WorldWideScience

Sample records for animal bone collagen

  1. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals

    Science.gov (United States)

    Schoeninger, Margaret J.; DeNiro, Michael J.

    1984-04-01

    The stable nitrogen and carbon isotope ratios of bone collagen prepared from more than 100 animals representing 66 species of birds, fish, and mammals are presented. The δ15N values of bone collagen from animals that fed exclusively in the marine environment are, on average, 9%. more positive than those from animals that fed exclusively in the terrestrial environment; ranges for the two groups overlap by less than 1%. Bone collagen δ15N values also serve to separate marine fish from the small number of freshwater fish we analyzed. The bone collagen δ15N values of birds and fish that spent part of their life cycles feeding in the marine environment and part in the freshwater environment are intermediate between those of animals that fed exclusively in one or the other system. Further, animals that fed at successive trophic levels in the marine and terrestrial environment are separated, on average, by a 3%. difference in the δ15N values of their bone collagen. Specifically, carnivorous and herbivorous terrestrial animals have mean δ15N values for bone collagen of + 8.0 and + 5.3%., respectively. Among marine animals, those that fed on fish have a mean δ15N value for bone collagen of + 16.5%., whereas those that fed on invertebrates have a mean δ15N value of + 13.3%. These results support previous suggestions of a 3%. enrichment in δ15N values at each successively higher trophic level. In contrast to the results for δ15N values, the ranges of bone collagen δ13C values from marine and terrestrial feeders overlap to a great extent. Additionally, bone collagen δ13C values do not reflect the trophic levels at which the animals fed. These results indicate that bone collagen δ15N values will be useful in determining relative dependence on marine and terrestrial food sources and in investigating trophic level relationships among different animal species within an ecosystem. This approach should be applicable to animals represented by prehistoric or fossilized

  2. Effect of Bio-Oss ® Collagen and Collagen matrix on bone formation

    OpenAIRE

    Wong, R.W.K; Rabie, A B M

    2010-01-01

    Objective: to compare the amount of new bone produced by Bio-Oss ® Collagen to that produced by collagen matrix in vivo. Method: eighteen bone defects, 5mm by 10mm were created in the parietal bone of 9 New Zealand White rabbits. 6 defects were grafted with Bio-Oss ® Collagen. 6 defects were grafted with collagen matrix alone (positive control) and 6 were left empty (negative control). Animals were killed on day 14 and the defects were dissected and prepared for histological assessment. Quant...

  3. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  4. Distinct Characteristics of Mandibular Bone Collagen Relative to Long Bone Collagen: Relevance to Clinical Dentistry

    Directory of Open Access Journals (Sweden)

    Takashi Matsuura

    2014-01-01

    Full Text Available Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.

  5. Small Animal Bone Biomechanics

    OpenAIRE

    Vashishth, Deepak

    2008-01-01

    Animal models, in particular mice, offer the possibility of naturally achieving or genetically engineering a skeletal phenotype associated with disease and conducting destructive fracture tests on bone to determine the resulting change in bone’s mechanical properties. Several recent developments, including nano- and micro- indentation testing, microtensile and microcompressive testing, and bending tests on notched whole bone specimens, offer the possibility to mechanically probe small animal ...

  6. Effect of protein malnutrition on the metabolism of bone collagen in albino rats

    International Nuclear Information System (INIS)

    The effect of protein malnutrition on the metabolism of collagen in bone was studied in young female albino rats after a single injection of 3H-proline. Both specific and total radioactivities of hydroxyproline in the total collagen of the bone were found to decrease in the protein-deficient animals, indicating decreased rate of collagen synthesis. In the urine the amount of hydroxyproline excreted and total radioactivity of 3H-hydroxyproline were greatly decreased. The results of the present investigation therefore clearly indicate decreased synthesis and catabolism of collagen in bones of protein deficient animals compared to controls. (auth.)

  7. Resolving the bulk δ 15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids

    Science.gov (United States)

    Styring, Amy K.; Sealy, Judith C.; Evershed, Richard P.

    2010-01-01

    Stable nitrogen isotope analysis is a fundamental tool in assessing dietary preferences and trophic positions within contemporary and ancient ecosystems. In order to assess more fully the dietary contributions to human tissue isotope values, a greater understanding of the complex biochemical and physiological factors which underpin bulk collagen δ 15N values is necessary. Determinations of δ 15N values of the individual amino acids which constitute bone collagen are necessary to unravel these relationships, since different amino acids display different δ 15N values according to their biosynthetic origins. A range of collagen isolates from archaeological faunal and human bone ( n = 12 and 11, respectively), representing a spectrum of terrestrial and marine protein origins and diets, were selected from coastal and near-coastal sites at the south-western tip of Africa. The collagens were hydrolysed and δ 15N values of their constituent amino acids determined as N-acetylmethyl esters (NACME) via gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The analytical approach employed accounts for 56% of bone collagen nitrogen. Reconstruction of bulk bone collagen δ 15N values reveals a 2‰ offset from bulk collagen δ 15N values which is attributable to the δ 15N value of the amino acids which cannot currently be determined by GC-C-IRMS, notably arginine which comprises 53% of the nitrogen unaccounted for (23% of the total nitrogen). The δ 15N values of individual amino acids provide insights into both the contributions of various amino acids to the bulk δ 15N value of collagen and the factors influencing trophic position and the nitrogen source at the base of the food web. The similarity in the δ 15N values of alanine, glutamate, proline and hydroxyproline reflects the common origin of their amino groups from glutamate. The depletion in the δ 15N value of threonine with increasing trophic level indicates a fundamental difference between

  8. Spectroscopic characterization of collagen cross-links in bone

    Science.gov (United States)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  9. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  10. Osteogenesis imperfecta (lethal) bones contain types III and V collagens.

    OpenAIRE

    Pope, F. M.; Nicholls, A. C.; Eggleton, C; Narcissi, P; Hey, E N; Parkin, J M

    1980-01-01

    Lethal osteogenesis imperfecta (OI-L) and normal fetal bones contain types I and V collagen with relatively more type V in OI-L bones. The latter, unlike normal fetal bone, also contain some type III collagen. Such altered collagen ratios could directly produce the bony fragility and radiotranslucency of OI-L bones. Since this is an inherited osteoporosis similar alterations in acquired osteoporoses are also possible.

  11. The Role of Collagen Organization on the Properties of Bone.

    Science.gov (United States)

    Garnero, Patrick

    2015-09-01

    Bone is a complex tissue constituted by a collagen matrix filled in with crystal of hydroxyapatite (HAP). Bone mechanical properties are influenced by the collagen matrix which is organized into hierarchical structures from the individual type I collagen heterotrimer flanked by linear telopeptides at each end to the collagen fibrils that are interconnected by enzymatic and non-enzymatic cross-links. Although most studies focused on the role of collagen cross-links in bone strength, other organizational features may also play a role. At the molecular level it has been shown that homotrimer of type I collagen found in bone tissue of some patients with osteogenesis imperfecta (OI) is characterized by decreased mechanical competence compared to the regular heterotrimer. The state of C-telopeptide isomerization-which can be estimated by the measurement in body fluids of the native and isomerized isoforms-has also been shown to be associated with bone strength, particularly the post-yield properties independent of bone size and bone mineral density. Other higher hierarchical features of collagen organization have shown to be associated with changes in bone mechanical behavior in ex vivo models and may also be relevant to explain bone fragility in diseases characterized by collagen abnormalities e.g., OI and Paget's disease. These include the orientation of collagen fibrils in a regular longitudinal direction, the D-spacing period between collagen fibrils and the collagen-HAP interfacial bonding. Preliminary data indicate that some of these organizational features can change during treatment with bisphosphonate, raloxifene, and PTH suggesting that they may contribute to their anti-fracture efficacy. It remains however to be determined which of these parameters play a specific and independent role in bone matrix properties, what is the magnitude of mechanical strength explained by collagen organization, whether they are relevant to explain osteoporosis-induced bone

  12. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  13. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  14. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte;

    1998-01-01

    Markers of bone formation [C-terminal and N-terminal propeptides of procollagen I (PICP, PINP), osteocalcin and alkaline phosphatase] and bone resorption [C-terminal cross-linked telopeptide of collagen I (ICTP) and hydroxypyridinium cross-links, pyridinoline (Pyr) and deoxypyridinoline (Dpyr......)] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... serum levels were lower in all children and adults with mild OI and a quantitative collagen defect than in patients with severe OI and a qualitative collagen I defect. ICTP, Pyr and Dpyr were generally normal or reduced, but elevated in severely affected adults with a qualitative collagen I defect. The...

  15. Molecules in Focus: Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E.; Bönnemann, Carsten G.; Koch, Manuel

    2014-01-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix towards the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  16. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils.

    Science.gov (United States)

    Chiquet, Matthias; Birk, David E; Bönnemann, Carsten G; Koch, Manuel

    2014-08-01

    Collagen XII, largest member of the fibril-associated collagens with interrupted triple helix (FACIT) family, assembles from three identical α-chains encoded by the COL12A1 gene. The molecule consists of three threadlike N-terminal noncollagenous NC3 domains, joined by disulfide bonds and a short interrupted collagen triple helix toward the C-terminus. Splice variants differ considerably in size and properties: "small" collagen XIIB (220 kDa subunit) is similar to collagen XIV, whereas collagen XIIA (350 kDa) has a much larger NC3 domain carrying glycosaminoglycan chains. Collagen XII binds to collagen I-containing fibrils via its collagenous domain, whereas its large noncollagenous arms interact with other matrix proteins such as tenascin-X. In dense connective tissues and bone, collagen XII is thought to regulate organization and mechanical properties of collagen fibril bundles. Accordingly, recent findings show that collagen XII mutations cause Ehlers-Danlos/myopathy overlap syndrome associated with skeletal abnormalities and muscle weakness in mice and humans. PMID:24801612

  17. Effect of collagen sponge and fibrin glue on bone repair

    Science.gov (United States)

    SANTOS, Thiago de Santana; ABUNA, Rodrigo Paolo Flores; de ALMEIDA, Adriana Luisa Gonçalves; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous. PMID:26814464

  18. Effect of collagen sponge and fibrin glue on bone repair

    Directory of Open Access Journals (Sweden)

    Thiago de Santana SANTOS

    2015-12-01

    Full Text Available ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05. Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.

  19. Collagen-derived markers of bone metabolism in osteogenesis imperfecta

    DEFF Research Database (Denmark)

    Lund, A M; Hansen, M; Kollerup, Gina Birgitte; Juul, A; Teisner, Børge; Skovby, F

    1998-01-01

    )] were measured in 78 osteogenesis imperfecta (OI) patients to investigate bone metabolism in vivo and relate marker concentrations to phenotype and in vitro collagen I defects, as shown by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). PICP and PINP were generally low, and the...... in vivo findings correlated with in vitro results of collagen I SDS-PAGE. Bone turnover is reduced in OI children and mildly affected OI adults, whereas bone resorption is elevated in severely affected adults. These findings may prove helpful for diagnosis and decision-making regarding therapy in OI....

  20. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration

    International Nuclear Information System (INIS)

    This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases. (paper)

  1. Thermal stabilization of collagen in skin and decalcified bone

    International Nuclear Information System (INIS)

    The state of collagen molecules in the fibres of tail tendon, skin and demineralized bone has been investigated in situ using differential scanning calorimetry (DSC). Hydroxyproline analysis and tissue digestion with bacterial collagenase and trypsin were used to confirm that the common cause of all the DSC endotherms was collagen denaturation. This occurred within a narrow temperature range in tendons, but over a wide temperature range in demineralized bone and old skin and demonstrated that in tendon and demineralized bone at least the same type I collagen molecule exists in different thermal states. Hypothesizing that this might be caused by different degrees of confinement within the fibre lattice, experiments were performed to measure the effect of changing the lattice dimensions by extracting the collagen into dilute solution with pepsin, swelling the lattice in acetic acid, and contracting the lattice by dehydration. A theoretical analysis was undertaken to predict the effect of dehydration. Results were consistent with the hypothesis, demonstrating that collagen molecules within the natural fibres of bone and old skin are located at different intermolecular spacings, revealing differences between molecules in the magnitude of either the attractive or repulsive forces controlling their separation. One potential cause of such variation is known differences in covalent cross-linking

  2. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    Science.gov (United States)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  3. The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Sandri, Monica;

    2012-01-01

    marrow aspirate (BMA) on enhancement of bone implant fixation. Method: Titanium alloy implants were inserted into bilateral femoral condyles of eight skeletally mature sheep, four implants per sheep. The implant had a circumferential gap of 2 mm. The gap was filled with: HA/Collagen; HA......Replacement of extensive local bone loss especially in revision joint arthroplasty and spine fusion is a significant clinical challenge. Allograft and autograft have been considered as gold standards for bone replacement. However, there are several disadvantages such as donor site pain, bacterial...... contamination, and non union as well as the potential risk of disease transmission. Hydroxyapatite and collagen composites (HA/Collagen) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effects of newly developed HA/Collagen-composites with and without bone...

  4. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  5. Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling?

    DEFF Research Database (Denmark)

    Abdelgawad, Mohamed Essameldin; Søe, Kent; Andersen, Thomas Levin;

    2014-01-01

    Osteoblast recruitment during bone remodeling is obligatory to re-construct the bone resorbed by the osteoclast. This recruitment is believed to be triggered by osteoclast products and is therefore likely to start early during the remodeling cycle. Several osteoclast products with osteoblast...... recruitment potential are already known. Here we draw the attention on the osteoblast recruitment potential of the collagen that is freshly demineralized by the osteoclast. Our evidence is based on observations on adult human cancellous bone, combined with in vitro assays. First, freshly eroded surfaces where...... osteoblasts have to be recruited show the presence of non-degraded demineralized collagen and close cell-collagen interactions, as revealed by electron microscopy, while surface-bound collagen strongly attracts osteoblast lineage cells in a transmembrane migration assay. Compared with other extracellular...

  6. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    Science.gov (United States)

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-i...

  7. The effect of bone marrow aspirate, bone graft and collagen composites on fixation of bone implants

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2007-01-01

     Introduction: Replacement of extensive local bone loss especially in revision joint arthroplasties is a significant clinical challenge. Autogenous and allogenic cancellous bone grafts have been the gold standard in reconstructive orthopaedic surgery, but it is well known that there is morbidity...... associated with harvesting of autogenous bone graft and limitations in the quantity of bone available. Disadvantages of allograft include the risk of bacterial or viral contamination and non union as well as the potential risk of disease transmission. Alternative options are attractive and continue to be...... sought. Hydroxyapatite and collagen composites have the potential in mimicking and replacing skeletal bones. Aim: This study attempted to determine the effect of hydroxyapatite/collagen composites in the fixation of bone implants. The composites used in this study is produced by Institute of Science and...

  8. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander; Flyvbjerg, Allan; Nowak, Jette; Petersen, Michael M; ØLgaard, Klaus; Feldt-Rasmussen, Ulla

    2004-01-01

    microfibrils in GHD rats as compared to their controls (P < 0.009). In conclusion, we report for the first time that collagen morphology in bone is markedly altered in rats with isolated GHD. Whether similar conditions are present in GHD patients need further investigations. The changes described, however, may...

  9. Microstructural and physicochemical analysis of collagen in intramuscular pin bones of Bocachico fish (Prochilodus sp.

    Directory of Open Access Journals (Sweden)

    Héctor Suárez

    2015-06-01

    Full Text Available Background: the presence of intramuscular pin bones hinders the production and commercialization of fish fillet products; however, application of physical processes, such as thermal treatments, offers alternatives for the degradation of said bones. Objective: the present study aimed to conduct a microstructural and physicochemical analysis of Bocachico intramuscular pin bones subjected to a thermal treatment. Methods: collagen extracted from intramuscular pin bones of Bocachico fillets was analyzed using SDS-polyacrylamide gel electrophoresis and viscosity. Pin bones were subjected to 1.5, 2, and 3 minutes heating time and analyzed using electron microscopy and cutting force. Results: intramuscular pin bones contain type I collagen. Threeminute thermal treatment degraded collagen components present in the internal pin bone structure, coinciding with the lowest values of the cutting force test. Conclusions: according to our results, collagen degradation initiates in the internal structure of intramuscular pin bones and moves towards the external layer which does not show the effects of thermal treatment.

  10. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells

    OpenAIRE

    Zhang, Jian; Lazarenko, Oxana P.; Blackburn, Michael L.; Badger, Thomas M.; Ronis, Martin J. J.; Chen, Jin-Ran

    2012-01-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16...

  11. Alveolar Ridge Preservation Using Xenogeneic Collagen Matrix and Bone Allograft

    Directory of Open Access Journals (Sweden)

    Andreas O. Parashis

    2014-01-01

    Full Text Available Alveolar ridge preservation (ARP has been shown to prevent postextraction bone loss. The aim of this report is to highlight the clinical, radiographic, and histological outcomes following use of a bilayer xenogeneic collagen matrix (XCM in combination with freeze-dried bone allograft (FDBA for ARP. Nine patients were treated after extraction of 18 teeth. Following minimal flap elevation and atraumatic extraction, sockets were filled with FDBA. The XCM was adapted to cover the defect and 2-3 mm of adjacent bone and flaps were repositioned. Healing was uneventful in all cases, the XCM remained in place, and any matrix exposure was devoid of further complications. Exposed matrix portions were slowly vascularized and replaced by mature keratinized tissue within 2-3 months. Radiographic and clinical assessment indicated adequate volume of bone for implant placement, with all planned implants placed in acceptable positions. When fixed partial dentures were placed, restorations fulfilled aesthetic demands without requiring further augmentation procedures. Histological and immunohistochemical analysis from 9 sites (4 patients indicated normal mucosa with complete incorporation of the matrix and absence of inflammatory response. The XCM + FDBA combination resulted in minimal complications and desirable soft and hard tissue therapeutic outcomes, suggesting the feasibility of this approach for ARP.

  12. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  13. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin, E-mail: zheng-qx@163.com; Guo Xiaodong, E-mail: gxdwh@yahoo.com.cn; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-10-12

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  14. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    International Nuclear Information System (INIS)

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  15. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption

    International Nuclear Information System (INIS)

    Mineralised tissues such as bone consist of two material phases: collagen protein fibrils, secreted by osteoblasts, form model structures for subsequent deposition of mineral, calcium hydroxyapatite. Collagen and mineral are removed in a three-dimensional manner by osteoclasts during bone turnover in skeletal growth or repair. Bone active drugs have recently been developed for skeletal diseases, and there is revived interest in changes in the structure of mineralised tissues seen in disease and upon treatment. The resolution of atomic force microscopy and use of unmodified samples has enabled us to image bone and dentine collagen exposed by the natural process of cellular dissolution of mineralised matrix. The morphology of bone and dentine has been analysed when fully mineralised and after osteoclast-mediated bone resorption, and compared with results from other microscopy techniques. Banded type I collagen, with 66.5±1.4 nm axial D-periodicity and 62.2±7.0 nm diameter, has been identified within resorption lacunae in bone and 69.4±4.3 nm axial D-periodicity and 140.6±12.4 nm diameter in dentine substrates formed by human and rabbit osteoclasts, respectively. This observation suggests a route by which the material and morphological properties of bone collagen can be analysed in situ, compared with collagen from non-skeletal sites, and contrasted in diseases of medical importance, such as osteoporosis, where skeletal tissue is mechanically weakened

  16. Blueberry consumption prevents loss of collagen in bone matrix and inhibits senescence pathways in osteoblastic cells.

    Science.gov (United States)

    Zhang, Jian; Lazarenko, Oxana P; Blackburn, Michael L; Badger, Thomas M; Ronis, Martin J J; Chen, Jin-Ran

    2013-06-01

    Ovariectomy (OVX)-induced bone loss has been linked to increased bone turnover and higher bone matrix collagen degradation as the result of osteoclast activation. However, the role of degraded collagen matrix in the fate of resident bone-forming cells is unclear. In this report, we show that OVX-induced bone loss is associated with profound decreases in collagen 1 and Sirt1. This was accompanied by increases in expression and activity of the senescence marker collagenase and expression of p16/p21 in bone. Feeding a diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only prior to puberty [postnatal day 21 (PND21) to PND34] prevents OVX-induced effects on expression of these molecules at PND68. In order to provide more evidence and gain a better understanding on the association between bone collagen matrix and resident bone cell fate, in vitro studies on the cellular senescence pathway using primary calvarial cells and three cell lines (ST2 cells, OB6, and MLO-Y4) were conducted. We found that senescence was inhibited by collagen in a dose-response manner. Treatment of cells with serum from OVX rats accelerated osteoblastic cell senescence pathways, but serum from BB-fed OVX rats had no effect. In the presence of low collagen or treatment with OVX rat serum, ST2 cells exhibited higher potential to differentiate into adipocytes. Finally, we demonstrated that bone cell senescence is associated with decreased Sirt1 expression and activated p53, p16, and p21. These results suggest that (1) a significant prevention of OVX-induced bone cell senescence from adult rats can occur after only 14 days consumption of a BB-containing diet immediately prior to puberty, and (2) the molecular mechanisms underlying this effect involves, at least in part, prevention of collagen degradation. PMID:22555620

  17. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    Science.gov (United States)

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. PMID:20540098

  18. Effect of in vivo loading on bone composition varies with animal age.

    Science.gov (United States)

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele L; Fratzl, Peter; Duda, Georg N; Wagermaier, Wolfgang; Willie, Bettina M

    2015-03-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier transform infrared imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone's microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to the new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal age- and tissue age-dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further support the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  19. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    Science.gov (United States)

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. PMID:27211297

  20. Microfibrous {beta}-TCP/collagen scaffolds mimic woven bone in structure and composition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shen; Zhang Xin; Cai Qing; Yang Xiaoping [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Bo; Deng Xuliang, E-mail: yangxp@mail.buct.edu.c [Department of VIP Dental Service, School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2010-12-15

    Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate ({beta}-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure {beta}-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the {beta}-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.

  1. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.

    Science.gov (United States)

    Bhuiyan, Didarul B; Middleton, John C; Tannenbaum, Rina; Wick, Timothy M

    2016-08-01

    A bone graft is a complicated structure that provides mechanical support and biological signals that regulate bone growth, reconstruction, and repair. A single-component material is inadequate to provide a suitable combination of structural support and biological stimuli to promote bone regeneration. Multicomponent composite biomaterials lack adequate bonding among the components to prevent phase separation after implantation. We have previously developed a novel multistep polymerization and fabrication process to construct a nano-hydroxyapatite-poly(D,L-lactide-co-glycolide)-collagen biomaterial (abbreviated nHAP-PLGA-collagen) with the components covalently bonded to each other. In the present study, the mechanical properties and osteogenic potential of nHAP-PLGA-collagen are characterized to assess the material's suitability to support bone regeneration. nHAP-PLGA-collagen films exhibit tensile strength very close to that of human cancellous bone. Human mesenchymal stem cells (hMSCs) are viable on 2D nHAP-PLGA-collagen films with a sevenfold increase in cell population after 7 days of culture. Over 5 weeks of culture, hMSCs deposit matrix and mineral consistent with osteogenic differentiation and bone formation. As a result of matrix deposition, nHAP-PLGA-collagen films cultured with hMSCs exhibit 48% higher tensile strength and fivefold higher moduli compared to nHAP-PLGA-collagen films without cells. More interestingly, secretion of matrix and minerals by differentiated hMSCs cultured on the nHAP-PLGA-collagen films for 5 weeks mitigates the loss of mechanical strength that accompanies PLGA hydrolysis. PMID:27120980

  2. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.

    Science.gov (United States)

    Luo, Qing; Leng, Huijie; Wang, Xiaodu; Zhou, Yanheng; Rong, Qiguo

    2014-02-01

    Microdamage would be accumulated in bone due to high-intensity training or even normal daily activity, which may consequently cause fragility fracture or stress fracture. On the other hand, microdamage formation serves as a toughening mechanism in bone. However, the mechanisms that control microdamage initiation and accumulation in bone are still poorly understood. Our previous finite element model indicated that different interfacial properties between mineral and collagen in bone may lead to distinct patterns of microdamage accumulation. Therefore, the current study was designed to examine such prediction and to investigate the role of water and mineral-collagen interactions on microdamage accumulation in bone. To address these issues, 48 mice femurs were divided randomly into four groups. These groups were dehydrated or treated with perfluorotripropylamine (PFTA) or NaF solution to change water distribution and mineral-collagen interfacial bonding in bone. After three-point bending fatigue tests, the types of microdamage (i.e., linear microcracks or diffuse damage) formed in bone were compared between different groups. The results suggested that (1) bone tissues with strong mineral-collagen interfacial bonding facilitate the formation of linear microcraks, and (2) water has little contribution to the growth of microcracks. PMID:24122969

  3. Development of a nanofiltration method for bone collagen 14C AMS dating

    Science.gov (United States)

    Boudin, Mathieu; Boeckx, Pascal; Buekenhoudt, Anita; Vandenabeele, Peter; Van Strydonck, Mark

    2013-01-01

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  4. Development of a nanofiltration method for bone collagen {sup 14}C AMS dating

    Energy Technology Data Exchange (ETDEWEB)

    Boudin, Mathieu, E-mail: mathieu.boudin@ugent.be [Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels (Belgium); Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent (Belgium); Boeckx, Pascal [Ghent University, Faculty of Bioscience Engineering, Laboratory of Applied Physical Chemistry, Coupure Links 653, B-9000 Ghent (Belgium); Buekenhoudt, Anita [Flemish Institute for Technological Research, Separation and Conversion Technology, Boeretang 200, B-2400 Mol (Belgium); Vandenabeele, Peter [Ghent University, Department of Archaeology, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Van Strydonck, Mark [Royal Institute for Cultural Heritage, Jubelpark 1, B-1000 Brussels (Belgium)

    2013-01-15

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased {sup 14}C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) {approx}100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. {sup 14}C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant

  5. Development of a nanofiltration method for bone collagen 14C AMS dating

    International Nuclear Information System (INIS)

    Radiocarbon dating of bones is usually performed on the collagen fraction. However, this collagen can contain exogenous molecules, including humic substances (HSs) and/or other soil components that may have a different age than the bone. Incomplete removal can result in biased 14C dates. Ultrafiltration of collagen, dissolved as gelatin (molecular weight (MW) ∼100,000 Dalton), has received considerable attention to obtain more reliable dates. Ultrafiltration is an effective method of removal of low-molecular weight contaminants from bone collagen but it does not remove high-molecular weight contaminants, such as cross-linked humic collagen complexes. However, comparative dating studies have raised the question whether this cleaning step itself may introduce contamination with carbon from the filters used. In this study, a nanofiltration method was developed using a ceramic filter to avoid a possible extraneous carbon contamination introduced by the filter. This method should be applicable to various protein materials e.g. collagen, silk, wool, leather and should be able to remove low-molecular and high molecular weight HSs. In this study bone collagen was hot acid hydrolyzed to amino acids and nanofiltrated. A filter with a molecular weight cutoff (MWCO) of 450 Dalton was chosen in order to collect the amino acids in the permeate and the HSs in the retentate. Two pilot studies were set up. Two nanofiltration types were tested in pilot study 1: dead end and cross flow filtration. Humic substance (HS)-solutions with fossil carbon and modern hydrolyzed collagen contaminated with HSs were filtrated and analyzed with spectrofluorescence to determine the HS removal. Cross flow nanofiltration showed the most efficient HS removal. A second pilot study based upon these results was set up wherein only cross flow filtration was performed. 14C measurements of the permeates of hydrolyzed modern collagen contaminated with fossil HSs demonstrate a significant but incomplete

  6. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, J C; Berner, A [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane (Australia); Heymer, A; Eulert, J; Noeth, U, E-mail: johannes.reichert@qut.edu.a [Orthopaedic Institute, Division of Tissue Engineering, Koenig-Ludwig-Haus, Julius-Maximilians-University, Wuerzburg (Germany)

    2009-12-15

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 10{sup 5} MSCs ml{sup -1} were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and beta-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade epsilon-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  7. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration

    International Nuclear Information System (INIS)

    The osteogenic differentiation of bone marrow-derived human mesenchymal stem cells (MSCs) in a collagen I hydrogel was investigated. Collagen hydrogels with 7.5 x 105 MSCs ml-1 were fabricated and cultured for 6 weeks in a defined, osteogenic differentiation medium. Histochemistry revealed morphologically distinct, chondrocyte-like cells, surrounded by a sulfated proteoglycan-rich extracellular matrix in the group treated with bone morphogenetic protein 2 (BMP-2), while cells cultured with dexamethasone, ascorbate-2-phosphate, and β-glycerophosphate displayed a spindle-shaped morphology and deposited a mineralized matrix. Real-time polymerase chain reaction (RT-PCR) analyses revealed a specific chondrogenic differentiation with the expression of cartilage-specific markers in the BMP-2-treated group and a distinct expression pattern of the osteogenic markers alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), and cbfa-1 in the group treated with an osteogenic standard medium. The collagen gels were used to engineer a cell laden medical grade ε-polycaprolactone (PCL)-hydrogel construct for segmental bone repair showing good bonding at the scaffold hydrogel interface and even cell distribution. The results show that MSCs cultured in a collagen I hydrogel are able to undergo a distinct osteogenic differentiation pathway when stimulated with specific differentiation factors and suggest that collagen I hydrogels are a suitable means to facilitate cell seeding of scaffolds for bone tissue engineering applications.

  8. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering.

    Science.gov (United States)

    Toosi, Shirin; Naderi-Meshkin, Hojjat; Kalalinia, Fatemeh; Peivandi, Mohammad Taghi; HosseinKhani, Hossein; Bahrami, Ahmad Reza; Heirani-Tabasi, Asieh; Mirahmadi, Mahdi; Behravan, Javad

    2016-08-01

    Nowadays composite scaffolds based on synthetic and natural biomaterials have got attention to increase healing of non-union bone fractures. To this end, different aspects of collagen sponge incorporated with poly(glycolic acid) (PGA) fiber were investigated in this study. Collagen solution (6.33 mg/mL) with PGA fibers (collagen/fiber ratio [w/w]: 4.22, 2.11, 1.06, 0.52) was freeze-dried, followed by dehydrothermal cross-linking to obtain collagen sponge incorporating PGA fibers. Properties of scaffold for cell viability, proliferation, and differentiation of mesenchymal stem cells (MSCs) were evaluated. Scanning electron microscopy showed that collagen sponge exhibited an interconnected pore structure with an average pore size of 190 μm, irrespective of PGA fiber incorporation. The collagen-PGA sponge was superior to the original collagen sponge in terms of the initial attachment, proliferation rate, and osteogenic differentiation of the bone marrow-MSCs (BM-MSC). The shrinkage of sponges during cell culture was significantly suppressed by fiber incorporation. Incorporation of PGA fiber is a simple and promising way to reinforce collagen sponge without impairing biocompatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2020-2028, 2016. PMID:27059133

  9. Collagen immobilization of multi-layered BCP-ZrO2 bone substitutes to enhance bone formation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Col-BCP-ZrO. • Collagen fibers were formed and attached firmly on the surface of BCP-ZrO. • Highly interconnected but uniform porosity were obtained. • High biocompatible, strength scaffolds and new bone were evident in Col-BCP-ZrO2. - Abstract: A porous microstructure of multi-layered BCP-ZrO2 bone substitutes was fabricated using the sponge replica method in which the highly interconnected structure was immobilized with collagen via ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide crosslinking. Their struts are combined with a three-layered BCP/BCP-ZrO2/ZrO2 microstructure. Collagen fibers were firmly attached to the strut surface of the BCP-ZrO2 scaffolds. With control of the three-layered microstructure and collagen immobilization, the compressive strength of the scaffolds increased significantly to 6.8 MPa compared to that of the monolithic BCP scaffolds (1.3 MPa). An in vitro study using MTT, confocal observation, and real-time polymer chain reaction analysis demonstrated that the proliferation and differentiation of the pre-osteoblast-like MC3T3-E1 cells was improved due to the collagen incorporation. Remarkable enhancement of bone regeneration was observed without any immunological reaction in the femurs of rabbits during 1 and 5 months of implantation. Furthermore, the interfaces between new bone and the scaffold struts bonded directly without any gaps

  10. Collagen immobilization of multi-layered BCP-ZrO{sub 2} bone substitutes to enhance bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Linh, Nguyen Thuy Ba [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Jang, Dong-Woo [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Lee, Byong-Taek, E-mail: lbt@sch.ac.kr [Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of); Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 330-090 (Korea, Republic of)

    2015-08-01

    Graphical abstract: - Highlights: • Col-BCP-ZrO. • Collagen fibers were formed and attached firmly on the surface of BCP-ZrO. • Highly interconnected but uniform porosity were obtained. • High biocompatible, strength scaffolds and new bone were evident in Col-BCP-ZrO{sub 2}. - Abstract: A porous microstructure of multi-layered BCP-ZrO{sub 2} bone substitutes was fabricated using the sponge replica method in which the highly interconnected structure was immobilized with collagen via ethyl(dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide crosslinking. Their struts are combined with a three-layered BCP/BCP-ZrO{sub 2}/ZrO{sub 2} microstructure. Collagen fibers were firmly attached to the strut surface of the BCP-ZrO{sub 2} scaffolds. With control of the three-layered microstructure and collagen immobilization, the compressive strength of the scaffolds increased significantly to 6.8 MPa compared to that of the monolithic BCP scaffolds (1.3 MPa). An in vitro study using MTT, confocal observation, and real-time polymer chain reaction analysis demonstrated that the proliferation and differentiation of the pre-osteoblast-like MC3T3-E1 cells was improved due to the collagen incorporation. Remarkable enhancement of bone regeneration was observed without any immunological reaction in the femurs of rabbits during 1 and 5 months of implantation. Furthermore, the interfaces between new bone and the scaffold struts bonded directly without any gaps.

  11. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, Ludmila; Yamada, Susan S; Wimer, Helen;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic a...

  12. Kinetics of gene expression and bone remodelling in the clinical phase of collagen induced arthritis

    DEFF Research Database (Denmark)

    Denninger, Katja Caroline Marie; Litman, Thomas; Marstrand, Troels;

    2015-01-01

    Introduction: Pathological bone changes differ considerably between inflammatory arthritic diseases and most studies have focused on bone erosion. Collagen-induced arthritis (CIA) is a model for rheumatoid arthritis, which, in addition to bone erosion, demonstrates bone formation at the time of...... clinical manifestations. The objective of this study was to use this model to characterise the histological and molecular changes in bone remodelling, and relate these to the clinical disease development. Methods: A histological and gene expression profiling time-course study on bone remodelling in CIA was...... declined and remodelling of formed bone dominated. Global gene expression profiling showed simultaneous upregulation of genes related to bone changes and inflammation in week 0 to 2 after onset of clinical disease. Furthermore, we observed time-dependent expression of genes involved in early and late...

  13. Effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of hydroxyapatite-collagen composites as artificial bone materials

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the effects of increased collagen-matrix density on the mechanical properties and in vivo absorbability of porous hydroxyapatite (HAp)-collagen composites as artificial bone materials. Seven types of porous HAp-collagen composites were prepared from HAp nanocrystals and dense collagen fibrils. Their densities and HAp/collagen weight ratios ranged from 122 to 331 mg cm-3 and from 20/80 to 80/20, respectively. The flexural modulus and strength increased with an increase in density, reaching 2.46 ± 0.48 and 0.651 ± 0.103 MPa, respectively. The porous composites with a higher collagen-matrix density exhibited much higher mechanical properties at the same densities, suggesting that increasing the collagen-matrix density is an effective way of improving the mechanical properties. It was also suggested that other structural factors in addition to collagen-matrix density are required to achieve bone-like mechanical properties. The in vivo absorbability of the composites was investigated in bone defects of rabbit femurs, demonstrating that the absorption rate decreased with increases in the composite density. An exhaustive increase in density is probably limited by decreases in absorbability as artificial bones.

  14. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny

    DEFF Research Database (Denmark)

    Szabova, L.; Yamada, S.S.; Wimer, H.;

    2009-01-01

    Skeletal formation is dependent on timely recruitment of skeletal stem cells and their ensuing synthesis and remodeling of the major fibrillar collagens, type I collagen and type II collagen, in bone and cartilage tissues during development and postnatal growth. Loss of the major collagenolytic...... activity associated with the membrane-type 1 matrix metalloproteinase (MT1-MMP) results in disrupted skeletal development and growth in both cartilage and bone, where MT1-MMP is required for pericellular collagen dissolution. We show here that reconstitution of MT1-MMP activity in the type II collagen......-expressing cells of the skeleton rescues not only diminished chondrocyte proliferation, but surprisingly, also results in amelioration of the severe skeletal dysplasia associated with MT1-MMP deficiency through enhanced bone formation. Consistent with this increased bone formation, type II collagen was identified...

  15. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  16. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    Science.gov (United States)

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  17. Study on de novo collagen biosynthesis and degradation markers of bone

    International Nuclear Information System (INIS)

    This investigation was carried out to study the performance of de novo biochemical markers of serum pro collagen type-1 amino terminal extension (PINP), as a marker of collagen biosynthesis, and urinary collagen crosslink free deoxypyridinoline (DPD) as a marker of collagen degradation. Moreover, urinary calcium C Ca) and inorganic phosphorus (P), as markers of bone demineralization, in addition to urinary creatinine (Cr), to reflect status of renal function, were also studied in order to assess the activity of bone turnover in osteoporotic (OST), postmenopausal (POST), peri menopausal(PERI), premenopausal (PRE) women and also in young adult (YON) ones. The obtained results showed that urinary creatinine levels were within the normal ranges in all women even in the elderly osteoporotic and postmenopausal women. Serum PINP did not reflect osteoblastic activity. Urinary DPD proved to be a good marker in monitoring the postmenopausal bone resorption and urinary Ca was a reliable marker for bone loss in osteoporosis and bone turnover in the postmenopausal status

  18. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    Science.gov (United States)

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  19. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.

    OpenAIRE

    Al-Munajjed, Amir A; Plunkett, Niamh A; Gleeson, John P.; Weber, Tim; Jungreuthmayer, Christian; Levingstone, Tanya; Hammer, Joachim; O'Brien, Fergal J.

    2009-01-01

    The objective of this study was to develop a biomimetic, highly porous collagen-hydroxyapatite (HA) composite scaffold for bone tissue engineering (TE), combining the biological performance and the high porosity of a collagen scaffold with the high mechanical stiffness of a HA scaffold. Pure collagen scaffolds were produced using a lyophilization process and immersed in simulated body fluid (SBF) to provide a biomimetic coating. Pure collagen scaffolds served as a control. The mechanical, mat...

  20. The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan

      The effect of Hydroxyapatite/collagen I composites, bone marrow aspirate and bone graft on fixation of bone implants IN SHEEP   Ph.D. Student, Hassan Babiker; Associate Professor, Ph.D. Ming Ding; Professor, dr.med., Soren Overgaard. Department of Orthopaedic Surgery, Odense University Hospital......, Odense, Denmark   Background: Hydroxyapatite and collagen composites (HA/coll) have the potential in mimicking and replacing skeletal bones. This study attempted to determine the effect of newly developed HA/coll-composites with and without bone marrow aspirate (BMA) in order to enhance the fixation of...... bone implants.   Materials and Methods: Titanium alloy implants were inserted into bilateral femoral condyles of 8 skeletally mature sheep, four in each sheep. The implant has a circumferential gap of 2 mm. The gap was filled with: HA/coll; HA/coll-BMA; autograft or allograft. Allograft was served as...

  1. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  2. A novel method for accurate collagen and biochemical assessment of pulmonary tissue utilizing one animal

    OpenAIRE

    Kliment, Corrine R.; Englert, Judson M; Crum, Lauren P; Oury, Tim D.

    2011-01-01

    Aim: The purpose of this study was to develop an improved method for collagen and protein assessment of fibrotic lungs while decreasing animal use. methods: 8-10 week old, male C57BL/6 mice were given a single intratracheal instillation of crocidolite asbestos or control titanium dioxide. Lungs were collected on day 14 and dried as whole lung, or homogenized in CHAPS buffer, for hydroxyproline analysis. Insoluble and salt-soluble collagen content was also determined in lung homogenates using ...

  3. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.

    Science.gov (United States)

    Lin, Bo-Nian; Whu, Shu Wen; Chen, Chih-Hwa; Hsu, Fu-Yin; Chen, Jyh-Cheng; Liu, Hsia-Wei; Chen, Chien-Hao; Liou, Hau-Min

    2013-11-01

    Platelet rich plasma (PRP), which includes many growth factors, can activate osteoid production, collagen synthesis and cell proliferation. Nanohydroxyapatite-type I collagen beads (CIB), which mimetic natural bone components, are not only flexible fillers for bone defect but also encourage osteogenesis. Bone marrow mesenchymal stem cells (BMSCs) are often used as an abundant cell source for tissue engineering. We used a rabbit model to combine PRP, CIB and BMSCs (CIB+PRP+BMSC) into a bone-like substitute to study its impact on bone regeneration, when compared to defect alone, PRP, CIB+PRP, and PRP+BMSC. CIB+PRP upregulated more alkaline phosphatase (ALP) activity in BMSCs than PRP alone at 4 weeks postoperation. CIB+PRP+BMSC and PRP+BMSC did not differ significantly in DNA content, total collagen content, and ALP activity at 8 weeks. In histological assay, both CIB+PRP+BMSC and PRP+BMSC showed more bone regeneration at 4 and 8 weeks. Higher trabecular bone volume in tissue volume (BV/TV) (31.15±2.67% and 36.93±1.01%), fractal dimension (FD) (2.30±0.18 and 2.65±0.02) and lower trabecular separation (Tb.Sp) (2.30±0.18 and 1.35±0.16) of CIB+PRP+BMSC than of other groups at 4 and 8 weeks, and approach to of bone tissue (BV/TV=24.35±2.13%; FD=2.65±0.06; Tb.Sp=4.19±0.95). CIB+PRP+BMSC significantly enhanced new bone formation at 4 week. Therefore, nanohydroxyapatite-type I collagen beads combined with PRP and BMSCs produced a bone substitute with efficiently improved bone regeneration that shows promise to repair bone defects. PMID:22744907

  4. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

    Science.gov (United States)

    Lim, Youn-Mook; Jeong, Sung In; An, Sung-Jun; Kang, Seong-Soo

    2015-01-01

    PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane. PMID:26816579

  5. COLLAGEN MUTATION CAUSES CHANGES OF THE MICRODAMAGE MORPHOLOGY IN BONE OF AN OI MOUSE MODEL

    OpenAIRE

    Dong, X. Neil; Zoghi, Mahyar; Ran, Qitao; Wang, Xiaodu

    2010-01-01

    Previous studies have postulated that ultrastructural changes may alter the pattern and capacity of microdamage accumulation in bone. Using an osteogenesis imperfecta (OI) mouse model, this study was performed to investigate the correlation of collagen mutation with the microdamage morphology and the associated brittleness of bone. In this study, femurs from mild OI and wild type mice were fatigued under four-point bending to create microdamage in the specimens. Then, the microdamage morpholo...

  6. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.

    Directory of Open Access Journals (Sweden)

    Virginia L Harvey

    Full Text Available Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N and ratio of carbon to nitrogen (C:N. Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands, chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae, recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP. All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4C analysis.

  7. Fabrication and animal experiment of nanocomposites of hydroxyapatite collagen and polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Ikoma, T.; Tanaka, J. [National Inst. for Research in Inorganic Materials and Technology Agency, Tsukuba, Ibaraki (Japan); CREST, Japan Science and Technology, Kawaguchi (Japan); Muneta, T. [Tokyo Medical and Dental Univ. (Japan). Dept. of Orhtopedic Surgery

    2001-07-01

    Four species of nanocomposites organized by hydroxyapatite (HAp), hyaluronic acid (HyA), chondroitin sulfate (ChS) and type II collagen (Col), i.e. HAp/HyA, HAp/ChS, HAp/HyA/Col and HAp/ChS/Col composites, were synthesized by coprecipitation methods. The composites could retain lots of water: 40%, 32%, 42% and 58% for the HAp/HyA, HAp/ChS, HAp/HyA/Col and HAp/ChS/Col composites, respectively. Transmission electron microscopy observations revealed that the HAp/HyA and HAp/ChS composites consisted of island-like aggregations whose sizes were 300 nm in length and 30 nm in width, and 150 nm in length and 30 nm in width, respectively. In the aggregations, there were many HAp nanocrystals of 20 nm in length, and their c-axes were aligned along the respective polymer molecules through a self-organization process. Animal tests showed that chondrocyte-like cells penetrated into the HAp/ChS/Col composites 4 weeks after implantation. It was shown that the HAp/ChS/Col composite has a potential for cartilage regeneration and the HAp/HyA/Col composite for bone regeneration. (orig.)

  8. Bioinspired nanocomposite structures for bone tissue regeneration based on collagen, gelatin, polyamide and hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Balík, Karel; Šupová, Monika; Hrušková, Daniela; Sucharda, Zbyněk; Černý, Martin; Sedláček, R.

    2009-01-01

    Roč. 12, 89-91 (2009), s. 13-15. ISSN 1429-7248 R&D Projects: GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanocomposite * bone regeneration * collagen Subject RIV: JI - Composite Materials

  9. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    Science.gov (United States)

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. PMID:24210921

  10. Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus).

    Science.gov (United States)

    Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hobson, Keith A

    2014-01-01

    Stable isotope analyses provide one of the few means to evaluate diet of extinct taxa. However, interpreting isotope data from bone collagen of extinct animals based on isotopic patterns in different tissues of modern animal proxies is precarious. For example, three corrections are needed before making comparisons of recent hair and ancient bone collagen: calibration of carbon-13 variations in atmospheric CO2, different isotopic discrimination between diet-hair keratin and diet-bone collagen, and time averaging of bone collagen versus short-term record in hair keratin. Recently, Robu et al. [Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can J Zool. 2013;91:227-234] published an article comparing extant carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopic data of European cave bear bone collagen with those of Yellowstone Park grizzly bear hair in order to test the prevailing assumption of a largely vegetarian diet among cave bears. The authors concluded that cave bears were carnivores. This work is unfortunately unfounded as the authors failed to consider the necessary corrections listed above. When these corrections are applied to the Romanian cave bears, these individuals can be then interpreted without involving consumption of high trophic-level food, and environmental changes are probably the reason for the unusual isotopic composition of these cave bears in comparison with other European cave bears, rather than a change of diet. We caution researchers to pay careful attention to these factors when interpreting feeding ecology of extinct fauna using stable isotope techniques. PMID:24588112

  11. A Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Ko-Ning Ho

    2016-03-01

    Full Text Available Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry resembles human bone. The aim of this study was to compare the performance of a novel bioresorbable purified fibrillar collagen and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP ceramic composite versus collagen alone and a bovine xenograft-collagen composite in beagles. Collagen plugs, bovine graft-collagen composite and HA/β-TCP-collagen composite were implanted into the left and right first, second and third mandibular premolars, and the fourth molar was left empty for natural healing. In total, 20 male beagle dogs were used, and quantitative and histological analyses of the extraction ridge was done. The smallest width reduction was 19.09% ± 8.81% with the HA/β-TCP-collagen composite at Week 8, accompanied by new bone formation at Weeks 4 and 8. The HA/β-TCP-collagen composite performed well, as a new osteoconductive and biomimetic composite biomaterial, for socket bone preservation after tooth extraction.

  12. Acceleration of bone formation during fracture healing by poly(pro-hyp-gly)10 and basic fibroblast growth factor containing polycystic kidney disease and collagen-binding domains from Clostridium histolyticum collagenase.

    Science.gov (United States)

    Sekiguchi, Hiroyuki; Uchida, Kentaro; Inoue, Gen; Matsushita, Osamu; Saito, Wataru; Aikawa, Jun; Tanaka, Keisuke; Fujimaki, Hisako; Miyagi, Masayuki; Takaso, Masashi

    2016-06-01

    Growth factor delivered in combination with animal-derived collagen materials has been used to accelerate bone fracture healing in human patients. However, the introduction of bovine proteins into humans carries the risk of zoonotic and immunologic complications. Here, we developed a collagen-like polypeptide-based bone formation system consisting of poly(Pro-Hyp-Gly)10 , which mimics the triple helical conformation of collagen, and basic fibroblast growth factor (bFGF) fused to the polycystic kidney disease (PKD) domain and collagen-binding domain (CBD) of Clostridium histolyticum collagenase. Circular dichroism spectral analysis showed that when pepsin-soluble bovine type I collagen was treated at 50°C, a positive signal corresponding to the collagen triple helix at 220 nm was not detected. In contrast, poly(Pro-Hyp-Gly)10 retained the 220-nm positive peak, even when treated at 80°C. The combination of the collagen binding-bFGF fusion protein (bFGF-PKD-CBD) with poly(Pro-Hyp-Gly)10 induced greater bone formation compared to bFGF alone in mice bone fracture models. Taken together, these properties suggest that the bFGF-PKD-CBD/poly(Pro-Hyp-Gly)10 composite is a promising material for bone repair in the clinical setting. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1372-1378, 2016. PMID:26833780

  13. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    Science.gov (United States)

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. PMID:26998869

  14. Quantitative description of collagen fibre network on trabecular bone surfaces based on AFM imaging.

    Science.gov (United States)

    Hua, W-D; Chen, P-P; Xu, M-Q; Ao, Z; Liu, Y; Han, D; He, F

    2016-04-01

    The collagen fibre network is an important part of extracellular matrix (ECM) on trabecular bone surface. The geometry features of the network can provide us insights into its physical and physiological properties. However, previous researches have not focused on the geometry and the quantitative description of the collagen fibre network on trabecular bone surface. In this study,we developed a procedure to quantitatively describe the network and verified the validity of the procedure. The experiment proceeds as follow. Atomic force microscopy (AFM) was used to acquire submicron resolution images of the trabecular surface. Then, an image analysing procedure was built to extract important parameters, including, fibre orientation, fibre density, fibre width, fibre crossing numbers, the number of holes formed by fibre s, and the area of holes from AFM images. In order to verify the validity of the parameters extracted by image analysing methods, we adopted two other methods, which are statistical geometry model and computer simulation, to calculate those same parameters and check the consistency of the three methods' results. Statistical tests indicate that there is no significant difference between three groups. We conclude that, (a) the ECM on trabecular surface mainly consists of random collagen fibre network with oriented fibres; (b) our method based on image analysing can be used to characterize quantitative geometry features of the collagen fibre network effectively. This method may provide a basis for quantitative investigating the architecture and function of collagen fibre network. PMID:26583563

  15. Collagens

    OpenAIRE

    Gordon, Marion K.; Hahn, Rita A.

    2009-01-01

    The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three α chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recog...

  16. Development and Characterization of a Bioinspired Bone Matrix with Aligned Nanocrystalline Hydroxyapatite on Collagen Nanofibers

    Directory of Open Access Journals (Sweden)

    Hsi-Chin Wu

    2016-03-01

    Full Text Available Various kinds of three-dimensional (3D scaffolds have been designed to mimic the biological spontaneous bone formation characteristics by providing a suitable microenvironment for osteogenesis. In view of this, a natural bone-liked composite scaffold, which was combined with inorganic (hydroxyapatite, Hap and organic (type I collagen, Col phases, has been developed through a self-assembly process. This 3D porous scaffold consisting of a c-axis of Hap nanocrystals (nHap aligning along Col fibrils arrangement is similar to natural bone architecture. A significant increase in mechanical strength and elastic modulus of nHap/Col scaffold is achieved through biomimetic mineralization process when compared with simple mixture of collagen and hydroxyapatite method. It is suggested that the self-organization of Hap and Col produced in vivo could also be achieved in vitro. The oriented nHap/Col composite not only possesses bone-like microstructure and adequate mechanical properties but also enhances the regeneration and reorganization abilities of bone tissue. These results demonstrated that biomimetic nHap/Col can be successfully reconstructed as a bone graft substitute in bone tissue engineering.

  17. Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization

    OpenAIRE

    Muralidharan, Nagarajan; Jeya Shakila, Robinson; Sukumar, Durairaj; Jeyasekaran, G.

    2011-01-01

    Acid soluble (ASC) and pepsin soluble (PSC) collagens were extracted from the skin, bone and muscle of a trash fish, leather jacket (Odonus niger) by three different extraction methods. Method I gave 46–50% yield for ASC, Method II gave 49–58% yield for both ASC and PSC and Method III gave 64–71% yield for PSC. The addition of pepsin had increased the yield by 30–45%. The yields of collagen from skin and bone were higher than muscle. SDS-PAGE pattern revealed that skin and bone collagen as Ty...

  18. Human breast cancer cell-mediated bone collagen degradation requires plasminogen activation and matrix metalloproteinase activity

    Directory of Open Access Journals (Sweden)

    Hill Peter A

    2005-02-01

    Full Text Available Abstract Background Breast cancer cells frequently metastasize to the skeleton and induce extensive bone destruction. Cancer cells produce proteinases, including matrix metalloproteinases (MMPs and the plasminogen activator system (PAS which promote invasion of extracellular matrices, but whether these proteinases degrade bone matrix is unclear. To characterize the role that breast cancer cell proteinases play in bone degradation we compared the effects of three human breast cancer cell lines, MDA-MB-231, ZR-75-1 and MCF-7 with those of a normal breast epithelial cell line, HME. The cell lines were cultured atop radiolabelled matrices of either mineralized or non-mineralized bone or type I collagen, the principal organic constituent of bone. Results The 3 breast cancer cell lines all produced significant degradation of the 3 collagenous extracellular matrices (ECMs whilst the normal breast cell line was without effect. Breast cancer cells displayed an absolute requirement for serum to dissolve collagen. Degradation of collagen was abolished in plasminogen-depleted serum and could be restored by the addition of exogenous plasminogen. Localization of plasmin activity to the cell surface was critical for the degradation process as aprotinin, but not α2 antiplasmin, prevented collagen dissolution. During ECM degradation breast cancer cell lines expressed urokinase-type plasminogen activator (u-PA and uPA receptor, and MMPs-1, -3, -9,-13, and -14. The normal breast epithelial cell line expressed low levels of MMPs-1, and -3, uPA and uPA receptor. Inhibitors of both the PAS (aprotinin and PA inhibitor-1 and MMPs (CT1166 and tisue inhibitor of metalloproteinase blocked collagen degradation, demonstrating the requirement of both plasminogen activation and MMP activity for degradation. The activation of MMP-13 in human breast cancer cells was prevented by plasminogen activator inhibitor-1 but not by tissue inhibitor of metalloproteinase-1, suggesting

  19. Innovative Biomaterials Based on Collagen-Hydroxyapatite and Doxycycline for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Narcisa Mederle

    2016-01-01

    Full Text Available Bone regeneration is a serious challenge in orthopedic applications because of bone infections increase, tumor developing, and bone loss due to trauma. In this context, the aim of our study was to develop innovative biomaterials based on collagen and hydroxyapatite (25, 50, and 75% which mimic bone composition and prevent or treat infections due to doxycycline content. The biomaterials were obtained by freeze-drying in spongious forms and were characterized by water uptake capacity and microscopy. The in vitro release of doxycycline was also determined and established by non-Fickian drug transport mechanism. Among the studied biomaterials, the most suitable one to easily deliver the drug and mimic bone structure, having compact structure and lower capacity to uptake water, was the one with 75% hydroxyapatite and being cross-linked.

  20. Exercise and Regulation of Bone and Collagen Tissue Biology

    DEFF Research Database (Denmark)

    Kjær, Michael; Jørgensen, Niklas Rye; Heinemeier, Katja Maria;

    2015-01-01

    The musculoskeletal system and its connective tissue include the intramuscular connective tissue, the myotendinous junction, the tendon, the joints with their cartilage and ligaments, and the bone; they all together play a crucial role in maintaining the architecture of the skeletal muscle...

  1. Collagen cross-link metabolites in urine as markers of bone metastases in prostatic carcinoma.

    Science.gov (United States)

    Miyamoto, K K; McSherry, S A; Robins, S P; Besterman, J M; Mohler, J L

    1994-04-01

    The efficacy of radionuclide bone scans in monitoring metastatic bone activity remains controversial. Objective measurement of bone tumor burden would be useful for the evaluation of new therapies for metastatic carcinoma of the prostate. The recent discovery of the urinary excretion of pyridinoline (cross-link of mature collagen found in cartilage and bone) and deoxypyridinoline (collagen cross-link specific to bone) measured by high pressure liquid chromatography has provided sensitive specific indexes of cartilage and bone breakdown in rheumatoid arthritis, osteoporosis and metabolic bone diseases. We compared the urinary excretion of deoxypyridinoline,pyridinoline and hydroxyproline relative to urinary creatinine (nmol./mmol.creatinine) in 27 patients with benign prostatic hyperplasia (patient age 70.0 +/- 8.5 years, standard deviation), 29 with clinically confined prostate cancer (age 70.2 +/- 9.7 years), and 26 with prostate cancer and bone metastases (age 71.1 +/- 7.7 years). No diurnal variation of deoxypyridinoline or pyridinoline urinary excretion was detected in 5 patients with metastases. Urinary excretion of pyridinoline and deoxypyridinoline was significantly greater in patients with metastatic carcinoma of the prostate compared with patients with either benign prostatic hyperplasia (Mann-Whitney-Wilcoxon rank sum analysis, p r = 0.55, p r = 0.57, p r = 0.36, p = 0.08). Serial measurements of pyridinoline and deoxypyridinoline progressively increased in 3 patients with clinical progression documented by new metastatic lesions by bone scan. Measurement of pyridinoline and deoxypyridinoline excretion cannot diagnose metastatic disease. However, these markers should be evaluated further for quantitative assessment of bone metastases. PMID:7510346

  2. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    Science.gov (United States)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  3. Collagen mutation causes changes of the microdamage morphology in bone of an OI mouse model.

    Science.gov (United States)

    Dong, X Neil; Zoghi, Mahyar; Ran, Qitao; Wang, Xiaodu

    2010-12-01

    Previous studies have postulated that ultrastructural changes may alter the pattern and capacity of microdamage accumulation in bone. Using an osteogenesis imperfecta (OI) mouse model, this study was performed to investigate the correlation of collagen mutation with the microdamage morphology and the associated brittleness of bone. In this study, femurs from mild OI and wild type mice were fatigued under four-point bending to create microdamage in the specimens. Then, the microdamage morphology of these specimens was examined using the bulk-staining technique with basic fuchsin. Similar with the results of previous studies, it was observed that linear microcracks were formed more easily in compression, whereas diffuse damage was induced more readily in tension for both wild-type and mild-type mice. However, less diffuse damage was found in the tensile side of mild OI mouse femurs (collagen mutation) compared with those of wild type mice, showing that the microdamage morphology is correlated to the brittleness of bone. The results of this study provide direct evidence that supports the prediction made by the previous numerical simulation studies, suggesting that microdamage morphology in bone is significantly correlated with the integrity of the collagen phase. PMID:20736092

  4. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing.

    Science.gov (United States)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. PMID:27523994

  5. Bone induction by composites of bioresorbable carriers and demineralized bone in rats: a comparative study of fibrin-collagen paste, fibrin sealant, and polyorthoester with gentamicin

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E; Bang, G;

    1992-01-01

    fibrin-collagen paste and fibrin sealant inhibited bone induction and produced a chronic inflammation; part of the fibrin-collagen paste was still present at 4 weeks. Polyorthoester with gentamicin was almost completely absorbed, induced minimal tissue reaction, and did not inhibit osteoinduction....

  6. Markers of type I collagen degradation and synthesis in the monitoring of treatment response in bone metastases from breast carcinoma.

    OpenAIRE

    Blomqvist, C; Risteli, L; Risteli, J.; Virkkunen, P.; Sarna, S.; Elomaa, I.

    1996-01-01

    Thirty-six patients with bone metastases included in a trial of supportive calcitonin on the treatment response to systemic therapy were monitored by conventional radiography, conventional indicators of bone metabolism [alkaline phosphatase (AP), osteocalcin (gla), urinary hydroxyproline excretion (OHP), urinary calcium (uCa), serum calcium (sCa)] and collagen metabolites (ICTP, the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen; PICP, the carboxy-terminal propeptid...

  7. The Structure and Function of Non-Collagenous Bone Proteins

    Science.gov (United States)

    Hook, Magnus

    1997-01-01

    The long-term goal for this program is to determine the structural and functional relationships of bone proteins and proteins that interact with bone. This information will used to design useful pharmacological compounds that will have a beneficial effect in osteoporotic patients and in the osteoporotic-like effects experienced on long duration space missions. The first phase of this program, funded under a cooperative research agreement with NASA through the Texas Medical Center, aimed to develop powerful recombinant expression systems and purification methods for production of large amounts of target proteins. Proteins expressed in sufficient'amount and purity would be characterized by a variety of structural methods, and made available for crystallization studies. In order to increase the likelihood of crystallization and subsequent high resolution solution of structures, we undertook to develop expression of normal and mutant forms of proteins by bacterial and mammalian cells. In addition to the main goals of this program, we would also be able to provide reagents for other related studies, including development of anti-fibrotic and anti-metastatic therapeutics.

  8. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    Science.gov (United States)

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  9. Stable carbon isotope variability of bone collagen and hair within a modern population of red kangaroos (Macropus rufus) in south western Queensland: some implications for palaeoecological research

    Energy Technology Data Exchange (ETDEWEB)

    Witt, G.B. [Queensland Univ., St. Lucia, QLD (Australia)

    1997-12-31

    Full text: Before any palaeo-reconstruction work can be attempted using stable isotope analysis of macropod remains it will be necessary to determine the nature of natural variability within contemporary populations. This research indicates that {delta}{sup 13}C of bone collagen is strongly related to age. Furthermore, bone collagen {delta}{sup 13}C not at equilibrium with dietary {delta}{sup 13}C, as indicated by analysis of hair, until animals are several years old. These preliminary data suggest that in younger macropods most carbon in bone collagen has been derived via the mother`s milk which may have undergone fractionation. These findings have significant implications for any palaeoecological research using bone or tooth. Teeth of macropods erupt from the rear of the jaw and move forward in molar progression. Since the rate of eruption is variable, and many of the forward molars are well formed while the joey is still at the pouch, teeth formed early in the life of a macropod may be isotopically distinct from those that develop later. This hypothesis is currently under investigation.

  10. Sources of carbon isotope variation in kangaroo bone collagen and tooth enamel

    Science.gov (United States)

    Murphy, Brett P.; Bowman, David M. J. S.; Gagan, Michael K.

    2007-08-01

    The stable carbon isotopic composition (expressed as δ 13C) of herbivore remains is commonly used to reconstruct past changes in the relative abundance of C 4 versus C 3 grass biomass (C 4 relative abundance). However, the strength of the relationship between herbivore δ 13C and C 4 relative abundance in extant ecosystems has not been thoroughly examined. We determined sources of variation in δ 13C of bone collagen and tooth enamel of kangaroos ( Macropus spp.) collected throughout Australia by measuring δ 13C of bone collagen (779 individuals) and tooth enamel (694 individuals). An index of seasonal water availability, i.e. the distribution of rainfall in the C 4 versus C 3 growing seasons, was used as a proxy for C 4 relative abundance, and this variable explained a large proportion of the variation in both collagen δ 13C (68%) and enamel δ 13C (68%). These figures increased to 78% and 77%, respectively, when differences between kangaroo species were accounted for. Vegetation characteristics, such as woodiness and the presence of an open forest canopy, had no effect on collagen or enamel δ 13C. While there was no relationship between collagen δ 13C and kangaroo age at death, tooth enamel produced later in life, following weaning, was enriched in 13C by 3.5‰ relative to enamel produced prior to weaning. From the observed relationships between seasonal water availability and collagen and enamel δ 13C, enrichment factors ( ɛ∗) for collagen-diet and enamel-diet (post-weaning) were estimated to be 5.2‰ ± 0.5 (95% CI) and 11.7‰ ± 0.6 (95% CI), respectively. The findings of this study confirm that at a continental scale, collagen and enamel δ 13C of a group of large herbivores closely reflect C 4 relative abundance. This validates a fundamental assumption underpinning the use of isotopic analysis of herbivore remains to reconstruct changes in C 4 relative abundance.

  11. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonggang, E-mail: chenzg@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Lingzhi [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Meng, Qing-Yuan [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, Huanye [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Wang, Zhaoliang [Jinan Military General Hospital of PLA, Jinan 250031 (China); Guo, Zhongwu, E-mail: zwguo@sdu.edu.cn [National Glycoengineering Research Center, Shandong University, Jinan 250100 (China); Cui, Fu-Zhai, E-mail: cuifz@mail.tsinghua.edu.cn [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-01

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials.

  12. Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration

    International Nuclear Information System (INIS)

    The nHAC/CSH composite is an injectable bone repair material with controllable injectability and self-setting properties prepared by introducing calcium sulfate hemihydrate (CSH) into mineralized collagen (nHAC). When mixed with water, the nHAC/CSH composites can be transformed into mineralized collagen/calcium sulfate dihydrate (nHAC/CSD) composites. The nHAC/CSD composites have good biocompatibility and osteogenic capability. Considering that the degradation behavior of bone repair material is another important factor for its clinical applications, the degradability of nHAC/CSD composites was studied. The results showed that the degradation ratio of the nHAC/CSD composites with lower nHAC content increased with the L/S ratio increase of injectable materials, but the variety of L/S ratio had no significant effect on the degradation ratio of the nHAC/CSD composites with higher nHAC content. Increasing nHAC content in the composites could slow down the degradation of nHAC/CSD composite. Setting accelerator had no significant effect on the degradability of nHAC/CSD composites. In vivo histological analysis suggests that the degradation rate of materials can match the growth rate of new mandibular bone tissues in the implanted site of rabbit. The regulable degradability of materials resulting from the special prescriptions of injectable nHAC/CSH composites will further improve the workability of nHAC/CSD composites. - Highlights: • The nHAC/CSH composite can be as an injectable bone repair material. • The L/S ratio and nHAC content have a significant effect on material degradability. • The degradability of bone materials can be regulated to match tissue repair. • The regulable degradability will further improve the workability of bone materials

  13. Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report

    OpenAIRE

    Faundez, Antonio; Taylor, Sofia; Kaelin, André

    2006-01-01

    In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained...

  14. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    Science.gov (United States)

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6μm, a specific surface area of 40m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. PMID:27040244

  15. In Vitro Mineralization of an Osteoid-Like Dense Collagen Construct for Bone Tissue Engineering

    Science.gov (United States)

    Marelli, Benedetto

    The aim of this doctoral research was to design and evaluate strategies to rapidly achieve an acellular mineralization of an osteoid-like dense collagen gel for potential applications in bone regeneration. It was hypothesized that the collagen fibrillar density (CFD) affects the microenvironment and the physical properties of the framework of collagen gels. To test this hypothesis, and as a first objective, the mineralization of collagen gel sheets, rolls and strips with increasing CFDs was investigated in vitro in simulated body fluid (SBF). Collagen gels with physiologically relevant CFDs (14.1 wt%) led to greater extent of mineralization (12 dry wt% at day 14 in SBF), when compared to highly hydrated gels. Chemical characterization confirmed this mineral phase to be CHA, which significantly increased the gel apparent modulus and ultimate tensile strength (UTS). Surprisingly, CFD also affected the electrostatic properties of collagen gel, as investigated by quantifying the extent of anionic and cationic dyes bound to collagen gels with different CFDs. It was therefore proposed that the increase in gel CFD led to a more physiological microenvironment, resulting in a higher number of fibril-to-fibril contact points and an increase in charge concentration, which facilitated the mineral formation and validated the proposed osteoid model. As a second objective, the mineralization of dense collagen (DC) gels with physiologically relevant CFD (14.1 wt%) was enhanced and accelerated by mimicking the role of anionic non collagenous proteins (NCPs) in the native osteoid, which act as CHA nucleators. Two strategies were implemented: first, the influence of collagen fibrillization pH on the extent of DC gel mineralization was investigated. Since the collagen molecule is slightly positively charged at physiological pH (isoelectric point at pH 7.8), it was hypothesized that it would be more negatively charged if formed in an alkaline environment, i.e., above its isoelectric

  16. From the bones : a journey of searching new uses for animal bones in Iceland

    OpenAIRE

    Jiaoni, Jiao, 1986-

    2015-01-01

    This study is about using a design method to find new uses of leftover lamb bones from slaughterhouses in Iceland. As a Chinese designer studying in Iceland, I found great differences in the Icelandic and Chinese food culture, being curious about the fate of animal bone leftover from Icelandic livestock. I started investigate how and whether people use animal bones. To raise questions about the consequences of consumerism, I decided to use waste from the Icelandic food industry as my desig...

  17. Standardization of experimental animals temporal bone sections

    Institute of Scientific and Technical Information of China (English)

    Dalian Ding; Jintao Yu; Peng Li; Kelei Gao; Haiyan Jiang; Wenjuan Zhang; Hong Sun; Shankai Yin; Richard Salvi

    2015-01-01

    Preparation of the temporal bone for light microscopy is an important step in histological studies of the inner ear. Due to the complexity of structures of the inner ear, it is difficult to measure or compare structures of interest without a commonly accepted standardized measure of temporal bone sections. Therefore, standardization of temporal bone sections is very important for histological assessment of sensory hair cells and peripheral ganglion neurons in the cochlear and vestibular systems. The standardized temporal bone sectioning is oriented to a plane parallel to the outer and internal auditory canals. Sections are collected from the epitympanum to the hypotympanum to reveal layers in the order of the crista ampullaris of the superior and lateral semicircular canals, macula utriculi and macula sacculi, superior vestibular ganglion neurons, macula of saccule and inferior vestibular ganglion neurons, cochlear modiolus, endolymphatic duct and endolymphatic sac, and finally the crista ampullaris of the posterior semicircular canal. Moreover, technical details of preparing for temporal bone sectioning including fixation, decalcification, whole temporal bone staining, embedding penetration, and embedding orientation are also discussed.

  18. Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Wilairat Leeanansaksiri

    2013-01-01

    Full Text Available The aim of this study was to investigate physical and biological properties of collagen (COL and demineralized bone powder (DBP scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75–125 µm, 125–250 µm, and 250–500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells, osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250–500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250–500 mm particle size could be considered a potential bone tissue engineering implant.

  19. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  20. Animal models for implant biomaterial research in bone: A review

    Directory of Open Access Journals (Sweden)

    A I Pearce

    2007-03-01

    Full Text Available Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing of orthopaedic and dental implants prior to clinical use in humans. This review discusses some of the more commonly available and frequently used animal models such as the dog, sheep, goat, pig and rabbit models for the evaluation of bone-implant interactions. Factors for consideration when choosing an animal model and implant design are discussed. Various bone specific features are discussed including the usage of the species, bone macrostructure and microstructure and bone composition and remodelling, with emphasis being placed on the similarity between the animal model and the human clinical situation. While the rabbit was the most commonly used of the species discussed in this review, it is clear that this species showed the least similarities to human bone. There were only minor differences in bone composition between the various species and humans. The pig demonstrated a good likeness with human bone however difficulties may be encountered in relation to their size and ease of handling. In this respect the dog and sheep/goat show more promise as animal models for the testing of bone implant materials. While no species fulfils all of the requirements of an ideal model, an understanding of the differences in bone architecture and remodelling between the species is likely to assist in the selection of a suitable species for a defined research question.

  1. Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration

    CERN Document Server

    Qiao, Xiangchen; Yang, Xuebin; Tronci, Giuseppe; Wood, David J

    2015-01-01

    Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 {\\deg}C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC) for five weeks. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infra-red spectroscopy (FTIR) and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory...

  2. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    Science.gov (United States)

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  3. Small-Angle X-ray Study of the Three-Dimensional Collagen/Mineral Superstructure in Intramuscular Fish Bone

    International Nuclear Information System (INIS)

    Synchrotron small-angle X-ray scattering (SAXS) was conducted on native intramuscular shad/herring bone samples. Two-dimensional SAXS patterns were quantitatively analyzed with special consideration for preferred orientation effects, leading to new insights into the three-dimensional superstructure of mineralized collagen fibrils in shad/herring bone

  4. Review of Animal Models of Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Jessica K. Simmons

    2014-06-01

    Full Text Available Prostate cancer bone metastases are associated with a poor prognosis and are considered incurable. Insight into the formation and growth of prostate cancer bone metastasis is required for development of new imaging and therapeutic strategies to combat this devastating disease. Animal models are indispensable in investigating cancer pathogenesis and evaluating therapeutics. Multiple animal models of prostate cancer bone metastasis have been developed, but few effectively model prostatic neoplasms and osteoblastic bone metastases as they occur in men. This review discusses the animal models that have been developed to investigate prostate cancer bone metastasis, with a focus on canine models and also includes human xenograft and rodent models. Adult dogs spontaneously develop benign prostatic hyperplasia and prostate cancer with osteoblastic bone metastases. Large animal models, such as dogs, are needed to develop new molecular imaging tools and effective focal intraprostatic therapy. None of the available models fully reflect the metastatic disease seen in men, although the various models have provided important insight into the metastatic process. As additional models are developed and knowledge from the different models is combined, the molecular mechanisms of prostate cancer bone metastasis can be deciphered and targeted for development of novel therapies and molecular diagnostic imaging.

  5. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway

    OpenAIRE

    Na Li; Min Zhang; Gregor P. C. Drummen; Yu Zhao; Yin Fen Tan; Su Luo; Xiao Bo Qu

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone...

  6. Defective collagen crosslinking in bone, but not in ligament or cartilage, in bruck syndrome: Indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17

    NARCIS (Netherlands)

    Bank, R.A.; Robins, S.P.; Wijmenga, C.; Breslau-Siderius, L.J.; Bardoel, A.F.J.; Sluijs, H.A. van der; Pruijs, H.E.H.; Tekoppele, J.M.

    1999-01-01

    Bruck syndrome is characterized by the presence of osteoporosis, joint contractures, fragile bones, and short stature. We report that lysine residues within the telopeptides of collagen type I in bone are underhydroxylated, leading to aberrant crosslinking, but that the lysine residues in the triple

  7. Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep

    DEFF Research Database (Denmark)

    Jensen, Jonas; Foldager, Casper Bindzus; Jakobsen, Thomas Vestergaard;

    2010-01-01

    We assessed the use of a filler compound together with the osteoinductive demineralized bone matrix (DBM), Colloss E. The filler was comprised of carboxymethyl-cellulose and collagen type 1. The purpose of the study was to see if the filler compound would enhance the bone formation and distribute...

  8. Bone defect animal models for testing efficacy of bone substitute biomaterials

    Directory of Open Access Journals (Sweden)

    Ye Li

    2015-07-01

    Full Text Available Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for investigating their biocompatibility, mechanical properties, degradation, and interactional with culture medium or host tissues. The results of the in vitro experiment contribute significantly to the evaluation of direct cell response to the substitute biomaterial, and the in vivo tests constitute a step midway between in vitro tests and human clinical trials. Therefore, it is essential to develop or adopt a suitable in vivo bone defect animal model for testing bone substitutes for defect repair. This review aimed at introducing and discussing the most available and commonly used bone defect animal models for testing specific substitute biomaterials. Additionally, we reviewed surgical protocols for establishing relevant preclinical bone defect models with various animal species and the evaluation methodologies of the bone regeneration process after the implantation of bone substitute biomaterials. This review provides an important reference for preclinical studies in translational orthopaedics.

  9. A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold

    International Nuclear Information System (INIS)

    From a clinical perspective, the use of injectable scaffolds is very attractive as it minimizes patient discomfort, risk of infection, scar formation and the cost of treatment. Bone refers to a family of materials that are constructed by mineralized collagen fibrils. The main objective of this research was to develop a bone-like nano-hydroxyapatite/collagen (nHAC) loaded chitosan (C)/β-glycerophosphate (GP) injectable scaffold. The feasibility of developing a thermo-sensitive and injectable chitosan solution in the presence of nHAC was demonstrated. Bone-marrow-derived messenchymal stem cells (MSCs) were used to measure the cell proliferation of C/GP/nHAC scaffolds based on the cell count kit-8 (CCK-8) assay. It was found that MSCs proliferated normally with the C/GP/nHAC composite scaffolds. The C/GP/nHAC composite scaffolds developed in this study exhibited good injectability, thermo-irreversible properties and solidified under mild conditions. No more than 0.02 g ml-1 of nHAC filler was required to form a non-decaying hydrogel.

  10. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone.

    Science.gov (United States)

    Yamamoto, Tsuneyuki; Hasegawa, Tomoka; Sasaki, Muneteru; Hongo, Hiromi; Tabata, Chihiro; Liu, Zhusheng; Li, Minqi; Amizuka, Norio

    2012-04-01

    This study was designed to elucidate details of the structure and formation process of the alternate lamellar pattern known to exist in lamellar bone. For this purpose, we examined basic internal lamellae in femurs of young rats by transmission and scanning electron microscopy, the latter employing two different macerations with NaOH at concentrations of 10 and 24%. Observations after the maceration with 10% NaOH showed that the regular and periodic rotation of collagen fibrils caused an alternation between two types of lamellae: one consisting of transversely and nearly transversely cut fibrils, and the other consisting of longitudinally and nearly longitudinally cut fibrils. This finding confirms the consistency of the twisted plywood model. The maceration method with 24% NaOH removed bone components other than cells, thus allowing for three-dimensional observations of osteoblast morphology. Osteoblasts extended finger-like processes paralleling the inner bone surface, and grouped in such a way that, within a group, the processes arranged in a similar direction. Transmission electron microscopy showed that newly deposited fibrils were arranged alongside these processes. For the formation of the alternating pattern, our findings suggest that: (1) osteoblasts control the collagen fibril arrangement through their finger-like process position; (2) osteoblasts behave similarly within a group; (3) osteoblasts move their processes synchronously and periodically to promote alternating different fibril orientation; and (4) this dynamic sequential deposition of fibrils results in the alternate lamellar (or twisted plywood) pattern. PMID:22362877

  11. Collagen-Vicryl scaffolds for reconstruction of the diaphragm in a large animal model.

    Science.gov (United States)

    Brouwer, Katrien M; Daamen, Willeke F; Hoogenkamp, Henk R; Geutjes, Paul J; de Blaauw, Ivo; Janssen-Kessels, Wilma; de Boode, Willem; Versteeg, Elly; Wijnen, René M; Feitz, Wout F; Wijnen, Marc; van Kuppevelt, Toin H

    2014-05-01

    Current methods for closure of congenital diaphragmatic hernia using patches are unsatisfactory, and novel collagen-based scaffolds have been developed, and successfully applied in a rat model. However, for translation to the human situation constructs must be evaluated in larger animal models. We developed collagen scaffolds enforced with Vicryl, loaded either with or without the muscle stimulatory growth factor insulin-like growth factor 1 (IGF1). We describe our steps to a surgical method to implant these scaffolds into a diaphragmatic defect in 1.5–3 week old lambs, and evaluate the scaffolds 6 months after implantation. Omentum was attached to the scaffold. At sacrifice, eventration of the implantation site was observed in all animals with a thin layer of tissue separating the abdomen from the thorax. Histologically, no scaffold remnants could be observed. Fatty tissue surrounded by fibrous tissue was seen, resembling encapsulated omentum, with collagen-rich tissue present between this tissue and the original diaphragmatic muscle. Outcomes were not different for scaffolds with or without IGF1. In conclusion, the scaffolds integrated well into the surrounding tissue, but slower degrading materials are needed to prevent eventrations. PMID:24843887

  12. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.

    Science.gov (United States)

    Luo, Qing; Nakade, Rugved; Dong, Xuanliang; Rong, Qiguo; Wang, Xiaodu

    2011-10-01

    The interactions between mineral and collagen phases in the ultrastructural level play an important role in determining the mechanical properties of bone tissue. Three types of mineral-collagen interaction (i.e., ionic interactions, hydrogen/van der Waals bonds, and van der Waals/viscous shear in opening/sliding mode, respectively) have been simulated in this study, using cohesive zone-modeling techniques. Considering the inhomogeneity of bone, a probabilistic failure analysis approach has been also employed to account for the effect of mineral-collagen interfacial behavior on microdamage accumulation in lamellar bone tissues. The results of this study suggested that different interfacial behaviors cause different types of microdamage accumulation. The ionic interactions between the mineral and collagen phases lead to the formation of linear microcracks, while the van der Waals/viscous shear interactions may facilitate the formation of diffuse damage. In the case of hydrogen/van der Waals bonds, a transitional behavior of microdamage accumulation in bone was observed. The findings of this study may help in understanding the mechanisms of mineral-collagen interactions and its effects on the failure mechanism of bone. PMID:21783104

  13. Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Xiangchen Qiao

    2015-08-01

    Full Text Available Poly-dl-lactic acid (PDLLA was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2 in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC for five weeks. Scanning electron microscopy (SEM, confocal laser scanning microscopy (CLSM, Fourier transform infra-red spectroscopy (FTIR and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory wet stabilities in a humid environment, although chemical crosslinking was essential to ensure long term material cell culture. Scaffolds of PDLLA/collagen at a 60:40 weight ratio provided the greatest stability over a five-week culture period. The PDLLA/collagen scaffolds promoted greater cell proliferation and osteogenic differentiation compared to HMBSCs seeded on the corresponding PDLLA/gelatine scaffolds, suggesting that any electrospinning-induced collagen denaturation did not affect material biofunctionality within 5 weeks in vitro.

  14. Analysis of forward and backward Second Harmonic Generation images to probe the nanoscale structure of collagen within bone and cartilage.

    Science.gov (United States)

    Houle, Marie-Andrée; Couture, Charles-André; Bancelin, Stéphane; Van der Kolk, Jarno; Auger, Etienne; Brown, Cameron; Popov, Konstantin; Ramunno, Lora; Légaré, François

    2015-11-01

    Collagen ultrastructure plays a central role in the function of a wide range of connective tissues. Studying collagen structure at the microscopic scale is therefore of considerable interest to understand the mechanisms of tissue pathologies. Here, we use second harmonic generation microscopy to characterize collagen structure within bone and articular cartilage in human knees. We analyze the intensity dependence on polarization and discuss the differences between Forward and Backward images in both tissues. Focusing on articular cartilage, we observe an increase in Forward/Backward ratio from the cartilage surface to the bone. Coupling these results to numerical simulations reveals the evolution of collagen fibril diameter and spatial organization as a function of depth within cartilage. PMID:26349534

  15. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Reza Tavakoli-Darestani

    2013-05-01

    Full Text Available Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide (PLGA nanofibrous scaffolds, fabricated via electrospinning, were initially coated with Type I collagen and then with nano-hydroxyapatite. The prepared scaffolds were then characterized using SEM and their ability for bone regeneration was investigated in a rat critical size bone defect using digital mammography, multislice spiral-computed tomography (MSCT imaging, and histological analysis.Results: Electrospun scaffolds had nanofibrous structure with homogenous distribution of n-HA on collagen-grafted PLGA. After 8 weeks of implantation, no sign of inflammation or complication was observed at the site of surgery. According to digital mammography and MSCT, PLGA nanofibers coated simultaneously with collagen and HA showed the highest regeneration in rat calvarium. In addition, no significant difference was observed in bone repair in the group which received PLGA and the untreated control. This amount was lower than that observed in the group implanted with collagen-coated PLGA. Histological studies confirmed these data and showed osteointegration to the surrounding tissue.Conclusion: Taking all together, it was demonstrated that nanofibrous structures can be used as appropriate support for tissue-engineered scaffolds, and coating them with bioactive materials will provide ideal synthetic grafts. Fabricated PLGA coated with Type I collagen and HA can be used as new bone graft substitutes in orthopaedic surgery and is capable of enhancing bone regeneration via characteristics such as osteoconductivity and

  16. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection

    OpenAIRE

    Miri, Amir K.; Muja, Naser; Kamranpour, Neysan O.; Lepry, William C.; Aldo R. Boccaccini; Clarke, Susan A.; Nazhat, Showan N.

    2016-01-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass® (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 coll...

  17. Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering.

    Science.gov (United States)

    Weisgerber, D W; Erning, K; Flanagan, C L; Hollister, S J; Harley, B A C

    2016-08-01

    A particular challenge in biomaterial development for treating orthopedic injuries stems from the need to balance bioactive design criteria with the mechanical and geometric constraints governed by the physiological wound environment. Such trade-offs are of particular importance in large craniofacial bone defects which arise from both acute trauma and chronic conditions. Ongoing efforts in our laboratory have demonstrated a mineralized collagen biomaterial that can promote human mesenchymal stem cell osteogenesis in the absence of osteogenic media but that possesses suboptimal mechanical properties in regards to use in loaded wound sites. Here we demonstrate a multi-scale composite consisting of a highly bioactive mineralized collagen-glycosaminoglycan scaffold with micron-scale porosity and a polycaprolactone support frame (PCL) with millimeter-scale porosity. Fabrication of the composite was performed by impregnating the PCL support frame with the mineral scaffold precursor suspension prior to lyophilization. Here we evaluate the mechanical properties, permeability, and bioactivity of the resulting composite. Results indicated that the PCL support frame dominates the bulk mechanical response of the composite resulting in a 6000-fold increase in modulus compared to the mineral scaffold alone. Similarly, the incorporation of the mineral scaffold matrix into the composite resulted in a higher specific surface area compared to the PCL frame alone. The increased specific surface area in the collagen-PCL composite promoted increased initial attachment of porcine adipose derived stem cells versus the PCL construct. PMID:27104930

  18. Change in the amount of epsilon-hexosyllysine, UV absorbance, and fluorescence of collagen with age in different animal species

    International Nuclear Information System (INIS)

    Skin and aorta collagen specimens of Wistar rats, white mice, beagle dogs, cats, horses, and human necropsies of different ages were examined with respect to the content of glycated products. The data presented show that (a) glycation and accumulation of the chromophore(s) are comparable in collagen samples from different species of comparable age; (b) glycation and pigmented accumulation increase markedly during the first 5-10 years of age; (c) the extent of glycation is different in different tissues (in particular, glycation of aortal collagen is about twice that of skin collagen); and (d) collagen pigmentation as followed by fluorescence is comparable in aortal and skin collagen (except below 10 years); pigmentation measured by absorbance at 350 nm is, on the contrary, lower in aortal than in skin collagen. Based on the assumption of constant blood glucose level during the life span, it appears feasible to conclude that the degree of nonenzymatic collagen glycation reflects the time period for which the protein was exposed to the action of sugars. This period, because of increased cross-linking, is likely to be extended in older animals. Other factors, such as differences in collagen turnover between different tissues and the intensity of the removal process of the glycated products, should be taken into consideration as well

  19. A Rapid and Simple LC-MS Method Using Collagen Marker Peptides for Identification of the Animal Source of Leather.

    Science.gov (United States)

    Kumazawa, Yuki; Taga, Yuki; Iwai, Kenji; Koyama, Yoh-Ichi

    2016-08-01

    Identification of the animal source of leather is difficult using traditional methods, including microscopic observation and PCR. In the present study, a LC-MS method was developed for detecting interspecies differences in the amino acid sequence of type I collagen, which is a major component of leather, among six animals (cattle, horse, pig, sheep, goat, and deer). After a dechroming procedure and trypsin digestion, six tryptic peptides of type I collagen were monitored by LC-MS in multiple reaction monitoring mode for the animal source identification using the patterns of the presence or absence of the marker peptides. We analyzed commercial leathers from various production areas using this method, and found some leathers in which the commercial label disagreed with the identified animal source. Our method enabled rapid and simple leather certification and could be applied to other animals whether or not their collagen sequences are available in public databases. PMID:27397145

  20. Intraskeletal isotopic compositions (δ(13) C, δ(15) N) of bone collagen: nonpathological and pathological variation.

    Science.gov (United States)

    Olsen, Karyn C; White, Christine D; Longstaffe, Fred J; von Heyking, Kristin; McGlynn, George; Grupe, Gisela; Rühli, Frank J

    2014-04-01

    Paleodiet research traditionally interprets differences in collagen isotopic compositions (δ(13) C, δ(15) N) as indicators of dietary distinction even though physiological processes likely play some role in creating variation. This research investigates the degree to which bone collagen δ(13) C and δ(15) N values normally vary within the skeleton and examines the influence of several diseases common to ancient populations on these isotopic compositions. The samples derive from two medieval German cemeteries and one Swiss reference collection and include examples of metabolic disease (rickets/osteomalacia), degenerative joint disease (osteoarthritis), trauma (fracture), infection (osteomyelitis), and inflammation (periostitis). A separate subset of visibly nonpathological skeletal elements from the German collections established normal intraindividual variation. For each disease type, tests compared bone lesion samples to those near and distant to the lesions sites. Results show that normal (nonpathological) skeletons exhibit limited intraskeletal variation in carbon- and nitrogen-isotope ratios, suggesting that sampling of distinct elements is appropriate for paleodiet studies. In contrast, individuals with osteomyelitis, healed fractures, and osteoarthritis exhibit significant intraskeletal differences in isotope values, depending on whether one is comparing lesions to near or to distant sites. Skeletons with periostitis result in significant intraskeletal differences in nitrogen isotope values only, while those with rickets/osteomalacia do not exhibit significant intraskeletal differences. Based on these results, we suggest that paleodiet researchers avoid sampling collagen at or close to lesion sites because the isotope values may be reflecting both altered metabolic processes and differences in diet relative to others in the population. PMID:24374993

  1. Effect of local hemostatics on bone induction in rats: a comparative study of bone wax, fibrin-collagen paste, and bioerodible polyorthoester with and without gentamicin

    DEFF Research Database (Denmark)

    Solheim, E; Pinholt, E M; Bang, G;

    1992-01-01

    evaluated by light microscopy and 85Sr uptake analyses. Non-absorbable bone wax of 88% beeswax and absorbable bovine fibrin-collagen paste both significantly inhibited osteoinduction, whereas a bioerodible polyorthoester drug delivery system with or without 4% gentamicin did not. Bone wax was not absorbed...... and induced a chronic foreign body reaction. Fibrin-collagen paste induced less inflammation with numerous monocytes and macrophages with engulfed material. Bioerodible polyorthoester caused a very moderate tissue reaction and was mostly resorbed at week 4....

  2. Greener synthesis of electrospun collagen/hydroxyapatite composite fibers with an excellent microstructure for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Zhou YY

    2015-04-01

    Full Text Available Yuanyuan Zhou,1,2 Hongchang Yao,1 Jianshe Wang,1 Dalu Wang,1 Qian Liu,1 Zhongjun Li11College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Institute of Enviromental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, People’s Republic of ChinaAbstract: In bone tissue engineering, collagen/hydroxyapatite (HAP fibrous composite obtained via electrospinning method has been demonstrated to support the cells’ adhesion and bone regeneration. However, electrospinning of natural collagen often requires the use of cytotoxic organic solvents, and the HAP crystals were usually aggregated and randomly distributed within a fibrous matrix of collagen, limiting their clinical potential. Here, an effective and greener method for the preparation of collagen/HAP composite fibers was developed for the first time, and this green product not only had 40 times higher mechanical properties than that previously reported, but also had an excellent microstructure similar to that of natural bone. By dissolving type I collagen in environmentally friendly phosphate buffered saline/ethanol solution instead of the frequently-used cytotoxic organic solvents, followed with the key step of desalination, co-electrospinning the collagen solution with the HAP sol, generates a collagen/HAP composite with a uniform and continuous fibrous morphology. Interestingly, the nano-HAP needles were found to preferentially orient along the longitudinal direction of the collagen fibers, which mimicked the nanostructure of natural bones. Based on the characterization of the related products, the formation mechanism for this novel phenomenon was proposed. After cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl-1-carbodiimide hydrochloride/N-hydroxysuccinimide, the obtained composite exhibited a significant enhancement in mechanical properties. In addition, the biocompatibility of the

  3. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences.

    Energy Technology Data Exchange (ETDEWEB)

    Pate, F.D.; Anson, T.J.; Noble, A.H. [Flinders Univ. of South Australia, Bedford Park, SA (Australia). Department of Archaeology; Schoeninger, M.J. [Wisconsin Univ., Madison, WI (United States). Department of Anthropology

    1997-12-31

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen {delta}15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen {delta}15N differences only disappear at the most arid collection site, Innamincka.

  4. Bone collagen stable carbon and nitrogen isotope variability in modern South Australian mammals: A baseline for palaeoecological inferences

    International Nuclear Information System (INIS)

    Cortical bone samples were collected from a range of modern mammals at four field sites along a 1225 km north-south transect from temperate coastal to arid interior South Australia in order to address variability in stable carbon and nitrogen isotope composition. Collection sites were located along the eastern border of the state and included Mount Gambier, Karte, Plumbago and Innamincka. Mean annual rainfall along the transect ranges from 700-800 mm at Mount Gambier to 150-200 mm at Innamincka. Bone collagen carbon and nitrogen isotope values become more positive toward the arid north in relation to increasing quantities of C-4 plants and decreasing amounts of rainfall. respectively. In addition, carnivores and herbivores can be differentiated by stable nitrogen isotope values. On average, carnivore bone collagen is approximately 6 per mil more positive than that of rabbits at Mount Gambier but only 2.6 - 3.4 per mil more positive at the three arid collection sites. In general, the large eutherian herbivores have mean bone collagen δ15N values that are 1.4 - 2.3 per mil more positive than those of the marsupial herbivores. Eutherian and marsupial bone collagen δ15N differences only disappear at the most arid collection site, Innamincka

  5. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic Analysis.

    Science.gov (United States)

    Babay, Nadir; Ramalingam, Sundar; Basudan, Amani; Nooh, Nasser; AlKindi, Mohammed; Al-Rasheed, Abdulaziz; Al-Hezaimi, Khalid

    2016-01-01

    The aim of this in vivo microcomputed tomographic (μCT) study was to compare the efficacy of Mucograft (MG) vs resorbable collagen membranes (RCMs) in facilitating guided bone regeneration (GBR) around standardized calvarial defects in rats. Forty female Wistar albino rats with a mean age and weight of 6 to 9 weeks and 250 to 300 g, respectively, were used. With the rats under general anesthesia, the skin over the calvaria was exposed using a full-thickness flap. A standardized calvarial defect with a 4.6-mm diameter was created in the left parietal bone. For treatment, the rats were randomly divided into four groups (n = 10 per group): (1) defects covered with MG (MG group); (2) defects covered with an RCM (RCM group); (3) defects filled with xenograft bone particles and covered by MG (MG + bone group); and (4) defects filled with xenograft bone particles and covered by an RCM (RCM + bone group). Primary closure was achieved using interrupted resorbable sutures. The animals underwent high-resolution, three-dimensional μCT scans at baseline and at 2, 4, 6, and 8 weeks after the surgical procedures. Data regarding volume and bone mineral density (BMD) of newly formed bone (NFB) and bone particles revealed an increase in the volume of NFB in all the groups from baseline to 8 weeks. The MG group had the lowest volume of NFB (mean ± standard deviation [SD], 1.32 ± 0.22 mm(3)). No significant differences in mean ± SD values for volume of NFB were observed between the RCM (3.50 ± 0.24 mm(3)) and MG + bone (3.87 ± 0.36 mm(3)) groups, but their values were significantly lower than that of the RCM + bone group (2.95 ± 0.15 mm(3), F = 131.91, dfN = 2, dfD = 27, P RCM group having the highest mean ± SD BMD of NFB (0.42 ± 0.05 g/mm(3)). Significant differences in the bone particle volume between the RCM + bone and MG + bone groups (F = 91.04, dfN = 1, dfD = 18, P RCM + bone group displaying greater reduction in both volume (36.8%) and BMD (19.7%) of bone particles

  6. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  7. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180

    DEFF Research Database (Denmark)

    Engelholm, Lars H; Melander, Maria C; Hald, Andreas;

    2016-01-01

    In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen...... capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our...

  8. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Gayathri; Bialorucki, Callan [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Yildirim-Ayan, Eda, E-mail: eda.yildirimayan@utoledo.edu [Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2015-06-01

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O{sub 2} plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration.

  9. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2

    International Nuclear Information System (INIS)

    In this work, we developed a nanofibrous, yet injectable orthobiologic tissue scaffold that is capable of hosting osteoprogenitor cells and controlling kinetic release profile of the encapsulated pro-osteogenic factor without diminishing its bioactivity over 21 days. This innovative injectable scaffold was synthesized by incorporating electrospun and subsequently O2 plasma-functionalized polycaprolactone (PCL) nanofibers within the collagen type-I solution along with MC3T3-E1 cells (pre-osteoblasts) and bone morphogenetic protein-2 (BMP2). Through changing the PCL nanofiber concentration within the injectable scaffolds, we were able to tailor the mechanical strength, protein retention capacity, bioactivity preservation, and osteoinductive potential of the scaffolds. The nanofibrous internal structure of the scaffold allowed us to use a low dose of BMP2 (200 ng/ml) to achieve osteoblastic differentiation in in vitro culture. The osteogenesis capacity of the injectable scaffolds were evaluated though measuring MC3T3-E1 cell proliferation, ALP activity, matrix mineralization, and early- and late-osteoblast specific gene expression profiles over 21 days. The results demonstrated that the nanofibrous injectable scaffold provides not only an osteoinductive environment for osteoprogenitor cells to differentiate, but also a suitable biomechanical and biochemical environment to act as a reservoir for osteogenic factors with controlled release profile. - Highlights: • Injectable nanofibrous scaffold with osteoprogenitor cells and BMP2 was synthesized. • PCL nanofiber concentration within collagen scaffold affected the BMP2 retention and bioactivity. • Optimal PCL concentration was identified for mechanical stability, injectability, and osteogenic activity. • Scaffolds exhibited long-term osteoinductive capacity for bone repair and regeneration

  10. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

    Science.gov (United States)

    Brown, Samantha; Higham, Thomas; Slon, Viviane; Pääbo, Svante; Meyer, Matthias; Douka, Katerina; Brock, Fiona; Comeskey, Daniel; Procopio, Noemi; Shunkov, Michael; Derevianko, Anatoly; Buckley, Michael

    2016-03-01

    DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the site of Denisova Cave, Russia, in order to facilitate the discovery of human remains. As a result of our analysis a single hominin bone (Denisova 11) was identified, supported through in-depth peptide sequencing analysis, and found to carry mitochondrial DNA of the Neandertal type. Subsequent radiocarbon dating revealed the bone to be >50,000 years old. Here we demonstrate the huge potential collagen fingerprinting has for identifying hominin remains in highly fragmentary archaeological assemblages, improving the resources available for wider studies into human evolution.

  11. Sika Deer Antler Collagen Type I-Accelerated Osteogenesis in Bone Marrow Mesenchymal Stem Cells via the Smad Pathway.

    Science.gov (United States)

    Li, Na; Zhang, Min; Drummen, Gregor P C; Zhao, Yu; Tan, Yin Fen; Luo, Su; Qu, Xiao Bo

    2016-01-01

    Deer antler preparations have been used to strengthen bones for centuries. It is particularly rich in collagen type I. This study aimed to unravel part of the purported bioremedial effect of Sika deer antler collagen type I (SDA-Col I) on bone marrow mesenchymal stem cells. The results suggest that SDA-Col I might be used to promote and regulate osteoblast proliferation and differentiation. SDA-Col I might potentially provide the basis for novel therapeutic strategies in the treatment of bone injury and/or in scaffolds for bone replacement strategies. Finally, isolation of SDA-Col I from deer antler represents a renewable, green, and uncomplicated way to obtain a biomedically valuable therapeutic. PMID:27066099

  12. The Study of Barrier Function of Collagen Membrane “Osteoplast” in Healing Bone Defects in an Experiment

    Directory of Open Access Journals (Sweden)

    Ivanov S.Y.

    2011-09-01

    Full Text Available The aim of the work is to study barrier properties of collagen membrane “Osteoplast” (“Vitaform”, Russia in closing critical bone defect in an experiment. Materials and Methods. The experiments have been carried out on 20 rabbits of “chinchilla” breed. Results. “Osteoplast”, a membrane made on the basis of bone collagen, is reabsorbed and serves as a safe barrier for fibroblasts migration into bone defect area. Its application enables to protect the defect area from fibrous tissue penetrating and initiate bone regeneration. Osseous tissue beneath a membrane goes few differentiation stages, has classical structure including all structural elements (osteons, lacunes, blood vessels that provides its perfect strength characteristics.

  13. Effect of cadmium on bone tissue in growing animals.

    Science.gov (United States)

    Rodríguez, Juliana; Mandalunis, Patricia Mónica

    2016-08-01

    Accumulation of cadmium (Cd), an extremely toxic metal, can cause renal failure, decreased vitamin D synthesis, and consequently osteoporosis. The aim of this work was to evaluate the effect of Cd on two types of bone in growing Wistar rats. Sixteen 21-day-old male Wistar rats were assigned to one of two groups. The Cd group subcutaneously received 0.5mg/kg of CdCl2 5 times weekly for 3 months. The control group similarly received bidistilled water. Following euthanasia, the mandibles and tibiae were resected, fixed, decalcified and processed histologically to obtain sections for H&E and tartrate-resistant acid phosphatase (TRAP) staining. Photomicrographs were used to determine bone volume (BV/TV%), total growth cartilage width (GPC.Wi) hypertrophic cartilage width (HpZ.Wi), percentage of yellow bone marrow (%YBM), megakaryocyte number (N.Mks/mm(2)), and TRAP+osteoclast number (N.TRAP+Ocl/mm(2)). Results were statistically analyzed using Student's t test. Cd exposed animals showed a significant decrease in subchondral bone volume and a significant increase in TRAP+ osteoclast number and percentage of yellow bone marrow in the tibia, and an increase in megakaryocyte number in mandibular interradicular bone. No significant differences were observed in the remaining parameters. The results obtained with this experimental design show that Cd would seemingly have a different effect on subchondral and interradicular bone. The decrease in bone volume and increase in tibial yellow bone marrow suggest that cadmium inhibits differentiation of mesenchymal cells to osteoblasts, favoring differentiation into adipocytes. The different effects of Cd on interradicular bone might be due to the protective effect of the mastication forces. PMID:27312893

  14. Efficacy of guided bone regeneration using composite bone graft and resorbable collagen membrane in Seibert's Class I ridge defects: radiological evaluation.

    Science.gov (United States)

    Saravanan, Pushparajan; Ramakrishnan, T; Ambalavanan, N; Emmadi, Pamela; John, Thomas Libby

    2013-08-01

    The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients. PMID:23964779

  15. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis

    OpenAIRE

    Samantha Brown; Thomas Higham; Viviane Slon; Svante Pääbo; Matthias Meyer; Katerina Douka; Fiona Brock; Daniel Comeskey; Noemi Procopio; Michael Shunkov; Anatoly Derevianko; Michael Buckley

    2016-01-01

    DNA sequencing has revolutionised our understanding of archaic humans during the Middle and Upper Palaeolithic. Unfortunately, while many Palaeolithic sites contain large numbers of bones, the majority of these lack the diagnostic features necessary for traditional morphological identification. As a result the recovery of Pleistocene-age human remains is extremely rare. To circumvent this problem we have applied a method of collagen fingerprinting to more than 2000 fragmented bones from the s...

  16. Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    OpenAIRE

    Phipps, Matthew C.; Clem, William C.; Catledge, Shane A.; Xu, Yuanyuan; Hennessy, Kristin M.; Thomas, Vinoy; Jablonsky, Michael J.; Chowdhury, Shafiul; Stanishevsky, Andrei V; Vohra, Yogesh K.; Susan L Bellis

    2011-01-01

    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold form...

  17. Poly (lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering

    OpenAIRE

    Reza Tavakoli-Darestani; Gholamhossein Kazemian; Mohammad Emami; Amin Kamrani-Rad

    2013-01-01

    Please cite this article as: Tavakoli-Darestani R, Kazemian GH, Emami M, Kamrani-Rad A. Poly (lactide-co-glycolide) nanofibers coated with collagen and nano-hydroxyapatite for bone tissue engineering. Novel Biomed 2013;1:8-15.Background: A combination of polymeric nanofibrous scaffold and bioactive materials is potentially useful in bone regeneration applications.Materials and Methods: In the present study, Poly (lactide-co-glycolide) (PLGA) nanofibrous scaffolds, fabricated via electrospinni...

  18. Calcium phosphate fibers coated with collagen: In vivo evaluation of the effects on bone repair.

    Science.gov (United States)

    Ueno, Fabio Roberto; Kido, Hueliton Wilian; Granito, Renata Neves; Gabbai-Armelin, Paulo Roberto; Magri, Angela Maria Paiva; Fernandes, Kelly Rosseti; da Silva, Antonio Carlos; Braga, Francisco José Correa; Renno, Ana Claudia Muniz

    2016-08-12

    The aim of this study was to assess the characteristics of the CaP/Col composites, in powder and fiber form, via scanning electron microscopy (SEM), pH and calcium release evaluation after immersion in SBF and to evaluate the performance of these materials on the bone repair process in a tibial bone defect model. For this, four different formulations (CaP powder - CaPp, CaP powder with collagen - CaPp/Col, CaP fibers - CaPf and CaP fibers with collagen - CaPf/Col) were developed. SEM images indicated that both material forms were successfully coated with collagen and that CaPp and CaPf presented HCA precursor crystals on their surface. Although presenting different forms, FTIR analysis indicated that CaPp and CaPf maintained the characteristic peaks for this class of material. Additionally, the calcium assay study demonstrated a higher Ca uptake for CaPp compared to CaPf for up to 5 days. Furthermore, pH measurements revealed that the collagen coating prevented the acidification of the medium, leading to higher pH values for CaPp/Col and CaPf/Col. The histological analysis showed that CaPf/Col demonstrated a higher amount of newly formed bone in the region of the defect and a reduced presence of material. In summary, the results indicated that the fibrous CaP enriched with the organic part (collagen) glassy scaffold presented good degradability and bone-forming properties and also supported Runx2 and RANKL expression. These results show that the present CaP/Col fibrous composite may be used as a bone graft for inducing bone repair. PMID:27567780

  19. Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects - an experimental study in osteoporotic goats.

    Science.gov (United States)

    Alt, Volker; Cheung, Wing Hoi; Chow, Simon K H; Thormann, Ulrich; Cheung, Edmond N M; Lips, Katrin S; Schnettler, Reinhard; Leung, Kwok-Sui

    2016-06-01

    The intention of the current work is to assess new bone formation and degradation behavior of nanocrystalline hydroxyapatite with (HA/col-1) or without collagen-type I (HA) in osteoporotic metaphyseal bone defects in goats. After ovariectomy and special low-calcium diet for three months, 3 drill hole defects in the vertebrae of L3, L4, L5, 4 drill hole defects in the right and left iliac crest and 1 drill hole defect at the distal femur were created in three Chinese mountain goats with a total of 24 defects. The defects were either filled with one of the biomaterials or left empty (empty defect control group). After 42 days, the animals were euthanized and the samples were assessed for new bone formation using high-resolution peripheral quantitative computed tomography (HR-pQCT) and histomorphometry with 2 regions of interest. Detail histology, enzymehistochemistry and immunohistochemistry as well as connexin-43 in situ hybridization and transmission electron microscopy were carried out for evaluation of degradation behavior of the materials and cellular responses of the surrounding tissue in respect to the implants. HR-pQCT showed the highest BV/TV ratio (p = 0.008) and smallest trabecular spacing (p = 0.005) for HA compared to the other groups in the region of interest at the interface with 1mm distance to the initially created defect. The HA/col-1 yielded the highest connectivity density (Conn.D) (p = 0.034) and the highest number of trabeculae (Tb.N) (p = 0.002) compared to the HA and the control group. Histomorphometric analysis for the core region of the initially created defect revealed a statistically higher new bone formation in the HA (p = 0.001) and HA/col-1 group (p = 0.001) compared to the empty defect group including all defect sites. This result was confirmed for site specific analysis with significant higher new bone formation for the HA group for vertebral defects compared to the empty defect group (p = 0.029). For the interface region, no

  20. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration.

    Science.gov (United States)

    Quinlan, Elaine; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; López-Noriega, Adolfo

    2015-12-01

    Defects within bones caused by trauma and other pathological complications may often require the use of a range of therapeutics to facilitate tissue regeneration. A number of approaches have been widely utilized for the delivery of such therapeutics via physical encapsulation or chemical immobilization suggesting significant promise in the healing of bone defects. The study focuses on the chemical immobilization of osteostatin, a pentapeptide of the parathyroid hormone (PTHrP107-111), within a collagen-hydroxyapatite scaffold. The chemical attachment method via crosslinking supports as little as 4% release of the peptide from the scaffolds after 21 d whereas non-crosslinking leads to 100% of the peptide being released by as early as 4 d. In vitro characterization demonstrates that this cross-linking method of immobilization supports a pro-osteogenic effect on osteoblasts. Most importantly, when implanted in a critical-sized calvarial defect within a rat, these scaffolds promote significantly greater new bone volume and area compared to nonfunctionalized scaffolds (**p < 0.01) and an empty defect control (***p < 0.001). Collectively, this study suggests that such an approach of chemical immobilization offers greater spatiotemporal control over growth factors and can significantly modulate tissue regeneration. Such a system may be adopted for a range of different proteins and thus offers the potential for the treatment of various complex pathologies that require localized mediation of drug delivery. PMID:26414944

  1. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    International Nuclear Information System (INIS)

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon–Hydrogen–Nitrogen analyzer for measuring C and N before 14C dating.

  2. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, L., E-mail: lucile.beck@cea.fr [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Cuif, J.-P. [UMR IDES 8148, Universite Paris XI-Orsay, 91405 Orsay cedex (France); Pichon, L. [C2RMF - UMR171 CNRS, Centre de Recherche et de Restauration des Musees de France, Palais du Louvre, Porte des Lions, 14 quai Francois Mitterrand, 75001 Paris (France); Vaubaillon, S. [CEA, INSTN, Laboratoire JANNUS, 91191 Gif-sur-Yvette (France); Dambricourt Malasse, A. [Departement de Prehistoire, Museum national d' Histoire naturelle, UMR 7194 - CNRS, Institut de Paleontologie Humaine, 1, rue Rene Panhard, 75013 Paris (France); Abel, R.L. [The Natural History Museum, London (United Kingdom)

    2012-02-15

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by {sup 14}C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before {sup 14}C dating.

  3. A cognitive network for oracle bone characters related to animals

    Science.gov (United States)

    Dress, Andreas; Grünewald, Stefan; Zeng, Zhenbing

    2016-01-01

    In this paper, we present an analysis of oracle bone characters for animals from a “cognitive” point of view. After some general remarks on oracle-bone characters presented in Sec. 1 and a short outline of the paper in Sec. 2, we collect various oracle-bone characters for animals from published resources in Sec. 3. In the next section, we begin analyzing a group of 60 ancient animal characters from www.zdic.net, a highly acclaimed internet dictionary of Chinese characters that is strictly based on historical sources, and introduce five categories of specific features regarding their (graphical) structure that will be used in Sec. 5 to associate corresponding feature vectors to these characters. In Sec. 6, these feature vectors will be used to investigate their dissimilarity in terms of a family of parameterized distance measures. And in the last section, we apply the SplitsTree method as encoded in the NeighborNet algorithms to construct a corresponding family of dissimilarity-based networks with the intention of elucidating how the ancient Chinese might have perceived the “animal world” in the late bronze age and to demonstrate that these pictographs reflect an intuitive understanding of this world and its inherent structure that predates its classification in the oldest surviving Chinese encyclopedia from approximately the third century BC, the Er Ya, as well as similar classification systems in the West by one to two millennia. We also present an English dictionary of 70 oracle bone characters for animals in Appendix A. In Appendix B, we list various variants of animal characters that were published in the Jia Gu Wen Bian (cf. 甲骨文编, A Complete Collection of Oracle Bone Characters, edited by the Institute of Archaeology of the Chinese Academy of Social Sciences, published by the Zhonghua Book Company in 1965). We recall the frequencies of the 521 most frequent oracle bone characters in Appendix C as reported in [T. Chen, Yin-Shang Jiaguwen Zixing

  4. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Science.gov (United States)

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  5. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect.

    Science.gov (United States)

    Olejnik, Cécile; Falgayrac, Guillaume; During, Alexandrine; Cortet, Bernard; Penel, Guillaume

    2016-08-01

    Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, Porganization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing. PMID:27168397

  6. Efficacy of Mucograft vs Conventional Resorbable Collagen Membranes in Guided Bone Regeneration Around Standardized Calvarial Defects in Rats: A Histologic and Biomechanical Assessment.

    Science.gov (United States)

    Ramalingam, Sundar; Babay, Nadir; Al-Rasheed, Abdulaziz; Nooh, Nasser; Naghshbandi, Jafar; Aldahmash, Abdullah; Atteya, Muhammad; Al-Hezaimi, Khalid

    2016-01-01

    Guided bone regeneration (GBR) using a porcine-derived collagen matrix (Mucograft [MG], Geistlich) has not yet been reported. The aim of this histologic and biomechanical study was to compare the efficacy of MG versus resorbable collagen membranes (RCMs) in facilitating GBR around standardized rat calvarial defects. Forty female Wistar albino rats with a mean age and weight of 6 to 9 weeks and 250 to 300 g, respectively, were used. With the rats under general anesthesia, the skin over the calvaria was exposed using a full-thickness flap. A 4.6-mm-diameter standardized calvarial defect was created in the left parietal bone. For treatment, the rats were randomly divided into four groups (n = 10 per group): (1) MG group: the defect was covered with MG; (2) RCM group: the defect was covered with an RCM; (3) MG + bone group: the defect was filled with bone graft particles and covered by MG; and (4) RCM + bone group: the defect was filled with bone graft particles and covered by an RCM. Primary closure was achieved using interrupted resorbable sutures. The animals were sacrificed at 8 weeks after the surgical procedures. Qualitative histologic analysis and biomechanical assessment to identify hardness and elastic modulus of newly formed bone (NFB) were performed. Collected data were statistically analyzed using one-way analysis of variance. Histologic findings revealed NFB with fibrous connective tissue in all groups. The quantity of NFB was highest in the RCM + bone group. Statistically significant differences in the hardness (F = 567.69, dfN = 3, dfD = 36, P RCM + bone group had the highest mean ± standard deviation (SD) hardness of NFB (531.4 ± 24.9 MPa), the RCM group had the highest mean ± SD elastic modulus of NFB (18.63 ± 1.89 GPa). The present study demonstrated that RCMs are better than MG at enhancing new bone formation in standardized rat calvarial defects when used along with mineralized particulate graft material. PMID:27031638

  7. Bone density of defects treated with lyophilized amniotic membrane versus collagen membrane: a tomographic and histomorfogenic study in rabbit´s femur

    Directory of Open Access Journals (Sweden)

    Liz Katty Ríos

    2014-09-01

    Full Text Available ABSTRACT The aim of this study was to compare the bone density of bone defects treated with lyophilizated amniotic membrane (LAM and collagen Membrane (CM, at 3 and 5 weeks. Two bone defects of 4 mm in diameter and 6 mm deep were created in left distal femoral diaphysis of New Zealand rabbits (n = 12. The animals were randomly divided into 2 groups. One of the defects was covered with lyophilized amniotic membrane (Rosa Chambergo Tissue Bank/National Institute of Child Health-IPEN, Lima, Peru or collagen Membrane (Dentium Co, Seoul, Korea. The second was left uncovered (NC. The rabbits were killed after 3 and 5 weeks (3 rabbits/period. The results showed a high bone density and repair of the defect by new bone. The tomographic study revealed that the bone density of the defects treated with LAM at 3 weeks was equivalent to the density obtained with CM and higher density compared with NC (p 0.05. The results show that lyophilizated amniotic membrane provides bone density equal or higher to the collagen membrane. RESUMEN El propósito de este estudio fue comparar la densidad ósea (DO de defectos óseos tratados con membrana amniótica liofilizada (MAL y membrana de colágeno (MC, a las 3 y 5 semanas. Se crearon dos defectos óseos, de 4 mm de diámetro y 6 mm de profundidad, en la diáfisis femoral distal izquierda de conejos Nueva Zelanda (n=12. Los animales fueron divididos aleatoriamente en 2 grupos. Uno de los defectos fue cubierto con membrana amniótica liofilizada (Banco de tejidos Rosa Chambergo/INSN-IPEN, Lima, Perú o membrana de colágeno (Dentium Co, Seoul, Korea. El segundo se dejó sin cubrir (NC. Los conejos fueron sacrificados después de 3 y 5 semanas (3 conejos/periodo. Los resultados mostraron una alta DO y reparación del defecto por hueso neoformado. El estudio tomográfico reveló que la DO de los defectos tratados con MAL a las 3 semanas fue comparable a la densidad obtenida con MC y mayor comparado con la densidad de NC (p

  8. Radioactive contamination of animal bones by 90Sr

    International Nuclear Information System (INIS)

    90Sr has been regarded as the fission product of great potential hazard to living things because of the unique combination of its 28-y long half-life, the very energetic beta particle of its90Y daughter, and its general resemblance to calcium in metabolic processes. Therefore, due to chemical and metabolic similarity to calcium, bone is the critical organ for radioactive isotopes of strontium. The Department of Radiation Protection of the Institute for Medical Research and Occupational Health, has carried out radioactivity measurements of the food chain as part of an extended monitoring programme, since 1963. This includes systematic, long-term measurements of90Sr in long bones of some domestic animals (cows and pigs) while data on lamb bones exist for the very beginning of the investigated period, and for the period after the Chernobyl nuclear accident

  9. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    Science.gov (United States)

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin. PMID:26999801

  10. Animal models for implant biomaterial research in bone: A review

    OpenAIRE

    A I Pearce; Richards, R.G; Milz, S.; E. SCHNEIDER; S G Pearce

    2007-01-01

    Development of an optimal interface between bone and orthopaedic and dental implants has taken place for many years. In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation. For this reason the use of animal models is often an essential step in the testing o...

  11. Calcium isotope ratios in animal and human bone

    Science.gov (United States)

    Reynard, L. M.; Henderson, G. M.; Hedges, R. E. M.

    2010-07-01

    Calcium isotopes in tissues are thought to be influenced by an individual's diet, reflecting parameters such as trophic level and dairy consumption, but this has not been carefully assessed. We report the calcium isotope ratios (δ 44/42Ca) of modern and archaeological animal and human bone ( n = 216). Modern sheep raised at the same location show 0.14 ± 0.08‰ higher δ 44/42Ca in females than in males, which we attribute to lactation by the ewes. In the archaeological bone samples the calcium isotope ratios of the herbivorous fauna vary by location. At a single site, the archaeological fauna do not show a trophic level effect. Humans have lower δ 44/42Ca than the mean site fauna by 0.22 ± 0.22‰, and the humans have a greater δ 44/42Ca range than the animals. No effect of sex or age on the calcium isotope ratios was found, and intra-individual skeletal δ 44/42Ca variability is negligible. We rule out dairy consumption as the main cause of the lower human δ 44/42Ca, based on results from sites pre-dating animal domestication and dairy availability, and suggest instead that individual physiology and calcium intake may be important in determining bone calcium isotope ratios.

  12. Relationship among bone mineral density, collagen composition, and biomechanical properties of callus in the healing of osteoporotic fracture

    Institute of Scientific and Technical Information of China (English)

    SHEN Bin; MU Jian-xiong; PEI Fu-xing

    2007-01-01

    Objective: To study the change and relationship among bone mineral density (BMD), collagen composition and biomechanical properties of the callus in the healing process of osteoporotic fracture.Methods: The osteoporotic rat model and fracture model were established through bilateral ovariectomy(OVX) and osteotomy of the middle shaft of the right hind tibiae, respectively. Ninety female SD rats were randomly divided into OVX group and sham group. With the samples of blood and callus, roentgenoraphic and histological observation were performed for the assessment of the healing progress of the fracture, and the serum concentration of TRAP-5b, proportion of type Ⅰ collagen,BMD and biomechanical properties of the callus were measured.Results: The OVX group experienced a significant delay of fracture healing. The mean serum concentration of TRAP-5b of rats in the OVX group was much higher than that in the sham group after the operation (P < 0.05), but the difference at the same time point after fracture was smaller than that before fracture (P < 0.05 ). The BMD of the callus in both groups reached the peak value at the 6 th week after fracture while the proportion of the type Ⅰ collagen and the biomechanical strength reached the peak at the 8th week.Conclusions: The deficiency of estrogen after the ovariectomy could induce the up-regulation of the osteoclasts activities, whereas the potency of further activation after fracture was depressed. Although the synthesis of collagen together with its mineralization determines the biomechanical properties of new bone, the accumulation of collagen could be assessed as an index in the prediction of biomechanical strength of bones independent of the bone mineral deposition.

  13. Determination of Small Animal Long Bone Properties Using Densitometry

    Science.gov (United States)

    Breit, Gregory A.; Goldberg, BethAnn K.; Whalen, Robert T.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    Assessment of bone structural property changes due to loading regimens or pharmacological treatment typically requires destructive mechanical testing and sectioning. Our group has accurately and non-destructively estimated three dimensional cross-sectional areal properties (principal moments of inertia, Imax and Imin, and principal angle, Theta) of human cadaver long bones from pixel-by-pixel analysis of three non-coplanar densitometry scans. Because the scanner beam width is on the order of typical small animal diapbyseal diameters, applying this technique to high-resolution scans of rat long bones necessitates additional processing to minimize errors induced by beam smearing, such as dependence on sample orientation and overestimation of Imax and Imin. We hypothesized that these errors are correctable by digital image processing of the raw scan data. In all cases, four scans, using only the low energy data (Hologic QDR-1000W, small animal mode), are averaged to increase image signal-to-noise ratio. Raw scans are additionally processed by interpolation, deconvolution by a filter derived from scanner beam characteristics, and masking using a variable threshold based on image dynamic range. To assess accuracy, we scanned an aluminum step phantom at 12 orientations over a range of 180 deg about the longitudinal axis, in 15 deg increments. The phantom dimensions (2.5, 3.1, 3.8 mm x 4.4 mm; Imin/Imax: 0.33-0.74) were comparable to the dimensions of a rat femur which was also scanned. Cross-sectional properties were determined at 0.25 mm increments along the length of the phantom and femur. The table shows average error (+/- SD) from theory of Imax, Imin, and Theta) over the 12 orientations, calculated from raw and fully processed phantom images, as well as standard deviations about the mean for the femur scans. Processing of phantom scans increased agreement with theory, indicating improved accuracy. Smaller standard deviations with processing indicate increased

  14. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    International Nuclear Information System (INIS)

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor

  15. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes

    Directory of Open Access Journals (Sweden)

    R d’Aquino

    2009-11-01

    Full Text Available In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs and a collagen sponge scaffold for oro-maxillo-facial (OMF bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.

  16. Specifically decreased collagen biosynthesis in scurvy dissociated from an effect on proline hydroxylation and correlated with body weight loss. In vitro studies in guinea pig calvarial bones.

    OpenAIRE

    Chojkier, M.; Spanheimer, R.; Peterkofsky, B

    1983-01-01

    The question whether ascorbate regulates collagen production solely through its direct role in proline hydroxylation was investigated. Proteins in calvarial bones from control and scorbutic weanling guinea pigs were labeled in short-term cultures with radioactive proline. Proteins were digested with purified bacterial collagenase to distinguish between effects on collagen polypeptide production and hydroxyproline formation. There was a preferential decrease in the absolute rate of collagen bi...

  17. Carnivore specific bone bioapatite and collagen carbon isotope fractionations: Case studies of modern and fossil grey wolf populations

    Science.gov (United States)

    Fox-Dobbs, K.; Wheatley, P. V.; Koch, P. L.

    2006-12-01

    Stable isotope analyses of modern and fossil biogenic tissues are routinely used to reconstruct present and past vertebrate foodwebs. Accurate isotopic dietary reconstructions require a consumer and tissue specific understanding of how isotopes are sorted, or fractionated, between trophic levels. In this project we address the need for carnivore specific isotope variables derived from populations that are ecologically well- characterized. Specifically, we investigate the trophic difference in carbon isotope values between mammalian carnivore (wolf) bone bioapatite and herbivore (prey) bone bioapatite. We also compare bone bioapatite and collagen carbon isotope values collected from the same individuals. We analyzed bone specimens from two modern North American grey wolf (Canis lupus) populations (Isle Royale National Park, Michigan and Yellowstone National Park, Wyoming), and the ungulate herbivores that are their primary prey (moose and elk, respectively). Because the diets of both wolf populations are essentially restricted to a single prey species, there were no confounding effects due to carnivore diet variability. We measured a trophic difference of approximately -1.3 permil between carnivore (lower value) and herbivore (higher value) bone bioapatite carbon isotope values, and an average inter-tissue difference of 5.1 permil between carnivore bone collagen (lower value) and bioapatite (higher value) carbon isotope values. Both of these isotopic differences differ from previous estimates derived from a suite of African carnivores; our carnivore-herbivore bone bioapatite carbon isotope spacing is smaller (-1.3 vs. -4.0 permil), and our carnivore collagen-bioapatite carbon difference is larger (5.1 vs. 3.0 permil). These discrepancies likely result from comparing values measured from a single hypercarnivore (wolf) to average values calculated from several carnivore species, some of which are insectivorous or partly omnivorous. The trophic and inter

  18. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model

    International Nuclear Information System (INIS)

    The reconstruction of segmental bone defects remains an urgent problem in the orthopaedic field, and bone morphogenetic protein-2 (BMP-2) is known for its potent osteoinductive properties in bone regeneration. In this study, chitosan microspheres (CMs) were prepared and combined with absorbable collagen sponge to maintain controlled-release recombinant human bone morphogenetic protein-2 (rhBMP-2). The rhBMP-2-loaded composite scaffolds were implanted into 15 mm radius defects of rabbits and the bone-repair ability was evaluated systematically. CMs were spherical in shape and had a polyporous surface, according to SEM images. The complex scaffold exhibited an ideal releasing profile in vitro. The micro-computed tomographic analysis revealed that the rhBMP-2-loaded composite scaffold not only bridged the defects as early as 4 weeks, but also healed the defects and presented recanalization of the bone-marrow cavity at 12 weeks. These results were confirmed by x-ray. When compared with other control groups, the composite scaffold group remarkably enhanced new bone formation and mechanical properties, as evidenced by bone mineral content evaluation, histological observations and biomechanical testing. Moreover, the biocompatibility and appropriate degradation of the composite scaffold could be obtained. All of these results clearly demonstrated that the composite scaffold is a promising carrier of BMP-2 for the treatment of segmental bone defects. (paper)

  19. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.

    NARCIS (Netherlands)

    Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A.

    2008-01-01

    Collagen barrier membranes are frequently used in both guided tissue regeneration (GTR) and guided bone regeneration (GBR). Collagen used for these devices is available from different species and is often processed to alter the properties of the final product. This is necessary because unprocessed c

  20. Multiple myeloma: Changes in serum C-terminal telopeptide of collagen type I and bone-specific alkaline phosphatase can be used in daily practice to detect imminent osteolysis

    DEFF Research Database (Denmark)

    Lund, Thomas; Abildgaard, Niels; Andersen, Thomas L;

    2010-01-01

    of collagen type-I (CTX-I), C-terminal crosslinked telopeptide of type-I collagen generated by MMPs (ICTP), N-terminal crosslinked telopeptide of type-I collagen (NTX-I), and the bone formation marker bone-specific alkaline phosphatase (bALP) monthly for two years. Retrospectively, we identified 40...

  1. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    OpenAIRE

    Wang Y; Van Manh H; Wang H; Zhong X; Zhang X; Li C

    2016-01-01

    Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is ...

  2. Paleoecological and climatic implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube Coenen, Germany

    Science.gov (United States)

    Wißing, Christoph; Matzerath, Simon; Turner, Elaine; Bocherens, Hervé

    2015-07-01

    Climatic and ecological conditions during Marine Oxygen Isotope Stage (MIS) 3 are complex and the impact of cold spells on the ecosystems in Central Europe still needs to be investigated thoroughly. Ziegeleigrube Coenen (ZC) is a late Pleistocene MIS 3 locality in the Lower Rhine Embayment of Germany, radiocarbon-dated to > 34 14C ka BP. The site yielded a broad spectrum of mammal species. We investigated the carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) isotope signatures of bone collagen, since these are valuable tools in characterizing ecological niches, environmental conditions and aspects of climate and mobility. By comparison with pre- and post-Last Glacial Maximum (LGM) sites in Central Europe we show that ZC belongs in a cold event of MIS 3 and was climatically more similar to post-LGM sites than to pre-LGM sites. However, the trophic structure resembled that of typical pre-LGM sites in Belgium. This cold event in MIS 3 changed the bottom of the foodweb, but do not seem to have had a direct impact on the occurrence of the mammalian species and their ecological distribution. Apparently the (mega-) faunal community could adapt also to harsher environmental conditions during MIS 3.

  3. Bone

    International Nuclear Information System (INIS)

    Bone scanning provides information on the extent of primary bone tumors, on possible metastatic disease, on the presence of osteomyelitis prior to observation of roentgenographic changes so that earlier therapy is possible, on the presence of collagen diseases, on the presence of fractures not disclosed by x-ray films, and on the evaluation of aseptic necrosis. However, the total effect and contribution of bone scanning to the diagnosis, treatment, and ultimate prognosis of pediatric skeletal diseases is, as yet, unknown. (auth)

  4. Bone strength: more than just bone density.

    Science.gov (United States)

    Ott, Susan M

    2016-01-01

    The following bone density measurements have limited utility in determining bone strength because they do not include bone quality: microarchitecture, mineralization, ability to repair damage, collagen structure, crystal size, or marrow composition. Patients with kidney disease have poor bone quality. Newman et al. now describe beneficial effects with raloxifene in an animal model of progressive kidney disease. These biomechanical measurements will be important in the development of medications to decrease fractures in patients. PMID:26759040

  5. Collagen a natural scaffold for biology and engineering

    Science.gov (United States)

    Collagen, the most abundant protein in mammals, constitutes a quarter of the animal's total weight. The unique structure of fibrous collagens, a long triple helix that further associates into fibers, provides an insoluble scaffold that gives strength and form to the skin, tendons, bones, cornea and...

  6. The collagen microfibril model, a tool for biomaterials scientists

    Science.gov (United States)

    Animal hides, a major byproduct of the meat industry, are a rich source of collagen, a structural protein of the extracellular matrix that gives strength and form to the skin, tendons and bones of mammals. The structure of fibrous collagen, a long triple helix that self-associates in a staggered arr...

  7. Influence of different methods of internal bone fixation on characteristics of bone callus in experimental animals

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Correct choice of osteosynthesis method is a very important factor in providing the optimal conditions for appropriate healing of the fracture. There are still disagreements about the method of stabilization of some long bone fractures. Critically observed, no method of fracture fixation is ideal. Each osteosynthesis method has both advantages and weaknesses. Objective. The objective of this study was to compare the results of the experimental application of three different internal fixation methods: plate fixation, intramedullary nail fixation and self-dynamisable internal fixator (SIF. Methods. A series of 30 animals were used (Lepus cuniculus as experimental animals, divided into three groups of ten animals each. Femoral diaphysis of each animal was osteotomized and fixed with one of three implants. Ten weeks later all animals were sacrificed and each specimen underwent histological and biomechanical testing. Results. Histology showed that the healing process with SIF was more complete and bone callus was more mature in comparison to other two methods. During biomechanical investigation (computerized bending stress test, it was documented with high statistical significance that using SIF led to stronger healing ten weeks after the operation. Conclusion. According to the results obtained in this study, it can be concluded that SIF is a suitable method for fracture treatment.

  8. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Casey K; Liao, Susan; Lareu, Ricky R; Raghunath, Michael [Division of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Li, Bojun; Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Larrick, James W, E-mail: doschanc@nus.edu.s [Panorama Research Institute, 2462 Wyandotte Street, Mountain View, CA 94043 (United States)

    2009-06-15

    A bioabsorbable nanofibrous scaffold was developed for early adhesion of mesenchymal stem cells (MSCs). Collagen nanofibers with diameters of 430 +- 170 nm were fabricated by electrospinning. Over 45% of the MSC population adhered to this collagen nanofiber after 30 min at room temperature. Remarkably, collagen-coated P(LLA-CL) electrospun nanofibers were almost as efficient as collagen nanofibers whereas collagen cast film did not enhance early capture when it was applied on cover slips. The adhesive efficiency could be further increased to over 20% at 20 min and over 55% at 30 min when collagen nanofibers were grafted with monoclonal antibodies recognizing CD29 or CD49a. These data demonstrate that the early adhesive behavior is highly dependent on both the surface texture and the surface chemistry of the substrate. These findings have potential applications for early capture of MSCs in an ex vivo setting under time constraints such as in a surgical setting.

  9. Real-Time Assessment of Guided Bone Regeneration in Standardized Calvarial Defects Using a Combination of Bone Graft and Platelet-Derived Growth Factor With and Without Collagen Membrane: An In Vivo Microcomputed Tomographic and Histologic Experiment in Rats.

    Science.gov (United States)

    Alrasheed, Abdulaziz; Al-Ahmari, Fatemah; Ramalingam, Sundar; Nooh, Nasser; Wang, Cun-Yu; Al-Hezaimi, Khalid

    2016-01-01

    The aim of the present in vivo microcomputed tomography (μCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial defects using recombinant human platelet-derived growth factor (rhPDGF) with and without resorbable collagen membrane (RCM). A total of 50 female Wistar albino rats with a mean age of 7.5 months and mean weight of 275 g were used. The calvarium was exposed following midsagittal scalp incision and flap reflection. A full-thickness standardized calvarial defect (4.6 mm diameter) was created. Study animals were randomly divided into five groups based on biomaterials used for GBR within the defect: (1) no treatment (negative control), (2) bone graft alone (BG), (3) bone graft covered by RCM (BG + RCM), (4) bone graft soaked in rhPDGF (BG + rhPDGF), and (5) bone graft soaked in rhPDGF and covered with RCM (BG + rhPDGF + RCM). In vivo μCT for determination of newly formed bone volume (NFBV) and mineral density (NFBMD) and remnant bone particles volume (RBPV) and mineral density (RBPMD) was done at baseline and at 2, 4, 6, and 8 weeks postoperatively. Eight weeks following surgery, the animals were sacrificed and harvested calvarial specimens were subjected to histologic and biomechanical analysis. There was an increase in NFBV and NFBMD associated with a corresponding decrease in RBPV and RBPMD in all the study groups. Two-way analysis of variance revealed significant differences in the measured values within and between the groups across the timelines examined during the study period (P RCM, and BG + rhPDGF + RCM groups, the NFBMD was similar in all the groups except negative control. The greatest decreases in RBPV and RBPMD were observed in the BG + rhPDGF + RCM group in comparison to the other groups. Similarly, BG + rhPDGF + RCM groups had hardness and elastic modulus similar to that of natural bone. The in vivo μCT results were validated by the qualitative histologic findings. In real

  10. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mun-Hwan Lee

    2015-03-01

    Full Text Available In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP scaffolds. Surface characterization using a scanning electron microscope (SEM and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell proliferation and ALP activity on the modified BCP scaffolds. The modified microporous surfaces showed low contact angles and large surface areas, which enhanced cell spreading and proliferation. Coating of the BCP scaffolds with type I collagen led to enhanced cell-material interactions and improved MG63 functions, such as spreading, proliferation, and differentiation. The micropore/collagen-coated scaffold showed the highest rate of cell response. These results indicate that a combination of micropores and collagen enhances cellular function on bioengineered bone allograft tissue.

  11. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats

    NARCIS (Netherlands)

    Zecha, P. J.; Schortinghuis, J.; van der Wal, J. E.; Nagursky, H.; van den Broek, K. C.; Sauerbier, S.; Vissink, A.; Raghoebar, G. M.

    2011-01-01

    This study assessed the mechanical characteristics, biocompatibility and osteoconductive properties of an equine hydroxyapatite collagen (eHAC) bone block when applied as a bone substitute for lateral augmentation of rat mandible. 96 rats underwent lateral augmentation of the mandible, using two sub

  12. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    Science.gov (United States)

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in

  13. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  14. Marine origin collagen membranes for drug delivery

    OpenAIRE

    Marques, A.P.; A. Domingues; Joana M Silva; Perez-Martin, R. I.; Sotelo, C. G.; Silva, Tiago H.; Reis, R. L.

    2014-01-01

    Introduction: Collagen is the most abundant protein of animal connective tissues, found in skins, bones or cartilages, which turn it into one of the key polymers to be considered for biomedical applications, namely tissue engineering and drug delivery. Current industrial procedures to extract collagen involves bovine and porcine as main sources. However, due to religious factors and the risk of transmitting diseases to humans, the search for new sources has been growing.M...

  15. Albumin synthesis and bone collagen formation in human immunodeficiency virus-positive subjects: differential effects of growth hormone administration.

    Science.gov (United States)

    McNurlan, M A; Garlick, P J; Frost, R A; Decristofaro, K A; Lang, C H; Steigbigel, R T; Fuhrer, J; Gelato, M

    1998-09-01

    Loss of lean tissue often accompanies human immunodeficiency virus (HIV) infection. Exogenous human recombinant GH (hrGH) has been shown to be beneficial in reversing this wasting. However, catabolic effects of hrGH on muscle protein metabolism have also been reported. Therefore, the responsiveness of other GH-sensitive tissues, including bone formation and albumin synthesis, has been examined. Anabolic activity in bone, from serum levels of carboxy-terminal propeptide of type I collagen, was stimulated by 2 weeks of hrGH in controls (56 +/- 15%, P = 0.002), patients with asymptomatic HIV (24 +/- 10%, not significant), patients with AIDS (47 +/- 7%, P 10% weight loss (21 +/- 12%, P = 0.02). Albumin synthesis, determined from the incorporation of L-[2H5]phenylalanine, was increased in response to hrGH in controls (23 +/- 7%, P < 0.05), HIV+ subjects (39 +/- 16%, P < 0.05), and patients with AIDS (25 +/- 7%, P < 0.01). Patients with AIDS and weight loss, however, did not increase albumin synthesis (-0.6 +/- 12%) in response to hrGH. The results indicate variable anabolic responses to hrGH. Bone collagen synthesis remained sensitive to hrGH, whereas, the anabolic action of hrGH on the synthesis of albumin diminished with severity of disease. However unlike muscle protein synthesis, albumin synthesis was not depressed below basal levels by hrGH. PMID:9745402

  16. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells

    OpenAIRE

    Seo, Hyun-Ju; Cho, Young-Eun; Kim, Taewan; Shin, Hong-In; Kwun, In-Sook

    2010-01-01

    Zinc is an essential trace element required for bone formation, however not much has been clarified yet for its role in osteoblast. We hypothesized that zinc would increase osteogenetic function in osteoblasts. To test this, we investigated whether zinc treatment enhances bone formation by stimulating osteoblast proliferation, bone marker protein alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. MC3T3-E1 cells were cultured and treated with various concentra...

  17. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Matthew C Phipps

    Full Text Available The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs. In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL, collagen I, and hydroxyapatite (HA nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA. The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL, 100% collagen I (col, and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA. Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.

  18. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects.

    Science.gov (United States)

    Qi, Xin; Huang, Yinjun; Han, Dan; Zhang, Jieyuan; Cao, Jiaqing; Jin, Xiangyun; Huang, Jinghuan; Li, Xiaolin; Wang, Ting

    2016-04-01

    We previously demonstrated that three-dimensional (3D) hydroxyapatite (HAP)-collagen (COL)-coated poly(ε-caprolactone) (PCL) scaffolds (HAP-COL-PCL) possess appropriate nano-structures, surface roughness, and nutrients, providing a favorable environment for osteogenesis. However, the effect of using 3D HAP-COL-PCL scaffolds incorporating BMSCs for the repair of bone defects in rats has been not evaluated. 3D PCL scaffolds coated with HAP, collagen or HAP/COL and incorporating BMSCs were implanted into calvarial defects. At 12 weeks after surgery, the rats were sacrificed and crania were harvested to assess the bone defect repair using microcomputed tomography (micro-CT), histology, immunohistochemistry and sequential fluorescent labeling analysis. 3D micro-CT reconstructed images and quantitative analysis showed that HAP-COL-PCL groups possessed better bone-forming capacity than HAP-PCL groups or COL-PCL groups. Fluorescent labeling analysis revealed the percentage of tetracycline labeling, alizarin red labeling, and calcein labeling in HAP-COL-PCL groups were all greater than in the other two groups (P rats. PMID:26964015

  19. Designation of a Novel DKK1 Multiepitope DNA Vaccine and Inhibition of Bone Loss in Collagen-Induced Arthritic Mice

    Science.gov (United States)

    Zhang, Xiaoqing; Liu, Sibo; Li, Shentao; Du, Yuxuan; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2015-01-01

    Dickkopf-1 (DKK1), a secretory inhibitor of canonical Wnt signaling, plays a critical role in certain bone loss diseases. Studies have shown that serum levels of DKK1 are significantly higher in rheumatoid arthritis (RA) patients and are correlated with the severity of the disease, which indicates the possibility that bone erosion in RA may be inhibited by neutralizing the biological activity of DKK1. In this study, we selected a panel of twelve peptides using the software DNASTAR 7.1 and screened high affinity and immunogenicity epitopes in vitro and in vivo assays. Furthermore, we optimized four B cell epitopes to design a novel DKK1 multiepitope DNA vaccine and evaluated its bone protective effects in collagen-induced arthritis (CIA), a mouse model of RA. High level expression of the designed vaccine was measured in supernatant of COS7 cells. In addition, intramuscular immunization of BALB/c mice with this vaccine was also highly expressed and sufficient to induce the production of long-term IgG, which neutralized natural DKK1 in vivo. Importantly, this vaccine significantly attenuated bone erosion in CIA mice compared with positive control mice. These results provide evidence for the development of a DNA vaccine targeted against DKK1 to attenuate bone erosion. PMID:26075259

  20. Animal Models and Bone Histomorphometry: Translational Research for the Human Research Program

    Science.gov (United States)

    Sibonga, Jean D.

    2010-01-01

    This slide presentation reviews the use of animal models to research and inform bone morphology, in particular relating to human research in bone loss as a result of low gravity environments. Reasons for use of animal models as tools for human research programs include: time-efficient, cost-effective, invasive measures, and predictability as some model are predictive for drug effects.

  1. The rational use of animal models in the evaluation of novel bone regenerative therapies

    OpenAIRE

    Perić, Mihaela; Dumić-Čule, Ivo; Grčević, Danka; Matijašić, Mario; Verbanac, Donatella; Paul, Ruth; GRGUREVIĆ, Lovorka; Trkulja, Vladimir; Bagi, Čedo M.; Vukičević, Slobodan

    2015-01-01

    Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poo...

  2. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds.

    Directory of Open Access Journals (Sweden)

    Max M Villa

    Full Text Available Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.

  3. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    Directory of Open Access Journals (Sweden)

    Jin Sun

    2010-11-01

    Full Text Available This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid. The highest degree of hydrolysis (DH was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain, with an optimum condition of: (1 ratio of enzyme and substrate, 4760 U/g; (2 concentration of substrate, 4%; (3 reaction temperature, 55 °C and (4 pH 7.0. At 4 h, DH increased significantly (P < 0.01 under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen.

  4. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Chung, Chong-Pyoung, E-mail: ccpperio@snu.ac.kr [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a

  5. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  6. Amino acid delta13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: paleodietary implications from intra-individual comparisons

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S O; Lynnerup, Niels;

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context by...

  7. Hybrid Membranes of PLLA/Collagen for Bone Tissue Engineering: A Comparative Study of Scaffold Production Techniques for Optimal Mechanical Properties and Osteoinduction Ability

    Directory of Open Access Journals (Sweden)

    Flávia Gonçalves

    2015-01-01

    Full Text Available Synthetic and natural polymer association is a promising tool in tissue engineering. The aim of this study was to compare five methodologies for producing hybrid scaffolds for cell culture using poly-l-lactide (PLLA and collagen: functionalization of PLLA electrospun by (1 dialkylamine and collagen immobilization with glutaraldehyde and by (2 hydrolysis and collagen immobilization with carbodiimide chemistry; (3 co-electrospinning of PLLA/chloroform and collagen/hexafluoropropanol (HFP solutions; (4 co-electrospinning of PLLA/chloroform and collagen/acetic acid solutions and (5 electrospinning of a co-solution of PLLA and collagen using HFP. These materials were evaluated based on their morphology, mechanical properties, ability to induce cell proliferation and alkaline phosphatase activity upon submission of mesenchymal stem cells to basal or osteoblastic differentiation medium (ODM. Methods (1 and (2 resulted in a decrease in mechanical properties, whereas methods (3, (4 and (5 resulted in materials of higher tensile strength and osteogenic differentiation. Materials yielded by methods (2, (3 and (5 promoted osteoinduction even in the absence of ODM. The results indicate that the scaffold based on the PLLA/collagen blend exhibited optimal mechanical properties and the highest capacity for osteodifferentiation and was the best choice for collagen incorporation into PLLA in bone repair applications.

  8. Human amniotic membrane, best healing accelerator, and the choice of bone induction for vestibuloplasty technique (an animal study

    Directory of Open Access Journals (Sweden)

    Ahad Khoshzaban

    2010-12-01

    Full Text Available Mohammad H Samandari1, Shahriar Adibi2, Ahad Khoshzaban3, Sara Aghazadeh5, Parviz Dihimi4, Siamak S Torbaghan6, Saeed H Keshel5, Zohreh Shahabi71Department of Oral and Maxillofacial Surgery, Dentistry Faculty, 2Dental Research of Torabinejad Research Centre, 3Iranian Tissue Bank Research and Preparation Centre, Imam Khomeini Hospital Complex, 4Department of Oral and Maxillofacial Pathology, Dentistry Faculty, Isfahan University of Medical Sciences, Isfahan, Iran; 5Stem Cells Preparation Unit, Eye Research Center, Farabi Hospital, 6Department of Pathology, Imam Khomeini Medical Centre, 7BMT Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IranObjective: To investigate the effects of amniotic membrane (AM in bone induction and wound healing after vestibuloplasty surgery on animal samples while receptacle proteins such as growth factors were considered as accelerators for wound healing and bone induction after these operations.Material and methods: Ten adult dogs (5 females, 5 males; race, Iranian mixed; weight, 44 pounds were included, which underwent surgery for transplantation on mandible and maxillary. AM was used for promoting bone induction and healing.Results: The tissue samples were obtained after 2, 8, and 12 weeks for histology survey. No significant differences were observed between male and female or left and right jaws. AM decreased fibrinoleukocytic exudates and inflammation in the experimental group, had significant effects on bone formation, considerably improves wound healing, and gives rise to bone induction (P < 0.0001.Conclusions: Our study findings indicate that the AM is a suitable cover for different injuries and acellular AM has the potential for rapid improvement and bone induction. The AM contains collagen, laminin, and fibronectin, which provide an appropriate substrate for bone induction. This substrate promoted bone induction and might contribute to induction of the progenitor cells and/or stem

  9. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Sufang Han; Yannan Zhao; Zhifeng Xiao; Jin Han; Bing Chen; Lei Chen; Jianwu Dai

    2012-01-01

    Mesenchymal stem cells (MSCs) show the great promise for the treatment of a variety of diseases because of their self-renewal and multipotential abilities.MSCs are generally cultured on two-dimensional (2D) substrate in vitro.There are indications that they may simultaneously lose their stemness and multipotentiality as the result of prolonged 2D culture.In this study,we used three-dimensional (3D) collagen scaffolds as rat MSCs carrier and compared the properties of MSCs on 3D collagen scaffolds with monolayer cultured MSCs.The results demonstrated that collagen scaffolds were suitable for rat MSCs adherence and proliferation.More importantly,compared to MSCs under 2D culture,3D MSCs significantly maintained higher expression levels of stemness genes (Oct4,Sox2,Rex-1 and Nanog),yielded high frequencies of colony-forming units-fibroblastic (CFU-F) and showed enhanced osteogenic and adipogenic differentiation efficiency upon induction.Thus,3D collagen scaffolds may be beneficial for expanding rat MSCs while maintaining the stem cell properties in vitro.

  10. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  11. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    Science.gov (United States)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  12. High‐throughput collagen fingerprinting of intact microfaunal remains; a low‐cost method for distinguishing between murine rodent bones

    Science.gov (United States)

    Gu, Muxin; Shameer, Sanu; Patel, Soyab; Chamberlain, Andrew T.

    2016-01-01

    Rationale Microfaunal skeletal remains can be sensitive indicators of the contemporary ecosystem in which they are sampled and are often recovered in owl pellets in large numbers. Species identification of these remains can be obtained using a range of morphological criteria established for particular skeletal elements, but typically dominated by a reliance on cranial characters. However, this can induce biases under different environmental and taphonomic conditions. The aim of this research was to develop a high‐throughput method of objectively identifying rodent remains from archaeological deposits using collagen fingerprinting, most notably the identification of rats from other myomorph rodents as a means to identify disturbances in the archaeofauna through the presence of invasive taxa not contemporary with the archaeological deposits. Methods Collagen was extracted from complete microfaunal skeletal remains in such a manner as to leave the bones morphologically intact (i.e., weaker concentration of acid than previously used over shorter length of time). Acid‐soluble collagen was then ultrafiltered into ammonium bicarbonate and digested with trypsin prior to dilution in the MALDI matrix and acquisition of peptide mass fingerprints using a matrix‐assisted laser desorption/ionisation time‐of‐flight (MALDI‐TOF) mass spectrometer. Results Collagen fingerprinting was able to distinguish between Rattus, Mus, Apodemus and Micromys at the genus level; at the species level, R. rattus and R. norvegicus could be separated whereas A. flavicollis and A. sylvaticus could not. A total of 12,317 archaeological microvertebrate samples were screened for myomorph signatures but none were found to be invasive rats (Rattus) or mice (Mus). Of the contemporary murine fauna, no harvest mice (Micromys) were identified and only 24 field mouse (Apodemus) discovered. Conclusions As a result, no evidence of recent bioturbation could be inferred from the faunal remains of these

  13. Bone-Forming Capabilities of a Newly Developed NanoHA Composite Alloplast Infused with Collagen: A Pilot Study in the Sheep Mandible

    Directory of Open Access Journals (Sweden)

    Charles Marin

    2013-01-01

    Full Text Available Lateral or vertical bone augmentation has always been a challenge, since the site is exposed to constant pressure from the soft tissue, and blood supply only exists from the donor site. Although, for such clinical cases, onlay grafting with autogenous bone is commonly selected, the invasiveness of the secondary surgical site and the relatively fast resorption rate have been reported as a drawback, which motivated the investigation of alternative approaches. This study evaluated the bone-forming capability of a novel nanoHA alloplast infused with collagen graft material made from biodegradable polylactic acid/polyglycolic acid versus a control graft material with the same synthesized alloplast without the nanoHA component and collagen infiltration. The status of newly formed bone and the resorption of the graft material were evaluated at 6 weeks in vivo histologically and three dimensionally by means of 3D microcomputed tomography. The histologic observation showed that newly formed bone ingrowth and internal resorption of the block were observed for the experimental blocks, whereas for the control blocks less bone ingrowth occurred along with lower resorption rate of the block material. The three-dimensional observation indicated that the experimental block maintained the external geometry, but at the same time successfully altered the graft material into bone. It is suggested that the combination of numerous factors contributed to the bone ingrowth and the novel development could be an alternative bone grafting choice.

  14. Long-term voluntary exercise of male mice induces more beneficial effects on cancellous and cortical bone than on the collagenous matrix

    OpenAIRE

    2009-01-01

    Abstract The effects of lifelong physical exercise on the composition, structure and mechanical properties of bone are not well understood. Earlier, we found that voluntary physical exercise improved various properties of bone in maturing male mice up to 6 months of age. In the present study, we extended the previous study to 18 months. Half of the mice (total N=144) had access to running wheels while half were kept sedentary. The collagen network was assessed biochemically and by ...

  15. Vibrational spectroscopy in biomedical science: bone

    Science.gov (United States)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  16. Bone defect animal models for testing efficacy of bone substitute biomaterials

    OpenAIRE

    Ye Li; Shu-Kui Chen; Long Li; Ling Qin; Xin-Luan Wang; Yu-Xiao Lai

    2015-01-01

    Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for...

  17. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo

    Czech Academy of Sciences Publication Activity Database

    Prosecká, Eva; Rampichová, Michala; Litvinec, Andrej; Tonar, Z.; Králíčková, M.; Vojtová, L.; Kochová, P.; Plencner, Martin; Buzgo, Matej; Míčková, Andrea; Jančář, J.; Amler, Evžen

    2015-01-01

    Roč. 103, č. 2 (2015), s. 671-682. ISSN 1549-3296 Institutional support: RVO:68378041 Keywords : bone regeneration * mesenchymal stem cells * collagen/hydroxyapatite scaffold Subject RIV: FP - Other Medical Disciplines Impact factor: 3.369, year: 2014

  18. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration.

    Science.gov (United States)

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Baghban, Alireza Akbarzadeh; Yavari, Seyedeh Kimia; Pajoumshariati, Seyedramin

    2016-07-01

    The application of barrier membranes in guided bone regeneration (GBR) has become a commonly used surgical technique in periodontal research. The objectives of this study were to evaluate the in vitro biocompatibility and osteogenic differentiation of mesenchymal stem cells (MSCs) on two different collagenous coatings (nano electrospun fibrous vs. solid wall) of bilayered collagen/chitosan membrane and their histological evaluation on bone regeneration in rabbit calvarial defects. It was found that chitosan-nano electrospun collagen (CNC) membranes had higher proliferation/metabolic activity compared to the chitosan-collagen (CC) and pristine chitosan membranes. The qRT-PCR analysis demonstrated the CNC membranes induced significant expression of osteogenic genes (Osteocalcin, RUNX2 and Col-α1) in MSCs. Moreover, higher calcium content and alkaline phosphatase activity of MSCs were observed compared to the other groups. Histologic and histomorphometric evaluations were performed on the uncovered (negative control) as well as covered calvarial defects of ten adult white rabbits with different membranes (CNC, CC, BioGide (BG, positive control)) at 1 and 2 months after surgery. More bone formation was detected in the defects covered with CNC and BG membranes than those covered by CC and the negative control. No inflammation and residual biomaterial particles were observed on the membrane surface or in the surrounding tissues in the surgical areas. These results suggest that bilayer CNC membrane can have the potential for use as a GBR membrane material facilitating bone formation. PMID:26586588

  19. Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels

    Directory of Open Access Journals (Sweden)

    JT Connelly

    2011-09-01

    Full Text Available Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to ten Type III repeats (FnIII7-10 and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs were cultured within the 3D hydrogels. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecan mRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli.

  20. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  1. Establishment of Animal Model for Bone Metastasis of Walker 256 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    PANG; Fang-fang; SHEN; Hong-tao; HE; Ming; DONG; Ke-jun; WU; Shao-yong; DOU; Liang; SHI; Yan-jun; ZHANG; Shuang; WANG; Xiao-ming; ZHAO; Qin-zhang; YANG; Xu-ran; XU; Yong-ning; LAN; Xiao-xi; CAI; Li; JIANG; Shan

    2013-01-01

    Bone metastasis is a common complication of cancer.It often occurs in lung,breast and prostate cancer,and may cause osteolytic lesions,or cause few osteoblastic lesions.It has already advanced cancer When cancer metastasis to bone,which usually cannot be cured.It is one of the important factors leading to the death of cancer patients.Studying animal model of bone

  2. Use of Animal Models in Understanding Cancer-induced Bone Pain

    OpenAIRE

    Slosky, Lauren M.; Tally M. Largent-Milnes; Vanderah, Todd W

    2015-01-01

    Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal ...

  3. Current Studies of Acupuncture in Cancer-Induced Bone Pain Animal Models

    OpenAIRE

    Hee Kyoung Ryu; Yong-Hyeon Baek; Yeon-Cheol Park; Byung-Kwan Seo

    2014-01-01

    Acupuncture is generally accepted as a safe and harmless treatment option for alleviating pain. To explore the pain mechanism, numerous animal models have been developed to simulate specific human pain conditions, including cancer-induced bone pain (CIBP). In this study, we analyzed the current research methodology of acupuncture for the treatment of CIBP. We electronically searched the PubMed database for animal studies published from 2000 onward using these search terms: (bone cancer OR can...

  4. Paleopathological analysis of changes on animal bones originating from archaeological sites Caricin Grad and Studenica Monastery

    OpenAIRE

    Marković Nemanja; Stevanović Oliver; Marinković Darko

    2014-01-01

    This work presents the estimation of incidence and analysis of paleopathological changes on skeletal remains of the animals from archaeological sites Caricin Grad and Studenica Monastery. Moreover, there has been carried out the assessment of the skeletal elements, as well as taxonomic and age determination. The total of 2595 bones or bone fragments were examined. In 22 specimens there were noticed various abnormal skeletal changes in following animal speci...

  5. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    OpenAIRE

    Boos Alois; Auer Joerg A; Nuss Katja; Rechenberg Brigitte von

    2006-01-01

    Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Result...

  6. The processing and characterization of animal-derived bone to yield materials with biomedical applications. Part II: milled bone powders, reprecipitated hydroxyapatite and the potential uses of these materials.

    Science.gov (United States)

    Johnson, G S; Mucalo, M R; Lorier, M A; Gieland, U; Mucha, H

    2000-11-01

    Further studies on the processing and use of animal-bone-derived calcium phosphate materials in biomedical applications are presented. Bone powders sourced either from the direct crushing and milling of bovine, ovine and cervine bone or after being subjected to defatting and acid digestion/NaOH reprecipitation and sodium hypochlorite hydrogen peroxide treatment of animal bones were characterized using Fourier transform infra-red (FTIR) spectroscopy, 13C solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, atomic absorption (AA) and inductively coupled plasma (ICP) spectrometric techniques. Bone powders were trialled for their potential use as a substrate for phosphine coupling and enzyme immobilization as well as a feedstock powder for plasma spraying on titanium metal substrates. Results indicated that enzyme immobilization by phosphine coupling could be successfully achieved on milled cervine bone with the immobilized enzyme retaining some activity. It was found that the presence of impurities normally carried down with the processing of the bone materials (viz., fat and collagen) played an important role in influencing the adsorbency and reactivity of the powders. Plasma spraying studies using reprecipitated bovine-derived powders produced highly adherent coatings on titanium metal, the composition of which was mostly hydroxyapatite (Ca10(PO4)6(OH)2) with low levels of alpha-tricalcium phosphate (alpha-Ca3(PO4)2) and tetracalcium phosphate (Ca4P2O9) also detected. In general, animal derived calcium phosphate materials constitute a potentially cheaper source of calcium phosphate materials for biomedical applications and make use of a largely under-utilized resource from abattoir wastes. PMID:15348079

  7. Measurement of Collagen Contents and Histological Studies in Animal Treated by Ambrosian after Exposure to Gamma Radiation

    International Nuclear Information System (INIS)

    Liver TEM , spleen TEM , kidney TEM, histopathology for liver, spleen and kidney, collagen content in liver, measurements of Super oxide dismutase (SOD) , MDA and GSH were determined in sixty male albino rats divided in 6 groups; one control and 5 groups irradiated with 0.5, 1, 1.5, 2 and 2.5 Gy double dose of gamma -radiation on two successive weeks, once weekly. All groups except control, 0.5 and 1 Gy groups were treated with Ambrosin extract (natural product) with 20 mg /kg body weight 8 times once weekly. All animals were sacrificed after two weeks of the last dose of Ambrosin. The results revealed that all electron microscopy studies in liver and spleen in groups of 1.5, 2 and 2.5 Gy were appeared amelioration after treated by ambrosin in comparison with non treated groups

  8. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian

    2016-03-23

    Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties. PMID:26930140

  9. Effects of Timing of Bisphosphonate Treatment on Cleft Bone Grafting in an Animal Model

    OpenAIRE

    Cheng, Nicole

    2014-01-01

    The aim of this study was to investigate the effects of BP on the success of bone grafts placed in palatal defects in rats. Bone was harvested and packed into palatal defects in recipient animals which were divided into four groups (n=8): (1) Saline, (2) BP at the time of surgery (T0), (3) BP one-week post-surgery (T1) and (4) BP three-weeks post-surgery (T2). All animals were euthanized at six weeks. Bone volume in the T1 BP (36.3 ± 8.8%) and T2 BP groups (36.9 ± 12.4%) was significantly gre...

  10. New insights into structure and function of type I collagen

    OpenAIRE

    Xiong, Xin

    2008-01-01

    Collagen is one of the most abundant proteins in mammalians and strongly conserved throughout evolution. It constitutes one third of the human proteome and comprises three-quarters of the dry weight of human skin. It is widely accepted as a major structural component in animal body such as in bones, cartilage and skins. More and more studies have shown that, in addition to the structural function, collagens can induce or regulate many cellular functions and processes such as cell differentiat...

  11. Report on intercomparison A-12 of the determination of radionuclides in animal bone

    International Nuclear Information System (INIS)

    It is widely recognised that radionuclides contained in food are responsible for the major part of the radiation dose which the human population has received through the development of atomic energy for military purposes. Some of them, such as strontium-89 and -90 or naturally occurring radium-226 and -228, follow calcium into bone and are retained there for long periods. Their expanded radiation may affect the bone and bone-marrow cells. Leukaemia and bone cancer are sometimes considered as a consequence of ingestion of fission products. Many medical and biological laboratories are obliged to determine radionuclides in bone and have to check the accuracy of their results. To meet their needs, the IAEA's Analytical Quality Control Service organized intercomparisons of the determination of fission products and natural radionuclides in calcinated animal bone

  12. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo.

    Science.gov (United States)

    Schofer, Markus D; Tünnermann, Lisa; Kaiser, Hendric; Roessler, Philip P; Theisen, Christina; Heverhagen, Johannes T; Hering, Jacqueline; Voelker, Maximilian; Agarwal, Seema; Efe, Turgay; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R J

    2012-09-01

    The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for

  13. Paleopathological analysis of changes on animal bones originating from archaeological sites Caricin Grad and Studenica Monastery

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available This work presents the estimation of incidence and analysis of paleopathological changes on skeletal remains of the animals from archaeological sites Caricin Grad and Studenica Monastery. Moreover, there has been carried out the assessment of the skeletal elements, as well as taxonomic and age determination. The total of 2595 bones or bone fragments were examined. In 22 specimens there were noticed various abnormal skeletal changes in following animal species: cattle, sheep, goats, pigs, horses, donkeys and camels. Pathological changes were noticed on the teeth, mandibles, joints of long bones and phalanxes. By macroscopic analysis of these acquired pathological changes on bones of the animals, there was determined that the observed lesions had had proliferative, hypertrophic and chronic character. Proliferative changes on the bones of the cattle, horses, donkeys and camels point out to the fact that these animals were used for towing and/or load carrying. Identified diseases of oral cavity in small ruminants point out to improper and inadequate nutrition of these animals in the past.

  14. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. I. Woven-fibered and parallel-fibered bones.

    Science.gov (United States)

    Remaggi, F; Canè, V; Palumbo, C; Ferretti, M

    1998-01-01

    A comparative histomorphometric study was carried out on the extension of lacunocanalicular network in two types of bone tissue (woven and parallel-fibered) in shaft bones of various animals (Frog, Chicken, Rabbit, Bovine, Horse, Dog, Man), with the aim to understand whether the distribution of osteocyte network is related to the organization of the collagen fibers or to the animal species. By means of a light microscope (LM) connected with an image-Analyser the following parameters were measured: 1) the cross-sectional area and the volume of osteocyte lacunae; 2) the osteocyte density; 3) the number of canaliculi departing both from the whole outline of the sectional area of osteocyte lacunae and, in the parallel-fibered osteons only (both with LM and SEM), from their two opposite walls, i.e., from the wall facing the Haversian canal (vascular wall) and from that facing the cement line (peripheral wall). In all the animals studied the size and density of osteocyte lacunae as well as the extension of the canalicular network proved to be markedly higher in woven than in parallel-fibered bone, whereas no relation with the species was found. These findings suggest that the function of osteocyte is mainly involved in the regulation of skeletal homeostasis, as discussed in the present paper. PMID:9882957

  15. Bone neoformation in defects treated with fibrin platelet rich membrane versus collagen membrane: a histomorphometric study in rabbit’s femurs.

    Directory of Open Access Journals (Sweden)

    Edwin Jonathan Meza

    2015-02-01

    Full Text Available The aim of the present research was to compare the bone neoformation in bone defects treated with platelet rich fibrin (PRF and collagen membrane (CM, after 3 and 5 weeks for which two bone defects were created of 4 mm width and 6 mm depth in the left femur distal diaphysis of New Zeland rabbits (n = 12. The subjects were randomly allocated in 2 groups. One of the defects was covered with a platelet rich fibrin membrane (Centrifuged resorbable Autologous blood biopolymer without biochemical modification or collagen membrane (gold standard – Neo Mem. The second defect was left uncovered (NC. The rabbits were sacrified after 3 and 5 weeks (3 rabbits per period. The femur was completely removed and they were processed histomophometrically. The bone neoformation analysis was performed through a differential points counting. The data was statistically analyzed (ANOVA, Tukey. The histomorphometric results showed that bone neoformation of the defects treated with PRF after 3 weeks was equivalent to the neoformation of the CM (p

  16. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    Science.gov (United States)

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. PMID:25708407

  17. Use of Animal Models in Understanding Cancer-induced Bone Pain.

    Science.gov (United States)

    Slosky, Lauren M; Largent-Milnes, Tally M; Vanderah, Todd W

    2015-01-01

    Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP's unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP. PMID:26339191

  18. Carbon and nitrogen stable isotopes of well-preserved Middle Pleistocene bone collagen from Schöningen (Germany) and their paleoecological implications.

    Science.gov (United States)

    Kuitems, Margot; van der Plicht, Johannes; Drucker, Dorothée G; Van Kolfschoten, Thijs; Palstra, Sanne W L; Bocherens, Hervé

    2015-12-01

    Carbon and nitrogen stable isotopes in bone collagen can provide valuable information about the diet and habitat of mammal species. However, bone collagen degrades in normal circumstances very rapidly, and isotope analyses are therefore usually restricted to fossil material with a Late Pleistocene or Holocene age. The Middle Pleistocene site of Schöningen, dated to around 300,000 years ago, yielded bones and teeth with an exceptionally good state of collagen preservation. This allowed us to measure reliable biogenic carbon and nitrogen stable isotope ratios for different herbivorous taxa from the families Elephantidae, Rhinocerotidae, Equidae, Cervidae, and Bovidae. The results provide insights regarding the paleoenvironmental setting in which Middle Pleistocene hominins operated. The vegetation consumed by the herbivores from the famous spear horizon originates from open environments. During the climatic Reinsdorf Interglacial optimum, the landscape seems to have been relatively open as well, but certainly included parts that were forested. The results also indicate some niche partitioning; different herbivore species used different plant resources. For instance, the horses seem to have been predominantly browsers, while the straight-tusked elephants were feeding chiefly on grass. PMID:25824673

  19. The effect of three hemostatic agents on early bone healing in an animal model

    Directory of Open Access Journals (Sweden)

    Dry Sarah M

    2010-12-01

    Full Text Available Abstract Background Resorbable bone hemostasis materials, oxidized regenerated cellulose (ORC and microfibrillar collagen (MFC, remain at the site of application for up to 8 weeks and may impair osteogenesis. Our experimental study compared the effect of a water-soluble alkylene oxide copolymer (AOC to ORC and MFC versus no hemostatic material on early bone healing. Methods Two circular 2.7 mm non-critical defects were made in each tibia of 12 rabbits. Sufficient AOC, ORC or MFC was applied to achieve hemostasis, and effectiveness recorded. An autologous blood clot was applied to control defects. Rabbits were sacrificed at 17 days, tibiae excised and fixed. Bone healing was quantitatively measured by micro-computed tomography (micro-CT expressed as fractional bone volume, and qualitatively assessed by histological examination of decalcified sections. Results Hemostasis was immediate after application of MFC and AOC, after 1-2 minutes with ORC, and >5 minutes for control. At 17 days post-surgery, micro-CT analysis showed near-complete healing in control and AOC groups, partial healing in the ORC group and minimal healing in the MFC group. Fractional bone volume was 8 fold greater in the control and AOC groups than in the MFC group (0.42 ± 0.06, 0.40 ± 0.03 vs 0.05 ± 0.01, P P Conclusions Early healing appeared to be impaired by the presence of MFC and impeded by the presence of ORC. In contrast, AOC did not inhibit bone healing and suggest that AOC may be a better bone hemostatic material for procedures where bony fusion is critical and immediate hemostasis required.

  20. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  1. Investigations of 90 SR activity concentrations in animal bones in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Maracic, M.; Franic, Z.; Marovic, G. [Institute for Medical Research and Occupational Health, Zagreb (Croatia)

    2006-07-01

    The paper describes investigations of 90 Sr activity concentrations in long bones of some domestic animals (cows, pigs and lambs) collected over the last ten years in the Republic of Croatia. These investigations are a part of an extended and still ongoing monitoring programme of radioactive contamination of human environment in Croatia. Bone is a critical organ for the accumulation of many radionuclides, including 90 Sr, a highly toxic radionuclide, similar to calcium in its chemicalaviour and metabolic processes. It has been found that the 90 Sr activity concentrations in bones differ between respective animal species, the highest activity concentrations being found in lamb bones. As the decrease of activity concentrations can be generally described by the exponential function, by fitting the measured data to the theoretical curve was estimated the ecological half-life of 90 Sr in bones of respective species. In addition was investigated the relation between 90 Sr activity concentrations in bones and fallout. The transient increases and decreases in 90 Sr activity concentrations in bones can be partially explained by a variety of environmental physical factors that naturally fluctuate. (authors)

  2. Investigations of 90 SR activity concentrations in animal bones in Croatia

    International Nuclear Information System (INIS)

    The paper describes investigations of 90 Sr activity concentrations in long bones of some domestic animals (cows, pigs and lambs) collected over the last ten years in the Republic of Croatia. These investigations are a part of an extended and still ongoing monitoring programme of radioactive contamination of human environment in Croatia. Bone is a critical organ for the accumulation of many radionuclides, including 90 Sr, a highly toxic radionuclide, similar to calcium in its chemical behaviour and metabolic processes. It has been found that the 90 Sr activity concentrations in bones differ between respective animal species, the highest activity concentrations being found in lamb bones. As the decrease of activity concentrations can be generally described by the exponential function, by fitting the measured data to the theoretical curve was estimated the ecological half-life of 90 Sr in bones of respective species. In addition was investigated the relation between 90 Sr activity concentrations in bones and fallout. The transient increases and decreases in 90 Sr activity concentrations in bones can be partially explained by a variety of environmental physical factors that naturally fluctuate. (authors)

  3. An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones

    Directory of Open Access Journals (Sweden)

    Boos Alois

    2006-08-01

    Full Text Available Abstract Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.

  4. Fluorine determination in human and animal bones by particle-induced gamma-ray emission

    International Nuclear Information System (INIS)

    Fluorine was determined in the iliac crest bones of patients and in ribs collected from postmortem investigations by particle-induced gamma-ray emission based on the 19F(p,pγ)19F reaction, using 20/2.5 MeV protons. The results indicate that for 68% of the human samples the F concentration is in the range 500-1999 μg g-1. For comparison purposes fluorine was also determined in some animal bones; in some animal tissues lateral profiles of fluorine were measured. (abstract)

  5. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    International Nuclear Information System (INIS)

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, the data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials. 7 references, 2 figures, 2 tables

  6. Collagen gel contraction as a measure of fibroblast function in an animal model of subsynovial connective tissue fibrosis.

    Science.gov (United States)

    Yang, Tai-Hua; Thoreson, Andrew R; Gingery, Anne; Larson, Dirk R; Passe, Sandra M; An, Kai-Nan; Zhao, Chunfeng; Amadio, Peter C

    2015-05-01

    Carpal tunnel syndrome (CTS) is a peripheral neuropathy characterized by non-inflammatory fibrosis of the subsynovial connective tissues (SSCT). A rabbit model of CTS was developed to test the hypothesis that SSCT fibrosis causes the neuropathy. We used a cell-seeded collagen-gel contraction model to characterize the fibrosis in this model in terms of cellular mechanics, specifically to compare the ability of SSCT cells from the rabbit model and normal rabbits to contract the gel, and to assess the effect of transforming growth factor-β1,which is upregulated in CTS, on these cells. SSCT fibrosis was induced in six retired breeder female rabbits which were sacrificed at 6 weeks (N = 3) and 12 weeks (n = 3). An additional two rabbits served as controls. SSCT was harvested according to a standard protocol. Gels seeded with SSCT cells from rabbits sacrificed at 6 weeks had significantly higher tensile strength (p < 0.001) and Young's modulus (p < 0.001) than gels seeded with cells from rabbits sacrificed at 12 weeks or control animals. TGF-β1 significantly increased the decay time constant (p < 0.001), tensile strength (p < 0.001), and Young's modulus (p < 0.001) regardless of the cell source. This model may be useful in screening therapeutic agents that may block SSCT fibrosis, identifying possible candidates for CTS treatment. PMID:25626430

  7. The collagen microfibil model as a tool for leather scientists

    Science.gov (United States)

    Collagen, a structural protein of the extracellular matrix, gives strength and form to the skin, tendons, bones, cornea and teeth of mammals. The discovery by early humans that the skin of an animal, slaughtered for meat, could be preserved by exposing it to smoke or rubbing with fat, led to the pr...

  8. The Effect of Interferon-γ and Zoledronate Treatment on Alpha-Tricalcium Phosphate/Collagen Sponge-Mediated Bone-Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Peiqi Li

    2015-10-01

    Full Text Available Inflammatory responses are frequently associated with the expression of inflammatory cytokines and severe osteoclastogenesis, which significantly affect the efficacy of biomaterials. Recent findings have suggested that interferon (IFN-γ and zoledronate (Zol are effective inhibitors of osteoclastogenesis. However, little is known regarding the utility of IFN-γ and Zol in bone tissue engineering. In this study, we generated rat models by generating critically sized defects in calvarias implanted with an alpha-tricalcium phosphate/collagen sponge (α-TCP/CS. At four weeks post-implantation, the rats were divided into IFN-γ, Zol, and control (no treatment groups. Compared with the control group, the IFN-γ and Zol groups showed remarkable attenuation of severe osteoclastogenesis, leading to a significant enhancement in bone mass. Histomorphometric data and mRNA expression patterns in IFN-γ and Zol-injected rats reflected high bone-turnover with increased bone formation, a reduction in osteoclast numbers, and tumor necrosis factor-α expression. Our results demonstrated that the administration of IFN-γ and Zol enhanced bone regeneration of α-TCP/CS implants by enhancing bone formation, while hampering excess bone resorption.

  9. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise.

    Science.gov (United States)

    Mohan, Subburaman; Wergedal, Jon E; Das, Subhashri; Kesavan, Chandrasekhar

    2015-02-01

    In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13-34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25-27% reduction in total volume at the diaphyseal and metaphyseal sites. Neither cortical nor trabecular volumetric BMD was different in the cKO mice. Bone strength (maximum load) was reduced by 10% with no change in bone toughness. Quantitative histomorphometric analyses revealed a 28% reduction in the periosteal bone formation rate and in the mineral apposition rate but with no change in the resorbing surface. Expression levels of periostin, Elk3, Runx2 genes that are targeted by miRs from the cluster were decreased by 25-30% in the bones of cKO mice. To determine the contribution of the miR17-92 cluster to the mechanical strain effect on periosteal bone formation, we subjected cKO and control mice to 2 wk of mechanical loading by four-point bending. We found that the periosteal bone response to mechanical strain was significantly reduced in the cKO mice. We conclude that the miR17-92 cluster expressed in type I collagen-producing cells is a key regulator of periosteal bone formation in mice. PMID:25492928

  10. The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Directory of Open Access Journals (Sweden)

    Anak A. S. S. K. Dharmapatni

    2015-01-01

    Full Text Available Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP, on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA in mice. Methods. Four groups of mice (n=6 per group were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day, CAIA treated with low dose Embelin (30 mg/kg/day, and CAIA treated with high dose Embelin (50 mg/kg/day. Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP staining, and serum carboxy-terminal collagen crosslinks (CTX-1 ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores (P<0.05 and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 (P<0.05 and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss.

  11. Autoradiography of lyophilized animal sections. Bone density measurement in osteoporosis model rats

    International Nuclear Information System (INIS)

    To gain a better understanding on the β-ray radiography of lyophilized animal sections, the bone densities of the osteoporosis rats were measured using a 147Pm planar radiation source. An imaging plate as a radiation sensor was overlaid on the animal section together with a density calibrator. After exposure, radioactivity recorded on the sensor was quantified using a bio-imaging analyzer. The density calibration curve showed linearity in the wide range with a good correlation coefficient (R2≥0.999). The inter- and intra-plate variability showed CV values less than 3.7%. On the measurement of bone density, bone density differences between the sham group and ovariectomized (OVX) group were statistically significant in the femoral cortical (p=0.001) and trabecular bone (p=0.07), and vertebral trabecular bone (p=0.043). Based on these results, we developed a new and valuable method, which made it possible to measure bone density of axial skeleton of a rat, as an alternative to commonly used methods. (author)

  12. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    Science.gov (United States)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-04-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  13. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    Science.gov (United States)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-06-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  14. Conditional disruption of miR17-92 cluster in collagen type I-producing osteoblasts results in reduced periosteal bone formation and bone anabolic response to exercise

    OpenAIRE

    Mohan, Subburaman; Wergedal, Jon E.; Das, Subhashri; Kesavan, Chandrasekhar

    2014-01-01

    In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13–34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25–27%...

  15. 9 CFR 95.13 - Bone meal for use as fertilizer or as feed for domestic animals; requirements for entry.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bone meal for use as fertilizer or as...), AND HAY AND STRAW, OFFERED FOR ENTRY INTO THE UNITED STATES § 95.13 Bone meal for use as fertilizer or... °Fahrenheit (121 °Centigrade), may be imported without further restrictions for use as fertilizer or as...

  16. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation.

    Science.gov (United States)

    Ren, Xiaoyan; Tu, Victor; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-05-01

    Current strategies for skeletal regeneration often require co-delivery of scaffold technologies, growth factors, and cellular material. However, isolation and expansion of stem cells can be time consuming, costly, and requires an additional procedure for harvest. Further, the introduction of supraphysiologic doses of growth factors may result in untoward clinical side effects, warranting pursuit of alternative methods for stimulating osteogenesis. In this work, we describe a nanoparticulate mineralized collagen glycosaminoglycan scaffold that induces healing of critical-sized rabbit cranial defects without addition of expanded stem cells or exogenous growth factors. We demonstrate that the mechanism of osteogenic induction corresponds to an increase in canonical BMP receptor signalling secondary to autogenous production of BMP-2 and -9 early and BMP-4 later during differentiation. Thus, nanoparticulate mineralized collagen glycosaminoglycan scaffolds may provide a novel growth factor-free and ex vivo progenitor cell culture-free implantable method for bone regeneration. PMID:26950166

  17. Spectroscopic characterization of bone tissue of experimental animals after glucocorticoid treatment and recovery period

    Science.gov (United States)

    Mitić, Žarko J.; Najman, Stevo J.; Cakić, Milorad D.; Ajduković, Zorica R.; Ignjatović, Nenad L.; Nikolić, Ružica S.; Nikolić, Goran M.; Stojanović, Sanja T.; Vukelić, Marija Đ.; Trajanović, Miroslav D.

    2014-09-01

    The influence of glucocorticoids on the composition and mineral/organic content of the mandible in tested animals after recovery and healing phase was investigated in this work. The results of FTIR analysis demonstrated that bone tissue composition was changed after glucocorticoid treatment. The increase of calcium, magnesium, phosphorus content and mineral part of bones was statistically significant in recovery phase and in treatment phase that included calcitonin and thymus extract. Some changes also happened in the organic part of the matrix, as indicated by intensity changes for already present IR bands and the appearance of new IR bands in the region 3500-1300 cm-1.

  18. Analyses of stable isotopes in camelids collagen bones from Tulan Ravine, Atacama Puna, early formative period (CA 3,1000-2,400BP)

    International Nuclear Information System (INIS)

    This paper presents the results of isotope analysis (δ13C y δ15N) conducted on bone collagen found in Lama guanicoe and Lama glama remains from Tulan-85 and Tulan-54 archaeological sites. Both sites have been dated to the Early Formative Period (ca. 3,100-2,400 ap) and are located southeast of the Atacama Puna basin. Faunal samples were selected using anatomical and morphometric criteria. The results indicate divergences in the diets of both species, reflecting vegetation variation in the Tulan Quebrada caused by altitude differences and linked to hunting and herding areas

  19. Approach to the human diet of the punic population of Can Marines (Ibiza. C an N stable isotope analysis on bone collagen

    Directory of Open Access Journals (Sweden)

    Domingo Carlos Salazar García

    2012-09-01

    Full Text Available We report here on the results of carbon and nitrogen stable isotope analysis on bone collagen of humans from the Punic site of Can Marines (V-IVth BC from the island of Ibiza (Spain. To date, there are few isotopic studies for this period from the Mediterranean. This article reports new isotopic data from a Western Mediterranean Punic rural settlement. The results show a terrestrial based diet with no isotopic evidence of marine or freshwater protein input, and suggest the presence of C4 resources in it.

  20. A cognitive network for oracle-bone characters related to animals

    Science.gov (United States)

    Dress 德乐思, Andreas; Grünewald 曾振柄, Stefan; Zeng, Zhenbing

    This paper is dedicated to HAO Bailin on the occasion of his eighties birthday, the great scholar and very good friend who never tired to introduce us to the wonderful and complex intricacies of Chinese culture and history. In this paper, we present an analysis of oracle-bone characters for animals from a `cognitive' point of view. After some general remarks on oraclebone characters presented in Section 1 and a short outline of the paper in Section 2, we collect various oracle-bone characters for animals from published resources in Section 3. In the next section, we begin analysing a group of 60 ancient animal characters from www.zdic.net, a highly acclaimed internet dictionary of Chinese characters that is strictly based on historical sources, and introduce five categories of specific features regarding their (graphical) structure that will be used in Section 5 to associate corresponding feature vectors to these characters. In Section 6, these feature vectors will be used to investigate their dissimilarity in terms of a family of parameterised distance measures. And in the last section, we apply the SplitsTree method as encoded in the NeighbourNet algorithms to construct a corresponding family of dissimilarity-based networks with the intention of elucidating how the ancient Chinese might have perceived the `animal world' in the late bronze age and to demonstrate that these pictographs reflect an intuitive understanding of this world and its inherent structure that predates its classification in the oldest surviving Chinese encyclopedia from approximately the 3rd century BC, the ErYa, as well as similar classification systems in the West by one to two millennia. We also present an English dictionary of 70 oracle-bone characters for animals in Appendix 1. In Appendix 2, we list various variants of animal characters that were published in the Jia Gu Wen Bian (cf. , A Complete Collection of Oracle Bone Characters, edited by the Institute of Archaeology of the Chinese

  1. COLLAGEN STRUCTURE AND STABILITY

    OpenAIRE

    Shoulders, Matthew D.; Raines, Ronald T.

    2009-01-01

    Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen–the prototypical collagen fibril–...

  2. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  3. Animal models of osteoarthritis for the understanding of the bone contribution

    Science.gov (United States)

    Cohen-Solal, Martine; Funck-Brentano, Thomas; Hay, Eric

    2013-01-01

    Osteoarthritis characterizes the joint disease that results in cartilage damage accompanied by bone lesions and synovial inflammation. Joint integrity results from physiological interactions between all these tissues. Local factors such as cytokines and growth factors regulate cartilage remodeling and metabolism as well as chondrocyte differentiation and survival. Tremendous progress has been made through the use of animal models and provided insight for the mechanism of cartilage loss and chondrocyte functions. Surgical, chemical or genetic models have been developed to investigate the role of molecules in the pathogenesis or treatment of osteoarthritis. Indeed, the animal models are helpful to investigate the cartilage changes in relation to changes in bone remodeling. Increased bone resorption occurs at early stage of the development of osteoarthritis, the inhibition of which prevents cartilage damage, confirming the role of bone factors in the crosstalk between both tissues. Among these numerous molecules, some participate in the imbalance in cartilage homeostasis and in the pathophysiology of osteoarthritis. These local factors are potential candidates for new drug targets. PMID:24422124

  4. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review

    OpenAIRE

    Kruse Johansen, Louise

    2013-01-01

    Louise Kruse Johansen, Henrik Elvang JensenDepartment of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, DenmarkAbstract: Hematogenous osteomyelitis (HO), especially due to Staphylococcus aureus, is primarily reported in children and occurs when blood-borne bacteria settle in the metaphysis of a long bone and mediate an inflammatory response. The literature contains several reports on animal models aiming to simulate pediatric HO, in...

  5. Animal models of osteoarthritis for the understanding of the bone contribution

    OpenAIRE

    Cohen-Solal, Martine; Funck-Brentano, Thomas; Hay, Eric

    2013-01-01

    Osteoarthritis characterizes the joint disease that results in cartilage damage accompanied by bone lesions and synovial inflammation. Joint integrity results from physiological interactions between all these tissues. Local factors such as cytokines and growth factors regulate cartilage remodeling and metabolism as well as chondrocyte differentiation and survival. Tremendous progress has been made through the use of animal models and provided insight for the mechanism of cartilage loss and ch...

  6. SH3BP2 gain-of-function mutation exacerbates inflammation and bone loss in a murine collagen-induced arthritis model.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Mukai

    Full Text Available OBJECTIVE: SH3BP2 is a signaling adapter protein which regulates immune and skeletal systems. Gain-of-function mutations in SH3BP2 cause cherubism, characterized by jawbone destruction. This study was aimed to examine the role of SH3BP2 in inflammatory bone loss using a collagen-induced arthritis (CIA model. METHODS: CIA was induced in wild-type (Sh3bp2(+/+ and heterozygous P416R SH3BP2 cherubism mutant knock-in (Sh3bp2(KI/+ mice, an SH3BP2 gain-of-function model. Severity of the arthritis was determined by assessing the paw swelling and histological analyses of the joints. Micro-CT analysis was used to determine the levels of bone loss. Inflammation and osteoclastogenesis in the joints were evaluated by quantitating the gene expression of inflammatory cytokines and osteoclast markers. Furthermore, involvement of the T- and B-cell responses was determined by draining lymph node cell culture and measurement of the serum anti-mouse type II collagen antibody levels, respectively. Finally, roles of the SH3BP2 mutation in macrophage activation and osteoclastogenesis were determined by evaluating the TNF-α production levels and osteoclast formation in bone marrow-derived M-CSF-dependent macrophage (BMM cultures. RESULTS: Sh3bp2(KI/+ mice exhibited more severe inflammation and bone loss, accompanying an increased number of osteoclasts. The mRNA levels for TNF-α and osteoclast marker genes were higher in the joints of Sh3bp2(KI/+ mice. Lymph node cell culture showed that lymphocyte proliferation and IFN-γ and IL-17 production were comparable between Sh3bp2(+/+ and Sh3bp2(KI/+ cells. Serum anti-type II collagen antibody levels were comparable between Sh3bp2(+/+ and Sh3bp2(KI/+ mice. In vitro experiments showed that TNF-α production in Sh3bp2(KI/+ BMMs is elevated compared with Sh3bp2(+/+ BMMs and that RANKL-induced osteoclastogenesis is enhanced in Sh3bp2(KI/+ BMMs associated with increased NFATc1 nuclear localization. CONCLUSION: Gain-of-function of

  7. Genetically engineered flavonol enriched tomato fruit modulates chondrogenesis to increase bone length in growing animals.

    Science.gov (United States)

    Choudhary, Dharmendra; Pandey, Ashutosh; Adhikary, Sulekha; Ahmad, Naseer; Bhatia, Chitra; Bhambhani, Sweta; Trivedi, Prabodh Kumar; Trivedi, Ritu

    2016-01-01

    Externally visible body and longitudinal bone growth is a result of proliferation of chondrocytes. In growth disorder, there is delay in the age associated increase in height. The present study evaluates the effect of extract from transgenic tomato fruit expressing AtMYB12 transcription factor on bone health including longitudinal growth. Constitutive expression of AtMYB12 in tomato led to a significantly enhanced biosynthesis of flavonoids in general and the flavonol biosynthesis in particular. Pre-pubertal ovary intact BALB/c mice received daily oral administration of vehicle and ethanolic extract of wild type (WT-TOM) and transgenic AtMYB12-tomato (MYB12-TOM) fruits for six weeks. Animal fed with MYB12-TOM showed no inflammation in hepatic tissues and normal sinusoidal Kupffer cell morphology. MYB12-TOM extract significantly increased tibial and femoral growth and subsequently improved the bone length as compared to vehicle and WT-TOM. Histomorphometry exhibited significantly wider distal femoral and proximal tibial growth plate, increased number and size of hypertrophic chondrocytes in MYB12-TOM which corroborated with micro-CT and expression of BMP-2 and COL-10, marker genes for hypertrophic cells. We conclude that metabolic reprogramming of tomato by AtMYB12 has the potential to improve longitudinal bone growth thus helping in achievement of greater peak bone mass during adolescence. PMID:26917158

  8. Clinical comparison of guided tissue regeneration, with collagen membrane and bone graft, versus connective tissue graft in the treatment of gingival recessions

    Directory of Open Access Journals (Sweden)

    Haghighati F

    2006-06-01

    Full Text Available Background and Aim: Increasing patient demands for esthetic, put the root coverage procedures in particular attention. Periodontal regeneration with GTR based root coverage methods is the most common treatment used. The purpose of this study was to compare guided tissue regeneration (GTR with collagen membrane and a bone graft, with sub-epithelial connective tissue graft (SCTG, in treatment of gingival recession. Materials and Methods: In this randomized clinical trial study, eleven healthy patients with no systemic diseases who had miller’s class I or II recession defects (gingival recession  2mm were treated with SCTG or GTR using a collagen membrane and a bone graft. Clinical measurements were obtained at baseline and 6 months after surgery. These clinical measurements included recession depth (RD, recession width (RW, probing depth (PD, and clinical attachment level (CAL. Data were analyzed using independent t test with p<0.05 as the limit of significance. Results: Both treatment methods resulted in a statistically significant reduction of recession depth (SCTG=2.3mm, GTR=2.1mm; P<0.0001. CAL gain after 6 months was also improved in both groups (SCG= 2.5mm, GTR=2.1mm, compared to baseline (P<0.0001. No statistical differences were observed in RD, RW, CAL between test and control groups. Root coverage was similar in both methods (SCTG= 74.2%, GTR= 62.6%, P=0.87. Conclusion: Based on the results of this study, the two techniques are clinically comparable. Therefore the use of collagen membrane and a bovine derived xenograft may alleviate the need for connective tissue graft.

  9. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis

    Science.gov (United States)

    Mencía Castaño, Irene; Curtin, Caroline M.; Duffy, Garry P.; O’Brien, Fergal J.

    2016-06-01

    Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.

  10. Animal models of hematogenous Staphylococcus aureus osteomyelitis in long bones: a review

    Directory of Open Access Journals (Sweden)

    Johansen LK

    2013-08-01

    Full Text Available Louise Kruse Johansen, Henrik Elvang JensenDepartment of Veterinary Disease Biology, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, DenmarkAbstract: Hematogenous osteomyelitis (HO, especially due to Staphylococcus aureus, is primarily reported in children and occurs when blood-borne bacteria settle in the metaphysis of a long bone and mediate an inflammatory response. The literature contains several reports on animal models aiming to simulate pediatric HO, in order to investigate the pathogenesis and for therapeutic use. In these models, osteomyelitis lesions develop subsequently to bacteremia, which can be induced by either intravenous or intra-arterial inoculation of bacteria. Intravenous inoculation is not optimal because of the ethical aspects of the extensive systemic reaction and the unpredictable identity of bones being infected. Also, intravenous inoculation often has to be combined with the induction of artificial bone necrosis in order to have macroscopic lesions. In contrast, models based on intra-arterial inoculation and subsequent development of local osteomyelitis, are the most accurate and predictable way to extrapolate to pediatric cases of HO. The most commonly used animal species for modeling of HO are rabbits, chickens, and mice, whereas, less frequently, dogs, rats, and pigs have been applied. The use of intra-arterial inoculation, without simultaneous artificial bone necrosis for the development of HO lesions has only been used in porcine models. Because of the similarity of human and porcine physiology, metabolic rate, and size, porcine models of HO are advantageous. Therefore, porcine models based on the intra-arterial induction of osteomyelitis are the most refined HO models.Keywords: hematogenous osteomyelitis, animal models, Staphylococcus aureus

  11. Collagen biosynthesis.

    OpenAIRE

    Last, J A; Reiser, K M

    1984-01-01

    Collagen is the major structural protein of the lung. At least five genetically distinct collagen types have been identified in lung tissue. However, the precise role of collagen in nonrespiratory lung function is not well understood, in part because of the difficulties inherent in studying lung collagen, regardless of the type of assay used. A major problem is the insolubility of lung collagen; generally less than 20% of total lung collagen can be solubilized as intact chains, even with hars...

  12. Comparison of growth-induced resorption and denervation-induced resorption on the release of [3H]tetracycline, 45calcium, and [3H]collagen from whole bones of growing rats

    International Nuclear Information System (INIS)

    The major effect of immobilization during growth is a smaller bone mass induced by either an increased bone resorption or a decreased bone formation. Using a method of analyzing radioisotopic loss of [3H]tetracycline and [3H]collagen from bone prelabeled in vivo, we compared the amount of bone resorption due to immobilization with bone resorption induced by growth. One hind limb was denervated in growing male rats, 6 weeks of age, that had been chronically prelabeled with [3H]tetracycline, 45calcium, and [3H]proline. The total radioactivity of the whole femur and tibia/fibula from the denervated limb was compared with that from bones of the control limb at 0, 1, 2, 4, and 8 weeks after denervation. The effect of growth on bone formation was measured by net increases in bone length, volume, and mass of matrix and mineral. Experimental bones had a significantly smaller volume and mass. Bone resorption was much greater during growth modeling than during denervation. The additional bone resorption induced by denervation was a small fraction (one-fourth) of the resorption induced by growth. Denervation during growth resulted in less bone being formed due to a smaller gain in matrix and mineral mass as a result of a reduction in bone formation

  13. Protective effects of cytokines on bone marrow suppression by radioimmurotherapy in animal model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Seiji [Ehime Univ., Shigenobu (Japan). School of Medicine

    1995-06-01

    In radioimmunotherapy, the dose limiting factor seems to be bone marrow suppression. Recombinant human granulocyte-colony stimulating factor (rhG-CSF), recombinant human erythropoietin (rhEPO), and recombinant human interleukin-6 (rhIL-6) are the hematopoietic growth factors which regulate the proliferation and differentiation of human bone marrow progenitor cell populations. We applied these cytokines to protect against bone marrow suppression induced by {sup 131}I-radioimmunotherapy in an animal model. Tumor (SCC-3: monocytic cell line)-bearing athymic mice were intraperitoneally injected with 13 MBq/35 {mu}g of {sup 131}I-labeled MoAb (YK-1: IgG1, Kappa). Three days after the injection, various cytokines were subcutaneously injected once a day for 15 days. In the control group, the peripheral blood cell counts decreased over the 20 days, but each cytokine shortened the period of cytopenia; rhG-CSF for granulocytes, rhEPO for erythrocytes, and rhIL-6 for platelets. The biodistribution of {sup 125}I-YK-1 was not changed by the various cytokines. Also, the growth of the tumor was not affected and the antitumor effect of {sup 131}I-YK-1 was not changed. Thus the application of cytokines for radioimmunotherapy was found to be effective in protecting against bone marrow suppression. (author).

  14. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model.

    Science.gov (United States)

    Mukherjee, Susmita; Nandi, Samit Kumar; Kundu, Biswanath; Chanda, Abhijit; Sen, Swarnendu; Das, Pradip Kumar

    2016-07-01

    In order to improve the inherently poor mechanical properties of hydroxyapatite (HAp) and to increase its feasibility as load bearing implant material, in the present investigation, functionalised (HFC1 and HFC2) and non-functionalized (HC1 and HC2) multi-walled carbon nanotubes were used as reinforcing material with HAp. Significant improvement with respect to fracture toughness, flexural strength and impact strength of the composites was noticed. In vitro biological properties of HAp-carbon nanotube (CNT) biocomposites have also favored uniform and systematic apatite growth on their surface. Subsequently, in vivo osseous ingrowth at bone defect of rabbit femur was evaluated and compared using radiology, push out test, fluorochrome labeling, histology and scanning electron microscopy after 2 and 4 months respectively. The results demonstrated growth of web like soft callus from the host bone towards the implant, ensuring strong host bone interaction. Toxicological studies of the liver and kidney cells exhibited no abnormality, thereby confirming non-toxicity of the CNT in the animal body. Host-implant biomechanical strength showed high interfacial strength of the composites, indicating their high potentials to be used for bone remodeling applications. PMID:26907099

  15. The Great Irish Famine: Identifying Starvation in the Tissues of Victims Using Stable Isotope Analysis of Bone and Incremental Dentine Collagen

    Science.gov (United States)

    Montgomery, Janet

    2016-01-01

    The major components of human diet both past and present may be estimated by measuring the carbon and nitrogen isotope ratios (δ13C and δ15N) of the collagenous proteins in bone and tooth dentine. However, the results from these two tissues differ substantially: bone collagen records a multi-year average whilst primary dentine records and retains time-bound isotope ratios deriving from the period of tooth development. Recent studies harnessing a sub-annual temporal sampling resolution have shed new light on the individual dietary histories of our ancestors by identifying unexpected radical short-term dietary changes, the duration of breastfeeding and migration where dietary change occurs, and by raising questions regarding factors other than diet that may impact on δ13C and δ15N values. Here we show that the dentine δ13C and δ15N profiles of workhouse inmates dating from the Great Irish Famine of the 19th century not only record the expected dietary change from C3 potatoes to C4 maize, but when used together they also document prolonged nutritional and other physiological stress resulting from insufficient sustenance. In the adults, the influence of the maize-based diet is seen in the δ13C difference between dentine (formed in childhood) and rib (representing an average from the last few years of life). The demonstrated effects of stress on the δ13C and δ15N values will have an impact on the interpretations of diet in past populations even in slow-turnover tissues such as compact bone. This technique also has applicability in the investigation of modern children subject to nutritional distress where hair and nails are unavailable or do not record an adequate period of time. PMID:27508412

  16. Collagen Gel Contraction as a Measure of Fibroblast Function in an Animal Model of Subsynovial Connective Tissue Fibrosis

    OpenAIRE

    Yang, Tai-hua; Thoreson, Andrew R.; Gingery, Anne; Larson, Dirk R.; Passe, Sandra M.; An, Kai-Nan; Zhao, Chunfeng; Amadio, Peter C.

    2015-01-01

    Carpal tunnel syndrome (CTS) is a peripheral neuropathy characterized by non-inflammatory fibrosis of the subsynovial connective tissues (SSCT). A rabbit model of CTS was developed to test the hypothesis that SSCT fibrosis causes the neuropathy. We used a cell-seeded collagen-gel contraction model to characterize the fibrosis in this model in terms of cellular mechanics, specifically to compare the ability of SSCT cells from the rabbit model and normal rabbits to contract the gel, and to asse...

  17. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats.

    Science.gov (United States)

    Ramalingam, Sundar; Al-Rasheed, Abdulaziz; ArRejaie, Aws; Nooh, Nasser; Al-Kindi, Mohammed; Al-Hezaimi, Khalid

    2016-05-01

    Guided bone regeneration (GBR) procedures using graft materials have been used for reconstruction of osseous defects. The aim of the present in vivo micro-computed tomographic (µCT) and histologic study was to assess in real time the bone regeneration at GBR sites in standardized experimental calvarial defects (diameter 3.3 mm) using β-tricalcium phosphate (β-TCP) with and without collagen membrane (CM). A single full-thickness calvarial defect was created on the left parietal bone in young female Wistar albino rats (n = 30) weighing approximately 300 g and aged about 6 weeks. The animals were randomly divided into three groups for treatment, based on calvarial defect filling material: (1) control group (n = 10); (2) β-TCP + CM group (n = 10); (3) β-TCP group (n = 10). Real-time in vivo µCT analyses were performed immediately after surgery and at 2, 4, 6 and 10 weeks to determine the volume and mineral density of the newly formed bone (BVNFB, MDNFB) and remaining β-TCP particles (VRBP, MDRBP). The animals were killed at 10 weeks and calvarial specimens were evaluated histologically. In the control group, MDNFB increased significantly at 6 weeks (0.32 ± 0.002 g/mm(3), P < 0.01) compared to that at baseline. In β-TCP + CM group, BVNFB (1.10 ± 0.12 mm(3), P < 0.01) and MDNFB (0.13 ± 0.02 g/mm(3), P < 0.01) significantly increased at the 4th week than baseline. In the β-TCP group, BVNFB (1.13 ± 0.12 mm(3), P < 0.01) and MDNFB (0.14 ± 0.01 g/mm(3), P < 0.01) significantly increased at 6 weeks compared to that at baseline. Significant reduction in VRBP was neither seen in the β-TCP + CM group nor in the β-TCP group. While in the β-TCP + CM group MDRBP was reduced significantly at 6 weeks (0.44 ± 0.9 g/mm(3), P < 0.01) from baseline (0.98 ± 0.03 g/mm(3)), similar significant reduction in MDRBP from baseline (0.92 ± 0.07 g/mm(3)) was seen only at 10 weeks (0.45 ± 0.06 g/mm(3), P < 0

  18. Bone Marrow Transplantation in Mice as a Tool to Generate Genetically Modified Animals

    International Nuclear Information System (INIS)

    Transgenic mice can be used either as models of known inherited human diseases or can be applied to perform phenotypic tests of genes with unknown function. In some special applications of gene modification we have to create a tissue specific mutation of a given gene. In some cases however the gene modification can be lethal in the intrauterine life, therefore we should engraft the mutated cells in the postnatal life period. After total body irradiation transplantation of bone marrow cells can be a solution to introduce mutant hematopoietic stem cells into a mature animal. Bone marrow transplantation is a useful and novel tool to study the role of hematopoietic cells in the pathogenesis of inflammation, autoimmune syndromes and many metabolic alterations coupled recently to leukocyte functions.

  19. Glucocorticoid induced osteopenia in cancellous bone of sheep: validation of large animal model for spine fusion and biomaterial research

    DEFF Research Database (Denmark)

    Ding, Ming; Cheng, Liming; Bollen, Peter;

    2010-01-01

    osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. METHODS: Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC...... and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. RESULTS: In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous......STUDY DESIGN: Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. OBJECTIVE: To validate a large animal model for spine fusion and biomaterial research. SUMMARY OF BACKGROUND DATA: A variety of ovariectomized animals has been used to study...

  20. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    Science.gov (United States)

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  1. Bone Markers

    Science.gov (United States)

    ... bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker for bone resorption. It is ... resorption include: N-telopeptide (N-terminal telopeptide of type 1 collagen (NTx)) – a peptide fragment from the amino terminal ...

  2. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering

    Science.gov (United States)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A.; Janeczek, Agnieszka A.; Kontouli, Nasia; Kanczler, Janos M.; Evans, Nicholas D.; Oreffo, Richard OC

    2016-01-01

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p animal research and a step towards a humanized in vivo model for tissue engineering. PMID:27577960

  3. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal model for tissue engineering.

    Science.gov (United States)

    Moreno-Jiménez, Inés; Hulsart-Billstrom, Gry; Lanham, Stuart A; Janeczek, Agnieszka A; Kontouli, Nasia; Kanczler, Janos M; Evans, Nicholas D; Oreffo, Richard Oc

    2016-01-01

    Biomaterial development for tissue engineering applications is rapidly increasing but necessitates efficacy and safety testing prior to clinical application. Current in vitro and in vivo models hold a number of limitations, including expense, lack of correlation between animal models and human outcomes and the need to perform invasive procedures on animals; hence requiring new predictive screening methods. In the present study we tested the hypothesis that the chick embryo chorioallantoic membrane (CAM) can be used as a bioreactor to culture and study the regeneration of human living bone. We extracted bone cylinders from human femoral heads, simulated an injury using a drill-hole defect, and implanted the bone on CAM or in vitro control-culture. Micro-computed tomography (μCT) was used to quantify the magnitude and location of bone volume changes followed by histological analyses to assess bone repair. CAM blood vessels were observed to infiltrate the human bone cylinder and maintain human cell viability. Histological evaluation revealed extensive extracellular matrix deposition in proximity to endochondral condensations (Sox9+) on the CAM-implanted bone cylinders, correlating with a significant increase in bone volume by μCT analysis (p animal research and a step towards a humanized in vivo model for tissue engineering. PMID:27577960

  4. Animal Bones Char Solubilization by Gel-Entrapped Yarrowia lipolytica on Glycerol-Based Media

    OpenAIRE

    Maria Vassileva; Bettina Eichler-Lobermann; Antonia Reyes; Nikolay Vassilev

    2012-01-01

    Citric acid was produced with free and k-carrageenan-entrapped cells of the yeast Yarrowia lipolytica in single and repeated batch-shake-flask fermentations on glycerol-based media. Simultaneous solubilization of hydroxyapatite of animal bone origin (HABO) was tested in all experiments. The highest citric acid production by free yeast cells of 20.4???g/L and 18.7???g/L was reached after 96???h of fermentation in the absence and presence of 3???g/L HABO, respectively. The maximum values for th...

  5. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review.

    Science.gov (United States)

    Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik

    2016-08-01

    Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions. PMID:26634933

  6. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    Science.gov (United States)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  7. Small animals bone density and morphometry analysis with a dual energy X-rays absorptiometry bone densitometer using a 2D digital radiographic detector

    International Nuclear Information System (INIS)

    LEXXOS (DMS, Montpellier, France) is the first axial and total body cone beam bone densitometer using a 2D digital radiographic detector. In previous papers, technical principles and patients' Bone Mineral Density (BMD) measurement performances were presented. Bone densitometers are also used on small animals for drug development. In this presentation, we show how LEXXOS can be adapted for small animals' examinations and evaluate its performances. At first, in order to take advantage of the whole area of the 20 x 20 cm2 digital radiographic detector, it has been made profit of X-Rays magnification by adapting the geometrical configuration. Secondly, as small animals present low BMD, a specific dual energy calibration has been defined. This adapted system has then been evaluated on two sets of mice: six reference mice and six ovariectomized mice. Each month, these two populations have been examined and the averaged total body BMD has been measured. This evaluation shows that the right order of BMD magnitude is obtained and, as expected, BMD increases on two sets until a period around puberty and the ovariectomized set presents a significant decrease after. Moreover, the bone image obtained by dual energy processing on LEXXOS presents a radiographic image quality providing useful complementary information on bone morphometry and architecture. This study shows that LEXXOS cone beam bone densitometer provides simultaneously useful quantitative and qualitative information for analysis of bone evolution on small animals. In the future, same system architecture and processing methodology can be used with higher resolution detectors in order to refine information on bone architecture. (authors)

  8. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals

    DEFF Research Database (Denmark)

    Jensen, T; Schou, S; Stavropoulos, Andreas;

    2012-01-01

    The objective of the present systematic review was to test the hypothesis of no differences between the use of Bio-Oss or Bio-Oss mixed with autogenous bone as graft for maxillary sinus floor augmentation (MSFA) applying the lateral window technique, as evaluated in animals. A MEDLINE (Pub...... graft improved significantly with increased proportion of Bio-Oss. Bone regeneration, bone-to-implant contact (BIC), biomechanical implant test values, and biodegradation of Bio-Oss after MSFA with Bio-Oss or Bio-Oss mixed with autogenous bone have never been compared within the same study in animals......Med), Embase, and Cochrane Library search in combination with a hand-search of relevant journals was conducted by including animal studies published in English from 1 January 1990 to 1 June 2010. The search provided 879 titles and 14 studies fulfilled the inclusion criteria. The volumetric stability of the...

  9. Bone scintigraphy for the investigation of lameness in small animals; Einsatz der Skelettszintigrafie in der Lahmheitsdiagnostik beim Kleintier

    Energy Technology Data Exchange (ETDEWEB)

    Bolln, G.; Franke, C. [Tieraerztliche Klinik fuer Kleintiere, Norderstedt (Germany)

    2010-03-15

    Bone scintigraphy has been used as a helpful method in diagnosing lameness in small animals. It is a sensitive, non-invasive method to evaluate bone lesions and orthopaedic disorders. It provides a functional image of the skeleton and thereby aiding in the localisation and diagnosing of obscure lameness. Compared to human medicine one important difference is the inability of an animal to characterize its pain to the examiner. Another difference is the lacking cooperation of an animal during bone scintigraphy. Before this background are shown on the basis of 5 examples the advantages, the method and the different indication of bone scintigraphy. The technique of this method arrives from a human medicine protocol of a 2-phase-bone-scintigraphy and has to be done under light anaesthesia, to avoid artefacts of movement during acquisitions. The authors are convinced that bone scintigraphy is a very useful and diagnostic method for evaluation of obscure lameness because it can give a quick diagnosis and aimed therapy. Therefore secondary changes and additional costs can be avoided for the animal and its owner. (orig.)

  10. Content of inorganic phosphorus in animals in the dynamics of acute radiation sickness and following transplantation of bone marrow

    International Nuclear Information System (INIS)

    Experiments carried out on three groups of rats (healthy, irradiated, and irradiated and subsequently subjected to bone-marrow transfusion) showed that irradiation with a lethal dose of X-rays causes a reduction in the inorganic phosphorus content of the liver, spleen and - in particular - the bone marrow. Nevertheless, the specific activity of inorganic phosphorus in these organs increased strongly under the influence of irradiation, the increase being especially marked in the bone marrow towards the end of the observation period. In the author's opinion this is connected with the termination of the generation time of the cells subjected to irradiation, and with very weak repair processes in the bone marrow of the irradiated animals. Bone-marrow transfusion led to the restoration of the inorganic phosphorus content in the spleen and bone marrow by the 30th day of the investigation, while in the liver the original level had not been reached by the end of the observation period. The specific activity of inorganic phosphorus was considerably lower in the animals subjected to bone-marrow transfusion than in the controls, and lay within a range approximating to normal. The data obtained attest the action of bone-marrow transfusion in normalizing phosphorus metabolism. (V.A.P.)

  11. Nano-hydroxyapatite/collagen composites imitating cancellous bone for repair of massive bone defects in rabbits%仿松质骨的胶原/纳米羟基磷灰石人工骨修复兔大段骨缺损

    Institute of Scientific and Technical Information of China (English)

    胡庆柳

    2008-01-01

    背景:课题组自主研发一种仿松质骨生物活性纳米人工骨,在临床试验前进行系列的动物实验提供必需的技术资料.目的:评价自主研发的仿松质骨胶原/纳米羟基磷灰石人工骨的生物可降解性、骨引导性和骨诱导性.设计、时间及地点:随机对照动物实验,于2007-03-01/06-08在广东省医学实验动物中心完成.材料:纳米羟基磷灰石粉末通过共沉淀反应合成.将纳米羟基磷灰石粉末按一定比例加入胶原溶液中充分混合,然后冷冻干燥即得块状纳米人工骨.15只新西兰大白兔,随机分成3组,每组5只,分别为空白对照组、羟基磷灰石珊瑚组和纳米人工骨组.方法:所有动物局部麻醉后在一侧尺骨造成10 mm全缺损,纳米人工骨组和羟基磷灰石珊瑚组分别植入纳米人工骨、羟基磷灰石珊瑚,空白对照组不植入任何物质.在植入后30,60 d,通过大体观察、X射线摄片、电子显微镜及组织学评价该人工骨的的生物相容性和骨诱导性.主要观察指标:纳米人工骨的超微结构,创面愈合情况,人工骨降解情况和缺损区骨组织再生情况.结果:该人工骨具有与天然松质骨相似的内连孔结构、孔隙率和孔径,这种结构有利于骨细胞的长入和血管新生;植入后30 d可见纳米人工骨组缺损处破纳米人工骨修复,人工骨被彻底降解.植入后60d羟基磷灰石珊瑚组未见骨修复和骨降解,仅见大量软组织再生.结论:自制仿松骨胶原/纳米羟基磷灰石人工骨可降解,成骨效果好,可替代自体骨移植修复大段骨缺损.%BACKGROUND: A nano-artificial bone imitating cancellous bone has been developed. It is necessary to perform a series of animal experiments regarding this artificial bone prior to clinical trials for providing technical information.OBJECTIVE: To evaluate the biodegradability, osteoconductivity, and osteoinductivity of nano-hydroxyapatite/collagen (nano

  12. Collagen and Collagen-derived Fragments Are Chemotactic for Tumor Cells

    OpenAIRE

    Mundy, Gregory R; Demartino, Sandra; Rowe, David W.

    1981-01-01

    Organs that are rich in collagen such as liver, lungs, and bone are frequently sites of tumor cell metastasis. In this study, we have found that cultured tumor cells of human and rat origin migrated unidirectionally in response to collagen in vitro. Synthetic di- and tri-peptides that contained amino acid sequences found frequently in the collagen helix caused similar effects. These results are consistent with the hypothesis that collagen or collagen fragments released during connective tissu...

  13. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide).

    Science.gov (United States)

    E, Ling-Ling; Xu, Wen-Huan; Feng, Lin; Liu, Yi; Cai, Dong-Qing; Wen, Ning; Zheng, Wen-Jie

    2016-06-01

    This study investigated the effects of estrogen on the bone regeneration potential of periodontal ligament stem cells (PDLSCs) derived from osteoporotic rats and seeded on a collagen-based composite scaffold [nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA)]. For this purpose, 48 healthy 3‑month-old Sprague-Dawley female rats were divided into 2 groups as follows: the bilaterally ovariectomized (OVX) rats and sham‑operated rats. The PDLSCs were isolated at 3 months after surgery (by which time postmenopausal osteoporosis had developed). The effects of estrogen on the characteristics of these cells seeded in a culture plate and of the cells seeded on nHAC/PLA were then investigated. The PDLSC + nHAC/PLA constructs were implanted subcutaneously into the backs of severe combined immunodeficient (SCID) mice for 12 weeks in order to examine the role of estrogen in the bone formation ability of PDLSCs derived from osteoporotic rats. The results from methyl thiazolyl tetrazolium (MTT) assay revealed that the proliferation of the cells derived from the rats in the OVX group was significantly higher than that of the cells derived from the rats in the sham-operated group at the stage of logarithmic growth. The staining intensity of alkaline phosphatase (ALP) and the mineralization of the cells derived from the rats in the OVX group was significantly weaker than that of the cells from the rats in the sham-operated group. When the PDLSCs were seeded on nHAC/PLA, ALP activity, osteocalcin (OCN) secretion, mineral formation and the mRNA expression levels of ALP, OCN, estrogen receptor (ER)α and ERβ in the cells derived from the rats in the OVX group were markedly decreased. Treatment with 17β-estradiol (E2) significantly weakened the proliferative ability of the cells derived from the OVX group rats, and enhanced their osteogenic differentiation ability and the mRNA expression levels of ALP, OCN, ERα and ERβ. When the constructs were implanted

  14. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. PMID:27060915

  15. Combined Effects of Mechanical Strain and Hydroxyapatite/Collagen Composite on Osteogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising source for bone repair and regeneration. Recent lines of evidence have shown that appropriate strain could regulate the osteogenic differentiation of MSCs. Our previous study demonstrated that hydroxyapatite/collagen (HA/Col composite also played an important role in the osteogenic differentiation of MSCs. The aim of this study is to investigate the effects of mechanical strain and HA/Col composite on the osteogenic differentiation of rat bone marrow derived MSCs (rBMSCs in vitro. rBMSCs were treated with cyclic strain generated by a self-designed stretching device with or without the presence of HA/Col composite. Osteogenic differentiation levels were evaluated using reverse transcription polymerase chain reaction (RT-PCR, alkaline phosphatase spectrophotometry, and western blotting. The results demonstrated that mechanical strain combined with HA/Col composite could obviously induce the differentiation of rBMSCs into osteoblasts, which had a better effect than only mechanical strain or HA/Col composite treatment. This provides a new avenue for mechanistic studies of stem cell differentiation and a novel approach to obtain more committed differentiated cells.

  16. A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone

    OpenAIRE

    Li, Yanlin; Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei

    2008-01-01

    The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for t...

  17. 偏振光显微观察不同胶原纤维在骨折愈合过程中的动态变化%Examination of dynamic changes of different-type collagens in bone fracture healing with a polarized light microscopy

    Institute of Scientific and Technical Information of China (English)

    李章华; 廖文; 张玉富; 赵强; 王常勇

    2005-01-01

    BACKGROUND:Sirius red is a strong acid anionic dye. Being not-easyto-fade and specific, sirius red becomes the best dye for collagen staining.Collagen is a major component of extracellular matrix and has some specific physiological functions. Through synthesis and reconstruction of collagen, bone fracture repair will be accomplished.OBJECTIVE: Picric acid-Sirius red stained slides were observed under a polarized light microscopy for evaluation the dynamic changes in the ratio of different collagen types and their distributions in bone fracture healing.DESIGN: It was a controlled observation.SETTING: It was conducted in the Department of Orthopedics, Renmin Hospital, Wuhan University; Department of Traumatic Orthopaedics, Tianjin Hospital; Department of Traumatic Orthopaedics, Jishuitan Hospital,Medical Department, Peking University; Tissue Engineering Center of Institute of Basic Medical Sciences, Academy of Military Medical Sciences of Chinese PLAMATERIALS: It was conducted at Tissue Engineering Center of Institute of Basic Medical Sciences, Academy of Military Medical Sciences of Chinese PLA from March 2002 to September 2003. Three healthy adult Chinese sheep, male and in weight from 25 to 35 g, were selected.METHODS: All the animals were anesthesized and sterilized; a transverse osteotomy of the trunk of metatarsus was performed; and the end of fracture was fixed with a six-hole Medoff sliding plate. At the post-operative month 1, 3 and 6, samples were taken from bone fractures. After decalcification with EDTA, they were stained with Picric acid-sirius red, and the types and distribution of collagens were observed under a polarized light microscopy.MAIN OUTCOME MEASURES: Types and distributions of collagens in bone lesion in different period of bone healing were investigated.RESULTS: Three sheep used in this study entered the statistical analysis.①Morphological features of various collagens under a polarized light microscopy postoperatively: Type Ⅰ collagen

  18. The role of laboratory animals in studying bone cancer resulting from skeletally deposited radionuclides

    International Nuclear Information System (INIS)

    There is a continuing need to determine and understand the long-term health risks of internally deposited radionuclides in persons exposed medically or occupationally, or from radionuclides in the environment. A full understanding of these health risks, particularly for exposures involving low doses and dose rates, requires in-depth knowledge of both the dosimetry of a given exposure and the resulting long-term biological effects. Human data on 224Ra and 226,228Ra and their decay products are our primary sources of knowledge on the health risks of chronic alpha irradiation of the skeleton and serve as essential segments of our radiation protection practices for internally deposited radionuclides. However, we cannot obtain all of the needed information from these studies. This paper examines the role of laboratory animal studies in complementing and extending the knowledge of radiation-induced bone cancer obtained from studies of humans exposed to 224Ra or 226,228Ra

  19. Healing of Large Segmental Bone Defect after Implantation of Autogenous Cancellous Bone Graft in Comparison to Hydroxyapatite and 0.5% Collagen Scaffold Combined with Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Nečas, A.; Proks, P.; Urbanová, L.; Srnec, R.; Stehlík, L.; Crha, M.; Raušer, P.; Plánka, L.; Janovec, J.; Dvořák, M.; Amler, Evžen; Vojtová, L.; Jančář, J.

    2010-01-01

    Roč. 79, č. 4 (2010), s. 607-612. ISSN 0001-7213 R&D Projects: GA MŠk 2B06130 Institutional support: RVO:68378041 Keywords : fracture fixation * bone healing * comminuted fracture Subject RIV: FI - Traumatology, Orthopedics Impact factor: 0.534, year: 2010

  20. A preliminary carbon and nitrogen isotopic investigation of bone collagen from skeletal remains recovered from a Pre-Columbian burial site, Matanzas Province, Cuba

    International Nuclear Information System (INIS)

    Highlights: ► Collagen isotope (carbon and nitrogen) based reconstruction of paleodiets. ► Human remains recovered from Canimar Abajo, Matanzas Province, Cuba. ► Individuals consumed marine resource diets supplemented with terrestrial plants. ► Trophic level and isotope shifts for breastfed and weaned infant/juveniles (I/J). ► I/J evidence of weaning through distinct δ15N enrichments and δ13C depletions. - Abstract: This preliminary study investigates the diet of a population of humans (n = 28) recovered from a shell-matrix site of Canimar Abajo on the Canimar River, Matanzas Province, Cuba. The site is characterized by two cemetery levels separated by a layer of occupation/ritual/midden activity that lasted 1.5 ka. Stable C (δ13C) and N (δ15N) isotope analysis of human bone collagen samples obtained from individuals (7 infant/juveniles, and 21 adults) from both cemetery levels was conducted in order to reconstruct the diet of these two populations, investigate the relative importance of marine vs. terrestrial resources, and reveal any sex- and age-related distinctions in their food sources. Initial indications suggest that individuals from both cemetery levels consumed diets that were marine resource intensive but also supplemented with varied additions of terrestrial (mostly plant) resources. This supplementation is particularly evident in the later cemetery population. Though there are no significant differences in diet according to sex, there is a trophic level and terrestrial-based shift for breastfed and weaning infant/juveniles. The infant/juveniles showed evidence of being weaned through distinct δ15N enrichments and δ13C depletions over adult females

  1. The study of bone formation of bFGF-collagen slow release system in mandibular defects of rabbit%bFGF-胶原蛋白缓释系统促进兔下颌骨缺损修复的研究

    Institute of Scientific and Technical Information of China (English)

    范伟伟; 麻健丰; 朱莉; 黄志峰; 朱雁林; 周稚辉; 张金桂; 王燕; 王彦亮

    2014-01-01

    Objective To study the possibility of using bFGF-collagen slow release system for repairing bone defect.Methods 60 Japanese white rabbits were randomly divided into three groupthe bFGF collagen sponge group,the collagen sponge group and the control group.Then the bone defects were made in the rabbits′bilateral mandibles,and the biological materials corresponding with each group were inserted into defects.15 of animals were sacrificed at 2、6、8、12 weeks to be evaluated with anatomy,CT studies and histolo-gy.Results General observation and CT imaging showed a faster velocity of bone formation in the control groups.Histological observa-tion showed that the effect of bone repairing in the experimental group was much better than that in the control group.The collagen in vi-vo lasted until 6 weeks ago,and the bFGF which was continuously released from it had obvious promoting effect on bone defect repair, while the action time was mainly 12 weeks ago.Conclusions The bFGF-collagen slow release system has great promoting effect on re-pairing rabbit mandibular defect,while the action time is mainly in the early stage of bone defect repairing.Besides,the collagen sponge itself also has promoting effect on mandibular defect repair.%目的:观察评估 bFGF胶原蛋白缓释系统作为骨修复材料的可能性。方法60只日本大耳白兔随机分成3组:bFGF胶原海绵组,胶原海绵组及空白对照组。手术建立兔双侧下颌骨洞穿性骨缺损模型并植入相应生物材料。分别在2、6、8、12周对造模部位取材,行大体观察、CT影像学检测和组织学观察。结果大体观察和 CT影像学检测显示实验组骨创愈合速度较快。组织学观察可见实验组成骨情况优于同期对照组,胶原蛋白在体内作用时间持续至6周以前,其持续释放的 bFGF颗粒对骨缺损修复有明显的促进作用,但发挥作用时间主要在12周前。结论 bFGF胶原蛋白缓释系统对兔下颌骨

  2. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  3. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  4. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold

    OpenAIRE

    Bornes, Troy D.; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B.

    2016-01-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seedin...

  5. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  6. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    Directory of Open Access Journals (Sweden)

    Ali Mota

    2014-03-01

    Full Text Available Objective: We introduce an RGD (Arg-Gly-Asp-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electron microscopy (SEM and fourier transform infrared spectroscopy (FTIR. We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs. In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and 4',6-diamidino-2-phenylindole (DAPI staining, and the results compared with tissue culture plate, as the control. Results: FTIR results showed that the peptide successfully immobilized on the scaffold. MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation. Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.

  7. Study of early bone formation of basic fibroblast growth factor combined collagen slow-release carrier in mandibular defects of rabbit%复合碱性成纤维细胞生长因子胶原蛋白缓释载体促进早期兔下颌骨缺损修复的研究

    Institute of Scientific and Technical Information of China (English)

    许丽; 范伟伟; 黄志峰; 马锴; 李偲; 顾玲; 李洪远; 王彦亮

    2013-01-01

    目的:观察复合碱性成纤维细胞生长因子(bFGF)的胶原蛋白缓释载体在兔下颌骨缺损成骨修复中的作用,研究bFGF在骨缺损修复中的作用机制及缓释后的作用效果。方法将30只日本大耳白兔随机分成3组:bFGF胶原海绵组、胶原海绵组及对照组,每组各10只。随后外科手术建立兔双侧下颌骨洞穿性骨缺损,实验各组放入相应生物材料。术后2、6周分别处死两组兔,取标本进行大体观察、CT影像学观察和组织病理切片观察。结果实验组与对照组骨缺损愈合均为二期愈合(间接愈合)方式,术后不同时期组织病理切片观察,实验组形成成纤维细胞或类骨质、骨质的速度较对照组快,生成数量较对照组多,分布也较均匀;CT观察显示实验组骨创愈合速度较快。结论复合bFGF的胶原蛋白缓释载体在骨缺损的愈合方面有明显的促进作用。胶原蛋白海绵还能在缺损早期发挥促凝血功能,减少动物出血损伤,加速血肿形成和机化。%Objective To observe the application of basic fibroblast growth factor (bFGF) combined with collagen slow-release carrier in mandibular defects of rabbit, and to study the mechanism as well as the effect of bFGF in bone formation . Methods 30 Japanese white rabbits were randomly divided into three groups:the bFGF collagen sponge group, the collagen sponge group and the control group, 10 rabbits in each group.The bone defects were made in the rabbits’ bilateral mandibles, and the biological materials correspond with each group were inserted into defects. After 2 or 6 weeks of surgery, the postoperative animals were sacrificed,hile the mandible specimens were assessed by gross inspection, CT image and light microscopy. Results The second stage recoveries of operation incisions were obtained for both groups. Form the pathological section , the experiment groups repaired with bigger quantity, faster forming

  8. Collagenous sprue

    DEFF Research Database (Denmark)

    Soendergaard, Christoffer; Riis, Lene Buhl; Nielsen, Ole Haagen

    2014-01-01

    Collagenous sprue is a rare clinicopathological condition of the small bowel. It is characterised by abnormal subepithelial collagen deposition and is typically associated with malabsorption, diarrhoea and weight loss. The clinical features of collagenous sprue often resemble those of coeliac...... disease and together with frequent histological findings like mucosal thinning and intraepithelial lymphocytosis the diagnosis may be hard to reach without awareness of this condition. While coeliac disease is treated using gluten restriction, collagenous sprue is, however, not improved by this...... intervention. In cases of diet-refractory 'coeliac disease' it is therefore essential to consider collagenous sprue to initiate treatment at an early stage to prevent the fibrotic progression. Here, we report a case of a 78-year-old man with collagenous sprue and present the clinical and histological...

  9. Collagen breakdown products and lung collagen metabolism: an in vitro study on fibroblast cultures.

    OpenAIRE

    Gardi, C.; Calzoni, P.; Marcolongo, P.; E. Cavarra; Vanni, L.; Lungarella, G.

    1994-01-01

    BACKGROUND--In fibrotic diseases such as pulmonary fibrosis there is evidence suggesting enhanced synthesis and degradation of lung connective tissue components, including collagen. It has therefore been hypothesised that products of collagen degradation may have a role in the promotion of collagen deposition. In support of this hypothesis, it has recently been shown that intravenous injection of lung collagen degradation products in experimental animals stimulated collagen synthesis leading ...

  10. Measurement of the toughness of bone: A tutorial with special reference to small animal studies✩

    OpenAIRE

    Ritchie, R. O.; Koester, K.J.; Ionova, S.; Yao, W.; Lane, N E; Ager, J. W.

    2008-01-01

    Quantitative assessment of the strength and toughness of bone has become an integral part of many biological and bioengineering studies on the structural properties of bone and their degradation due to aging, disease and therapeutic treatment. Whereas the biomechanical techniques for characterizing bone strength are well documented, few studies have focused on the theory, methodology, and various experimental procedures for evaluating the fracture toughness of bone, i.e., its resistance to fr...

  11. Experimental Study of Diffusion Coefficients of Water through the Collagen: Apatite Porosity in Human Trabecular Bone Tissue

    Directory of Open Access Journals (Sweden)

    Franco Marinozzi

    2014-01-01

    Full Text Available We firstly measured the swelling of single trabeculae from human femur heads during water imbibition. Since the swelling is caused by water diffusing from external surfaces to the core of the sample, by measuring the sample swelling over time, we obtained direct information about the transport of fluids through the intimate constituents of bone, where the mineralization process takes place. We developed an apparatus to measure the free expansion of the tissue during the imbibition. In particular, we measured the swelling along three natural axes (length L, width W, and thickness T of plate-like trabeculae. For this aim, we developed a 3D analytical model of the water uptake by the sample that was performed according to Fickian transport mechanism. The results were then utilized to predict the swelling over time along the three sample directions (L, W, T and the apparent diffusion coefficients DT, DW, and DL.

  12. The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model

    International Nuclear Information System (INIS)

    Objective. To investigate the application of micro-computed tomography (μCT) for the assessment of density differences and deterioration of three-dimensional architecture of trabecular bone in an experimental rat model for tumor- induced osteolytic defects.Design and materials. Walker carcinosarcoma 256 malignant breast cancer cells (W256) were surgically implanted into the medullary canal of the left femur of 15 4-month-old rats. Twenty-eight days after surgery all animals were killed and both femora from each rat were harvested. A total of 30 specimens (left and right femur) were scanned in a desk-top μCT imaging system (μCT 20, Scanco Medical) to assess densitometric and architectural parameters. For each specimen a total of 200 micro-tomographic slices with a resolution of 30 μm in the distal metaphysis was taken. Bone mineral content (BMC) was analyzed for both cortical and trabecular bone (ctBMC), and for trabecular bone only (tBMC). Architectural indices (BV/TV, Tb.N, Tb.Th, Tb.Sp) according to standard definitions used in histomorphometry were calculated for trabecular bone.Results. The quantitative analysis of density parameters revealed significantly (P<0.001) lower values for ctBMC and tBMC in the tumor-bearing group (T) of 26% and 31%, respectively, compared with the contralateral control group. The quantitative analysis revealed significant (P<0.001) changes in the architectural parameters in the tumor-bearing bones compared with the contralateral control group: BV/TV was 30% lower, Tb.N and BS/TV decreased by 24% and 21%, respectively, Tb.Th. decreased by 10% and Tb.Sp. increased by 94%.Conclusions. This study demonstrates that μCT is able to provide three-dimensional parameters of bone mass and trabecular structure in an animal model for tumor-induced bone loss. Recent advances in therapeutic approaches for skeletal diseases such as osteoporosis and metastatic bone disease rely on an understanding of the effects of the agents on the mechanical

  13. The effect of an osteolytic tumor on the three-dimensional trabecular bone morphology in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, A.A. [Orthopedic Biomechanics Lab. (OBL), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States); Dept. of Orthopaedic Surgery, University Hospital Frankfurt (Germany); Mueller, R. [Orthopedic Biomechanics Lab. (OBL), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (United States)

    2001-02-01

    Objective. To investigate the application of micro-computed tomography ({mu}CT) for the assessment of density differences and deterioration of three-dimensional architecture of trabecular bone in an experimental rat model for tumor- induced osteolytic defects.Design and materials. Walker carcinosarcoma 256 malignant breast cancer cells (W256) were surgically implanted into the medullary canal of the left femur of 15 4-month-old rats. Twenty-eight days after surgery all animals were killed and both femora from each rat were harvested. A total of 30 specimens (left and right femur) were scanned in a desk-top {mu}CT imaging system ({mu}CT 20, Scanco Medical) to assess densitometric and architectural parameters. For each specimen a total of 200 micro-tomographic slices with a resolution of 30 {mu}m in the distal metaphysis was taken. Bone mineral content (BMC) was analyzed for both cortical and trabecular bone (ctBMC), and for trabecular bone only (tBMC). Architectural indices (BV/TV, Tb.N, Tb.Th, Tb.Sp) according to standard definitions used in histomorphometry were calculated for trabecular bone.Results. The quantitative analysis of density parameters revealed significantly (P<0.001) lower values for ctBMC and tBMC in the tumor-bearing group (T) of 26% and 31%, respectively, compared with the contralateral control group. The quantitative analysis revealed significant (P<0.001) changes in the architectural parameters in the tumor-bearing bones compared with the contralateral control group: BV/TV was 30% lower, Tb.N and BS/TV decreased by 24% and 21%, respectively, Tb.Th. decreased by 10% and Tb.Sp. increased by 94%.Conclusions. This study demonstrates that {mu}CT is able to provide three-dimensional parameters of bone mass and trabecular structure in an animal model for tumor-induced bone loss. Recent advances in therapeutic approaches for skeletal diseases such as osteoporosis and metastatic bone disease rely on an understanding of the effects of the agents on the

  14. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Directory of Open Access Journals (Sweden)

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  15. Animal Bones Char Solubilization by Gel-Entrapped Yarrowia lipolytica on Glycerol-Based Media

    Directory of Open Access Journals (Sweden)

    Maria Vassileva

    2012-01-01

    Full Text Available Citric acid was produced with free and k-carrageenan-entrapped cells of the yeast Yarrowia lipolytica in single and repeated batch-shake-flask fermentations on glycerol-based media. Simultaneous solubilization of hydroxyapatite of animal bone origin (HABO was tested in all experiments. The highest citric acid production by free yeast cells of 20.4 g/L and 18.7 g/L was reached after 96 h of fermentation in the absence and presence of 3 g/L HABO, respectively. The maximum values for the same parameter achieved by gel-entrapped cells in conditions of single batch and repeated-batch fermentation processes were 18.7 g/L and 28.1 g/L registered after 96 h and the 3d batch cycle, respectively. The highest citric acid productivity of 0.58 g L−1 h−1 was obtained with immobilized cells in repeated batch mode of fermentation when the added hydroxyapatite of 3 g/L was solubilized to 399 mg/L whereas the maximum efficiency of 89.0% was obtained with 1 g/L of HABO.

  16. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.

    Science.gov (United States)

    Ng, Adeline H; Omelon, Sidney; Variola, Fabio; Allo, Bedilu; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2016-02-01

    Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long-term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X-ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age-related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover. PMID:26332924

  17. Combined Effect of a Microporous Layer and Type I Collagen Coating on a Biphasic Calcium Phosphate Scaffold for Bone Tissue Engineering

    OpenAIRE

    Mun-Hwan Lee; Changkook You; Kyo-Han Kim

    2015-01-01

    In this study, type I collagen was coated onto unmodified and modified microporous biphasic calcium phosphate (BCP) scaffolds. Surface characterization using a scanning electron microscope (SEM) and a surface goniometer confirmed the modification of the BCP coating. The quantity of the collagen coating was investigated using Sirius Red staining, and quantitative assessment of the collagen coating showed no significant differences between the two groups. MG63 cells were used to evaluate cell p...

  18. Differences in electrophysiological properties of functionally identified nociceptive sensory neurons in an animal model of cancer-induced bone pain

    Science.gov (United States)

    Zhu, Yong Fang; Ungard, Robert; Seidlitz, Eric; Zacal, Natalie; Huizinga, Jan; Henry, James L

    2016-01-01

    Background Bone cancer pain is often severe, yet little is known about mechanisms generating this type of chronic pain. While previous studies have identified functional alterations in peripheral sensory neurons that correlate with bone tumours, none has provided direct evidence correlating behavioural nociceptive responses with properties of sensory neurons in an intact bone cancer model. Results In a rat model of prostate cancer-induced bone pain, we confirmed tactile hypersensitivity using the von Frey test. Subsequently, we recorded intracellularly from dorsal root ganglion neurons in vivo in anesthetized animals. Neurons remained connected to their peripheral receptive terminals and were classified on the basis of action potential properties, responses to dorsal root stimulation, and to mechanical stimulation of the respective peripheral receptive fields. Neurons included C-, Aδ-, and Aβ-fibre nociceptors, identified by their expression of substance P. We suggest that bone tumour may induce phenotypic changes in peripheral nociceptors and that these could contribute to bone cancer pain. Conclusions This work represents a significant technical and conceptual advance in the study of peripheral nociceptor functions in the development of cancer-induced bone pain. This is the first study to report that changes in sensitivity and excitability of dorsal root ganglion primary afferents directly correspond to mechanical allodynia and hyperalgesia behaviours following prostate cancer cell injection into the femur of rats. Furthermore, our unique combination of techniques has allowed us to follow, in a single neuron, mechanical pain-related behaviours, electrophysiological changes in action potential properties, and dorsal root substance P expression. These data provide a more complete understanding of this unique pain state at the cellular level that may allow for future development of mechanism-based treatments for cancer-induced bone pain. PMID:27030711

  19. Pilot in vivo animal study of bone regeneration by fractional Er: YAG-laser

    Science.gov (United States)

    Altshuler, Gregory B.; Belikov, Andrey V.; Shatilova, Ksenia V.; Yaremenko, Andrey I.; Zernitskiy, Alexander Y.; Zernitckaia, Ekaterina A.

    2016-04-01

    The histological structure of the rabbit parietal bone during its regeneration after fractional Er: YAG-laser (λ=2.94μm) treatment was investigated by hematoxylin and eosin (H&E) stain. In 48 days after fractional laser treatment, bone samples contained micro-cavities and fragments of necrotic tissue with empty cellular lacuna and coagulated protein of bone matrix. In this case, necrotic lesions appeared around the periphery of micro-cavities created by laser radiation. Fragmentation of detrital mass and partial substitution of micro-cavities with fatty bone marrow were observed in bone samples in 100 days after fractional laser treatment, in contrast to the earlier period. Partial filling of micro-cavities edges by fibrous tissue with presence of osteoblasts on their inner surface was observed in 100 days also, that indicates regenerative processes in the bone.

  20. Functional adaptation of long bone extremities involves the localized ``tuning'' of the cortical bone composition; evidence from Raman spectroscopy

    Science.gov (United States)

    Buckley, Kevin; Kerns, Jemma G.; Birch, Helen L.; Gikas, Panagiotis D.; Parker, Anthony W.; Matousek, Pavel; Goodship, Allen E.

    2014-11-01

    In long bones, the functional adaptation of shape and structure occurs along the whole length of the organ. This study explores the hypothesis that adaptation of bone composition is also site-specific and that the mineral-to-collagen ratio of bone (and, thus, its mechanical properties) varies along the organ's length. Raman spectroscopy was used to map the chemical composition of long bones along their entire length in fine spatial resolution (1 mm), and then biochemical analysis was used to measure the mineral, collagen, water, and sulfated glycosaminoglycan content where site-specific differences were seen. The results show that the mineral-to-collagen ratio of the bone material in human tibiae varies by 10% toward the flared extremities of the bone. Comparisons with long bones from other large animals (horses, sheep, and deer) gave similar results with bone material composition changing across tens of centimeters. The composition of the bone apatite also varied with the phosphate-to-carbonate ratio decreasing toward the ends of the tibia. The data highlight the complexity of adaptive changes and raise interesting questions about the biochemical control mechanisms involved. In addition to their biological interest, the data provide timely information to researchers developing Raman spectroscopy as a noninvasive tool for measuring bone composition in vivo (particularly with regard to sampling and measurement protocol).

  1. New bone-seeking agent. Animal study of Tc-99m-incadronate

    International Nuclear Information System (INIS)

    Disodium cycloheptylaminomethylenediphosphonate monohydrate (incadronate disodium) is a third-generation bisphosphonate compound which potently inhibits bone resorption, and a highly effective drug in the treatment of metastatic bone disease. We first labeled incadronate disodium with 99mTc, and examined its biodistribution and bone uptake after intravenous injection in rats to assess its potential for clinical use as a bone-seeking agent for judgment of the therapeutic effect of incadronate on bone metastases. Bone scan with 99mTc-labeled incadronate (99mTc-incadronate) may yield important information prior to the use of incadronate for treatment of bone metastases. Synthesis of 99mTc-incadronate was carried out by reduction of 99mTc-pertechnetate in the presence of SnCl2 and N2 gas. Normal rats were injected with 18.5 MBq (0.5 mCi) 99mTc-incadronate in a volume of 0.1 ml intravenously and then sacrificed at 15 min, 30 min, 1 h or 2 h (six rats at each time point) after injection. Samples of muscle, stomach, small intestine, kidney, liver and bone (femur) were taken and weighed. In addition, a 1-ml sample of blood was drawn from the heart, and urine was taken from the urinary bladder immediately after sacrifice. Samples were measured for radioactivity and expressed as percent uptake of injected dose per gram or per milliliter (% ID/g or ml). Bone-to-blood and bone-to-muscle uptake ratios were determined from the % ID/g or ml values for these organs. The greatest accumulation of 99mTc-incadronate was found in bone. Radioactivity in bone was as high as 3.22±0.68% ID/g at 2 hours after injection. Scintigraphic images of 99mTc-incadronate in normal rats revealed highly selective skeletal uptake. 99mTc-incadronate exhibited high uptake in bone, and relatively low uptake in soft tissue, suggesting that it may be useful as a bone-seeking agent for judgment of the therapeutic effect of incadronate on bone metastases, by determining the degree of its accumulation in

  2. Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I.

    Directory of Open Access Journals (Sweden)

    Francesco Paduano

    Full Text Available The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs on hydrogel scaffolds derived from bone extracellular matrix (bECM in comparison to those seeded on collagen I (Col-I, one of the main components of dental pulp ECM.DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF supplements. DPSCs cultivated on tissue culture polystyrene (TCPS with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP, dentin matrix protein 1 (DMP-1 and matrix extracellular phosphoglycoprotein (MEPE was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR and mineral deposition was observed by Von Kossa staining.When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions.These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.

  3. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold.

    Science.gov (United States)

    Bornes, Troy D; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B

    2016-03-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 10(6) cells/cm(3). Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 10(6) BMSCs/cm(3). For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 10(6) BMNCs/cm(3) and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to predifferentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5-10 × 10(6) BMSCs/cm(3). Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5-10 × 10(6) BMSCs/cm(3) based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II m

  4. Animals

    International Nuclear Information System (INIS)

    The radionuclides of most concern with respect to contamination of animals after a nuclear accident are radioiodine, radiocaesium and radiostrontium (ICRP 30, 1979). Of the other significant anthropogenic radionuclides likely to be released in most accidents, only small proportions of that ingested will be absorbed in an animals gut, and the main animal products, milk and meat, will not normally be contaminated to a significant extent. Animal products will mostly be contaminated as a result of ingestion of contaminated feed and possibly, but to a much lesser extent, from inhalation (for radioiodine only). Direct external contamination of animals is of little or no consequence in human food production. Radioiodine and radiostrontium are important with respect to contamination of milk; radiocaesium contaminates both milk and meat. The physical and chemical form of a radionuclide can influence its absorption in the animal gut. For example, following the Chernobyl accident radiocaesium incorporated into vegetation by root uptake was more readily absorbed than that associated with the original deposit. The transfer of radiocaesium and radiostrontium to animals will be presented both as transfer coefficients and aggregated transfer coefficients. For most animal meat products, only radiocaesium is important as other radionuclides do not significantly contaminate muscle. Farm animal products are the most important foodstuff determining radiocaesium intake by the average consumer in the Nordic countries. The major potential source of radioiodine and radiostrontium to humans is milk and milk products. Of the different species, the smaller animals have the highest transfer of radiocaesium from fodder to meat and milk. (EG)

  5. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study.

    Science.gov (United States)

    Tang, Jia; Saito, Takashi

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals) for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area. PMID:26491653

  6. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    Directory of Open Access Journals (Sweden)

    Jia Tang

    2015-01-01

    Full Text Available Type I collagen (COL-1 is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area.

  7. Brazilian minipig as a large-animal model for basic research and stem cell-based tissue engineering. Characterization and in vitro differentiation of bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Roberta Targa STRAMANDINOLI-ZANICOTTI

    2014-06-01

    Full Text Available Stem cell-based regenerative medicine is one of the most intensively researched medical issues. Pre-clinical studies in a large-animal model, especially in swine or miniature pigs, are highly relevant to human applications. Mesenchymal stem cells (MSCs have been isolated and expanded from different sources. Objective: This study aimed at isolating and characterizing, for the first time, bone marrow-derived MSCs (BM-MSCs from a Brazilian minipig (BR1. Also, this aimed to validate a new large-animal model for stem cell-based tissue engineering. Material and Methods: Bone marrow (BM was aspirated from the posterior iliac crest of twelve adult male BR1 under general anesthesia. MSCs were selected by plastic-adherence as originally described by Friedenstein. Cell morphology, surface marker expression, and cellular differentiation were examined. The immunophenotypic profile was determined by flow cytometry. The differentiation potential was assessed by cytological staining and by RT-PCR. Results: MSCs were present in all minipig BM samples. These cells showed fibroblastic morphology and were positive for the surface markers CD90 (88.6%, CD29 (89.8%, CD44 (86.9% and negative for CD34 (1.61%, CD45 (1.83%, CD14 (1.77% and MHC-II (2.69%. MSCs were differentiated into adipocytes, osteoblasts, and chondroblasts as demonstrated by the presence of lipidic-rich vacuoles, the mineralized extracellular matrix, and the great presence of glycosaminoglycans, respectively. The higher gene expression of adipocyte fatty-acid binding protein (AP2, alkaline phosphatase (ALP and collagen type 2 (COLII also confirmed the trilineage differentiation (p<0.001, p<0.001, p=0.031; respectively. Conclusions: The isolation, cultivation, and differentiation of BM-MSCs from BR1 makes this animal eligible as a useful large-animal model for stem cell-based studies in Brazil.

  8. An in vivo technique for the measurement of bone blood flow in animals

    International Nuclear Information System (INIS)

    A new technique to measure the in vivo clearance of 41Ar from the bone mineral matrix is demonstrated following fast neutron production of 41Ar in bone via the 44Ca(n,α) reaction at 14.1 MeV. At the end of irradiation, the 41Ar activity is assayed with a Ge(Li) detector where sequential gamma-ray spectra are taken. Following full-energy peak integration, background and dead time correction, the activity of 41Ar as a function of time is determined. Results indicated that the Ar washout from bone in rats using this technique was approximately 16 ml (100 ml min)-1 and in agreement with other measurement techniques. For sheep the bone perfusion in the tibia was approximately 1.9+-0.2 ml (100 ml min)-1. (author)

  9. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  10. Use of perfusion bioreactors and large animal models for long bone tissue engineering

    OpenAIRE

    Gardel, Leandro. S.; Serra, L. A.; Reis, R. L.; Gomes, Manuela E.

    2014-01-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone graf...

  11. Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model.

    Science.gov (United States)

    Monteiro, Lucas Oliveira; Macedo, Ana Paula; Shimano, Roberta Carminati; Shimano, Antônio Carlos; Yanagihara, Gabriela Rezende; Ramos, Junia; Paulini, Marina Ribeiro; Tocchini de Figueiredo, Fellipe Augusto; Gonzaga, Miliane Gonçalves; Issa, João Paulo Mardegan

    2016-08-01

    The objective of this study was to evaluate the microarchitecture and trabecular bone strength at the distal region of the femur, and its biomechanical properties with simvastatin administration with two different doses in ovariectomized (OVX) rats. Ninety rats were divided into six groups to evaluate treatment with the simvastatin drug (n = 15): SH (Sham surgery), SH-5 (5 mg simvastatin), SH-20 (20 mg simvastatin), OVX, OVX-5, and OVX-20. Euthanasia was performed at three different times, five animals per period: 7, 14, and 28 days. The effectiveness of the treatments was evaluated by mechanical testing and histomorphometric analysis of the femurs. The results of analysis by the linear model of mixed effects showed 20 mg of simvastatin results in increased trabecular bone after 14 days (P = 0.039) of ingestion in ovariectomized animals. However, ingestion of 5 mg of simvastatin is able to sensitize the trabecular bone only at 28 days (P = 0.005) of ingestion. In the mechanical tests stiffness improves within 28 days (P = 0.003). Regarding maximum strength, no statistical differences were observed. According to these results, it can be concluded that for a decrease in oral intake, longer treatment times are required. Microsc. Res. Tech. 79:684-690, 2016. © 2016 Wiley Periodicals, Inc. PMID:27186631

  12. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence

    OpenAIRE

    Kittisak Buddhachat; Sarisa Klinhom; Puntita Siengdee; Brown, Janine L.; Raksiri Nomsiri; Patcharaporn Kaewmong; Chatchote Thitaram; Pasuk Mahakkanukrauh; Korakot Nganvongpanit

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biologic...

  13. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia

    International Nuclear Information System (INIS)

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm−2 and 0.061 ± 0.008 mBq cm−2, whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm−2 and 0.7700 ± 0.0282 mBq cm−2, respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm−2, whereas that of female teeth was 0.0199 ± 0.0010 mBq cm−2. The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm−2) than in non-smokers (0.0179 ± 0.0008 mBq cm−2). Such difference was found statistically significant (p < 0.01). - Highlights: • Alpha emission rates in teeth from smokers slightly higher than non-smokers. • Difference between alpha rates in male and female tooth not statistically significant. • Alpha particles have the same effect at any age. • Difference between alpha rates in bones was statistically significant

  14. Value of SPIO for MRI of the bone marrow before and after total body irradiation (TBI) - initial investigations in an animal model

    International Nuclear Information System (INIS)

    Evaluation of the value of superparamagnetic iron oxides (SPIO; Endorem trademark) for MRI-derived quantifications of the permeability of the blood-bone marrow barrier and the phagocytic activity of reticuloendothelial system (RES) bone marrow cells before and after TBI. Methods: 12 New Zealand white rabbits underwent MRI of the lumbar spine and os sacrum using T1-weighted spinecho (SE) and T2-weighted Turbo-SE (TSE) sequences before and after injection of SPIO (Endorem trademark). Four animals each were examined without irradiation, after 4 Gy total body irradiation (TBI), and after 12 Gy TBI. Changes in bone marrow signal intensities (SI) after contrast agent injection were quantified as Δ SI(%) = vertical stroke ((SIpost-SIpre)/SIpre) x 100% vertical stroke and these data were correlated with bone marrow histopathology. Results: Histopathology of the bone marrow revealed a radiation-induced decline of all hematopoetic cell lines. SPIO were phagocytosed by bone marrow RES cells and caused a significant bone marrow signal decline on postcontrast T2-weighted images (p 2-weighted images were significantly higher for the irradiated bone marrow as compared to non-irradiated controls (p 1-weighted images directly after contrast medium injection were not able to characterize the permeability of the blood-bone marrow barrier. Conclusion: Hematopoetic bone marrow can be labelled with SPIO. Irradiation does not impair the phagocytic activity of bone marrow RES cells. However, the bone marrow enhancement with SPIO is smaller as compared to previous results obtained by our group with USPIO. (orig.)

  15. Biocompatibility of Novel Type I Collagen Purified from Tilapia Fish Scale: An In Vitro Comparative Study

    OpenAIRE

    Jia Tang; Takashi Saito

    2015-01-01

    Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exp...

  16. A noninvasive analysis of urinary musculoskeletal collagen metabolism markers from rhesus monkeys subject to chronic hypergravity

    OpenAIRE

    Martinez, D. A.; Patterson-Buckendahl, P. E.; Lust, A.; Shea-Rangel, K. M.; Hoban-Higgins, T. M.; Fuller, C. A.; Vailas, A. C.

    2008-01-01

    A decrease in load-bearing activity, as experienced during spaceflight or immobilization, affects the musculoskeletal system in animals and humans, resulting in the loss of bone and connective tissue. It has been suggested that hypergravity (HG) can counteract the deleterious effects of microgravity-induced musculoskeletal resorption. However, little consensus information has been collected on the noninvasive measurement of collagen degradation products associated with enhanced load-bearing s...

  17. Suppression of type II collagen-induced arthritis by intragastric administration of soluble type II collagen.

    OpenAIRE

    NAGLER-ANDERSON, C; Bober, L A; Robinson, M E; Siskind, G W; Thorbecke, G. J.

    1986-01-01

    Although oral administration of protein antigens may lead to specific immunologic unresponsiveness, this method of immunoregulation has not been applied to models of autoimmune disease. Type II collagen-induced arthritis is an animal model of polyarthritis induced in susceptible mice and rats by immunization with type II collagen, a major component of cartilage. Intragastric administration of soluble type II collagen, prior to immunization with type II collagen in adjuvant, suppresses the inc...

  18. The Nerve Supply of the Bone Marrow in Different Laboratory Animals

    International Nuclear Information System (INIS)

    The proliferation and release of the different types of cells from the bone marrow presents so many obscurities in the explanation of the maintenance of homeostasis at the level of the blood corpuscles that one wonders if this difficulty is due to a lack of information in some important area. The function of an organ, and the influence that other organs may have on its physiological and pathological changes, cannot be understood if the role of the nervous system and the hormones are not taken into consideration; but when we study the bone marrow and speak about its function as a blood-forming organ, the nervous system is continually ignored. The situation is such that the first question that comes to mind is this: Are there nerves in the bone marrow? The answer of the old anatomists was: Yes. The description of nerves entering into the bone cavity can be found in papers published more than one hundred years ago, but the description of their distribution and relation with the different elements of the marrow is vague and contradictory. Consequently we considered it worthwhile to study the problem of the innervation of the bone marrow anew

  19. The use of lyophilised bovine bone xenograft in mandibular reconstructive surgery - an animal experimental surgery

    International Nuclear Information System (INIS)

    The aim of this study is to look at the effectiveness of using lyophillised bovine bone xenograft in mandibular reconstructive surgery. Six adult merino sheep underwent bilateral marginal block resection of the mandible under general anaesthesia. The defect on the right body of mandible was left alone while the similar mandibulectomy defect on the left body of mandible was reconstructed using a cortico-cancellous block of radiosterilised lyophillised bovine bone xenograft which was procured from a calve femur. The bone xenograft was fixed and immobilized using titanium mini plates and screws. All the sheep returned to the controlled grazing ground on the 7th. Postoperative day. One sheep was sacrificed every month and the mandible was retrieved for postmortem gross and microscopical histological examination. Clinical results showed no evidence of tissue rejection in the mandible of the sheep and all the wounds healed well. All sheep showed no problem with normal eating habits. Histological examination showed resorption of the xenograft very early at one month postoperative and xenograft resorption together with new host bone deposition started at 2 months postoperative and maximise at 6 months postoperative. There is also evidence showing that the cancellous portion resorp more than the cortical portion of the xenograft. In conclusion, cortico-cancellous blocks of bovine bone xenograft may be use in mandibular reconstructive surgery giving esthetically acceptable, functional, biocompatible and overall clinically predictable results

  20. Collagen fibril formation during development

    International Nuclear Information System (INIS)

    Studies with embryonic skin and bone suggested that the aminopropeptide (AP) and carboxylpropeptide (CP) of type I pro-callagen (pro-col) play a role in fibril formation. Chick leg metatarsal tendons were studied by electron microscopy. AP and CP of type I pro-col were purified from chick leg tendons; antibodies developed in rabbits and purity tested by radioimmunoassays. Antibodies were used for immunofluorescence microscopy (IFM) and immunoblotting (IB). The peritendineum, consisting of thin 20-30 nm fibrils, revealed the AP of type I and type III procol. In the tendon area, collagen fibrils were arranged within small compartments and were of uniform diameter at 10d, 14d and 18d. However, beyond 21d, there was confluency of the compartments and a wide range of fibril diameters. IFM revealed fine streaks of collagen, staining with the AP of type I throughout the tendon. The CP was mainly intracellular with only a small amount present in the extracellular space. IB revealed procollagen, pN-collagen (AP+collagen) and pC-collagen, (CP+collagen) at all stages of development. Ratios of pN/pC collagen, determined by spectrophotometric scanning of autoradiographs, correlated well with the distribution of fibril diameter. This study suggests the hypothesis that AP initiates fibrillogenesis while CP may regulate additional fibril growth

  1. Multiscale imaging of bone microdamage

    OpenAIRE

    Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and fu...

  2. Establishment of an animal model of a pasteurized bone graft, with a preliminary analysis of muscle coverage or FGF-2 administration to the graft

    Directory of Open Access Journals (Sweden)

    Nakayama Koichi

    2009-08-01

    Full Text Available Abstract Background Pasteurized bone grafting is used following the excision of a bone tumor for the purpose of eliminating neoplastic cells while preserving bone-inducing ability. In the hopes of guaranteeing the most favourable results, the establishment of an animal model has been urgently awaited. In the course of establishing such a model, we made a preliminary examination of the effect of muscle coverage or fibroblast growth factor 2 (FGF-2 administration radiographically. Methods Forty pasteurized intercalary bone grafts of the Wistar rat femur treated at 60°C for 30 min were reimplanted and stabilized with an intramedullary nail (1.1 mm in diameter. Some grafts were not covered by muscle after the implantation, so that they could act as a clinical model for wide resection, and/or these were soaked with FGF-2 solution prior to implantation. The grafts were then divided into 3 groups, comprising 12 grafts with muscle-covering but without FGF-2 (MC+; FGF2-, 12 grafts without muscle-covering and without FGF-2 (MC-; FGF2- and 16 grafts without muscle covering but with FGF-2 (MC-; FGF2+. Results At 2 weeks after grafting, the pasteurized bone model seemed to be successful in terms of eliminating living cells, including osteocytes. At 4 weeks after grafting, partial bone incorporation was observed in half the (MC+; FGF2- cases and in half the (MC-; FGF2+ cases, but not in any of the (MC-; FGF2- cases. At 12 weeks after grafting, bone incorporation was seen in 3 out of 4 in the (MC+; FGF2- group (3/4: 75% and in 3 out of 8 in the (MC-; FGF2+ group (3/8: 38%. However, most of the grafted bones without FGF-2 were absorbed in all the cases, massively, regardless of whether there had been muscle-covering (MC+; FGF2-; 4/4: 100% or no muscle-covering (MC-; FGF2-; 4/4: 100%, while bone absorption was noted at a lower frequency (2/8: 25% and to a lower degree in the (MC-; FGF2+ group. Conclusion In conclusion, we have established an animal pasteurized

  3. Animals

    Institute of Scientific and Technical Information of China (English)

    杨光

    2000-01-01

    The largest animal ever to live on the earth is the blue whale(蓝鲸)It weighs about 80 tons--more than 24 elephants. It is more than 30 metres long. A newborn baby whale weighs as much as a big elephant.

  4. Mineralization of Hydroxyapatite Regulated by Recombinant Human-like Collagen

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We reported recombinant human-like type I collagen inducing growth of hydroxyapatite crystals in vitro in the form of self-assembly of nano-fibrils of mineralized collagen resembling extracellular matrix, which obey the same rules, but is superior to the collagen derived from animal tissues because the latter may carry diseases of animals and cause immunological reactions. The mineralized collagen fibrils aligned parallel to each other to form mineralized collagen fibers. Hydroxyapatite nanocrystals grew on the surface of these collagen fibrils with the c-axis of nanocrystals of HA orienting along the longitudinal axis of the fibrils.

  5. Makings of a brittle bone: Unexpected lessons from a low protein diet study of a mouse OI model.

    Science.gov (United States)

    Mertz, E L; Makareeva, E; Mirigian, L S; Koon, K Y; Perosky, J E; Kozloff, K M; Leikin, S

    2016-01-01

    Glycine substitutions in type I collagen appear to cause osteogenesis imperfecta (OI) by disrupting folding of the triple helix, the structure of which requires Gly in every third position. It is less clear, however, whether the resulting bone malformations and fragility are caused by effects of intracellular accumulation of misfolded collagen on differentiation and function of osteoblasts, effects of secreted misfolded collagen on the function of bone matrix, or both. Here we describe a study originally conceived for testing how reducing intracellular accumulation of misfolded collagen would affect mice with a Gly610 to Cys substitution in the triple helical region of the α2(I) chain. To stimulate degradation of misfolded collagen by autophagy, we utilized a low protein diet. The diet had beneficial effects on osteoblast differentiation and bone matrix mineralization, but also affected bone modeling and suppressed overall animal growth. Our more important observations, however, were not related to the diet. They revealed how altered osteoblast function and deficient bone formation by each cell caused by the G610C mutation combined with increased osteoblastogenesis might make the bone more brittle, all of which are common OI features. In G610C mice, increased bone formation surface compensated for reduced mineral apposition rate, resulting in normal cortical area and thickness at the cost of altering cortical modeling process, retaining woven bone, and reducing the ability of bone to absorb energy through plastic deformation. Reduced collagen and increased mineral density in extracellular matrix of lamellar bone compounded the problem, further reducing bone toughness. The latter observations might have particularly important implications for understanding OI pathophysiology and designing more effective therapeutic interventions. PMID:27039252

  6. Effect of type I collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    刘刚; 胡蕴玉; 赵建宁; 吴苏稼; 熊卓; 吕荣

    2004-01-01

    Objective: To investigate the effects of porous poly lactide-co-glycolide (PLGA) modified by type I collagen on the adhesion, proliferation, and differentiation of rabbit marrow-derived mesenchymal stem cells (MSCs). Methods: The third generation MSCs isolated from mature rabbits by density gradient centrifugation were cultured at different initial concentrations on 0.3 cm×1.2 cm×2.0 cm 3-D porous PLGA coated by type I collagen in RPMI 1640 containing 10% fetal calf serum, while cultured on PLGA without type I collagen as control. The cells adhesive and proliferative behavior at 7, 14, and 21 days after inoculation was assessed by determining the incorporation rate of [3H]-TdR. In order to examine MSCs differentiation, the expression of osteoblasts marker genes, osteocalcin (OCN), alkaline phosphatase (ALP), osteopontin (OPN) mRNA, were evaluated by reverse transcription-polymerase chain reaction (RT-PCR), and further more, the cell morphology at 21 days was also observed by scanning electron microscope (SEM). Results: Type I collagen promoted cell adhesion on PLGA. The valve was significantly higher than controls (6 h, 2144 cpm±141cpm vs. 1797 cpm±118 cpm, P=0.017; 8 h, 2311 cpm±113 cpm vs. 1891 cpm±103 cpm, P=0.01). The cells which cultured on PLGA coated with type I collagen showed significantly higher cell proliferation than controls on the 7th day (1021 cpm±159 cpm vs. 451 cpm±67 cpm, P=0.002), the 14th day (1472 cpm±82 cpm vs. 583 cpm±67 cpm, P<0.001) and 21th day (1728 cpm±78 cpm vs. 632 cpm±55 cpm, P<0.001). Osteoblasts markers, OCN, ALP, OPN mRNA, were all detected on PLGA coated by type I collagen on the 21th day, but OCN, OPN mRNA could not be found in controls. Spindle and polygonal cells well distributed on the polymer coated by type I collagen while cylindric or round cells in controls. Conclusions: Type I collagen is effective in promoting the adhesion, proliferation and differentiation of MSCs on PLGA.

  7. A statistical model to allow the phasing out of the animal testing of demineralised bone matrix products.

    Science.gov (United States)

    Murray, Samuel S; Brochmann, Elsa J; Harker, Judith O; King, Edward; Lollis, Ryan J; Khaliq, Sameer A

    2007-08-01

    Demineralised bone matrix (DBM) products are complex mixtures of proteins known to influence bone growth, turnover, and repair. They are used extensively in orthopaedic surgery, and are bioassayed in vivo prior to being used in clinical applications. Many factors contribute to the osteogenic potency of DBM, but the relative contributions of these factors, as well as the possibility of interactive effects, are not completely defined. The "gold standard" measure of the therapeutic value of DBM, the in vivo assay for ectopic bone formation, is costly, time-consuming, and involves the use of numerous animal subjects. We have measured the levels of five growth factors released by the collagenase digestion of DBM, and statistically related these levels with osteogenic potency as determined by a standard in vivo model, in order to determine which value or combination of values of growth factors best predict osteogenic activity. We conclude that the level of BMP-2 is the best single predictor of osteogenic potency, and that adding the values of other growth factors only minimally increases the predictive power of the BMP-2 measurement. A small, but significant, interactive effect between BMP-2 and BMP-7 was demonstrated. We present a statistical model based on growth factor (e.g. BMP-2) analysis that best predicts the in vivo assay score for DBM. This model allows the investigator to predict which lots of DBM are likely to exhibit in vivo bioactivity and which are not, thus reducing the need to conduct in vivo testing of insufficiently active lots of DBM. This model uses cut-point analysis to allow the user to assign an estimate of acceptable uncertainty with respect to the "gold standard" test. This procedure will significantly reduce the number of animal subjects used to test DBM products. PMID:17850186

  8. EPR evaluation of absorbed doses in γ-irradiated animal bone tissues

    International Nuclear Information System (INIS)

    By the ESR method accumulation of CO2- radicals in γ-irradiated bone tissues of swine, chicken, cattle, navaga and other small fish of the cod family, hen's eggs shell was studied to reveal the fact of radiation exposure and to evaluate exposure dose received during radiation treatment of food stuffs. It is shown that in the range of doses 0-10 kGy dependence of the radicals concentration on dose is of linear character, while coefficient of the radicals radiation-chemical yield variation for diverse biological types of bone tissue does not exceed 30 %. Potentiality of using the method of additive doses for the ESR dosimetry of radiation-treated beef was considered. It is shown that the linear model used in the additive doses method provides overrated results compared to the exponential model

  9. Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats.

    Science.gov (United States)

    Al-Hezaimi, Khalid; Ramalingam, Sundar; Al-Askar, Mansour; ArRejaie, Aws S; Nooh, Nasser; Jawad, Fawad; Aldahmash, Abdullah; Atteya, Muhammad; Wang, Cun-Yu

    2016-01-01

    The aim of the present real time in vivo micro-computed tomography (µCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo µCT. At the 10th week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups 1 and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical "lock" between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adjunct BMSC therapy. PMID:27025260

  10. Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of {sup 177}Lu-EDTMP, a potential bone pain palliation agent

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Domokos [Department of Applied Radioisotopes and Animal Experimentation, National ' Frederic Joliot-Curie' Institute of Radiobiology and Radiohygiene, H-1221 Budapest (Hungary)], E-mail: mdomokos@hp.osski.hu; Balogh, Lajos; Polyak, Andras; Kiraly, Reka [Department of Applied Radioisotopes and Animal Experimentation, National ' Frederic Joliot-Curie' Institute of Radiobiology and Radiohygiene, H-1221 Budapest (Hungary); Marian, Terez [Institute of Nuclear Medicine, Debrecen University, Debrecen (Hungary); Pawlak, Dariusz [Institute of Atomic Energy, Radioisotope Centre POLATOM, Swierk-Otwock (Poland); Zaknun, John J.; Pillai, Maroor R.A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Janoki, Gyozo A. [Department of Applied Radioisotopes and Animal Experimentation, National ' Frederic Joliot-Curie' Institute of Radiobiology and Radiohygiene, H-1221 Budapest (Hungary)

    2010-02-15

    Introduction: Radionuclide therapy (RNT) is an effective method for bone pain palliation in patients suffering from bone metastasis. Due to the long half-life, easy production and relatively low {beta}- energy, {sup 177}Lu [T{sub 1/2}=6.73 days, E{sub {beta}}{sub max}=497 keV, E{sub {gamma}}=113 keV (6.4%), 208 keV (11%)]-based radiopharmaceuticals offer logistical advantage for wider use. This paper reports the results of a multispecies biodistribution and toxicity studies of {sup 177}Lu-EDTMP to collect preclinical data for starting human clinical trials. Methods: {sup 177}Lu-EDTMP with radiochemical purity greater than 99% was formulated by using a lyophilized kit of EDTMP (35 mg of EDTMP, 5.72 g of CaO and 14.1 mg of NaOH). Biodistribution studies were conducted in mice and rabbits. Small animal imaging was performed using NanoSPECT/CT (Mediso, Ltd., Hungary) and digital autoradiography. Gamma camera imaging was done in rabbits and dogs. Four levels of activity (9.25 through 37 MBq/kg body weight) of {sup 177}Lu-EDTMP were injected in four groups of three dogs each to study the toxicological effects. Results: {sup 177}Lu-EDTMP accumulated almost exclusively in the skeletal system (peak ca. 41% of the injected activity in bone with terminal elimination half-life of 2130 and 1870 h in mice and rabbits, respectively) with a peak uptake during 1-3 h. Excretion of the radiopharmaceutical was through the urinary system. Imaging studies showed that all species (mouse, rat, rabbit and dog) take up the compound in regions of remodeling bone, while kidney retention is not visible after 1 day postinjection (pi). In dogs, the highest applied activity (37 MBq/kg body weight) led to a moderate decrease in platelet concentration (mean, 160 g/L) at 1 week pi with no toxicity. Conclusion: The protracted effective half-life of {sup 177}Lu-EDTMP in bone supports that modifying the EDTMP molecule by introducing {sup 177}Lu does not alter its biological behaviour as a specific bone

  11. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pilmane, M [Riga Stradins University, Institute of Anatomy and Anthropology, Dzirciema 16, LV-1007, Riga (Latvia); Salms, G; Salma, I; Skagers, A [Riga Stradins University, Department of Oral and Maxillofacial Surgery, Dzirciema 20. LV-1007, Riga (Latvia); Locs, J; Loca, D; Berzina-Cimdina, L, E-mail: pilmane@latnet.lv [Riga Technical University, Riga Biomaterials innovation and development centre, Pulka 3/3, LV-1007, Riga (Latvia)

    2011-06-23

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNF{alpha}), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  12. ANIMALS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mammals(哺乳动物)Mammals are the world's most dominant(最占优势的)animal.They are extremely(非常)diverse(多种多样的)creatures(生物,动物)that include(包括)the biggest ever animal (the blue whale鲸,which eats up to 6 tons every day),the smallest(leaf-nosed bat小蹄蝠) and the laziest(sloth树獭,who spends 80% of their time sleeping).There are over 4,600 kinds of mammals and they live in very different environments(环境)—oceans(海洋),rivers,the jungle(丛林),deserts,and plains(平原).

  13. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    HU YaoWu; S.H.AMBROSE; WANG ChangSui

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great attention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and 0.13 human bones were excluded from 28 bones for dietary reconstruction due to their unusual collagen contents, C and N contents, and C/N atomic ratios especially.δ13C(-20.37±0.53‰)in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ15N and δ13C values in bone collagen, the samples can be classified into four clusters. The changes of δ15N values in bone collagen and δ13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ18O change in hydroxylapatite showed that palaeoclimate was relatively constant during Jiahu culture.

  14. Stable isotopic analysis on ancient human bones in Jiahu site

    Institute of Scientific and Technical Information of China (English)

    S.H.AMBROSE

    2007-01-01

    Palaeodietary analysis is one of important topics in bioarchaeology field and has been paid great at- tention to by Chinese archaeometrists recently. Ancient human bones in Jiahu Site were analyzed by means of stable isotopes of C, N and O. 13 human bones were excluded from 28 bones for dietary re- construction due to their unusual collagen contents, C and N contents, and C/N atomic ratios espe- cially. δ 13C (-20.37±0.53‰) in collagen of remaining samples showed that C3 food were consumed mainly, which is consistent of the archaeological findings that rice was the staple in Jiahu. According to the difference of δ 15N and δ 13C values in bone collagen, the samples can be classified into four clusters. The changes of δ 15N values in bone collagen and δ 13C values in hydroxylapatite through whole cultural phases indicated the transition from hunting to gathering and fishing to rice agriculture and animal domestication ultimately. Meanwhile, the δ 18O change in hydroxylapatite showed that pa- laeoclimate was relatively constant during Jiahu culture.

  15. Recombinant gelatin and collagen from methylotrophic yeasts

    OpenAIRE

    Bruin,, Henk

    2002-01-01

    Based on its structural role and compatibility within the human body, collagen is a commonly used biomaterial in medical applications, such as cosmetic surgery, wound treatment and tissue engineering. Gelatin is in essence denatured and partly degraded collagen and is, as a result of its unique functional and chemical properties, also used in many medical and pharmaceutical products. Collagen and gelatin are traditionally extracted from animal tissues. The quality and the characteristics of t...

  16. Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Falk Mittag

    2012-12-01

    Full Text Available Mesenchymal stromal cells (MSC are differentiation competent cells and may generate, among others, mature osteoblasts or chondrocytes in vitro and in vivo. Laminin-5 and type I collagen are important components of the extracellular matrix. They are involved in a variety of cellular and extracellular activities including cell attachment and osteogenic differentiation of MSC. MSC were isolated and expanded using media conforming good medical practice (GMP-regulations for medical products. Cells were characterized according to the defined minimal criteria for multipotent MSC. MTT- and BrdU-assays were performed to evaluate protein-dependent (laminin-5, laminin-1, type I collagen metabolic activity and proliferation of MSC. MSC-attachment assays were performed using protein-coated culture plates. Osteogenic differentiation of MSC was measured by protein-dependant mineralization and expression of osteogenic marker genes (osteopontin, alkaline phophatase, Runx2 after three, seven and 28 days of differentiation. Marker genes were identified using quantitative reverse-transcription polymerase chain reaction. Expansion of MSC in GMP-conforming media yielded vital cells meeting all minimal criteria for MSC. Attachment assay revealed a favorable binding of MSC to laminin-5 and type I collagen at a protein concentration of 1-5 fmol/mL. Compared to plastic, osteogenic differentiation was significantly increased by laminin-5 after 28 days of culture (P<0.04. No significant differences in gene expression patterns were observed. We conclude that laminin-5 and type I collagen promote attachment, but laminin-1 and laminin-5 promote osteogenic differentiation of MSC. This may influence future clinical applications.

  17. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo

    OpenAIRE

    Schofer, Markus D.; Tünnermann, Lisa; Kaiser, Hendric; Roessler, Philip P; Theisen, Christina; Heverhagen, Johannes T.; Hering, Jacqueline; Voelker, Maximilian; Agarwal, Seema; Efe, Turgay; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R. J.

    2012-01-01

    The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differenti...

  18. Preparation and animal imaging of 153Sm-EDTMP as a bone seeking radiopharmaceutical

    International Nuclear Information System (INIS)

    Ethylenediamine- tetra methylenephosphonic acid (EDTMP) has widely used chelator for the labeling of bone seeking radiopharmaceuticals complexed with radio metals. 153Sm can be produced by the HANARO reactor at the Korea Atomic Energy Research Institute, Taejon, Korea. 153Sm has favourable radiation characteristics T1/2=46.7 h, β max=0.81 MeV (20%), 0.71 MeV (49%), 0.64 MeV (30%) and γ=103 keV (30%) emission which is suitable for imaging purposes during therapy. We investigated the labeling condition of 153Sm-Emptied and imaging of 153Sm-EDTMP in normal rats. EDTMP 20 mg was solved in 0.1 mL 2 M NaOH. 153SmCl3 was added to EDTMP solution and pH of the reaction mixtures was adjusted to 8 and 12, respectively. Radiochemical purity was determined with paper chromatography. After 30 min. reaction, reaction mixtures were neutralized to pH 7.4 and the stability was estimated upto 120 hrs. Imaging studies of each reaction were performed in normal rats (37 MBq/0.1 mL). The labeling yield of 153Sm-EDTMP was 99%. The stability of pH 8 reaction at 60, 96 and 120 hr was 99%,95%,89% and that of pH 12 at 36, 60, 96, and 120 hr was 99%, 95%, 88%, 66%, respectively. The 153Sm-EDTMP showed constantly higher bone uptake from 2 to 48 hr after injection. 153Sm-EDTMP, labeled at pH 8 reaction condition, has been stably maintained. Image of 153Sm-EDTMP at 2, 24, 48 hr after injection, demonstrate that 153Sm-EDTMP is a good bone seeking radiopharmaceuticals

  19. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. PMID:27062994

  20. Direct measurement of local oxygen concentration in the bone marrow of live animals

    Science.gov (United States)

    Spencer, Joel A.; Ferraro, Francesca; Roussakis, Emmanuel; Klein, Alyssa; Wu, Juwell; Runnels, Judith M.; Zaher, Walid; Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Yusuf, Rushdia; Côté, Daniel; Vinogradov, Sergei A.; Scadden, David T.; Lin, Charles P.

    2014-04-01

    Characterization of how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for the therapeutic manipulation of stem cells. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis, expression of hypoxia inducible factor-1α (Hif-1α) and related genes, and staining with surrogate hypoxic markers (for example, pimonidazole). Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow of live mice. Using two-photon phosphorescence lifetime microscopy, we determined the absolute pO2 of the bone marrow to be quite low (<32 mm Hg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (~9.9 mm Hg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change markedly after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment.

  1. [Investigation of the role of Zn2+ and zinc-containing proteins in the pathogenesis of bone inflammmation (the case of periodontitis)].

    Science.gov (United States)

    Petrovich, Iu A; Ramazanov, T D; Kichenko, S M; Lebedev, V K

    2011-01-01

    The levels of Ag, Al, Bi, Co, Cr, Fe, Mo, Si in osseous tissue of periodontium of domestic cats decreased in case of periodontitis in comparision with those of a healthy animals. At the same time the level of Zn increased dramatically. The level of tagged [14C] glycine in protein of bones of periodontium increased twofold and [35S] methionine 1,54 times which is explained by the fact of predominance of I type collagen in which one third of amino acids is represented by glycine while sulfur-containing amino acids are virtually absent. The latter are contained in non-collagenous proteins of bones of periodontium contributing for its metabolism. The difference in tagged aminoacids inclusion in bones of periodontium is mainly provoked by redistribution of the collagen and non-collagenous proteins. PMID:22359934

  2. An approximation of tribological behavior of Ti1-xAlxN coatings against animal bone in ringers solution

    International Nuclear Information System (INIS)

    Due to their excellent properties, Ti-Al-N coatings have become attractive for biomedical applications. In this paper, friction and wear properties of Ti1-xAlxN films having various aluminum contents, x, have been studied. Adhesion was measured by the scratch test technique; friction was carried out by a pin-on-disk tribometer using an animal bone-pin as counterpart and Ringer solution as simulated body fluid; and wear mechanisms were identified by scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (EDS). It was found that the coating with x = 0.41 exhibited the highest CO F, conserves its integrity as a coating, and causes the lowest wear on the bone in Ringers solution. EDS analysis was performed to determine the contents of Ti, Al and N. An X-ray diffraction study was carried out using and X pert High Score Plus diffractometer with Cu-Kα radiation (α = 1.5406 A) at grazing angle of 0.5 grades. (Author)

  3. Human Bone Marrow Mesenchymal Stem Cell Behaviors on PCL/Gelatin Nanofibrous Scaffolds Modified with A Collagen IV-Derived RGD-Containing Peptide

    OpenAIRE

    Ali Mota; Abbas Sahebghadam Lotfi; Jalal Barzin; Mostafa Hatam; Behzad Adibi; Zahra Khalaj; Mohammad Massumi

    2014-01-01

    Objective We introduce an RGD (Arg-Gly-Asp)-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties. Materials and Methods In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel) hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An io- dine-modified phenylalanine was introduced in the peptide to track the immobilization process. N...

  4. Bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histological evaluation

    OpenAIRE

    Monea, Adriana; Beresescu, Gabriela; Tibor, Mezei; Popsor, Sorin; Antonescu, Dragos Mihai

    2015-01-01

    Background Our aim was to determine whether low level laser therapy (LLLT) can decrease the time between extraction/socket graft and implant placement, by evaluating histological changes in sockets grafted with a particulate allograft material and treated with LLLT. Methods Thirty patients had a socket grafted with a particulate allograft material (MinerOss) covered with a resorbable collagen wound dressing. The patients were then randomly divided into two equal groups (n = 15): test group re...

  5. Mechanistic models of bone cancer induction by radium and plutonium in animals compared to humans

    International Nuclear Information System (INIS)

    Two-mutation carcinogenesis models of mice and rats injected with 239Pu and 226Ra have been derived extending previous modellings of beagle dogs injected with 239Pu and 226Ra and radium dial painters. In all cases statistically significant parameters could be derived fitting data from several research groups jointly. This also lead to similarly parametrized models for 239Pu and 226Ra for all species. For each data set not more than five free model parameters were needed to fit the data adequately. From the toxicity ratios of the animal models for 239Pu and 226Ra, together with the human model for 226Ra, an approximate model for the exposure of humans to 239Pu has been derived. Relative risk calculations with this approximate model are in good agreement with epidemiological findings for the plutonium-exposed Mayak workers. This promising result may indicate new possibilities for estimating risks for humans from animal experiments. (authors)

  6. Bone Research and Animal Support of Human Space Exploration: Where do we go from here?

    Science.gov (United States)

    Morey-Holton, Emily R.

    2004-01-01

    NASA exploration goals include returning humans to the moon by 20 15-2020 as a prelude for human exploration of Mars and beyond. The number of human flight subjects available during this very short time period is insufficient to solve high-risk problems without data from animals. This presentation will focus on three questions: What do we know? What do we need to know? Where do we go from here?: roles for animals in the exploration era. Answers to these questions are based on flight and ground-based models using humans and animals. First, what do we know? Adult humans have spent less than 1% of their lifespan in space while juvenile rats have spent almost 2%. This information suggests that our data are rather meager for projecting to a 30-month mission to Mars. The space platforms for humans have included Skylab, STS/MIR, and STS/ISS and for animals have included the unmanned Bion series and shuttle. The ground-based models include head-down bedrest in humans (BR) and hindlimb unloading in rodents (HU). We know that as gravity decreases, the impact forces generated by the body during locomotion decrease. For example, on Earth, your legs supports approximately 1 body weight (BW) when standing, 1.33BW when walking, and 3BW when jogging. On Mars, the same activity would generate 0.38BW standing, 0.5BW walking, and 1BW when jogging. In space, no impact load is generated, as gravity is minimal.

  7. Clinical evaluation of the Serum CrossLaps One Step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides

    DEFF Research Database (Denmark)

    Christgau, S; Rosenquist, C; Alexandersen, P;

    1998-01-01

    The Serum CrossLaps One Step ELISA is a sandwich assay using two monoclonal antibodies specific for a beta-aspartate form of the epitope EKAHDGGR derived from the carboxy-terminal telopeptide region of type I collagen alpha1-chain. Our objective was to assess the clinical value of the Serum Cross...... >0.8 for all studies). The serum and urine CrossLaps measurements showed a significant decrease among the women treated with clinically relevant doses of either of the antiresorptive agents. Furthermore, the annual percentage change in bone mineral density (BMD) correlated with the measured changes...... convenient Serum CrossLaps One Step ELISA is at least equivalent to that of the urine text for follow up of antiresorptive treatment in osteoporosis. Further studies are needed to optimize its use in this and other clinical applications....

  8. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  9. Determination of trace amount of lanthanum in animal tissues, special reference to teeth and bone

    International Nuclear Information System (INIS)

    When a lanthanum solution is swabbed on the surface of teeth in vivo or in vitro, lanthanum is substituted for the calcium of enamel surface, and therefore, dental caries formation is inhibited. The study was to determine the amount of lanthanum uptake into teeth and bone, furthermore internal organs, and to provide an aid for estimation on the effect of the element in living bodies. Samples were digested with nitric acid-perchloric acid mixture. After dissolution, lanthanum was precipitated with oxalate using calcium oxalate carrier. The precipitate was decomposed. Lanthanum was extracted into 0.1 M TTA-MIBK, and back-extracted with 1 M nitric acid. ICP emission spectrometry was applied for the determination. Teeth, thighbone, and other organs were drawn out from the rats of which teeth was swabbed with 8 % lanthanum nitrate, 2.5 % lanthanum EDTA, and 10.5 % lanthanum EDTA, once a day for 2 weeks. The maximum content of lanthanum was 54 μg/g in the teeth and 2.7 μg/g in the thighbone. Lanthanum contents for liver, spleen, kidney, and blood were also presented for the samples drawn out within one day and 1, 3, and 5 month later after swabbing. (author)

  10. Why collagens best survived in fossils?

    DEFF Research Database (Denmark)

    Wang, Shuang-Yin; Cappellini, Enrico; Zhang, Hong-Yu

    2012-01-01

    Explaining why type I collagens are preferentially preserved in the geological time scale remains a challenge. Several pieces of evidence indicate that its rich content in the bone and its unique, stable structure played key roles in its preservation. By considering the distinct thermal stability...... of amino acids, we reveal that the elevated abundance of thermostable amino acid residues in type I collagens also contribute to its survival....

  11. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  12. Biological Safety of Fish (Tilapia) Collagen

    OpenAIRE

    山本, 耕平

    2015-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing...

  13. 斑点叉尾(鲴)鱼骨胶原多肽螯合钙的制备及其特征%Preparation and characterization of collagen polypeptide chelated calcium from fish bone powder of channel catfish (Ictalurus punctatus)

    Institute of Scientific and Technical Information of China (English)

    陆剑锋; 孟昌伟; 李进; 宫子慧; 林琳; 叶应旺; 姜绍通

    2012-01-01

    Calcium is essential for living organisms. Even with an apparently sufficient intake of dietary calcium,there is some concern that inadequate calcium is absorbed by the small intestine,due to precipitation of insoluble calcium salts in the neutral to slightly basic intestinal lumen. Some studies revealed that peptides have the capacity to chelate Ca and to prevent the precipitation of insoluble calcium salts, thereby increasing the amount of soluble Ca availability for absorption across the mucosa. However,the mechanism and degree of calcium ion binding are still unclear. In this paper, the combinations between collagen polypeptide(from the enzymatic hydrolysate of channel catfish bone powder) and calcium ion were studied by measuring chelate rate. On the basis of results of single-factor experiments, the Box-Behnken central composite design and response surface method were adopted to obtain the optimum conditions for chelation. The optimal chelate conditions were determined as:chelate temperature 60 ℃,chelate pH 5. 4,chelate time 1. 5 h and ratio of collagen polypeptide to calcium 2:1 (W/W). Under the optimized conditions, the chelate rate of Ca-collagen polypeptide could reach 82.53%. The formation of Ca-collagen polypeptide chelate was confirmed by the UV-VIS and FT-IR spectra. The characterization of amino acid composition of the chelate was similar to typical collagen-like protein. This research provides a practical guideline and a theoretical basis for fully utilizing fish bone protein resources and developing the deep processed products.%以斑点叉尾(鲴)鱼骨酶解胶原多肽液和氯化钙为原料,螯合率为指标,在一定条件下制备胶原多肽螯合钙,并考察温度、pH、时间、多肽与钙的质量比对螯合率的影响.在单因素实验结果的基础上,采用Box-Behnken中心组合设计和响应面分析法,确定最佳螯合工艺条件为温度60℃、pH 5.4、时间1.5h、质量比2∶1,此条件下,螯合率达82.53%.

  14. 活性磷酸钙复合明胶海绵的制备及对骨缺损修复的实验研究%Bioactive calcium phosphate mineralized collagen sponge for bone regeneration: preparation and study on the repairing of bone defect

    Institute of Scientific and Technical Information of China (English)

    张珂; 王淑敏; 蔡意达; 周鸿国; 俞立英

    2012-01-01

    than precipitation method.The histological observations showed calcified newly formed bone surrounding surface-modified collagen sponges.Massive osteocytes existed.Conclusions The collagen sponges mineralized by calcium phosphate has better properties of bone formation.Surface-modified collagen sponge as a scaffold material is a promising biomaterial.

  15. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies.

    Directory of Open Access Journals (Sweden)

    Malte Steiner

    Full Text Available For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior. The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS, mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%, however small angular deviations (<15° were negligible. Differences in the experimental results between the bending tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small

  16. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies.

    Science.gov (United States)

    Steiner, Malte; Volkheimer, David; Meyers, Nicholaus; Wehner, Tim; Wilke, Hans-Joachim; Claes, Lutz; Ignatius, Anita

    2015-01-01

    For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. Therefore, standardized specimens were created by selective laser sintering (SLS), mimicking size, directional behavior, and embedding variations of respective rat long bone specimens. For the latter, five different geometries were created which show shifted or tilted specimen alignments. The mechanical tests included three-point bending, four-point bending, cantilever bending, axial compression, constrained torsion, and unconstrained torsion. All three different bending tests showed the same principal behavior. They were highly dependent on the rotational direction of the maximum fracture callus expansion relative to the loading direction (creating experimental errors of more than 60%), however small angular deviations (tests originate in their respective location of maximal bending moment induction. Compared to four-point bending, three-point bending is easier to apply on small rat and mouse bones under realistic testing conditions and yields robust measurements, provided low variation of the callus shape among the tested specimens. Axial compressive testing was highly sensitive to embedding variations, and therefore cannot be recommended. Although it is experimentally difficult to realize, unconstrained torsion testing was found to be the most robust method, since it was independent of both rotational alignment and embedding uncertainties. Constrained torsional testing showed small errors (up to 16.8%, compared to corresponding alignment under unconstrained torsion) due to a

  17. Collagenous fibroma (desmoplastic fibroblastoma of alveolar bone: a case report Fibroma colagenoso (fibroma desmoplásico do osso alveolar: relato de caso

    Directory of Open Access Journals (Sweden)

    Claudia Cazal

    2005-06-01

    Full Text Available Collagenous fibroma (desmoplastic fibroblastoma is a rare benign soft tissue tumor with a fibroblastic origin. In oral mucosa only two cases have been described in the literature. We describe the case of a 42-year-old white woman whose complaint was a painless, slow-growing mass under the prosthesis. Histopathologic features included sparsely distributed stellate or spindle fibroblasts within a rich collagenous stroma. Tumor cells were diffusely stained for vimentin and rare cells stained for smooth muscle actin and factor XIIIa. Total surgical excision was performed and no recurrence is expected.O fibroma colagenoso (fibroma desmoplásico é um tumor de tecido mole raro de origem fibroblástica. Na mucosa oral apenas dois casos foram descritos pela literatura. Nós descrevemos o caso de uma mulher de 42 anos de idade, cuja queixa era uma lesão indolor, de crescimento lento sob sua prótese total superior. Os achados histológicos da lesão incluíram fibroblastos escassos, estrelados ou fusiformes, dispersos em um estroma rico em colágeno. As células lesionais foram positivas para vimentina, mas rara marcação foi observada para actina músculo liso e fator XIIIa. A excisão cirúrgica total foi realizada e a recidiva da lesão não é esperada.

  18. Characterization of ancient teeth and bones from animal and pre-historic human by nuclear methods

    International Nuclear Information System (INIS)

    The search for the evidence of the oldest homonid in Thailand was carried out in the upper northern part of the country consisting of Lampang, Chiang Mai, Phayao, Phrae, Nan, Chiang Rai and Mae Hong Son and Lampang was set up as a center. Three nuclear analytical techniques, i.e. X-ray fluorescence using X-ray tube and isotopic sources, neutron activation analysis and low-background gamma spectroscopy were employed to investigate the samples. The results of elemental composition in fossilised teeth can be used to classify the type of human and animal as it is related to the dietary behaviour. The relationship between elements in fossils and soil or rock can be used to identify the location where the fossils came from. The level of natural radioactivity in soil samples from different locations will be helpful in defining the surveyed region. All of the knowledge will support the development of nuclear analytical technique in archeological study. Besides, the research team found four pieces of fossils which assembled the right frontal region of a calvaria. It appears to be the first indication of a Homo Erectus partial cranial vault ever discovered in Thailand. This discovery is very important in human evolution study

  19. Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models.

    Science.gov (United States)

    Stavropoulos, Andreas; Sculean, Anton; Bosshardt, Dieter D; Buser, Daniel; Klinge, Björn

    2015-06-01

    Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice. PMID:25867979

  20. Trace rare earth element analysis of IAEA Hair (HH-1), Animal Bone (H-5) and other biological standards by radiochemical neutron activation

    International Nuclear Information System (INIS)

    A radiochemical neutron activation analysis using a rare earth group separation scheme was used to measure ultratrace levels of rare earth elements (REE) in IAEA Human Hair (HH-1), IAEA Animal Bone (H-5), NBS Bovine Liver (SRM 1577), and NBS Orchard Leaf (SRM 1571) standards. The REE concentrations in Human Hair and Animal Bone range from 10-8 g/g to 10-11 g/g and their chondritic normalized REE patterns show a negative Eu anomaly and follow as a smooth function of the REE ionic radii. The REE patterns for NBS Bovine Liver and Orchard Leaf are identical except that their concentrations are higher. The similarity among the REE patterns suggest that the REE do not appear to be fractionated during the intake of biological materials by animals or humans. (author)

  1. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice

    Science.gov (United States)

    Bedalov, A.; Salvatori, R.; Dodig, M.; Kronenberg, M. S.; Kapural, B.; Bogdanovic, Z.; Kream, B. E.; Woody, C. O.; Clark, S. H.; Mack, K.; Rowe, D. W. (Principal Investigator)

    1995-01-01

    Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.

  2. Design and preparation of polyurethane-collagen/ heparin-conjugated polycaprolactone double-layer bionic small-diameter vascular graft and its preliminary animal tests

    Institute of Scientific and Technical Information of China (English)

    LU Guang; CUI Shi-jun; GENG Xue; YE Lin; CHEN Bing; FENG Zeng-guo; ZHANG Jian

    2013-01-01

    Background People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel.In order to overcome the high risk of thrombosis and keep the patency in the clinical small-diameter vascular graft (SDVG) transplantation,a double-layer bionic scaffold,which can offer anticoagulation and mechanical strength simultaneously,was designed and fabricated via electrospinning technique.Methods Heparin-conjugated polycaprolactone (hPCL) and polyurethane (PU)-collagen type Ⅰ composite was used as the inner and outer layers,respectively.The porosity and the burst pressure of SDVG were evaluated.Its biocompatibility was demonstrated by the 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide (MTT) test in vitro and subcutaneous implants in vivo respectively.The grafts of diameter 2.5 mm and length 4.0 cm were implanted to replace the femoral artery in Beagle dog model.Then,angiography was performed in the Beagle dogs to investigate the patency and aneurysm of grafts at 2,4,and 8 weeks post-transplantation.After angiography,the patent grafts were explanted for histological analysis.Results The double-layer bionic SDVG meet the clinical mechanical demand.Its good biocompatibility was proven by cytotoxicity experiment (the cell's relative growth rates (RGR) of PU-collagen outer layer were 102.8%,109.2% and 103.5%,while the RGR of hPCL inner layer were 99.0%,100.0% and 98.0%,on days 1,3,and 5,respectively) and the subdermal implants experiment in the Beagle dog.Arteriography showed that all the implanted SDVGs were patent without any aneurismal dilatation or obvious anastomotic stenosis at the 2nd,4th,and 8th week after the operation,except one SDVG that failed at the 2nd week.Histological analysis and SEM showed that the inner layer was covered by new endothelial-like cells.Conclusion The double-layer bionic SDVG is a promising candidate as a replacement of native small

  3. Forensic analysis of bone in Regio antebrachii of deer (Capreolus capreolus and sheep (Ovis aries in order to determine origin of animal species

    Directory of Open Access Journals (Sweden)

    Blagojević Miloš

    2012-01-01

    Full Text Available There are frequent cases of poaching in which it is necessary to determine to which animal species the prey belonged on the basis of morphological characteristics of the bone. In this case, the Department of Forensic Medicine received material for giving an expert opinion on the left and right forearm (radius and ulna and twelve pieces of the ribs. The ribs were completely broken, so in order to identify the bones as belonging to a particular animal species, only the radius and ulna were used. Forensic analysis was perfomed by comparing the osteological features of the delivered bones with those of museum specimens of deer and sheep bones. The forearm (ossa antebrachii of the deer is slender and thin, and it is massive and heavier in sheep. There are two interosseus spaces (spatium interosseum antebrachii of the forearm in the deer and only one in the sheep. The olecranon tuber (tuber olecrani of the sheep is triangular in shape, and in deer it is divided into cranial and caudal prominences. The radial tuberosity (tuberositas radii of the sheep is better defined. Based on morphological characteristics of the disputed bones we found that the submitted material originated from a doe.

  4. Prostaglandins in the perilymph of guinea pig with type II collagen induced ear diseases

    International Nuclear Information System (INIS)

    The authors have studied the prostaglandins (PGs) in the perilymph from guinea pig with type II collagen induced autoimmune ear disease. Hartly guinea pigs were immunized with type II collagen in CFA and auditory brain stem responses (ABR) were measured at 2, 3, 4, and 6 months after initial immunization perilymph was obtained and the levels of PGE2 and 6 keto-PGFlα were measured by radioimmunoassays. Temporal bones were examined for the histopathologic changes. Immunized guinea pigs showed the evidence of hearing loss by ABR. The temporal bones showed the following changes: spiral ganglia degeneration, mild to moderate degree of degeneration in organ of Corti, infrequent very mild endolymphatic hydrops and labrynthitis. The perilymph from immunized animals contained about 5 times more PGE2 and about 3 times more 6 keto-PGFlα than control animals. However, between these two groups, there was no difference in the CSF and sera levels of PGE2 and 6 keto-PGFlα. Thus, this study suggests that these inflammatory mediators might be involved in the pathogenesis of collagen induced autoimmune inner ear disease

  5. Assessment laser phototherapy on bone defects grafted or not with biphasic synthetic micro-granular HA + β-tricalcium phosphate: histological study in an animal model

    Science.gov (United States)

    Soares, Luiz Guilherme P.; Marques, Aparecida M. C.; Aciole, Jouber Mateus S.; Trindade, Renan; Santos, Jean N.; Pinheiro, Antônio Luiz B.

    2014-02-01

    Beside of biomaterials, Laser phototherapy has shown positive results as auxiliary therapy on bone repair. The aim of this study was to evaluate, through histological analysis, the influence of Laser phototherapy in the process of repair of bone defects grafted or not with Hydroxyapatite. Forty rats were divided into 4 groups each subdivided into 2 subgroups according to the time of sacrifice. Surgical bone defects were made on femur of each animal with a trephine drill. On animals of group Clot the defect was filled only by blood, on group Laser the defect filled with the clot and further irradiated. In group Biomaterial the defect was filled with HA + β-TCP graft. In group Laser + Biomaterial, the defect was filled with biomaterial and further irradiated. The irradiation protocols were performed every 48 hours during for 15 days. Animal death occurred after 15 and 30 days. The specimens were routinely processed and evaluated by light microscopy. Qualitative analysis showed that group Laser + Biomaterial was in a more advanced stage of repair at the end of the experimental time. It was concluded that the Laser irradiation improved the repair of bone defects grafted or not.

  6. Treatment of gingival recession with collagen membrane and DFDBA: a histometric study in dogs

    Directory of Open Access Journals (Sweden)

    Elizabeth Pimentel Rosetti

    2009-09-01

    Full Text Available In a previous study, we evaluated the findings related to the use of resorbable collagen membranes in humans along with DFDBA (demineralized freeze-dried bone allograft. The aim of this subsequent study was to histometrically evaluate in dogs, the healing response of gingival recessions treated with collagen membrane + DFDBA (Guided Tissue Regeneration, GTR compared to a coronally positioned flap (CPF. Two types of treatment were randomly carried out in a split-mouth study. Group 1 was considered as test (GTR: collagen membrane + DFDBA, whereas Group 2 stood for the control (only CPF. The dogs were given chemical bacterial plaque control with 0.2% chlorhexidine digluconate during a 90-day repair period. Afterwards, the animals were killed to obtain biopsies and histometric evaluation of the process of cementum and bone formation, epithelial migration and gingival level. A statistically significant difference was found between groups with a larger extension of neoformed cementum (GTR = 32.72%; CPF = 18.82%; p = 0.0004, new bone (GTR = 23.20%; CPF = 09.90%; p = 0.0401 and with a smaller area of residual gingival recession in the test group (GTR = 50.69%; CPF = 59.73%; p = 0.0055 compared to the control group. The only item assessed that showed no statistical difference was epithelial proliferation on the root surface, with means of 15.14% for the GTR group and 20.34% for the CPF group (p = 0.0890. Within the limits of this study we concluded that the treatment of gingival recession defects with GTR, associating collagen membrane with DFDBA, showed better outcomes in terms of a larger extension of neoformed cementum and bone, as well as in terms of a smaller proportion of residual recessions.

  7. Measurements of natural radionuclides in human teeth and animal bones as markers of radiation exposure from soil in the Northern Malaysian Peninsula

    International Nuclear Information System (INIS)

    This study aimed to estimate the radioactive accumulation of the radionuclides 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th in extracted human teeth, animal bones, and soil. The natural radionuclides were measured by high-purity germanium spectroscopy in extracted human teeth and animal bones from people and animals living in different states in the Northern Malaysian Peninsula. The average 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th concentrations in teeth were found to be 12.31±7.27 Bq g−1, 0.48±0.21 Bq g−1, 0.56±0.21 Bq g−1, 0.55±0.23 Bq g−1, 1.82±1.28 Bq g−1, and 0.50±0.14 Bq g−1, respectively. The corresponding concentrations in bones were found to be 3.79±0.81 Bq g−1, 0.07±0.02 Bq g−1, 0.08±0.02 Bq g−1, 0.16±0.04 Bq g−1, 0.51±1.08 Bq g−1, and 0.06±0.02 Bq g−1, respectively. The corresponding radionuclide concentrations in teeth from smokers were higher than those in non-smokers, and the corresponding radionuclide concentrations were higher in female teeth than in male teeth. The corresponding radionuclide concentrations were higher in teeth than in bones. A positive correlation was found between radionuclides in both teeth and bone samples. - Highlights: • Radionuclides in teeth from smokers higher than non-smokers, except 40K. • Radionuclides slightly higher in female teeth than male teeth. • Positive correlation found between radionuclides in both teeth and bone

  8. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Kittisak Buddhachat

    Full Text Available Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae, antler (Cervidae, teeth and bone (humerus across a number of species determined by handheld X-ray fluorescence (XRF to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  9. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    Science.gov (United States)

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application. PMID:27196603

  10. The use of postoperative irradiation for the prevention of heterotopic bone after total hip replacement with biologic fixation (porous coated) prosthesis: An animal model

    International Nuclear Information System (INIS)

    Radiation has been shown to be effective in the prevention of heterotopic bone. The exact etiology of heterotopic bone is unknown. Total hip prosthetic devices that do not depend upon bone cement for fixation have become increasingly popular. The mechanism by which the bone forms around the prosthesis is similar to the process by which fractures heal which has been shown to be sensitive to irradiation. Using a rabbit model we have undertaken a study to investigate the effect of irradiation on the bony ingrowth on porous coated implants. Forty-five rabbits had porous coated implants surgically placed in the tibiae bilaterally. Each rabbit had one tibia randomly irradiated with 1,000 cGy in 5 fractions starting on the first post-operative day. Animals were sacrificed weekly starting 2 weeks post-operatively and the tibae were sent for pullout studies. The amount of force necessary to pullout the treated tibae was statistically less than the amount of force necessary to remove the untreated tibae at 2 weeks. From 3 weeks on there was no difference in the force necessary to remove the prosthesis from the untreated or treated tibae. Histologically, the untreated tibae showed bone formation while the treated tibae did not. Because of these results, it is suggested that the treatment of patients at risk for development of heterotopic bone be modified to only include the area between the femur and pelvis avoiding treatment of the prosthetic device

  11. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds

    OpenAIRE

    Wang, Ting; Yang, Xiaoyan; Qi, Xin; Jiang, Chaoyin

    2015-01-01

    Background Osteoinduction and proliferation of bone-marrow stromal cells (BMSCs) in three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds have not been studied throughly and are technically challenging. This study aimed to optimize nanocomposites of 3D PCL scaffolds to provide superior adhesion, proliferation and differentiation environment for BMSCs in this scenario. Methods BMSCs were isolated and cultured in a novel 3D tissue culture poly(ε-caprolactone) (PCL) scaffold coated with po...

  12. Bone repair: Effects of physical exercise and LPS systemic exposition.

    Science.gov (United States)

    Nogueira, Jonatas E; Branco, Luiz G S; Issa, João Paulo M

    2016-08-01

    Bone repair can be facilitated by grafting, biochemical and physical stimulation. Conversely, it may be delayed lipopolysaccharide (LPS). Physical exercise exerts beneficial effects on the bone, but its effect on bone repair is not known. We investigated the effect of exercise on the LPS action on bone healing through bone densitometry, quantitative histological analysis for bone formation rate and immunohistochemical markers in sedentary and exercised animals. Rats ran on the treadmill for four weeks. After training the rats were submitted to a surgical procedure (bone defect in the right tibia) and 24h after the surgery LPS was administered at a dose of 100μg/kg i.p., whereas the control rats received a saline injection (1ml/kg, i.p.). Right tibias were obtained for analysis after 10days during which rats were not submitted to physical training. Physical exercise had a positive effect on bone repair, increasing bone mineral density, bone mineral content, bone formation rate, type I collagen and osteocalcin expression. These parameters were not affected by systemic administration of LPS. Our data indicate that physical exercise has an important osteogenic effect, which is maintained during acute systemic inflammation induced by exposure to a single dose of LPS. PMID:27319388

  13. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering

    OpenAIRE

    Won, J. E.; Yun, Y. R.; Jang, J. H.; S. H. Yang; Kim, J. H.; W. Chrzanowski; Wall, I. B.; Knowles, J. C.; Kim, H. W.

    2015-01-01

    Biomaterial surface design with biomimetic proteins holds great promise for successful regeneration of tissues including bone. Here we report a novel proteinaceous hybrid matrix mimicking bone extracellular matrix that has multifunctional capacity to promote stem cell adhesion and osteogenesis with excellent stability. Osteocalcin-fibronectin fusion protein holding collagen binding domain was networked with fibrillar collagen, featuring bone extracellular matrix mimic, to provide multifunctio...

  14. A new bone marrow imaging agent: preparation of 99mTc-polyphase liposomes and its animals experiment

    International Nuclear Information System (INIS)

    Here a new bone marrow imaging agent, 99mTc-polyphase liposomes (99mTc-PL) was reported. It was labelled with 99mTc using the stannous chloride method, the labelling rate was over 95% (n = 20). Imaging studies of the bone marrow in rabbits showed that the bone marrow was visulized at 30 min, and was more distinct at 1 ∼ 3.5 h. Tissue distribution of 99mTc-PL in rabbits (n = 9) revealed that the bone marrow uptake rate of 99mTc-PL was greater than bone uptake rate at three time phases (6.6%, 1.5h, 14%, 3.5h, 5%, 24h versus 0.6%, 1.5h, 0,4%, 3.5h, 0.4%, 24h, P 99mTc-PL may be useful as a new bone marrow imaging agent

  15. Adoptive transfer of suppression of arthritis in the mouse model of collagen-induced arthritis. Evidence for a type II collagen-specific suppressor T cell.

    OpenAIRE

    Kresina, T F; Moskowitz, R W

    1985-01-01

    This study details the suppressive mechanism involved in the antigen-specific suppression of collagen-induced arthritis. Intravenous injection of 500 micrograms of soluble native type II collagen 3 d before immunization with native type II collagen emulsified in complete Freund's adjuvant resulted in animals with decreased in vitro cellular and humoral immune response to native and denatured type II collagen compared with control groups. Control groups were composed of animals preinoculated w...

  16. Effects of prosthesis-bone interface integration of compound double gene transfection rabbit MSCs and collagen/hydroxyl apatite to repair bone defect%双基因转染兔骨髓基质干细胞与胶原/羟基磷灰石复合修复骨缺损及对假体-骨界面整合的影响

    Institute of Scientific and Technical Information of China (English)

    贺金晓; 王英振; 夏长所; 王昌耀; 周瑜; 沐菊; 赫天; 梁晔

    2013-01-01

    体周围新骨形成,提高假体-骨界面骨整合,改善假体稳定性.%Objective To construct prosthesis surrounding bone defect model,forming slow virus mediated BMP-2 and TGF-β3 double gene transfection rabbit MSCs and collagen/hydroxyl apatite complex and implanting to prosthesis around,to investigate the effects of the prosthesis-bone interface bone integration.Methods Longitudinal bone defects were caused between condyle of both femurs of 24 adult clean New Zealand rabbits,male and female unlimited,weight between 2.5 kg and 3.5 kg.Smooth titanium prosthesis were inserted and a bone defect 3 mm wide around prosthesis was preserved.Then the total of 48 defects were divided into 2 groups,each of the experimental group (left)and control group(right) 24 defects.The compression and graft technology was applied to reconstruct bone defects around prosthesis,which were respectively implanted tissue engineering bone,pure collagen/hydroxyl apatite and pressed closely and completely covered implants.Respectively on postoperation 4,8,12 weeks,anesthesia methods were used to put 8 rabbits to death.The general observation,X-ray examination,histomorpbology,histomorphometric and biomechanical examination were applied to evaluation the abilities of using tissue-engineered bone to repair bone defects and effects of osseointegration of the bone-implant interface.Results After 4 weeks,experimental group and the control group,the X-ray was showed there was no significant difference,and mainly collagen/hydroxylapatite high-density shadow around the prosthesis and bone-implant surface bonding strength were respectively 0.3388 ± 0.7206,0.6845 ± 0.7186,the differences was statistically significant (P < 0.01),bone-toimpact contact(BIC) was 0;After eight weeks,X-ray examination was showed that new bone formation was found on the impact surface,for the control group and experimental group,bone-implant surface bonding strength were respectively 0.6468 ±0.7852,1.1824 ± 0

  17. Serum concentration of the cross-linked carboxyterminal telopeptide of type I collagen (ICTP) is a useful prognostic indicator in multiple myeloma.

    OpenAIRE

    Elomaa, I.; Virkkunen, P.; Risteli, L; Risteli, J.

    1992-01-01

    Type I collagen is the main collagen type found in mineralised bone. Specific immunoassays for PICP (carboxyterminal propeptide of type I procollagen) and ICTP (cross-linked carboxyterminal telopeptide region of type I collagen) allow simultaneous assessment of the synthesis and degradation of type I collagen in serum samples, respectively. Our aim was to find out whether these metabolites of type I collagen are useful markers for following bone turnover and evaluating treatment response in m...

  18. Animal experimental model of a graft-versus-host (GVH) reaction after allogenic transplantation of bone marrow in lethally irradiated mice

    International Nuclear Information System (INIS)

    The graft-versus-host (GVH) disease represents a serious still unsolved problem in the human allogenic transplantation of bone marrow. An experimental model of GVH reaction after an allogenic transplantation of bone marrow in the adult mouse has been worked out as a prerequisite for further studies on the therapeutic influence of this syndrome. 3 groups have been formed out of 82 lethally X-irradiated C57 Bl mice. The non-transplanted control group died to a hundred per cent within 12 days. While out of the 2nd group treated with syngenic bone marrow 55 per cent survived from the 22nd day, 30 per cent of the third animal group, allogenicly transplanted with histoincompatible AKR donor marrow developed a chronic GVH syndrome. The following symptoms were observed: retardation, alterations of the skin, diarrhea, edemas of the legs, failing increase of leukocytes in blood and proliferation of lymphocytes in bone marrow of about 60 per cent (18 per cent in syngenically transplanted animals), in lacking proliferation of hematopoiesis. The increase of liver and especially spleen index is not characteristic in comparison with the syngenically transplanted group, since in the latter there is also an increase of the values on account of a strong hematopoetic proliferation. The model is suitable and sufficiently well characterized for the performance of further experimental studies. (author)

  19. Dietary Polyphenols, Berries, and Age-Related Bone Loss: A Review Based on Human, Animal, and Cell Studies

    Directory of Open Access Journals (Sweden)

    Patrice A. Hubert

    2014-03-01

    Full Text Available Bone loss during aging has become an increasing public health concern as average life expectancy has increased. One of the most prevalent forms of age-related bone disease today is osteoporosis in which the body slows down bone formation and existing bone is increasingly being resorbed by the body to maintain the calcium balance. Some causes of this bone loss can be attributed to dysregulation of osteoblast and osteoclast activity mediated by increased oxidative stress through the aging process. Due to certain serious adverse effects of the currently available therapeutic agents that limit their efficacy, complementary and alternative medicine (CAM has garnered interest as a natural means for the prevention of this debilitating disease. Natural antioxidant supplementation, a type of CAM, has been researched to aid in reducing bone loss caused by oxidative stress. Naturally occurring polyphenols, such as anthocyanins rich in berries, are known to have anti-oxidative properties. Several studies have been reviewed to determine the impact polyphenol intake—particularly that of berries—has on bone health. Studies reveal a positive association of high berry intake and higher bone mass, implicating berries as possible inexpensive alternatives in reducing the risk of age related bone loss.

  20. Allograft of microencapsulated ovarian cells affects bone collagen metabolism in ovariectomized mice%卵巢细胞微囊移植对去卵巢小鼠的骨胶原代谢的影响

    Institute of Scientific and Technical Information of China (English)

    郭晓霞; 周金玲; 许晴; 史小林

    2011-01-01

    BACKGROUND: Gonad hormones are essential for the maintenance of skeletal integrity. The in vitro cultured ovarian cells can secrete estradiol and progesterone. Alginic acid-polylysine-alginic acid microcapsule provides a barrier between the graft and the recipient, thus promoting the survival of heterotransplants.OBJECTIVE: To explore the survival and secretion functions of allografted microencapsulated ovarian cells in ovariectomized mice and their effect on bone collagen metabolism after ovariectomy (OVX).METHODS: Ovarian cells separated from female Kunming mice (6 weeks old) were cultured and microencapsulated with alginic acid-polylysine-alginic acid. A total of 24 female Kunming mice (8 weeks old) were randomly divided into three groups (n=8):normal group: OVX was not performed; OVX group: OVX was performed; transplantation group: microencapsulated ovarian cells were transplanted into abdominal cavity after OVX. Estradiol and/or progesterone levels of the medium of microencapsulated ovarian cells and mice serum were determined by radioimmunoassay. Ⅰ type collagen fibers in the bone matrix were showed by Van Gieson staining. The concentrations of hydroxyproline, Ca, and P were measured in the left femurs of mice.RESULTS AND CONCLUSION: The concentrations of estradiol and progesterone in the culture medium were not significantly different between the cultured ovarian cells and microencapsulated ovarian cells. The serum estradiol concentration at 90 days after transplantation had no significant difference compared with that of normal group, whereas the serum estradiol concentration of the OVX group was significantly lower than that of the normal group. In the transplantation group, the distribution of collagen fibers was similar to that of the normal group determined by Van Gieson staining. In comparison to the normal group, the OVX group had less, thinner trabecular matrix, and fewer collagen fibers, more free trabecular terminals, and a thinner uncalcified

  1. New eco-friendly animal bone meal catalysts for preparation of chalcones and aza-Michael adducts

    Directory of Open Access Journals (Sweden)

    Riadi Yassine

    2012-06-01

    Full Text Available Abstract Two efficient reactions were successfully carried out using Animal Bone Meal (ABM and potassium fluoride or sodium nitrate doped ABMs as new heterogeneous catalysts under very mild conditions. After preparation and characterization of the catalysts, we first report their use in a simple and convenient synthesis of various chalcones by Claisen–Schmidt condensation and then in an aza-Michael addition involving several synthesized chalcones with aromatic amines. All the reactions were carried out at room temperature in methanol; the chalcone synthesis was also achieved in water environment under microwave irradiation. Doping ABM enhances the rate and yield at each reaction. Catalytic activities are discussed and the ability to re-use the ABM is demonstrated. Results For Claisen–Schmidt the use of ABM alone, yields never exceeded 17%. In each entry, KF/ABM and NaNO3/ABM (79-97% gave higher yields than using ABM alone under thermic condition. Also the reaction proceeded under microwave irradiation in good yields (72-94% for KF/ABM and 81-97% for NaNO3/ABM and high purity. For aza-Michael addition the use of ABM doped with KF or NaNO3 increased the catalytic activity remarkably. The very high yields could be noted (84-95% for KF/ABM and 81-94% for NaNO3/ABM. Conclusion The present method is an efficient and selective procedure for the synthesis of chalcones an aza-Michael adducts. The ABM and doped ABMs are a new, inexpensive and attractive solid supports which can contribute to the development of catalytic processes and reduced environmental problems.

  2. The Influence of Ionizing Radiation on Various Collagen-Containing Medical Bioproducts

    International Nuclear Information System (INIS)

    In this study dose-dependent alterations in irradiated catgut sutures, processed animal bones and purified dura mater transplants are discussed in terms of damage to the product which might influence its practical use. A comparison between untreated and gamma- or electron-irradiated catgut was made. The shrinkage temperature (Ts) was lowered as the radiation dose increased; a marked difference between gamma and electron irradiation was observed; after electron irradiation at 2.5, 5 and 10 Mrad the Ts values were from 3 to 6°C lower than after gamma irradiation at corresponding doses. The knot tensile strength was influenced in the same manner. 2.5 Mrad caused up to 8% and up to 15% reduction after gamma and electron irradiation, respectively, while at 10 Mrad the corresponding values were 20% and 65%. Extraction of thermally denatured sutures under different pH-value conditions yielded increasing proportions of extractable collagen material when the irradiation dose was raised. In vitro digestion tests, carried out both with pepsin and trypsin, showed a much more rapid degradation occurring after electron irradiation. Processed animal bone (Kiel bone) contains about 21% collagen; this protein can partly be extracted, the amount of which depends on the radiation dose. Human dura mater which was sterilized at 2. 5 and 5 Mrad exhibited some extent of molecular breakdown, as expressed in terms of Ts, tensile strength, solubility and enzymatic degradation. Histological examinations of subcutaneously implanted dura samples are also discussed. (author)

  3. Proof of direct radiogenic destruction of collagen in vitro

    International Nuclear Information System (INIS)

    Background: Fibroses of vessels and soft tissue are side effects of radiotherapy. The authors assumed that there was an immediate direct radiogenic damage of collagen of bone, periosteum and skin. Material and Methods: 15 porcine jaws samples (group 1) were exposed to a total dose of 60 Gy (cobalt-60, 2 Gy/day, five fractions/week). 15 jaws samples were stored accordingly (group 2, no irradiation, control). Collagen fragments of bone, periosteum and skin samples of groups 1 and 2 were isolated by ultrafiltration. Collagen types were characterized by SDS-PAGE measurement of the mature collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) by high-performance liquid chromatography (HPLC) and analysis of hydroxyproline (Hyp) was used to determine the ratio of the amount of collagen fragments from irradiated as opposed to nonirradiated samples. Results: The concentrations of HP, LP and Hyp in ultrafiltrates of probes of irradiated bone, periosteum and skin were markedly increased (average factors for bone: 3.69, 1.84, and 3.40, respectively; average factors for periosteum: 1.55, 1.41, and 1.77, respectively; average factors for skin: 1.55, 1.60, and 2.23, respectively) as compared to nonirradiated probes. SDS-PAGE did show collagen types I and V in nonirradiated bone, I and III in nonirradiated skin, and I in nonirradiated periosteum samples. In irradiated samples, smeared bands illustrated fragmentation of the collagen molecule. Conclusion: The increased concentrations of HP, LP and Hyp in ultrafiltrates indicated increased concentrations of split collagen. Direct and instant radiogenic damage of (extracellular matrix of) bone, periosteum and skin tissue collagen could be demonstrated. (orig.)

  4. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  5. Collagen vascular disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001223.htm Collagen vascular disease To use the sharing features on this page, ... were previously said to have "connective tissue" or "collagen vascular" disease. We now have names for many of many ...

  6. Osmotically driven tensile stress in collagen-based mineralized tissues.

    Science.gov (United States)

    Bertinetti, Luca; Masic, Admir; Schuetz, Roman; Barbetta, Aurelio; Seidt, Britta; Wagermaier, Wolfgang; Fratzl, Peter

    2015-12-01

    Collagen is the most abundant protein in mammals and its primary role is to serve as mechanical support in many extracellular matrices such as those of bones, tendons, skin or blood vessels. Water is an integral part of the collagen structure, but its role is still poorly understood, though it is well-known that the mechanical properties of collagen depend on hydration. Recently, it was shown that the conformation of the collagen triple helix changes upon water removal, leading to a contraction of the molecule with considerable forces. Here we investigate the influence of mineralization on this effect by studying bone and turkey leg tendon (TLT) as model systems. Indeed, TLT partially mineralizes so that well-aligned collagen with various mineral contents can be found in the same tendon. We show that water removal leads to collagen contraction in all cases generating tensile stresses up to 80MPa. Moreover, this contraction of collagen puts mineral particles under compression leading to strains of around 1%, which implies localized compressive loads in mineral of up to 800MPa. This suggests that collagen dehydration upon mineralization is at the origin of the compressive pre-strains commonly observed in bone mineral. PMID:25862347

  7. Proximal collagenous gastroenteritides:

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Riis, Lene Buhl; Danese, Silvio;

    2014-01-01

    AIM: While collagenous colitis represents the most common form of the collagenous gastroenteritides, the collagenous entities affecting the proximal part of the gastrointestinal tract are much less recognized and possibly overlooked. The aim was to summarize the latest information through a syste...

  8. Lysyl Hydroxylase 3 Glucosylates Galactosylhydroxylysine Residues in Type I Collagen in Osteoblast Culture*

    OpenAIRE

    Sricholpech, Marnisa; Perdivara, Irina; Nagaoka, Hideaki; Yokoyama, Megumi; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2011-01-01

    Lysyl hydroxylase 3 (LH3), encoded by Plod3, is the multifunctional collagen-modifying enzyme possessing LH, hydroxylysine galactosyltransferase (GT), and galactosylhydroxylysine-glucosyltransferase (GGT) activities. Although an alteration in type I collagen glycosylation has been implicated in several osteogenic disorders, the role of LH3 in bone physiology has never been investigated. To elucidate the function of LH3 in bone type I collagen modifications, we used a short hairpin RNA technol...

  9. ON THE USAGE OF ANIMAL BONES AND ANTLER DURING THE MIDDLE AGES (9th - 13th century

    Directory of Open Access Journals (Sweden)

    Весна Р. Манојловић-Николић

    2012-12-01

    Full Text Available The processing and production of the bone and antler objects could be traced deep into the past. The most beautiful specimens were known as the objects of Paleolithic art, but the tools were also made of these materials. The peak in bone and antler processing was reached during Roman period. During the Middle Ages, mostly utilitarian items were produced especially in the period from the ninth to the thirteenth century.From the chemistry view, the bones were composed of organic and inorganic substances. The bones had tenacity thanks to minerals, but the organic substances gave them flexibility. The most important organic and inorganic components of the bone tissue weree not chemically bounded, so it was possible to make changes in their ratio by physical or chemical acting. The data about technology and processing of the bone and antler objects that referred to the craft in this period could not be found in the written sources. Reconstruction of the processing could be made on the basis of ethnological data and partly modern industry.The bone and antler objects are usually classified in two main groups: tools, essentials in everyday life, and decorative objects made by more skillful craftsmen. The further classifying is done on the basis of their shape and function. It is possible to mark off the items: tools, decorative and toilette requisites, game objects, musical instruments and the parts of the horse equipment. This is the most usual classification of the bone and antler objects in literature. Majority of bone and antler objects, modest for processing but with emphasized functionality, were used during everyday jobs such as skin processing, footwear and clothing making, sewing, fisherman nets making, pottery vessels decorating etc. All the necessary items were made in this way in a settlement. Their functionality, simplicity in making and readily available materials were the reflection of that processing. The found bone and antler objects

  10. Mineralized Collagen: Rationale, Current Status, and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Zhi-Ye Qiu

    2015-07-01

    Full Text Available This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.

  11. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β1, IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β1, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β1, IL-6 may be essential in the regulation of the collagen metabolism

  12. Bone and parathyroid inhibitory effects of S-2(3-aminopropylamino)ethylphosphorothioic acid. Studies in experimental animals and cultured bone cells

    International Nuclear Information System (INIS)

    S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR 2721) is a radio- and chemoprotective agent which produces hypocalcemia in humans. Intravenous injection of 30 mg/kg WR 2721 in rats and 15 mg/kg in dogs lowers serum calcium by 19 and 25%, respectively. Hypocalcemia in dogs is associated with a fall in serum immunoreactive parathyroid hormone (PTH), which suggests that the mechanism of its hypocalcemic effect is acute hypoparathyroidism. Despite this effect on PTH, in eight chronically parathyroidectomized rats on a low phosphate diet, WR 2721 reduced serum calcium from 9.4 to 7.7 mg/dl at 3 h. Furthermore, in dogs rendered hypercalcemic by continuous infusion of PTH, WR 2721 reduced serum calcium from 11.0 to 10.6 mg/dl. To determine whether WR 2721 causes hypocalcemia by enhancing the exit of calcium from the circulation or inhibiting its entry, the drug was infused 3 h after administration of 45Ca to rats. WR 2721 did not significantly increase the rate of disappearance of 45Ca from the circulation even though serum calcium fell by 19%. In incubations with fetal rat long bone labeled in utero with 45Ca, 10(-3) M WR 2721 inhibited PTH-stimulated, but not base-line release of 45Ca. Bone resorption by primary culture of chick osteoclasts was inhibited by WR 2721 at concentrations as low as 10(-4) M in the absence of hormonal stimulation. These studies suggest that WR 2721 lowers serum calcium predominantly by blocking calcium release from bone. This acute hypocalcemic effect is at least in part independent of its effect on the parathyroid glands, and is most likely a direct effect of the agent on bone resorption

  13. Complications of collagenous colitis

    Institute of Scientific and Technical Information of China (English)

    Hugh James Freeman

    2008-01-01

    Microscopic forms of colitis have been described, including collagenous colitis. This disorder generally has an apparently benign clinical course. However, a number of gastric and intestinal complications, possibly coincidental, may develop with collagenous colitis. Distinctive inflammatory disorders of the gastric mucosa have been described, including lymphocytic gastritis and collagenous gastritis. Celiac disease and collagenous sprue (or collagenous enteritis) may occur. Colonic ulceration has been associated with use of nonsteroidal anti-inflammatory drugs, while other forms of inflammatory bowel disease, including ulcerative colitis and Crohn's disease, may evolve from collagenous colitis. Submucosal "dissection", colonic fractures or mucosal tears and perforation from air insufflation during colonoscopy may occur and has been hypothesized to be due to compromise of the colonic wall from submucosal collagen deposition. Similar changes may result from increased intraluminal pressure during barium enema contrast studies. Finally, malignant disorders have also been reported, including carcinoma and lymphoproliferative disease.

  14. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe;

    2012-01-01

    Fibrosis of the liver and its end-stage, cirrhosis, represent major health problems worldwide. In these fibrotic conditions, activated fibroblasts and hepatic stellate cells display a net deposition of collagen. This collagen deposition is a major factor leading to liver dysfunction, thus making it...... crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...

  15. Precision of high-resolution dual energy x-ray absorptiometry of bone mineral status and body composition in small animal models

    Directory of Open Access Journals (Sweden)

    Lochmüller E. M.

    2001-01-01

    Full Text Available The purpose of this study was to analyze the in situ precision (reproducibility of bone mineral and body composition measurements in mice of different body weights and rats, using a high-resolution DXA (dual energy X-ray absorptiometry scanner. We examined 48 NMRI mice weighing approximately 10 to 60 g, and 10 rats weighing approximately 140 g. Four repeated measurements were obtained on different days. In mice, the standard deviations of repeated measurements ranged from 2.5 to 242 mg for bone mineral content (BMC, from 0.16 to 3.74 g for fat, and from 0.40 to 4.21 g for lean mass. The coefficient of variation in percent (CV% for BMC/BMD (bone mineral density was highest in the 10 g mice (12.8% / 4.9% and lowest in the 40 g mice (3.5% /1.7%. In rats, it was 2.5 /1.2% in the lower extremity, 7.1/3.0 % in the spine, 5.7/2.0 % in the femur, and 3.6%/2.1% in the tibia. The CV% for fat and lean mass in mice was higher than for BMC. The study demonstrates good precision of bone mineral and moderate precision of body composition measure-ments in small animals, using a high-resolution DXA system. The technique can be used for testing the efficacy of drugs in small animal models, for muta-genesis screens, and for the phenotypic characterization of transgenic mice.

  16. Surface modification of nano-silica on the ligament advanced reinforcement system for accelerated bone formation: primary human osteoblasts testing in vitro and animal testing in vivo

    Science.gov (United States)

    Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu

    2015-04-01

    The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e

  17. 骨髓源性肥大细胞对软骨细胞表达Ⅱ型胶原及糖胺多糖的影响%Effects of bone marrow- derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes

    Institute of Scientific and Technical Information of China (English)

    欧阳晴晴; 赵进军; 杨敏

    2014-01-01

    Objective To investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs. Methods Primarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1∶10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM). Results After a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co- cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P0.05),C48/80组Ⅱ型胶原与GAG含量相对于对照组和BMMCs组显著降低(P0.05)。结论C48/80激活的BMMCs可降低软骨细胞Ⅱ型胶原以及GAG表达。

  18. Talking Bones.

    Science.gov (United States)

    Johnson, Jaclyn; Kassing, Sharon

    2002-01-01

    Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)

  19. Use of Spongious Bone Chips and Fascia Temporalis in Alveolar Bone Defects

    OpenAIRE

    TÜZ, Hakan H.; AKAL, Ümit K.; CAMBAZOĞLU, Mine; KİŞNİŞCİ, Reha Ş.

    2004-01-01

    Graft materials are used for inducement of regeneration in bone defects. Organic and synthetic bone graft materials facilitate remodelation or healing of the bone and induce new bone formation in the area of bone resorption caused by pathological, traumatic, and physiological reasons. The aim of this study was to evaluate the effects of spongious allogenic bone graft and fascia temporalis membranous collagen tissue on the healing of bone defects clinically and radiologically. The study was c...

  20. Small-Angle X-ray Scattering Demonstrates Similar Nanostructure in Cortical Bone from Young Adult Animals of Different Species.

    Science.gov (United States)

    Kaspersen, Jørn Døvling; Turunen, Mikael Juhani; Mathavan, Neashan; Lages, Sebastian; Pedersen, Jan Skov; Olsson, Ulf; Isaksson, Hanna

    2016-07-01

    Despite the vast amount of studies focusing on bone nanostructure that have been performed for several decades, doubts regarding the detailed structure of the constituting hydroxyapatite crystal still exist. Different experimental techniques report somewhat different sizes and locations, possibly due to different requirements for the sample preparation. In this study, small- and wide-angle X-ray scattering is used to investigate the nanostructure of femur samples from young adult ovine, bovine, porcine, and murine cortical bone, including three different orthogonal directions relative to the long axis of the bone. The radially averaged scattering from all samples reveals a remarkable similarity in the entire q range, which indicates that the nanostructure is essentially the same in all species. Small differences in the data from different directions confirm that the crystals are elongated in the [001] direction and that this direction is parallel to the long axis of the bone. A model consisting of thin plates is successfully employed to describe the scattering and extract the plate thicknesses, which are found to be in the range of 20-40 Å for most samples but 40-60 Å for the cow samples. It is demonstrated that the mineral plates have a large degree of polydispersity in plate thickness. Additionally, and equally importantly, the scattering data and the model are critically evaluated in terms of model uncertainties and overall information content. PMID:26914607

  1. ICTP in Bone Metastases of Lung Cancer

    OpenAIRE

    Franjević, Ana; Pavićević, Radomir; Bubanović, Gordana

    2011-01-01

    Bone metastases often appear in advanced stages of lung cancer. They are the result of modulation of bone metabolism by tumor cells that migrated into bone microenvironment and degraded bone organic matrix. Measurement of C-terminal telopeptide of type I collagen (ICTP) in the serum of subjects with lung cancer with and without bone metastases and healthy population is the way to explore bone resorption. In 343 subjects included in this research ICTP level was significantly higher...

  2. Collagen and gelatin.

    Science.gov (United States)

    Liu, Dasong; Nikoo, Mehdi; Boran, Gökhan; Zhou, Peng; Regenstein, Joe M

    2015-01-01

    Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications. PMID:25884286

  3. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    International Nuclear Information System (INIS)

    Highlights: → Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. → Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. → Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset

  4. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    Energy Technology Data Exchange (ETDEWEB)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany); Mueller, Thomas; Blasczyk, Rainer [Institute for Transfusion Medicine, Hannover Medical School, Hannover (Germany); Glasmacher, Birgit; Hofmann, Nicola [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany)

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  5. Collagen fibril biosynthesis in tendon: a review and recent insights.

    Science.gov (United States)

    Canty, E G; Kadler, K E

    2002-12-01

    The development and evolution of multicellular animals relies on the ability of certain cell types to synthesise an extracellular matrix (ECM) comprising very long collagen fibrils that are arranged in very ordered 3-dimensional scaffolds. Tendon is a good example of a highly ordered ECM, in which tens of millions of collagen fibrils, each hundreds of microns long, are synthesised parallel to the tendon long axis. This review highlights recent discoveries showing that the assembly of collagen fibrils in tendon is hierarchical, and involves the formation of fairly short "collagen early fibrils" that are the fusion precursors of the very long fibrils that occur in mature tendon. PMID:12485687

  6. Radiation Inactivation of Foot-and-Mouth Disease Virus in the Blood, Lymphatic Glands and Bone Marrow of the Carcasses of Infected Animals

    International Nuclear Information System (INIS)

    The FMD virus, like RP, SF and ASF viruses, is disseminated by infected animal products. The effects of gamma radiation on FMD virus cultures in vitro have been studied. According to these results, a dose of 3 Mrad when the virus is in the liquid state, and of 4 Mrad when it is in the dry state, is necessary to reduce the number of virus particles from 107 to 1. The D10 value for the liquid FMD virus is equivalent to 481 krad± the D10 value for the dried virus is equivalent to 626 krad. The effects of gamma radiation on FMD virus in situ have been studied. According to these results, to inactivate the FMD virus in the experimentally-infected pigs' tissues where the viral contents are the highest (blood, bone marrow, lymphatic glands), doses of 2 Mrad for the blood and bone marrow and of 1.5 Mrad for the lymphatic glands are necessary. Radiation may offer a possible means of reducing or eliminating the virus titre in many infected animal products and solve consequent quarantine problems. (author)

  7. Effect of Stem Cell Therapy on Bone Mineral Density: A Meta-Analysis of Preclinical Studies in Animal Models of Osteoporosis

    Science.gov (United States)

    Li, Feng; Zhou, Changlin; Xu, Liang; Tao, Shuqing; Zhao, Jingyi; Gu, Qun

    2016-01-01

    Background Preclinical studies of the therapeutic role of stem cell based therapy in animal models of osteoporosis have largely yielded inconsistent results. We performed a meta-analysis to provide an overview of the currently available evidence. Methods Pubmed, Embase and Cochrane Library databases were systematically searched for relevant controlled studies. A random-effect model was used for pooled analysis of the effect of stem cell based therapy on bone mineral density (BMD). Stratified analyses were performed to explore the effect of study characteristics on the outcomes. Results Pooled results from 12 preclinical studies (110 animals in stem cell treatment groups, and 106 animals in control groups) indicated that stem cell based treatment was associated with significantly improved BMD (standardized mean difference [SMD] = 1.29, 95% Confidence Interval [CI]: 0.84–1.74, P 0.05). Egger’s test detected potential publication bias (P = 0.055); however, ‘trim and fill’ analysis yielded similar results after statistically incorporating the hypothetical studies in the analysis (SMD = 1.24, 95% CI: 0.32–2.16, P < 0.001). Conclusions Stem cell transplantation may improve BMD in animal models of osteoporosis. Our meta-analysis indicates a potential therapeutic role of stem cell based therapy for osteoporosis, and serves to augment the rationale for clinical studies. PMID:26882451

  8. Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-05-01

    Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. PMID:26716893

  9. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  10. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model.

    Science.gov (United States)

    Seppanen, Elke; Roy, Edwige; Ellis, Rebecca; Bou-Gharios, George; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2013-01-01

    The contribution of distant and/or bone marrow-derived endogenous mesenchymal stem cells (MSC) to skin wounds is controversial. Bone marrow transplantation experiments employed to address this have been largely confounded by radiation-resistant host-derived MSC populations. Gestationally-acquired fetal MSC are known to engraft in maternal bone marrow in all pregnancies and persist for decades. These fetal cells home to damaged maternal tissues, mirroring endogenous stem cell behavior. We used fetal microchimerism as a tool to investigate the natural homing and engraftment of distant MSC to skin wounds. Post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter were wounded. In vivo bioluminescence imaging (BLI) was then used to track recruitment of fetal cells expressing this mesenchymal marker over 14 days of healing. Fetal cells were detected in 9/43 animals using BLI (Fisher exact p = 0.01 versus 1/43 controls). These collagen type I-expressing fetal cells were specifically recruited to maternal wounds in the initial phases of healing, peaking on day 1 (n = 43, pwounds revealed vimentin-expressing fetal cells in dermal tissue. Our results demonstrate the participation of distant mesenchymal cells in skin wounds. These data imply that endogenous MSC populations are likely recruited from bone marrow to wounds to participate in healing. PMID:23650524

  11. Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study

    OpenAIRE

    Qian, Guang; Dong, Youhai; Yang, Wencheng; Wang, Minghai

    2012-01-01

    Polymethylmethacrylate (PMMA) is currently the most commonly-used material, but it may induce adjacent vertebral fracture due to low degradation and high strength. Our study evaluated the feasibility of injectable calcium phosphate cement (ICPC) and fibrin sealant (FS) as an injectable compound carrier of human bone morphogenetic protein-2 (rhBMP-2) in New Zealand rabbits for vertebroplasty. Results showed ICPC/FS/rhBMP-2 composites induced alkaline phosphatase most effectively at 2 and 4 wee...

  12. Systemic transplantation of bone marrow stromal cells:an experimental animal study of biodistribution and tissue targeting

    OpenAIRE

    T. Mäkelä

    2014-01-01

    Abstract Bone marrow mesenchymal stromal cells (MSCs) and mononuclear cells (BM-MNCs) have shown great therapeutic potential in various clinical settings. Although intravascular transplantation of the cells constitutes the optimal delivery route, massive pulmonary entrapment, with the threat of embolization, remains a major obstacle for using this type of therapy. Because pulmonary entrapment is at least partially mediated by adhesion molecules, cell surface modification could enhance pul...

  13. Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma

    OpenAIRE

    Roubeix, Christophe; Godefroy, David; Mias, Céline; Sapienza, Anaïs; Riancho, Luisa; Degardin, Julie; Fradot, Valérie; Ivkovic, Ivana; Picaud, Serge; Sennlaub, Florian; Denoyer, Alexandre; Rostene, William; Sahel, José Alain; Parsadaniantz, Stéphane Melik; Brignole-Baudouin, Françoise

    2015-01-01

    Introduction Glaucoma is a sight-threatening retinal neuropathy associated with elevated intraocular pressure (IOP) due to degeneration and fibrosis of the trabecular meshwork (TM). Glaucoma medications aim to reduce IOP without targeting the specific TM pathology, Bone-marrow mesenchymal stem cells (MSCs) are used today in various clinical studies. Here, we investigated the potential of MSCs therapy in an glaucoma-like ocular hypertension (OHT) model and decipher in vitro the effects of MSCs...

  14. Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep

    Science.gov (United States)

    Lorusso, Felice; Ravera, Lorenzo; Mortellaro, Carmen; Piattelli, Adriano

    2016-01-01

    Background. Oral rehabilitation of partially fully edentulous patients with dental implants has become a routine procedure in clinical practice. In a site with a lack of bone GBR is a surgical procedure that provides an augmentation in terms of volume for the insertion of dental implants. Materials and Methods. In the iliac crest of six sheep 4 defects were created where an implant was inserted, three of them with different biomaterials and a control site. All animals were sacrificed after a 4-month healing period. All specimens were processed and analyzed with histomorphometry. Statistical evaluation was done to evaluate percentage of bone defect filled by new bone. Results. All experimental groups showed an increase of the new bone. Higher and highly statistically significant differences were found in the percentages of bone defect filled by new bone in group filled with corticocancellous 250–1000 microns particulate porcine bone mix. Conclusions. This study demonstrates that particulate porcine bone mix and porcine corticocancellous collagenate prehydrated bone mix when used as scaffold are able to induce bone regeneration. Moreover, these data suggest that these biomaterials have higher biocompatibility and are capable of inducing faster and greater bone formation. PMID:27413746

  15. Assessment of bone repair following the use of anorganic bone graft and membrane associated or not to 830-nm laser light

    Science.gov (United States)

    de Assis Limeira, Francisco, Jr.; Barbosa Pinheiro, Antônio L.; Marquez de Martinez Gerbi, Marleny E.; Pedreira Ramalho, Luciana Maria; Marzola, Clovis; Carneiro Ponzi, Elizabeth A.; Soares, Andre O.; Bandeira de Carvalho, Lívia C.; Vieira Lima, Helena Cristina; Oliveira Gonçalves, Thais; Silva Meireles, Gyselle C.; Possa, Thaise R.

    2003-06-01

    The aim of this study was to assess the effect of LLLT (λ830nm, Thera lase, DMC Equipmentos, Sao Carlos, SP, Brazil, 40mW, CW, spot size 0.60mm, 16J/cm2 per session) on the repair of bone defects on the femur of Wistar albinus rats which were grafted with anorganic bovine bone associated or not to bovine bone membrane. Five randomized groups were studied: I (Control); II (anorganic bovine bone); III (anorganic bovine bone + LLLT); IV (anorganic bovine bone + bovine bone membrane) and V (anorganic bovine bone + bovine bone membrane + LLLT). The animals were irradiated at every 48h during 15 days, the first irradiation was performed immediately after the procedure. The animals were irradiated transcutaneuosly in four points around the defect. At each point a dose of 4J/cm2 was given (f~0,60mm, 40mW) totaling 16J/cm2 per session. The animals were sacrificed 15, 21 and 30 days after surgery. The specimens were routinely processed to wax and stained with H&E and Picrosírius stains and analyzed under light microscopy. The results showed evidence of a more advanced repair on the irradiated groups when compared to non-irradiated ones. The repair of irradiated groups was characterized by both increased bone formation and amount of collagen fibers around the graft within the cavity early, considering the osteoconductive capacity of the anorganic bovine bone and the increment of the cortical repair in specimens with membrane. It is concluded that LLLT had a positive effect on the repair of bone defect submitted the implantation of graft associated or not to the use of biological membrane.

  16. The effects of photobiomodulation on healing of bone defects in streptozotocin induced diabetic rats

    Science.gov (United States)

    Martinez Costa Lino, Maíra D.; Bastos de Carvalho, Fabíola; Ferreira Moraes, Michel; Augusto Cardoso, José; Pinheiro, Antônio L. B.; Maria Pedreira Ramalho, Luciana

    2011-03-01

    Previous studies have shown positive effects of Low level laser therapy (LLLT) on the repair of bone defects, but there are only a few that associates bone healing in the presence of a metabolic disorder as Diabetes Melitus and LLLT. The aim of this study was to assess histologically the effect of LLLT (AsGaAl), 780nm, 70mW, CW, Ø~0.4mm, 16J/cm2 per session) on the repair of surgical defects created in the femur of diabetic and non-diabetic Wistar Albinus rats. Surgical bone defects were created in 60 animals divided into four groups of 15 animals each: Group C (non-diabetic - control); Group CL (non-diabetic + LLLT); Group CD (diabetic); Group CDL (diabetic + LLLT). The animals on the irradiated group received 16 J/cm2 per session divided into four points around the defect, being the first irradiation immediately after surgery and repeated every 48h for 14 days. The animals were killed 15, 21 and 30 days after surgery. The results of the present investigation showed histological evidence of improved amount of collagen fibers at early stages of the bone healing (15 days) and increased amount of well organized bone trabeculae at the end of the experimental period (30 days) on irradiated animals, (diabetic and non-diabetic) compared to non irradiated ones. It is concluded that LLLT has a positive biomodulative effect on the healing process of bone defects, even when diabetes mellitus was present.

  17. Climate and habitat reconstruction using stable carbon and nitrogen isotope ratios of collagen in prehistoric herbivore teeth from Kenya

    Science.gov (United States)

    Ambrose, Stanley H.; DeNiro, Michael J.

    1989-05-01

    Stable carbon and nitrogen isotope ratios have been determined for tooth collagen of 27 prehistoric herbivores from a rock shelter in the central Rift Valley of Kenya. Collagen samples whose isotope ratios were not altered by diagenesis were identified using several analytical methods. During the later Holocene, when the climate was as dry or drier than at present, the isotopic compositions of individual animals are similar to those of modern individuals of the same species. During the earlier Holocene, when the climate was wetter than at present, the δ 15N and δ 13C values are lower than those for their modern counterparts. When diagenetic factors can be discounted and adequate modern comparative data are available, stable isotope analysis of herbivore teeth and bones can be used to evaluate prehistoric climate and habitat conditions.

  18. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available INTRODUCTION: The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model. METHODS: Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed. RESULTS: Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01. CONCLUSIONS: The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  19. Type IV collagen

    International Nuclear Information System (INIS)

    Type IV collagen is a highly specialized form of collagen found only in basement membranes. It is one of the major components of all basement membranes together with the glycoproteins laminin, nidogen, entactin, and heparan sulfate proteoglycan. Basement membranes are ubiquitous, thin, sheetlike structures found frequently under epithelial and endothelial cell linings but also surrounding many cell types such as muscle, nerve, and fat. They function as a selective filtration barrier for macromolecules, for example, in the kidney, blood--brain barrier, and placenta, but also separate extracellular matrix from epithelial or endothelial cell layers as in gut, skin, cornea, lung, and blood vessels. Indications that basement membranes contained a collagen came from X-ray studies of intact basement membranes as early as 1951. Later, hydroxyproline and then hydroxylysine were detected in amino acid compositions of whole basement membranes. Because of the insolubility of basement membrane components, attempts were made to solubilize the collagen using Pronase, a method that had proved useful for type I collagen. The material that was isolated and characterized was clearly different from the other interstitial collagens known at that time, i.e., α1(I), α1(II), and α1(III). Basement membrane collagen was therefore designated type IV collagen

  20. Metabolic bone disease in lion cubs at the London Zoo in 1889: the original animal model of rickets

    OpenAIRE

    Chesney Russell W; Hedberg Gail

    2010-01-01

    Abstract In 1889 Dr. John Bland-Sutton, a prominent London surgeon, was consulted about fatal rickets in over 20 successive litters of lion cubs born at the London Zoo. He evaluated the diet and found the cause of rickets to be nutritional in origin. He recommended that goat meat with crushed bones and cod-liver oil be added to the lean horsemeat diet of the cubs and their mothers. Rickets were reversed, the cubs survived, and subsequent litters thrived. Thirty years later, in classic control...

  1. Multilineage differentiation of porcine bone marrow stromal cells associated with specific gene expression pattern

    DEFF Research Database (Denmark)

    Zou, Lijin; Zou, Xuenong; Chen, Li;

    2008-01-01

    There are increasing reports regarding differentiation of bone marrow stromal cells (BMSC) from human and various species of animals including pigs. The phenotype and function of BMSC along a mesenchymal lineage differentiation are well characterized by specific transcription factors and marker...... genes along those three mesenchymal lineages during a particular lineage differentiation of porcine BMSC by means of real-time PCR measurement. In an osteogenic medium, the mRNA levels of cbfa1, osterix, alkaline phosphatase, type 1 collagen, osteonectin, bone sialoprotein, and osteocalcin were induced...

  2. Changes in microarchitectural characteristics at the tibial epiphysis induced by collagen-induced rheumatoid arthritis over time

    Directory of Open Access Journals (Sweden)

    Lee JH

    2012-09-01

    Full Text Available Joo Hyung Lee,1 Keyoung Jin Chun,2 Han Sung Kim,3 Sang Ho Kim,4 Kwon-Yong Lee,1,6 Dae Jun Kim,5,6 Dohyung Lim,1,61Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea; 2Gerontechnology R & D Group, Korea Institute of Industrial Technology, Cheonan, Chungnam, Republic of Korea; 3Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon, Republic of Korea; 4Department of Bioengineering and Department of Surgery, National University of Singapore, Singapore; 5Department of Advanced Material Engineering, 6Bioengineering Research Center, Sejong University, Seoul, Republic of KoreaBackground: Little is known about the time course of changes in the microarchitecture of the tibial epiphysis with rheumatoid arthritis (RA, although such information would be valuable in predicting risk of fracture. Therefore, we used in vivo microcomputed tomography (µ-CT to assess patterns of microarchitectural alterations in the tibial epiphysis using collagen-induced RA in an animal model.Methods: Bovine type II collagen was injected intradermally into the tails of rats for induction of RA. The tibial joints were scanned by in vivo µ-CT at 0, 4, and 8 weeks following injection. Microarchitectural parameters were measured to evaluate alteration patterns of bone microarchitecture at the tibial epiphysis.Results: The microarchitectural alterations in an RA group were significantly different from those in a control group from 0 to 4 weeks and from 4 to 8 weeks following injection (P < 0.05. The distribution of trabecular bone thickness and trabecular bone separation from 0 weeks to 8 weeks differed significantly (P < 0.05.Conclusion: These results indicate that the patterns of microarchitectural alterations at the tibial epiphysis are strongly affected by collagen-induced progression of RA and entail a severe risk of fracture at the tibial epiphysis. This study represents a valuable first approach to tracking periodic and

  3. Mimivirus collagen is modified by bifunctional lysyl hydroxylase and glycosyltransferase enzyme

    OpenAIRE

    Luther, K B; Hülsmeier, A J; Schegg, B; Deuber, S A; D. Raoult; Hennet, T.

    2011-01-01

    Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying colla...

  4. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen.

    Science.gov (United States)

    Hsu, Han-Hsiu; Uemura, Toshimasa; Yamaguchi, Isamu; Ikoma, Toshiyuki; Tanaka, Junzo

    2016-08-01

    Fish collagen has recently been reported to be a novel biomaterial for cell and tissue culture as an alternative to conventional mammalian collagens such as bovine and porcine collagens. Fish collagen could overcome the risk of zoonosis, such as from bovine spongiform encephalopathy. Among fish collagens, tilapia collagen, the denaturing temperature of which is near 37°C, is appropriate for cell and tissue culture. In this study, we investigated chondrogenic differentiation of human mesenchymal stem cells (hMSCs) cultured on tilapia scale collagen fibrils compared with porcine collagen and non-coated dishes. The collagen fibrils were observed using a scanning electronic microscope. Safranin O staining, glycosaminoglycans (GAG) expression, and real-time PCR were examined to evaluate chondrogenesis of hMSCs on each type of collagen fibril. The results showed that hMSCs cultured on tilapia scale collagen showed stronger Safranin O staining and higher GAG expression at day 6. Results of real-time PCR indicated that hMSCs cultured on tilapia collagen showed earlier SOX9 expression on day 4 and higher AGGRECAN and COLLAGEN II expression on day 6 compared with on porcine collagen and non-coated dishes. Furthermore, low mRNA levels of bone gamma-carboxyglutamate, a specific marker of osteogenesis, showed that tilapia collagen fibrils specifically enhanced chondrogenic differentiation of hMSCs in chondrogenic medium, as well as porcine collagen. Accordingly, tilapia scale collagen may provide an appropriate collagen source for hMSC chondrogenesis in vitro. PMID:26829997

  5. Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies assessed by Raman spectroscopy

    Science.gov (United States)

    Pinheiro, Antonio Luiz B.; Soares, Luiz Guilherme P.; Marques, Aparecida Maria C.; Silveira, Landulfo

    2016-03-01

    This work aimed the assessment of the biochemical changes during bone mineralization induced by laser and LED irradiation in an animal model of bone repair using a spectral model based on Raman spectroscopy. Six groups were studied: Clot, Laser (λ780 nm, 70 mW), LED (λ850 nm +/- 10 nm, 150 mW), Biomaterial (biphasic synthetic microgranular hydroxyapatite (HA) + β-tricalcium phosphate), Laser + Biomaterial and LED + Biomaterial. When indicated, defects were further irradiated at 48 h interval during 2 wks, 20 J/cm2 per session. At 15th and 30th days, femurs were dissected and spectra of the defects were collected. Raman spectra were submitted to a model to estimate the relative amount of collagen, phosphate HA and carbonate HA, by using spectra of pure collagen, biomaterial and basal bone, respectively. At 15th days, the use of biomaterial associated to phototherapy reduced the collagen formation, whereas the amount of carbonate HA was not different in all groups. The phosphate HA was higher in the groups that received biomaterial grafts. At 30th days, it was observed an increase of collagen for the group Laser + Biomaterial, and a reduction in the carbonate HA for the LED + Biomaterial. The phosphate HA was higher for the groups LED + Biomaterial and Laser + Biomaterial, while decreased for the group Biomaterial. These results indicated that the use of Laser and LED phototherapies improved the repair of bone defects grafted with the biomaterial by increasing the collagen deposition and phosphate HA.

  6. Autologous Bone Marrow Stem Cells in Spinal Cord Injury; Our Experience in Clinical Studies, Animal Studies, Obstacles faced and steps for future

    Directory of Open Access Journals (Sweden)

    Ayyappan S

    2010-01-01

    Full Text Available BACKGROUND: Following traumatic vertebral injuries and resultant spinal cord injury, most patients are doomed to a life either of quadriplegia or paraplegia. Current treatment option is limited to the stabilization of the vertebral fracture along with medications to prevent secondary damage leading to further deterioration and wishful waiting for recovery. In most instances recovery is insignificant. Safety of intrathecal injection of autologous bone marrow stem cells is proven but its efficacy varies between patients (1. Intralesional application has been reported to be more efficacious than intrathecal application (2, 3, 4. We have analyzed our experience in human patients followed up for 3 year period and have found several grey areas in spinal cord injury(5 one of them is to explore the differences between Intrathecal and intralesional application of stem cells with and without scaffolds in the latter technique. Towards achieving this goal we started a pilot study in animals where instead of post-vertebral fixation intrathecal injection, we have performed intralesional application of autologous BMSC along with scaffolds (6. These scaffolds not only help retain the transplanted cells at the site of injury but also allow more neural precursors to grow compared to application without scaffolds (7. This study analyses the data retrospectively to plan further prospective studies with a view to improvise the results. MATERIALS AND METHODS: Study 1 : 100 to 120 ml of Bone marrow was tapped from the right posterior iliac crest under local anesthesia from human spinal injury victims (n=108; 76 males, 32 females about 3 weeks to 18 months after surgical fixation of the vertebrae. The Level of injury was varied- Cervical (13 patients. Upper Thorax- T1-T7 (35 patients Lower thorax T8-T12 (46 patients Lumbar (2 patients. Age Group Range: 8 yrs to 55 yrs. The bone marrow mononuclear cells were processed under cGMP SOP’s Class 10000 clean room and class

  7. The effects of tualang honey on female reproductive organs, tibia bone and hormonal profile in ovariectomised rats - animal model for menopause

    Directory of Open Access Journals (Sweden)

    Sirajudeen Kuttulebbai NM

    2010-12-01

    Full Text Available Abstract Background Honey is a highly nutritional natural product that has been widely used in folk medicine for a number of therapeutic purposes. We evaluated whether Malaysian Tualang honey (AgroMas, Malaysia was effective in reducing menopausal syndrome in ovariectomised female rats; an animal model for menopause. Methods The rats were divided into two control groups and three test groups. The control groups were sham-operated (SH and ovariectomised (OVX rats. The SH and OVX control rats were fed on 0.5 ml of distill water. The rats in the test groups were fed with low dose 0.2 g/kg (THL, medium dose, 1.0 g/kg (THM and high dose 2.0 g/kg (THH of Tualang honey in 0.5 ml of distill water. The administration was given by oral gavage once daily for 2 weeks. The reproductive organs (uterus and vagina, tibia bone and aorta were taken for histopathological examination while serum for hormonal assays. Results Administration of Tualang honey for 2 weeks to ovariectomised rats significantly increased the weight of the uterus and the thickness of vaginal epithelium, restored the morphology of the tibia bones and reduced the body weight compared to rats in the ovariectomised group. The levels of estradiol and progesterone, in honey treated groups were markedly lower than that in the OVX group. At low doses (0.2 g/kg; THL group of Tualang honey there was an increased in serum free testosterone levels compared to OVX group (P Conclusions Tualang honey was shown to have beneficial effects on menopausal (ovariectomised rats by preventing uterine atrophy, increased bone density and suppression of increased body weight. Honey could be an alternative to HRT.

  8. Mistura de proteínas morfogenéticas ósseas, hidroxiapatita, osso inorgânico e colágeno envolta por membrana de pericárdio no preenchimento de defeito ósseo segmentar em coelhos Mixture of bone morphogenetic protein, hydroxyapatite, inorganic bone and collagen interposed by pericardium barrier membrane in the filling of the segmental bone defect in rabbits

    Directory of Open Access Journals (Sweden)

    R.B. Ciani

    2006-02-01

    Full Text Available Avaliou-se o uso de biomaterial de origem bovina na regeneração de defeitos ósseos segmentares empregando-se 12 coelhos, fêmeas, da raça Norfolk, com idade de seis meses e pesos entre 3 e 4,5kg. Realizou-se falha segmentar bilateral de um centímetro de comprimento na diáfise do rádio, com inclusão do periósteo. No membro direito, o defeito foi delimitado por membrana de pericárdio liofilizada, contendo em seu interior mistura de proteínas morfogenéticas ósseas adsorvidas a hidroxiapatita, colágeno liofilizado e osso inorgânico. No membro esquerdo, o defeito não recebeu tratamento. Radiografias foram obtidas ao término do procedimento cirúrgico e aos sete, 30, 60, 90, 120 e 150 dias de pós-operatório. Após eutanásia de seis coelhos aos 60 dias e seis aos 150 dias de pós-cirúrgico, os resultados radiográficos e histológicos mostraram que a regeneração óssea foi inibida nos defeitos segmentares tratados com o biomaterial.Biomaterials of bovine origin in regenerating segmental bone defects were evaluated. Twelve six-month old Norfolk rabbits, weighting 3 to 4.5kg were used. A 1cm long segmental defect was created in the radial diaphysis, including the periosteum, of both forelimbs. In the right forelimb, the defect was filled using a mixture of bone morphogenic proteins adsorbed to hydroxyapatite, agglutinant of lyophilized collagen in granules and anorganic cortical bone in granules delimited by a pericardial membrane. In the left forelimb, the defect did not receive treatment and served as a control. Radiographies were taken immediately after surgery and at seven, 30, 60, 90, 120 and 150 days post-operatively. Six rabbits were euthanized at 60 days and the other six at 150 days post-surgery for histological evaluation. Radiographic and histological results revealed that bone regeneration was inhibited in the segmental defects receiving biomaterials.

  9. Estrogen modulates the mRNA levels for cancellous bone protein of ovariectomized rats.

    Science.gov (United States)

    Salih, M A; Liu, C C; Arjmandi, B H; Kalu, D N

    1993-12-01

    This study was undertaken to examine the effects of ovariectomy and 17 beta-estradiol (E2) on the gene expression of type 1 collagen, osteocalcin and the protooncogen, c-myc, in cancellous bone. Female Sprague-Dawley rats, aged 95 days, were divided into 4 groups. Group 1 was sham operated and Groups 2-4 were ovariectomized. Groups 3 and 4 received daily injections of 160 ng and 1600 ng E2/kg body weight, respectively. Groups 1 and 2 received the solvent vehicle. All animals were sacrificed after 14 days. The femurs were dissected out and cancellous bone scraped from the distal metaphysis. RNA was isolated from the cancellous bone, immobilized on filters or size-fractionated by agarose gel electrophoresis and adsorbed on filters which were then hybridized with specific cDNA probes. Ovariectomy resulted in a significant increase in the mRNAs of type 1 collagen, osteocalcin and c-myc. The increase was suppressed in animals that received 17 beta-estradiol injections. In addition, ovariectomy caused the expected decrease in cancellous bone in the proximal tibia and increased osteoclast and osteoblast numbers. The ovariectomy-induced changes were prevented by 17 beta-estradiol administration. These findings suggest that the lack of ovarian hormones shortly after ovariectomy up-regulates and estrogen administration down-regulates the expression of important cancellous bone matrix proteins as well as the protooncogen, c-myc. PMID:8148671

  10. An approximation of tribological behavior of Ti{sub 1-x}Al{sub x}N coatings against animal bone in ringers solution

    Energy Technology Data Exchange (ETDEWEB)

    Esguerra A, A.; Arteaga, N. A.; Ipaz, L.; Aguilar, Y. [Universidad del Valle, TPMR, Grupo de Investigacion en Tribologia, Polimeros, Metalurgia de Polvos y Residuos Solidos, Calle 13 No. 100-00, A. A. 25360 Cali (Colombia); Amaya, C. [Centro Nacional de Asistencia Tecnica a la Industria ASTIN, SENA, Calle 52 No. 2 Bis-15, Salomia Cali (Colombia); Alba de Sanchez, N., E-mail: adriana.esguerra.arce@gmail.com [Universidad Autonoma de Occidente, Grupo de Investigacion en Ciencia e Ingenieria de Materiales, Calle 25 No. 115-85, A. A. 2790 Cali (Colombia)

    2014-07-01

    Due to their excellent properties, Ti-Al-N coatings have become attractive for biomedical applications. In this paper, friction and wear properties of Ti{sub 1-x}Al{sub x}N films having various aluminum contents, x, have been studied. Adhesion was measured by the scratch test technique; friction was carried out by a pin-on-disk tribometer using an animal bone-pin as counterpart and Ringer solution as simulated body fluid; and wear mechanisms were identified by scanning electron microscopy and Energy Dispersive X-ray Spectroscopy (EDS). It was found that the coating with x = 0.41 exhibited the highest CO F, conserves its integrity as a coating, and causes the lowest wear on the bone in Ringers solution. EDS analysis was performed to determine the contents of Ti, Al and N. An X-ray diffraction study was carried out using and X pert High Score Plus diffractometer with Cu-Kα radiation (α = 1.5406 A) at grazing angle of 0.5 grades. (Author)

  11. Optimization of the production, quality control of samarium-153, 153 Sm-EDTMP and biodistribution of 153 Sm-EDTMP in animals for metastatic bone cancer pain palliation

    International Nuclear Information System (INIS)

    Samarium-153 has suitable physical properties for metastatic bone cancer pain palliation with 46.7 hr half-life. Not only decays it with multi-energetic B-radiation but also emits a gamma-ray at 103 keV which is suitable for imaging during therapy. The optimization of 153 Sm production, by irradiation 152 Sm2 O3 as a solid and liquid target, is conducted in TRIGA Mark III research reactor. The feasibility to label it with EDTMP, a bone seeking agent, is also studied. The specific activity obtained from liquid target is about 2 times higher than solid target. At least 500 mCi/week can be produced with specific activity about 50 to 70 mCi/mg Sm. EDTMP as Na-EDTMP and Ca-EDTMP is labelled with 153 Sm at various conditions. The radiochemical purity achieved, is greater than 99% (85 mCi of 153 Sm labelled with Na-EDTMP or Ca-EDTMP, molar ratio of Sm:EDTMP 1:10 and 1:100 respectively, pH 7.5-8). The biodistribution in animals of 153 Sm-Na-EDTMP showed similar results as obtained from 153 Sm-Ca-EDTMP but slightly higher uptake in various organs and showed high skeletal uptake up to 32% at 24 hr post injection. The labeled compound obviously undergoes rapid removal, completely clearance into urine within 24 hr. This labeled compound is under clinical trials

  12. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation.

    Science.gov (United States)

    Stein, Koen; Prondvai, Edina

    2014-02-01

    palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast-growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs. PMID:23647662

  13. Breakdown of cell-collagen networks through collagen remodeling

    OpenAIRE

    Iordan, Andreea; Duperray, Alain; Gérard, Anaïs; Grichine, Alexei; Verdier, Claude

    2010-01-01

    International audience Collagen model tissues are analyzed, which consist of cells embedded in a collagen matrix at different concentrations (of cells and collagen). Rheological properties are measured and complementary confocal microscopy analyses are carried out. An important feature is observed, corresponding to the breakdown of the collagen network (i.e. decrease in network elasticity) for high collagen concentrations, due to the presence of cells. Thanks to confocal microscopy, we sho...

  14. Comparison between Different Methods for Biomechanical Assessment of Ex Vivo Fracture Callus Stiffness in Small Animal Bone Healing Studies

    OpenAIRE

    Malte Steiner; David Volkheimer; Nicholaus Meyers; Tim Wehner; Hans-Joachim Wilke; Lutz Claes; Anita Ignatius

    2015-01-01

    For ex vivo measurements of fracture callus stiffness in small animals, different test methods, such as torsion or bending tests, are established. Each method provides advantages and disadvantages, and it is still debated which of those is most sensitive to experimental conditions (i.e. specimen alignment, directional dependency, asymmetric behavior). The aim of this study was to experimentally compare six different testing methods regarding their robustness against experimental errors. There...

  15. Animal Management at the Ancient Metropolis of Teotihuacan, Mexico: Stable Isotope Analysis of Leporid (Cottontail and Jackrabbit) Bone Mineral.

    Science.gov (United States)

    Somerville, Andrew D; Sugiyama, Nawa; Manzanilla, Linda R; Schoeninger, Margaret J

    2016-01-01

    Human-animal interactions have played crucial roles in the development of complex societies across the globe. This study examines the human-leporid (cottontail and jackrabbit) relationship at the pre-Hispanic (AD 1-550) city of Teotihuacan in the Basin of Mexico and tests the hypothesis that leporids were managed or bred for food and secondary products within the urban core. We use stable isotope analysis (δ13Capatite and δ18Oapatite) of 134 leporid specimens from five archaeological contexts within the city and 13 modern specimens from across central Mexico to quantify aspects of leporid diet and ecology. The results demonstrate that leporids from Oztoyahualco, a residential complex associated with a unique rabbit sculpture and archaeological traces of animal butchering, exhibit the highest δ13Capatite values of the sample. These results imply greater consumption of human-cultivated foods, such as maize (Zea mays), by cottontails and jackrabbits at this complex and suggest practices of human provisioning. A lack of significant differences in δ18Oapatite values between ancient and modern leporids and between Oztoyahualco and other locations within Teotihuacan indicates generally similar relative humidity from sampled contexts. Results of this study support the notion that residents provisioned, managed, or bred leporids during the height of the city, and provide new evidence for mammalian animal husbandry in the ancient New World. PMID:27532515

  16. Transient Intermittent Hypoxia Exposure Disrupts Neonatal Bone Strength

    Science.gov (United States)

    Kim, Gyuyoup; Elnabawi, Omar; Shin, Daehwan; Pae, Eung-Kwon

    2016-01-01

    A brief intermittent hypoxia (IH, ambient O2 levels alternating between room air and 12% O2) for 1 h immediately after birth resulted in pancreatic islet dysfunction associated with zinc deficiency as previously reported. We hypothesized that IH exposure modulates zinc homeostasis in bone as well, which leads to increased bone fragility. To test this hypothesis, we used neonatal rats and human osteoblasts (HObs). To examine IH influences on osteoblasts devoid of neural influences, we quantified amounts of alkaline phosphatase and mineralization in IH-treated HObs. Bones harvested from IH-treated animals showed significantly reduced hardness and elasticity. The IH group also showed discretely decreased levels of alkaline phosphatase and mineralization amounts. The IH group showed a decreased expression of ZIP8 or Zrt and Irt-like protein 8 (a zinc uptake transporter), Runx2 (or Runt-related transcription factor 2, a master protein in bone formation), Collagen-1 (a major protein comprising the extracellular matrix of the bone), osteocalcin, and zinc content. When zinc was eliminated from the media containing HObs using a zinc chelate and added later with zinc sulfate, Runx2, ZIP8, and osteocalcin expression decreased first, and recovered with zinc supplementation. Adenovirus-mediated ZIP8 over-expression in osteoblasts increased mineralization significantly as well. We conclude that IH impairs zinc homeostasis in bones and osteoblasts, and that such disturbances decrease bone strength, which can be recovered by zinc supplementation. PMID:27014665

  17. Effect of biomineralization on collagen-calcium phosphate composition and ultrastructure in artificial bone synthesis%人工骨合成中生物矿化条件对胶原-磷酸钙复合物组成及微观结构的影响

    Institute of Scientific and Technical Information of China (English)

    黄兆龙; 何英; 蔡群; 郭俊明

    2006-01-01

    BACKGROUND: Study on bone tissue-engineered material is one of the most successful fields in tissue engineering, but the mechanism on synthesis of artificial bone has not been known in many aspects.OBJECTIVE: To explore the mechanism of collagen and calcium phosphate (CP) in artificial bone synthesis.DESIGN: Single sample experiment was designed.SETTING: Material Research Room of Honghe University.MATERIALS: The experiment was performed in Material Research Room of Honghe University from July to August 2003. The materials included collagen (10 g/L acetic acid solution), calcium chloride, sodium dihydrogen phosphate (SDP), sodium hydroxide (NaOH), Tris, hydrochloric acid and deionized water (DI water).METHODS: Liquid nitrogen freezing and freeze-drying were used to prepare collagen-CP complexes A and B and the samples at different times during mineralization. UV spectrophotometer was used to determine the biomineralized dynamic curve of collagen-CP. Based on law of curve, the different times of sample collection were determined in preparation of electronic microscopic samples. According to electronic microscopic pictures and spectral data, mechanism analysis was carried on.MAIN OUTCOME MEASURES: Morphology of collagen-CP complex and law of its structure with time changeRESULTS: ①Under agitation, collagen-CP complex A was sheaf-like or needle-like in structure manufactured with retarded neutralization. ②Under static state, with biomineralization, collagen-CP complex B was in layered structure at initial phase of mineralization, which was similar to the self-assembled structure of pure collagen and the molarratio of C, O, P and Ca was 7.26: 20: 0: 2. At the end of mineralization, the structure was strip-like in high density with a certain grains and very fine rills and the molar ratio of C, O, P and Ca was 11.02: 22.5:1.06: 2.CONCLUSION: At the early phase of biomineralization, collagen iscoordinated initially with calcium ion, calcium-carrier layered collagen

  18. Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis.

    Science.gov (United States)

    Izu, Yayoi; Ezura, Yoichi; Koch, Manuel; Birk, David E; Noda, Masaki

    2016-06-01

    Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle. Recent studies have identified COL12A1 gene mutations in patients with UCMD- and BM-like disorders harboring no COL6 mutations, indicating the shared functions of these collagens in connective tissue homeostasis. The purpose of this investigation has been to test the hypothesis that collagens VI and XII have coordinate regulatory role(s) during bone formation. We analyzed the localization of collagens VI and XII relative to primary osteoblasts during osteogenesis. Immunofluorescence analysis demonstrated that collagens VI and XII colocalized in matrix bridges between adjacent cells during periods when osteoblasts were establishing cell-cell connections. Quantification of cells harboring collagen bridges demonstrated that matrix bridges were composed of collagens VI and XII but not collagen I. Interestingly, matrix bridge formation was impaired in osteoblasts deficient in either Col6a1 or Col12a1, suggesting that both collagens were indispensable for matrix bridge formation. These data demonstrate, for the first time, a functional relationship between collagens VI and XII during osteogenesis and indicate that a complex containing collagens VI and XII is essential for the formation of a communicating cellular network during bone formation. PMID:26753503

  19. Effects of bovine lactoferrin in surgically created bone defects on bone regeneration around implants.

    Science.gov (United States)

    Görmez, Ulaş; Kürkcü, Mehmet; E Benlidayi, Mehmet; Ulubayram, Kezban; Sertdemir, Yaşar; Dağlioğlu, Kenan

    2015-03-01

    The aim of this experimental study was to evaluate the effect of bovine lactoferrin (bLF)-loaded gelatin microspheres (GM) used in combination with anorganic bovine bone on bone regeneration in surgically created bone defects around tooth implants. Twenty-four uniform bone defects were created in the frontal bone via an extraoral approach in 12 domestic pigs. Twenty-four implants were placed at the center of the defects. In eight animals one of these defects was filled with 0.3 mL anorganic bovine bone while the other was left empty. In four animals, all defects were filled with 3 mg/defect bLF-loaded GM and anorganic bovine bone. All the defects were covered with collagen membranes. All animals were sacrificed after 10 weeks of healing, and the implants with the surrounding bone defects were removed en bloc. Undecalcified sections were prepared for histomorphometric analysis. The mean total area of hard tissue was 26.9 ± 6.0% in the empty defect group, 31.8 ± 8.4% in the graft group, and 47.6 ± 5.0% in the lactoferrin group (P < 0.001). The mean area of newly formed bone was 26.9 ± 6.0% in the empty defect group, 22.4 ± 8.2% in the graft group, and 46.1 ± 5.1% in the lactoferrin group (P < 0.001). The mean residual graft area was 9.4 ± 3.2% in the graft group and 1.5 ± 0.6% in the lactoferrin group (P < 0.001). The mean proportion of bone-implant contact in the defect region was 21.9 ± 8.4% in the empty defect group, 26.9 ± 10.1% in the graft group and 29.9 ± 10.3% in the lactoferrin group (P = 0.143). These data indicate that a combination of 3 mg bLF-loaded GM and bovine-derived HA promotes bone regeneration in defects around implants. PMID:25807903

  20. Collagenous Colitis and Spondylarthropathy

    OpenAIRE

    Kaouther Ben Abdelghani; Hana Sahli; Leila Souabni; Selma Chekili; Salwa Belhadj; Selma Kassab; Ahmed Laatar; Leith Zakraoui

    2012-01-01

    Collagenous colitis is a recent cause of chronic diarrhea. Cooccurrence with spondylarthropathy is rare. We describe two cases: one man and one woman of 33 and 20 years old were suffering from spondylarthropathy. They then developed collagenous colitis, 4 and 14 years after the onset of spondylarthropathy. The diagnosis was based on histological features. A sicca syndrome and vitiligo were observed with the female case. The presence of colitis leads to therapeutic problems. This association s...

  1. Update on collagenous sprue

    Institute of Scientific and Technical Information of China (English)

    Hugh; James; Freeman

    2010-01-01

    Collagenous sprue has traditionally been defined as a small intestinal mucosal disorder characterized by persistent diarrhea, severe malabsorption with multiple nutrient def iciencies and progressive weight loss. Pathologically, a severe to variably severe "flattened" mucosal biopsy lesion with distinctive sub-epithelial deposits in the lamina propria region is detected. Histochemical stains and ultrastructural studies have conf irmed that these deposits contain collagens. Often, an initial diagnosis of cel...

  2. Collagenous gastritis: Review

    Institute of Scientific and Technical Information of China (English)

    Kenya Kamimura; Masaaki Kobayashi; Yuichi Sato; Yutaka Aoyagi; Shuji Terai

    2015-01-01

    Collagenous gastritis is a rare disease characterizedby the subepithelial deposition of collagen bandsthicker than 10 μm and the infiltration of inflammatorymononuclear cells in the lamina propria. Collagenouscolitis and collagenous sprue have similar histologicalcharacteristics to collagenous gastritis and are thoughtto be part of the same disease entity. However, whilecollagenous colitis has become more common inthe field of gastroenterology, presenting with clinicalsymptoms of chronic diarrhea in older patients,collagenous gastritis is rare. Since the disease was firstreported in 1989, only 60 cases have been documentedin the English literature. No safe and effective treatmentshave been identified from randomized, controlled trials.Therefore, better understanding of the disease and thereporting of more cases will help to establish diagnosticcriteria and to develop therapeutic strategies. Therefore,here we review the clinical characteristics, endoscopicand histological findings, treatment, and clinical outcomesfrom case reports and case series published to date,and provide a summary of the latest information on thedisease. This information will contribute to improvedknowledge of collagenous gastritis so physicians canrecognize and correctly diagnose the disease, and willhelp to develop a standard therapeutic strategy forfuture clinical trials.

  3. Mechanical properties of collagen fibrils

    OpenAIRE

    Wenger, M. P. E.; Bozec, L.; Horton, M.A.; Mesquida, P

    2007-01-01

    The formation of collagen fibers from staggered subfibrils still lacks a universally accepted model. Determining the mechanical properties of single collagen fibrils ( diameter 50 - 200 nm) provides new insights into collagen structure. In this work, the reduced modulus of collagen was measured by nanoindentation using atomic force microscopy. For individual type 1 collagen fibrils from rat tail, the modulus was found to be in the range from 5 GPa to 11.5 GPa ( in air and at room temperature)...

  4. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs

    Directory of Open Access Journals (Sweden)

    Qiao SC

    2015-01-01

    quotient values in Ag-PIII groups were higher than that in the SLA group. In addition, all the Ag-PIII groups, compared to the SLA-group, exhibited enhanced new bone formation, bone mineral density, and trabecular pattern. With regard to osteogenic indicators, the implants treated with Ag-PIII for 30 minutes and 60 minutes, with the diameter of the Ag NPs ranging from 5–25 nm, were better than those treated with Ag-PIII for 90 minutes, with the Ag NPs diameter out of that range. These results suggest that Ag-PIII technique can reduce the mobility of Ag NPs and enhance the osseointegration of SLA surfaces and have the potential for future use. Keywords: surface modification, micro/nanostructure, silver, ion implantation, osseointegration

  5. The estimated elastic constants for a single bone osteonal lamella.

    Science.gov (United States)

    Yoon, Young June; Cowin, Stephen C

    2008-02-01

    Micromechanical estimates of the elastic constants for a single bone osteonal lamella and its substructures are reported. These estimates of elastic constants are accomplished at three distinct and organized hierarchical levels, that of a mineralized collagen fibril, a collagen fiber, and a single lamella. The smallest collagen structure is the collagen fibril whose diameter is the order of 20 nm. The next structural level is the collagen fiber with a diameter of the order of 80 nm. A lamella is a laminate structure, composed of multiple collagen fibers with embedded minerals and consists of several laminates. The thickness of one laminate in the lamella is approximately 130 nm. All collagen fibers in a laminate in the lamella are oriented in one direction. However, the laminates rotate relative to the adjacent laminates. In this work, all collagen fibers in a lamella are assumed to be aligned in the longitudinal direction. This kind of bone with all collagen fibers aligned in one direction is called a parallel fibered bone. The effective elastic constants for a parallel fibered bone are estimated by assuming periodic substructures. These results provide a database for estimating the anisotropic poroelastic constants of an osteon and also provide a database for building mathematical or computational models in bone micromechanics, such as bone damage mechanics and bone poroelasticity. PMID:17297631

  6. Rat lung fibroblast collagen metabolism in bleomycin-induced pulmonary fibrosis.

    OpenAIRE

    Phan, S. H.; Varani, J.; Smith, D.

    1985-01-01

    Endotracheal bleomycin administration in rats and other animal species causes rapid development of pulmonary fibrosis, characterized by increased lung collagen synthesis and deposition. To clarify the mechanism, lung fibroblasts from bleomycin-treated rats (BRF) were isolated and maintained in tissue culture. They were then compared with those from normal untreated control animals, with respect to several key parameters of collagen metabolism. BRF synthesized collagen at a rate 35-82% above n...

  7. Mineralogical and Geochemical Studies of Bone Detritus of Pleistocene Mammals, Including the Earliest in Northern Eurasia Humans

    Directory of Open Access Journals (Sweden)

    V. I. Silaev

    2015-12-01

    Full Text Available Article presents the preliminary results of mineralogical and geochemical studies of the primary and epigenetic properties of the bio-mineral and protein components in the fossil bone detritus as an example of first step of continued interdisciplinary research program. During the further implementation of this program, it is expected not only to solve a set of interrelated mineralogical, paleontological, paleoecological, paleoclimatic, and archaeological problems, but also to obtain new knowledge about the coevolution of organic, organo-mineral and inorganic substances in the geological history. The main objects of study are the fossil remains of the large Pleistocene mammals (mammoths, woolly rhinoceroses, deer, elk, horses, bison, cave and brown bear found on the territory of the Pechora Urals (62-67 ° N , South Pri-Irtyshie in Western Siberia (57-58 ° N, and Northern Taymyr (75-77 ° N. The oldest bone of Homo sapiens (Ust-Ishim human found in Northern Eurasia and remains of medieval Tobol and Irtysh Turk will be investigated as well. The results of previous studies of skin and hair of biological material from today's wild fisheries (analogues Pleistocene mammals, wild and domestic animals are considered as the reliable prerequisites for planned isotopic and geochemical studies. Use of cutting-edge research techniques will allow determining the chemical composition of bones; the elemental composition of bone collagen and bone proteins; the degree of crystallinity of bone bioapatite, and phase composition of xenomineral impurities; the isotopic composition of carbon, oxygen, and nitrogen in bioapatite and collagen; the actual molecular and crystal structure of the protein biomineral, and bone substance; the concentration of trace elements; the conditions and duration of burial and reburial of bone detritus; bone collagen bacterial degradation at an early stage of fossilization. It is expected that the implementation of the proposed project

  8. Effects of Resveratrol Supplementation on Bone Growth in Young Rats and Microarchitecture and Remodeling in Ageing Rats

    Directory of Open Access Journals (Sweden)

    Alice M. C. Lee

    2014-12-01

    Full Text Available Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03. Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1 were significantly elevated in the resveratrol supplementation group (p = 0.02 with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP. These results in rat models suggest that resveratrol supplementation does not significantly affect bone

  9. Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods

    Science.gov (United States)

    Buckley, Mike

    2016-01-01

    Collagen is one of the most ubiquitous proteins in the animal kingdom and the dominant protein in extracellular tissues such as bone, skin and other connective tissues in which it acts primarily as a supporting scaffold. It has been widely investigated scientifically, not only as a biomedical material for regenerative medicine, but also for its role as a food source for both humans and livestock. Due to the long-term stability of collagen, as well as its abundance in bone, it has been proposed as a source of biomarkers for species identification not only for heat- and pressure-rendered animal feed but also in ancient archaeological and palaeontological specimens, typically carried out by peptide mass fingerprinting (PMF) as well as in-depth liquid chromatography (LC)-based tandem mass spectrometric methods. Through the analysis of the three most common domesticates species, cow, sheep, and pig, this research investigates the advantages of each approach over the other, investigating sites of sequence variation with known functional properties of the collagen molecule. Results indicate that the previously identified species biomarkers through PMF analysis are not among the most variable type 1 collagen peptides present in these tissues, the latter of which can be detected by LC-based methods. However, it is clear that the highly repetitive sequence motif of collagen throughout the molecule, combined with the variability of the sites and relative abundance levels of hydroxylation, can result in high scoring false positive peptide matches using these LC-based methods. Additionally, the greater alpha 2(I) chain sequence variation, in comparison to the alpha 1(I) chain, did not appear to be specific to any particular functional properties, implying that intra-chain functional constraints on sequence variation are not as great as inter-chain constraints. However, although some of the most variable peptides were only observed in LC-based methods, until the range of

  10. Species Identification of Bovine, Ovine and Porcine Type 1 Collagen; Comparing Peptide Mass Fingerprinting and LC-Based Proteomics Methods

    Directory of Open Access Journals (Sweden)

    Mike Buckley

    2016-03-01

    Full Text Available Collagen is one of the most ubiquitous proteins in the animal kingdom and the dominant protein in extracellular tissues such as bone, skin and other connective tissues in which it acts primarily as a supporting scaffold. It has been widely investigated scientifically, not only as a biomedical material for regenerative medicine, but also for its role as a food source for both humans and livestock. Due to the long-term stability of collagen, as well as its abundance in bone, it has been proposed as a source of biomarkers for species identification not only for heat- and pressure-rendered animal feed but also in ancient archaeological and palaeontological specimens, typically carried out by peptide mass fingerprinting (PMF as well as in-depth liquid chromatography (LC-based tandem mass spectrometric methods. Through the analysis of the three most common domesticates species, cow, sheep, and pig, this research investigates the advantages of each approach over the other, investigating sites of sequence variation with known functional properties of the collagen molecule. Results indicate that the previously identified species biomarkers through PMF analysis are not among the most variable type 1 collagen peptides present in these tissues, the latter of which can be detected by LC-based methods. However, it is clear that the highly repetitive sequence motif of collagen throughout the molecule, combined with the variability of the sites and relative abundance levels of hydroxylation, can result in high scoring false positive peptide matches using these LC-based methods. Additionally, the greater alpha 2(I chain sequence variation, in comparison to the alpha 1(I chain, did not appear to be specific to any particular functional properties, implying that intra-chain functional constraints on sequence variation are not as great as inter-chain constraints. However, although some of the most variable peptides were only observed in LC-based methods, until the

  11. Identification of Proteins and Peptide Biomarkers for Detecting Banned Processed Animal Proteins (PAPs) in Meat and Bone Meal by Mass Spectrometry.

    Science.gov (United States)

    Marbaix, Hélène; Budinger, Dimitri; Dieu, Marc; Fumière, Olivier; Gillard, Nathalie; Delahaut, Philippe; Mauro, Sergio; Raes, Martine

    2016-03-23

    The outbreak of bovine spongiform encephalopathy (BSE) in the United Kingdom in 1986, with processed animal proteins (PAPs) as the main vector of the disease, has led to their prohibition in feed. The progressive release of the feed ban required the development of new analytical methods to determine the exact origin of PAPs from meat and bone meal. We set up a promising MS-based method to determine the species and the source (legal or not) present in PAPs: a TCA-acetone protein extraction followed by a cleanup step, an in-solution tryptic digestion of 5 h (with a 1:20 protein/trypsin ratio), and mass spectrometry analyses, first without any a priori, with a Q-TOF, followed by a targeted triple-quadrupole analysis. Using this procedure, we were able to overcome some of the major limitations of the official methods to analyze PAPs, detecting and identifying prohibited animal products in feedstuffs by the monitoring of peptides specific for cows, pigs, and sheep in PAPs. PMID:26943838

  12. Multiscale imaging of bone microdamage.

    Science.gov (United States)

    Poundarik, Atharva A; Vashishth, Deepak

    2015-04-01

    Bone is a structural and hierarchical composite that exhibits remarkable ability to sustain complex mechanical loading and resist fracture. Bone quality encompasses various attributes of bone matrix from the quality of its material components (type-I collagen, mineral and non-collagenous matrix proteins) and cancellous microarchitecture, to the nature and extent of bone microdamage. Microdamage, produced during loading, manifests in multiple forms across the scales of hierarchy in bone and functions to dissipate energy and avert fracture. Microdamage formation is a key determinant of bone quality, and through a range of biological and physical mechanisms, accumulates with age and disease. Accumulated microdamage in bone decreases bone strength and increases bone's propensity to fracture. Thus, a thorough assessment of microdamage, across the hierarchical levels of bone, is crucial to better understand bone quality and bone fracture. This review article details multiple imaging modalities that have been used to study and characterize microdamage; from bulk staining techniques originally developed by Harold Frost to assess linear microcracks, to atomic force microscopy, a modality that revealed mechanistic insights into the formation diffuse damage at the ultrastructural level in bone. New automated techniques using imaging modalities, such as microcomputed tomography are also presented for a comprehensive overview. PMID:25664772

  13. Nicotine effect on bone remodeling during orthodontic tooth movement: Histological study in rats

    Directory of Open Access Journals (Sweden)

    Ricardo Lima Shintcovsk

    2014-04-01

    Full Text Available Introduction: Nicotine is harmful to angiogenesis, osteogenesis and synthesis of collagen. Objective: The aim of this study was to investigate the effect of nicotine on bone remodeling during orthodontic movement in rats. Methods: Eighty male Wistar rats were randomly divided into three groups: Group C (control, group CM (with orthodontic movement and group NM (nicotine with orthodontic movement groups. The animals comprising groups C and CM received 0.9% saline solution while group NM received nicotine solution (2 mg/kg. A nickel-titanium closed-coil spring was used to induce tooth movement. The animals were euthanized and tissue specimens were processed histologically. We quantified blood vessels, Howship's lacunae and osteoclast-like cells present in the tension and compression areas of periodontal ligaments. The extent of bone formation was evaluated under polarized light to determine the percentage of immature/mature collagen. Results: We observed lower blood vessel densities in the NM group in comparison to the CM group, three (p < 0.001 and seven (p < 0.05 days after force application. Osteoclast-like cells and Howship's lacunae in the NM group presented lower levels of expression in comparison to the CM group, with significant differences on day 7 (p < 0.05 for both variables and day 14 (p < 0.05 for osteoclast-like cells and p < 0.01 for Howship's lacunae. The percentage of immature collagen increased in the NM group in comparison to the CM group with a statistically significant difference on day 3 (p < 0.05, day 7 (p < 0.001, day 14 (p < 0.001 and day 21 (p < 0.001. Conclusions: Nicotine affects bone remodeling during orthodontic movement, reducing angiogenesis, osteoclast-like cells and Howship's lacunae, thereby delaying the collagen maturation process in developed bone matrix.

  14. Complex Determinants in Specific Members of the Mannose Receptor Family Govern Collagen Endocytosis

    DEFF Research Database (Denmark)

    Jürgensen, Henrik J; Johansson, Kristina; Madsen, Daniel H;

    2014-01-01

    Members of the well-conserved mannose receptor (MR) protein family have been functionally implicated in diverse biological and pathological processes. Importantly, a proposed common function is the internalization of collagen for intracellular degradation occurring during bone development, cancer...

  15. Biological Safety of Fish (Tilapia Collagen

    Directory of Open Access Journals (Sweden)

    Kohei Yamamoto

    2014-01-01

    Full Text Available Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the http://dx.doi.org/10.13039/501100003478 Ministry of Health, Labour and Welfare. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine.

  16. Biological safety of fish (tilapia) collagen.

    Science.gov (United States)

    Yamamoto, Kohei; Igawa, Kazunari; Sugimoto, Kouji; Yoshizawa, Yuu; Yanagiguchi, Kajiro; Ikeda, Takeshi; Yamada, Shizuka; Hayashi, Yoshihiko

    2014-01-01

    Marine collagen derived from fish scales, skin, and bone has been widely investigated for application as a scaffold and carrier due to its bioactive properties, including excellent biocompatibility, low antigenicity, and high biodegradability and cell growth potential. Fish type I collagen is an effective material as a biodegradable scaffold or spacer replicating the natural extracellular matrix, which serves to spatially organize cells, providing them with environmental signals and directing site-specific cellular regulation. This study was conducted to confirm the safety of fish (tilapia) atelocollagen for use in clinical application. We performed in vitro and in vivo biological studies of medical materials to investigate the safety of fish collagen. The extract of fish collagen gel was examined to clarify its sterility. All present sterility tests concerning bacteria and viruses (including endotoxin) yielded negative results, and all evaluations of cell toxicity, sensitization, chromosomal aberrations, intracutaneous reactions, acute systemic toxicity, pyrogenic reactions, and hemolysis were negative according to the criteria of the ISO and the Ministry of Health, Labour and Welfare of Japan. The present study demonstrated that atelocollagen prepared from tilapia is a promising biomaterial for use as a scaffold in regenerative medicine. PMID:24809058

  17. Application of AMOR in Craniofacial Rabbit Bone Bioengineering

    Directory of Open Access Journals (Sweden)

    Marcelo Freire

    2015-01-01

    Full Text Available Endogenous molecular and cellular mediators modulate tissue repair and regeneration. We have recently described antibody mediated osseous regeneration (AMOR as a novel strategy for bioengineering bone in rat calvarial defect. This entails application of anti-BMP-2 antibodies capable of in vivo capturing of endogenous osteogenic BMPs (BMP-2, BMP-4, and BMP-7. The present study sought to investigate the feasibility of AMOR in other animal models. To that end, we examined the efficacy of a panel of anti-BMP-2 monoclonal antibodies (mAbs and a polyclonal Ab immobilized on absorbable collagen sponge (ACS to mediate bone regeneration within rabbit calvarial critical size defects. After 6 weeks, de novo bone formation was demonstrated by micro-CT imaging, histology, and histomorphometric analysis. Only certain anti-BMP-2 mAb clones mediated significant in vivo bone regeneration, suggesting that the epitopes with which anti-BMP-2 mAbs react are critical to AMOR. Increased localization of BMP-2 protein and expression of osteocalcin were observed within defects, suggesting accumulation of endogenous BMP-2 and/or increased de novo expression of BMP-2 protein within sites undergoing bone repair by AMOR. Considering the ultimate objective of translation of this therapeutic strategy in humans, preclinical studies will be necessary to demonstrate the feasibility of AMOR in progressively larger animal models.

  18. Collagenases and gelatinases in bone healing. The focus on mandibular fractures

    OpenAIRE

    Kurzepa Jacek; Baran Marcin; Watroba Slawomir; Barud Malgorzata; Babula Daniel

    2014-01-01

    Due to high amount of collagen fibres in the structure of bone, the enzymes capable of collagen digestion play a key role in bone remodelling. Matrix metalloproteinases (MMPs), prevailing extracellular endopeptideses, can digest extracellularly located proteins, e.g. collagen, proteoglycans, elastin or fibronectin. Among MMPs, collagenases (MMP-1, MMP-8 and MMP-13) and gelatinases (MMP-2 and MMP-9) can cleave collagen particles to forms that are able to undergo further steps of catabolism int...

  19. Radiation sterilized bone response to dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Mardas, Marcin, E-mail: marcin.mardas@skpp.edu.pl [Department of Oncology, Poznan University of Medical Sciences, ul. Szamarzewskiego 82/84, 60-569 Poznan (Poland); Kubisz, Leszek [Department of Biophysics, Poznan University of Medical Sciences, ul. Fredry 10, 61-701 Poznan (Poland); Biskupski, Piotr; Mielcarek, Slawomir [Department of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan (Poland); Stelmach-Mardas, Marta [Department of Bromatology, Poznan University of Medical Sciences, ul. Marcelinska 420, 60-354 Poznan (Poland); Kaluska, Iwona [Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warsaw (Poland)

    2012-08-01

    Allogeneic bone grafts are used on a large scale in surgeries. To avoid the risk of infectious diseases, allografts should be radiation-sterilized. So far, no international consensus has been achieved regarding the optimal radiation dose. Many authors suggest that bone sterilization deteriorates bone mechanical properties. However, no data on the influence of ionizing radiation on bone dynamic mechanical properties are available. Bovine femurs from 2-year old animal were machine cut and irradiated with the doses 10, 15, 25, 35, 45 and 50 kGy. Dynamic mechanical analysis was performed at 1-10 Hz at the temperature range of 0-350 Degree-Sign C in 3-point bending configuration. No statistically significant differences in storage modulus were observed. However, there were significant decreased values of loss modulus between the samples irradiated with doses of 10 ({down_arrow}14.3%), 15, 45 and 50 kGy ({down_arrow}33.2%) and controls. It was stated that increased irradiation dose decreases the temperature where collagen denaturation process starts and increases the temperature where the collagen denaturation process finishes. It was shown that activation energy of denaturation process is significantly higher for the samples irradiated with the dose of 50 kGy (615 kJ/mol) in comparison with control samples and irradiation with other doses (100-135 kJ/mol). - Highlights: Black-Right-Pointing-Pointer We examine changes in the storage modulus and loss modulus of samples irradiated with doses of 10-50 kGy. Black-Right-Pointing-Pointer We examine changes in the denaturation temperature of samples irradiated with doses of 10-50 kGy. Black-Right-Pointing-Pointer We examine changes in the activation energy of denaturation process of samples irradiated with doses of 10-50 kGy.

  20. Radiation sterilized bone response to dynamic loading

    International Nuclear Information System (INIS)

    Allogeneic bone grafts are used on a large scale in surgeries. To avoid the risk of infectious diseases, allografts should be radiation-sterilized. So far, no international consensus has been achieved regarding the optimal radiation dose. Many authors suggest that bone sterilization deteriorates bone mechanical properties. However, no data on the influence of ionizing radiation on bone dynamic mechanical properties are available. Bovine femurs from 2-year old animal were machine cut and irradiated with the doses 10, 15, 25, 35, 45 and 50 kGy. Dynamic mechanical analysis was performed at 1–10 Hz at the temperature range of 0–350 °C in 3-point bending configuration. No statistically significant differences in storage modulus were observed. However, there were significant decreased values of loss modulus between the samples irradiated with doses of 10 (↓14.3%), 15, 45 and 50 kGy (↓33.2%) and controls. It was stated that increased irradiation dose decreases the temperature where collagen denaturation process starts and increases the temperature where the collagen denaturation process finishes. It was shown that activation energy of denaturation process is significantly higher for the samples irradiated with the dose of 50 kGy (615 kJ/mol) in comparison with control samples and irradiation with other doses (100–135 kJ/mol). - Highlights: ► We examine changes in the storage modulus and loss modulus of samples irradiated with doses of 10–50 kGy. ► We examine changes in the denaturation temperature of samples irradiated with doses of 10–50 kGy. ► We examine changes in the activation energy of denaturation process of samples irradiated with doses of 10–50 kGy.

  1. Nanocomposites and bone regeneration

    Science.gov (United States)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  2. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze-thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 10(9) ± 4.74 × 10(9) cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5-66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use. PMID:25777046

  3. Osmotic pressure induced tensile forces in tendon collagen

    Science.gov (United States)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  4. Why date old bones?

    International Nuclear Information System (INIS)

    The methods for pretreatment and purification of bone have not been accorded the same standard protocols that are applied to other sample materials. Many users lack confidence in bone dates, with some justification, and it is not clear how to proceed. With the advent of AMS dating, it is becoming easy to date very small amounts of highly purified samples such as single amino acids from bone collagen. This note serves a warning that there are dangers in the uncritical application of powerful separation and measurement techniques to uncharacterized material. (orig.)

  5. Usefulness of Bone Metabolic Markers in the Diagnosis of Bone Metastasis from Lung Cancer

    OpenAIRE

    Chung, Jae Ho; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Kim, Joo Hang; Kim, Sung Kyu; Kim, Se Kyu

    2005-01-01

    Bone metastasis is common in lung cancer patient and the diagnosis of bone metastasis is usually made by using imaging techniques, especially bone scintigraphy. However, the diagnostic yield from bone scintigraphy is limited. The aim of this study is to assess the clinical usefulness of urinary pyridinoline cross-linked N-telopeptides of Type I collagen (NTx), urinary deoxypyridinoline (DPD), and serum alkaline phosphatase (ALP) in the assessment of bone metastasis in patients with lung cance...

  6. Collagen-lactoferrin fibrillar coatings enhance osteoblast proliferation and differentiation

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Douglas, T.E.L.; Heinemann, S.; Scharnweber, D.; Dubruel, P.; Bačáková, Lucie

    2015-01-01

    Roč. 103, č. 2 (2015), s. 525-533. ISSN 1549-3296 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : lactoferin * collagen * bone cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.369, year: 2014

  7. Immunohistochemical study of collagen types in human foetal lung and fibrotic lung disease.

    OpenAIRE

    Bateman, E. D.; Turner-Warwick, M; Adelmann-Grill, B C

    1981-01-01

    Highly purified type-specific anti-collagen antibodies (prepared in animals to types I, II, III, and IV bovine collagen) were used in an indirect immunofluorescence method for the study of human lung collagen. The tissue localisation of each collagen type, and the apparent type I:III collagen ratio was assessed in normal foetal and adult lung and in fibrotic lung lesions. In the latter, the relationship of the findings to the natural history of the lesion was considered. This method was compa...

  8. Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking.

    Science.gov (United States)

    Stoichevska, Violet; An, Bo; Peng, Yong Y; Yigit, Sezin; Vashi, Aditya V; Kaplan, David L; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2016-09-01

    A range of non-animal collagens has been described, derived from bacterial species, which form stable triple-helical structures without the need for secondary modification to include hydroxyproline in the sequence. The non-animal collagens studied to date are typically smaller than animal interstitial collagens, around one quarter the length and do not pack into large fibrillar aggregates like those that are formed by the major animal interstitial collagens. A consequence of this for biomedical products is that fabricated items, such as collagen sponges, are not as mechanically and dimensionally stable as those of animal collagens. In the present study, we examined the production of larger, polymeric forms of non-animal collagens through introduction of tyrosine and cysteine residues that can form selective crosslinks through oxidation. These modifications allow the formation of larger aggregates of the non-animal collagens. When Tyr residues were incorporated, gels were obtained. And with Cys soluble aggregates were formed. These materials can be formed into sponges that are more stable than those formed without these modifications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2369-2376, 2016. PMID:27171817

  9. Selective adsorption of tannins onto hide collagen fibres

    Institute of Scientific and Technical Information of China (English)

    廖学品; 陆忠兵; 石碧

    2003-01-01

    Hide collagen of animals is used to prepare adsorbent material and its adsorption properties to tannins are investigated. It is indicated that the collagen fibres has excellent adsorption selectivity and high adsorption capacity to tannins. The adsorption rate of tannins is more than 90% whilst less than 10% of functional components are retained by the adsorbent. The adsorption mechanism of tannins onto hide collagen fibres is hydrogen-bonding association. Freundlich model can be used to describe the adsorption isotherms, and the pseudo-second-order rate model can be used to describe adsorption kinetics.

  10. PENGGUNAAN BONE GRAFT PADA PERAWATAN KERUSAKAN TULANG PERIODONTAL (Used Bone Graft for Periodontal Defect Treatment

    Directory of Open Access Journals (Sweden)

    Elly Munadziroh

    2015-07-01

    Full Text Available Generally the signs and symptoms of advances periodontal disease are periodontal pockets formation to alveolar bone defect. Bone defect treated with placement a preparation material to promote new bone formation. Tissue transplantation were developed, to recontsruct bone defect with the placement of bone graft material. This paper will discuss the used of demineralied freeze dried bone allograft (DFDBA and anorganic bone mineral combined with synthetic 15 amino acid sequence within type I collagen (PepGen P-15 the potential healing of bone defect to enhance the optimum treatment of periodontal disease.

  11. Autoantibody recognition of collagen type II in arthritis

    OpenAIRE

    Lindh, Ingrid

    2013-01-01

    Autoantibodies against collagen type II (CII), a protein localized in the joint cartilage, play a major role in collagen-induced arthritis (CIA), one of the most commonly used animal models for rheumatoid arthritis (RA). The studies included in this thesis were undertaken to elucidate structural and functional requirements for B and T cells to recognize native CII structures during experimental arthritis as well as in human RA. To reveal in detail how CII-specific autoantibodies recognize CII...

  12. Bone allograft and implant fixation tested under influence of bio-burden reduction, periosteal augmentation and topical antibiotics. Animal experimental studies.

    Science.gov (United States)

    Barckman, Jeppe

    2014-01-01

    Loosening of an artificial joint prosthesis is a painful and debilitating condition that can be treated only by re-operation. Re-operations accounted for approximately 15% of all hip replacement operations performed in Denmark between the year 1995 and 2010. The process of loosening is often accompanied by destructive inflammation and osteolysis, which leads to insufficient bone stock that often requires extensive bone grafting. Impacted morselized bone graft is a well-established method for improving the amount and quality of bone stock that ensures sufficient stability and anchorage of the revision implants. Among bone graft options, the autologous bone graft is considered the gold standard. It is naturally biocompatible, but its use in revision surgery is curtailed by its limited volume and by considerable donor site morbidity. Allograft bone is readily available and is the most commonly used graft material. However, it has been shown that the incorporation of allograft bone into the host bone is not always complete, and substantial fibrous tissue formation has been described. A reason for this may be that allograft bone is a foreign tissue, which, contrary to autogenic bone, may induce an immunogenic response that leads to increased fibrous tissue formation. Furthermore, the fresh-frozen allograft has minimal osteoinductive and no osteogenic capacity. The studies in this thesis have investigated ways of improving the incorporation of allograft bone by adding osteoinductive cells from the periosteum and reducing the immunogenic load of the allograft bone by rinsing. Furthermore, the impact of antibiotic protection of the bone graft has been evaluated. The same experimental implant model was used in all three studies. This model enables evaluation of early implant fixation and osseointegration of an uncemented implant surrounded by impacted morselized bone graft. Unloaded gap implants were inserted into the metaphysis of the proximal tibia (Study I) and distal

  13. Collagen in organ development

    Science.gov (United States)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  14. Bone Repair on Fractures Treated with Osteosynthesis, ir Laser, Bone Graft and Guided Bone Regeneration: Histomorfometric Study

    Science.gov (United States)

    dos Santos Aciole, Jouber Mateus; dos Santos Aciole, Gilberth Tadeu; Soares, Luiz Guilherme Pinheiro; Barbosa, Artur Felipe Santos; Santos, Jean Nunes; Pinheiro, Antonio Luiz Barbosa

    2011-08-01

    The aim of this study was to evaluate, through the analysis of histomorfometric, the repair of complete tibial fracture in rabbits fixed with osteosynthesis, treated or not with infrared laser light (λ780 nm, 50 mW, CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical fractures were created, under general anesthesia (Ketamina 0,4 ml/Kg IP and Xilazina 0,2 ml/Kg IP), on the dorsum of 15 Oryctolagus rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with wire osteosynthesis. Animals of groups III and V were grafted with hydroxyapatite and GBR technique used. Animals of groups IV and V were irradiated at every other day during two weeks (16 J/cm2, 4×4 J/cm2). Observation time was that of 30 days. After animal death (overdose of general anesthetics) the specimes were routinely processed to wax and underwent histological analysis by light microscopy. The histomorfometric analysis showed an increased bone neoformation, increased collagen deposition, less reabsorption and inflammation when laser was associated to the HATCP. It is concluded that IR laser light was able to accelerate fracture healing and the association with HATCP and GBR resulted on increased deposition of CHA.

  15. Bone marrow stroma in idiopathic myelofibrosis and other haematological diseases. An immunohistochemical study

    DEFF Research Database (Denmark)

    Lisse, I; Hasselbalch, H; Junker, P

    1991-01-01

    Bone marrow stroma was investigated immunohistochemically in 31 patients with haematological diseases, mainly idiopathic myelofibrosis (n = 8) and related chronic myeloproliferative disorders (n = 14). The bone marrow from patients with idiopathic myelofibrosis and some CML patients showed marked....... As in normal bone marrow, argyrophilic fibres and type III collagen displayed a close co-distribution, which was also demonstrated for type IV collagen and laminin. While normal bone marrow sinusoids had discontinuous basement membranes, fibrosing bone marrow was characterized by endothelial cell...

  16. The process of collagen biomineralization observed by AFM in a model dual membrane diffusion system

    International Nuclear Information System (INIS)

    Investigation and simulation of naturally occurring mineralization can offer some new ideas in the design and fabrication of new functional materials for bone analogues. In this paper, a model dual membrane diffusion system (DMDS) was used to study the mineralization behaviour of collagen. The process of mineralization was observed by atomic force microscope (AFM). The results showed that the surface roughness and hardness of mineralized collagen fibers increased with time during the process of mineralization. The adhesion force of mineralized collagen fibers decreased with mineralization time. The micromechanical properties and microstructure changes of mineralized collagen fibers suggested that the mineralization was a step-by-step assembling process.

  17. Effect of Brahman genetic influence on collagen enzymatic crosslinking gene expression and meat tenderness.

    Science.gov (United States)

    Gonzalez, J M; Johnson, D D; Elzo, M A; White, M C; Stelzleni, A M; Johnson, S E

    2014-01-01

    The objective of the study was to examine the effect of Brahman genetics on collagen enzymatic crosslinking gene expression and meat tenderness. Steers were randomly selected to represent a high percentage Brahman genetics (n = 13), Half-Blood genetics (n = 13), Brangus genetics (n = 13), and a high percentage Angus genetics (n = 13). Muscle samples from the Longissimus lumborum muscle were collected at weaning and harvest and reverse transcription quantitative PCR (qPCR) analysis was conducted to measure the mRNA expression of lysyl oxidase (LOX), bone morphogenetic protein 1 (BMP1), and cystatin C (CYS). Steaks from subject animals were collected at harvest, aged for 14 d and subjected to collagen analysis, Warner-Bratzler Shear Force (WBS) and trained sensory panel analysis (tenderness, juiciness, and connective tissue). Data indicated that Half-Blood and Brahman steers had greater (PBrangus steers. Panelists tended to detect more connective tissue in Brahman and Half-Blood steaks when compared to Angus and Brangus steaks (P Brangus steers. At weaning and harvest, all genetic groups had similar mRNA expression of BMP1 (P > 0.10). At harvest, Brangus and Angus steers had greater LOX mRNA expression than Brahman cattle (P < 0.05). Pearson's correlation coefficients indicated that only weaning CYS mRNA expression was correlated to WBS, panel tenderness and connective tissue scores (P < 0.05). Expression of LOX was only correlated to these measures at harvest, and BMP1 was correlated to these traits at both time periods (P < 0.05). These results indicate that collagen crosslinking enzyme activity, as indicated by mRNA levels, early in an animal's life may account for some of the variation seen in steak tenderness due to Brahman genetic influence. PMID:24669867

  18. Collagen and injectable fillers.

    Science.gov (United States)

    Cheng, Jacqueline T; Perkins, Stephen W; Hamilton, Mark M

    2002-02-01

    Soft tissue augmentation of facial rhytids, scars, and deformities is a frequently performed office procedure. This article reviews the available biologic (collagen, Dermalogen, Autologen, Isolagen, autologous fat, Fibrel, hyaluronic acid derivatives, particulate fascia lata, micronized Alloderm) and alloplastic (silicone, Bioplastique, and Artecoll) soft tissue injectable fillers. PMID:11781208

  19. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  20. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    International Nuclear Information System (INIS)

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium

  1. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with