture and transmit disease event data in the animal and human health sectors in the study areas based on a server–client model. Smart phones running the Android operating system (minimum required version: Android 1.6, and which supported open source application, Epicollect, as well as the Open Data Kit application, were used in the study. These phones allowed collection of geo-tagged data, with the opportunity of including static and moving images related to disease events. The project supported routine disease surveillance systems in the ministries responsible for animal and human health in Burundi, Tanzania and Zambia, as well as data collection for researchers at the Sokoine University of Agriculture, Tanzania. During the project implementation period between 2011 and 2013, a total number of 1651 diseases event-related forms were submitted, which allowed reporters to include GPS coordinates and photographs related to the events captured. It was concluded that the new technology-based surveillance system is useful in providing near to real-time data, with potential for enhancing

  8. Dendritic Cells in Hepatitis B Virus Infection: Host-pathogen interaction and immune modulation

    NARCIS (Netherlands)

    M.L. Op den Brouw (Marjoleine)

    2010-01-01

    textabstractThe discovery of the Hepatitis B virus (HBV) is a typical example of the role of serendipity in scientific progress. In 1967, Dr. Blumberg investigated the link between inherited traits and susceptibility to diseases by taking blood samples from native populations all over the world. The

  9. Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs, but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models.

  10. Diagnosis and epidemiology of animal diseases in Latin America

    International Nuclear Information System (INIS)

    Support for scientists and their endeavours in developing countries by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is provided through FAO/IAEA Co-ordinated Research Projects (CRP) and IAEA Technical Co-operation Projects (TCPs). Using these mechanisms the Animal Production and Health Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agricultural aims to encourage and improve the capacity of national institutions in developing countries to identify and resolve problems connected with improving livestock productivity and health. In 1986, the Section introduced and animal health component into its Project. The initial support was for five years but in 1991 this was extended for a further three years and linked with the support available from the IAEA's Technical Co-operation Project through national and regional TCPs and ARCAL activities in Latin America dealing with diagnosis of animal diseases. Central to this overall project ws the use of ELISA for the diagnosis and control of livestock diseases. FAO/IAEA CRPs are developed around a well defined research topic on which between 15 and 20 national institutes collaborate - the topic itself being defined through consultation with national authorities in developing and developed countries and international agricultural research centers and organizations. The primary role of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture in such programmes is to ensure that the inputs and efforts under these programmes are co-ordinated and that the results are published. The studies being reported in this IAEA TECDOC were initiated in 1991 and whilst the focus was on three major disease affecting livestock in the region (foot-and-mouth disease (FMD), brucellosis and babesiosis) the approach taken by individual Research Control holders was different and thus in some cases research concentrated on assay validation whilst in other cases the focus was on the

  11. To Your Health: NLM update transcript - Preventing disease spillover from animals to humans

    Science.gov (United States)

    ... Health: NLM update Transcript Preventing disease spillover from animals to humans : 07/11/2016 To use the ... weekly topics. The prevention of disease transmission from animals to humans begins by careful surveillance of the ...

  12. Disease risk assessments involving companion animals: an overview for 15 selected pathogens taking a European perspective

    OpenAIRE

    Rijks, J. M.; Cito, F.; Cunningham, A. A.; Rantsios, A. T.; Givannini, A.

    2015-01-01

    Prioritization of companion animal transmissible diseases was performed by the Companion Animals multisectoriaL interprofessionaL Interdisciplinary Strategic Think tank On zoonoses (CALLISTO) project. The project considered diseases occurring in domesticated species commonly kept as pets, such as dogs and cats, but also included diseases occurring in captive wild animals and production animal species. The prioritization process led to the selection of 15 diseases of prime public health releva...

  13. Dendritic Cells in Hepatitis B Virus Infection: Host-pathogen interaction and immune modulation

    OpenAIRE

    Op den Brouw, Marjoleine

    2010-01-01

    textabstractThe discovery of the Hepatitis B virus (HBV) is a typical example of the role of serendipity in scientific progress. In 1967, Dr. Blumberg investigated the link between inherited traits and susceptibility to diseases by taking blood samples from native populations all over the world. These blood samples were tested for the presence of different serum proteins using antibodies derived from blood of haemophiliac patients. Dr. Blumberg reasoned that the immune system of these patient...

  14. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis.

    OpenAIRE

    Gerardo, Nicole M.; Jacobs, Sarah R.; Currie, Cameron R; Mueller, Ulrich G.

    2006-01-01

    Switching by parasites to novel hosts has profound effects on ecological and evolutionary disease dynamics. Switching requires that parasites are able to establish contact with novel hosts and to overcome host defenses. For most host–parasite associations, it is unclear as to what specific mechanisms prevent infection of novel hosts. Here, we show that parasitic fungal species in the genus Escovopsis, which attack and consume the fungi cultivated by fungus-growing ants, are attracted to their...

  15. Humans, Other Animals and Disease: a comparative approach towards the development of a standardised recording protocol for animal palaeopathology

    Directory of Open Access Journals (Sweden)

    Stephanie Vann

    2006-11-01

    Full Text Available In recent years the impact of animal disease on human societies has had an extremely high profile, with the spread of diseases such as Bovine Spongiform Encephalopathy (BSE and foot and mouth among animal populations, as well as the transmission of diseases such as Human Immunodeficiency Virus (HIV, Ebola and Severe Acute Respiratory Syndrome (SARS from animal to human populations. The social and economic impact of such illnesses has been profound. However, studies on the effect of animal disease in past human populations have been widely neglected. This is partly due to the inconsistent manner in which instances of animal disease (palaeopathology are recorded, diagnosed and interpreted which, together with the typically low incidence of specimens per site, has precluded detailed studies of regional or temporal trends. This article outlines the archaeological rationale behind developing a generic methodology to enable the consistent recognition, recording and description of animal palaeopathological data. Furthermore, the experience of palaeopathologists concerned with human populations has been drawn upon to develop a downloadable, stand-alone recording system to facilitate the recording of animal palaeopathological data and enable questions concerning past animal health and disease to be better explored in future.

  16. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis.

    Science.gov (United States)

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia's gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  17. Economic analysis of animal disease outbreaks--BSE and Bluetongue disease as examples.

    Science.gov (United States)

    Gethmann, Jörn; Probst, Carolina; Sauter-Louis, Carola; Conraths, Franz Josef

    2015-01-01

    Although there is a long tradition of research on animal disease control, economic evaluation of control measures is rather limited in veterinary medicine. This may, on the one hand, be due to the different types of costs and refunds and the different people and organizations bearing them, such as animal holders, county, region, state or European Union, but it may also be due to the fact that economic analyses are both complex and time consuming. Only recently attention has turned towards economic analysis in animal disease control. Examples include situations, when decisions between different control measures must be taken, especially if alternatives to culling or compulsory vaccination are under discussion. To determine an optimal combination of control measures (strategy), a cost-benefit analysis should be performed. It is not necessary to take decisions only based on the financial impact, but it becomes possible to take economic aspects into account. To this end, the costs caused by the animal disease and the adopted control measures must be assessed. This article presents a brief overview of the methodological approaches used to retrospectively analyse the economic impact of two particular relevant diseases in Germany in the last few years: Blue-tongue disease (BT) and Bovine Spongiform Encephalopathy (BSE).

  18. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.

    Science.gov (United States)

    Crosby, H A; Kwiecinski, J; Horswill, A R

    2016-01-01

    The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion. PMID:27565579

  19. Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis

    Directory of Open Access Journals (Sweden)

    Gerardo Nicole M

    2006-11-01

    Full Text Available Abstract Background The fungus-growing ant-microbe symbiosis consists of coevolving microbial mutualists and pathogens. The diverse fungal lineages that these ants cultivate are attacked by parasitic microfungi of the genus Escovopsis. Previous molecular analyses have demonstrated strong phylogenetic congruence between the ants, the ants-cultivated fungi and the garden pathogen Escovopsis at ancient phylogenetic levels, suggesting coevolution of these symbionts. However, few studies have explored cophylogenetic patterns between these symbionts at the recent phylogenetic levels necessary to address whether these parasites are occasionally switching to novel hosts or whether they are diversifying with their hosts as a consequence of long-term host fidelity. Results Here, a more extensive phylogenetic analysis of Escovopsis lineages infecting the gardens of Apterostigma ants demonstrates that these pathogens display patterns of phylogenetic congruence with their fungal hosts. Particular clades of Escovopsis track particular clades of cultivated fungi, and closely-related Escovopsis generally infect closely-related hosts. Discordance between host and parasite phylogenies, however, provides the first evidence for occasional host-switches or acquisitions of novel infections from the environment. Conclusion The fungus-growing ant-microbe association has a complex coevolutionary history. Though there is clear evidence of host-specificity on the part of diverse Escovopsis lineages, these pathogens have switched occasionally to novel host fungi. Such switching is likely to have profound effects on how these host and parasites adapt to one another over evolutionary time scales and may impact how disease spreads over ecological time scales.

  20. Development of bioassay for pathogenecity testing of Ureaplasma urealyticum as part of host-pathogen communication

    Directory of Open Access Journals (Sweden)

    Purnomo Soeharso

    2005-12-01

    Full Text Available Bioassay of Ureaplasma urealyticum is necessary for detection as well as determination of pathogenic factors in order to understand the pathogenesis of diseases associate with ureaplasma infection. Cultivation and verification of ureaplasma is the first step of this study in the purpose of discovering sensitive method for ureaplasma detection. Cultivation of ureaplasma either in liquid or in solid media are able to detect the existence of ureaplasma in samples analyzed. However, application of PCR using specific primers to be compatible with urease gene (ure would confirm the presence of ureaplasma. The pathogenicity of ureaplasma is potentially monitored using reporter gene as a marker for gene expression. IceC was chosen as reporter gene for ureaplasma pathogenic determination as the gene has great sensitivity, easily detectable and quantitated in simple method of ice nucleation assay. Transposon 916 (Tn916 was selected as a vector for iceC gene to transform ureaplasma. The application of recombinant Tn916-iceC which is considered as pUI, allow detection of ureaplasma activities when transform ureaplasma is tested by ice nucleation assay. It was expected that ureaplasma transformation is the manifestation of mutagenesis which interfere genes responsible for bacterial pathogenicity, in order pathogenesis of bacterial infection to be analyzed accurately. IgA1 protease is considered to be an important factor for ureaplasma pathogenicity as the enzyme is required for successful colonization. Identification of iga gene and  determination of IgA1 protease activity are important for understanding the pathogenesis of ureaplasma infection. Putative iga gene of Mycoplasma genitalium was used as a reference to identify the presence of iga nucleotide sequence in U. urealyticum. Convincing evidence were obtained after PCR amplification of ureaplasma DNA using primers designed to be compatible with putative iga gene of M. genitalium followed by the

  1. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Franziska Mech

    Full Text Available Aspergillus fumigatus is a ubiquitous airborne fungus and opportunistic human pathogen. In immunocompromised hosts, the fungus can cause life-threatening diseases like invasive pulmonary aspergillosis. Since the incidence of fungal systemic infections drastically increased over the last years, it is a major goal to investigate the pathobiology of A. fumigatus and in particular the interactions of A. fumigatus conidia with immune cells. Many of these studies include the activity of immune effector cells, in particular of macrophages, when they are confronted with conidia of A. fumigus wild-type and mutant strains. Here, we report the development of an automated analysis of confocal laser scanning microscopy images from macrophages coincubated with different A. fumigatus strains. At present, microscopy images are often analysed manually, including cell counting and determination of interrelations between cells, which is very time consuming and error-prone. Automation of this process overcomes these disadvantages and standardises the analysis, which is a prerequisite for further systems biological studies including mathematical modeling of the infection process. For this purpose, the cells in our experimental setup were differentially stained and monitored by confocal laser scanning microscopy. To perform the image analysis in an automatic fashion, we developed a ruleset that is generally applicable to phagocytosis assays and in the present case was processed by the software Definiens Developer XD. As a result of a complete image analysis we obtained features such as size, shape, number of cells and cell-cell contacts. The analysis reported here, reveals that different mutants of A. fumigatus have a major influence on the ability of macrophages to adhere and to phagocytose the respective conidia. In particular, we observe that the phagocytosis ratio and the aggregation behaviour of pksP mutant compared to wild-type conidia are both significantly

  2. 9 CFR 80.4 - Segregation of animals positive to an official Johne's disease test during interstate movement.

    Science.gov (United States)

    2010-01-01

    ... official Johne's disease test during interstate movement. 80.4 Section 80.4 Animals and Animal Products... animals positive to an official Johne's disease test during interstate movement. Animals that are positive... from the animals positive to an official Johne's disease test to the healthy animals in the vehicle....

  3. 9 CFR 80.3 - Movement of domestic animals that are positive to an official Johne's disease test.

    Science.gov (United States)

    2010-01-01

    ... positive to an official Johne's disease test. 80.3 Section 80.3 Animals and Animal Products ANIMAL AND... animals that are positive to an official Johne's disease test. (a) Movement of domestic animals for slaughter. Domestic animals that are positive to an official Johne's disease test may be moved...

  4. ANIMAL MODELS FOR HUNTINGTON’S DISEASES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Sharma Manisha

    2012-10-01

    Full Text Available Huntington's disease (HD is an inherited autosomal, progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea, cognitive impairments and psychiatric disturbances. HD is caused by an abnormal expansion of a CAG region located in exon 1 of the gene encoding the huntingtin protein (Htt and is the causative factor in the pathogenesis of HD Animal models of HD have provided insight into disease pathology and the outcomes of thera- peutic strategies. Earlier studies of HD most often used toxin-induced models to study mitochondrial impairment and excitotoxicity-induced cell death, which are both mechanisms of degeneration seen in the HD brain. These models, based on 3-nitropropionic acid and quinolinic acid, respectively, are still often used in HD studies. The discovery in 1993 of the huntingtin mutation led to the creation of newer models that incorporate a similar genetic defect. These models, which include transgenic and knock-in rodents, are more representative of the HD progression and pathology. An even more recent model that uses a ovine transgenic model (sheep model,fly models ,cell cultures models for better understanding of gene mutation in and in mammalian and nonhuman primates, as it is difficult to produce genetic models in these species. This article examines the aforementioned models and describes their use in HD research, including aspects of the creation, de- livery, pathology, and tested therapies for each model.

  5. Identification of powdery mildew resistance genes in Polish common oat (Avena sativa L. cultivars using host-pathogen tests

    Directory of Open Access Journals (Sweden)

    Sylwia Okoń

    2012-10-01

    Full Text Available The aim of the present study was to characterize and identify powdery mildew resistance genes in Polish common oat cultivars using host-pathogen tests. A differential set of six Blumeria graminis f.sp. avenae isolates virulent or avirulent to four cultivars and one line that has known resistance to powdery mildew were used. Among the investigated cultivars, only four of them (13.3% had resistance patterns similar to genotypes belonging to the differential set. The resistance of OMR group 1 was found in the cultivar ‘Dragon’, while that of OMR2 in the cultivar ‘Skrzat’. The cultivars ‘Deresz’ and ‘Hetman’ showed a resistance pattern that corresponded with OMR group 3. The resistance corresponding to OMR4 was not found, which suggests that until now this gene has not been used in Polish oat breeding programmes. The cultivar ‘Canyon’ had a different pat- tern of resistance than the genotypes that have already known OMR genes, which indicates that the resistance of this cultivar is determined by a new gene or a combination of known genes.

  6. Genome-Wide Host-Pathogen Interaction Unveiled by Transcriptomic Response of Diamondback Moth to Fungal Infection.

    Directory of Open Access Journals (Sweden)

    Zhen-Jian Chu

    Full Text Available Genome-wide insight into insect pest response to the infection of Beauveria bassiana (fungal insect pathogen is critical for genetic improvement of fungal insecticides but has been poorly explored. We constructed three pairs of transcriptomes of Plutella xylostella larvae at 24, 36 and 48 hours post treatment of infection (hptI and of control (hptC for insight into the host-pathogen interaction at genomic level. There were 2143, 3200 and 2967 host genes differentially expressed at 24, 36 and 48 hptI/hptC respectively. These infection-responsive genes (~15% of the host genome were enriched in various immune processes, such as complement and coagulation cascades, protein digestion and absorption, and drug metabolism-cytochrome P450. Fungal penetration into cuticle and host defense reaction began at 24 hptI, followed by most intensive host immune response at 36 hptI and attenuated immunity at 48 hptI. Contrastingly, 44% of fungal genes were differentially expressed in the infection course and enriched in several biological processes, such as antioxidant activity, peroxidase activity and proteolysis. There were 1636 fungal genes co-expressed during 24-48 hptI, including 116 encoding putative secretion proteins. Our results provide novel insights into the insect-pathogen interaction and help to probe molecular mechanisms involved in the fungal infection to the global pest.

  7. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.

    Science.gov (United States)

    Liese, Jan; Rooijakkers, Suzan H M; van Strijp, Jos A G; Novick, Richard P; Dustin, Michael L

    2013-06-01

    Staphylococcus (S.) aureus is a frequent cause of severe skin infections. The ability to control the infection is largely dependent on the rapid recruitment of neutrophils (PMN). To gain more insight into the dynamics of PMN migration and host-pathogen interactions in vivo, we used intravital two-photon (2-P) microscopy to visualize S. aureus skin infections in the mouse. Reporter S. aureus strains expressing fluorescent proteins were developed, which allowed for detection of the bacteria in vivo. By employing LysM-EGFP mice to visualize PMN, we observed the rapid appearance of PMN in the extravascular space of the dermis and their directed movement towards the focus of infection, which led to the delineation of an abscess within 1 day. Moreover, tracking of transferred labelled bone-marrow neutrophils showed that PMN localization to the site of infection is dependent on the presence of G-protein-coupled receptors on the PMN, whereas Interleukin-1 receptor was required on host cells other than PMN. Furthermore, the S. aureus complement inhibitor Ecb could block PMN accumulation at thesite of infection. Our results establish that 2-P microscopy is a powerful tool to investigate the orchestration of the immune cells, S. aureus location and gene expression in vivo on a single cell level.

  8. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions.

    Science.gov (United States)

    Mavromatis, Charalampos Harris; Bokil, Nilesh J; Totsika, Makrina; Kakkanat, Asha; Schaale, Kolja; Cannistraci, Carlo V; Ryu, Taewoo; Beatson, Scott A; Ulett, Glen C; Schembri, Mark A; Sweet, Matthew J; Ravasi, Timothy

    2015-05-01

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host-pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  9. Cattle trade and the risk of importing animal diseases into the Netherlands

    NARCIS (Netherlands)

    Achterbosch, T.J.; Dopfer, D.D.V.

    2005-01-01

    This study examines the risk of importing animal diseases into the Netherlands through livestock trade. It presents projections of Dutch cattle imports until 2010, and applies quantitative epidemiology to estimate the related probabilities of importing three animal diseases (foot and mouth disease,

  10. Mass spectrometric analysis reveals remnants of host-pathogen molecular interactions at the starch granule surface in wheat endosperm.

    Science.gov (United States)

    Wall, Michael L; Wheeler, Heather L; Smith, Jeffrey; Figeys, Daniel; Altosaar, Illimar

    2010-09-01

    The starch granules of wheat seed are solar energy-driven deposits of fixed carbon and, as such, present themselves as targets of pathogen attack. The seed's array of antimicrobial proteins, peptides, and small molecules comprises a molecular defense against penetrating pathogens. In turn, pathogens exhibit an arsenal of enzymes to facilitate the degradation of the host's endosperm. In this context, the starch granule surface is a relatively unexplored domain in which unique molecular barriers may be deployed to defend against and inhibit the late stages of infection. Therefore, it was compelling to explore the starch granule surface in mature wheat seed, which revealed evidence of host-pathogen molecular interactions that may have occurred during grain development. In this study, starch granules from the soft wheat Triticum aestivum cv. AC Andrew and hard wheat T. turgidum durum were isolated and water washed 20 times, and their surface proteins were digested in situ with trypsin. The peptides liberated into the supernatant and the peptides remaining at the starch granule surface were separately examined. In this way, we demonstrated that the identified proteins have a strong affinity for the starch granule surface. Proteins with known antimicrobial activity were identified, as well as several proteins from the plant pathogens Agrobacterium tumefaciens, Pectobacterium carotovorum, Fusarium graminearum, Magnaporthe grisea, Xanthomonas axonopodis, and X. oryzae. Although most of these peptides corresponded to uncharacterized hypothetical proteins of fungal pathogens, several peptide fragments were identical to cytosolic and membrane proteins of specific microbial pathogens. During development and maturation, wheat seed appeared to have resisted infection and lysed the pathogens where, upon desiccation, the molecular evidence remained fixed at the starch granule surface. PMID:20701481

  11. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease

    OpenAIRE

    Pinnapureddy, Ashish R.; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-01-01

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiol...

  12. A cross-species analysis method to analyze animal models' similarity to human's disease state

    OpenAIRE

    Yu Shuhao; Zheng Lulu; Li Yun; Li Chunyan; Ma Chenchen; Li Yixue; Li Xuan; Hao Pei

    2012-01-01

    Abstract Background Animal models are indispensable tools in studying the cause of human diseases and searching for the treatments. The scientific value of an animal model depends on the accurate mimicry of human diseases. The primary goal of the current study was to develop a cross-species method by using the animal models' expression data to evaluate the similarity to human diseases' and assess drug molecules' efficiency in drug research. Therefore, we hoped to reveal that it is feasible an...

  13. The role of the OIE in information exchange and the control of animal diseases, including zoonoses.

    Science.gov (United States)

    Poissonnier, C; Teissier, M

    2013-08-01

    The growing importance of animal diseases and zoonoses at a time when globalisation has increased movements of people, animals and animal products across the globe, has strengthened the role of the World Organisation for Animal Health (OIE) in animal disease control. The OIE's mandate since its establishment in 1924 has been to facilitate the exchange of public health, animal health and scientific information, and to further the control and eradication of animal diseases. The OIE is recognised by the World Trade Organization Agreement on the Application of Sanitary and Phytosanitary Measures as the international reference organisation for animal diseases and zoonoses, especially for standard setting. The standards adopted by the World Assembly of OIE Delegates on veterinary public health and animal health feature in the OlE Terrestrial Animal Health Code, the Aquatic Animal Health Code, the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals and the Manual of Diagnostic Tests for Aquatic Animals. The OlE is also a reference organisation for the exchange of public and animal health information among Member Countries, through an information, reporting and warning system based on transparent communication between countries. The OIE provides scientific expertise in ascertaining countries' status with regard to notifiable diseases, enabling them to secure official recognition as being free from foot and mouth disease, African horse sickness, contagious bovine pleuropneumonia and bovine spongiform encephalopathy. The OIE also contributes its scientific expertise to stakeholder training on the surveillance and control of animal diseases and zoonoses and to the evaluation of the performance of Veterinary Services, to enhance theirwork asthe cornerstone of their countries' disease control efforts. PMID:24547648

  14. The role of the OIE in information exchange and the control of animal diseases, including zoonoses.

    Science.gov (United States)

    Poissonnier, C; Teissier, M

    2013-08-01

    The growing importance of animal diseases and zoonoses at a time when globalisation has increased movements of people, animals and animal products across the globe, has strengthened the role of the World Organisation for Animal Health (OIE) in animal disease control. The OIE's mandate since its establishment in 1924 has been to facilitate the exchange of public health, animal health and scientific information, and to further the control and eradication of animal diseases. The OIE is recognised by the World Trade Organization Agreement on the Application of Sanitary and Phytosanitary Measures as the international reference organisation for animal diseases and zoonoses, especially for standard setting. The standards adopted by the World Assembly of OIE Delegates on veterinary public health and animal health feature in the OlE Terrestrial Animal Health Code, the Aquatic Animal Health Code, the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals and the Manual of Diagnostic Tests for Aquatic Animals. The OlE is also a reference organisation for the exchange of public and animal health information among Member Countries, through an information, reporting and warning system based on transparent communication between countries. The OIE provides scientific expertise in ascertaining countries' status with regard to notifiable diseases, enabling them to secure official recognition as being free from foot and mouth disease, African horse sickness, contagious bovine pleuropneumonia and bovine spongiform encephalopathy. The OIE also contributes its scientific expertise to stakeholder training on the surveillance and control of animal diseases and zoonoses and to the evaluation of the performance of Veterinary Services, to enhance theirwork asthe cornerstone of their countries' disease control efforts.

  15. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions. PMID:25699030

  16. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Yamilé eLópez Hernández

    2015-02-01

    Full Text Available Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as a valuate tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio, and non-vertebrate insects and nematodes (e.g. Caenorhabditis elegans in the study of diverse infectious agents that affect humans. Here we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favour of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  17. A knowledge based approach to matching human neurodegenerative disease and animal models

    OpenAIRE

    Martone, Maryann E.; Mungall, Christopher J.

    2013-01-01

    Neurodegenerative diseases present a wide and complex range of biological and clinical features. Animal models are key to translational research, yet typically only exhibit a subset of disease features rather than being precise replicas of the disease. Consequently, connecting animal to human conditions using direct data-mining strategies has proven challenging, particularly for diseases of the nervous system, with its complicated anatomy and physiology. To address this challenge we have expl...

  18. The present status of infectious diseases of laboratory animals in Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Abdul; Awal

    2005-01-01

    The commonlaboratory animals in Bangladesh are rabbit,guinea pig,rat&mice.Commoninfectious diseases of rabbitare pasteurellosis,infectious myxomatosis,pneumonia,tyzzer’s disease,nasal catarrh,Conjunctivitis(weepy eye)&abscess formation.Amongthem,laterthree diseases are most commonin most of the animal housesin Bangladesh.Ente-rotoxaemia,primarilya diarrhoeal disease of rabbit caused by Clostridiumspiroformoccurs during4-8weeks of age show-ing clinical signslikelassitude,rough hair coat,perianal regioncovere...

  19. Animal Models of Helicobacter-Induced Disease: Methods to Successfully Infect the Mouse [chapter

    OpenAIRE

    James G Fox

    2012-01-01

    Animal models of microbial diseases in humans are an essential component for determining fulfillment of Koch’s postulates and determining how the organism causes disease, host response(s), disease prevention, and treatment. In the case of Helicobacter pylori, establishing an animal model to fulfill Koch’s postulates initially proved so challenging that out of frustration a human volunteer undertook an experiment to become infected with H. pylori and to monitor disease progression in order to ...

  20. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  1. A Genomic Approach to Unravel Host-Pathogen Interaction in Chelonians: The Example of Testudinid Herpesvirus 3.

    Directory of Open Access Journals (Sweden)

    Francesco C Origgi

    novel information is not only fundamental for the genetic characterization of this virus but is also critical to lay the groundwork for an improved understanding of host-pathogen interactions in chelonians and contribute to tortoise conservation.

  2. Regional network for Latin America on animal disease diagnosis using immunoassay and labelled DNA probe techniques

    International Nuclear Information System (INIS)

    After an introduction describing the co-ordinated research program the proceedings contain the contributions presented at the final Research Co-ordination Meeting. The papers are in four sections: general aspects of immunoassays in animal disease diagnosis; viral and chlamydial diseases; bacterial diseases; and parasitic diseases. The individual contributions have been indexed separately for inclusion in INIS. Refs, figs and tabs

  3. WAHIS-Wild and its interface: the OIE worldwide monitoring system for wild animal diseases.

    Science.gov (United States)

    Jebara, Karim Ben

    2016-06-30

    Wild animal diseases are a global growing concern, given the threat that they pose to animal health and their zoonotic potential. The World Organisation for Animal Health (OIE) was among the first organisations to recognise the importance of having a comprehensive knowledge of the disease situation in wild animals, collecting information on wildlife diseases worldwide since 1993, when for the first time an annual questionnaire was distribute by OIE to members Countries in order to collect qualitative and quantitative data on selected diseases in wild animals. Starting with 2008 until 2012 an updated version of questionnaire was circulated to allow for identifying wildlife species by their Latin name and by their common names in the 3 OIE official languages (English, French, and Spanish). This specific functionality was then implemented in the World Animal Health Information System (WAHIS) in 2012, when this information was made available to the public through WAHIS-Wild Interface. PMID:27393871

  4. Ovarian autoimmune disease: clinical concepts and animal models

    OpenAIRE

    Warren, Bryce D; Kinsey, William K; McGinnis, Lynda K; Christenson, Lane K.; Jasti, Susmita; Stevens, Anne M.; Petroff, Brian K.; Petroff, Margaret G.

    2014-01-01

    The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in associ...

  5. Economics of Homeland Security: Carcass Disposal and the Design of Animal Disease Defense

    OpenAIRE

    Jin, Yanhong H.; Haung, Wei; McCarl, Bruce A

    2005-01-01

    In an effort to bolster confidence and protect the nation the U.S. government through agencies like the Department of Homeland Security is identifying vulnerabilities and evolving strategies for protection. Agricultural food supply is one identified vulnerable area, and animal disease defense is one of the major concerns there under. Should an outbreak of animal disease occur, it is likely to have a mass slaughter and disposal of animal carcasses. The current existing policy, mainly including...

  6. Listeria Monocytogenes as Contaminant of Food Derived from Animal (Foodborne Disease)

    OpenAIRE

    Tati Ariyanti

    2010-01-01

    Listeria monocytogenes often contaminates food derived from animal and serves as pathogenic bacteria for animals and human. The outbreaks were related with the consumption of food derived from animals such as meat, milk, egg, seafood and its product that poorly cooked. Human listeriosis could be transmitted by direct contact with infected animal. The disease often is asymtomatic and widely distributes in the world. The mortality rate reaches to 30%. The bacteria is important because of the w...

  7. Animals

    Energy Technology Data Exchange (ETDEWEB)

    Skuterud, L.; Strand, P. [Norwegian Radiation Protection Authority (Norway); Howard, B.J. [Inst. of Terrestrial Ecology (United Kingdom)

    1997-10-01

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG). 68 refs.

  8. Symposium on Housing and Diseases of Rabbits, furbearing animals and pet animals

    NARCIS (Netherlands)

    Rommers, J.M.; Jong, de I.C.; Greef, de K.H.

    2015-01-01

    Within the Welfare Quality® project protocols have been developed to assess animal welfare on-farm in an objective, science based and practically applicable way. For various species like broilers and laying hens, sows and growing pigs, dairy cattle and veal calves, welfare assessment protocols have

  9. IMPORTANT PROTOZOAN DISEASES OF ANIMALS IN INDONESIA (A REVIEW

    Directory of Open Access Journals (Sweden)

    Soeprapto Soekardono

    2012-09-01

    Full Text Available An account on important protozoan diseases mostiy with obvious clinical symptoms are emphasized and their current status reviewed. Those diseases are surra, trichomonosis in catde, babesiosis, anaplasmosis, theileriosis, leucocyto-zoonosis in chicken, and coccidiosis. Toxoplasmosis, histomonosis, chicken malaria, balantidiosis and diseases caused by Giardia, Haemoproteus and Sarcocystis are not reviewed because significant problems caused by these parasites considered important economically do not appear in Indonesia.

  10. Mechanisms underlying disease transmission between spatially separated animals

    NARCIS (Netherlands)

    Bunnik, van B.A.D.

    2014-01-01

      Transmission of infections between spatially separated hosts is a common problem, not only during major outbreaks of livestock diseases, but also in many other settings such as the transmission of infectious diseases between plants and crops or in healthcare settings. During the last major e

  11. Coffee and Alzheimer’s disease - animal & cellular evidences

    Science.gov (United States)

    Increases in lifespan in modern times have put significant social and academic emphasis on age-related pathologies. Of the many chronic, non-acquired diseases, dementias are among the most fiscally and psychologically burdensome to society. Alzheimer’s disease (AD) is the most prevalent and well kno...

  12. Waterborne Exophiala species causing disease in cold-blooded animals

    NARCIS (Netherlands)

    de Hoog, G.S.; Vicente, V.A.; Najafzadeh, M.J.; Harrak, M.J.; Badali, H.; Seyedmousavi, S.

    2012-01-01

    The majority of mesophilic waterborne species of the black yeast genus Exophiala (Chaetothyriales) belong to a single clade judging from SSU rDNA data. Most taxa are also found to cause cutaneous or disseminated infections in cold-blooded, water animals, occasionally reaching epidemic proportions. H

  13. Waterborne Exophiala species causing disease in cold-blooded animals

    NARCIS (Netherlands)

    G.S. de Hoog; V.A. Vicente; M.J. Najafzadeh; M.J. Harrak; H. Badali; S. Seyedmousavi

    2011-01-01

    The majority of mesophilic waterborne species of the black yeast genus Exophiala (Chaetothyriales) belong to a single clade judging from SSU rDNA data. Most taxa are also found to cause cutaneous or disseminated infections in cold-blooded, water animals, occasionally reaching epidemic proportions. H

  14. Current insights into animal models of Graves' disease and orbitopathy.

    Science.gov (United States)

    Wiesweg, B; Johnson, K T M; Eckstein, A K; Berchner-Pfannschmidt, U

    2013-08-01

    Graves' disease (GD) is a systemic autoimmune disease that is characterized by hyperthyroidism, orbitopathy and in rare cases dermopathy. Graves' orbitopathy (GO) is an inflammatory disease of eye and orbit which occurs in about 30-60% of patients. Hyperthyroidism occurs due to the presence of stimulating TSHR-autoantibodies (TRAbs) leading to increased serum levels of thyroid hormones. Attempts to induce Graves' disease in mice by immunization against the hTSHR or its variants have resulted in production of TRAbs that stimulate thyroid follicular cells to increase thyroid hormone secretion. Graves' like orbital changes, such as inflammation, adipogenesis and muscle fibrosis are more difficult to induce. In this review we summarize different methods used to induce murine Graves'-like disease and their impact on murine orbits.

  15. 9 CFR 71.14 - Slaughter of poultry or other animals to prevent spread of disease; ascertainment of value and...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Slaughter of poultry or other animals... TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS § 71.14 Slaughter of poultry... to slaughter any diseased or exposed animals, including poultry, and the purchase of such...

  16. The Impact of Mad Cow Disease in Quebec: What to Do with Animal Carcasses?

    OpenAIRE

    Bergeron, Nancy; Gagnon, Marie-France

    2006-01-01

    In recent years, after the bovine spongiform encephalopathy (BSE, or mad cow disease) crisis in Europe, and after the first case of BSE was found in Alberta, both regulation and producers’ initiatives have lead to an ever smaller demand for meat meal and animal fat used in animal feed. Meat meal and animal fat were produced in great part from the rendering of carcasses, i.e., animals that died on the farm due to disease or accident. In Quebec, agricultural producers used to sell the carcasses...

  17. Pathogen evolution across the agro-ecological interface: implications for disease management.

    Science.gov (United States)

    Burdon, Jeremy J; Thrall, Peter H

    2008-02-01

    Infectious disease is a major causal factor in the demography of human, plant and animal populations. While it is generally accepted in medical, veterinary and agricultural contexts that variation in host resistance and pathogen virulence and aggressiveness is of central importance to understanding patterns of infection, there has been remarkably little effort to directly investigate causal links between population genetic structure and disease dynamics, and even less work on factors influencing host-pathogen coevolution. The lack of empirical evidence is particularly surprising, given the potential for such variation to not only affect disease dynamics and prevalence, but also when or where new diseases or pathotypes emerge. Increasingly, this lack of knowledge has led to calls for an integrated approach to disease management, incorporating both ecological and evolutionary processes. Here, we argue that plant pathogens occurring in agro-ecosystems represent one clear example where the application of evolutionary principles to disease management would be of great benefit, as well as providing model systems for advancing our ability to generalize about the long-term coevolutionary dynamics of host-pathogen systems. We suggest that this is particularly the case given that agro-ecological host-pathogen interactions represent a diversity of situations ranging from those that only involve agricultural crops through to those that also include weedy crop relatives or even unrelated native plant communities. We begin by examining some of the criteria that are important in determining involvement in agricultural pathogen evolution by noncrop plants. Throughout we use empirical examples to illustrate the fact that different processes may dominate in different systems, and suggest that consideration of life history and spatial structure are central to understanding dynamics and direction of the interaction. We then discuss the implications that such interactions have for

  18. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals

    OpenAIRE

    Sahashi, Kentaro; Hua, Yimin; Ling, Karen K Y; Hung, Gene; Rigo, Frank; Horev, Guy; Katsuno, Masahisa; Sobue, Gen; Ko, Chien-Ping; Bennett, C. Frank; Krainer, Adrian R.

    2012-01-01

    This study presents an antisense oligonucleotide methodology to phenocopy a disease—in this case, the motor neuron disease spinal muscular atrophy in mice. Sahashi et al. show that it is possible to fine-tune disease severity through dose-dependent effects on RNA splicing, making this a novel animal model for monitoring disease onset and progression as well as testing candidate therapeutics.

  19. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  20. Prioritization of Companion Animal Transmissible Diseases for Policy Intervention in Europe

    DEFF Research Database (Denmark)

    Cito, F.; Rijks, J.; Rantsios, A.T.;

    2016-01-01

    for each disease covered by the questionnaire was analysed to obtain two final overall scores, one for human health impact and one for agricultural economic impact. The adapted method was then applied to select the 15 most important pathogens (five for each pathogen group: viral, bacterial and parasitic......, animal species involved and impact of the diseases, the list of prioritized diseases had to accommodate the realities in different European countries and the differences in biology and animal-human relationships in a wide range of species including cats and dogs, pet pigs and sheep as well as captive...... on methods described by the World Organisation for Animal Health (OIE). Modifications were applied to allow for the paucity of specific information on companion animal transmissible diseases. The OIE method was also adapted to the subject and to the regional scope of the interprofessional network addressing...

  1. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    OpenAIRE

    McLarnon, James G

    2014-01-01

    Animal models of Alzheimer's disease (AD) which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid- β (A β ) into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ 1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furtherm...

  2. Inherited metabolic disease in companion animals: Searching for nature’s mistakes

    OpenAIRE

    Sewell, Adrian C; Haskins, Mark E; Giger, Urs

    2006-01-01

    Inborn errors of metabolism are caused by genetic defects in intermediary metabolic pathways. Although long considered to be the domain of human paediatric medicine, they are also recognised with increasing frequency in companion animals. The diagnosis of diseased animals can be achieved by searching for abnormal metabolites in body fluids, although such screening programmes have, until now, not been widely available to the small animal clinician. A comprehensive battery of analytical tools e...

  3. Toxin-Induced and Genetic Animal Models of Parkinson's Disease

    OpenAIRE

    Shun Shimohama; Shin Hisahara

    2010-01-01

    Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these tox...

  4. Taking the Lab into the Field. Nuclear Applications Rapidly Diagnose Animal Disease

    International Nuclear Information System (INIS)

    Livestock supports the livelihoods and food security of almost a billion people worldwide. As populations increase, countries not only need to increase livestock production, but also need more efficient tools for the prevention, diagnosis and control of animal diseases. Nuclear and nuclear-related technologies have an essential role to play in maintaining animal health and protecting vulnerable communities.

  5. ANIMAL PATHOGENS THAT MAY CAUSE HUMAN DISEASE THAT ORIGINATE FROM FARM OPERATIONS

    Science.gov (United States)

    The recent increase in concentrated animal feeding operations in the United States has caused renewed concern regarding the infectious diseases that may be passed from farm animals to humans via the environment. It is also known that more than 20 recent epidemics among humans cou...

  6. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    OpenAIRE

    Duffield, Jeremy S.; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-...

  7. How To Become a Top Model: Impact of Animal Experimentation on Human Salmonella Disease Research ▿

    OpenAIRE

    Tsolis, Renée M.; Xavier, Mariana N.; Santos, Renato L; Bäumler, Andreas J.

    2011-01-01

    Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sus...

  8. Host behaviour–parasite feedback: an essential link between animal behaviour and disease ecology

    OpenAIRE

    Ezenwa, Vanessa O.; Archie, Elizabeth A; Craft, Meggan E.; Hawley, Dana M.; Martin, Lynn B.; Moore, Janice; White, Lauren

    2016-01-01

    Animal behaviour and the ecology and evolution of parasites are inextricably linked. For this reason, animal behaviourists and disease ecologists have been interested in the intersection of their respective fields for decades. Despite this interest, most research at the behaviour–disease interface focuses either on how host behaviour affects parasites or how parasites affect behaviour, with little overlap between the two. Yet, the majority of interactions between hosts and parasites are proba...

  9. Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies

    OpenAIRE

    Shineman, Diana W; Basi, Guriqbal S.; Bizon, Jennifer L.; Colton, Carol A.; Greenberg, Barry D.; Hollister, Beth A; Lincecum, John; Leblanc, Gabrielle G.; Lee, Linda H; Luo, Feng; Morgan, Dave; Morse, Iva; Refolo, Lorenzo M; Riddell, David R; Scearce-Levie, Kimberly

    2011-01-01

    Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical...

  10. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  11. A SPATIAL MODEL OF ANIMAL DISEASE CONTROL IN LIVESTOCK: EMPIRICAL ANALYSIS OF FOOT AND MOUTH DISEASE IN THE SOUTHERN CONE

    OpenAIRE

    Rich, Karl M.; Winter-Nelson, Alex

    2004-01-01

    This paper presents a multi-market model of animal disease control that extends the current literature by accounting for spatial and inter-temporal relations in both epidemiological and economic variables. The model is applied to Foot and Mouth Disease control in Argentina, Uruguay and Paraguay, but it is broadly generalizable.

  12. Influence of Species Differences on the Neuropathology of Transgenic Huntington's Disease Animal Models

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jiang Li; Shihua Li

    2012-01-01

    Transgenic animal models have revealed much about the pathogenesis of age-dependent neurodegenerative diseases and proved to be a useful tool for uncovering therapeutic targets.Huntington's disease is a well-characterized neurodegenerative disorder that is caused by expansion of a CAG repeat,which results in expansion of a polyglutamine tract in the N-terminal region of huntingtin (HTT).Similar CAG/glutamine expansions are also found to cause eight other neurodegenerative diseases that affect distinct brain regions in an agedependent manner.Identification of this CAG/glutamine expansion has led to the generation of a variety of transgenic animal models.Of these different animal models,transgenic mice have been investigated extensively,and they show similar neuropathology and phenotypes as seen in their respective diseases.The common pathological hallmark of age-dependent neurodegeneration is the formation of aggregates or inclusions consisting of misfolded proteins in the affected brain regions; however,overt or striking neurodegeneration and apoptosis have not been reported in most transgenic mouse models for age-dependent diseases,including HD.By comparing the neuropathology of transgenic HD mouse,pig,and monkey models,we found that mutant HTT is more toxic to larger animals than mice,and larger animals also show neuropathology that has not been uncovered by transgenic mouse models.This review will discuss the importancc of transgenic large animal models for analyzing the pathogenesis of neurodegenerative diseases and developing effective treatments.

  13. PARKINSON’S DISEASE: ANIMAL MODELS AND DOPAMINERGIC CELL VULNERABILITY

    OpenAIRE

    Javier Blesa

    2014-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder that affects about 1.5% of the global population over 65 years of age. A hallmark feature of PD is the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the consequent striatal DA deficiency. Yet, the pathogenesis of PD remains unclear. Despite tremendous growth in recent years in our knowledge of the molecular basis of PD and the molecular pathways of cell death, important questions remain, such ...

  14. Ocular Manifestations of Alzheimer's Disease in Animal Models

    OpenAIRE

    Francesca Cordeiro, M.; Mohamed Abdi; Miles Parnell; Li Guo

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia, and the pathological changes of senile plaques (SPs) and neurofibrillary tangles (NFTs) in AD brains are well described. Clinically, a diagnosis remains a postmortem one, hampering both accurate and early diagnosis as well as research into potential new treatments. Visual deficits have long been noted in AD patients, and it is becoming increasingly apparent that histopathological changes already noted in the brain also occur in an ...

  15. Alzheimer’s disease and epilepsy: insight from animal models

    OpenAIRE

    Scharfman, Helen E.

    2012-01-01

    Alzheimer’s disease (AD) and epilepsy are separated in the medical community, but seizures occur in some patients with AD, and AD is a risk factor for epilepsy. Furthermore, memory impairment is common in patients with epilepsy. The relationship between AD and epilepsy remains an important question because ideas for therapeutic approaches could be shared between AD and epilepsy research laboratories if AD and epilepsy were related. Here we focus on one of the many types of epilepsy, temporal ...

  16. Use of DNA probes in animal disease diagnosis

    International Nuclear Information System (INIS)

    Conventional approaches for detecting aetiological agents of infectious diseases include the isolation of microorganisms and their direct detection in pathological samples by microscopy and immunoassays. Although the availability of monoclonal antibodies has improved some of these techniques, none of them alone is completely reliable. The advent of genetic engineering has opened a new approach to the diagnosis of infectious diseases by permitting detection of the genetic blueprint of the causal agent. Since each pathogen has its own unique genetic material and because nucleic acid hybridization is based on the ability of DNA or RNA probes to hybridize to their complementary sequences, genomic DNA or RNA is an ideal target for specific diagnostic tests. This new technique will allow the detection of some organisms which are difficult to culture and can broaden the spectrum of diseases which can be diagnosed. In veterinary medicine, many infectious agents are now identified by nucleic acid hybridization and some examples are given in the review. However, the use of this technique is still limited to research laboratories. Indeed there are some drawbacks to the routine use of nucleic acid technology for diagnostic tests. Firstly, radiolabelled probes have a short half-life; they are hazardous and their handling requires special equipment. Secondly, nonradioactive probes are less sensitive than radiolabelled ones. Their use on crude samples can give rise to significant non-specific background reactions, which makes them less attractive for routine diagnosis. Improvements in their sensitivity and in the signal/background ratio may allow their wider application in the future. (author). 44 refs

  17. Animal genomics in natural reservoirs of infectious diseases.

    Science.gov (United States)

    Cowled, C; Wang, L-F

    2016-04-01

    Natural virus reservoirs such as wild bats, birds, rodents and non-human primates are generally non-model organisms that have, until recently, presented limited opportunities for in-depth study. Next-generation sequencing provides a way to partially circumvent this limitation, since the methods required for data acquisition and analysis are largely species-independent. Comparative genomics and other 'omics' provide new opportunities to study the structure and function of various biological systems of wild species that are otherwise out of reach. Genomes of natural reservoir hosts can help to identify dominant pathways of virus-host interaction and to reveal differences between susceptible and resistant organisms, populations and species. This is of great scientific interest and may also provide a resource for the rational design of treatments for viral diseases in humans and livestock. In this way, we will 'learn from nature' and one day apply this knowledge to create disease-resistant livestock or develop novel therapeutic and prevention strategies. Reservoir host genomics will also open up possibilities for developing novel vaccines for wildlife, aid in the development of new diagnostic platforms, and have broad implications for developmental and evolutionary biology. In this review, the authors focus on natural reservoir hosts of viral pathogens, although most of the discussion points should be equally applicable to natural reservoirs of pathogenic bacteria, fungi or other parasites. PMID:27217176

  18. Interaction of the role of Concentrated Animal Feeding Operations (CAFOs) in Emerging Infectious Diseases (EIDS).

    Science.gov (United States)

    Hollenbeck, James E

    2016-03-01

    Most significant change in the evolution of the influenza virus is the rapid growth of the Concentrated Animal Feeding Operations (CAFOs) on a global scale. These industrial agricultural operations have the potential of housing thousands of animals in a relatively small area. Emerging Infectious Diseases (EIDs) event can be considered as a shift in the pathogen-host-environment interplay characteristics described by Engering et al. (2013). These changes in the host-environment and the disease ecology are key to creating novel transmission patterns and selection of novel pathogens with a modification of genetic traits. With the development of CAFOs throughout the world, the need for training of animal caretakers to observe, identify, treat, vaccinate and cull if necessary is important to safeguard public health. The best defense against another pandemic of Emerging Infectious Diseases (EIDs) is the constant monitoring of the livestock and handlers of CAFOs and the live animal markets. These are the most likely epicenter of the next pandemic.

  19. Agricultural production - Phase 2. Indonesia. National training course on ELISA for seradiagnosis of animal diseases (5)

    International Nuclear Information System (INIS)

    This report describes the content of a three-week national training course for 16 participants from regional Disease Investigation Centres and other agencies in Indonesia. The subject of the course was the use of ELISA for the diagnosis of animal diseases in Indonesia, with particular emphasis placed on bovine brucellosis

  20. Mesenchymal stem cells in the treatment of inflammatoryand autoimmune diseases in experimental animal models

    Institute of Scientific and Technical Information of China (English)

    Matthew W Klinker; Cheng-Hong Wei

    2015-01-01

    Multipotent mesenchymal stromal cells [also known asmesenchymal stem cells (MSCs)] are currently beingstudied as a cell-based treatment for inflammatorydisorders. Experimental animal models of humanimmune-mediated diseases have been instrumental inestablishing their immunosuppressive properties. Inthis review, we summarize recent studies examiningthe effectiveness of MSCs as immunotherapy in severalwidely-studied animal models, including type 1 diabetes,experimental autoimmune arthritis, experimentalautoimmune encephalomyelitis, inflammatory boweldisease, graft-vs -host disease, and systemic lupuserythematosus. In addition, we discuss mechanismsidentified by which MSCs mediate immune suppressionin specific disease models, and potential sources offunctional variability of MSCs between studies.

  1. Review on prion diseases in animals with emphasis to Bovine Spongiform Encephalopathy

    Directory of Open Access Journals (Sweden)

    Rajender P. Gupta

    Full Text Available Prion diseases are known as Transmissible Spongiform Encephalopathies (TSE. These are degenerative brain disorders characterized by tiny microscopic holes that give the brain 'spongy' appearance. The causative agent is proteinaceous infective particle called prion. Prion diseases affect a variety of mammals including humans. The disease is transmitted by contaminated food or feed containing prion protein. In animals the diseases caused by prions are Scrapie, Bovine Spongiform Encephalopathy (BSE, Transmissible Mink Encephalopathy (TME, Chronic Wasting Disease (CWD, Feline Spongiform Encephalopathy (FSE and exotic Engulate Encephalopathy (EUE. Currently the only reliable test is histo-pathological examination of tissues. Control measures are surveillance, culling sick animals and banning specified risk materials. In India no case of BSE has been reported so far but the disease warrants constant monitoring and surveillance if once introduced or imported would be a herculean task to eradicate it. [Vet. World 2012; 5(7.000: 443-448

  2. A historical synopsis of farm animal disease and public policy in twentieth century Britain.

    Science.gov (United States)

    Woods, Abigail

    2011-07-12

    The diseases suffered by British livestock, and the ways in which they were perceived and managed by farmers, vets and the state, changed considerably over the course of the twentieth century. This paper documents and analyses these changes in relation to the development of public policy. It reveals that scientific knowledge and disease demographics cannot by themselves explain the shifting boundaries of state responsibility for animal health, the diseases targeted and the preferred modes of intervention. Policies were shaped also by concerns over food security and the public's health, the state of the national and livestock economy, the interests and expertise of the veterinary profession, and prevailing agricultural policy. This paper demonstrates how, by precipitating changes to farming and trading practices, public policy could sometimes actually undermine farm animal health. Animal disease can therefore be viewed both as a stimulus to, and a consequence of, twentieth century public policy.

  3. Porcine models of digestive disease: the future of large animal translational research

    OpenAIRE

    Gonzalez, Liara M.; Moeser, Adam J; Blikslager, Anthony T.

    2015-01-01

    There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such ...

  4. Integrative molecular phylogeography in the context of infectious diseases on the human-animal interface.

    Science.gov (United States)

    Gray, Rebecca R; Salemi, Marco

    2012-12-01

    The rate of new emerging infectious diseases entering the human population has increased over the past century, with pathogens originating from animals or from products of animal origin accounting for the vast majority. Primary risk factors for the emergence and spread of emerging zoonoses include expansion and intensification of animal agriculture and long-distance live animal transport, live animal markets, bushmeat consumption and habitat destruction. Developing effective control strategies is contingent upon the ability to test causative hypotheses of disease transmission within a statistical framework. Broadly speaking, molecular phylogeography offers a framework in which specific hypotheses regarding pathogen gene flow and dispersal within an ecological context can be compared. A number of different methods has been developed for this application. Here, our intent is firstly to discuss the application of a wide variety of statistically based methods (including Bayesian reconstruction, network parsimony analysis and regression) to specific viruses (influenza, salmon anaemia virus, foot and mouth disease and Rift Valley Fever) that have been associated with animal farming/movements; and secondly to place them in the larger framework of the threat of potential zoonotic events as well as the economic and biosecurity implications of pathogen outbreaks among our animal food sources. PMID:22931895

  5. Sleep disturbances in the rotenone animal model of Parkinson disease.

    Science.gov (United States)

    García-García, Fabio; Ponce, Sonia; Brown, Richard; Cussen, Victoria; Krueger, James M

    2005-05-01

    Parkinson disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the presence of intracytoplasmatic inclusions known as Lewy bodies. Chronic administration of rotenone (RT) produces Parkinson's-like symptoms in rats. Because PD patients have disrupted sleep patterns, we determined if chronic RT administration produces similar changes in rat sleep. RT was administered for 28 days to rats. Basal and vehicle (VH) rats received saline or dimethyl sulfoxide and polyethylene glycol (1:1), respectively. VH infusion induced a progressive decrease in non-rapid eye movement sleep (NREMS) during the 4-week period of VH infusion and REMS was reduced in the third and fourth week of VH infusion. VH infusion did not induce dopaminergic cell degeneration. Rats receiving RT infusion also showed decreased NREMS during the treatment. REMS was dramatically reduced on day 7 although subsequently on days 13 and 20 REMS was similar to basal values. After 4 weeks of RT infusion, time in REMS was decreased again. In RT-treated rats, progressive dopaminergic cell degeneration occurred in the SNc. After 4 weeks of daily injections of L-dopa in RT-infused rats, NREMS values remained similar to those values obtained after RT alone. L-dopa therapy did, however, induce a recovery of REMS in weeks 3 and 4 of RT infusion. Dopaminergic cell damage persisted in the L-dopa-RT-infused rats. We conclude that the RT-PD rat model is associated with large long-term sleep disruption, however, the vehicle, DMSO/PEG had as large an effect as RT on sleep, thus changes in sleep cannot be ascribed to loss of dopaminergic cells. Such results question the validity of the RT-PD rat model. PMID:15854587

  6. MTADM: The new Joint Master Programme in Transboundary Animal Disease Management for Eastern Africa

    International Nuclear Information System (INIS)

    Full text: New Partnership for Africa's Development (NEPAD) flagship Comprehensive Africa Agriculture Development Programme (CAADP). Focus is on livestock for trade and export. Better policies, institutions, regulatory framework and technologies are sought for livestock production and management and delivery of veterinary services and disease control. The disease status of African countries places the pivotal constraints on trade possibilities. Animal health standards imposed by importing countries for international, regional or bi-lateral trade, and through the World Trade Organisation's (WTO) Sanitary and Phytosanitary (SPS) agreement must be met. 12 of the 15 most important transboundary animal diseases persist in Africa. Disease control under SPS, entailing new standards, regulations and technologies, can and is not be covered by conventional veterinary training. This specialist area of its own has to be addressed in a specialised postgraduate course for young personnel already involved and responsible for public, private and hybrid animal disease control services. Ambitious visions of a new African livestock sector with changed focus on production, disease, trade, marketing, organisation, delivery and internationality are only realistic with newly trained animal disease control personnel. To target these issues at the academic level the Addis Ababa University / Ethiopia with universities of 3 regional partner countries (Kenya, Uganda, Sudan) and the Freie Universitaet Berlin, Germany, successfully applied for a grant to establish a Joint Master Course in Transboundary Animal Disease Management (MTADM) for Africa. The 3-year project is funded under the EU - EDULINK Programme of the 9th European Development Funds (EDF) as from 2008 to 2010. Currently, preparatory work is ongoing on the final technical details of the MTADM Course. The overall objective of the programme is to strengthen the capacity of national veterinary services in Africa to control and manage

  7. Stem cell transplantation in neurological diseases: improving effectiveness in animal models.

    Directory of Open Access Journals (Sweden)

    Raffaella eAdami

    2014-05-01

    Full Text Available Neurological diseases afflict a growing proportion of the human population. There are two reasons for this: first, the average age of the population (especially in the industrialised world is increasing, and second, the diagnostic tools to detect these pathologies are now more sophisticated and can be used on a higher percentage of the population. In many cases, neurological disease has a pharmacological treatment which, as in the case of Alzheimer’s disease, Parkinson’s disease, Epilepsy, and Multiple Sclerosis can reduce the symptoms and slow down the course of the disease but cannot reverse its effects or heal the patient.In the last two decades the transplantation approach, by means of stem cells of different origin, has been suggested for the treatment of neurological diseases. The choice of slightly different animal models and the differences in methods of stem cell preparation make it difficult to compare the results of transplantation experiments. Moreover, the translation of these results into clinical trials with human subjects is difficult and has so far met with little success.This review seeks to discuss the reasons for these difficulties by considering the differences between human and animal cells (including isolation, handling and transplantation and between the human disease model and the animal disease model.

  8. A framework for evaluating animals as sentinels for infectious disease surveillance

    OpenAIRE

    Halliday, Jo E.B; Meredith, Anna L.; Darryn L Knobel; Darren J Shaw; de C. Bronsvoort, Barend M.; Cleaveland, Sarah

    2007-01-01

    The dynamics of infectious diseases are highly variable. Host ranges, host responses to pathogens and the relationships between hosts are heterogeneous. Here, we argue that the use of animal sentinels has the potential to use this variation and enable the exploitation of a wide range of pathogen hosts for surveillance purposes. Animal sentinels may be used to address many surveillance questions, but they may currently be underused as a surveillance tool and there is a need for improved interd...

  9. Large animal induced pluripotent stem cells as pre-clinical models for studying human disease

    OpenAIRE

    Jordan R Plews; Gu, Mingxia; Longaker, Michael T.; Joseph C. Wu

    2012-01-01

    Abstract The derivation of human embryonic stem cells and subsequently human induced pluripotent stem cells (iPSCs) has energized regenerative medicine research and enabled seemingly limitless applications. Although small animal models, such as mouse models, have played an important role in the progression of the field, typically, they are poor representations of the human disease phenotype. As an alternative, large animal models should be explored as a potentially better approach for clinica...

  10. Finding new ways to prevent disease in food-producing animals.

    Science.gov (United States)

    2016-01-23

    Increasing concern about antimicrobial resistance and moves to restrict the use of antibiotics in food-producing animals mean that farmers will need new ways of preventing and controlling disease in their animals. With its focus on addressing the needs of the farming industry, the Moredun Research Institute sees this as an opportunity to be at the forefront of developing new solutions. Kristy Ebanks reports from an event organised to showcase some of the institute's latest research. PMID:26795855

  11. Reduced animal use in efficacy testing in disease models with use of sequential experimental designs.

    OpenAIRE

    Waterton JC, Middleton BJ, Pickford R, Allott CP, Checkley D, Keith RA.

    2000-01-01

    Although the use of animals in efficacy tests has declined substantially, there remains a small number of well-documented disease models which provide essential information about the efficacy of new compounds. Such models are typically used after extensive in vitro testing, to evaluate small numbers of compounds and to select the most promising agents for clinical trial in humans. The aim of this study was to reduce the number of animals required to achieve valid results, without compromising...

  12. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters.

    Science.gov (United States)

    Morand, Serge; McIntyre, K Marie; Baylis, Matthew

    2014-06-01

    The rate of emergence for emerging infectious diseases has increased dramatically over the last century, and research findings have implicated wildlife as an importance source of novel pathogens. However, the role played by domestic animals as amplifiers of pathogens emerging from the wild could also be significant, influencing the human infectious disease transmission cycle. The impact of domestic hosts on human disease emergence should therefore be ascertained. Here, using three independent datasets we showed positive relationships between the time since domestication of the major domesticated mammals and the total number of parasites or infectious diseases they shared with humans. We used network analysis, to better visualize the overall interactions between humans and domestic animals (and amongst animals) and estimate which hosts are potential sources of parasites/pathogens for humans (and for all other hosts) by investigating the network architecture. We used centrality, a measure of the connection amongst each host species (humans and domestic animals) in the network, through the sharing of parasites/pathogens, where a central host (i.e. high value of centrality) is the one that is infected by many parasites/pathogens that infect many other hosts in the network. We showed that domesticated hosts that were associated a long time ago with humans are also the central ones in the network and those that favor parasites/pathogens transmission not only to humans but also to all other domesticated animals. These results urge further investigation of the diversity and origin of the infectious diseases of domesticated animals in their domestication centres and the dispersal routes associated with human activities. Such work may help us to better understand how domesticated animals have bridged the epidemiological gap between humans and wildlife.

  13. Listeria Monocytogenes as Contaminant of Food Derived from Animal (Foodborne Disease

    Directory of Open Access Journals (Sweden)

    Tati Ariyanti

    2010-06-01

    Full Text Available Listeria monocytogenes often contaminates food derived from animal and serves as pathogenic bacteria for animals and human. The outbreaks were related with the consumption of food derived from animals such as meat, milk, egg, seafood and its product that poorly cooked. Human listeriosis could be transmitted by direct contact with infected animal. The disease often is asymtomatic and widely distributes in the world. The mortality rate reaches to 30%. The bacteria is important because of the widespread in the environment, tolerant to acid, hot or salt environments, forms a biofilm layer and produces virulent factor (listeriolisin O/LLO. The bacteria can grow at 4°C or in the frozen food. Appropriate handlings of animals and their products are important to prevent from L. monocytogenes contamination.

  14. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Wexler, Anthony; Ristenpart, William

    2014-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in modulating the pathogen transmission, to date the infectious disease community has paid little attention to the effect of airspeed or turbulence intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of a standard axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We demonstrate that the fan speed counterintuitively has no effect on the downstream plume width, a result replicated with a variety of different fan types and configurations. The results point toward a useful simplification in modeling of airborne disease transmission via fan-generated flows.

  15. Foot and mouth disease eradication policy: social impact and animal welfare

    Directory of Open Access Journals (Sweden)

    Barbara Marins Pettres

    2008-02-01

    Full Text Available Santa Catarina is the only Brazilian state that does not immunize the bovine herd against foot and mouth disease. This article discusses the policy adopted for the foot and mouth disease in Santa Catarina, especially the non-vaccination, and relates this policy with ethical, human and animal welfare issues. Nine representatives of agricultural institutions in the state were interviewed, as well as, in a case study, seven families of farmers in Jóia - Rio Grande do Sul, Brazil, where foot and mouth disease occurred in 2000, leading to the sacrifice of 11,067 animals, most of them dairy animals. The majority of the agricultural institutions in Santa Catarina are contrary to vaccination, in order to keep and extend pig and poultry export markets. Concerns on social repercussions tended to concentrate on the effects on the income of the affected families. The case study in Jóia demonstrated that the life styles of the affected farmers were deeply harmed due to effects on human mental health, loss of income and changes in the local economy. The study concludes that the experience of a foot and mouth disease outbreak results in traumatic and long term consequences and that there is a need for policies that include social, ethical and environmental provisions, once animal welfare aspects and impacts on other areas of the economy are not contemplated in the public policy of animal sanitary defense.

  16. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    Directory of Open Access Journals (Sweden)

    Nabeela Nathoo

    2014-01-01

    Full Text Available There are exciting new advances in multiple sclerosis (MS resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS.

  17. Prioritizing Zoonotic Diseases: Differences in Perspectives Between Human and Animal Health Professionals in North America.

    Science.gov (United States)

    Ng, V; Sargeant, J M

    2016-05-01

    Zoonoses pose a significant burden of illness in North America. Zoonoses represent an additional threat to public health because the natural reservoirs are often animals, particularly wildlife, thus eluding control efforts such as quarantine, vaccination and social distancing. As there are limited resources available, it is necessary to prioritize diseases in order to allocate resources to those posing the greatest public health threat. Many studies have attempted to prioritize zoonoses, but challenges exist. This study uses a quantitative approach, conjoint analysis (CA), to overcome some limitations of traditional disease prioritization exercises. We used CA to conduct a zoonoses prioritization study involving a range of human and animal health professionals across North America; these included epidemiologists, public health practitioners, research scientists, physicians, veterinarians, laboratory technicians and nurses. A total of 699 human health professionals (HHP) and 585 animal health professionals (AHP) participated in this study. We used CA to prioritize 62 zoonotic diseases using 21 criteria. Our findings suggest CA can be used to produce reasonable criteria scores for disease prioritization. The fitted models were satisfactory for both groups with a slightly better fit for AHP compared to HHP (84.4% certainty fit versus 83.6%). Human-related criteria were more influential for HHP in their decision to prioritize zoonoses, while animal-related criteria were more influential for AHP resulting in different disease priority lists. While the differences were not statistically significant, a difference of one or two ranks could be considered important for some individuals. A potential solution to address the varying opinions is discussed. The scientific framework for disease prioritization presented can be revised on a regular basis by updating disease criteria to reflect diseases as they evolve over time; such a framework is of value allowing diseases of

  18. [Food safety and animal diseases. The French Food Safety Agency, from mad cow disease to bird flu].

    Science.gov (United States)

    Keck, Frédéric

    2008-01-01

    Why has the French food safety agency been particularly mobilized on zoonoses like bovine spongiform encephalopathy ("mad cow disease") or highly pathogenic avian influenza ("bird flu") ? Because sanitary crisis make explicit an ambivalent relationship between humans and animals (animals being perceived alternatively as providers of goods and as bearers of threats), and to the circulation of life in general (the contaminated blood crises being due to the rapprochement of blood giving and blood receiving). The sociology of risks needs therefore to reintegrate the idea of an intention of the risk bearer (risk with enemy), and the sociology of alimentation needs to reintegrate the analysis of the conditions of production. Mad cow disease is the paradigmatic food safety crisis because it brings together the poles of production and consumption, of animals and humans. It therefore belongs to anthropology. PMID:18198116

  19. Continuity of Business Plans for Animal Disease Outbreaks: Using a Logic Model Approach to Protect Animal Health, Public Health, and Our Food Supply

    Directory of Open Access Journals (Sweden)

    Heather Allen

    2013-04-01

    Full Text Available Foreign animal diseases can have a devastating impact on the American economy and agriculture system, while significantly disrupting the food supply chain, and affecting animal health and public health. Continuity of business during an animal disease outbreak aims to mitigate these agriculture-related losses by facilitating normal business operations through the managed movement of non-infected animals and non-contaminated animal products. During a foreign animal disease outbreak, there are competing objectives of trying to control and contain the outbreak while allowing non-infected premises to continue normal business operations to the greatest extent possible. Using a logic model approach, this article discusses the importance of continuity of business planning during an animal disease outbreak, providing a detailed and transparent theoretical framework for continuity of business planning for animal agriculture stakeholders. The logic model provides a basis for continuity of business planning, which is rapidly gaining focus and interest in the animal emergency management community. This unique logic model offers a framework for effective planning and subsequent evaluation of continuity of business plans and processes, by identifying explicit stakeholders, inputs, and activities, alongside the desired outputs and outcomes of such planning.

  20. Use of proteomics in the study of microbial diseases of small ruminants.

    Science.gov (United States)

    Katsafadou, A I; Tsangaris, G Th; Billinis, C; Fthenakis, G C

    2015-12-14

    Objective of the paper is to review potential applications of proteomics methodologies in the study of microbial diseases of small ruminants. Proteomics has been employed for the elucidation of pathogenesis of various diseases, i.e., in the study of determinants of microbial agents and the study of host-pathogen interactions, as well as in improved disease diagnosis by the identification of biomarkers. Extensive uses of proteomics in sheep and goat diseases have been applied primarily in mastitis, in reproductive infections, in paratuberculosis, in respiratory infections and in scrapie. Mining deeper into the various proteomes and application of new methodological strategies in clinical studies will provide information about disease processes. Improvement of diagnostic techniques, development of vaccines against diseases and establishment of tools for optimum animal production are key-areas for targeted research. PMID:26233680

  1. Monkeypox disease transmission in an experimental setting: prairie dog animal model.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox. MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively. Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.

  2. The history of the Conference of Research Workers in Animal Diseases (CRWAD) 1920-2014.

    Science.gov (United States)

    Ellis, Robert P; Ellis, L Susanne Squires; Kohler, Erwin M

    2015-12-01

    The following history has been compiled and written by the authors. The historical facts are available from the Conference of Research Workers in Animal Diseases (CRWAD) archives, dating back to letters and summaries written by the founders, and by a few of the Secretary-Treasurers from the early decades through 2014. THE ORGANIZATION AND PURPOSE: The CRWAD is a non-profit organization and has been since its origin. The sole purpose of CRWAD is to discuss and disseminate the most current research advances in animal diseases. Graduate students and industry and academic professionals present and discuss the most recent advances on subjects of interest to the CRWAD and of importance to the global livestock and companion animal industries. The oral and poster abstracts of new and unpublished data presented at the meeting sessions are published each year in the CRWAD Proceedings (formerly the CRWAD Abstracts). CRWAD publishes, copyrights, and distributes the Proceedings. The presentations are arranged into the following 10 sections, according to the primary topic of the presentation: Bacterial Pathogenesis, Biosafety and Biosecurity, Companion Animal Epidemiology, Ecology and Management of Foodborne Agents, Epidemiology and Animal Health Economics, Immunology, Pathobiology of Enteric and Foodborne Pathogens, Respiratory Diseases, Vector-Borne and Parasitic Diseases, and Viral Pathogenesis. Prospective members should be actively engaged in animal disease research or research administration. Meeting information and membership applications may be obtained by contacting the Executive Director or by visiting the CRWAD website. Annual abstracts are currently available on-line at the On-line Meeting Planner and Itinerary Builder, with access through the CRWAD website.

  3. Identifying the Achilles heel of multi-host pathogens : the concept of keystone 'host' species illustrated by Mycobacterium ulcerans transmission

    OpenAIRE

    Roche, Benjamin; Benbow, M. Eric; Merritt, Richard; Kimbirauskas, Ryan; McIntosh, Mollie; Small, Pamela L. C.; Williamson, Heather; Guégan, Jean-François

    2013-01-01

    Pathogens that use multiple host species are an increasing public health issue due to their complex transmission, which makes them difficult to mitigate. Here, we explore the possibility of using networks of ecological interactions among potential host species to identify the particular disease-source species to target to break down transmission of such pathogens. We fit a mathematical model on prevalence data of Mycobacterium ulcerans in western Africa and we show that removing the most abun...

  4. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions

    OpenAIRE

    Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas

    2016-01-01

    Background Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might...

  5. Mycobacterium avium subsp. paratuberculosis Strains Isolated from Crohn's Disease Patients and Animal Species Exhibit Similar Polymorphic Locus Patterns

    OpenAIRE

    Ghadiali, Alifiya H.; Strother, Megan; Naser, Saleh A.; Manning, Elizabeth J. B.; Sreevatsan, Srinand

    2004-01-01

    Analysis of short sequence repeats of Mycobacterium avium subsp. paratuberculosis isolated from Crohn's disease patients identified two alleles, both of which clustered with strains derived from animals with Johne's disease. Identification of a limited number of genotypes among human strains implies the existence of human disease-associated genotypes and strain sharing with animals.

  6. Conditional dependence between tests affects the diagnosis and surveillance of animal diseases

    DEFF Research Database (Denmark)

    Gardner, I.A.; Stryhn, Henrik; Lind, Peter;

    2000-01-01

    Dependence between the sensitivities or specificities of pairs of tests affects the sensitivity and specificity of tests when used in combination. Compared with values expected if tests are conditionally independent, a positive dependence in test sensitivity reduces the sensitivity of parallel te...... for toxoplasmosis and brucellosis in swine, and Johne's disease in cattle to illustrate calculation methods and to indicate the likely magnitude of the dependence between serologic tests used for diagnosis and surveillance of animal diseases....

  7. A branching model for the spread of infectious animal diseases in varying environments

    OpenAIRE

    Trapman, Pieter; Meester, R; Heesterbeek, J A P

    2004-01-01

    This paper is concerned with a stochastic model, describing outbreaks of infectious diseases that have potentially great animal or human health consequences, and which can result in such severe economic losses that immediate sets of measures need to be taken to curb the spread. During an outbreak of such a disease, the environment that the infectious agent experiences is therefore changing due to the subsequent control measures taken. In our model, we introduce a general branching process in ...

  8. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models

    OpenAIRE

    Nabeela Nathoo; V Wee Yong; Dunn, Jeff F.

    2014-01-01

    There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future resear...

  9. [The design and development of a quality system for the diagnosis of exotic animal diseases at the National Centre for Animal and Plant Health in Cuba].

    Science.gov (United States)

    de Oca, N Montes; Villoch, A; Pérez Ruano, M

    2004-12-01

    A quality system for the diagnosis of exotic animal diseases was developed at the national centre for animal and plant health (CENSA), responsible for coordinating the clinical, epizootiological and laboratory diagnosis of causal agents of exotic animal diseases in Cuba. A model was designed on the basis of standard ISO 9001:2000 of the International Organization for Standardization (ISO), standard ISO/IEC 17025:1999 of ISO and the International Electrotechnical Commission, recommendations of the World Organisation for Animal Health (OIE) and other regulatory documents from international and national organisations that deal specifically with the treatment of emerging diseases. Twenty-nine standardised operating procedures were developed, plus 13 registers and a checklist to facilitate the evaluation of the system. The effectiveness of the quality system was confirmed in the differential diagnosis of classical swine fever at an animal virology laboratory in Cuba. PMID:15861883

  10. Epidemiology and Economics Support Decisions about Freedom from Aquatic Animal Disease.

    Science.gov (United States)

    Peeler, E J; Otte, M J

    2016-06-01

    In this study, we review the application of epidemiology and economics to decision-making about freedom from aquatic animal disease, at national and regional level, and recent examples from Europe. Epidemiological data (e.g. pathogen prevalence and distribution) determine the technical feasibility and cost of eradication. The eradication of pathogens which exist in wild populations, or in a latent state, is technically difficult, uncertain and expensive. Notably, the eradication of diseases of molluscs is rarely attempted because host populations (farmed and wild) cannot be completely removed from open water systems. Doubt about the success of eradication translates into uncertain ex-ante cost estimates. Additionally, the benefits of an official disease-free status cannot be estimated with any accuracy. For example, in Europe, official freedom from epizootic ulcerative syndrome and white spot syndrome virus has not been pursued, arguably because the evidence does not exist for the benefits (reduced risk of disease in wild populations) to be estimated and thus weighed against the costs of maintaining disease freedom (e.g. restriction on imports). Economic analysis must assess not only whether the benefits of disease freedom outweigh costs, but whether it is the economically optimal disease control option. Government may also want to compare investment in aquatic animal health with other opportunities. As resources become scarce, governments have sought to share costs of disease control with industry, and thus to ensure equity, the distribution benefits must be known so costs can be borne by those who benefit. The economic principles to support decisions about disease freedom are well established, but their application is constrained by lack of epidemiological data, which may explain the lack of economic analysis in support of aquatic animal management in Europe. The integration of epidemiology and economics in disease control planning will identify research aimed at

  11. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens.

    Science.gov (United States)

    Crawford, Aaron; Wilson, Duncan

    2015-11-01

    The ability of pathogenic microorganisms to assimilate sufficient nutrients for growth within their hosts is a fundamental requirement for pathogenicity. However, certain trace nutrients, including iron, zinc and manganese, are actively withheld from invading pathogens in a process called nutritional immunity. Therefore, successful pathogenic species must have evolved specialized mechanisms in order to adapt to the nutritionally restrictive environment of the host and cause disease. In this review, we discuss recent advances which have been made in our understanding of fungal iron and zinc acquisition strategies and nutritional immunity against fungal infections, and explore the mechanisms of micronutrient uptake by human pathogenic fungi.

  12. Management of Ocular Diseases Using Lutein and Zeaxanthin: What Have We Learned from Experimental Animal Studies?

    Directory of Open Access Journals (Sweden)

    Chunyan Xue

    2015-01-01

    Full Text Available Zeaxanthin and lutein are two carotenoid pigments that concentrated in the retina, especially in the macula. The effects of lutein and zeaxanthin on the prevention and treatment of various eye diseases, including age-related macular degeneration, diabetic retinopathy and cataract, ischemic/hypoxia induced retinopathy, light damage of the retina, retinitis pigmentosa, retinal detachment, and uveitis, have been studied in different experimental animal models. In these animal models, lutein and zeaxanthin have been reported to have beneficial effects in protecting ocular tissues and cells (especially the retinal neurons against damage caused by different etiological factors. The mechanisms responsible for these effects of lutein and zeaxanthin include prevention of phototoxic damage by absorption of blue light, reduction of oxidative stress through antioxidant activity and free radical scavenging, and their anti-inflammatory and antiangiogenic properties. The results of these experimental animal studies may provide new preventive and therapeutic procedures for clinical management of various vision-threatening diseases.

  13. Antisense treatment of caliciviridae: an emerging disease agent of animals and humans.

    Science.gov (United States)

    Smith, Alvin W; Matson, David O; Stein, David A; Skilling, Douglas E; Kroeker, Andrew D; Berke, Tamas; Iversen, Patrick L

    2002-04-01

    The Earth's oceans are the primary reservoir for an emerging family of RNA viruses, the Caliciviridae, which can cause a spectrum of diseases in marine animals, wildlife, farm animals, pets and humans. Certain members of this family have unusually broad host ranges, and some are zoonotic (transmissible from animals to humans). The RNA virus replicative processes lack effective genetic repair mechanisms, and, therefore, virtually every calicivirus replicate is a mutant. Hence, traditional therapeutics dependent on specific nucleic acid sequences or protein epitopes lack the required diversity of sequence or conformational specificity that would be required to reliably detect, prevent or treat infections from these mutant clusters (quasi-species) of RNA viruses, including the Caliciviridae. Antisense technology using phosphorodiamidate morpholino oligomers shows promise in overcoming these current diagnostic and therapeutic problems inherent with newly emerging viral diseases. PMID:12044040

  14. Monitoring for the management of disease risk in animal translocation programmes

    Science.gov (United States)

    Nichols, James D.; Hollmen, Tuula E.; Grand, James B.

    2016-01-01

    Monitoring is best viewed as a component of some larger programme focused on science or conservation. The value of monitoring is determined by the extent to which it informs the parent process. Animal translocation programmes are typically designed to augment or establish viable animal populations without changing the local community in any detrimental way. Such programmes seek to minimize disease risk to local wild animals, to translocated animals, and in some cases to humans. Disease monitoring can inform translocation decisions by (1) providing information for state-dependent decisions, (2) assessing progress towards programme objectives, and (3) permitting learning in order to make better decisions in the future. Here we discuss specific decisions that can be informed by both pre-release and post-release disease monitoring programmes. We specify state variables and vital rates needed to inform these decisions. We then discuss monitoring data and analytic methods that can be used to estimate these state variables and vital rates. Our discussion is necessarily general, but hopefully provides a basis for tailoring disease monitoring approaches to specific translocation programmes.

  15. Outline for an integrated modelling approach concerning risks and economic consequences of contagious animal diseases.

    NARCIS (Netherlands)

    Horst, H.S.; Dijkhuizen, A.A.; Huirne, R.B.M.

    1996-01-01

    Management decisions on control of major infectious animal diseases may have a large impact, but are usually based on scarce and unreliable information. An integrated model which combines the various aspects of outbreaks and risks with economic consequences has yet to be developed. A flexible model

  16. Multi Criteria Decision Making to evaluate control strategies of contagious animal diseases

    NARCIS (Netherlands)

    Mourits, M.C.M.; Asseldonk, van M.A.P.M.; Huirne, R.B.M.

    2010-01-01

    The decision on which strategy to use in the control of contagious animal diseases involves complex trade-offs between multiple objectives. This paper describes a Multi Criteria Decision Making (MCDM) application to illustrate its potential support to policy makers in choosing the control strategy t

  17. Animal viral diseases and global change: Bluetongue and West Nile fever as paradigms

    Directory of Open Access Journals (Sweden)

    Miguel Angel eJimenez-Clavero

    2012-06-01

    Full Text Available Environmental changes have an undoubted influence on the appearance, distribution and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue and West Nile fever/encephalitis, have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. Bluetongue, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. West Nile fever/encephalitis affects wildlife (birds, domestic animals (equines and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife and livestock. In Europe, West Nile virus is known long time ago, but it is since the last years of the XXth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?

  18. From animal models to human disease: a genetic approach for personalized medicine in ALS.

    Science.gov (United States)

    Picher-Martel, Vincent; Valdmanis, Paul N; Gould, Peter V; Julien, Jean-Pierre; Dupré, Nicolas

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases. PMID:27400686

  19. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    James G. McLarnon

    2014-01-01

    Full Text Available Animal models of Alzheimer’s disease (AD which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β (Aβ into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.

  20. Currently important animal disease management issues in sub-Saharan Africa : policy and trade issues

    Directory of Open Access Journals (Sweden)

    G.R. Thomson

    2009-09-01

    Full Text Available The present international approach to management of transboundary animal diseases (TADs is based on the assumption that most can be eradicated ; consequently, that is the usual objective adopted by international organizations concerned with animal health. However, for sub-Saharan Africa and southern Africa more particularly, eradication of most TADs is impossible for the foreseeable future for a variety of technical, financial and logistical reasons. Compounding this, the present basis for access to international markets for products derived from animals requires that the area of origin (country or zone is free from trade-influencing TADs. The ongoing development of transfrontier conservation areas (TFCAs, extending across huge areas of southern Africa, therefore presents a development conundrum because it makes creation of geographic areas free from TADs more difficult and brings development based on wildlife conservation on the one hand and that based on livestock production on the other into sharp conflict. Sub-Saharan Africa is consequently confronted by a complex problem that contributes significantly to retarded rural development which, in turn, impedes poverty alleviation. In southern Africa specifically, foot-and-mouth disease (FMD presents the greatest problem in relation to access to international markets for animal products. However, it is argued that this problem could be overcome by a combination between (1 implementation of a commodity-based approach to trade in products derived from animals and (2 amendment of the international standards for FMD specifically (i.e. the FMD chapter in the Terrestrial Animal Health Code of the World Organisation for Animal Health [OIE] so that occurrence of SAT serotype viruses in free-living African buffalo need not necessarily mean exclusion of areas where buffalo occur from international markets for animal products. This would overcome a presently intractable constraint to market access for

  1. Rapid cohort generation and analysis of disease spectrum of large animal model of cone dystrophy.

    Directory of Open Access Journals (Sweden)

    Corinne Kostic

    Full Text Available Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

  2. Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes.

    Science.gov (United States)

    Desjardins, Christopher A; Sanscrainte, Neil D; Goldberg, Jonathan M; Heiman, David; Young, Sarah; Zeng, Qiandong; Madhani, Hiten D; Becnel, James J; Cuomo, Christina A

    2015-01-01

    Obligate intracellular pathogens depend on their host for growth yet must also evade detection by host defenses. Here we investigate host adaptation in two Microsporidia, the specialist Edhazardia aedis and the generalist Vavraia culicis, pathogens of disease vector mosquitoes. Genomic analysis and deep RNA-Seq across infection time courses reveal fundamental differences between these pathogens. E. aedis retains enhanced cell surface modification and signalling capacity, upregulating protein trafficking and secretion dynamically during infection. V. culicis is less dependent on its host for basic metabolites and retains a subset of spliceosomal components, with a transcriptome broadly focused on growth and replication. Transcriptional profiling of mosquito immune responses reveals that response to infection by E. aedis differs dramatically depending on the mode of infection, and that antimicrobial defensins may play a general role in mosquito defense against Microsporidia. This analysis illuminates fundamentally different evolutionary paths and host interplay of specialist and generalist pathogens. PMID:25968466

  3. The rat as an animal model of Alzheimer’s disease

    OpenAIRE

    Benedikz, Eirikur; Kloskowska, Ewa; Winblad, Bengt

    2009-01-01

    As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer’s disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind that of mice. In recent years, the rat has been making a comeback as an Alzheimer’s disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to...

  4. Evidence-based early clinical detection of emerging diseases in food animals and zoonoses: two cases.

    Science.gov (United States)

    Saegerman, Claude; Humblet, Marie-France; Porter, Sarah Rebecca; Zanella, Gina; Martinelle, Ludovic

    2012-03-01

    If diseases of food-producing animals or zoonoses (re-)emerge, early clinical decision making is of major importance. In this particular condition, it is difficult to apply a classic evidence-based veterinary medicine process, because of a lack of available published data. A method based on the partition of field clinical observations (evidences) could be developed as an interesting alternative approach. The classification and regression tree (CART) analysis was used to improve the early clinical detection in two cases of emerging diseases: bovine spongiform encephalopathy (mad cow disease) and bluetongue due to the serotype 8-virus in cattle. PMID:22374122

  5. Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread

    DEFF Research Database (Denmark)

    Bigras-Poulin, Michel; Barfod, Kristen; Mortensen, Sten;

    2007-01-01

    can be randomly generated on the basis of farm density of the surrounding area of any farm is not correct since the patterns of animal movements have the topology of a scale-free network with a large degree of heterogeneity. This supported the opinion that the disease spread software assuming...... homogeneity in farm-to-farm relationship should only be used for large-scale interpretation and for epidemic preparedness. The network approach, based on graph theory, can be used efficiently to express more precisely, on a local scale (premise), the heterogeneity of animal movements. This approach......, by providing network knowledge to the local veterinarian in charge of controlling disease spread, should also be evaluated as a potential tool to manage epidemics during the crisis. Geographic information systems could also be linked in the approach to produce knowledge about local transmission of disease....

  6. Recent advances using zebrafish animal models for muscle disease drug discovery

    Science.gov (United States)

    Maves, Lisa

    2015-01-01

    Introduction Animal models have enabled great progress in the discovery and understanding of pharmacological approaches for treating muscle diseases like Duchenne muscular dystrophy. Areas covered With this article, the author provides the reader with a description of the zebrafish animal model, which has been employed to identify and study pharmacological approaches to muscle disease. In particular, the author focuses on how both large-scale chemical screens and targeted drug treatment studies have established zebrafish as an important model for muscle disease drug discovery. Expert opinion There are a number of opportunities arising for the use of zebrafish models for further developing pharmacological approaches to muscle diseases, including studying drug combination therapies and utilizing genome editing to engineer zebrafish muscle disease models. It is the author’s particular belief that the availability of a wide range of zebrafish transgenic strains for labeling immune cell types, combined with live imaging and drug treatment of muscle disease models, should allow for new elegant studies demonstrating how pharmacological approaches might influence inflammation and the immune response in muscle disease. PMID:24931439

  7. Sex-specific lung diseases: effect of oestrogen on cultured cells and in animal models

    Directory of Open Access Journals (Sweden)

    Bosung Shim

    2013-09-01

    Full Text Available Sex prevalence in lung disease suggests that sex-specific hormones may contribute to the pathogenesis and/or progression of at least some lung diseases, such as lung adenocarcinoma, lymphangioleiomyomatosis (LAM and benign metastasising leiomyoma (BML. Oestrogen is an important hormone in normal lung development and in the pathogenesis of female predominant pulmonary diseases. In vivo and in vitro studies have facilitated our understanding of disease pathogenesis and discovery of potential therapeutic targets. Oestrogen promoted disease progression in cell and animal models of lung adenocarcinoma, LAM and BML. Specifically, oestrogen enhanced tumour growth and metastasis in animal models of these diseases. Furthermore, 17β-estradiol (E2, the most abundant form of oestrogen in humans, increased the size and proliferation of cultured cells of lung adenocarcinoma and LAM. Coupled with the known mechanisms of oestrogen metabolism and signalling, these model systems may provide insights into the diverse effects of oestrogen and other hormones on lung diseases. Anti-oestrogen treatments that target key events of oestrogen synthesis or signalling, such as aromatase activity, oestrogen receptors and signalling pathways, may offer additional opportunities for clinical trials.

  8. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host-pathogen incompatibility.

    Directory of Open Access Journals (Sweden)

    Melania Figueroa

    Full Text Available Puccinia graminis causes stem rust, a serious disease of cereals and forage grasses. Important formae speciales of P. graminis and their typical hosts are P. graminis f. sp. tritici (Pg-tr in wheat and barley, P. graminis f. sp. lolii (Pg-lo in perennial ryegrass and tall fescue, and P. graminis f. sp. phlei-pratensis (Pg-pp in timothy grass. Brachypodium distachyon is an emerging genetic model to study fungal disease resistance in cereals and temperate grasses. We characterized the P. graminis-Brachypodium pathosystem to evaluate its potential for investigating incompatibility and non-host resistance to P. graminis. Inoculation of eight Brachypodium inbred lines with Pg-tr, Pg-lo or Pg-pp resulted in sporulating lesions later accompanied by necrosis. Histological analysis of early infection events in one Brachypodium inbred line (Bd1-1 indicated that Pg-lo and Pg-pp were markedly more efficient than Pg-tr at establishing a biotrophic interaction. Formation of appressoria was completed (60-70% of germinated spores by 12 h post-inoculation (hpi under dark and wet conditions, and after 4 h of subsequent light exposure fungal penetration structures (penetration peg, substomatal vesicle and primary infection hyphae had developed. Brachypodium Bd1-1 exhibited pre-haustorial resistance to Pg-tr, i.e. infection usually stopped at appressorial formation. By 68 hpi, only 0.3% and 0.7% of the Pg-tr urediniospores developed haustoria and colonies, respectively. In contrast, development of advanced infection structures by Pg-lo and Pg-pp was significantly more common; however, Brachypodium displayed post-haustorial resistance to these isolates. By 68 hpi the percentage of urediniospores that only develop a haustorium mother cell or haustorium in Pg-lo and Pg-pp reached 8% and 5%, respectively. The formation of colonies reached 14% and 13%, respectively. We conclude that Brachypodium is an apt grass model to study the molecular and genetic components of

  9. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Laura eGomez-Valero

    2011-10-01

    Full Text Available Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic-like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.

  10. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  11. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    Science.gov (United States)

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  12. [DNA-diagnosis of congenital diseases in companion animals and the role of the practicing veterinarian].

    Science.gov (United States)

    Ubbink, G J; Stades, F C; Rothuizen, J

    2002-04-15

    The knowledge on the impact of gene defects on the development of disease in companion animals is increasing rapidly. The gene defects may be differentiated in an initiating defect, which is the cause of illness, and a promoting defect, which enhances the chance on illness. Up till now only initiating defects are known in dogs and cats. All this is of great importance for breeding purposes, because within a breed there is narrow relationship which means the genetic diversity is small, and with all the disadvantages thereof. The identification in good time of gene defects in breeding animals, so that these animals being excluded from breeding, is of utmost importance in preventing congenital diseases. For that reason more and more the owners will appeal to veterinary surgeons to cooperate in procedures to screen potential breeding animals, or to declare the animals free from gene defects. The problems with regard to the diagnostic tests, including the DNA-tests, and their predictive values are discussed.

  13. Interaction of the role of Concentrated Animal Feeding Operations (CAFOs) in Emerging Infectious Diseases (EIDS).

    Science.gov (United States)

    Hollenbeck, James E

    2016-03-01

    Most significant change in the evolution of the influenza virus is the rapid growth of the Concentrated Animal Feeding Operations (CAFOs) on a global scale. These industrial agricultural operations have the potential of housing thousands of animals in a relatively small area. Emerging Infectious Diseases (EIDs) event can be considered as a shift in the pathogen-host-environment interplay characteristics described by Engering et al. (2013). These changes in the host-environment and the disease ecology are key to creating novel transmission patterns and selection of novel pathogens with a modification of genetic traits. With the development of CAFOs throughout the world, the need for training of animal caretakers to observe, identify, treat, vaccinate and cull if necessary is important to safeguard public health. The best defense against another pandemic of Emerging Infectious Diseases (EIDs) is the constant monitoring of the livestock and handlers of CAFOs and the live animal markets. These are the most likely epicenter of the next pandemic. PMID:26656834

  14. Subcellular proteomic analysis of host-pathogen interactions using human monocytes exposed to Yersinia pestis and Yersinia pseudotuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C G; Gonzales, A D; Choi, M W; Chromy, B A; Fitch, J P; McCutchen-Maloney, S L

    2004-05-20

    Yersinia pestis, the etiological agent of plague, is of concern to human health both from an infectious disease and a civilian biodefense perspective. While Y. pestis and Y. pseudotuberculosis share more than 90% DNA homology, they have significantly different clinical manifestations. Plague is often fatal if untreated, yet Y. pseudotuberculosis causes severe intestinal distress and is rarely fatal. A better understanding of host response to these closely related pathogens may help explain the different mechanisms of virulence and pathogenesis that result in such different clinical outcomes. The aim of this study was to characterize host protein expression changes in human monocyte-like U937 cells after exposure to Y. pestis and Y. pseudotuberculosis. In order to gain global proteomic coverage of host response, proteins from cytoplasmic, nuclear and membrane fractions of host cells were studied by 2-dimensional differential gel electrophoresis (2-D DIGE) and relative protein expression differences were quantitated. Differentially expressed proteins, with at least 1.5 fold expression changes and p values of 0.01 or less, were identified by MALDI-MS or LC/MS/MS. With these criteria, differential expression was detected in 16 human proteins after Y. pestis exposure and 13 human proteins after Y. pseudotuberculosis exposure, of which only two of the differentially expressed proteins identified were shared between the two exposures. Proteins identified in this study are reported to be involved in a wide spectrum of cellular functions and host defense mechanisms including apoptosis, cytoskeletal rearrangement, protein synthesis and degradation, DNA replication and transcription, metabolism, protein folding, and cell signaling. Notably, the differential expression patterns observed can distinguish the two pathogen exposures from each other and from unexposed host cells. The functions of the differentially expressed proteins identified provide insight on the different

  15. Study in Parkinson Disease of Exercise (SPARX): Translating high-intensity exercise from animals to humans

    OpenAIRE

    Moore, Charity G.; Schenkman, Margaret; Kohrt, Wendy M.; Delitto, Anthony; Hall, Deborah A.; Corcos, Daniel

    2013-01-01

    A burgeoning literature suggests that exercise has a therapeutic benefit in persons with Parkinson disease (PD) and in animal models of PD, especially when animals exercise at high intensity. If exercise is to be prescribed as “first-line” or “add-on” therapy in patients with PD, we must demonstrate its efficacy and dose-response effects through testing phases similar to those used in the testing of pharmacologic agents. The SPARX Trial is a multicenter, randomized, controlled, single-blinded...

  16. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Zhuang Xiaofeng

    2012-11-01

    Full Text Available Abstract Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L., however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs and S. sclerotiorum (2,780 contigs categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia. Among those ESTs specifically expressed

  17. Gamma Radiation for Sterilizing the Carcasses of Foot-and-Mouth Disease Virus Infected Animals

    International Nuclear Information System (INIS)

    Experiments on sterilization by means of gamma rays of the carcasses of animals experimentally infected with foot-and-mouth disease virus (FMDV) have been carried out. In the first part the author studied the presence and survival of FMDV in the carcasses and in the organs of infected slaughtered animals. The results obtained are sufficient to underline the problem of the sterilization of carcasses of animals infected by FMDV. The experiments on the inactivation of the FMDV by gamma irradiation in vitro showed the same radiation sensitivity of the three types, O, A and C, of FMDV inaqueous solutions and showed that the fraction of surviving virus is an exponential function of the gamma-ray dose. The results obtained confirm the remarkable resistance of viruses to the effect of radiation. As far as the dry virus is concerned special tests indicated the necessity of greater doses for inactivating the same virus in the dry as opposed to the liquid state. In the third part the author studied the possibility of utilizing gamma rays for the sterilization of carcasses of infected (or suspected of being infected) FMDV animals using some tissues of infected animals (pigs) (blood, bone marrow, vertebrae, lymph nodes). The results obtained show that the inactivation of FMDV types O, A and C in the carcasses of infected animals can be made by treatment with gamma rays. (author)

  18. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease.

    Science.gov (United States)

    Parker, Krystal L; Kim, Youngcho; Alberico, Stephanie L; Emmons, Eric B; Narayanan, Nandakumar S

    2016-03-01

    Optogenetics refers to the ability to control cells that have been genetically modified to express light-sensitive ion channels. The introduction of optogenetic approaches has facilitated the dissection of neural circuits. Optogenetics allows for the precise stimulation and inhibition of specific sets of neurons and their projections with fine temporal specificity. These techniques are ideally suited to investigating neural circuitry underlying motor and cognitive dysfunction in animal models of human disease. Here, we focus on how optogenetics has been used over the last decade to probe striatal circuits that are involved in Parkinson disease, a neurodegenerative condition involving motor and cognitive abnormalities resulting from degeneration of midbrain dopaminergic neurons. The precise mechanisms underlying the striatal contribution to both cognitive and motor dysfunction in Parkinson disease are unknown. Although optogenetic approaches are somewhat removed from clinical use, insight from these studies can help identify novel therapeutic targets and may inspire new treatments for Parkinson disease. Elucidating how neuronal and behavioral functions are influenced and potentially rescued by optogenetic manipulation in animal models could prove to be translatable to humans. These insights can be used to guide future brain-stimulation approaches for motor and cognitive abnormalities in Parkinson disease and other neuropsychiatric diseases.

  19. How well do serodiagnostic testes predict the infection or disease status of animals?

    International Nuclear Information System (INIS)

    Serodiagnostic test results do not always predict the disease status of an animal as might be expected. When few false negative and few false positive test results are reported for a test (high test sensitivity and specificity), the assumption is that the test is a very accurate predictor of infection/disease status. This assumption is correct if the disease prevalence is high. However, when disease prevalence drops to, for instance, 0.1%, such as may occur after several years of a vaccination campaign, a test having a sensitivity of 99% and a specificity of 99% becomes a poor predictor of infected animals: in this scenario, a positive test result will be wrong 91% of the time. A negative test result, however, virtually always will correctly identify uninfected animals when prevalence of infection remains low. The purpose of this paper is to offer an intuitive approach toward an understanding of the statistical terminology associated with serodiagnostic test results. It also provides a simplified method for computing the reliability (predictive value) of test results. The differential diagnosis is better served when the strengths and weaknesses of serotest results are fully understood. (author). 11 refs, 5 tabs

  20. Perceptions of zoonotic and animal diseases in the Van Gujjar community of North India.

    Science.gov (United States)

    Wright, Alice; Thrusfield, Michael

    2016-01-01

    Humans living in and around forest areas are at increased risk of zoonotic disease transmission. The transhumant Van Gujjars of North India are one such population, but there is an absence of health data, including evidence of zoonotic diseases, in this community. Pastoral communities can have a wide breadth of knowledge of livestock diseases, but not necessarily of human diseases. This study investigated the perceptions that the Van Gujjars have specifically of zoonotic diseases, using participatory epidemiological methods, including semi-structured interviews, ranking, proportional piling, transect walks and direct observation, triangulated by informal interviews with local veterinarians. The community did not have a wide appreciation of zoonotic diseases, apart from rabies and potentially zoonotic skin diseases. In contrast, animal diseases were of much greater concern to the community; the locally-named surra (trypanosomiasis), ajar, khuriya (foot-and-mouth disease), dakhutra, gheru, taku, and 'blood in urine' (possibly babesiosis), being of most concern. A participatory epidemiological approach was found to be an effective method of data collection and analysis; and the findings suggest that access to health services, particularly veterinary health services, should be improved for Van Gujjars.

  1. The Impact of Farmers' Strategic Behavior on the Spread of Animal Infectious Diseases.

    Science.gov (United States)

    Tago, Damian; Hammitt, James K; Thomas, Alban; Raboisson, Didier

    2016-01-01

    One of the main strategies to control the spread of infectious animal diseases is the implementation of movement restrictions. This paper shows a loss in efficiency of the movement restriction policy (MRP) when behavioral responses of farmers are taken into account. Incorporating the strategic behavior of farmers in an epidemiologic model reveals that the MRP can trigger premature animal sales by farms at high risk of becoming infected that significantly reduce the efficacy of the policy. The results are validated in a parameterized network via Monte Carlo simulations and measures to mitigate the loss of efficiency of the MRP are discussed. Financial aid to farmers can be justified by public health concerns, not only for equity. This paper contributes to developing an interdisciplinary analytical framework regarding the expansion of infectious diseases combining economic and epidemiologic dimensions. PMID:27300368

  2. The Impact of Farmers’ Strategic Behavior on the Spread of Animal Infectious Diseases

    Science.gov (United States)

    Hammitt, James K.; Thomas, Alban; Raboisson, Didier

    2016-01-01

    One of the main strategies to control the spread of infectious animal diseases is the implementation of movement restrictions. This paper shows a loss in efficiency of the movement restriction policy (MRP) when behavioral responses of farmers are taken into account. Incorporating the strategic behavior of farmers in an epidemiologic model reveals that the MRP can trigger premature animal sales by farms at high risk of becoming infected that significantly reduce the efficacy of the policy. The results are validated in a parameterized network via Monte Carlo simulations and measures to mitigate the loss of efficiency of the MRP are discussed. Financial aid to farmers can be justified by public health concerns, not only for equity. This paper contributes to developing an interdisciplinary analytical framework regarding the expansion of infectious diseases combining economic and epidemiologic dimensions. PMID:27300368

  3. Diagnosis and therapy of oral cavity diseases in small domestic animals

    Directory of Open Access Journals (Sweden)

    Krstić Nikola

    2002-01-01

    Full Text Available In parallel with the stepped up urbanisation of modern man, there is an increasing number of house pets of different breeds and species who suffer certain biological and physiological changes because of the specific manner of breeding and upkeep. The altered conditions of their natural environment can lead to disorders in the animal genetic fund, which is why numerous diseases include cases of constitutional flaws (caries, periodontosis and related complications, cysts, abscesses, malformations of hereditary origin - hypodontia, andontia, impacted teeth, and others. The paper presents cases of the most frequent diseases of teeth and supporting tissues, as well as the optimal manner of therapy. It also points out certain limitations in practicing veterinary orthodontia aimed at avoiding situations when certain congenital or acquired anomalies are corrected but result in the animal no longer meeting the required standards for its species.

  4. Diabetes Mellitus Induces Alzheimer’s Disease Pathology: Histopathological Evidence from Animal Models

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kimura

    2016-04-01

    Full Text Available Alzheimer’s disease (AD is the major causative disease of dementia and is characterized pathologically by the accumulation of senile plaques (SPs and neurofibrillary tangles (NFTs in the brain. Although genetic studies show that β-amyloid protein (Aβ, the major component of SPs, is the key factor underlying AD pathogenesis, it remains unclear why advanced age often leads to AD. Interestingly, several epidemiological and clinical studies show that type II diabetes mellitus (DM patients are more likely to exhibit increased susceptibility to AD. Moreover, growing evidence suggests that there are several connections between the neuropathology that underlies AD and DM, and there is evidence that the experimental induction of DM can cause cognitive dysfunction, even in rodent animal models. This mini-review summarizes histopathological evidence that DM induces AD pathology in animal models and discusses the possibility that aberrant insulin signaling is a key factor in the induction of AD pathology.

  5. Isotope and radiation research on animal diseases and their vectors. Proceedings series

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    To solve the world-wide problems of famine, malnutrition and environmental pollution it is imperative that all techniques and resources for the protection of animals and plants be mobilized. N'gana (animal trypansomiasis) alone profoundly affects the socio-economic development of Africa. Its vector, the tsetse fly, is widespread and prevents agricultural development over much of this continent of 7 million square kilometres. To discuss these problems the symposium was convened by the International Atomic Energy Agency from 7 to 11 May 1979. It was an integral part of the IAEA and FAO's effort to promote a greater awareness of the actual and potential application of nuclear techniques in the resolution of problems in the control of arthropod vectors of animal diseases and of animal pathogens, and in pesticide management. A total of 58 participants from 19 countries attended, and 37 papers were presented, which covered a variety of topics, including the sterile insect technique as applied to tsetse flies. Several papers were presented covering its various aspects such as mass rearing, sterility induction, ecology, behavior and computer modelling. Other topics emphasized were pathogenesis and immunology of vector-borne diseases such as trypanosomiasis, anaplasmosis, babesiosis and leishmaniasis. Also included were presentations of insect repellents and the biotransformation and degradation of labelled pesticides.

  6. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals

    Directory of Open Access Journals (Sweden)

    Pit Sze Liew

    2015-01-01

    Full Text Available Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.

  7. One health: the importance of companion animal vector-borne diseases

    Directory of Open Access Journals (Sweden)

    Day Michael J

    2011-04-01

    Full Text Available Abstract The international prominence accorded the 'One Health' concept of co-ordinated activity of those involved in human and animal health is a modern incarnation of a long tradition of comparative medicine, with roots in the ancient civilizations and a golden era during the 19th century explosion of knowledge in the field of infectious disease research. Modern One Health tends to focus on zoonotic pathogens emerging from wildlife and production animal species, but one of the most significant One Health challenges is rabies for which there is a canine reservoir. This review considers the role of small companion animals in One Health and specifically addresses the major vector-borne infectious diseases that are shared by man, dogs and cats. The most significant of these are leishmaniosis, borreliosis, bartonellosis, ehrlichiosis, rickettsiosis and anaplasmosis. The challenges that lie ahead in this field of One Health are discussed, together with the role of the newly formed World Small Animal Veterinary Association One Health Committee.

  8. Induction of animal model of Graves' disease in BALB/c mice

    Institute of Scientific and Technical Information of China (English)

    Zhu-fang Tian; Bing-yin Shi; Xiao-yan Wu; Li Xu

    2009-01-01

    Objective To construct an animal model of Graves' disease (GD) by immunizing BALB/c mice with hM12 cells co-expressing major histocompatibility complex (MHC) class Ⅱ molecules and human thyrotropin receptor (TSHR) molecules. Methods BALB/c mice in experimental group (H-2d) were immunized with hM12 cells Intraper-itoncally every 2 weeks for six times, while mice in control group were immunized with M12 cells. Five weeks later, the thyroids were histologically examined, and serum samples were tested for thyroid-stimulating antibodies (TSAb) and thyroid hormone levels. Results One BALB/c mouse in experimental group developed Graves'-like disease. Total T4 and T3 levels in this mouse were above the upper limit of normal, TSAb activity was displayed in its serum. The thyroid histologically showed the features of thyroid hyperactivity including thyrocyte hypercellularity and colloid absorption.None of control mice developed Graves'-like disease. Conclusion An animal model with some characteristics of human Graves' disease was successfully induced and the model will facilitate studies aimed directly at understanding the patho-genesis of autoimmunity in Graves' disease.

  9. Neurodegeneration in an animal model of Parkinson's disease is exacerbated by a high-fat diet

    OpenAIRE

    Morris, Jill K.; Bomhoff, Gregory L.; Stanford, John A.; Geiger, Paige C.

    2010-01-01

    Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-...

  10. Needs for animal models of human diseases of the respiratory system.

    OpenAIRE

    Reid, L. M.

    1980-01-01

    Animal models are of two types those that occur spontaneously and those that the scientist produces by artefact. One value of spontaneously occurring models is that if pathogenetic mechanisms are identified, they give new leads for the study of human disease. There is a need for spontaneously occurring examples of so-called primary or idiopathic pulmonary fibrosis, pulmonary hypertension (arterial or venous), and emphysema. Acquired or artefactual models of each of these conditions are availa...

  11. Use of radiations and radioisotopes for investigating problems connected with parasitic diseases of animals in India

    International Nuclear Information System (INIS)

    The status of the present knowledge regarding the use of isotopes and radiations for studies of animal parasitic diseases in India is reviewed. The concepts in immunology of metazoan parasites with relevance to vaccination have been discussed. A brief review of radiation attenuated vaccines against certain economically important species of helminth parasites and the use of radioisotopes for pathophysiological investigations and for the study of anthelmintic activity is given. (auth.)

  12. Obstructive Sleep Apnea, Oxidative Stress and Cardiovascular Disease: Lessons from Animal Studies

    Science.gov (United States)

    Heitmann, Joerg; Seeger, Werner; Weissmann, Norbert; Schulz, Richard

    2013-01-01

    Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular (CV) diseases such as arterial hypertension, heart failure, and stroke. Based on human research, sympathetic activation, inflammation, and oxidative stress are thought to play major roles in the pathophysiology of OSA-related CV diseases. Animal models of OSA have shown that endothelial dysfunction, vascular remodelling, and systemic and pulmonary arterial hypertension as well as heart failure can develop in response to chronic intermittent hypoxia (CIH). The available animal data are clearly in favour of oxidative stress playing a key role in the development of all of these CV manifestations of OSA. Presumably, the oxidative stress is due to an activation of NADPH oxidase and other free oxygen radicals producing enzymes within the CV system as evidenced by data from knockout mice and pharmacological interventions. It is hoped that animal models of OSA-related CV disease will continue to contribute to a deeper understanding of their underlying pathophysiology and will foster the way for the development of cardioprotective treatment options other than conventional CPAP therapy. PMID:23533685

  13. Disease spread models in wild and feral animal populations: application of artificial life models.

    Science.gov (United States)

    Ward, M P; Laffan, S W; Highfield, L D

    2011-08-01

    The role that wild and feral animal populations might play in the incursion and spread of important transboundary animal diseases, such as foot and mouth disease (FMD), has received less attention than is warranted by the potential impacts. An artificial life model (Sirca) has been used to investigate this issue in studies based on spatially referenced data sets from southern Texas. An incursion of FMD in which either feral pig or deer populations were infected could result in between 698 and 1557 infected cattle and affect an area of between 166 km2 and 455 km2 after a 100-day period. Although outbreak size in deer populations can be predicted bythe size of the local deer population initially infected, the resulting outbreaks in feral pig populations are less predictable. Also, in the case of deer, the size of potential outbreaks might depend on the season when the incursion occurs. The impact of various mitigation strategies on disease spread has also been investigated. The approach used in the studies reviewed here explicitly incorporates the spatial distribution and relationships between animal populations, providing a new framework to explore potential impacts, costs, and control strategies.

  14. Obstructive Sleep Apnea, Oxidative Stress and Cardiovascular Disease: Lessons from Animal Studies

    Directory of Open Access Journals (Sweden)

    Rio Dumitrascu

    2013-01-01

    Full Text Available Obstructive sleep apnea (OSA is an independent risk factor for cardiovascular (CV diseases such as arterial hypertension, heart failure, and stroke. Based on human research, sympathetic activation, inflammation, and oxidative stress are thought to play major roles in the pathophysiology of OSA-related CV diseases. Animal models of OSA have shown that endothelial dysfunction, vascular remodelling, and systemic and pulmonary arterial hypertension as well as heart failure can develop in response to chronic intermittent hypoxia (CIH. The available animal data are clearly in favour of oxidative stress playing a key role in the development of all of these CV manifestations of OSA. Presumably, the oxidative stress is due to an activation of NADPH oxidase and other free oxygen radicals producing enzymes within the CV system as evidenced by data from knockout mice and pharmacological interventions. It is hoped that animal models of OSA-related CV disease will continue to contribute to a deeper understanding of their underlying pathophysiology and will foster the way for the development of cardioprotective treatment options other than conventional CPAP therapy.

  15. Associations between animal characteristic and environmental risk factors and bovine respiratory disease in Australian feedlot cattle.

    Science.gov (United States)

    Hay, K E; Morton, J M; Mahony, T J; Clements, A C A; Barnes, T S

    2016-03-01

    A prospective longitudinal study was conducted in a population of Australian feedlot cattle to assess associations between animal characteristic and environmental risk factors and risk of bovine respiratory disease (BRD). Animal characteristics were recorded at induction, when animals were individually identified and enrolled into study cohorts (comprising animals in a feedlot pen). Environmental risk factors included the year and season of induction, source region and feedlot region and summary variables describing weather during the first week of follow-up. In total, 35,131 animals inducted into 170 cohorts within 14 feedlots were included in statistical analyses. Causal diagrams were used to inform model building and multilevel mixed effects logistic regression models were fitted within the Bayesian framework. Breed, induction weight and season of induction were significantly and strongly associated with risk of BRD. Compared to Angus cattle, Herefords were at markedly increased risk (OR: 2.0, 95% credible interval: 1.5-2.6) and tropically adapted breeds and their crosses were at markedly reduced risk (OR: 0.5, 95% credible interval: 0.3-0.7) of developing BRD. Risk of BRD declined with increased induction weight, with cattle in the heaviest weight category (≥480kg) at moderately reduced risk compared to cattle weighing risk compared to animals inducted during spring. Knowledge of these risk factors may be useful in predicting BRD risk for incoming groups of cattle in Australian feedlots. This would then provide the opportunity for feedlot managers to tailor management strategies for specific subsets of animals according to predicted BRD risk.

  16. Studying human respiratory disease in animals--role of induced and naturally occurring models.

    Science.gov (United States)

    Williams, Kurt; Roman, Jesse

    2016-01-01

    Respiratory disorders like asthma, emphysema, and pulmonary fibrosis affect millions of Americans and many more worldwide. Despite advancements in medical research that have led to improved understanding of the pathophysiology of these conditions and sometimes to new therapeutic interventions, these disorders are for the most part chronic and progressive; current interventions are not curative and do not halt disease progression. A major obstacle to further advancements relates to the absence of animal models that exactly resemble the human condition, which delays the elucidation of relevant mechanisms of action, the unveiling of biomarkers of disease progression, and identification of new targets for intervention in patients. There are currently many induced animal models of human respiratory disease available for study, and even though they mimic features of human disease, discoveries in these models have not always translated into safe and effective treatments in humans. A major obstacle relates to the genetic, anatomical, and functional variations amongst species, which represents the major challenge to overcome when searching for appropriate models of respiratory disease. Nevertheless, rodents, in particular mice, have become the most common species used for experimentation, due to their relatively low cost, size, and adequate understanding of murine genetics, among other advantages. Less well known is the fact that domestic animals also suffer from respiratory illnesses similar to those found in humans. Asthma, bronchitis, pneumonia, and pulmonary fibrosis are among the many disorders occurring naturally in dogs, cats, and horses, among other species. These models might better resemble the human condition and are emphasized here, but further investigations are needed to determine their relevance.

  17. Studying human respiratory disease in animals--role of induced and naturally occurring models.

    Science.gov (United States)

    Williams, Kurt; Roman, Jesse

    2016-01-01

    Respiratory disorders like asthma, emphysema, and pulmonary fibrosis affect millions of Americans and many more worldwide. Despite advancements in medical research that have led to improved understanding of the pathophysiology of these conditions and sometimes to new therapeutic interventions, these disorders are for the most part chronic and progressive; current interventions are not curative and do not halt disease progression. A major obstacle to further advancements relates to the absence of animal models that exactly resemble the human condition, which delays the elucidation of relevant mechanisms of action, the unveiling of biomarkers of disease progression, and identification of new targets for intervention in patients. There are currently many induced animal models of human respiratory disease available for study, and even though they mimic features of human disease, discoveries in these models have not always translated into safe and effective treatments in humans. A major obstacle relates to the genetic, anatomical, and functional variations amongst species, which represents the major challenge to overcome when searching for appropriate models of respiratory disease. Nevertheless, rodents, in particular mice, have become the most common species used for experimentation, due to their relatively low cost, size, and adequate understanding of murine genetics, among other advantages. Less well known is the fact that domestic animals also suffer from respiratory illnesses similar to those found in humans. Asthma, bronchitis, pneumonia, and pulmonary fibrosis are among the many disorders occurring naturally in dogs, cats, and horses, among other species. These models might better resemble the human condition and are emphasized here, but further investigations are needed to determine their relevance. PMID:26467890

  18. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges.

    Science.gov (United States)

    Sangild, Per T; Ney, Denise M; Sigalet, David L; Vegge, Andreas; Burrin, Douglas

    2014-12-15

    Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the

  19. Effects of Low-Dose-Gamma Rays on the Immune System of Different Animal Models of Disease

    OpenAIRE

    Shimura, Noriko; Kojima, Shuji

    2014-01-01

    We reviewed the beneficial or harmful effects of low-dose ionizing radiation on several diseases based on a search of the literature. The attenuation of autoimmune manifestations in animal disease models irradiated with low-dose γ-rays was previously reported by several research groups, whereas the exacerbation of allergic manifestations was described by others. Based on a detailed examination of the literature, we divided animal disease models into two groups: one group consisting of collage...

  20. Derivation of neural stem cells from an animal model of psychiatric disease.

    Science.gov (United States)

    de Koning, A; Walton, N M; Shin, R; Chen, Q; Miyake, S; Tajinda, K; Gross, A K; Kogan, J H; Heusner, C L; Tamura, K; Matsumoto, M

    2013-01-01

    Several psychiatric and neurological diseases are associated with altered hippocampal neurogenesis, suggesting differing neural stem cell (NSC) function may play a critical role in these diseases. To investigate the role of resident NSCs in a murine model of psychiatric disease, we sought to isolate and characterize NSCs from alpha-calcium-/calmodulin-dependent protein kinase II heterozygous knockout (CaMK2α-hKO) mice, a model of schizophrenia/bipolar disorder. These mice display altered neurogenesis, impaired neuronal development and are part of a larger family possessing phenotypic and behavioral correlates of schizophrenia/bipolar disorder and a shared pathology referred to as the immature dentate gyrus (iDG). The extent to which NSCs contribute to iDG pathophysiology remains unclear. To address this, we established heterogeneous cultures of NSCs isolated from the hippocampal neuropoietic niche. When induced to differentiate, CaMK2α-hKO-derived NSCs recapitulate organotypic hippocampal neurogenesis, but generate larger numbers of immature neurons than wild-type (WT) littermates. Furthermore, mutant neurons fail to assume mature phenotypes (including morphology and MAP2/calbindin expression) at the same rate observed in WT counterparts. The increased production of immature neurons which fail to mature indicates that this reductionist model retains key animal- and iDG-specific maturational deficits observed in animal models and human patients. This is doubly significant, as these stem cells lack several developmental inputs present in vivo. Interestingly, NSCs were isolated from animals prior to the emergence of overt iDG pathophysiology, suggesting mutant NSCs may possess lasting intrinsic alterations and that altered NSC function may contribute to iDG pathophysiology in adult animals. PMID:24193728

  1. Agricultural production - Phase 2. Indonesia. National training course on ELISA for seradiagnosis of animal diseases (4)

    International Nuclear Information System (INIS)

    This report details and UNDP/FAO/IAEA consultancy undertaken from Monday 13 February to Saturday 25 February 1989. The purpose of the consultancy was to provide practical and theoretical training to Indonesian scientists in ELISA technology. This occurred under the program title of ''National Training Course on the Use of ELISA for Serodiagnosis of Animal Diseases, with Emphasis on Brucellosis''. The course was held in the Bacteriology Department, Research Institute for Veterinary Sciences (Balitvet), Bogor, Indonesia. The majority of the 19 participants came from the Regional Disease Investigation Centre Laboratories within Indonesia. The principal course instructor was Dr. Richard Jacobson who was assisted by Dr. Larry McClure, Dr. Susan Sutherland, Dr. Mark Eisler, Dr. Barry Patten and myself. The course concluded with a one day seminar organized by BATAN, DITKESWAN and BALITVET entitled ''Bovine Brucellosis: A Challenging Disease for Indonesia'' which was attended by approximately fifty people. Refs and tabs

  2. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  3. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface?

    Directory of Open Access Journals (Sweden)

    Kathrin Wippel

    Full Text Available BACKGROUND: Plant sucrose transporter activities were shown to respond to changes in the extracellular pH and redox status, and oxidizing compounds like glutathione (GSSG or H(2O(2 were reported to effect the subcellular targeting of these proteins. We hypothesized that changes in both parameters might be used to modulate the activities of competing sucrose transporters at a plant/pathogen interface. We, therefore, compared the effects of redox-active compounds and of extracellular pH on the sucrose transporters UmSRT1 and ZmSUT1 known to compete for extracellular sucrose in the Ustilago maydis (corn smut/Zea mays (maize pathosystem. METHODOLOGY/PRINCIPAL FINDINGS: We present functional analyses of the U. maydis sucrose transporter UmSRT1 and of the plant sucrose transporters ZmSUT1 and StSUT1 in Saccharomyces cerevisiae or in Xenopus laevis oocytes in the presence of different extracellular pH-values and redox systems, and study the possible effects of these treatments on the subcellular targeting. We observed an inverse regulation of host and pathogen sucrose transporters by changes in the apoplastic pH. Under none of the conditions analyzed, we could confirm the reported effects of redox-active compounds. CONCLUSIONS/SIGNIFICANCE: Our data suggest that changes in the extracellular pH but not of the extracellular redox status might be used to oppositely adjust the transport activities of plant and fungal sucrose transporters at the host/pathogen interface.

  4. Identified and unidentified challenges for reproductive biotechnologies regarding infectious diseases in animal and public health.

    Science.gov (United States)

    Thibier, M

    2001-12-01

    The aim of the present paper is to review the known and theoretical risks for in vivo derived and in vitro produced embryos as well as for nuclear transferred or transgenic embryos in terms of animal diseases or diseases of public health consequence. For in vivo derived embryos, a considerable number of experiments and scientific investigations have resulted in recommended guidelines and procedures that ensure a high level of safety. The effectiveness of these measures has been validated by field experience with the safe transfer of several million embryos over the past three decades. In vitro produced embryos have several characteristics that differentiate them from the former, in particular a structure of the zona pellucida that results in a more frequent possible association of pathogens with the embryo. However, the guidelines prescribed by the IETS, the international standard setting body (OIE) and existing national regulatory frameworks are in place to minimize the risk of disease transmission. No specific public health risks have been identified to date with respect to in vivo or in vitro derived embryos. In regard to nuclear transferred and transgenic embryos, theoretical risks have been identified in relation to the potential effects on some intrinsic viruses such as endogenous retroviruses but very little targeted experimental work has been carried out on infectious diseases that could have adverse consequences on animal or human health. Although there has been no report of such adverse consequences associated with the limited number of animals produced to date by such reproductive technologies, a precautionary approach is warranted given the potential negative impacts and it would be prudent to restrict at this stage, the international movement of such "manipulated" embryos.

  5. A Review of Exotic Animal Disease in Great Britain and in Scotland Specifically between 1938 and 2007

    OpenAIRE

    Peiso, Onneile O.; Bronsvoort, Barend M. de C.; Handel, Ian G.; Volkova, Victoriya V

    2011-01-01

    Background: Incursions of contagious diseases of livestock into disease-free zones are inevitable as long as the diseases persist elsewhere in the world. Knowledge of where, when and how incursions have occurred helps assess the risks, and regionalize preventative and reactive measures.Methodology: Based on reports of British governmental veterinary services, we review occurrence of the former OIE List A diseases, and of Aujeszky's disease, anthrax and bovine tuberculosis (bTB) in farm-animal...

  6. A Review of Exotic Animal Disease in Great Britain and in Scotland Specifically between 1938 and 2007

    OpenAIRE

    Peiso, Onneile O.; de C. Bronsvoort, Barend M.; Handel, Ian G.; Volkova, Victoriya V

    2011-01-01

    Background Incursions of contagious diseases of livestock into disease-free zones are inevitable as long as the diseases persist elsewhere in the world. Knowledge of where, when and how incursions have occurred helps assess the risks, and regionalize preventative and reactive measures. Methodology Based on reports of British governmental veterinary services, we review occurrence of the former OIE List A diseases, and of Aujeszky's disease, anthrax and bovine tuberculosis (bTB) in farm-animals...

  7. Farm-level plans and husbandry measures for aquatic animal disease emergencies.

    Science.gov (United States)

    Mohan, C V; Phillips, M J; Bhat, B V; Umesh, N R; Padiyar, P A

    2008-04-01

    Disease is one of the gravest threats to the sustainability of the aquaculture industry. A good understanding of biosecurity and disease causation is essential for developing and implementing farm-level plans and husbandry measures to respond to disease emergencies. Using epidemiological approaches, it is possible to identify pond- and farm-level risk factors for disease outbreaks and develop intervention strategies. Better management practices (BMPs) should be simple, science-based, cost-effective and appropriate to their context if farmers are to adopt and implement them. As part of a regional initiative by the Network of Aquaculture Centres in Asia-Pacific (NACA) to control aquatic animal diseases, effective extension approaches to promote the widespread adoption of BMPs have been developed in India, Indonesia, Vietnam and Thailand, and have proved their worth. A highly successful programme, which addresses rising concerns about the effect of disease on the sustainability of shrimp farming in India, is now in its seventh year. In this paper, the authors present a brief insight into the details of the programme, its outcomes and impact, the lessons learned and the way forward.

  8. Web-Based Surveillance Systems for Human, Animal, and Plant Diseases.

    Science.gov (United States)

    Madoff, Lawrence C; Li, Annie

    2014-02-01

    The emergence of infectious diseases, caused by novel pathogens or the spread of existing ones to new populations and regions, represents a continuous threat to humans and other species. The early detection of emerging human, animal, and plant diseases is critical to preventing the spread of infection and protecting the health of our species and environment. Today, more than 75% of emerging infectious diseases are estimated to be zoonotic and capable of crossing species barriers and diminishing food supplies. Traditionally, surveillance of diseases has relied on a hierarchy of health professionals that can be costly to build and maintain, leading to a delay or interruption in reporting. However, Internet-based surveillance systems bring another dimension to epidemiology by utilizing technology to collect, organize, and disseminate information in a more timely manner. Partially and fully automated systems allow for earlier detection of disease outbreaks by searching for information from both formal sources (e.g., World Health Organization and government ministry reports) and informal sources (e.g., blogs, online media sources, and social networks). Web-based applications display disparate information online or disperse it through e-mail to subscribers or the general public. Web-based early warning systems, such as ProMED-mail, the Global Public Health Intelligence Network (GPHIN), and Health Map, have been able to recognize emerging infectious diseases earlier than traditional surveillance systems. These systems, which are continuing to evolve, are now widely utilized by individuals, humanitarian organizations, and government health ministries.

  9. Clinical application of Patlak plot CT-GFR in animals with upper urinary tract disease.

    Science.gov (United States)

    Alexander, Kate; Dunn, Marilyn; Carmel, Eric Norman; Lavoie, Jean-Pierre; Del Castillo, Jérôme R E

    2010-01-01

    Glomerular filtration rate (GFR), an important parameter of renal function, is difficult to assess clinically. Serum creatinine and blood urea nitrogen measurements lack sensitivity, whereas radionuclide determination of GFR is not always available and requires postinjection patient isolation. GFR can be determined using computed tomography (CT), most commonly via Patlak plot analysis. Four adult cats, two adult dogs, and a foal underwent abdominal CT under general anesthesia for various diseases of the upper urinary tract. CT-GFR was measured with a single-slice dynamic acquisition and Patlak plot analysis. In five animals, the total CT-GFR appeared to be below normal, corresponding with mild (two animals) and moderate (two animals) increases of serum creatinine in four. In the two animals with normal or increased CT-GFR, serum creatinine was within the reference values. A significant negative logarithmic relationship was found between CT-GFR and serum creatinine values (P = 0.008; r2 = 0.75). No complications occurred during or following CT-GFR. CT examination provided clinically relevant information in 3/5 patients with possible ureteral obstruction and in 3/3 patients with suspected ureteral calculi. Single-slice dynamic CT-GFR was practical and provided clinically useful information in this small series of patients undergoing CT of the upper urinary tract. There was a significant relationship between CT-GFR and serum creatinine values, which supports the clinical potential of CT-GFR and justifies further investigation of this technique. PMID:20806874

  10. Emerging Animal Parasitic Diseases: A Global Overview and Appropriate Strategies for their Monitoring and Surveillance in Nigeria.

    Science.gov (United States)

    Atehmengo, Ngongeh L; Nnagbo, Chiejina S

    2014-01-01

    Emerging animal parasitic diseases are reviewed and appropriate strategies for efficient monitoring and surveillance in Nigeria are outlined. Animal and human parasitic infections are distinguished. Emerging diseases have been described as those diseases that are being recognised for the first time or diseases that are already recorded but their frequency and/or geographic range is being increased tremendously. Emergence of new diseases may be due to a number of factors such as the spread of a new infectious agent, recognition of an infection that has been in existence but undiagnosed, or when it is realised that an established disease has an infectious origin. The terms could also be used to describe the resurgence of a known infection after its incidence had been known to have declined. Emerging infections are compounding the control of infectious diseases and huge resources are being channeled to alleviate the rising challenge. The diseases are numerous and include helminth, protozoal / rickettsial and entomological. A list of parasitic emerging diseases in Nigeria is included. Globally occurring emerging parasitic diseases are also outlined. Emerging and re-emerging infections can be brought about by many factors including climate change and global warming, changes in biodiversity, population mobility, movement of animals, globalisation of commerce/trade and food supply, social and cultural factors such as food eating habits, religious beliefs, farming practices, trade of infected healthy animals, reduction in the available land for animals, immune-suppressed host and host density and misuse or over use of some drugs leading to drug resistance.

  11. [Application of CRISPR-Cas9 genome editing for constructing animal models of human diseases].

    Science.gov (United States)

    Ou, Zhanhui; Sun, Xiaofang

    2016-08-01

    The CRISPR-Cas9 system is a new targeted nuclease for genome editing, which can directly introduce modifications at the targeted genomic locus. The system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 in the genome. Upon targeting, Cas9 can generate DNA double-strand breaks (DSBs). As such DSBs are repaired by non-homologous end joining (NHEJ) or homology directed repair (HDR), therefore facilitates introduction of random or specific mutations, repair of endogenous mutations, or insertion of DNA elements. The system has been successfully used to generate gene targeted cell lines including those of human, animals and plants. This article reviews recent advances made in this rapidly evolving technique for the generation of animal models for human diseases.

  12. [Application of CRISPR-Cas9 genome editing for constructing animal models of human diseases].

    Science.gov (United States)

    Ou, Zhanhui; Sun, Xiaofang

    2016-08-10

    The CRISPR-Cas9 system is a new targeted nuclease for genome editing, which can directly introduce modifications at the targeted genomic locus. The system utilizes a short single guide RNA (sgRNA) to direct the endonuclease Cas9 in the genome. Upon targeting, Cas9 can generate DNA double-strand breaks (DSBs). As such DSBs are repaired by non-homologous end joining (NHEJ) or homology directed repair (HDR), therefore facilitates introduction of random or specific mutations, repair of endogenous mutations, or insertion of DNA elements. The system has been successfully used to generate gene targeted cell lines including those of human, animals and plants. This article reviews recent advances made in this rapidly evolving technique for the generation of animal models for human diseases. PMID:27455021

  13. Modeling vector-borne disease risk in migratory animals under climate change.

    Science.gov (United States)

    Hall, Richard J; Brown, Leone M; Altizer, Sonia

    2016-08-01

    Recent theory suggests that animals that migrate to breed at higher latitudes may benefit from reduced pressure from natural enemies, including pathogens ("migratory escape"), and that migration itself weeds out infected individuals and lowers infection prevalence ("migratory culling"). The distribution and activity period of arthropod disease vectors in temperate regions is expected to respond rapidly to climate change, which could reduce the potential for migratory escape. However, climate change could have the opposite effect of reducing transmission if differential responses in the phenology and distribution of migrants and disease vectors reduce their overlap in space and time. Here we outline a simple modeling framework for exploring the influence of climate change on vector-borne disease dynamics in a migratory host. We investigate two scenarios under which pathogen transmission dynamics might be mediated by climate change: (1) vectors respond more rapidly than migrants to advancing phenology at temperate breeding sites, causing peak susceptible host density and vector emergence to diverge ("migratory mismatch") and (2) reduced migratory propensity allows increased nonbreeding survival of infected hosts and larger breeding-site epidemics (loss of migratory culling, here referred to as "sedentary amplification"). Our results highlight the need for continued surveillance of climate-induced changes to migratory behavior and vector activity to predict pathogen prevalence and its impacts on migratory animals. PMID:27252225

  14. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Rosa M Villalba

    2015-09-01

    Full Text Available The striatum and the subthalamic nucleus are the main entry doors for extrinsic inputs to reach the basal ganglia circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and subthalamic nucleus of animal models of Parkinson’s disease, and that these changes may contribute to aberrant network neuronal activity in the basal ganglia-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and subthalamic nucleus in models of Parkinson’s disease. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the basal ganglia circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in Parkinson’s disease will be examined.

  15. Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens.

    Science.gov (United States)

    McArt, Scott H; Koch, Hauke; Irwin, Rebecca E; Adler, Lynn S

    2014-05-01

    Several floral microbes are known to be pathogenic to plants or floral visitors such as pollinators. Despite the ecological and economic importance of pathogens deposited in flowers, we often lack a basic understanding of how floral traits influence disease transmission. Here, we provide the first systematic review regarding how floral traits attract vectors (for plant pathogens) or hosts (for animal pathogens), mediate disease establishment and evolve under complex interactions with plant mutualists that can be vectors for microbial antagonists. Attraction of floral visitors is influenced by numerous phenological, morphological and chemical traits, and several plant pathogens manipulate floral traits to attract vectors. There is rapidly growing interest in how floral secondary compounds and antimicrobial enzymes influence disease establishment in plant hosts. Similarly, new research suggests that consumption of floral secondary compounds can reduce pathogen loads in animal pollinators. Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research. We conclude by discussing important implications of floral transmission of pathogens for agriculture, conservation and human health, suggesting promising avenues for future research in both basic and applied biology. PMID:24528408

  16. Acupuncture for Parkinson's Disease: a review of clinical, animal, and functional Magnetic Resonance Imaging studies.

    Science.gov (United States)

    Xiao, Danqing

    2015-12-01

    Acupuncture has been commonly used as an adjuvant therapy or monotherapy in the treatment of Parkinson's disease in China and in other countries. Animal studies have consistently show that this treatment is both neuroprotective, protecting dopaminergic neurons from degeneration and also restorative, restoring tyrosine hydroxylase positive dopaminergic terminals in striatum, resulting in improvements in motor performance in animal models of Parkinsonism. Studies show that this protection is mediated through the same common mechanisms as other neuroprotective agents, including anti-oxidative stress, anti-inflammatory and anti-apoptotic pathways at molecular and cellular levels. Restoration of function seems to involve activation of certain compensatory brain regions as a mechanism at the network level to correct the imbalances to the nervous system resulting from loss of dopaminergic neurons in substantia nigra. Clinical studies in China and Korea, in particular, have shown a positive benefit of acupuncture in treating Parkinson's disease, especially in reducing the doses of dopaminergic medications and the associated side effects. However, large and well-controlled clinical trials are still needed to further demonstrate the efficacy and effectiveness of acupuncture in the treatment of Parkinson's disease.

  17. Modeling HCV Disease in Animals: Virology, Immunology and Pathogenesis of HCV and GBV-B Infections

    Directory of Open Access Journals (Sweden)

    Cordelia eManickam

    2014-12-01

    Full Text Available Hepatitis C virus (HCV infection has become a global public health burden costing billions of dollars in health care annually. Even with rapidly advancing scientific technologies, this disease still looms large due to a lack of vaccines and affordable treatment options. The immune correlates of protection and predisposing factors towards chronicity remain major obstacles to development of HCV vaccines and immunotherapeutics due, at least in part, to lack of a tangible infection animal model. This review discusses the currently available animal models for HCV disease, with a primary focus on GB virus B (GBV-B infection of New World primates that recapitulates the dual hepacivirus phenotypes of acute viral clearance and chronic pathologic disease. HCV and GBV-B are also closely phylogenetically related, and advances in characterization of the immune systems of New World primates have already led to the use of this model for drug testing and vaccine trials. Herein, we discuss the benefits and caveats of the GBV-B infection model and discuss potential avenues for future development of novel vaccines and immunotherapies.

  18. Strengthening research on animal reproduction and disease diagnosis in Asia through the application of immunoassay techniques

    International Nuclear Information System (INIS)

    This publication contains the results presented by participants of a final Research Co-ordination Meeting which was held from 1 to 5 February 1993 at the University of Chulalongkorn, Bangkok, Thailand, as part of an FAO/IAEA Co-ordinated Research Programme on Strengthening Research on Animal Reproduction and Disease Diagnosis in Asia through the Application of Immunoassay Techniques. The purpose of this Programme was essentially to encourage national livestock production and veterinary institutes in Asia to conduct on-farm research into existing constraints on animal productivity and ways of reducing or removing these through low cost changes in management. Emphasis was given to defining existing levels of reproductive efficiency in indigeneous livestock and examining responses to nutritional or other interventions, and to exploring possibilities for using new approaches for diagnosing and controlling some diseases considered to impact adversely on Asian livestock production. Within the framework of all studies, immunoassay (radioimmunoassay and enzyme-linked immunosorbent assay) were employed for measuring levels of reproductive hormones or detecting antibodies to a variety of disease causing agents, the aim being to gain better insight into the underlying nature of the problems being encountered and reasons for the success or otherwise of approaches taken for their resolution. Refs, figs and tabs

  19. A branching model for the spread of infectious animal diseases in varying environments.

    Science.gov (United States)

    Trapman, Pieter; Meester, Ronald; Heesterbeek, Hans

    2004-12-01

    This paper is concerned with a stochastic model, describing outbreaks of infectious diseases that have potentially great animal or human health consequences, and which can result in such severe economic losses that immediate sets of measures need to be taken to curb the spread. During an outbreak of such a disease, the environment that the infectious agent experiences is therefore changing due to the subsequent control measures taken. In our model, we introduce a general branching process in a changing (but not random) environment. With this branching process, we estimate the probability of extinction and the expected number of infected individuals for different control measures. We also use this branching process to calculate the generating function of the number of infected individuals at any given moment. The model and methods are designed using important infections of farmed animals, such as classical swine fever, foot-and-mouth disease and avian influenza as motivating examples, but have a wider application, for example to emerging human infections that lead to strict quarantine of cases and suspected cases (e.g. SARS) and contact and movement restrictions. PMID:15565446

  20. Modeling vector-borne disease risk in migratory animals under climate change.

    Science.gov (United States)

    Hall, Richard J; Brown, Leone M; Altizer, Sonia

    2016-08-01

    Recent theory suggests that animals that migrate to breed at higher latitudes may benefit from reduced pressure from natural enemies, including pathogens ("migratory escape"), and that migration itself weeds out infected individuals and lowers infection prevalence ("migratory culling"). The distribution and activity period of arthropod disease vectors in temperate regions is expected to respond rapidly to climate change, which could reduce the potential for migratory escape. However, climate change could have the opposite effect of reducing transmission if differential responses in the phenology and distribution of migrants and disease vectors reduce their overlap in space and time. Here we outline a simple modeling framework for exploring the influence of climate change on vector-borne disease dynamics in a migratory host. We investigate two scenarios under which pathogen transmission dynamics might be mediated by climate change: (1) vectors respond more rapidly than migrants to advancing phenology at temperate breeding sites, causing peak susceptible host density and vector emergence to diverge ("migratory mismatch") and (2) reduced migratory propensity allows increased nonbreeding survival of infected hosts and larger breeding-site epidemics (loss of migratory culling, here referred to as "sedentary amplification"). Our results highlight the need for continued surveillance of climate-induced changes to migratory behavior and vector activity to predict pathogen prevalence and its impacts on migratory animals.

  1. Emerging and exotic zoonotic disease preparedness and response in the United States - coordination of the animal health component.

    Science.gov (United States)

    Levings, Randall L

    2012-09-01

    For the response to a zoonotic disease outbreak to be effective, animal health authorities and disease specialists must be involved. Animal health measures are commonly directed at known diseases that threaten the health of animals and impact owners. The measures have long been applied to zoonotic diseases, including tuberculosis and brucellosis, and can be applied to emerging diseases. One Health (veterinary, public, wildlife and environmental health) and all-hazards preparedness work have done much to aid interdisciplinary understanding and planning for zoonotic diseases, although further improvements are needed. Actions along the prevention, preparedness, response and recovery continuum should be considered. Prevention of outbreaks consists largely of import controls on animals and animal products and biosecurity. Preparedness includes situational awareness, research, tool acquisition, modelling, training and exercises, animal movement traceability and policy development. Response would include detection systems and specialized personnel, institutions, authorities, strategies, methods and tools, including movement control, depopulation and vaccination if available and appropriate. The specialized elements would be applied within a general (nationally standardized) system of response. Recovery steps begin with continuity of business measures during the response and are intended to restore pre-event conditions. The surveillance for novel influenza A viruses in swine and humans and the preparedness for and response to the recent influenza pandemic illustrate the cooperation possible between the animal and public health communities.

  2. Irradiated T. cruzi and resistant consomic animals can be useful in Chagas disease studies

    International Nuclear Information System (INIS)

    Human Chagas disease is considered the most significant parasitic disease in Latin America. It is estimated that 16-18 million people are infected by T. cruzi. As a consequence, approximately 50,000 deaths occur every year. The acute infection usually goes unrecognized and enters into a chronic stage that persists throughout the host's life span. However, roughly 30% of infected individuals eventually will develop disease with an array of possible manifestations affecting the heart, the digestive tract, and/or the peripheral nervous system. This disease is commonly modeled in inbred mice even though mouse strains used to simulate experimental infection vary considerably. In this way, Wrightsman and Trischmann showed that chromosome 17 was directly involved in a T. cruzi resistance, showing the influence of host's genetic constitution on disease severity. Additionally, in 2003, Passos and Graefe, working separately, quantified parasite burdens in resistant and susceptible strains and applied a backcross strategy to map the genomic loci linked to susceptibility and resistance in inbred mice. The genomes of the animals were scanned with microsatellite markers and the results found by these authors showed that the resistance mechanism is polygenic and is under the control of a complex network. In the particular case of Y strain, in vivo assays indicated that survival was related to the chromosomes 7,11,14,17 and 19. In order to evaluate the influence of each isolated chromosome as well as their interactions, we employed susceptible isogenic mice to construct consomic lineages for each one of those chromosomes. The consomic strains were injected with irradiated and native forms of Y strain T. cruzi, and the infectivity parameters were evaluated by quantitative methods. Radiation caused inability of trypanosomes to infect and kill mice, when these parasites were irradiated with 1 kGy of gamma rays from a 60Co source. In this experiment we used 101, 102, 103, 104 and 105

  3. From superspreaders to disease hotspots: linking transmission across hosts and space.

    Science.gov (United States)

    Paull, Sara H; Song, Sejin; McClure, Katherine M; Sackett, Loren C; Kilpatrick, A Marm; Johnson, Pieter T J

    2012-03-01

    Since the identification and imprisonment of "Typhoid Mary," a woman who infected at least 47 people with typhoid in the early 1900s, epidemiologists have recognized that 'superspreading' hosts play a key role in disease epidemics. Such variability in transmission also exists among species within a community (amplification hosts) and among habitat patches across a landscape (disease 'hotspots'), underscoring the need for an integrative framework for studying transmission heterogeneity. Here, we synthesize literature on human, plant, and animal diseases to evaluate the relative contributions of host, pathogen, and environmental factors in driving transmission heterogeneity across hosts and space. We show that host and spatial heterogeneity are closely linked and that quantitatively assessing the contribution of infectious individuals, species, or environmental patches to overall transmission can aid management strategies. We conclude by posing hypotheses regarding how pathogen natural history influences transmission heterogeneity and highlight emerging frontiers in the study of transmission heterogeneity. PMID:23482675

  4. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models

    Science.gov (United States)

    Di Pardo, Alba; Amico, Enrico; Maglione, Vittorio

    2016-01-01

    Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease. PMID:27766070

  5. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential

    Directory of Open Access Journals (Sweden)

    Jenny B. Lin

    2015-05-01

    Full Text Available Peripheral artery disease (PAD is a broad disorder encompassing multiple forms of arterial disease outside of the heart. As such, PAD development is a multifactorial process with a variety of manifestations. For example, aneurysms are pathological expansions of an artery that can lead to rupture, while ischemic atherosclerosis reduces blood flow, increasing the risk of claudication, poor wound healing, limb amputation, and stroke. Current PAD treatment is often ineffective or associated with serious risks, largely because these disorders are commonly undiagnosed or misdiagnosed. Active areas of research are focused on detecting and characterizing deleterious arterial changes at early stages using non-invasive imaging strategies, such as ultrasound, as well as emerging technologies like photoacoustic imaging. Earlier disease detection and characterization could improve interventional strategies, leading to better prognosis in PAD patients. While rodents are being used to investigate PAD pathophysiology, imaging of these animal models has been underutilized. This review focuses on structural and molecular information and disease progression revealed by recent imaging efforts of aortic, cerebral, and peripheral vascular disease models in mice, rats, and rabbits. Effective translation to humans involves better understanding of underlying PAD pathophysiology to develop novel therapeutics and apply non-invasive imaging techniques in the clinic.

  6. Herd-level interpretation of test results for epidemiologic studies of animal diseases

    DEFF Research Database (Denmark)

    Christensen, Jette; Gardner, Ian A.

    2000-01-01

    Correct classification of the true status of herds is an important component of epidemiologic studies and animal disease-control programs. We review theoretical aspects of herd-level testing through consideration of test performance (herd-level sensitivity, specificity and predictive values......), the factors affecting these estimates, and available software for calculations. We present new aspects and considerations concerning the effect of precision and bias in estimation of individual-test performance on herd-test performance and suggest methods (pooled testing, targeted sampling of subpopulations...... with higher prevalence, and use of combinations of tests) to improve herd-level sensitivity when the expected within-herd prevalence is low....

  7. Induction of animal model of Graves disease in BALB/c mice

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To construct an animal model of Graves' disease(GD)by immunizing BALB/c mice with hM12 cells co-expressing major histocompatibility complex(MHC)class II molecules and human thyrotropin receptor(TSHR)molecules.Methods BALB/c mice in experimental group(H-2d)were immunized with hM12 cells intraperitoneally every 2 weeks for six times,while mice in control group were immunized with M12 cells.Five weeks later,the thyroids were histologically examined,and serum samples were tested for thyroid-stimulatin...

  8. The history of the Conference of Research Workers in Animal Diseases (CRWAD) 1920–2014

    OpenAIRE

    Ellis, Robert P.; Ellis, L. Susanne Squires; Kohler, Erwin M.

    2015-01-01

    The following history has been compiled and written by the authors. The historical facts are available from the Conference of Research Workers in Animal Diseases (CRWAD) archives, dating back to letters and summaries written by the founders, and by a few of the Secretary-Treasurers from the early decades through 2014. The Organization and Purpose: The CRWAD is a non-profit organization and has been since its origin. The sole purpose of CRWAD is to discuss and disseminate the most current rese...

  9. Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products.

    Science.gov (United States)

    Cavagnaro, Joy; Silva Lima, Beatriz

    2015-07-15

    The utility of animal models of disease for assessing the safety of novel therapeutic modalities has become an increasingly important topic of discussion as research and development efforts focus on improving the predictive value of animal studies to support accelerated clinical development. Medicines are approved for marketing based upon a determination that their benefits outweigh foreseeable risks in specific indications, specific populations, and at specific dosages and regimens. No medicine is 100% safe. A medicine is less safe if the actual risks are greater than the predicted risks. The purpose of preclinical safety assessment is to understand the potential risks to aid clinical decision-making. Ideally preclinical studies should identify potential adverse effects and design clinical studies that will minimize their occurrence. Most regulatory documents delineate the utilization of conventional "normal" animal species to evaluate the safety risk of new medicines (i.e., new chemical entities and new biological entities). Animal models of human disease are commonly utilized to gain insight into the pathogenesis of disease and to evaluate efficacy but less frequently utilized in preclinical safety assessment. An understanding of the limitations of the animal disease models together with a better understanding of the disease and how toxicity may be impacted by the disease condition should allow for a better prediction of risk in the intended patient population. Importantly, regulatory authorities are becoming more willing to accept and even recommend data from experimental animal disease models that combine efficacy and safety to support clinical development.

  10. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies.

    Science.gov (United States)

    Bonita, Jennifer Stella; Mandarano, Michael; Shuta, Donna; Vinson, Joe

    2007-03-01

    Coffee is a commonly consumed beverage with potential health benefits. This review will focus on cardiovascular disease. There are three preparations of coffee that are commonly consumed and thus worthy of examination; boiled unfiltered coffee, filtered coffee, and decaffeinated coffee. Coffee has over a thousand chemicals, many formed during the roasting process. From a physiological point of view, the potential bioactives are caffeine, the diterpenes cafestol and kahweol found in the oil, and the polyphenols, most notably chlorogenic acid. We will examine coffee and its bioactives and their connection with and effect on the risk factors which are associated with heart disease such as lipids, blood pressure, inflammation, endothelial function, metabolic syndrome and potentially protective in vivo antioxidant activity. These will be critically examined by means of in vitro studies, cell experiments, animal supplementation, epidemiology, and the most definitive evidence, human trials.

  11. Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models.

    Science.gov (United States)

    Zischka, Hans; Lichtmannegger, Josef

    2014-05-01

    In Wilson's disease (WD) and related animal models, liver mitochondria are confronted with an increasing copper burden. Physiologically, the mitochondrial matrix may act as a dynamic copper buffer that efficiently distributes the metal to its copper-dependent enzymes. Mitochondria are the first responders in the event of an imbalanced copper homeostasis, as typical changes of their structure are among the earliest observable pathological features in WD. These changes are due to accumulating copper in the mitochondrial membranes and can be reversed by copper-chelating therapies. At the early stage, copper-dependent oxidative stress does not seem to occur. On the contrary, however, when copper is massively deposited in mitochondria, severe structural and respiratory impairments are observed upon disease progression. This provokes reactive oxygen species and consequently causes the mitochondrial membranes to disintegrate, which triggers hepatocyte death. Thus, in WD mitochondria are prime targets for copper, and the excessive copper burden causes their destruction, subsequently provoking tissue failure and death.

  12. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza

    DEFF Research Database (Denmark)

    Uttenthal, Åse; Parida, Satya; Rasmussen, Thomas Bruun;

    2010-01-01

    The prophylactic use of vaccines against exotic viral infections in production animals is undertaken exclusively in regions where the disease concerned is endemic. In such areas, the infection pressure is very high and so, to assure optimal protection, the most efficient vaccines are used. However......, in areas considered to be free from these diseases and in which there is the possibility of only limited outbreaks, the use of Differentiation of Infected from Vaccinated Animals (DIVA) or marker vaccines allows for vaccination while still retaining the possibility of serological surveillance...... for the presence of infection. This literature review describes the current knowledge on the use of DIVA diagnostic strategies for three important transboundary animal diseases: foot-and-mouth disease in cloven-hoofed animals, classical swine fever in pigs and avian influenza in poultry....

  13. Aspergillus and aspergilloses in wild and domestic animals : a global health concern with parallels to human disease

    NARCIS (Netherlands)

    Seyedmousavi, Seyedmojtaba; Guillot, Jacques; Arné, Pascal; de Hoog, G Sybren; Mouton, Johan W; Melchers, Willem J G; Verweij, Paul E

    2015-01-01

    The importance of aspergillosis in humans and various animal species has increased over the last decades. Aspergillus species are found worldwide in humans and in almost all domestic animals and birds as well as in many wild species, causing a wide range of diseases from localized infections to fata

  14. Update on epidemiology and control of Foot and Mouth Disease - A menace to international trade and global animal enterprise

    Directory of Open Access Journals (Sweden)

    P. M. Depa

    Full Text Available Foot and mouth disease (FMD is one of the most economically and socially devastating disease affecting animal agriculture throughout the world. This review describes economic impact of disease outbreaks, an update of recent findings in epidemiology of FMD both at International and national level and control of this disease. The etiological agent (FMD virus is examined in detail at genetic and molecular characterization level and in terms of antigenic diversity. [Vet World 2012; 5(11.000: 694-704

  15. Robust detection of exotic infectious diseases in animal herds : a comparative study of three decision methodologies under severe uncertainty.

    OpenAIRE

    Troffaes, Matthias C. M.; Gosling, John Paul

    2012-01-01

    When animals are transported and pass through customs, some of them may have dangerous infectious diseases. Typically, due to the cost of testing, not all animals are tested: a reasonable selection must be made. How to test effectively whilst avoiding costly disease outbreaks? First, we extend a model proposed in the literature for the detection of invasive species to suit our purpose. Secondly, we explore and compare three decision methodologies on the problem at hand, namely, Bayesian stati...

  16. OIE activities for the global improvement of animal disease detection and control

    International Nuclear Information System (INIS)

    Full text: The OIE, the World Organisation for Animal Health, which was created in 1924 to prevent animal diseases from spreading around the world has, since then, enlarged its mandate to the improvement of animal health worldwide. The OIE is an intergovernmental organisation with a total of 172 Member Countries and Territories. It is recognised by the sanitary and phytosanitary agreement (SPS agreement) of the World Trade Organization (WTO) as the international reference organisation for international standards, guidelines and recommendations related to global animal health with the main purpose of facilitating international trade in animals and animal products. The OIE develops and publishes two types of international health standards for animals and animal products - trade standards and biological standards. These standards are developed through the elected Specialist Commissions and are adopted democratically by OIE Members during the annual OIE General Assembly. They are developed for use not only by the veterinary services of Members, but also by the private sector. For strengthening surveillance of disease, public-private sector partnership is essential and should be based on the collaboration between official veterinarians, private veterinarians, farmers and other stakeholders. The most effective way of detecting, diagnosing, controlling and responding to animal disease and zoonotic incursions, is to ensure good veterinary governance in Member Countries. Integral to good governance is the ability and capacity of all Member Countries to comply with the guidelines, recommendations and international standards of the OIE and to establish efficient chains of command. The OIE has therefore embarked on a unique strategic initiative to develop an assessment and evaluation system to assist countries to identify weaknesses in their system that makes it difficult for them to comply with the minimum standards, guidelines and recommendations of the OIE. The evaluation

  17. Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases.

    Science.gov (United States)

    Yu, Jiujiang; Cleveland, Thomas E; Nierman, William C; Bennett, Joan W

    2005-12-01

    Aspergillus flavus is an imperfect filamentous fungus that is an opportunistic pathogen causing invasive and non-invasive aspergillosis in humans, animals, and insects. It also causes allergic reactions in humans. A. flavus infects agricultural crops and stored grains and produces the most toxic and potent carcinogic metabolites such as aflatoxins and other mycotoxins. Breakthroughs in A. flavus genomics may lead to improvement in human health, food safety, and agricultural economy. The availability of A. flavus genomic data marks a new era in research for fungal biology, medical mycology, agricultural ecology, pathogenicity, mycotoxin biosynthesis, and evolution. The availability of whole genome microarrays has equipped scientists with a new powerful tool for studying gene expression under specific conditions. They can be used to identify genes responsible for mycotoxin biosynthesis and for fungal infection in humans, animals and plants. A. flavus genomics is expected to advance the development of therapeutic drugs and to provide information for devising strategies in controlling diseases of humans and other animals. Further, it will provide vital clues for engineering commercial crops resistant to fungal infection by incorporating antifungal genes that may prevent aflatoxin contamination of agricultural harvest. PMID:16499411

  18. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Masoud Soheili

    2015-11-01

    Full Text Available Objective(s:Neurodegenerative Alzheimer’s disease (AD is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP, an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia on induction of LTP in the CA1 area of hippocampus. In response to stimulation of the Schaffer collaterals the baseline or tetanized field extracellular postsynaptic potentials (fEPSPs were recorded in the CA1 area. Materials and Methods: The electrophysiological recordings were carried out in four groups of rats; two control groups including the vehicle (CON and lavender (CE treated rats and two Alzheimeric groups including the vehicle (ALZ and lavender (AE treated animals. Results: The extract inefficiently affected the baseline responses in the four testing groups. While the fEPSPs displayed a considerable LTP in the CON animals, no potentiation was evident in the tetanized responses in the ALZ rats. The herbal medicine effectively restored LTP in the AE group and further potentiated fEPSPs in the CE group. Conclusion:The positive effect of the lavender extract on the plasticity of synaptic transmission supports its previously reported behavioral effects on improvement of impaired spatial memory in the Alzheimeric animals.

  19. Clinical assessment of freezing of gait in Parkinson's disease from computer-generated animation.

    Science.gov (United States)

    Morris, Tiffany R; Cho, Catherine; Dilda, Valentina; Shine, James M; Naismith, Sharon L; Lewis, Simon J G; Moore, Steven T

    2013-06-01

    The current 'gold standard' for clinical evaluation of freezing of gait (FOG) in Parkinson's disease (PD) is determination of the number of FOG episodes from video by independent raters. We have previously described a robust technique for objective FOG assessment from lower-limb acceleration. However, there is no existing method for validation of autonomous FOG measures in the absence of video documentation. In this study we compared the results of clinical evaluation of FOG from computer-generated animations (derived from body-mounted inertial sensors) during a timed up and go test with the 'gold standard' of clinical video assessment, utilizing a cohort of 10 experienced raters from four PD centers. Agreement between the 10 clinical observers for scoring of FOG from computer animations was more robust for the relative duration of freeze events (percent time frozen; intraclass correlation coefficient of 0.65) than number of FOG episodes, and was comparable with clinical evaluation of the patient from video (intraclass correlation coefficient 0.73). This result suggests that percent time frozen should be considered (along with number of FOG events) to better convey FOG severity. The ability of clinical observers to quantify FOG from computer-generated animation derived from lower-limb motion data provides a potential approach to validation of accelerometry-based FOG identification outside of the clinic.

  20. Protection of the consumer from enteric diseases caused by foods of animal origin

    International Nuclear Information System (INIS)

    The correlation between actual enteric diseases and their sources in foods of animal origin is not directly established, since the physician does not always receive the complaint, and rarely has a chance to actually test the food consumed. However, the incidence of various pathogenic microorganisms in such foods as well as that in humans who have consumed such foods are related and therefore measures must be applied to reduce exposure of humans to contaminated foods. Conventional means of intervention and decontamination from enteric pathogenic microorganisms are discussed. The advantages of ionizing radiations compared to conventional methods are pointed out, and the reasons for its limited application mainly because of public non-acceptance, are enumerated. Ways to surmount this resistance are suggested. The irradiation technology, its parameters, and its effects as regards reduction of food microorganisms, are described and microbiological standards for control of the application of this technology are suggested. It is concluded that combination of conventional with irradiation technology can completely eliminate gastro-enteric diseases transmitted via foods of animal origin

  1. Multi Criteria Decision Making to evaluate control strategies of contagious animal diseases.

    Science.gov (United States)

    Mourits, M C M; van Asseldonk, M A P M; Huirne, R B M

    2010-09-01

    The decision on which strategy to use in the control of contagious animal diseases involves complex trade-offs between multiple objectives. This paper describes a Multi Criteria Decision Making (MCDM) application to illustrate its potential support to policy makers in choosing the control strategy that best meets all of the conflicting interests. The presented application focused on the evaluation of alternative strategies to control Classical Swine Fever (CSF) epidemics within the European Union (EU) according to the preferences of the European Chief Veterinary Officers (CVO). The performed analysis was centred on the three high-level objectives of epidemiology, economics and social ethics. The appraised control alternatives consisted of the EU compulsory control strategy, a pre-emptive slaughter strategy, a protective vaccination strategy and a suppressive vaccination strategy. Using averaged preference weights of the elicited CVOs, the preference ranking of the control alternatives was determined for six EU regions. The obtained results emphasized the need for EU region-specific control. Individual CVOs differed in their views on the relative importance of the various (sub)criteria by which the performance of the alternatives were judged. Nevertheless, the individual rankings of the control alternatives within a region appeared surprisingly similar. Based on the results of the described application it was concluded that the structuring feature of the MCDM technique provides a suitable tool in assisting the complex decision making process of controlling contagious animal diseases.

  2. Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies

    Institute of Scientific and Technical Information of China (English)

    Lin-hui WANG; Zheng-hong QIN

    2006-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, which is caused by an abnormal expansion of Cytosine Adenine Guanine (CAG) trinucleotide repeat in the gene making huntingtin (Htt). Despite intensive research efforts devoted to investigate molecular mechanisms of pathogenesis, effective therapy for this devastating disease is still not available at present. The development of various animal models of HD has offered alternative approaches in the study of HD molecular pathology. Many HD models, including chemical-induced models and genetic models, mimic some aspects of HD symptoms and pathology. To date, however, there is no ideal model which replicates all of the essential features of neuropathology and progressive motor and cognitive impairments of human HD. As a result, our understanding of molecular mechanisms of pathogenesis in HD is still limited. A new model is needed in order to uncover the pathogenesis and to develop novel therapies for HD. In this review we discussed usefulness and limitations of various animal and cellular models of HD in uncovering molecular mechanisms of pathogenesis and developing novel therapies for HD.

  3. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    Science.gov (United States)

    Duffield, Jeremy S; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-21, the most comprehensively studied microRNA in the kidney so far. MicroRNA-21 is expressed widely in healthy kidney but studies from knockout mice indicate it is largely inert. Although microRNA-21 is upregulated in many cell compartments including leukocytes, epithelial cells and myofibroblasts, the inert microRNA-21 also appears to become activated, by unclear mechanisms. Mice lacking microRNA-21 are protected from kidney injury and fibrosis in several distinct models of kidney disease, and systemically administered oligonucleotides that specifically bind to the active site in microRNA-21, inhibiting its function, recapitulate the genetic deletion of microRNA-21, suggesting inhibitory oligonucleotides may have therapeutic potential. Recent studies of microRNA-21 targets in kidney indicate that it normally functions to silence metabolic pathways including fatty acid metabolism and pathways that prevent Reactive Oxygen Species generation in peroxisomes and mitochondria in epithelial cells and myofibroblasts. Targeting specific pathogenic microRNAs in a specific manner is feasible in vivo and may be a new therapeutic target in disease of the kidney PMID:25018773

  4. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    gene candidates and animal models of human disease, which may shorten the lengthy path to identification and understanding of the genetic basis of human disease.

  5. Cryptic Diversity of Malassezia pachydermatis from Healthy and Diseased Domestic Animals.

    Science.gov (United States)

    Puig, Laura; Castellá, Gemma; Cabañes, F Javier

    2016-10-01

    Malassezia pachydermatis is part of the normal cutaneous microbiota of wild and domestic carnivores. However, under certain conditions this yeast can overproliferate and cause several diseases in its host, mainly otitis and dermatitis in dogs. The aim of this study was to conduct a molecular characterization of M. pachydermatis isolates from healthy and diseased domestic animals, in order to assess the molecular diversity and phylogenetic relationship within this species. The large subunit (LSU) and the internal transcribed spacer (ITS) of ribosomal RNA, chitin synthase 2 (CHS2) and β-tubulin genes from sixteen strains isolated from dogs, cats, a goat, a pig and a horse were sequenced. A different number of types of sequences were identified for each target gene, including some types described for the first time. Five sequence types were characterized for the LSU, eleven for the ITS region, nine for CHS2 and eight for β-tubulin. A multilocus analysis was performed including the four genes, and the resulting phylogenetic tree revealed fifteen genotypes. Genotypes were distributed in two well-supported clades. One clade comprised strains isolated from different domestic animals and a strongly supported cluster constituted by strains isolated from cats. The second clade included strains isolated mainly from dogs and an outlier strain isolated from a horse. No apparent association could be observed between the health status of the animal hosts and concrete strains. The multilocus phylogenetic analysis is a useful tool to assess the intraspecific variation within this species and could help understand the ecology, epidemiology and speciation process of M. pachydermatis. PMID:27283291

  6. They see a rat, we seek a cure for diseases: the current status of animal experimentation in medical practice.

    Science.gov (United States)

    Kehinde, Elijah O

    2013-01-01

    The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224

  7. National biosecurity approaches, plans and programmes in response to diseases in farmed aquatic animals: evolution, effectiveness and the way forward

    DEFF Research Database (Denmark)

    Håstein, T.; Binde, M.; Hine, M.;

    2008-01-01

    and Manual of Diagnostic Tests for Aquatic Animals serve as an excellent framework. Using examples from a few countries and selected diseases, this paper provides a general overview of the development of approaches to implementing biosecurity strategies, including those emerging in the national legislation......The rapid increase in aquaculture production and trade, and increased attention to the negative effects of disease, are becoming stimuli for developing national biosecurity strategies for farmed fisheries, for which the World Organisation for Animal Health (OIE) Aquatic Animal Health Code...

  8. Disease Spread through Animal Movements: A Static and Temporal Network Analysis of Pig Trade in Germany

    Science.gov (United States)

    Lentz, Hartmut H. K.; Koher, Andreas; Hövel, Philipp; Gethmann, Jörn; Sauter-Louis, Carola; Selhorst, Thomas; Conraths, Franz J.

    2016-01-01

    Background Animal trade plays an important role for the spread of infectious diseases in livestock populations. The central question of this work is how infectious diseases can potentially spread via trade in such a livestock population. We address this question by analyzing the underlying network of animal movements. In particular, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network. Methodology The considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account. Findings We find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume do barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size. PMID:27152712

  9. Integrating wildlife issues into the prevention, control and response to transboundary animal diseases

    International Nuclear Information System (INIS)

    Full text: The Emergency Prevention System (EMPRES) Wildlife Unit of the Food and Agriculture Organization of the United Nations (FAO) was established to investigate the role that wildlife species play in diseases that impact livestock and agriculture based livelihoods. Land-use changes and the competition for natural resources are bringing human populations, agricultural lands and livestock into closer contact with wildlife. This increased contact creates opportunities for the transmission of endemic and newly emerging infectious diseases between livestock, wildlife and humans. It is clear that there is a need to establish long-term, sustainable wildlife disease monitoring programs globally, with a focus on understanding the ecology and epidemiology of diseases between domestic and wild animals. With the emergence of highly pathogenic avian influenza (HPAI) H5N1 it became apparent that multidisciplinary in-country and regional capacity building was necessary amongst, biologists, veterinarians, ornithologist and others. To date, the Wildlife Unit that has coordinated, facilitated, or implemented training of more than 1,000 in-country nationals from over 100 countries worldwide on wildlife disease surveillance. The EMPRES Wildlife Unit is leading and facilitating a range of collaborative activities to study the epidemiology and ecology of HPAI H5N1 in wild birds, migratory routes, habitat use and the role wild birds may play in virus introduction and movement. FAO has deployed almost 400 transmitters in 9 countries and is monitoring global migratory bird movements across more than 40 countries to determine whether wild bird movements are temporally or spatially associated with HPAI H5N1 outbreaks. An overview of the Wildlife unit activities will be presented, along with insights on the role of wild birds in the transmission and spread of HPAI H5N1- an area that has been intensively studied over the past several years. (author)

  10. Aspergillus and aspergilloses in wild and domestic animals: a global health concern with parallels to human disease.

    Science.gov (United States)

    Seyedmousavi, Seyedmojtaba; Guillot, Jacques; Arné, Pascal; de Hoog, G Sybren; Mouton, Johan W; Melchers, Willem J G; Verweij, Paul E

    2015-11-01

    The importance of aspergillosis in humans and various animal species has increased over the last decades. Aspergillus species are found worldwide in humans and in almost all domestic animals and birds as well as in many wild species, causing a wide range of diseases from localized infections to fatal disseminated diseases, as well as allergic responses to inhaled conidia. Some prevalent forms of animal aspergillosis are invasive fatal infections in sea fan corals, stonebrood mummification in honey bees, pulmonary and air sac infection in birds, mycotic abortion and mammary gland infections in cattle, guttural pouch mycoses in horses, sinonasal infections in dogs and cats, and invasive pulmonary and cerebral infections in marine mammals and nonhuman primates. This article represents a comprehensive overview of the most common infections reported by Aspergillus species and the corresponding diseases in various types of animals.

  11. Diagnosis of animal diseases using nuclear and related techniques: Developments and trends

    International Nuclear Information System (INIS)

    Nuclear techniques such as radioimmune precipitation, radioimmunoassay, DNA cloning and amino acid sequencing have led to a greater understanding of protein structure and function, antigenic variation and the immune response to infection. Knowledge gained from the use of this technology has led to the development of improved diagnostic assays. Although radioimmunoassay has been used for animal disease diagnosis for many years, more recently it has been replaced by the enzyme linked immunosorbent assay (ELISA). The ELISA offers advantages in speed of reading and longer reagent shelf life and obviates the use of radiochemicals. This is particularly important in developing countries, which may have no facilities for storage, handling and disposal of radioactive materials. In the case of rinderpest diagnosis, taken as an example, the virus neutralization test was replaced by a simple indirect ELISA for seromonitoring throughout the Pan-African Rinderpest Campaign. In the near future, this will be replaced by a competitive ELISA using a rinderpest specific monoclonal antibody, which will offer significant advantages in sensitivity and specificity. In the future it may be possible to replace the rinderpest antigen with vector expressed proteins or synthetic polypeptides. More recent developments such as the 'amplified' ELISA and the use of fluorogenic and bioluminescent substrates may further improve disease diagnosis. The knowledge gained from the use of modern technology is essential to the development of improved diagnostic assays which in turn will lead to improved disease diagnosis and control. (author). 9 refs

  12. Follicular Helper CD4+ T Cells in Human Neuroautoimmune Diseases and Their Animal Models

    Directory of Open Access Journals (Sweden)

    Xueli Fan

    2015-01-01

    Full Text Available Follicular helper CD4+ T (TFH cells play a fundamental role in humoral immunity deriving from their ability to provide help for germinal center (GC formation, B cell differentiation into plasma cells and memory cells, and antibody production in secondary lymphoid tissues. TFH cells can be identified by a combination of markers, including the chemokine receptor CXCR5, costimulatory molecules ICOS and PD-1, transcription repressor Bcl-6, and cytokine IL-21. It is difficult and impossible to get access to secondary lymphoid tissues in humans, so studies are usually performed with human peripheral blood samples as circulating counterparts of tissue TFH cells. A balance of TFH cell generation and function is critical for protective antibody response, whereas overactivation of TFH cells or overexpression of TFH-associated molecules may result in autoimmune diseases. Emerging data have shown that TFH cells and TFH-associated molecules may be involved in the pathogenesis of neuroautoimmune diseases including multiple sclerosis (MS, neuromyelitis optica (NMO/neuromyelitis optica spectrum disorders (NMOSD, and myasthenia gravis (MG. This review summarizes the features of TFH cells, including their development, function, and roles as well as TFH-associated molecules in neuroautoimmune diseases and their animal models.

  13. Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease.

    Science.gov (United States)

    Herrera, Andrea; Muñoz, Patricia; Paris, Irmgard; Díaz-Veliz, Gabriela; Mora, Sergio; Inzunza, Jose; Hultenby, Kjell; Cardenas, Cesar; Jaña, Fabián; Raisman-Vozari, Rita; Gysling, Katia; Abarca, Jorge; Steinbusch, Harry W M; Segura-Aguilar, Juan

    2016-09-01

    L-Dopa continues to be the gold drug in Parkinson's disease (PD) treatment from 1967. The failure to translate successful results from preclinical to clinical studies can be explained by the use of preclinical models which do not reflect what happens in the disease since these induce a rapid and extensive degeneration; for example, MPTP induces a severe Parkinsonism in only 3 days in humans contrasting with the slow degeneration and progression of PD. This study presents a new anatomy and develops preclinical model based on aminochrome which induces a slow and progressive dysfunction of dopaminergic neurons. The unilateral injection of aminochrome into rat striatum resulted in (1) contralateral rotation when the animals are stimulated with apomorphine; (2) absence of significant loss of tyrosine hydroxylase-positive neuronal elements both in substantia nigra and striatum; (3) cell shrinkage; (4) significant reduction of dopamine release; (5) significant increase in GABA release; (6) significant decrease in the number of monoaminergic presynaptic vesicles; (7) significant increase of dopamine concentration inside of monoaminergic vesicles; (8) significant increase of damaged mitochondria; (9) significant decrease of ATP level in the striatum (10) significant decrease in basal and maximal mitochondrial respiration. These results suggest that aminochrome induces dysfunction of dopaminergic neurons where the contralateral behavior can be explained by aminochrome-induced ATP decrease required both for anterograde transport of synaptic vesicles and dopamine release. Aminochrome could be implemented as a new model neurotoxin to study Parkinson's disease. PMID:27001668

  14. Scenario tree model for animal disease freedom framed in the OIE context using the example of a generic swine model for Aujeszky's disease in commercial swine in Canada.

    Science.gov (United States)

    Christensen, Jette; Vallières, André

    2016-01-01

    "Freedom from animal disease" is an ambiguous concept that may have a different meaning in trade and science. For trade alone, there are different levels of freedom from OIE listed diseases. A country can: be recognized by OIE to be "officially free"; self-declare freedom, with no official recognition by the OIE; or report animal disease as absent (no occurrence) in six-monthly reports. In science, we apply scenario tree models to calculate the probability of a population being free from disease at a given prevalence to provide evidence of freedom from animal disease. Here, we link science with application by describing how a scenario tree model may contribute to a country's claim of freedom from animal disease. We combine the idea of a standardized presentation of scenario tree models for disease freedom and having a similar model for two different animal diseases to suggest that a simple generic model may help veterinary authorities to build and evaluate scenario tree models for disease freedom. Here, we aim to develop a generic scenario tree model for disease freedom that is: animal species specific, population specific, and has a simple structure. The specific objectives were: to explore the levels of freedom described in the OIE Terrestrial Animal Health Code; to describe how scenario tree models may contribute to a country's claim of freedom from animal disease; and to present a generic swine scenario tree model for disease freedom in Canada's domestic (commercial) swine applied to Aujeszky's disease (AD). In particular, to explore how historical survey data, and data mining may affect the probability of freedom and to explore different sampling strategies. Finally, to frame the generic scenario tree model in the context of Canada's claim of freedom from AD. We found that scenario tree models are useful to support a country's claim of freedom either as "recognized officially free" or as part of a self-declaration but the models should not stand alone in a

  15. Emerging Animal Parasitic Diseases: A Global Overview and Appropriate Strategies for their Monitoring and Surveillance in Nigeria.

    Science.gov (United States)

    Atehmengo, Ngongeh L; Nnagbo, Chiejina S

    2014-01-01

    Emerging animal parasitic diseases are reviewed and appropriate strategies for efficient monitoring and surveillance in Nigeria are outlined. Animal and human parasitic infections are distinguished. Emerging diseases have been described as those diseases that are being recognised for the first time or diseases that are already recorded but their frequency and/or geographic range is being increased tremendously. Emergence of new diseases may be due to a number of factors such as the spread of a new infectious agent, recognition of an infection that has been in existence but undiagnosed, or when it is realised that an established disease has an infectious origin. The terms could also be used to describe the resurgence of a known infection after its incidence had been known to have declined. Emerging infections are compounding the control of infectious diseases and huge resources are being channeled to alleviate the rising challenge. The diseases are numerous and include helminth, protozoal / rickettsial and entomological. A list of parasitic emerging diseases in Nigeria is included. Globally occurring emerging parasitic diseases are also outlined. Emerging and re-emerging infections can be brought about by many factors including climate change and global warming, changes in biodiversity, population mobility, movement of animals, globalisation of commerce/trade and food supply, social and cultural factors such as food eating habits, religious beliefs, farming practices, trade of infected healthy animals, reduction in the available land for animals, immune-suppressed host and host density and misuse or over use of some drugs leading to drug resistance. PMID:25328553

  16. Usefulness of radioisotopes in animal nutrition research on health and disease aspects of livestock

    International Nuclear Information System (INIS)

    The use of radioisotopes in India commenced in seventies under international programmes to investigate certain aspects of metabolic disorders at 4 to 5 centres in the country. In due course of time, many universities and institutes also started using nuclear techniques in animal science research because such techniques are more sensitive, accurate, fast and there is every possibility of estimating micro quantities otherwise not possible by gravimetric methods. Their use is also helpful to understand and trace the biochemical mechanisms of certain nutrients in tissues both from deficiency or toxicity point of view. Literature has thus accumulated in a number of developing countries to establish the causes of some important metabolic diseases which are discussed along with utilization of nutrients for production traits under normal conditions

  17. Animal-induced injuries and disease, neonatal jaundice, immunizations, and viral infections.

    Science.gov (United States)

    Gerson, W T

    1996-08-01

    Highlights from the past years' literature on the topics of animal-induced injuries and diseases, neonatal jaundice, immunizations, and viral infections are discussed from the perspective of the general pediatrician. An effort is made to place recent advances in care or understanding of clinical problems into the context of the pediatric office practice. The current reality of health care-be it managed care, care for the underserved, or the recent pressures on academic and hospital-based medicine-does not alter the importance of the delivery of quality care at the office level. Although it is now popular to define quality of health care in cute advertising copy, as if we are selling durable goods, excellence in pediatric office-based practice continues to require broad strokes of medical knowledge coupled with a unswerving commitment to and advocacy for the needs and well-being of infants, children, and young adults. PMID:8954278

  18. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology.

    Science.gov (United States)

    Dubey, J P; Lago, E G; Gennari, S M; Su, C; Jones, J L

    2012-09-01

    Infections by the protozoan parasite Toxoplasma gondii are widely prevalent in humans and animals in Brazil. The burden of clinical toxoplasmosis in humans is considered to be very high. The high prevalence and encouragement of the Brazilian Government provides a unique opportunity for international groups to study the epidemiology and control of toxoplasmosis in Brazil. Many early papers on toxoplasmosis in Brazil were published in Portuguese and often not available to scientists in English-speaking countries. In the present paper we review prevalence, clinical spectrum, molecular epidemiology, and control of T. gondii in humans and animals in Brazil. This knowledge should be useful to biologists, public health workers, veterinarians, and physicians. Brazil has a very high rate of T. gondii infection in humans. Up to 50% of elementary school children and 50-80% of women of child-bearing age have antibodies to T. gondii. The risks for uninfected women to acquire toxoplasmosis during pregnancy and fetal transmission are high because the environment is highly contaminated with oocysts. The burden of toxoplasmosis in congenitally infected children is also very high. From limited data on screening of infants for T. gondii IgM at birth, 5-23 children are born infected per 10 000 live births in Brazil. Based on an estimate of 1 infected child per 1000 births, 2649 children with congenital toxoplasmosis are likely to be born annually in Brazil. Most of these infected children are likely to develop symptoms or signs of clinical toxoplasmosis. Among the congenitally infected children whose clinical data are described in this review, several died soon after birth, 35% had neurological disease including hydrocephalus, microcephaly and mental retardation, 80% had ocular lesions, and in one report 40% of children had hearing loss. The severity of clinical toxoplasmosis in Brazilian children may be associated with the genetic characteristics of T. gondii isolates prevailing in

  19. Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available Protocatechuic aldehyde (PAL has been reported to bind to DJ-1, a key protein involved in Parkinson's disease (PD, and exerts potential neuroprotective effects via DJ-1 in SH-SY5Y cells. In this study, we investigated the neuroprotective pharmacological effects of PAL against neurotoxin-induced cell and animal models of PD. In cellular models of PD, PAL markedly increased cell viability rates, mitochondrial oxidation-reduction activity and mitochondrial membrane potential, and reduced intracellular ROS levels to prevent neurotoxicity in PC12 cells. In animal models of PD, PAL reduced the apomorphine injection, caused turning in 6-OHDA treated rats, and increased the motor coordination and stride decreases in MPTP treated mice. Meanwhile, in an MPTP mouse model, PAL prevented a decrease of the contents of dopamine (DA and its metabolites in the striatum and TH-positive dopaminergic neuron loss in the substantia nigra (SN. In addition, PAL increased the protein expression of DJ-1 and reduced the level of α-synuclein in the SN of MPTP lesioned mice. PAL also increased the spine density in hippocampal CA1 neurons. The current study demonstrates that PAL can efficiently protect dopaminergic neurons against neurotoxin injury in vitro and in vivo, and that the potential mechanisms may be related to its effects in increasing DJ-1, decreasing α-synuclein and its growth-promoting effect on spine density.

  20. Object recognition test for studying cognitive impairments in animal models of Alzheimer's disease.

    Science.gov (United States)

    Bengoetxea, Xabier; Rodriguez-Perdigon, Manuel; Ramirez, Maria J

    2015-01-01

    Animal models are essential resources in basic research and drug discovery in the field of Alzheimer's disease (AD). As the main clinical feature in AD is cognitive failure, the ultimate readout for any interventions or the ultimate goal in research should be measures of learning and memory. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, the aetiology of the illness remains unsolved. Therefore, assessment by cognitive assays should target relevant memory systems without assumptions about pathogenesis. The description of several tests that are available for assessing cognitive functioning in animal models can be found in literature. Among the behavioural test, the novel object recognition (NOR) task is a method to measure a specific form of recognition memory. It is based on the spontaneous behaviour of rodents and offers the advantage of not needing external motivation, reward or punishment. Therefore, the NOR test has been increasingly used as an experimental tool in assessing drug effects on memory and investigating the neural mechanisms underlying learning and memory. This review describes the basic procedure, modifications, practical considerations, and the requirements and caveats of this behavioural paradigm to be considered as appropriate for the study of AD. Altogether, NOR test could be considered as a very useful instrument that allows researchers to explore the cognitive status of rodents, and hence, for studying AD related pathological mechanisms or treatments. PMID:25961683

  1. Economic principles for resource allocation decisions at national level to mitigate the effects of disease in farm animal populations

    OpenAIRE

    Howe, K. S.; HÄSLER, B.; K. D. C. Stärk

    2012-01-01

    SUMMARY This paper originated in a project to develop a practical, generic tool for the economic evaluation of surveillance for farm animal diseases at national level by a state veterinary service. Fundamental to that process is integration of epidemiological and economic perspectives. Using a generalized example of epidemic disease, we show that an epidemic curve maps into its economic equivalent, a disease mitigation function, that traces the relationship between value losses avoided and mi...

  2. Hepatitis C virus infection and related liver disease: the quest for the best animal model

    Directory of Open Access Journals (Sweden)

    Laurent eMailly

    2013-07-01

    Full Text Available Hepatitis C virus (HCV is a major cause of cirrhosis and hepatocellular carcinoma (HCC making the virus the most common cause of liver failure and transplantation. HCV is estimated to chronically affect 130 million individuals and to lead to more than 350,000 deaths per year worldwide. A vaccine is currently not available. The recently developed direct acting antivirals (DAAs have markedly increased the efficacy of the standard of care but are not efficient enough to completely cure all chronically infected patients and their toxicity limits their use in patients with advanced liver disease, co-morbidity or transplant recipients. Because of the host restriction, which is limited to humans and non-human primates, in vivo study of HCV infection has been hampered since its discovery more than 20 years ago. The chimpanzee remains the most physiological model to study the innate and adaptive immune responses, but its use is ethically difficult and is now very restricted and regulated. The development of a small animal model that allows robust HCV infection has been achieved using chimeric liver immunodeficient mice, which are therefore not suitable for studying the adaptive immune responses. Nevertheless, these models allowed to go deeply in the comprehension of virus-host interactions and to assess different therapeutic approaches. The immunocompetent mouse models that were recently established by genetic humanization have shown an interesting improvement concerning the study of the immune responses but are still limited by the absence of the complete robust life cycle of the virus. In this review, we will focus on the relevant available animal models of HCV infection and their usefulness for deciphering the HCV life cycle and virus-induced liver disease, as well as for the development and evaluation of new therapeutics. We will also discuss the perspectives on future immunocompetent mouse models and the hurdles to their development.

  3. Anticipating the Emerging of Some Strategical Infectious Animal Diseases in Indonesia Related to The Effect of Global Warming and Climate Change

    OpenAIRE

    Sjamsul Bahri; T Syafriati

    2011-01-01

    The effect of global warming and climate change is changing the season, included flooding in one area and very dry in other area, changing the temperature and humidity. These changes will trigger changing of the life of biological agent (virus, bacteria, parasites and so on), variety of animal species, variety of vectors as reservoir host of animal with the role of transmitting the disease to other animal species, This condition will trigger the new animal disease (emerging disease) or old di...

  4. Climate change and infectious diseases of wildlife: Altered interactions between pathogens, vectors and hosts

    Directory of Open Access Journals (Sweden)

    Milena GALLANA, Marie-Pierre RYSER-DEGIORGIS, Thomas WAHLI, Helmut SEGNER

    2013-06-01

    Full Text Available Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this

  5. Climate change and infectious diseases of wildlife: Altered interactions between pathogens, vectors and hosts

    Institute of Scientific and Technical Information of China (English)

    Milena GALLANA; Marie-Pierre RYSER-DEGIORGIS; Thomas WAHLI; Helmut SEGNER

    2013-01-01

    Infectious diseases result from the interactions of host,pathogens,and,in the case of vector-borne diseases,also vectors.The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions.Environmental change,therefore,will alter host-pathogen-vector interactions and,consequently,the distribution,intensity,and dynamics of infectious diseases.Here,we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife.Climate change can have direct impacts on distribution,life cycle,and physiological status of hosts,pathogens and vectors.While a change in either host,pathogen or vector does not necessarily translate into an alteration of the disease,it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks.Finally,climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to,and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases.Overall,the influence of climate change on infectious diseases involves different mechanisms,it can be modulated by phenotypic acclimation and/or genotypic adaptation,it depends on the ecological context of the host-pathogen-vector interactions,and it can be modulated by impacts of other stressors.As a consequence of this complexity,non-linear responses of disease systems under climate change are to be expected.To improve predictions on climate change impacts on infectious disease,we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease,and to the development of harmonized methods and approaches to obtain more comparable results,as this would support the discrimination of case-specific versus

  6. Animal models of gastrointestinal and liver diseases. Animal models of necrotizing enterocolitis: pathophysiology, translational relevance, and challenges

    OpenAIRE

    Lu, Peng; Sodhi, Chhinder P.; Jia, Hongpeng; Shaffiey, Shahab; Good, Misty; Branca, Maria F.; Hackam, David J.

    2014-01-01

    Necrotizing enterocolitis is the leading cause of morbidity and mortality from gastrointestinal disease in premature infants and is characterized by initial feeding intolerance and abdominal distention followed by the rapid progression to coagulation necrosis of the intestine and death in many cases. Although the risk factors for NEC development remain well accepted, namely premature birth and formula feeding, the underlying mechanisms remain incompletely understood. Current thinking indicate...

  7. Research progress in animal models and stem cell therapy for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Han F

    2014-12-01

    Full Text Available Fabin Han,1,2 Wei Wang1, Chao Chen1 1Centre for Stem Cells and Regenerative Medicine, 2Department of Neurology, Liaocheng People’s Hospital/The Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People’s Republic of China Abstract: Alzheimer’s disease (AD causes degeneration of brain neurons and leads to memory loss and cognitive impairment. Since current therapeutic strategies cannot cure the disease, stem cell therapy represents a powerful tool for the treatment of AD. We first review the advances in molecular pathogenesis and animal models of AD and then discuss recent clinical studies using small molecules and immunoglobulins to target amyloid-beta plaques for AD therapy. Finally, we discuss stem cell therapy for AD using neural stem cells, olfactory ensheathing cells, embryonic stem cells, and mesenchymal stem cell from bone marrow, umbilical cord, and umbilical cord blood. In particular, patient-specific induced pluripotent stem cells are proposed as a future treatment for AD. Keywords: amyloid-beta plaque, neurofibrillary tangle, neural stem cell, olfactory ensheathing cell, mesenchymal stem cell, induced pluripotent stem cell

  8. Prebiotics in food animals: A potential to reduce foodborne pathogens and disease

    Science.gov (United States)

    Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...

  9. Prebiotics in food animals, a potential to reduce foodborne pathogens and disease

    Science.gov (United States)

    Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...

  10. Refinement and use of Certificates of Veterinary Inspection (Health Certificates) for optimal assurance of disease freedom in aquatic animals.

    Science.gov (United States)

    Starling, D E; Palić, D; Scarfe, A D

    2007-01-01

    Certificates of Veterinary Inspection (CVI), generally termed "Health Certificates", are pivotal for ensuring that translocated animals are not diseased or do not harbour significant pathogens. While used very successfully with terrestrial animal movement for decades, CVIs for aquatic animals are not well refined, understood or used, despite the availability of several aquatic animal "certification processes", "permits" and "health certificates", including the OIE model health certificates. Correctly designed CVIs provide the single most economical and effective assurance of disease status (generally freedom from specific diseases or pathogens) for individuals or lots of animals, at any point in time. When issued by a qualified independent third-party (typically a licensed and government accredited veterinarian) they provide the official level of assurance necessary for intrastate, interstate and international trade. Tailored modifications of CVIs are also useful for other purposes requiring the evaluation of animal health (e.g. specific pathogen-free (SPF) assurance for premises, risk-mitigating assurance necessary for insurance policies, breeding soundness assurance of broodstock, etc.). Here we discuss necessary information for aquatic animal CVIs: animal, ownership and location; standardized diagnostic results and their interpretation; and language contained in CVIs. Also addressed is the viability for use with multiple aquatic species and diseases/pathogens of interest, and their use in conjunction with established veterinary inspection procedures. A revised model aquatic CVI, with broad potential use for individual operations, states or countries, is offered for discussion, comment and refinement. In addition an optimally designed model CVI may be of use with electronic systems that are evolving in, for example, Europe, the USA and Australia/New Zealand (e.g. TRACES, e-CVI, e-Certs). PMID:18306523

  11. Hormonal Influences on Lung Function and Response to Environmental Agents: Lessons from Animal Models of Respiratory Disease

    OpenAIRE

    Card, Jeffrey W.; Zeldin, Darryl C

    2009-01-01

    Numerous studies in humans and experimental animals have identified considerable sex differences in respiratory physiology and in the response of the lung to environmental agents. These differences appear to be mediated, at least in part, by sex hormones and their nuclear receptors. Moreover, animal models are increasingly used to study pathogenic mechanisms and test potential therapies for a variety of human lung diseases, many of which appear to be influenced by sex and sex hormones. In thi...

  12. Computational Prediction of Alzheimer’s and Parkinson’s Disease MicroRNAs in Domestic Animals

    OpenAIRE

    Wang, Hai Yang; Lin, Zi Li; Yu, Xian Feng; Bao, Yuan; Cui, Xiang-Shun; Kim, Nam-Hyung

    2015-01-01

    As the most common neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the main health concerns for the elderly population. Recently, microRNAs (miRNAs) have been used as biomarkers of infectious, genetic, and metabolic diseases in humans but they have not been well studied in domestic animals. Here we describe a computational biology study in which human AD- and PD-associated miRNAs (ADM and PDM) were utilized to predict orthologous miRNAs in the foll...

  13. Nasal Administration of Quercetin Liposomes Improves Memory Impairment and Neurodegeneration in Animal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Terdthai Tong-un

    2010-01-01

    Full Text Available Problem statement: At present, the development of protective strategy against Alzheimer’s Disease (AD is increasing its importance due to the high prevalence of AD, a limitation of therapeutic efficacy and its high impacts on economic and social aspects. The development of the preventive and therapeutic strategy to protect against the path physiology induced by free radicals in AD from antioxidant has gained very much concentration. Quercetin, one of the flavonoids in fruits and vegetables, has a powerful antioxidant activity both in vitro and in vivo. However, poor absorption, rapid metabolism and limited ability to cross the blood-brain-barrier are obstacles to its use for treatment of AD. Liposome’s have been used as an effective delivery system to the brain. Advantages associated with the nasal administration over oral route include higher bioavailability due to no first pass hepatic metabolism and rapid absorption leading to shorter time to onset of effect. Based on all these points, the possible effects of quercetin liposomes via nasal route on improving cognitive behavior and neurodegeneration in animal model of Alzheimer’s disease were investigated. Approach: Male Wistar rats were pretreated with quercetin liposome’s, containing 0.5 mg of quercetin in 20 μL (dose = 20 μg, via intranasal route once daily continually for 2 weeks before and 1 week after AF64A administration. Learning and memory was evaluated using the Morris water maze test at 7 days after the AF64A administration and then the rats were sacrificed for determining the density of neurons and cholinergic neurons in hippocampus using histological and immunohistochemical techniques. Results: Nasal administration of quercetin liposome’s significantly prevented changes of spatial memory of AF64A treated rats. The cognitive enhancement of quercetin liposome’s was found to be related to its ability to inhibit the degeneration of neurons and cholinergic neurons in hippocampus

  14. Fixed-point Monitoring of Vaccine Immune Effects on Severe Animal Diseases in Livestock and Poultry Breeding Fields

    Institute of Scientific and Technical Information of China (English)

    Zhang; Sihua; Ruan; Zheng; Yin; Weili; Wan; Yun; Zhou; Hui; Gong; Shiyu

    2014-01-01

    In order to reveal the immune antibody levels and immune effect of livestock and poultry in the locality,we performed antibody surveillance on severe animal diseases in 17 livestock and poultry fields in six administrative districts of Wuhan City. The results showed that the vaccines had a good protective efficacy on highly pathogenic avian influenza( HPAI) and Newcastle disease( ND) in Wuhan City. The whole antibody levels kept above the ministerial standard( > 70%).However,the vaccine immunity of porcine reproductive and respiratory syndrome( PRRS),swine fever( SF) and foot and mouth disease( FMD) was still poorly protective. The data indicated that the vaccines are protecting the severe animal diseases well,but there are still some potential security holes in some administrative districts.

  15. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer

    Science.gov (United States)

    Asgharpour, Amon; Cazanave, Sophie C.; Pacana, Tommy; Seneshaw, Mulugeta; Vincent, Robert; Banini, Bubu A.; Kumar, Divya Prasanna; Daita, Kalyani; Min, Hae-Ki; Mirshahi, Faridoddin; Bedossa, Pierre; Sun, Xiaochen; Hoshida, Yujin; Koduru, Srinivas V.; Contaifer, Daniel; Warncke, Urszula Osinska; Wijesinghe, Dayanjan S.; Sanyal, Arun J.

    2016-01-01

    Background & Aims The lack of a preclinical model of progressive non-alcoholic steatohepatitis (NASH) that recapitulates human disease is a barrier to therapeutic development. Methods A stable isogenic cross between C57BL/6J (B6) and 129S1/SvImJ (S129) mice were fed a high fat diet with ad libitum consumption of glucose and fructose in physiologically relevant concentrations and compared to mice fed a chow diet and also to both parent strains. Results Following initiation of the obesogenic diet, B6/129 mice developed obesity, insulin resistance, hypertriglyceridemia and increased LDL-cholesterol. They sequentially also developed steatosis (4–8 weeks), steatohepatitis (16–24 weeks), progressive fibrosis (16 weeks onwards) and spontaneous hepatocellular cancer (HCC). There was a strong concordance between the pattern of pathway activation at a transcriptomic level between humans and mice with similar histological phenotypes (FDR 0.02 for early and 0.08 for late time points). Lipogenic, inflammatory and apoptotic signaling pathways activated in human NASH were also activated in these mice. The HCC gene signature resembled the S1 and S2 human subclasses of HCC (FDR 0.01 for both). Only the B6/129 mouse but not the parent strains recapitulated all of these aspects of human NAFLD. Conclusions We here describe a diet-induced animal model of non-alcoholic fatty liver disease (DIAMOND) that recapitulates the key physiological, metabolic, histologic, transcriptomic and cell-signaling changes seen in humans with progressive NASH. Lay summary We have developed a diet-induced mouse model of non-alcoholic steatohepatitis (NASH) and hepatic cancers in a cross between two mouse strains (129S1/SvImJ and C57Bl/6J). This model mimics all the physiological, metabolic, histological, transcriptomic gene signature and clinical endpoints of human NASH and can facilitate preclinical development of therapeutic targets for NASH. PMID:27261415

  16. Characterization of ESBL- and AmpC-Producing Enterobacteriaceae from Diseased Companion Animals in Europe.

    Science.gov (United States)

    Bogaerts, Pierre; Huang, Te-Din; Bouchahrouf, Warda; Bauraing, Caroline; Berhin, Catherine; El Garch, Farid; Glupczynski, Youri

    2015-12-01

    The study aimed to characterize beta-lactam resistance mechanisms of Enterobacteriaceae isolates recovered from diseased dogs and cats between 2008 and 2010 in a European surveillance program (ComPath I) for the antibiotic susceptibility of bacterial pathogens. A total of 608 non-duplicated Enterobacteriaceae isolates were obtained prior antibiotic treatment from diseased dogs (n=464) and cats (n=144). Among the 608 Enterobacteriaceae isolates, 22 presented a minimal inhibitory concentration against cefotaxime above EUCAST breakpoints of susceptibility. All the 22 isolates remained susceptible to carbapenems. Ten isolates were confirmed as extended-spectrum-beta-lactamase (ESBL) producers by PCR-sequencing of bla coding genes including 9 blaCTX-M (CTX-M-1, 14, 15, 32,…) and 1 blaTEM-52 and 12 were AmpC-producing isolates (10 plasmidic CMY-2 group and 2 isolates overexpressing their chromosomal AmpC). ESBLs and plasmid-mediated AmpC (pAmpC)-producing isolates were mainly recovered from dogs (n=17) suffering from urinary tract infections (n=13) and originated from eight different countries. ESBL-bearing plasmids were mostly associated with IncFII incompatibility groups while CMY-2 was predominantly associated with plasmid of the IncI1 group. ESBL/pAmpC-producing Escherichia coli belonged to phylogroup A (n=5), B2 (n=4), and D (n=5). Multilocus sequence typing analysis revealed that among three CTX-M-15-producing E. coli, two belong to sequence type (ST) 131 and one to ST405. The presence of CTX-M-15 including on IncFII plasmids in E. coli ST131-B2 has also been described in isolates of human origin. This suggests the possibility of exchanges of these isolates from humans to companion animals or vice-versa. PMID:26098354

  17. Detection of Helicobacter felis in a cat with gastric disease in laboratory animal facility

    Science.gov (United States)

    Hong, Sunhwa; Chung, Yungho; Kang, Won-Guk

    2016-01-01

    A 3-month-old male cat in the animal facility was presented for investigation of anorexia and occasional vomiting. We collected the specimens from gastroscopic biopsy and stool collection. The gastroscopic biopsy specimens were tested using a rapid urease test, CLO Helicobacter-detection kits. Stool specimens were gathered and evaluated using the commercially available SD Bioline H. pylori Ag kit according to the manufacturer's instructions. Genomic DNAs from gastroscopic biopsy and stool specimens of the cat were extracted and submitted to the consensus PCR to amplify Helicobacter rpoB gene. Then the DNAs from gastroscopic biopsy and stool specimens were conducted a multiplex species-specific PCR to amplify urease B gene for H. heilmannii, H. pylori and H. felis. As the results, the rapid urease test with gastroscopic biopsy was revealed positive reaction. The result of H. pylori Stool Ag assay was one red line, negative for H. pylori. The gastroscopic biopsy and stool specimen were positive reactions by the consensus PCR reaction using the RNA polymerase beta-subunit-coding gene (rpoB) to detect Helicobacter species. By multiplex species-specific PCR with gastroscopic biopsy and stool specimens, no amplification products corresponding to either H. heilmannii or H. pylori were detected, but the specimens tested were positive for H. felis. This case was confirmed as gastroenteric disease induced by H. felis infection. On our knowledge, this is a very rare report about H. felis-induced gastroenteric disease in cat and may provide a valuable data on the study of feline Helicobacter infection. PMID:27382381

  18. Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson's disease.

    Science.gov (United States)

    Li, Chao; Guo, Yuan; Xie, Wenjie; Li, Xingang; Janokovic, Joseph; Le, Weidong

    2010-10-01

    Pramipexole (PPX), a dopamine (DA) receptor D3 preferring agonist, has been used as monotherapy or adjunct therapy to treat Parkinson's disease (PD) for many years. Several in vitro and in vivo studies in neurotoxin-induced DA neuron injury models have reported that PPX may possess neuroprotective properties. The present study is to evaluate the neuroprotection of PPX in a sustained DA neuron degeneration model of PD induced by ubiquitin-proteasome system (UPS) impairment. Adult C57BL/6 mice were treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle for a total 4 weeks. Animal behavior observation, and pathological and biochemical assays were conducted to determine the neuroprotective effects of PPX. We report here that PPX treatment significantly improves rotarod performance, attenuates DA neuron loss and striatal DA reduction, and alleviates proteasomal inhibition and microglial activation in the substantia nigra of lactacystin-lesioned mice. PPX can increase the levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and induce an activation of autophagy. Furthermore, pretreatment with D3 receptor antagonist U99194 can significantly block the PPX-mediated neuroprotection. These results suggest that multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment model of PD. PMID:20635141

  19. Cognitive Dysfunction in Major Depressive Disorder. A Translational Review in Animal Models of the Disease

    Directory of Open Access Journals (Sweden)

    Flavie Darcet

    2016-02-01

    Full Text Available Major Depressive Disorder (MDD is the most common psychiatric disease, affecting millions of people worldwide. In addition to the well-defined depressive symptoms, patients suffering from MDD consistently complain about cognitive disturbances, significantly exacerbating the burden of this illness. Among cognitive symptoms, impairments in attention, working memory, learning and memory or executive functions are often reported. However, available data about the heterogeneity of MDD patients and magnitude of cognitive symptoms through the different phases of MDD remain difficult to summarize. Thus, the first part of this review briefly overviewed clinical studies, focusing on the cognitive dysfunctions depending on the MDD type. As animal models are essential translational tools for underpinning the mechanisms of cognitive deficits in MDD, the second part of this review synthetized preclinical studies observing cognitive deficits in different rodent models of anxiety/depression. For each cognitive domain, we determined whether deficits could be shared across models. Particularly, we established whether specific stress-related procedures or unspecific criteria (such as species, sex or age could segregate common cognitive alteration across models. Finally, the role of adult hippocampal neurogenesis in rodents in cognitive dysfunctions during MDD state was also discussed.

  20. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  1. Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan

    Directory of Open Access Journals (Sweden)

    Ozawa Manao

    2011-10-01

    Full Text Available Abstract A total of 318 Escherichia coli isolates obtained from different food-producing animals affected with colibacillosis between 2001 and 2006 were subjected to phylogenetic analysis: 72 bovine isolates, 89 poultry isolates and 157 porcine isolates. Overall, the phylogenetic group A was predominant in isolates from cattle (36/72, 50% and pigs (101/157, 64.3% whereas groups A (44/89, 49.4% and D (40/89, 44.9% were predominant in isolates from poultry. In addition, group B2 was not found among diseased food-producing animals except for a poultry isolate. Thus, the phylogenetic group distribution of E. coli from diseased animals was different by animal species. Among the 318 isolates, cefazolin resistance (minimum inhibitory concentrations: ≥32 μg/ml was found in six bovine isolates, 29 poultry isolates and three porcine isolates. Of them, 11 isolates (nine from poultry and two from cattle produced extended spectrum β-lactamase (ESBL. The two bovine isolates produced blaCTX-M-2, while the nine poultry isolates produced blaCTX-M-25 (4, blaSHV-2 (3, blaCTX-M-15 (1 and blaCTX-M-2 (1. Thus, our results showed that several types of ESBL were identified and three types of β-lactamase (SHV-2, CTX-M-25 and CTX-M-15 were observed for the first time in E. coli from diseased animals in Japan.

  2. A Flexible Spatial Framework for Modeling Spread of Pathogens in Animals with Biosurveillance and Disease Control Applications

    Directory of Open Access Journals (Sweden)

    Montiago X. LaBute

    2014-05-01

    Full Text Available Biosurveillance activities focus on acquiring and analyzing epidemiological and biological data to interpret unfolding events and predict outcomes in infectious disease outbreaks. We describe a mathematical modeling framework based on geographically aligned data sources and with appropriate flexibility that partitions the modeling of disease spread into two distinct but coupled levels. A top-level stochastic simulation is defined on a network with nodes representing user-configurable geospatial “patches”. Intra-patch disease spread is treated with differential equations that assume uniform mixing within the patch. We use U.S. county-level aggregated data on animal populations and parameters from the literature to simulate epidemic spread of two strikingly different animal diseases agents: foot-and-mouth disease and highly pathogenic avian influenza. Results demonstrate the capability of this framework to leverage low-fidelity data while producing meaningful output to inform biosurveillance and disease control measures. For example, we show that the possible magnitude of an outbreak is sensitive to the starting location of the outbreak, highlighting the strong geographic dependence of livestock and poultry infectious disease epidemics and the usefulness of effective biosurveillance policy. The ability to compare different diseases and host populations across the geographic landscape is important for decision support applications and for assessing the impact of surveillance, detection, and mitigation protocols.

  3. Veterinary education in the area of food safety (including animal health, food pathogens and surveillance of foodborne diseases).

    Science.gov (United States)

    Vidal, S M; Fajardo, P I; González, C G

    2013-08-01

    The animal foodstuffs industry has changed in recent decades as a result of factors such as: human population growth and longer life expectancy, increasing urbanisation and migration, emerging zoonotic infectious diseases and foodborne diseases (FBDs), food security problems, technological advances in animal production systems, globalisation of trade and environmental changes. The Millennium Development Goals and the 'One Health' paradigm provide global guidelines on efficiently addressing the issues of consumer product safety, food security and risks associated with zoonoses. Professionals involved in the supply chain must therefore play an active role, based on knowledge and skills that meet current market requirements. Accordingly, it is necessary for the veterinary medicine curriculum, both undergraduate and postgraduate, to incorporate these skills. This article analyses the approach that veterinary education should adopt in relation to food safety, with an emphasis on animal health, food pathogens and FBD surveillance.

  4. Animal models

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Krentz, Andrew

    2014-01-01

    In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...

  5. General view in animal model of inflammatory bowel disease%炎症性肠病动物模型的研究概况

    Institute of Scientific and Technical Information of China (English)

    兰雷; 陈垦; 王晖

    2004-01-01

    The etiology and pathogenesis of inflammatory bowel disease are up to now still not clear and definite. Establishing the ideal animal model to study its cause and pathogenesis of this disease is very important. The ideal animal model should have the same manifestation with human inflammatory bowel disease on clinical and pathologic feature etc. In this article, the method, the pathologic character isfics and concerning pathogenesis, of a few common useful experiment animal models are discussed.

  6. Detection and genetic characterization of foot‐and‐mouth disease viruses in samples from clinically healthy animals in endemic settings

    DEFF Research Database (Denmark)

    Jamal, Syed Muhammad; Ferrari, G.; Hussain, M.;

    2012-01-01

    in Pakistan (n = 245), one (of three) live animal market in Afghanistan (n = 61) and both the live animal markets in Tajikistan (n = 120) all tested negative. However, 2 of 129 (∼2%) samples from Gondal and 11 of 123 (9%) from Chichawatni markets in Pakistan were positive for FMDV RNA. Similarly, 12 of 81 (15......A total of 1501 oral swab samples from Pakistan, Afghanistan and Tajikistan were collected from clinically healthy animals between July 2008 and August 2009 and assayed for the presence of foot‐and‐mouth disease virus (FMDV) RNA. The oral swab samples from two (of four) live animal markets......%) samples from Kabul and 10 of 20 (50%) from Badakhshan in Afghanistan were found to be positive. Serotypes A and O of FMDV were identified within these samples. Oral swab samples were also collected from dairy colonies in Harbanspura, Lahore (n = 232) and Nagori, Karachi (n = 136), but all tested negative...

  7. Quality of Reporting and Adherence to ARRIVE Guidelines in Animal Studies for Chagas Disease Preclinical Drug Research: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Julián Ernesto Nicolás Gulin

    2015-11-01

    Full Text Available Publication of accurate and detailed descriptions of methods in research articles involving animals is essential for health scientists to accurately interpret published data, evaluate results and replicate findings. Inadequate reporting of key aspects of experimental design may reduce the impact of studies and could act as a barrier to translation of research findings. Reporting of animal use must be as comprehensive as possible in order to take advantage of every study and every animal used. Animal models are essential to understanding and assessing new chemotherapy candidates for Chagas disease pathology, a widespread parasitic disease with few treatment options currently available. A systematic review was carried out to compare ARRIVE guidelines recommendations with information provided in publications of preclinical studies for new anti-Trypanosoma cruzi compounds. A total of 83 publications were reviewed. Before ARRIVE guidelines, 69% of publications failed to report any macroenvironment information, compared to 57% after ARRIVE publication. Similar proportions were observed when evaluating reporting of microenvironmental information (56% vs. 61%. Also, before ARRIVE guidelines publication, only 13% of papers described animal gender, only 18% specified microbiological status and 13% reported randomized treatment assignment, among other essential information missing or incomplete. Unfortunately, publication of ARRIVE guidelines did not seem to enhance reporting quality, compared to papers appeared before ARRIVE publication. Our results suggest that there is a strong need for the scientific community to improve animal use description, animal models employed, transparent reporting and experiment design to facilitate its transfer and application to the affected human population. Full compliance with ARRIVE guidelines, or similar animal research reporting guidelines, would be an excellent start in this direction.

  8. Quality of Reporting and Adherence to ARRIVE Guidelines in Animal Studies for Chagas Disease Preclinical Drug Research: A Systematic Review.

    Science.gov (United States)

    Gulin, Julián Ernesto Nicolás; Rocco, Daniela Marisa; García-Bournissen, Facundo

    2015-11-01

    Publication of accurate and detailed descriptions of methods in research articles involving animals is essential for health scientists to accurately interpret published data, evaluate results and replicate findings. Inadequate reporting of key aspects of experimental design may reduce the impact of studies and could act as a barrier to translation of research findings. Reporting of animal use must be as comprehensive as possible in order to take advantage of every study and every animal used. Animal models are essential to understanding and assessing new chemotherapy candidates for Chagas disease pathology, a widespread parasitic disease with few treatment options currently available. A systematic review was carried out to compare ARRIVE guidelines recommendations with information provided in publications of preclinical studies for new anti-Trypanosoma cruzi compounds. A total of 83 publications were reviewed. Before ARRIVE guidelines, 69% of publications failed to report any macroenvironment information, compared to 57% after ARRIVE publication. Similar proportions were observed when evaluating reporting of microenvironmental information (56% vs. 61%). Also, before ARRIVE guidelines publication, only 13% of papers described animal gender, only 18% specified microbiological status and 13% reported randomized treatment assignment, among other essential information missing or incomplete. Unfortunately, publication of ARRIVE guidelines did not seem to enhance reporting quality, compared to papers appeared before ARRIVE publication. Our results suggest that there is a strong need for the scientific community to improve animal use description, animal models employed, transparent reporting and experiment design to facilitate its transfer and application to the affected human population. Full compliance with ARRIVE guidelines, or similar animal research reporting guidelines, would be an excellent start in this direction. PMID:26587586

  9. Climatic changes, seasonality and the dynamics of infectious diseases in animals

    International Nuclear Information System (INIS)

    Full text: In the last few years the potential impact of climate change on infectious and parasitic diseases has drawn an increasing attention although the issue is still quite controversial. Many infectious diseases, especially of wildlife, have a remarkable meteo-climatic footprint. In some cases, outbreaks are clearly synchronized with seasonal fluctuations in temperature, humidity and rainfall patterns. Seasonal changes are ubiquitous in ecology and affect the timing of both outbreak and wildlife demography on a yearly basis but more subtly, can contribute to generate more complex, inter-annual dynamics on a longer time scale. Meteo-climatic fluctuations can affect the infective agent directly by modifying the life expectancy of the free-living stages or, indirectly, through changes in immune response, behaviour, demography (timing of reproduction, mortality, etc.), abundance (birth pulses, resources availability) of the host and vectors. This may result in turn in a change of probability of transmission between susceptible and infected animals or between susceptible hosts and infective stages/propagules with remarkable effects on the epidemiological patterns at the population or community level. Changes in the statistical properties of climate, especially in the combination of temperature and rainfall patterns, can thus ultimately affect the geographical distribution and the dynamics of pathogens and vectors. In the present work, I briefly illustrate two specific examples of how seasonality in meteo-climatic variables can affect the dynamics of infectious diseases caused by micro and macroparasites. In the first case, I investigate how seasonal fluctuations in demography of the host affect the dynamics of rabies epidemics and show how short-living, fast-reproducing host species may respond to seasonality differently than long-living, slowly reproducing ones. The second example is about the effect of seasonality in the development of hypobiosis (arrested stage

  10. Two amphibian diseases, chytridiomycosis and ranaviral disease, are now globally notifiable to the World Organization for Animal Health (OIE): an assessment.

    Science.gov (United States)

    Schloegel, Lisa M; Daszak, Peter; Cunningham, Andrew A; Speare, Richard; Hill, Barry

    2010-11-01

    The global trade in amphibians entails the transport of tens of millions of live animals each year. In addition to the impact harvesting wild animals can have on amphibian populations, there is mounting evidence that the emerging pathogens Batrachochytrium dendrobatidis and ranaviruses, the aetiological agents of chytridiomycosis and ranaviral disease, respectively, are spread through this trade. The link between these pathogens and amphibian declines and extinctions suggests that the epidemiological impact of the trade is significant and may negatively affect conservation and trade economics. Here we present a brief assessment of the volume of the global trade in live amphibians, the risk of individuals harboring infection, and information on the recent listing by the World Organization for Animal Health (OIE) of chytridiomycosis and ranaviral disease in the OIE Aquatic Animal Health Code. This listing made chytridiomycosis and ranaviral disease internationally notifiable diseases and thus subject to OIE standards, which aim to assure the sanitary safety of international trade in live amphibians and their products.

  11. Animal Husbandry Practices in Rural Bangladesh: Potential Risk Factors for Antimicrobial Drug Resistance and Emerging Diseases

    OpenAIRE

    Roess, Amira A.; Winch, Peter J.; Ali, Nabeel A.; Akhter, Afsana; Afroz, Dilara; El Arifeen, Shams; Darmstadt, Gary L.; Baqui, Abdullah H

    2013-01-01

    Antimicrobial drug administration to household livestock may put humans and animals at risk for acquisition of antimicrobial drug–resistant pathogens. To describe animal husbandry practices, including animal healthcare-seeking and antimicrobial drug use in rural Bangladesh, we conducted semi-structured in-depth interviews with key informants, including female household members (n = 79), village doctors (n = 10), and pharmaceutical representatives, veterinarians, and government officials (n = ...

  12. Animal Health and the Control of Diseases: Economic Issues with Particular Referene to a Developing Country

    OpenAIRE

    Tisdell, Clem

    1994-01-01

    The economic importance of livestock production has been undervalued compared to crop production and agricultural economists have not given it the attention which it deserves. Animal health is a significant influence on the productivity of livestock and the economics of animal husbandry. The range of animal health issues which can be usefully considered by economists is outlined. Some of the economic issues and problems involved in extrapolating farm-level and village-level estimates of the e...

  13. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Chia‑Yu Yeh

    2011-12-01

    Full Text Available The EC (entorhinal cortex is fundamental for cognitive and mnesic functions. Thus damage to this area appears as a key element in the progression of AD (Alzheimer's disease, resulting in memory deficits arising from neuronal and synaptic alterations as well as glial malfunction. In this paper, we have performed an in-depth analysis of astroglial morphology in the EC by measuring the surface and volume of the GFAP (glial fibrillary acidic protein profiles in a triple transgenic mouse model of AD [3xTg-AD (triple transgenic mice of AD]. We found significant reduction in both the surface and volume of GFAP-labelled profiles in 3xTg-AD animals from very early ages (1 month when compared with non-Tg (non-transgenic controls (48 and 54%, reduction respectively, which was sustained for up to 12 months (33 and 45% reduction respectively. The appearance of Aβ (amyloid β-peptide depositions at 12 months of age did not trigger astroglial hypertrophy; nor did it result in the close association of astrocytes with senile plaques. Our results suggest that the AD progressive cognitive deterioration can be associated with an early reduction of astrocytic arborization and shrinkage of the astroglial domain, which may affect synaptic connectivity within the EC and between the EC and other brain regions. In addition, the EC seems to be particularly vulnerable to AD pathology because of the absence of evident astrogliosis in response to Aβ accumulation. Thus we can consider that targeting astroglial atrophy may represent a therapeutic strategy which might slow down the progression of AD.

  14. Copper balance and ceruloplasmin in chronic hepatitis in a Wilson disease animal model, LEC rats

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Yutaka; Ogra, Yasumitsu; Suzuki, Kazuo T. [Graduate School of Pharmaceutical Sciences, Chiba University, Inage, Chiba 263-8522 (Japan)

    2002-09-01

    In an animal model of Wilson disease, Long-Evans rats with cinnamon-colored coat (LEC rats), copper (Cu) accumulates in the liver with age up to the onset of acute hepatitis owing to a hereditary defective transporter for the efflux of Cu, ATP7B. The plasma Cu concentration is low in LEC rats because of the excretion of apo-ceruloplasmin (apo-Cp). However, toward and after the onset of chronic hepatitis, plasma Cu concentration increases in the form of holo-Cp, while the liver Cu concentration is maintained at a constant level without the occurrence of fulminant hepatitis. In the present study, the material balance of Cu was studied in LEC rats with chronic hepatitis in order to elucidate the mechanisms underlying the increase of holo-Cp in plasma and the maintenance of Cu at a constant level in the liver. The relationship between the Cu concentration and ferroxidase activity of Cp was analyzed in the plasma of LEC rats of different ages and of Wistar rats fed a Cu-deficient diet for different durations. Cu was suggested to be delivered to Cp in an all-or-nothing manner, resulting in the excretion of fully Cu-occupied holo-Cp (Cu{sub 6}-Cp) or totally Cu-unoccupied Cu{sub 0}-Cp (apo-Cp), but not partially Cu-occupied Cu{sub n}-Cp (where n=1-5). The increase of holo-Cp in acute and chronic hepatitis in LEC rats was explained by the delivery of Cu, accumulating in the non-metallothionein-bound form, to Cp outside the Golgi apparatus of the liver. The plasma Cu concentration and ferroxidase activity were proposed to be specific indicators of the appearance of non-metallothionein-bound Cu in the liver of LEC rats. (orig.)

  15. Disease Control in Animals Using Molecular Technology by Inactivation of ASO, RNAi and ss-siRNA Genes

    Directory of Open Access Journals (Sweden)

    Muhamad Ali

    2014-03-01

    Full Text Available Globalization causes high mobility of human and livestock, hence increase the transmission of infectious diseases, including avian influenza, severe acute respiratory syndrome (SARS, and swine influenza. Therefore, prevention of those diseases is required. Vaccines are effective to prevent infectious diseases; however, their development takes a long time and they cannot provide immediate protection in pandemic cases. This paper describes several gene silencing technologies including antisense oligonucleotide (ASO, RNA interference (RNAi and single strand-small interfering RNA (ss-siRNA for controlling diseases. The primary mechanism of these technologies is inhibition of gene expression, typically by causing the destruction of specific RNA molecule of the pathogen. The use of gene silencing technologies is expected to give new alternative that is more effective in eradication of infectious diseases in animals before threaten human being.

  16. Plant-derived vaccine protects target animals against a viral disease

    NARCIS (Netherlands)

    Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merrywater, A.; Hamilton, W.D.O.; Langeveld, J.P.M.; Boshuizen, R.S.; Kamstrup, S.; Lomonos, G.P.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleoti

  17. A review of exotic animal disease in Great Britain and in Scotland specifically between 1938 and 2007.

    Directory of Open Access Journals (Sweden)

    Onneile O Peiso

    Full Text Available BACKGROUND: Incursions of contagious diseases of livestock into disease-free zones are inevitable as long as the diseases persist elsewhere in the world. Knowledge of where, when and how incursions have occurred helps assess the risks, and regionalize preventative and reactive measures. METHODOLOGY: Based on reports of British governmental veterinary services, we review occurrence of the former OIE List A diseases, and of Aujeszky's disease, anthrax and bovine tuberculosis (bTB in farm-animals in Great Britain (GB between 1938 and 2007. We estimate incidence of each disease on GB agricultural holdings and fraction of susceptible farm-animals culled to control the disease each year. We then consider the frequency and incidence of the diseases in Scotland alone. The limitations of available data on historical disease occurrence and denominator populations are detailed in Text S2. CONCLUSIONS: The numbers of livestock and poultry farmed in GB grew over the years 1938-2007; the number of agricultural holdings decreased. An amalgamation of production on larger holdings took place from the 1940s to the 1980s. The maximum annual incidence of a reviewed disease in GB 1938-2007 was reported for bTB, 1.69% of holdings in 1961. This was followed by Newcastle disease, 1.50% of holdings in 1971, and classical swine fever, 1.09% of holdings in 1940. The largest fractional cull of susceptible livestock in a single year in each of the four decades 1950s-1980s was due to a viral disease primarily affecting swine. During the periods 1938-1949 and 2000-2007 this was due to outbreaks of foot and mouth disease. In the absence of incursions of the former OIE List A diseases in the 1990s, this was due to bTB. Over the 70 years, the diseases were reported with lower frequency and lower annual incidence in Scotland, as compared to when these statistics are considered for GB as a whole.

  18. Differentiation of FMD infected animals from vaccinated animals by the use of non-structural proteins of foot and mouth disease virus in Myanmar

    International Nuclear Information System (INIS)

    Four non-structural proteins (NSP) foot and mouth disease virus (FMDV) ELISA kits were received through the FAO/IAEA Coordinated Research Project (CRP). From 1999-2004, 10 States and Divisions out of 14 in Myanmar were visited by the staff of National FMD Laboratory and a total of 4704 sera from cattle, buffaloes, goats and pigs were collected. Sera were investigated for FMD serotype prevalence using the Liquid Phase Blocking ELISA (LPBE) and then any positive sera in this system were tested to differentiate infected animals from vaccinated by using four commercial FMDV NSP ELISA kits. The negative and positive results were evaluated to compare the sensitivity and the specificity of various FMDV NSP ELISA kits. (author)

  19. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  20. The Microbiome: The Trillions of Microorganisms That Maintain Health and Cause Disease in Humans and Companion Animals.

    Science.gov (United States)

    Rodrigues Hoffmann, A; Proctor, L M; Surette, M G; Suchodolski, J S

    2016-01-01

    The microbiome is the complex collection of microorganisms, their genes, and their metabolites, colonizing the human and animal mucosal surfaces, digestive tract, and skin. It is now well known that the microbiome interacts with its host, assisting in digestion and detoxification, supporting immunity, protecting against pathogens, and maintaining health. Studies published to date have demonstrated that healthy individuals are often colonized with different microbiomes than those with disease involving various organ systems. This review covers a brief history of the development of the microbiome field, the main objectives of the Human Microbiome Project, and the most common microbiomes inhabiting the human respiratory tract, companion animal digestive tract, and skin in humans and companion animals. The main changes in the microbiomes in patients with pulmonary, gastrointestinal, and cutaneous lesions are described. PMID:26220947

  1. Factors associated with development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics.

    Science.gov (United States)

    Joffe, Daniel J; Lelewski, Roxana; Weese, J Scott; Mcgill-Worsley, Jamie; Shankel, Catharine; Mendonca, Sonia; Sager, Tara; Smith, Michael; Poljak, Zvonimir

    2016-01-01

    This study investigated the association between presence of respiratory pathogens and development of Canine Infectious Respiratory Disease Complex (CIRDC) in dogs in 5 Canadian small animal clinics. In total, 86 dogs were tested using a commercial PCR respiratory panel; 64 dogs were considered as cases and 22 were control dogs matched by veterinary clinic. No control animals (0/22) were positive for canine parainfluenza virus (CPIV), whereas 27/64 (42%) CIRDC cases were positive. Furthermore, 81% of case dogs tested positive for Mycoplasma cynos, compared with 73% of control dogs. Canine respiratory corona virus (CRCoV) was detected in no control dogs compared with 9.4% of clinical dogs. No animals were positive for any influenza virus type A present in the diagnostic panel. Presence of CPIV was associated (P < 0.01) with the occurrence of CIRDC after adjustment for demographic factors and presence of CRCoV (P = 0.09).

  2. Metallothionein-I and -III expression in animal models of Alzheimer disease

    DEFF Research Database (Denmark)

    Carrasco, J; Adlard, P; Cotman, C;

    2006-01-01

    Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human...

  3. Tuberculosis at the human-animal interface: an emerging disease of elephants.

    Science.gov (United States)

    Mikota, Susan K; Maslow, Joel N

    2011-05-01

    Over the past 15 years, cases of infection with organisms of the Mycobacterium tuberculosis complex have been diagnosed among captive elephants in the United States and worldwide. Outbreak investigations have documented that among staff employed at facilities housing infected animals, skin test conversion to purified protein derivative have been documented. Clonal spread among animals in close contact and even inter-species spread between elephant and human has been documented. Detection of actively infected animals relies on samples obtained by trunk wash. Diagnosis has been augmented by the development of a multi-antigen serologic assay with excellent specificity and sensitivity. Treatment regimens are still in development with efficacy largely unknown due to a paucity of both premortem follow-up and necropsy data of treated animals. The epidemiology, diagnosis and treatment of tuberculosis in elephants require additional careful study of clinical data. PMID:21397564

  4. Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease

    Directory of Open Access Journals (Sweden)

    Raymond D. Hickey

    2014-07-01

    FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzoyl-1,3 cyclohexanedione (NTBC throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, the animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopathy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH−/− pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH−/− pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of the efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes.

  5. CHIP: Commodity based Hazard Identification Protocol for emerging diseases in plants and animals

    OpenAIRE

    Bremmer, J.; Swanenburg, M.; Galen, van, M.A.; Hoek, Maarten; Rau, M.L.; Hennen, W.H.G.J.; Benninga, J.; Ge, L.; Breukers, M.L.H.

    2012-01-01

    This project comprised the development of a commodity-based hazard identification protocol for biological hazards in plants and animals as a decision support tree programmed in Excel. The content of the decision tree is based on the results of a systematic review of pest and pathogen characteristics, a review of risk assessment schemes and on expert judgement. Application of the protocol results in an indication of the level of likelihood of entry of animal and plant pathogens/pests in the ar...

  6. From Bedside to Bench and Back Again: Research Issues in Animal Models of Human Disease

    OpenAIRE

    Tkacs, Nancy C.; Thompson, Hilaire J.

    2006-01-01

    To improve outcomes for patients with many serious clinical problems, multifactorial research approaches by nurse scientists, including the use of animal models, are necessary. Animal models serve as analogies for clinical problems seen in humans and must meet certain criteria, including validity and reliability, to be useful in moving research efforts forward. This article describes research considerations in the development of rodent models. As the standard of diabetes care evolves to empha...

  7. [Early Stages of Parkinson's Disease: Comparative Characteristics of Sleep-Wakefulness Cycle in Patients and Model Animals].

    Science.gov (United States)

    Kovalzon, V M; Ugrumov, M V; Pronina, T S; Dorokhov, V B; Manolov, A I; Dolgikh, V V; Ukraintseva, Y V; Moiseenko, L S; Poluektov, M G; Kalinkin, A L

    2015-01-01

    The results of study of sleep-wakefulness cycle in experimental models of pre-clinical and early clinical stages of Parkinson's disease present and compared to some clinical examples. The conclusion is, the increase in activity level and decrease in total amount of slow wave and paradoxical sleep in model animals are taking place at the same circadian period of the secretion of pineal melatonin as sleep disorders in patients. PMID:26859995

  8. A new early-warning system for stripe rust affecting wheat and triticale: Host-pathogen interactions under different environmental conditions

    DEFF Research Database (Denmark)

    Rodriguez Algaba, Julian; Justesen, Annemarie Fejer; Hovmøller, Mogens Støvring

    Stripe (yellow) rust has been the most damaging disease in Danish organic wheat and triticale production since 2009. There were estimated losses of approximately 50 million DKK (9 million USD) in 2009. Until that time, triticale was considered the most robust cereal crop for organic farming...

  9. Effects of an Alpha7 Nicotinic Receptor Agonist and Stress on Spatial Memory in an Animal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Paloma Vicens

    2013-01-01

    Full Text Available The aim of the present study was to test the effects of PNU-282987 on spatial learning and memory and hippocampal neurogenesis in both intact and chronically stressed transgenic mice. Transgenic mice with susceptibility to Alzheimer's disease (AD under immobilization stress and not-stressed animals receiving 0 and 1 mg/kg of PNU-282987 (PNU were evaluated in a water maze task. The effects of PNU and stress on proliferation of new cells in the hippocampus of these animals were also assessed. The latency to escape the platform was significantly higher in transgenic stressed mice compared to those in the wild stressed group, as well as in transgenic animals without PNU compared to control wild group. On retention of the task, differences emerged on stressed wild animals, PNU wild group, and stressed wild mice receiving PNU. However, no significant differences were detected on new cell proliferation. The results of the present study did not show any impact of stress in acquisition of a spatial task both in wild and transgenic mice. No clear effects of PNU on acquisition of a spatial task in transgenic mice with susceptibility to AD were detected. Although PNU and stress effects were detected on retention of the task in wild animals, no changes were noted in transgenic mice.

  10. ANIMAL MODELS FOR THE STUDY OF LEISHMANIASIS IMMUNOLOGY

    Directory of Open Access Journals (Sweden)

    Elsy Nalleli Loria-Cervera

    2014-01-01

    Full Text Available Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail are being infected, and different numbers (“low” 1×102 and “high” 1×106 of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.

  11. Animal models for the study of leishmaniasis immunology.

    Science.gov (United States)

    Loría-Cervera, Elsy Nalleli; Andrade-Narváez, Fernando José

    2014-01-01

    Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers ("low" 1 × 10(2) and "high" 1 × 10(6)) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease. PMID:24553602

  12. Derivation of neural stem cells from an animal model of psychiatric disease

    OpenAIRE

    Koning, A.; Walton, N M; Shin, R.; Q. Chen; Miyake, S.; Tajinda, K; Gross, A K; Kogan, J H; Heusner, C L; Tamura, K.; Matsumoto, M.

    2013-01-01

    Several psychiatric and neurological diseases are associated with altered hippocampal neurogenesis, suggesting differing neural stem cell (NSC) function may play a critical role in these diseases. To investigate the role of resident NSCs in a murine model of psychiatric disease, we sought to isolate and characterize NSCs from alpha-calcium-/calmodulin-dependent protein kinase II heterozygous knockout (CaMK2α-hKO) mice, a model of schizophrenia/bipolar disorder. These mice display altered neur...

  13. Animal Models of Allergic Airways Disease: Where Are We and Where to Next?

    OpenAIRE

    Chapman, David G.; Tully, Jane E.; Nolin, James D.; Jansen-Heininger, Yvonne M; Irvin, Charles G.

    2014-01-01

    In a complex inflammatory airways disease such as asthma, abnormalities in a plethora of molecular and cellular pathways ultimately culminate in characteristic impairments in respiratory function. The ability to study disease pathophysiology in the setting of a functioning immune and respiratory system therefore makes mouse models an invaluable tool in translational research. Despite the vast understanding of inflammatory airways diseases gained from mouse models to date, concern over the val...

  14. Plant-derived vaccine protects target animals against a viral disease

    DEFF Research Database (Denmark)

    Dalsgaard, Kristian; Uttenthal, Åse; Jones, T.D.;

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucle....... The epitope used occurs in three different virus species-MEV, canine parvovirus, and feline panleukopenia virus-and thus the same vaccine could be used in three economically important viral hosts-mink, dogs, and cats, respectively....

  15. Expression of metallothionein-I, -II, and -III in Alzheimer disease and animal models of neuroinflammation

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Penkowa, Milena; Espejo, Carmen;

    2006-01-01

    . In Alzheimer disease (AD), a major neurodegenerative disease, clear signs of inflammation and oxidative stress were detected associated with amyloid plaques. Furthermore, the number of cells expressing apoptotic markers was also significantly increased in these plaques. As expected, MT-I and MT...

  16. Proposed draft permit guidance for genetically modified animal disease organisms and their vectors

    International Nuclear Information System (INIS)

    This paper consists of proposed draft guidance and represents the author's opinions only. They are presented below solely for the purpose of open discussion and comments on the subject of genetically modified arthropod regulations and should not be construed as representing actual or current regulations or opinions of the USDA, Animal and Plant Health Inspection Service (APHIS). (author)

  17. Prebiotic use in food animals to reduce foodborne pathogens and disease

    Science.gov (United States)

    As our understanding of the complexities of the gastrointestinal microbial ecosystem has grown in recent years, so has interest in utilizing the natural power contained within this ecosystem as a tool in our arsenal to improve both animal and human health. The diversity of the microbial population ...

  18. InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.

    Science.gov (United States)

    Stevenson, M A; Sanson, R L; Stern, M W; O'Leary, B D; Sujau, M; Moles-Benfell, N; Morris, R S

    2013-04-01

    We describe the spatially explicit, stochastic simulation model of disease spread, InterSpread Plus, in terms of its epidemiological framework, operation, and mode of use. The input data required by the model, the method for simulating contact and infection spread, and methods for simulating disease control measures are described. Data and parameters that are essential for disease simulation modelling using InterSpread Plus are distinguished from those that are non-essential, and it is suggested that a rational approach to simulating disease epidemics using this tool is to start with core data and parameters, adding additional layers of complexity if and when the specific requirements of the simulation exercise require it. We recommend that simulation models of disease are best developed as part of epidemic contingency planning so decision makers are familiar with model outputs and assumptions and are well-positioned to evaluate their strengths and weaknesses to make informed decisions in times of crisis.

  19. Generalized cerebral atrophy seen on MRI in a naturally exposed animal model for creutzfeldt-jakob disease

    Directory of Open Access Journals (Sweden)

    Dasanu Constantin A

    2010-11-01

    Full Text Available Abstract Background Magnetic resonance imaging has been used in the diagnosis of human prion diseases such as sCJD and vCJD, but patients are scanned only when clinical signs appear, often at the late stage of disease. This study attempts to answer the questions "Could MRI detect prion diseases before clinical symptoms appear?, and if so, with what confidence?" Methods Scrapie, the prion disease of sheep, was chosen for the study because sheep can fit into a human sized MRI scanner (and there were no large animal MRI scanners at the time of this study, and because the USDA had, at the time of the study, a sizeable sample of scrapie exposed sheep, which we were able to use for this purpose. 111 genetically susceptible sheep that were naturally exposed to scrapie were used in this study. Results Our MRI findings revealed no clear, consistent hyperintense or hypointense signal changes in the brain on either clinically affected or asymptomatic positive animals on any sequence. However, in all 37 PrPSc positive sheep (28 asymptomatic and 9 symptomatic, there was a greater ventricle to cerebrum area ratio on MRI compared to 74 PrPSc negative sheep from the scrapie exposed flock and 6 control sheep from certified scrapie free flocks as defined by immunohistochemistry (IHC. Conclusions Our findings indicate that MRI imaging can detect diffuse cerebral atrophy in asymptomatic and symptomatic sheep infected with scrapie. Nine of these 37 positive sheep, including 2 one-year old animals, were PrPSc positive only in lymph tissues but PrPSc negative in the brain. This suggests either 1 that the cerebral atrophy/neuronal loss is not directly related to the accumulation of PrPSc within the brain or 2 that the amount of PrPSc in the brain is below the detectable limits of the utilized immunohistochemistry assay. The significance of these findings remains to be confirmed in human subjects with CJD.

  20. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat.

    Science.gov (United States)

    Ip, Hon S; Lorch, Jeffrey M; Blehert, David S

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians. PMID:27599472

  1. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat.

    Science.gov (United States)

    Ip, Hon S; Lorch, Jeffrey M; Blehert, David S

    2016-09-07

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  2. Detection of spring viraemia of carp virus in imported amphibians reveals an unanticipated foreign animal disease threat

    Science.gov (United States)

    Ip, Hon S.; Lorch, Jeffrey M.; Blehert, David

    2016-01-01

    Global translocation of plants and animals is a well-recognized mechanism for introduction of pathogens into new regions. To mitigate this risk, various tools such as preshipment health certificates, quarantines, screening for specific disease agents and outright bans have been implemented. However, such measures only target known infectious agents and their hosts and may fail to prevent translocation of even well-recognized pathogens if they are carried by novel host species. In a recent example, we screened an imported shipment of Chinese firebelly newts (Cynops orientalis) for Batrachochytrium salamandrivorans, an emergent fungal pathogen of salamanders. All animals tested negative for the fungus. However, a virus was cultured from internal organs from 7 of the 11 individual dead salamanders and from two pools of tissues from four additional dead animals. Sequencing of a portion of the glycoprotein gene from all viral isolates indicated 100% identity and that they were most closely related to spring viraemia of carp virus (SVCV). Subsequently, SVCV-specific PCR testing indicated the presence of virus in internal organs from each of the four animals previously pooled, and whole-genome sequencing of one of the viral isolates confirmed genomic arrangement characteristic of SVCV. SVCV is a rhabdovirus pathogen of cyprinid fish that is listed as notifiable to the Office International des Epizooties. This discovery reveals a novel route for potential spillover of this economically important pathogen as rhabdovirus has not previously been documented in amphibians.

  3. Bottlenecks in domestic animal populations can facilitate the emergence of Trypanosoma cruzi, the aetiological agent of Chagas disease

    Science.gov (United States)

    Levy, Michael Z.; Tustin, Aaron; Castillo-Neyra, Ricardo; Mabud, Tarub S.; Levy, Katelyn; Barbu, Corentin M.; Quispe-Machaca, Victor R.; Ancca-Juarez, Jenny; Borrini-Mayori, Katty; Naquira-Velarde, Cesar; Ostfeld, Richard S.

    2015-01-01

    Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out. PMID:26085582

  4. Symmetric Dimethylarginine: Improving the Diagnosis and Staging of Chronic Kidney Disease in Small Animals.

    Science.gov (United States)

    Relford, Roberta; Robertson, Jane; Clements, Celeste

    2016-11-01

    Chronic kidney disease (CKD) is a common condition in cats and dogs, traditionally diagnosed after substantial loss of kidney function when serum creatinine concentrations increase. Symmetric dimethylarginine (SDMA) is a sensitive circulating kidney biomarker whose concentrations increase earlier than creatinine as glomerular filtration rate decreases. Unlike creatinine SDMA is unaffected by lean body mass. The IDEXX SDMA test introduces a clinically relevant and reliable tool for the diagnosis and management of kidney disease. SDMA has been provisionally incorporated into the International Renal Interest Society guidelines for CKD to aid staging and targeted treatment of early and advanced disease. PMID:27499007

  5. 9 CFR 71.3 - Interstate movement of diseased animals and poultry generally prohibited.

    Science.gov (United States)

    2010-01-01

    ... List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on... exanthema, screwworms and glanders, scabies in sheep or any other communicable foreign disease not known...

  6. Challenges and opportunities in developing and marketing vaccines for OIE List A and emerging animal diseases.

    Science.gov (United States)

    Gay, C G; Salt, J; Balaski, C

    2003-01-01

    Veterinary pharmaceutical products generated 14.5 billion U.S. Dollars (USD) in worldwide sales in 2000, with biological products contributing 16.2 percent or 2.3 billion USD. The leading biological products were foot-and-mouth disease (FMD) vaccines, with 284 million USD in sales, representing 26.4 percent of the entire livestock biological business. Despite the potential opportunities for the biologicals industry, non-vaccination policies and undefined control and eradication strategies have deterred the private sector from significant investments in the research and development of vaccines against List A diseases. The primary research focus remains vaccines for infectious diseases that have an impact on current domestic herd health management systems. Changing the vaccine paradigm, investing in new technologies, and creating the future by integrating into key alliances with producers and regulatory authorities will be paramount in protecting our poultry and livestock industries against highly infectious diseases and potential acts of bioterrorism. PMID:14677694

  7. Animal models for the study of hepatitis C virus infection and related liver disease

    DEFF Research Database (Denmark)

    Bukh, Jens

    2012-01-01

    Hepatitis C virus (HCV) causes liver-related death in more than 300,000 people annually. Treatments for patients with chronic HCV are suboptimal, despite the introduction of directly acting antiviral agents. There is no vaccine that prevents HCV infection. Relevant animal models are important...... for HCV research and development of drugs and vaccines. Chimpanzees are the best model for studies of HCV infection and related innate and adaptive host immune responses. They can be used in immunogenicity and efficacy studies of HCV vaccines. The only small animal models of robust HCV infection are T......- and B- cell deficient mice with human chimeric livers. Although these mice cannot be used in studies of adaptive immunity, they have provided new insights into HCV neutralization, interactions between virus and receptors, innate host responses, and therapeutic approaches. Recent progress in developing...

  8. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    OpenAIRE

    Assaf Anyamba; Linthicum, Kenneth J.; Small, Jennifer L.; Kathrine M Collins; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; James Ronald Eastman; Pinzon, Jorge E; Russell, Kevin L.

    2012-01-01

    BACKGROUND: Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbre...

  9. The Effect of Treadmill Running on Passive Avoidance Learning in Animal Model of Alzheimer Disease

    OpenAIRE

    Nasrin Hosseini; Hojjatallah Alaei; Parham Reisi; Maryam Radahmadi

    2013-01-01

    Background : Alzheimer′s disease was known as a progressive neurodegenerative disorder in the elderly and is characterized by dementia and severe neuronal loss in the some regions of brain such as nucleus basalis magnocellularis. It plays an important role in the brain functions such as learning and memory. Loss of cholinergic neurons of nucleus basalis magnocellularis by ibotenic acid can commonly be regarded as a suitable model of Alzheimer′s disease. Previous studies reported that exercise...

  10. Household practices related to disease transmission between animals and humans in rural Cambodia

    OpenAIRE

    Osbjer, Kristina; Boqvist, Sofia; Sokerya, Seng; Kannarath, Chheng; San, Sorn; Davun, Holl; Magnusson, Ulf

    2015-01-01

    Background Zoonotic diseases are disproportionately affecting poor societies in low-income countries and pose a growing threat to public health and global food security. Rural Cambodian households may face an increased likelihood of exposure to zoonotic diseases as people there live in close association with livestock. The objectives of the study was to identify practices known to influence zoonosis transmission in rural Cambodian households and relate the practices to agro-ecological region,...

  11. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis

    OpenAIRE

    Shriver, Leah P.; Manchester, Marianne

    2011-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and a leading cause of neurological disability. The complex immunopathology and variable disease course of multiple sclerosis have limited effective treatment of all patients. Altering the metabolism of immune cells may be an attractive strategy to modify their function during autoimmunity. We examined the effect of inhibiting fatty acid metabolism in experimental autoimmune encephalomyelitis (EAE), a mo...

  12. Alzheimer’s disease biomarkers in animal models: closing the translational gap

    OpenAIRE

    Sabbagh, Jonathan J.; Kinney, Jefferson W.; Cummings, Jeffrey L.

    2013-01-01

    The rising prevalence of Alzheimer’s disease (AD) is rapidly becoming one of the largest health and economic challenges in the world. There is a growing need for the development and implementation of reliable biomarkers for AD that can be used to assist in diagnosis, inform disease progression, and monitor therapeutic efficacy. Preclinical models permit the evaluation of candidate biomarkers and assessment of pipeline agents before clinical trials are initiated and provide a translational opp...

  13. Robust detection of exotic infectious diseases in animal herds: A comparative study of three decision methodologies under severe uncertainty

    CERN Document Server

    Troffaes, Matthias C M

    2011-01-01

    When animals are transported and pass through customs, some of them may have dangerous infectious diseases. Typically, due to the cost of testing, not all animals are tested: a reasonable selection must be made. How to test effectively, yet avoid cataclysmic events? First, we extend a model proposed in the literature for the detection of invasive species to suit our purpose. Secondly, we explore and compare three decision methodologies on the problem at hand, namely, Bayesian statistics, info-gap theory and imprecise probability theory, all of which are designed to handle severe uncertainty. We show that, under rather general conditions, every info-gap solution is maximal with respect to a suitably chosen imprecise probability model, and that therefore, perhaps surprisingly, the set of maximal options can be inferred at least partly---and sometimes entirely---from an info-gap analysis.

  14. Stability of virulent pseudorabies (Aujeszky's disease) viral genome after single passage through nonswine animal species.

    OpenAIRE

    Pirtle, E C

    1984-01-01

    This experiment was done to determine the effect(s) of single passage of pseudorabies virus in dead-end hosts on the stability of the pseudorabies virus genome. Calves, dogs, rabbits and cats were inoculated with a virulent strain of pseudorabies virus and the virus was reisolated from each animal and restriction endonuclease analysis was used to determine possible alterations in the DNA banding patterns. The restriction fragment migration profile of the pseudorabies virus DNA isolated from t...

  15. Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interactions in group a Streptococcus carrier strains.

    Science.gov (United States)

    Flores, Anthony R; Olsen, Randall J; Wunsche, Andrea; Kumaraswami, Muthiah; Shelburne, Samuel A; Carroll, Ronan K; Musser, James M

    2013-11-01

    Humans commonly carry pathogenic bacteria asymptomatically, but the molecular factors underlying microbial asymptomatic carriage are poorly understood. We previously reported that two epidemiologically unassociated serotype M3 group A Streptococcus (GAS) carrier strains had an identical 12-bp deletion in the promoter of the gene encoding Mga, a global positive gene regulator. Herein, we report on studies designed to test the hypothesis that the identified 12-bp deletion in the mga promoter alters GAS virulence, thereby potentially contributing to the asymptomatic carrier phenotype. Using allelic exchange, we introduced the variant promoter into a serotype M3 invasive strain and the wild-type promoter into an asymptomatic carrier strain. Compared to strains with the wild-type mga promoter, we discovered that strains containing the promoter with the 12-bp deletion produced significantly fewer mga and Mga-regulated gene transcripts. Consistent with decreased mga transcripts, strains containing the variant mga promoter were also significantly less virulent in in vivo and ex vivo models of GAS disease. Further, we provide evidence that the pleiotropic regulator protein CodY binds to the mga promoter and that the 12-bp deletion in the mga promoter reduces CodY-mediated mga transcription. We conclude that the naturally occurring 12-bp deletion in the mga promoter significantly alters the pathogen-host interaction of these asymptomatic carrier strains. Our findings provide new insight into the molecular basis of the carrier state of an important human pathogen. PMID:23980109

  16. Challenges and opportunities for controlling and preventing animal diseases in developing countries through gene-based technologies

    International Nuclear Information System (INIS)

    The livestock revolution so robustly and frequently described in the past five years, is argued to provide a real opportunity for the rural livestock keeper in developing countries to escape the poverty trap, move away from subsistence farming and enter the more rewarding areas of farm enterprise and income generation. To do so though, will require more than merely acknowledging this marketing opportunity. It will be essential to address the many constraints and critical risks that constantly face rural farming in developing countries. Of these, livestock disease rates as one of the most challenging. However, for effective participation in the livestock revolution it will be essential that livestock disease is either controlled or prevented. For the livestock producer in developing countries, many of the life threatening diseases that have been eradicated from the developed world area are ever present and the extent and range of production-limiting diseases are considerable. The situation is further compounded since in many cases veterinary services and other animal health delivery systems are either nonexistent or ineffective. For some time donor organisations have been driving countries in transition to privatise services such as animal health delivery. The current situation is the virtual elimination of functioning State veterinary services without replacement by a private system and certainly not in rural areas. The elimination of the major killer diseases of livestock in the developed world was achieved, for the most part, through considerable State investment, extensive veterinary input and a large share of public money. Such resources are certainly not available today in most developing countries. No wonder therefore that diseases such as Contagious Bovine Pleuropneumonia, African Swine Fever ad Foot and Mouth Disease continue to exist endemically in most poorer regions of Africa and elsewhere. In terms of the production limiting diseases, control of these

  17. What have transgenic and knockout animals taught us about respiratory disease?

    Directory of Open Access Journals (Sweden)

    Spina Domenico

    2000-08-01

    Full Text Available Abstract Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease.

  18. Cytokines and Cytokine Profiles in Human Autoimmune Diseases and Animal Models of Autoimmunity

    Directory of Open Access Journals (Sweden)

    Manfred Kunz

    2009-01-01

    Full Text Available The precise pathomechanisms of human autoimmune diseases are still poorly understood. However, a deepened understanding of these is urgently needed to improve disease prevention and early detection and guide more specific treatment approaches. In recent years, many new genes and signalling pathways involved in autoimmunity with often overlapping patterns between different disease entities have been detected. Major contributions were made by experiments using DNA microarray technology, which has been used for the analysis of gene expression patterns in chronic inflammatory and autoimmune diseases, among which were rheumatoid arthritis, systemic lupus erythematosus, psoriasis, systemic sclerosis, multiple sclerosis, and type-1 diabetes. In systemic lupus erythematosus, a so-called interferon signature has been identified. In psoriasis, researchers found a particular immune signalling cluster. Moreover the identification of a new subset of inflammatory T cells, so-called Th17 T cells, secreting interleukin (IL-17 as one of their major cytokines and the identification of the IL-23/IL-17 axis of inflammation regulation, have significantly improved our understanding of autoimmune diseases. Since a plethora of new treatment approaches using antibodies or small molecule inhibitors specifically targeting cytokines, cellular receptors, or signalling mechanisms has emerged in recent years, more individualized treatment for affected patients may be within reach in the future.

  19. A Safe Foot-and-Mouth Disease Vaccine Platform with Two Negative Markers for Differentiating Infected from Vaccinated Animals

    OpenAIRE

    Uddowla, Sabena; Hollister, Jason; Pacheco, Juan M.; Rodriguez, Luis L.; Rieder, Elizabeth

    2012-01-01

    Vaccination of domestic animals with chemically inactivated foot-and-mouth disease virus (FMDV) is widely practiced to control FMD. Currently, FMD vaccine manufacturing requires the growth of large volumes of virulent FMDV in biocontainment-level facilities. Here, two marker FMDV vaccine candidates (A24LL3DYR and A24LL3BPVKV3DYR) featuring the deletion of the leader coding region (Lpro) and one of the 3B proteins were constructed and evaluated. These vaccine candidates also contain either one...

  20. Injuries caused by aquatic animals in Brazil: an analysis of the data present in the information system for notifiable diseases

    OpenAIRE

    Guilherme Carneiro Reckziegel; Flávio Santos Dourado; Domingos Garrone Neto; Vidal Haddad Junior

    2015-01-01

    AbstractINTRODUCTION:We present a review of injuries in humans caused by aquatic animals in Brazil using the Information System for Notifiable Diseases [ Sistema de Informação de Agravos de Notificação (SINAN)] database.METHODS:A descriptive and retrospective epidemiological study was conducted from 2007 to 2013.RESULTS:A total of 4,118 accidents were recorded. Of these accidents, 88.7% (3,651) were caused by venomous species, and 11.3% (467) were caused by poisonous, traumatic or unidentifie...

  1. Maintenance of brucellosis in Yellowstone bison: linking seasonal food resources, host-pathogen interaction, and life-history trade-offs.

    Science.gov (United States)

    Treanor, John J; Geremia, Chris; Ballou, Michael A; Keisler, Duane H; White, Patrick J; Cox, John J; Crowley, Philip H

    2015-09-01

    The seasonal availability of food resources is an important factor shaping the life-history strategies of organisms. During times of nutritional restriction, physiological trade-offs can induce periods of immune suppression, thereby increasing susceptibility to infectious disease. Our goal was to provide a conceptual framework describing how the endemic level bovine brucellosis (Brucella abortus) may be maintained in Yellowstone bison based on the seasonality of food resources and the life-history strategies of the host and pathogen. Our analysis was based on active B. abortus infection (measured via bacterial culture), nutritional indicators (measured as metabolites and hormones in plasma), and carcass measurements of 402 slaughtered bison. Data from Yellowstone bison were used to investigate (1) whether seasonal changes in diet quality affect nutritional condition and coincide with the reproductive needs of female bison; (2) whether active B. abortus infection and infection intensities vary with host nutrition and nutritional condition; and (3) the evidence for seasonal changes in immune responses, which may offer protection against B. abortus, in relation to nutritional condition. Female bison experienced a decline in nutritional condition during winter as reproductive demands of late gestation increased while forage quality and availability declined. Active B. abortus infection was negatively associated with bison age and nutritional condition, with the intensity of infection negatively associated with indicators of nutrition (e.g., dietary protein and energy) and body weight. Data suggest that protective cell-mediated immune responses may be reduced during the B. abortus transmission period, which coincides with nutritional insufficiencies and elevated reproductive demands during spring. Our results illustrate how seasonal food restriction can drive physiological trade-offs that suppress immune function and create infection and transmission opportunities

  2. Climate teleconnections and recent patterns of human and animal disease outbreaks.

    Directory of Open Access Journals (Sweden)

    Assaf Anyamba

    2012-01-01

    Full Text Available BACKGROUND: Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. METHODS AND FINDINGS: We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and

  3. Detecting inflammation and fibrosis in bowel wall with photoacoustic imaging in a Crohn's disease animal model

    Science.gov (United States)

    Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding

    2015-03-01

    Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.

  4. A single cidofovir treatment rescues animals at progressive stages of lethal orthopoxvirus disease

    Directory of Open Access Journals (Sweden)

    Israely Tomer

    2012-06-01

    Full Text Available Abstract Background In an event of a smallpox outbreak in humans, the window for efficacious treatment by vaccination with vaccinia viruses (VACV is believed to be limited to the first few days post-exposure (p.e.. We recently demonstrated in a mouse model for human smallpox, that active immunization 2–3 days p.e. with either VACV-Lister or modified VACV Ankara (MVA vaccines, can rescue animals from lethal challenge of ectromelia virus (ECTV, the causative agent of mousepox. The present study was carried out in order to determine whether a single dose of the anti-viral cidofovir (CDV, administered at different times and doses p.e. either alone or in conjunction with active vaccination, can rescue ECTV infected mice. Methods Animals were infected intranasally with ECTV, treated on different days with various single CDV doses and monitored for morbidity, mortality and humoral response. In addition, in order to determine the influence of CDV on the immune response following vaccination, both the "clinical take”, IFN-gamma and IgG Ab levels in the serum were evaluated as well as the ability of the mice to withstand a lethal challenge of ECTV. Finally the efficacy of a combined treatment regime of CDV and vaccination p.e. was determined. Results A single p.e. CDV treatment is sufficient for protection depending on the initiation time and dose (2.5 – 100 mg/kg of treatment. Solid protection was achieved by a low dose (5 mg/kg CDV treatment even if given at day 6 p.e., approximately 4 days before death of the control infected untreated mice (mean time to death (MTTD 10.2. At the same time point complete protection was achieved by single treatment with higher doses of CDV (25 or 100 mg/kg. Irrespective of treatment dose, all surviving animals developed a protective immune response even when the CDV treatment was initiated one day p.e.. After seven days post treatment with the highest dose (100 mg/kg, virus was still detected in some

  5. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    OpenAIRE

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is ...

  6. Anticipating the Emerging of Some Strategical Infectious Animal Diseases in Indonesia Related to The Effect of Global Warming and Climate Change

    Directory of Open Access Journals (Sweden)

    Sjamsul Bahri

    2011-03-01

    Full Text Available The effect of global warming and climate change is changing the season, included flooding in one area and very dry in other area, changing the temperature and humidity. These changes will trigger changing of the life of biological agent (virus, bacteria, parasites and so on, variety of animal species, variety of vectors as reservoir host of animal with the role of transmitting the disease to other animal species, This condition will trigger the new animal disease (emerging disease or old disease will be re-emerged (re-emerging diseases. This paper will discuss the effect of global warming and climate change on animal diseases in Indonesia such as Bluetongue (BT, Nipah, Japanese encephalitis (JE, West Nile (WN, and Rift Valley fever (RVF. The climate changes such as increasing the earth temperature and rainfall will cause extremely increase of vector population for BT, JE, WN and RVF. In addition, animal transportation and bird migration from one country to others or region will cause changing of ecological system and will open the chance to distribute the diseases. Hence, anticipation on those disease outbreaks should be taken by conducting the surveilance and early detection to those diseases. The possibility of entering Nipah disease in Indonesia should be anticipated because the avaibility of Nipah virus and the reservoir host (Pteropus spp and also pigs as amplifier host in the surrounding area. Other diseases such as, leptospirosis, anthrax and avian influenza (H5N1 are also have a wider potential to distributing the disease related to the climate change in Indonesia.

  7. Animal or Plant Disease, Gypsy Moth spray blocks, Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin Department of Agriculture, Trade & Consumer Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Animal or Plant Disease dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as...

  8. Challenges and opportunities for controlling and preventing animal diseases in developing countries through gene-based technologies

    International Nuclear Information System (INIS)

    Polymerase Chain Reaction (PCR) technology allows scientist to amplify, copy, identify, characterize and manipulate genes in a relatively simple way. Exploitation of the technology to devise new products and translate these to the commercial sector has been remarkable. Molecular technologies are not difficult to establish and use, and can appear to offer developing countries many opportunities. However, developing countries should look in a different way at the apparent advantages offered. Whilst molecular biological science appears to offer solutions to many problems, there are a number of drawbacks. This desire to adopt the latest technology often overrides any considerations of the use of more conventional technologies to address needs. The conventional, and often more practical, methods already provide many specific tools in the disease control area. Changing the technology can also deflect critical resources into the molecular field in terms of laboratory funding and training. This may cause redundancy of staff, limit further development in conventional techniques, and polarize scientists into the older (less glossy) and newer (molecular) camps. Animal disease diagnosis still primarily utilizes conventional techniques such as Enzyme Linked Immunosorbent Assay (ELISA). This will not change drastically in developing countries, but developments will combine such methods with more discriminatory molecular techniques, and a balanced and parallel development is needed. An understanding of the use and possible advantages of the various technologies is required by both scientists and policy-makers in developing nations. Vaccines based on molecular science could have a real impact in developing countries, but 'vaccinology' needs to examine both the animal (immunology of target species) and the disease agent itself. This is a research-based science and, as such, is expensive, with no surety of success. Developing countries should exploit links with developed countries

  9. In memoriam: Cristiana Patta, DVM, 1958-2012, Virologist and specialist in African swine fever and exotic animal diseases

    Directory of Open Access Journals (Sweden)

    Anon.

    2012-03-01

    Full Text Available The veterinary world is shocked and deeply saddened by the untimely death of Cristiana Patta, manager at Sardinia’s Istituto Zooprofilattico Sperimentale.Cristiana was a nationally and internationally acclaimed virologist, distinguished throughout her intense but all-too-brief life by her talent and professionalism. After studying microbiology and virology at the University of Sassari, specialising in microbiological and virological techniques, she began her career as a researcher in the viral animal diseases sector at the Istituto di Sassari. Her work included the main aspects of exotic animal diseases, from diagnosis to control, as well as the planning and management of eradication programmes for the principal infectious diseases (swine fever, brucellosis, tuberculosis and bluetongue under European Union surveillance.Her knowledge of swine fever – and particularly African swine fever – led her to become a national and international expert in the control of this disease. In this role, she became a member of the roster of experts of the Ministry of Health and the European Commission. She contributed to numerous European research projects and was an invited speaker at many scientific assemblies sponsored by international organisations such as the OIE, FAO and EU.Cristiana also provided an authoritative contribution to training activities promoted by the Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’ in Teramo in its capacity as OIE collaboration centre for veterinary training, epidemiology, food safety and animal welfare, offering her expertise in exotic livestock diseases. The Italian veterinary service and national and European reference centres all benefitted from her experience and knowledge, through training events organised by the Ministry of Health and the regional authorities. Her technical expertise was matched by her managerial skills, in particular in the clinical management of veterinary public

  10. In memoriam: Cristiana Patta, DVM, 1958-2012. Virologist and specialist in African swine fever and exotic animal diseases.

    Science.gov (United States)

    2012-01-01

    The veterinary world is shocked and deeply saddened by the untimely death of Cristiana Patta, manager at Sardinia's Istituto Zooprofilattico Sperimentale. Cristiana was a nationally and internationally acclaimed virologist, distinguished throughout her intense but all-too-brief life by her talent and professionalism. After studying microbiology and virology at the University of Sassari, specialising in microbiological and virological techniques, she began her career as a researcher in the viral animal diseases sector at the Istituto di Sassari. Her work included the main aspects of exotic animal diseases, from diagnosis to control, as well as the planning and management of eradication programmes for the principal infectious diseases (swine fever, brucellosis, tuberculosis and bluetongue) under European Union surveillance. Her knowledge of swine fever - and particularly African swine fever - led her to become a national and international expert in the control of this disease. In this role, she became a member of the roster of experts of the Ministry of Health and the European Commission. She contributed to numerous European research projects and was an invited speaker at many scientific assemblies sponsored by international organisations such as the OIE, FAO and EU. Cristiana also provided an authoritative contribution to training activities promoted by the Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale' in Teramo in its capacity as OIE collaboration centre for veterinary training, epidemiology, food safety and animal welfare, offering her expertise in exotic livestock diseases. The Italian veterinary service and national and European reference centres all benefitted from her experience and knowledge, through training events organised by the Ministry of Health and the regional authorities. Her technical expertise was matched by her managerial skills, in particular in the clinical management of veterinary public health facilities. The

  11. [Glanders--a potential disease for biological warfare in humans and animals].

    Science.gov (United States)

    Lehavi, Ofer; Aizenstien, Orna; Katz, Lior H; Hourvitz, Ariel

    2002-05-01

    Infection with Burkholderia mallei (formerly Pseudomonas mallei) can cause a subcutaneous infection known as "farcy" or can disseminate to condition known as Glanders. It is primarily a disease affecting horses, donkeys and mules. In humans, Glanders can produce four types of disease: localized form, pulmonary form, septicemia, and chronic form. Necrosis of the tracheobronchial tree and pustular skin lesions characterize acute infection with B. mallei. Other symptoms include febrile pneumonia, if the organism was inhaled, or signs of sepsis and multiple abscesses, if the skin was the port of entry. Glanders is endemic in Africa, Asia, the Middle East, and Central and South America. Glanders has low contiguous potential, but because of the efficacy of aerosolized dissemination and the lethal nature of the disease, B. mallei was considered a candidate for biological warfare. During World War I, Glanders was believed to have been spread to infect large numbers of Russian horses and mules on the Eastern front. The Japanese infected horses, civilians and prisoners of war during World War II. The USA and the Soviet Union have shown interest in B. mallei in their biological warfare program. The treatment is empiric and includes mono or poly-therapy with Ceftazidime, Sulfadiazine, Trimethoprim + Sulfamethoxazol, Gentamicin, Imipenem etc. Aggressive control measures essentially eliminated Glanders from the west. However, with the resurgent concern about biological warfare, B. mallei is now being studied in a few laboratories worldwide. This review provides an overview of the disease and presents the only case reported in the western world since 1949.

  12. The effect of mGlu8 deficiency in animal models of psychiatric diseases.

    Science.gov (United States)

    Fendt, M; Bürki, H; Imobersteg, S; van der Putten, H; McAllister, K; Leslie, J C; Shaw, D; Hölscher, C

    2010-02-01

    The metabotropic glutamate receptor subtype 8 (mGlu(8)) is presynaptically located and regulates the release of the transmitter. Dysfunctions of this mechanism are involved in the pathophysiology of different psychiatric disorders. mGlu(8) deficient mice have been previously investigated in a range of studies, but the results are contradictory and there are still many open questions. Therefore, we tested mGlu(8)-deficient animals in different behavioral tasks that are commonly used in neuropsychiatric research. Our results show a robust contextual fear deficit in mGlu(8)-deficient mice. Furthermore, novel object recognition, chlordiazepoxide-facilitated extinction of operant conditioning and the acoustic startle response were attenuated by mGlu(8) deficiency. We found no changes in sensory processing, locomotor activity, prepulse inhibition, phencyclidine-induced changes in locomotion or prepulse inhibition, operant conditioning, conditioned fear to a discrete cue or in animal models of innate fear and post-traumatic stress disorder. We conclude that mGlu(8) might be a potential target for disorders with pathophysiological changes in brain areas where mGlu(8) modulates glutamate and gamma-amino butyric acid (GABA) transmission. Our data especially point to anxiety disorders involving exaggerated contextual fear, such as generalized anxiety disorders, and to conditions with disturbed declarative memory. PMID:19740090

  13. Ethnoveterinary Knowledge of Azarbaijanian People about the Terminology and Pathogenesis of the Animal Infectious Diseases: A Historical and Modern Review of Iranian Native Veterinary Medicine

    OpenAIRE

    Jalal Shayegh; Peyman Mikaili

    2011-01-01

    This a unique report about the ethnoveterinary knowledge of Azarbaijanian people about the terminology and pathogenesis of the animal infectious diseases in folkloric literature and the part of literature which has prolonged among the villagers and conserved its own existence but its terms have not registered in their written forms. Collecting and reviewing these terms about the animal diseases put an apparent persistence on the long experience among native Azerbaijani people (Iran) in its ve...

  14. Tree shrew (Tupaia belangeri chinensis, a novel non-obese animal model of non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Linqiang Zhang

    2016-10-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is becoming a severe public health problem that is affecting a large proportion of the world population. Generally, NAFLD in patients is usually accompanied by obesity, hyperglycemia, insulin resistance (IR and type 2 diabetes (T2D, for which numerous animal models have been generated in order to explore the pathogenesis and therapies of NAFLD. On the contrary, quite a number of NAFLD subjects, especially in Asian regions, are non-obese and non-diabetic; however, few animal models are available for the research of non-obese NAFLD. Here, four approaches (here called approach 1 to 4 corresponding to the variable compositions of diets were used to treat tree shrews (Tupaia belangeri chinensis, which have a closer evolutionary relationship to primates than rodents. Analysis of plasma biochemical parameters, hepatic histology, and the expression of hepatic lipid metabolic genes revealed that all four approaches led to hepatic lipid accumulation, liver injury and hypercholesterolemia, but had no effect on body weight and adipose tissue generation, or glycemia. Hepatic gene expression in tree shrews treated by approach 4 might suggest a different or non-canonical pathway leading to hepatic steatosis. In conclusion, the tree shrew displays hepatic steatosis and dyslipidemia, but remains non-obese and non-diabetic under high energy diets, which suggests that the tree shrew may be useful as a novel animal model for the research of human non-obese NAFLD.

  15. Tree shrew (Tupaia belangeri chinensis), a novel non-obese animal model of non-alcoholic fatty liver disease

    Science.gov (United States)

    Zhang, Linqiang; Wu, Xiaoyun; Liao, Shasha; Li, Yunhai; Zhang, Zhiguo; Chang, Qing; Xiao, Ruyue

    2016-01-01

    ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is becoming a severe public health problem that is affecting a large proportion of the world population. Generally, NAFLD in patients is usually accompanied by obesity, hyperglycemia, insulin resistance (IR) and type 2 diabetes (T2D), for which numerous animal models have been generated in order to explore the pathogenesis and therapies of NAFLD. On the contrary, quite a number of NAFLD subjects, especially in Asian regions, are non-obese and non-diabetic; however, few animal models are available for the research of non-obese NAFLD. Here, four approaches (here called approach 1 to 4) corresponding to the variable compositions of diets were used to treat tree shrews (Tupaia belangeri chinensis), which have a closer evolutionary relationship to primates than rodents. Analysis of plasma biochemical parameters, hepatic histology, and the expression of hepatic lipid metabolic genes revealed that all four approaches led to hepatic lipid accumulation, liver injury and hypercholesterolemia, but had no effect on body weight and adipose tissue generation, or glycemia. Hepatic gene expression in tree shrews treated by approach 4 might suggest a different or non-canonical pathway leading to hepatic steatosis. In conclusion, the tree shrew displays hepatic steatosis and dyslipidemia, but remains non-obese and non-diabetic under high energy diets, which suggests that the tree shrew may be useful as a novel animal model for the research of human non-obese NAFLD. PMID:27659689

  16. A cooperative approach to animal disease response activities: Analytical hierarchy process (AHP) and vvIBD in California poultry.

    Science.gov (United States)

    Saito, Emi K; Shea, Supie; Jones, Annette; Ramos, Gregory; Pitesky, Maurice

    2015-09-01

    Very virulent infectious bursal disease virus (vvIBDv) was first detected in the United States at the end of 2008. Since its detection, Federal and State animal health officials, the poultry industry and the research/academic community have led response activities through a collaborative effort. By June 2011, much still remained unknown regarding the basic epidemiology and ecology of vvIBD in California, although there were a number of potential activities to fill this information gap. Available resources limited the ability to pursue all the activities, and responsible parties and stakeholders recognized the need to prioritize the activities. The analytic hierarchy process (AHP) is a useful multi-criteria decision making methodology that incorporates qualitative information (in the form of judgments) with available quantitative information. This is especially useful when there is very limited quantitative information, such as in the situation with vvIBD in California. A commercial package that allows ready use of the AHP model was utilized for prioritizing activities, incorporating input from members from the three stakeholder groups: State and Federal animal health officials, poultry industry, and research/academia. Based on their inputs on 17 potential activities, the participants identified three priority activities; specifically determination of risk factors for re-emergence or re-introduction at affected premises, development of a laboratory diagnostic test to screen for segment B of the vvIBDV genome and surveillance of other potential reservoirs (mealworms, rodents, beetles). In order to evaluate the ability of the AHP to respond to differences, a sensitivity analysis was done in order to evaluate changes in prioritization of activities. Changes in prioritization were noted demonstrating the plasticity of the model under different conditions. However, a 50% increase or decrease in weighting was necessary to affect the order of the three highest scoring

  17. Renal depletion of myo-inositol is associated with its increased degradation in animal models of metabolic disease.

    Science.gov (United States)

    Chang, H-H; Chao, H-N; Walker, C S; Choong, S-Y; Phillips, A; Loomes, K M

    2015-11-01

    Renal depletion of myo-inositol (MI) is associated with the pathogenesis of diabetic nephropathy in animal models, but the underlying mechanisms involved are unclear. We hypothesized that MI depletion was due to changes in inositol metabolism and therefore examined the expression of genes regulating de novo biosynthesis, reabsorption, and catabolism of MI. We also extended the analyses from diabetes mellitus to animal models of dietary-induced obesity and hypertension. We found that renal MI depletion was pervasive across these three distinct disease states in the relative order: hypertension (-51%)>diabetes mellitus (-35%)>dietary-induced obesity (-19%). In 4-wk diabetic kidneys and in kidneys derived from insulin-resistant and hypertensive rats, MI depletion was correlated with activity of the MI-degrading enzyme myo-inositol oxygenase (MIOX). By contrast, there was decreased MIOX expression in 8-wk diabetic kidneys. Immunohistochemistry localized the MI-degrading pathway comprising MIOX and the glucuronate-xylulose (GX) pathway to the proximal tubules within the renal cortex. These findings indicate that MI depletion could reflect increased catabolism through MIOX and the GX pathway and implicate a common pathological mechanism contributing to renal oxidative stress in metabolic disease. PMID:26311112

  18. [Cost estimation of an epidemiological surveillance network for animal diseases in Central Africa: a case study of the Chad network].

    Science.gov (United States)

    Ouagal, M; Berkvens, D; Hendrikx, P; Fecher-Bourgeois, F; Saegerman, C

    2012-12-01

    In sub-Saharan Africa, most epidemiological surveillance networks for animal diseases were temporarily funded by foreign aid. It should be possible for national public funds to ensure the sustainability of such decision support tools. Taking the epidemiological surveillance network for animal diseases in Chad (REPIMAT) as an example, this study aims to estimate the network's cost by identifying the various costs and expenditures for each level of intervention. The network cost was estimated on the basis of an analysis of the operational organisation of REPIMAT, additional data collected in surveys and interviews with network field workers and a market price listing for Chad. These costs were then compared with those of other epidemiological surveillance networks in West Africa. The study results indicate that REPIMAT costs account for 3% of the State budget allocated to the Ministry of Livestock. In Chad in general, as in other West African countries, fixed costs outweigh variable costs at every level of intervention. The cost of surveillance principally depends on what is needed for surveillance at the local level (monitoring stations) and at the intermediate level (official livestock sectors and regional livestock delegations) and on the cost of the necessary equipment. In African countries, the cost of surveillance per square kilometre depends on livestock density.

  19. In vivo tracking of stem cells labeled with a nanoparticle in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Suh, Yoo-Hun; Chang, Keun-A.

    2013-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions including neurodegenerative diseases. To understand transplanted stem cell biology, in vivo imaging is necessary. Nano material has great potential for in vivo imaging and several noninvasive methods are used such as magnetic resonance imaging (MRI), positron emission tomography (PET), Fluorescence imaging (FI) and Near-infrared fluorescence imaging (NIRFI). However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose derived stem cells (hASCs) that labeled with multimodal nano particle, LEO-LIVETM-Magnoxide 797 or 675, into the Tg2576 mice, Alzheimer's disease (AD) mouse model. Sequential in vivo tracking was performed with mice injected with hASCs. We could found fluorescence signals until 10 days after injection.

  20. Models for Correlating the Composition of the Gut Microbiota with Inflammatory Disease Parameters Using Animal Models

    DEFF Research Database (Denmark)

    Krych, Lukasz

    The human gastrointestinal tract (GIT) is inhabited by a vast number of microorganisms collectively called gut microbiota (GM). Among many functions assigned to the GM, its ability to stimulate and develop the host’s immune system has become a subject of intensive studies of many research groups...... and 2), obesity, inflammatory bowel disease (IBD), eczema, atherosclerosis (ATS), or rheumatic arthritis (RA). Grasping the complex relation between bacterial and immune disease markers into a mathematical model would be of great prophylactic and diagnostic value in treatment and prevention of many...... experimental model. An additional task of this thesis was to develop a fast screening method and to investigate the distribution of two bacterial species namely: Akkermansia muciniphila and Candidatus Savagella in detail. These two members of the gut microbial community were previously reported, including our...

  1. Defining the potential for cell therapy for vascular disease using animal models

    OpenAIRE

    Gulati, Rajiv; Simari, Robert D.

    2009-01-01

    Cell-based therapeutics are currently being developed for a wide array of unmet medical needs. As obstructive vascular disease is the major cause of mortality in the world, cell-based strategies aimed at developing novel therapies or improving current therapies are currently under study. These studies are based on the evolving understanding of the biology of vascular progenitor cells, which has in turn led to the availability of well-defined sources of vascular cells for delivery. Crucial to ...

  2. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease

    OpenAIRE

    Masoud Soheili; Mostafa Rezaei Tavirany; Mahmoud Salami

    2015-01-01

    Objective(s): Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippocampus. In response to stimulation of the Schaffer collaterals the baseline or tetanized field extra...

  3. Proteomic Profiling of Animal Models of Myotonia and Motor Neuron Disease

    OpenAIRE

    STAUNTON, LISA

    2011-01-01

    Skeletal muscle provides an organism with a means of reacting to its environments. It is a complex and versatile tissue that is capable of change under a variety of conditions. For example extensive literature has shown muscle transformation from slow-to-fast by decreased motor nerve activity, hypogravity, physical inactivity and in diseased states. Similarly muscle transformation from fast-to-slow can be evoked by increased muscle nerve activity or exercise. The multitude of protein changes ...

  4. Adjunctive effect of antimicrobial photodynamic therapy in induced periodontal disease. Animal study with histomorphometrical, immunohistochemical, and cytokine evaluation.

    Science.gov (United States)

    de Oliveira, Paula Gabriela Faciola Pessôa; Silveira E Souza, Adriana Maria Mariano; Novaes, Arthur Belém; Taba, Mário; Messora, Michel Reis; Palioto, Daniela Bazan; Grisi, Márcio Fernando Moraes; Tedesco, Antônio Cláudio; de Souza, Sérgio Luis Scombatti

    2016-09-01

    Scaling and root planing (SRP) may not always be effective in preventing periodontal disease (PD) progression. The aim of this study was to evaluate the adjunctive effect of antimicrobial photodynamic therapy (aPDT) to SRP on induced PD in rats, analyzing histomorphometrical, immunohistochemical, and immunoenzymatic parameters. Ligatures were placed around the first mandibular molars and second maxillary molars of 60 rats to induce PD. After 14 days, they were removed and the animals were divided into six groups, with nine animals each: G1 = no treatment, G2 = SRP, G3 = light-emitting diode (LED), G4 = SRP + aPDT, G5 = aPDT, and G6 = erythrosine. The animals were euthanized after 3, 7, and 15 days. There were also two control groups (n = 3): without PD (WPD) induction and with maximum PD (PD+). In the histomorphometrical analysis of linear bone loss, G4 showed a statistically significant difference from the other experimental groups after 3 and 15 days. The tartrate-resistant acid phosphatase (TRAP)-positive cell counting was significantly lower in G4 when compared to G2 and PD+ after 3 days. Immunoenzymatic assay shows the values of the ratio (RANKL/OPG × 100). The lowest value is from the WPD group, and the group that received the SRP + aPDT treatment tended to approach this value over time. After 3 days, statistically significant differences were observed between G4 and all other experimental groups, as well as versus PD+ (one-way ANOVA + Tukey's post hoc test were performed, p periodontal disease in rats. PMID:27351664

  5. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    Science.gov (United States)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  6. Paracoccidioides brasilienses isolates obtained from patients with acute and chronic disease exhibit morphological differences after animal passage

    Directory of Open Access Journals (Sweden)

    SVIDZINSKI Terezinha Inez Estivalet

    1999-01-01

    Full Text Available The basis for virulence in Paracoccidioides brasiliensis is not completely understood. There is a consensus that the sequencial in vitro subcultivation of P. brasiliensis leads to loss of its pathogenicity, which can be reverted by reisolation from animal passage. Attention to morphological and biochemical properties that are regained or demonstrated after animal passage may provide new insights into factors related to the pathogenicity and virulence of P. brasiliensis. We evaluated morphological characters: the percentage of budding cells, number of buds by cell and the diameter of 100 mother cells of yeast-like cells of 30 P. brasiliensis isolates, before and after animal passage. The isolates were obtained from patients with different clinical forms of paracoccidioidomycosis (PCM: acute form (group A, n=15 and chronic form (group C, n=15. The measurement of the yeast cell sizes was carried out with the aid of an Olympus CBB microscope coupled with a micrometer disc. We measured the major transverse and longitudinal axes of 100 viable cells of each preparation. The percentage of budding cells as also the number of buds by cell was not influenced by animal passage, regardless of the source of the strain (acute or chronic groups. The size values of P. brasiliensis isolates from groups A and C, measured before the animal passage exhibited the same behavior. After animal passage, there was a statistically significant difference between the cell sizes of P. brasiliensis isolates recovered from testicles inoculated with strains from groups A and C. The maximum diameter of mother cells from group A isolates exhibited a size of 42.1mm in contrast with 32.9mm exhibited by mother cells from group C (p<0.05. The diameter of 1500 mother cells from group A isolates exhibited a medium size of 16.0mm (SD ± 4.0, a value significantly higher than the 14.1mm (SD = ± 3.3 exhibited by 1500 mother cells from group C isolates (p<0.05. Our results reinforce the

  7. Phylogenetic analysis of beak and feather disease virus across a host ring-species complex.

    Science.gov (United States)

    Eastwood, Justin R; Berg, Mathew L; Ribot, Raoul F H; Raidal, Shane R; Buchanan, Katherine L; Walder, Ken R; Bennett, Andrew T D

    2014-09-30

    Pathogens have been hypothesized to play a major role in host diversity and speciation. Susceptibility of hybrid hosts to pathogens is thought to be a common phenomenon that could promote host population divergence and subsequently speciation. However, few studies have tested for pathogen infection across animal hybrid zones while testing for codivergence of the pathogens in the hybridizing host complex. Over 8 y, we studied natural infection by a rapidly evolving single-strand DNA virus, beak and feather diseases virus (BFDV), which infects parrots, exploiting a host-ring species complex (Platycercus elegans) in Australia. We found that host subspecies and their hybrids varied strikingly in both BFDV prevalence and load: both hybrid and phenotypically intermediate subspecies had lower prevalence and load compared with parental subspecies, while controlling for host age, sex, longitude and latitude, as well as temporal effects. We sequenced viral isolates throughout the range, which revealed patterns of genomic variation analogous to Mayr's ring-species hypothesis, to our knowledge for the first time in any host-pathogen system. Viral phylogeny, geographic location, intraspecific host density, and parrot community diversity and composition did not explain the differences in BFDV prevalence or load between subpopulations. Overall, our analyses suggest that functional host responses to infection, or force of infection, differ between subspecies and hybrids. Our findings highlight the role of host hybridization and clines in altering host-pathogen interactions, dynamics that can have important implications for models of speciation with gene flow, and offer insights into how pathogens may adapt to diverging host populations. PMID:25225394

  8. High Leptospira Diversity in Animals and Humans Complicates the Search for Common Reservoirs of Human Disease in Rural Ecuador

    Science.gov (United States)

    Chiriboga, Jorge; Miller, Erin; Olivas, Sonora; Birdsell, Dawn; Hepp, Crystal; Hornstra, Heidie; Schupp, James M.; Morales, Melba; Gonzalez, Manuel; Reyes, Soraya; de la Cruz, Carmen; Keim, Paul; Hartskeerl, Rudy; Trueba, Gabriel; Pearson, Talima

    2016-01-01

    Background Leptospirosis is a zoonotic disease responsible for high morbidity around the world, especially in tropical and low income countries. Rats are thought to be the main vector of human leptospirosis in urban settings. However, differences between urban and low-income rural communities provide additional insights into the epidemiology of the disease. Methodology/Principal findings Our study was conducted in two low-income rural communities near the coast of Ecuador. We detected and characterized infectious leptospira DNA in a wide variety of samples using new real time quantitative PCR assays and amplicon sequencing. We detected infectious leptospira in a high percentage of febrile patients (14.7%). In contrast to previous studies on leptospirosis risk factors, higher positivity was not found in rats (3.0%) but rather in cows (35.8%) and pigs (21.1%). Six leptospira species were identified (L. borgpetersenii, L kirschnerii, L santarosai, L. interrogans, L noguchii, and an intermediate species within the L. licerasiae and L. wolffii clade) and no significant differences in the species of leptospira present in each animal species was detected (χ2 = 9.89, adj.p-value = 0.27). Conclusions/Significance A large portion of the world’s human population lives in low-income, rural communities, however, there is limited information about leptospirosis transmission dynamics in these settings. In these areas, exposure to peridomestic livestock is particularly common and high prevalence of infectious leptospira in cows and pigs suggest that they may be the most important reservoir for human transmission. Genotyping clinical samples show that multiple species of leptospira are involved in human disease. As these genotypes were also detected in samples from a variety of animals, genotype data must be used in conjunction with epidemiological data to provide evidence of transmission and the importance of different potential leptospirosis reservoirs. PMID:27622673

  9. Animal models of disease: classification and etiology of diabetes in dogs and cats

    OpenAIRE

    R. W. Nelson; Reusch, C.E.

    2014-01-01

    Diabetes mellitus is a common disease in dogs and cats. The most common form of diabetes in dogs resembles type 1 diabetes in humans. Studies suggest that genetics, an immune-mediated component, and environmental factors are involved in the development of diabetes in dogs. A variant of gestational diabetes also occurs in dogs. The most common form of diabetes in cats resembles type 2 diabetes in humans. A major risk factor in cats is obesity. Obese cats have altered expression of several insu...

  10. Update on the Current Status of Kidney Transplantation for Chronic Kidney Disease in Animals.

    Science.gov (United States)

    Aronson, Lillian R

    2016-11-01

    Kidney transplantation is a novel treatment option for cats suffering from chronic renal failure or acute irreversible renal injury. Improvement in quality of life as well as survival times of cats that have undergone transplantation has helped the technique to gain acceptance as a viable treatment option for this fatal disease. This article reviews information regarding the optimal time for intervention, congenital and acquired conditions that have been successfully treated with transplantation, recipient and donor screening, immunosuppressive therapy, recent advances in anesthetic and surgical management, postoperative monitoring and long-term management, and troubleshooting perioperative and long-term complications. PMID:27593577

  11. Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes.

    Science.gov (United States)

    Real, Leslie A; Biek, Roman

    2007-10-22

    Explicit spatial analysis of infectious disease processes recognizes that host-pathogen interactions occur in specific locations at specific times and that often the nature, direction, intensity and outcome of these interactions depend upon the particular location and identity of both host and pathogen. Spatial context and geographical landscape contribute to the probability of initial disease establishment, direction and velocity of disease spread, the genetic organization of resistance and susceptibility, and the design of appropriate control and management strategies. In this paper, we review the manner in which the physical organization of the landscape has been shown to influence the population dynamics and spatial genetic structure of host-pathogen interactions, and how we might incorporate landscape architecture into spatially explicit population models of the infectious disease process to increase our ability to predict patterns of disease occurrence and optimally design vaccination and control policies.

  12. Genetic animal models for evaluating the role of autophagy in etiopathogenesis of Parkinson disease.

    Science.gov (United States)

    Lachenmayer, M Lenard; Yue, Zhenyu

    2012-12-01

    Parkinson disease (PD) is the most common neurodegenerative movement disorder and is characterized pathologically by the formation of ubiquitin and SNCA/α-synuclein-containing inclusions (Lewy bodies), dystrophic midbrain dopaminergic (DAergic) terminals, and degeneration of midbrain DAergic neurons. The vast majority of PD occurs sporadically, while approximately 5% of all PD cases are inherited. Genetic mutations of a few genes have been identified as causes of familiar PD, i.e., mutations in SNCA, PARK2/parkin, UCHL1, PARK7/DJ1, PINK1 and LRRK2, leading to DAergic cell death, but variable pathological changes. The evidence supports the hypothesis that several pathogenic mechanisms are likely involved at initial stages of the disease, and eventually they merge to cause parkinsonism. The current challenge facing PD research is to unravel the components in these pathways that contribute to the pathogenesis of PD. Accumulating evidence has implicated dysfunctional autophagy, a regulated lysosomal pathway with a capacity for clearing protein aggregates and cellular organelles, as one of the pathogenic systems contributing to the development of idiopathic PD. PMID:22931754

  13. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mami, E-mail: mtakahas@ncc.go.jp; Hori, Mika; Mutoh, Michihiro [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan); Wakabayashi, Keiji [Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526 (Japan); Nakagama, Hitoshi [Division of Cancer Development System, Carcinogenesis Research Group, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-02-09

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention.

  14. Experimental Animal Models of Pancreatic Carcinogenesis for Prevention Studies and Their Relevance to Human Disease

    International Nuclear Information System (INIS)

    Pancreatic cancer is difficult to cure, so its prevention is very important. For this purpose, animal model studies are necessary to develop effective methods. Injection of N-nitrosobis(2-oxopropyl)amine (BOP) into Syrian golden hamsters is known to induce pancreatic ductal adenocarcinomas, the histology of which is similar to human tumors. Moreover, K-ras activation by point mutations and p16 inactivation by aberrant methylation of 5′ CpG islands or by homozygous deletions have been frequently observed in common in both the hamster and humans. Thus, this chemical carcinogenesis model has an advantage of histopathological and genetic similarity to human pancreatic cancer, and it is useful to study promotive and suppressive factors. Syrian golden hamsters are in a hyperlipidemic state even under normal dietary conditions, and a ligand of peroxizome proliferator-activated receptor gamma was found to improve the hyperlipidemia and suppress pancreatic carcinogenesis. Chronic inflammation is a known important risk factor, and selective inhibitors of inducible nitric oxide synthase and cyclooxygenase-2 also have protective effects against pancreatic cancer development. Anti-inflammatory and anti-hyperlipidemic agents can thus be considered candidate chemopreventive agents deserving more attention

  15. Interactions between Zn and Cu in LEC rats, an animal model of Wilson's disease.

    Science.gov (United States)

    Santon, Alessandro; Giannetto, Sabrina; Sturniolo, Giacomo Carlo; Medici, Valentina; D'Incà, Renata; Irato, Paola; Albergoni, Vincenzo

    2002-03-01

    The effect of oral Zn treatment was studied in the liver and kidneys of 26 male Long-Evans Cinnamon (LEC) rats (mutant animals, 5 weeks old) in relation to both the interaction between Zn and Cu and the localisation and concentration of metallothionein (MT). Rats receiving 80 mg zinc acetate daily by gavage and control rats receiving no treatment were killed after 1 or 2 weeks. By immunohistochemical and analytical chemical techniques we revealed that treated rats had higher levels of MT in the hepatic and renal cells compared to untreated ones. Tissue Zn concentrations were significantly higher in treated rats compared to untreated whereas Cu concentrations decreased in the liver and kidneys as indicated by analytical chemical analyses. MT levels also decreased with treatment period. A histochemical procedure, obtained using autofluorescence of Cu-metallothioneins, confirms these findings: after 2 weeks, the signal decreased in both the liver and kidney sections. This gives a greater understanding of the mechanism of Cu metabolism in the two tissues considered. These results suggest that Zn acts both to compete for absorption on the luminal side of the intestinal epithelium and to induce the synthesis of MT.

  16. Detection and measurement of plant disease symptoms using visible-wavelength photography and image analysis

    Science.gov (United States)

    Disease assessment is required for many purposes including predicting yield loss, monitoring and forecasting epidemics, judging host resistance, and for studying fundamental biological host-pathogen processes. Inaccurate and/or imprecise assessments can result in incorrect conclusions or actions. Im...

  17. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology

    Directory of Open Access Journals (Sweden)

    Haug Anna

    2011-01-01

    Full Text Available Abstract Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced. It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct

  18. Interactions between infections and immune-inflammatory cells in type 1 diabetes mellitus and inflammatory bowel diseases: evidences from animal models

    DEFF Research Database (Denmark)

    Claesson, M H; Nicoletti, F; Stosic-Grujicic, S;

    2008-01-01

    Type 1 diabetes mellitus (T1D) and inflammatory bowel diseases (IBD) are multifactorial disorders of autoimmune origin.Several microbial agents have been reported to be associated with the development of type 1 diabetes and inflammatory bowel diseases in animal models by different mechanisms...

  19. FishPathogens.eu a new database in the research of aquatic animal diseases

    DEFF Research Database (Denmark)

    Jonstrup, Søren Peter; Gray, T.; Olesen, Niels Jørgen

    We live in a world where the amount of information available is enormous. In order to keep track of the available knowledge, databases are needed to collect, store, and sort it. Www.fishpathogens.eu is a database developed and maintained by the European Union Reference Laboratory for Fish Diseases....... The database was launched in June 2009 focusing on Viral Haemorrhagic Septicaemia Virus (VHSV), extended with Infectious Haemorrhagic Necrosis Virus (IHNV) in 2010, and is now being extended to include Spring Viraemia of Carp Virus (SVCV), Infectious Salmon Anemia Virus (ISAV), Betanodaviruses, and Koi Herpes...... Virus (KHV). The database design is based on freeware and could easily be implemented to include pathogens relevant for other species than fish. We present the database using the data on the different fish pathogens as example. However if some are interested in the platform we are happy to cooperate...

  20. Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany

    CERN Document Server

    Lentz, Hartmut H K; Hövel, Philipp; Gethmann, Jörn; Sauter-Louis, Carola; Selhorst, Thomas; Conraths, Franz J

    2016-01-01

    We analyze the network of pig trade in Germany with respect to its ability to spread infectious diseases. We will avoid the usage of external parameters, and restrict ourselves to the measurement of pure properties of the system. These properties do not depend on particular pathogens. These characteristics are on the contrary of great importance for any general spreading process on this particular network. Since the data set under consideration has not been analyzed systematically with respect to a broad spectrum of network measures, the presented work provides a systematic insight into German pig trade network. At the same time, the set of methods used here can be understood as a general framework for a topological-temporal characterization of livestock trade networks.

  1. Recent developments in the diagnosis of infectious and parasitic diseases of farm animals

    International Nuclear Information System (INIS)

    Considerable scientific effort devoted to enzyme-based immunoassays during the last decade has provided a large array of diagnostic tests. These have proved extremely helpful in disease control and eradication schemes. In the continuing search for improvement in sensitivity, specificity and practicality of enzyme-linked immunosorbent assays (ELISAs), certain reagent and methodological limitations and concerns have emerged. Antigen purity, epitope density and immobilization of antigens on the solid phase are variables which continue to be potentially troublesome for each new assay that is developed or transferred to a simpler technology. Experience with two ELISAs used daily in the New York State Diagnostic Laboratory at Cornell University over the last three years has revealed practical problems which resulted in very different resolutions. New non-isotopic serodiagnostic technology other than ELISA is currently being developed. An example of such a system is a fluorochrome-based quantitative fluorometric immunoassay system which we evaluated using African swine fever (ASF) as a model. The ASF assay showed good sensitivity and specificity, and was simple and conducive to field use via portable instrumentation. Although the instrumentation is equivalent in cost to the less expensive colorimeters, the reaction vessels are more costly than microtitre plates. This exemplifies a significant problem which needs to be overcome if transfer of non-isotopic assays to developing countries is to be cost effective. Because such innovations are not commercially viable ventures, industry will probably be of limited assistance in fulfilling the need. Thus, the responsibility may fall on international agencies to provide support to reference and developmental laboratories (such as the IAEA Laboratory at Seibersdorf) in order to facilitate timely development and transfer of validated simple non-isotopic assays for disease diagnosis to developing nations

  2. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yusuke; Okubo, Toshiyuki [University of Tokyo, Department of Radiology, Institute of Medical Science, Tokyo (Japan); Tojo, Arinobu; Sekine, Rieko; Soda, Yasushi; Kobayashi, Seiichiro; Nomura, Akiko; Izawa, Kiyoko [University of Tokyo, Division of Molecular Therapy, Advanced Clinical Research Centre, Tokyo (Japan); Kitamura, Toshio [University of Tokyo, Division of Cellular Therapy, Advanced Clinical Research Centre, Tokyo (Japan); Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2006-05-15

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  3. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    International Nuclear Information System (INIS)

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  4. Mixed Methods Survey of Zoonotic Disease Awareness and Practice among Animal and Human Healthcare Providers in Moshi, Tanzania.

    Directory of Open Access Journals (Sweden)

    Helen L Zhang

    2016-03-01

    Full Text Available Zoonoses are common causes of human and livestock illness in Tanzania. Previous studies have shown that brucellosis, leptospirosis, and Q fever account for a large proportion of human febrile illness in northern Tanzania, yet they are infrequently diagnosed. We conducted this study to assess awareness and knowledge regarding selected zoonoses among healthcare providers in Moshi, Tanzania; to determine what diagnostic and treatment protocols are utilized; and obtain insights into contextual factors contributing to the apparent under-diagnosis of zoonoses.We conducted a questionnaire about zoonoses knowledge, case reporting, and testing with 52 human health practitioners and 10 livestock health providers. Immediately following questionnaire administration, we conducted semi-structured interviews with 60 of these respondents, using the findings of a previous fever etiology study to prompt conversation. Sixty respondents (97% had heard of brucellosis, 26 (42% leptospirosis, and 20 (32% Q fever. Animal sector respondents reported seeing cases of animal brucellosis (4, rabies (4, and anthrax (3 in the previous 12 months. Human sector respondents reported cases of human brucellosis (15, 29%, rabies (9, 18% and anthrax (6, 12%. None reported leptospirosis or Q fever cases. Nineteen respondents were aware of a local diagnostic test for human brucellosis. Reports of tests for human leptospirosis or Q fever, or for any of the study pathogens in animals, were rare. Many respondents expressed awareness of malaria over-diagnosis and zoonoses under-diagnosis, and many identified low knowledge and testing capacity as reasons for zoonoses under-diagnosis.This study revealed differences in knowledge of different zoonoses and low case report frequencies of brucellosis, leptospirosis, and Q fever. There was a lack of known diagnostic services for leptospirosis and Q fever. These findings emphasize a need for improved diagnostic capacity alongside healthcare

  5. Mixed Methods Survey of Zoonotic Disease Awareness and Practice among Animal and Human Healthcare Providers in Moshi, Tanzania

    Science.gov (United States)

    Zhang, Helen L.; Mnzava, Kunda W.; Mitchell, Sarah T.; Melubo, Matayo L.; Kibona, Tito J.; Cleaveland, Sarah; Kazwala, Rudovick R.; Crump, John A.; Sharp, Joanne P.; Halliday, Jo E. B.

    2016-01-01

    Background Zoonoses are common causes of human and livestock illness in Tanzania. Previous studies have shown that brucellosis, leptospirosis, and Q fever account for a large proportion of human febrile illness in northern Tanzania, yet they are infrequently diagnosed. We conducted this study to assess awareness and knowledge regarding selected zoonoses among healthcare providers in Moshi, Tanzania; to determine what diagnostic and treatment protocols are utilized; and obtain insights into contextual factors contributing to the apparent under-diagnosis of zoonoses. Methodology/Results We conducted a questionnaire about zoonoses knowledge, case reporting, and testing with 52 human health practitioners and 10 livestock health providers. Immediately following questionnaire administration, we conducted semi-structured interviews with 60 of these respondents, using the findings of a previous fever etiology study to prompt conversation. Sixty respondents (97%) had heard of brucellosis, 26 (42%) leptospirosis, and 20 (32%) Q fever. Animal sector respondents reported seeing cases of animal brucellosis (4), rabies (4), and anthrax (3) in the previous 12 months. Human sector respondents reported cases of human brucellosis (15, 29%), rabies (9, 18%) and anthrax (6, 12%). None reported leptospirosis or Q fever cases. Nineteen respondents were aware of a local diagnostic test for human brucellosis. Reports of tests for human leptospirosis or Q fever, or for any of the study pathogens in animals, were rare. Many respondents expressed awareness of malaria over-diagnosis and zoonoses under-diagnosis, and many identified low knowledge and testing capacity as reasons for zoonoses under-diagnosis. Conclusions This study revealed differences in knowledge of different zoonoses and low case report frequencies of brucellosis, leptospirosis, and Q fever. There was a lack of known diagnostic services for leptospirosis and Q fever. These findings emphasize a need for improved diagnostic

  6. Prevalence and characteristics of rmtB and qepA in Escherichia coli isolated from diseased animals in China

    Directory of Open Access Journals (Sweden)

    Yuting eDeng

    2013-07-01

    Full Text Available 16S rRNA methylase and QepA, a fluoroquinolone efflux pump, are new mechanisms of resistance against aminoglycosides and fluoroquinolone, respectively. One of 16S rRNA methylase genes, rmtB, was found to be associated with qepA, were both located on the same transposable element. In this study, we intended to determine the current prevalence and characteristics of the 16S rRNA methylase genes and qepA, and to study the association between rmtB and qepA. A total of 892 Escherichia coli isolates were collected from various diseased food-producing animals in China from 2004-2008 and screened by PCR for 16S rRNA methylase genes and qepA. About 12.6% (112/892 and 0.1% (1/892 of isolates that were highly resistant to amikacin were positive for rmtB and armA, respectively. The remaining five 16S rRNA methlyase genes were not detected. Thirty-six (4.0% strains carried qepA. About 32.1% of rmtB-positive strains harbored qepA, which was not detected in rmtB-negative strains. Most strains were clonally unrelated, while identical PFGE profiles of rmtB-positive isolates were found in the same farm indicating clonal transmission. Conjugation experiments showed that rmtB was transfered to the recipients, and qepA also cotransfered with rmtB in some cases. The spread of E. coli of food animal origin harboring both rmtB and qepA suggests that surveillance for antimicrobial resistance of animal origin as well as the study of the mechanisms of resistance should be undertaken.

  7. Review of commonly used clinical pathology parameters for general gastrointestinal disease with emphasis on small animals.

    Science.gov (United States)

    Steiner, Jörg M

    2014-01-01

    A wide variety of markers are available to assess the function and pathology of the gastrointestinal (GI) tract. This review describes some of these markers with special emphasis given to markers used in dogs and cats. Small intestinal disease can be confirmed and localized by the measurement of serum concentrations of folate and cobalamin. Fecal α1-proteinase inhibitor concentration can increase in individuals with excessive GI protein loss. A wide variety of inflammatory markers are available for a variety of species that can be used to assess the inflammatory activity of various types of inflammatory cells in the GI tract, although most of these markers assess neutrophilic inflammation, such as neutrophil elastase, calprotectin, or S100A12. N-methylhistamine can serve as a marker of mast cell infiltration. Markers for lymphocytic or eosinophilic inflammation are currently under investigation. Exocrine pancreatic function can be assessed by measurement of serum concentrations of pancreatic lipase immunoreactivity (PLI) and trypsin-like immunoreactivity (TLI). Serum PLI concentration is increased in individuals with pancreatitis and has been shown to be highly specific for exocrine pancreatic function and sensitive for pancreatitis. Serum TLI concentration is severely decreased in individuals with exocrine pancreatic insufficiency.

  8. Development of disease prevention method using radiation irradiated pathogenic microorganisms, cells and animals

    International Nuclear Information System (INIS)

    Enhancement of the abilities of specific and non-specific disease prevention through the regulation of cytokine production has been paid attention in clinical and veterinary fields. Bovine monocytes isolated from the peripheral blood were exposed to X-ray at 0.1-10 Gy and cultured in the conditions with and without LPS stimulation to investigate the radiation effects at a low level on the expression of cytokine mRNA. The expressions of IL-1 and TNFα were significantly increased in the bovine peripheral monocytes by the exposure to X-ray. If it become possible to control the induction of IL-1 and TNFα by low level X-ray, the radiation would be used as a new biophylaxis method. Then, an investigation was made on the radiation effects on pathogenic plasmid such as capsule plasmid of Bacillus anthracis. A system able to detect a one-base change in base sequence was designed using capE gene, which has been known to mediate the positive regulation of capsule expression. Not only phenotypic changes but also little changes in the phenotype caused by gene mutation became detectable. Thus, it became possible by this detection method to make analysis of radiation induced gene mutation in a plasmid and its frequency. (M.N.)

  9. Ligustrazine phosphate ethosomes for treatment of Alzheimer's disease, in vitro and in animal model studies.

    Science.gov (United States)

    Shi, Jun; Wang, Yiming; Luo, Guoan

    2012-06-01

    In the present study, we have investigated transdermal administration of ligustrazine phosphate (LP), as an antioxidant, for the treatment of Alzheimer's disease (AD). The LP transdermal ethosomal system was designed and characterized. Franz-type diffusion cells and confocal laser scanning microscopy were used for the in vitro permeation studies. Furthermore, the effect of LP transdermal ethosomal system on AD was evaluated in the scopolamine-induced amnesia rats by evaluating the behavioral performance in the Morris water maze test. The activities of the antioxidant enzymes and the levels of the lipid peroxidation product malondialdehyde (MDA) in the brain of rats were also determined. The results showed that both the penetration ability and the drug deposition in skin of the LP ethosomal system were significantly higher than the aqueous one. The LP transdermal ethosomal system could recover the activities of the antioxidant enzymes and the levels of MDA in the brain of the amnesic rats to the similar status of the normal rats, which was also indirectly reflected by the improvement in the behavioral performance. In conclusion, LP might offer a potential alternative therapeutic drug in the fight against AD, and ethosomes could be vesicles of choice for transdermal delivery of LP. PMID:22415639

  10. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    Science.gov (United States)

    Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  11. Ligustrazine phosphate ethosomes for treatment of Alzheimer's disease, in vitro and in animal model studies.

    Science.gov (United States)

    Shi, Jun; Wang, Yiming; Luo, Guoan

    2012-06-01

    In the present study, we have investigated transdermal administration of ligustrazine phosphate (LP), as an antioxidant, for the treatment of Alzheimer's disease (AD). The LP transdermal ethosomal system was designed and characterized. Franz-type diffusion cells and confocal laser scanning microscopy were used for the in vitro permeation studies. Furthermore, the effect of LP transdermal ethosomal system on AD was evaluated in the scopolamine-induced amnesia rats by evaluating the behavioral performance in the Morris water maze test. The activities of the antioxidant enzymes and the levels of the lipid peroxidation product malondialdehyde (MDA) in the brain of rats were also determined. The results showed that both the penetration ability and the drug deposition in skin of the LP ethosomal system were significantly higher than the aqueous one. The LP transdermal ethosomal system could recover the activities of the antioxidant enzymes and the levels of MDA in the brain of the amnesic rats to the similar status of the normal rats, which was also indirectly reflected by the improvement in the behavioral performance. In conclusion, LP might offer a potential alternative therapeutic drug in the fight against AD, and ethosomes could be vesicles of choice for transdermal delivery of LP.

  12. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease.

    Science.gov (United States)

    Rubattu, Speranza; Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  13. A hybrid modelling approach to simulating foot-and-mouth disease outbreaks in Australian livestock

    Directory of Open Access Journals (Sweden)

    Richard A Bradhurst

    2015-03-01

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious and economically important viral disease of cloven-hoofed animals. Australia's freedom from FMD underpins a valuable trade in live animals and animal products. An outbreak of FMD would result in the loss of export markets and cause severe disruption to domestic markets. The prevention of, and contingency planning for, FMD are of key importance to government, industry, producers and the community. The spread and control of FMD is complex and dynamic due to a highly contagious multi-host pathogen operating in a heterogeneous environment across multiple jurisdictions. Epidemiological modelling is increasingly being recognized as a valuable tool for investigating the spread of disease under different conditions and the effectiveness of control strategies. Models of infectious disease can be broadly classified as: population-based models that are formulated from the top-down and employ population-level relationships to describe individual-level behaviour, individual-based models that are formulated from the bottom-up and aggregate individual-level behaviour to reveal population-level relationships, or hybrid models which combine the two approaches into a single model.The Australian Animal Disease Spread (AADIS hybrid model employs a deterministic equation-based model (EBM to model within-herd spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM to model between-herd spread and control. The EBM provides concise and computationally efficient predictions of herd prevalence and clinical signs over time. The ABM captures the complex, stochastic and heterogeneous environment in which an FMD epidemic operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient and extensible framework for modelling the spread and control of disease in livestock on a national scale. We present an overview of the AADIS hybrid approach and a description of the model

  14. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  15. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    Science.gov (United States)

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures

  16. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  17. Towards the Elimination of Schistosomiasis japonica through Control of the Disease in Domestic Animals in The People's Republic of China: A Tale of over 60Years.

    Science.gov (United States)

    Cao, Z-G; Zhao, Y-E; Lee Willingham, A; Wang, T-P

    2016-01-01

    Schistosomiasis japonica, an endemic, zoonotic tropical parasitic disease caused by Schistosoma japonicum, remains an important public health concern in The People's Republic of China. Unlike other species of Schistosoma, over 40 species of wild and domestic animals can act as reservoir hosts of S. japonicum, which increases the difficulty for the control of this tropical disease. It is widely recognized that domestic animals, particularly water buffaloes and cattle, play an important role in the transmission of S. japonicum. Hence, since the 1950s when The People's Republic of China commenced fight against the disease, the control of animal schistosomiasis has been carried out almost synchronously with that of human schistosomiasis, such that great strides have been made over the past six decades. In this chapter, we review the history and current status of schistosomiasis control in domestic animals in The People's Republic of China. We thoroughly analyse the prevalence of domestic animal schistosomiasis at different stages of schistosomiasis control and the role of different species of domestic animals in transmission of the disease, summarize the control strategies and assess their effectiveness. Furthermore, the challenges ahead are discussed and recommendations for future direction are provided. PMID:27137450

  18. Molecular characterization of SAT 2 foot-and-mouth disease virus from post-outbreak slaughtered animals: implications for disease control in Uganda

    DEFF Research Database (Denmark)

    Balinda, Sheila N; Belsham, Graham; Masembe, Charles;

    2010-01-01

    In Uganda, limiting the extent of foot-and-mouth disease (FMD) spread during outbreaks involves short term measures such as ring vaccination and restrictions to the movement of livestock and their products to and from the affected areas. In this study, the presence of FMD virus RNA was investigated...... in cattle samples, three months after FMD quarantine measures had been lifted in the area in 2004 following an outbreak. Oropharyngeal tissue samples were obtained from 12 cattle slaughtered in a small town abattoir of Kiboga. FMD virus RNA was detected by diagnostic RT- PCR in 9 of the 12 tissue samples....... Part of the coding region for the capsid protein VP1 was amplified and sequenced. All samples were identified as belonging to the SAT 2 serotype. The implications for FMD control of both virus introductions into Uganda and the presence of carrier animals following outbreaks are discussed....

  19. Molecular characterization of SAT 2 foot-and-mouth disease virus from post-outbreak slaughtered animals: implications for disease control in Uganda.

    Science.gov (United States)

    Balinda, S N; Belsham, G J; Masembe, C; Sangula, A K; Siegismund, H R; Muwanika, V B

    2010-08-01

    In Uganda, limiting the extent of foot-and-mouth disease (FMD) spread during outbreaks involves short-term measures such as ring vaccination and restrictions of the movement of livestock and their products to and from the affected areas. In this study, the presence of FMD virus RNA was investigated in cattle samples 3 months after FMD quarantine measures had been lifted following an outbreak in 2004. Oropharyngeal tissue samples were obtained from 12 cattle slaughtered in a small town abattoir in Kiboga. FMD virus RNA was detected by diagnostic RT-PCR in nine of the 12 tissue samples. Part of the coding region for the capsid protein VP1 was amplified and sequenced. All samples were identified as belonging to the SAT 2 serotype. The implications for FMD control of both virus introduction into Uganda and the presence of carrier animals following outbreaks are discussed. PMID:20003615

  20. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models

    Directory of Open Access Journals (Sweden)

    Ioana Miruna Balmus

    2016-01-01

    Full Text Available Inflammatory bowel disease (IBD, including Crohn′s disease (CD and ulcerative colitis (UC, is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient′s immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS, oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients.