WorldWideScience

Sample records for anhydrous phospholipidic membranes

  1. Adsorption of ruthenium red to phospholipid membranes.

    OpenAIRE

    Voelker, D; Smejtek, P

    1996-01-01

    We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosp...

  2. Patterning and characterization of model phospholipid membranes

    Science.gov (United States)

    Kassu, Aschalew; Calzzani, Fernando A., Jr.; Taguenang, Jean M.; Sileshi, Redahegn K.; Sharma, Anup

    2008-08-01

    Phospholipid, which is a building block of biological membranes, plays an important role in compartmentalization of cellular reaction environment and control of the physicochemical conditions inside the reaction environment. Phospholipid bilayer membrane has been proposed as a natural biocompatible platform for attaching biological molecules like proteins for biosensing related application. Due to the enormous potential applications of biomimetic model biomembranes, various techniques for depositions and patterning of these membranes onto solid supports and their possible biotechnological applications have been reported by different groups. In this work, patterning of phospholipid thin-films is accomplished by interferometric lithography as well as using lithographic masks in liquid phase. Surface Enhanced Raman Spectroscopy and Atomic Force microscopy are used to characterize the model phospholipid membrane and the patterning technique. We describe an easy and reproducible technique for direct patterning of azo-dye (NBD)-labeled phospholipid (phosphatidylcholine) in aqueous medium using a low-intensity 488 nm Ar+ laser and various kinds of lithographic masks.

  3. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting with...... liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...... in understanding not only the antimicrobial nature of Novicidin, but also sheds light on the membrane-peptide interactions....

  4. Motional Coherence in Fluid Phospholipid Membranes

    CERN Document Server

    Rheinstadter, Maikel C; Flenner, Elijah J; Bruening, Beate; Seydel, Tilo; Kosztin, Ioan

    2008-01-01

    We report a high energy-resolution neutron backscattering study, combined with in-situ diffraction, to investigate slow molecular motions on nanosecond time scales in the fluid phase of phospholipid bilayers of 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine (DMPC) and DMPC/40% cholesterol (wt/wt). A cooperative structural relaxation process was observed. From the in-plane scattering vector dependence of the relaxation rates in hydrogenated and deuterated samples, combined with results from a 0.1 microsecond long all atom molecular dynamics simulation, it is concluded that correlated dynamics in lipid membranes occurs over several lipid distances, spanning a time interval from pico- to nanoseconds.

  5. Computer simulations of phospholipid - membrane thermodynamic fluctuations

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.;

    2008-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes, DMPC, DPPC, DMPG, DMPS, and DMPSH, with a focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and order parameter. For the slow fluctuations at constant temperature and pressure (defined...... by averaging over 0.5 nanosecond) volume and energy exhibit strong correlation. These quantities on the other hand do not correlate significantly with area, thickness, or order parameter. The correlations are mainly reported for the fluid phase, but we also give results for the ordered (gel) phase of two...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, showing that the slow volume-energy fluctuations derive from the tail region’s van der Waals interactions and are thus analogous...

  6. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm−1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm−2 using hydrogen and oxygen as reaction gases

  7. Anhydrous proton-conducting glass membranes doped with ionic liquid for intermediate-temperature fuel cells

    International Nuclear Information System (INIS)

    Highlights: ► Homogeneous [dema][TfO]/SiO2 hybrid glass electrolyte membranes are prepared. ► The conductivity of the hybrid glass membrane exceeds 10−2 S cm−1 in the temperature range of 120–220 °C. ► After annealing at 120 °C for 180 h, no decrease in conductivity can be observed. - Abstract: Proton-conducting glass membranes based on SiO2 monoliths and a protic ionic liquid (diethylmethylammonium trifluoromethanesulfonate, [dema][TfO]) as the anhydrous proton conductor were studied. The [dema][TfO]/SiO2 hybrid glass membranes were prepared via a sol–gel process. The stability and ionic conductivity of the glass membrane were investigated. The [dema][TfO]/SiO2 hybrid glass monoliths exhibit very high anhydrous ionic conductivities that exceed 10−2 S cm−1 at 120–220 °C.

  8. DSC study of phase transition of anhydrous phospholipid DHPC and influence of water content

    Institute of Scientific and Technical Information of China (English)

    王邦宁; 谈夫

    1997-01-01

    The phase transition behavior of 1,2-di-n-heptadecanoyl phosphatidylcholme (DHPC)with and without water has been studied by use of differential scanning calorimetry It was found by experiment that the glass transition occurred at first during the first heating of a sample of DHPC without water and then the sample underwent melting as an ordinary crystal.Therefore the sample of DHPC without water was a glassy crystal However,the DHPC sample crystallizing from melt was an ordinary crystal From the relationship between the total melting enthalpy Qf of freezable water and the water content h,it was concluded that the water contained in the DHPC samples might exist in three states recognizable thermodynamically.The water in the first state was an unfreezable water It was the water bound directly with the head groups of the phospholipid,i.e.the primary hydration water Every head group might bind seven such molecules of water.The water in the second state was the secondary hydration water,us melt ing point was

  9. Coverage and disruption of phospholipid membranes by oxide nanoparticles

    NARCIS (Netherlands)

    Pera, H.; Nolte, T.M.; Leermakers, F.A.M.; Kleijn, J.M.

    2014-01-01

    We studied the interactions of silica and titanium dioxide nanoparticles with phospholipid membranes and show how electrostatics plays an important role. For this, we systematically varied the charge density of both the membranes by changing their lipid composition and the oxide particles by changin

  10. Interactions Mode of Amphoteric Molecules with Ordered Phospholipid Membrane

    Institute of Scientific and Technical Information of China (English)

    SUNJin; CHENGGang; HEZhong-gui; WANGshu-jun; CHENJi-min

    2003-01-01

    Aim:To explore interaction mode between amphoteric molecules with the ordered phospholipid membrane.Methods:Membrane interactions were determined by immobilized artificial membrane(IAM) chromatography and solutes hydroph9obicity was measured by n-octanol/buffer system.Results:The ampholytes,similar to bases,generally exhibited higher membrane affinity than expected from their hydrophobicity,resulting from the attractive polar interaction with phospholipid membrane.Furthermore,the strength of additional polar interaction with membrane(Δlg kLAM) was then calculat ed.The Δlg KIAMvalues were far greater for bases and ampholytes ranging from 0.50-1.39,than those for acids and neutrals with the scope from-0.55-0.44.Conclusion :Considering the microspecies distribution of amphoteric molecules,it was assumed that not only neutral and positive but also zwitterionic microspecies are capable of partitioning into ordered amphoteric lipid membrane with complementarily conformational and energetically favorable interactions.

  11. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  12. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity

    Science.gov (United States)

    Zhang, Haoqin; Wu, Wenjia; Li, Yifan; Liu, Yong; Wang, Jingtao; Zhang, Bing; Liu, Jindun

    2015-04-01

    Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed by impregnating imidazole-type ionic liquids (ILs). Within the composite membrane, the lumens of PMCs act as IL reservoirs, which provide large space for IL storage and thus significantly elevate the IL uptake. The IL leaching measurement suggests that the cross-linked shells of PMCs manipulate the IL release, endowing the composite membrane with high IL retention. Moreover, the high IL retention renders the composite membrane more anhydrous hopping sites (e.g., the imidazole groups on IL and the acid-base pairs between imidazole and sulfonic acid groups), imparting a facilitated proton conduction via Grotthuss mechanism. In particular, the composite membrane containing 12% PMCs achieves a high anhydrous proton conductivity of 33.7 mS cm-1 at 150 °C. The same membrane also exhibits a surprising steady-state IL retention of 36.9% after leaching in liquid water.

  13. Membrane Phospholipid Redistribution in Cytokinesis: A Theoretical Model

    Institute of Scientific and Technical Information of China (English)

    Mei-Wen AN; Wen-Zhou WU; Wei-Yi CHEN

    2005-01-01

    In cell mitosis, cytokinesis is a major deformation process, during which the site of the contractile ring is determined by the biochemical stimulus from asters of the mitotic apparatus, actin and myosin assembly is related to the motion of membrane phospholipids, and local distribution and arrangement of the microfilament cytoskeleton are different at different cytokinesis stages. Based on the Zinemanas-Nir model, a new model is proposed in this study to simulate the entire process by coupling the biochemical stimulus with the mechanical actions. There were three assumptions in this model: the movements of phospholipid proteins are driven by gradients of biochemical stimulus on the membrane surface; the local assembly of actin and myosin filament depends on the amount of phospholipid proteins at the same location;and the surface tension includes membrane tensions due to both the passive deformation of the membrane and the active contraction of actin filament, which is determined by microfilament redistribution and rearrangement. This model could explain the dynamic movement of microfilaments during cytokinesis and predict cell deformation. The calculated results from this model demonstrated that the reorientation of phospholipid proteins and the redistribution and reorientation of microfilaments may play a crucial role in cell division. This model may better represent the cytokinesis process by the introduction of biochemical stimulus.

  14. Mechanics and dynamics of triglyceride-phospholipid model membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus;

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages...... with larger lamellar distances observed in the TOPOPC membranes. These findings suggest repulsion between adjacent membranes. We provide a comprehensive discussion on the possible explanations for the observed mechanics and dynamics in the TOPOPC system and on their potential cellular implications....

  15. Influence of Ibuprofen on Phospholipid Membranes

    CERN Document Server

    Jaksch, Sebastian; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Nickel, Bert

    2014-01-01

    Basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-alpha-phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering (GISANS), neutron reflectometry and grazing incidence neutron spin echo spectroscopy (GINSES). From the results of these experiments we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexago- nal phase at high concentrations. Add...

  16. Smoking and red blood cell phospholipid membrane fatty acids.

    Science.gov (United States)

    Murff, H J; Tindle, H A; Shrubsole, M J; Cai, Q; Smalley, W; Milne, G L; Swift, L L; Ness, R M; Zheng, W

    2016-09-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (psmoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. PMID:27637337

  17. Study on Phospholipid Composition of Erythrocyte Membrane in Hypophosphatemic Cows

    Institute of Scientific and Technical Information of China (English)

    SHI Fa-qing; XUAN Da-wei; XU Shi-Wen; WANG Zhen-yong

    2002-01-01

    The phospholipid constituents of the erythrocyte membrane of cows in hypophosophorus were detected with the field cases and the group comparison. The cows were divided into three groups: the hemoglobinuria group (HN), the hypophosphatemia group (HP) and the control group (CK). The content of the phospholipid constituent in HN and HP obviously changed: phosphatidylethaanolamine (PE) content in HN was significantly lower than that in HP and CK; but sphingomyline (SM) and phosphatidycholine (PC)+ phosphatidylserine (PS) content in HN were significantly higher than that in the two other groups; in comparison between HP and CK, PC + PS content was lower and SM content was higher in HP; significant positive correlation and negative correlation were observed between serum phosphorus and PE content, serum phosphorus and SM content respectively.

  18. Chitosan cushioned phospholipid membrane and its application in imaging ellipsometry based-biosensor

    International Nuclear Information System (INIS)

    Chitosan cushion can support the air stability of phospholipid membrane, but the problem of serum solubility of phospholipid membrane prevents it from use in serum detection applications. Poly (ethylene glycol) (PEG) shielding promises both stability and non-specific adsorption resistance for phospholipid membrane. An air stable phospholipid membrane microarray has been successfully fabricated on chitosan modified silicon wafer. We have demonstrated the potential application of PEGylated phospholipid membrane in imaging ellipsometry-based protein biosensor. Because of the strong resistance against non-specific adsorption of serum, antigens are immobilized onto the membrane surface through chemical activation and further bind their antibodies without using blocking agent. Taking advantage of the multiple and parallel reaction capabilities of microfluidic reactor system, we have assayed the binding by varying both the density of antigen on the membrane surface and the concentration of antibody in solution.

  19. Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions

    Science.gov (United States)

    Liu, Yahua; Wang, Jingtao; Zhang, Haoqin; Ma, Chuanming; Liu, Jindun; Cao, Shaokui; Zhang, Xiang

    2014-12-01

    In this study, sulfonated graphene oxide (SGO) nanosheets with controllable sulfonic acid group loading are synthesized via the facile distillation-precipitation polymerization, and then incorporated into chitosan (CS) matrix to prepare nanohybrid membranes. The microstructure and physicochemical properties of the resulting membranes are extensively investigated. Compared with CS control and GO-filled membranes, SGO-filled membranes attain enhanced thermal and mechanical stabilities due to the strong electrostatic attractions between -SO3H of SGO and -NH2 of CS, which inhibit the mobility of CS chains. Additionally, the inhibited mobility reduces the area swellings of SGO-filled membranes, reinforcing their structural stabilities. The incorporation of SGO generates acid-base pairs along CS-SGO interface, which work as facile proton-hoping sites and thus construct continuous and wide proton transfer pathways, yielding enhanced proton conductivities under both hydrated and anhydrous conditions. Meanwhile, the conductivity can be elevated by increasing the sulfonic acid group loading and content of SGO. Particularly, incorporating 2.0% S4GO can afford the nanohybrid membrane a 122.5% increase in hydrated conductivity and a 90.7% increase in anhydrous conductivity when compared with CS control membrane. The superior conduction properties then offered a significant enhancement in H2/O2 cell performances to the nanohybrid membranes, guaranteeing them to be promising proton exchange membranes.

  20. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  1. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    Science.gov (United States)

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  2. Lipid-sugar interaction: Relevance to anhydrous biology

    OpenAIRE

    Caffrey, Martin

    1988-01-01

    PUBLISHED The ability of seeds and other anhydrous plant forms to survive the withdrawal of water must involve a mechanism for protecting the integrity of cellular membranes. Evidence from animal systems implicates sugars as protective components, and we have tested the changes in mesomorphic phase state of phospholipid model membranes upon hydration and dehydration in the presence of sucrose and/or sucrose plus raffinose. X-ray diffraction studies of dry dimyristoylphosphatidylcholine (DM...

  3. Biophysical properties of membrane lipids of anammox bacteria : I. Ladderane phospholipids form highly organized fluid membranes

    NARCIS (Netherlands)

    Boumann, Henry A.; Longo, Marjorie L.; Stroeve, Pieter; Poolman, Bert; Hopmans, Ellen C.; Stuart, Marc C. A.; Damste, Jaap S. Sinninghe; Schouten, Stefan

    2009-01-01

    Anammox bacteria that are capable of anaerobically oxidizing ammonium (anammox) with nitrite to nitrogen gas produce unique membrane phospholipids that comprise hydrocarbon chains with three or five linearly condensed cyclobutane rings. To gain insight into the biophysical properties of these 'ladde

  4. Probing Lipid Membrane Rafts (Microdomains) with Fluorescent Phospholipids

    Science.gov (United States)

    Gu, Yongwen; Mitchel, Drake

    2011-10-01

    Membrane rafts are enriched in sphingolipids and cholesterol, they exist in a more ordered state (the liquid-ordered phase; lo) than the bulk membrane (the liquid-disordered phase; ld). Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form membrane rafts over a wide range of molar ratios. We are examining the ability of two fluorescent probes, NBD linked to di-16:0 PE which partitions into the lo phase, and NBD linked to di-18:1 PE which partitions into the ld phase, to detect these two phases. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the size and stability of POPC/SPM/Chol membrane rafts. We report on the fluorescence lifetime and anisotropy decay dynamics of two fluorescent probes. Data were acquired via frequency-domain measurements from 5 to 250 MHz.

  5. Laboratory-Scale Membrane Reactor for the Generation of Anhydrous Diazomethane.

    Science.gov (United States)

    Dallinger, Doris; Pinho, Vagner D; Gutmann, Bernhard; Kappe, C Oliver

    2016-07-15

    A configurationally simple and robust semibatch apparatus for the in situ on-demand generation of anhydrous solutions of diazomethane (CH2N2) avoiding distillation methods is presented. Diazomethane is produced by base-mediated decomposition of commercially available Diazald within a semipermeable Teflon AF-2400 tubing and subsequently selectively separated from the tubing into a solvent- and substrate-filled flask (tube-in-flask reactor). Reactions with CH2N2 can therefore be performed directly in the flask without dangerous and labor-intensive purification operations or exposure of the operator to CH2N2. The reactor has been employed for the methylation of carboxylic acids, the synthesis of α-chloro ketones and pyrazoles, and palladium-catalyzed cyclopropanation reactions on laboratory scale. The implementation of in-line FTIR technology allowed monitoring of the CH2N2 generation and its consumption. In addition, larger scales (1.8 g diazomethane per hour) could be obtained via parallelization (numbering up) by simply wrapping several membrane tubings into the flask. PMID:27359257

  6. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  7. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.

  8. Permeability of phospholipid membrane for small polar molecules determined from osmotic swelling of giant phospholipid vesicles

    CERN Document Server

    Peterlin, Primoz; Diamant, Haim; Haleva, Emir

    2012-01-01

    A method for determining permeability of phospholipid bilayer based on the osmotic swelling of micrometer-sized giant unilamellar vesicles (GUVs) is presented as an alternative to the two established techniques, dynamic light scattering on liposome suspension, and electrical measurements on planar lipid bilayers. In the described technique, an individual GUV is transferred using a micropipette from a sucrose/glucose solution into an isomolar solution containing the solute under investigation. Throughout the experiment, vesicle cross-section is monitored and recorded using a digital camera mounted on a phase-contrast microscope. Using a least-squares procedure for circle fitting, vesicle radius R is computed from the recorded images of vesicle cross-section. Two methods for determining membrane permeability from the obtained R(t) dependence are described: the first one uses the slope of R(t) for a spherical GUV, and the second one the R(t) dependence around the transition point at which a flaccid vesicle trans...

  9. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary [ANSTO; (USD); (ANU); (RMIT)

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  10. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  11. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications.

    Science.gov (United States)

    Liu, Sa; Zhou, Li; Wang, Pengjie; Zhang, Fangfang; Yu, Shuchun; Shao, Zhigang; Yi, Baolian

    2014-03-12

    An ionic-liquid-doped poly(benzimidazole) (PBI) proton-conducting membrane for an anhydrous H2/Cl2 fuel cell has been proposed. Compared with other ionic liquids, such as imidazole-type ionic liquids, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) showed better electrode reaction kinetics (H2 oxidation and Cl2 reduction reaction at platinum) and was more suitable for a H2/Cl2 fuel cell. PBI polymer and [dema][TfO] were compatible with each other, and the hybrid membranes exhibited high stability and good ionic conductivity, reaching 20.73 mS cm(-1) at 160 °C. We also analyzed the proton-transfer mechanism in this ionic-liquid-based membrane and considered that both proton-hopping and diffusion mechanisms existed. In addition, this composite electrolyte worked well in a H2/Cl2 fuel cell under non-water conditions. This work would give a good path to study the novel membranes for anhydrous H2/Cl2 fuel-cell application. PMID:24490850

  12. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    Directory of Open Access Journals (Sweden)

    Malgorzata Tokarska-Schlattner

    Full Text Available A broad spectrum of beneficial effects has been ascribed to creatine (Cr, phosphocreatine (PCr and their cyclic analogues cyclo-(cCr and phospho-cyclocreatine (PcCr. Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i chemical binding assay, (ii surface plasmon resonance spectroscopy (SPR, (iii solid-state (31P-NMR, and (iv differential scanning calorimetry (DSC. SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults

  13. Proton NMR study of the interactions of catecholamines with phospholipids from chicken erythrocyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Varoucha, D.

    1985-01-01

    High-resolution NMR spectroscopy has been applied to the study of the interaction of catecholamines, norepinephrine, epinephrine, isoproterenol and their antagonists propranolol and alprenolol with sonicated phospholipids extracted from chicken erythrocyte membranes (CEM). The catecholamine molecules are immobilized by the phospholipids of CEM and the magnitude of the effect seems to depend on the alkyl substitution of their amino group. Upon introduction of alprenolol and propranolol into phospholipid vesicles a broadening of the resonances of the n-methyl alkyl chain and the terminal methyl protons was observed. The results present evidence about the specificity of the interactions of catecholamines with phospholipids from CEM.

  14. Flip-flop of phospholipids in proteoliposomes reconstituted from detergent extract of chloroplast membranes: kinetics and phospholipid specificity.

    Directory of Open Access Journals (Sweden)

    Archita Rajasekharan

    Full Text Available Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c Biogenic membrane ATP independent PC flipping activity is protein mediated and (d the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.

  15. Transbilayer dynamics of phospholipids in the plasma membrane of the Leishmania genus.

    Directory of Open Access Journals (Sweden)

    Marcos Gonzaga dos Santos

    Full Text Available Protozoans of the Leishmania genus are the etiological agents of a wide spectrum of diseases commonly known as leishmaniases. Lipid organization of the plasma membrane of the parasite may mimic the lipid organization of mammalian apoptotic cells and play a role in phagocytosis and parasite survival in the mammal host. Here, we analyzed the phospholipid dynamics in the plasma membrane of both the L. (Leishmania and the L. (Viannia subgenera. We found that the activity and substrate specificity of the inward translocation machinery varied between Leishmania species. The differences in activity of inward phospholipid transport correlated with the different sensitivities of the various species towards the alkyl-phospholipid analogue miltefosine. Furthermore, all species exhibited a phospholipid scramblase activity in their plasma membranes upon stimulation with calcium ionophores. However, binding of annexin V to the parasite surface was only detected for a subpopulation of parasites during the stationary growth phase and only marginally enhanced by scramblase activation.

  16. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mina Yan

    2016-06-01

    Full Text Available The aim of the present study was to develop layered double hydroxide (LDH nanoparticles coated with PEGylated phospholipid membrane. By comparing the size distribution and zeta potential, the weight ratio of LDH to lipid materials which constitute the outside membrane was identified as 2:1. Transmission electron microscopy photographs confirmed the core-shell structure of PEGylated phospholipid membrane coated LDH (PEG-PLDH nanoparticles, and cell cytotoxicity assay showed their good cell viability on Hela and BALB/C-3T3 cells over the concentration range from 0.5 to 50 μg/mL.

  17. The local anesthetic tetracaine destabilizes membrane structure by interaction with polar headgroups of phospholipids.

    Science.gov (United States)

    Shimooka, T; Shibata, A; Terada, H

    1992-03-01

    The effect of the local anesthetic tetracaine at less than 10 mM on the water permeability of the phospholipid membrane was examined using liposomes composed of various molar ratios of negatively charged cardiolipin to electrically neutral phosphatidylcholine by monitoring their osmotic shrinkage in hypertonic glucose solution at 30 degrees C. The concentration of tetracaine causing the maximum velocity of shrinkage of liposomes increased with increase in the molar ratio of cardiolipin. Tetracaine increased the zeta-potential of the negatively charged liposomal membrane toward the positive side due to the binding of its cationic form to the negatively charged polar headgroups in the membrane. The maximum velocity of water permeation induced by osmotic shock was observed at essentially the same tetracaine concentration giving a zeta-potential of the liposomal membrane of 0 mV. These concentrations were not affected by change in the sort of acyl-chain of phospholipids in the liposomes when their negative charges were the same. These results suggests that the membrane integrity is governed mainly by the electrical charge of phospholipid polar headgroups when phospholipid bilayers are in the highly fluid state, and that positively charged tetracaine molecules neutralize the negative surface charge, lowering the barrier for water permeation through phospholipid bilayers. PMID:1547263

  18. Phospholipid interactions in model membrane systems. I. Experiments on monolayers.

    OpenAIRE

    Mingins, J; Stigter, D; Dill, K A

    1992-01-01

    We study the lateral headgroup interactions among phosphatidylcholine (PC) molecules and among phosphatidylethanolamine (PE) molecules in monolayers and extend our previous models. In this paper, we present an extensive set of pressure-area isotherms and surface potential experiments on monolayers of phospholipids ranging from 14 to 22 carbons in length at the n-heptane/water interface, over a wide range of temperature, salt concentration, and pH on the acid side. The pressure data presented ...

  19. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties.

    Science.gov (United States)

    Neto, Antenor J P; Cordeiro, Rodrigo M

    2016-09-01

    Non-enzymatic lipid peroxidation may change biomembrane structure and function. Here, we employed molecular dynamics simulations to study the effects of either phospholipid or cholesterol peroxidation individually, as well as the combined peroxidation of both components. When lipids were peroxidized, the generated OOH groups migrated to the membrane surface and engaged in H-bonds with each other and the phospholipid carbonyl ester groups. It caused the sn-2 acyl chains of phospholipid hydroperoxides to bend and the whole sterol backbone of cholesterol hydroperoxides to tilt. When phospholipids were kept intact, peroxidation of the sterol backbone led to a partial degradation of its condensing and ordering properties, independently of the position and isomerism of the OOH substitution. However, even in massively peroxidized membranes in which all phospholipids and cholesterol were peroxidized, the condensing and ordering properties of the sterol backbone were still significant. The possible implications for the formation of membrane lateral domains were discussed. Cholesterol peroxyl radicals were also investigated and we found that the OO groups did not migrate to the headgroups region. PMID:27349733

  20. Phospholipid Membrane Protection by Sugar Molecules during Dehydration—Insights into Molecular Mechanisms Using Scattering Techniques

    Directory of Open Access Journals (Sweden)

    Ben Kent

    2013-04-01

    Full Text Available Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS and synchrotron-based X-ray scattering (small angle (SAXS and wide angle (WAXS can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  1. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers

    NARCIS (Netherlands)

    Demel, R.A.; Geurts van Kessel, W.S.M.; Zwaal, R.F.A.; Roelofsen, B.; Deenen, L.L.M. van

    1975-01-01

    The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from

  2. Extraction of Phospholipids from Human Erythrocyte Membranes by Hemoglobin Oxidation Products.

    Science.gov (United States)

    Brunauer, Linda S; Chen, James Y; Koontz, M Zachary; Davis, Kathryn K; O'Brien, Laura E; Wright, Emily M; Huestis, Wray H

    2016-06-01

    This investigation examines oxidation conditions under which hemoglobin extracts membrane phospholipid from erythrocytes and model membranes. In erythrocytes made echinocytic with exogenous phospholipid, addition of hemoglobin oxidized with hydrogen peroxide (H2O2) or Vitamin C (conditions that result in the formation of significant quantities of choleglobin), but not ferricyanide (which produces predominantly methemoglobin), induced dose-dependent shape reversion to less echinocytic forms, consistent with extraction of phospholipids from the exofacial side of the membrane. Erythrocytes preloaded with radiolabeled phosphatidylcholine or NBD-labeled phosphatidylcholine, phosphatidylglycerol or phosphatidic acid, exhibited greatest extraction of radiolabel or fluorescence signal with exogenous hemoglobin oxidized via H2O2 or Vitamin C, but not ferricyanide. However, with NBD-phosphatidylserine (a preferential inner monolayer intercalator), significantly less extraction of labeled lipid occurred with oxidized hemoglobin prepared under all three oxidizing conditions. In dimyristoylphosphatidylcholine liposomes containing radiolabeled phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine, subsequent addition of hemoglobin oxidized with H2O2 or Vitamin C extracted radiolabeled lipid with significantly greater efficiency than ferricyanide-treated hemoglobin, with enhanced extraction detectable at levels approaching physiological plasma oxidant concentrations. Radiolabeled lipid extraction was comparable for phospholipids containing saturated acyl chains between 12 and 18 carbons but diminished significantly for oleoyl-containing phospholipids. Hemoglobin dimerization occurred at very low levels with H2O2 treatment, and even lower levels with Vitamin C treatment, and thus did not correlate to the high efficiency and consistent levels of lipid extraction observed with these treatments. These findings indicate that choleglobin extracts lipids from cell

  3. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    Science.gov (United States)

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  4. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    International Nuclear Information System (INIS)

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly 15N-Phe and 15N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd3+-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples

  5. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Hagn, Franz, E-mail: franz.hagn@tum.de; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly {sup 15}N-Phe and {sup 15}N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd{sup 3+}-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.

  6. Field-effect detection using phospholipid membranes -Topical Review

    Directory of Open Access Journals (Sweden)

    Chiho Kataoka-Hamai and Yuji Miyahara

    2010-01-01

    Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.

  7. Lipid specific penetration of melittin into phospholipid model membranes

    NARCIS (Netherlands)

    Batenburga, A. M.; Hibbeln, J. C.L.; Kruijff, B. de

    1987-01-01

    The relative depth of penetration of melittin into egg phosphatidylcholine and bovine heart cardiolipin model membranes was investigated using fluorescence spectroscopy techniques. The tryptophan intrinsic fluorescence shift suggests a more hydrophobic surrounding of this residue in cardiolipin, whi

  8. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals. PMID:22586936

  9. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  10. Perforin rapidly induces plasma membrane phospholipid flip-flop.

    Directory of Open Access Journals (Sweden)

    Sunil S Metkar

    Full Text Available The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells.

  11. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  12. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  13. Studies on the interactions of bisphenols with anionic phospholipids of decomposer membranes in model systems.

    Science.gov (United States)

    Broniatowski, Marcin; Sobolewska, Katarzyna; Flasiński, Michał; Wydro, Paweł

    2016-04-01

    Bisphenol A (BPA) and other bisphenols constitute a class of organic pollutants, which because of their estrogenic properties, low dose activity and bioaccumulation pose considerable risk for public health as well as for the environment. Accumulated in the sediment bisphenols can endanger the decomposers' populations being incorporated into their cellular membranes; however, the mechanism of their membrane activity is unknown. Therefore, to study these phenomena we applied anionic phospholipid Langmuir monolayers as simple but versatile models of decomposers biomembranes. Phosphatidylglycerols and cardiolipins are not only the main components of bacterial membranes but also of crucial importance in mitochondrial and thylakoid membranes in eukaryotic cells. In our investigations we applied five compounds of the bisphenol class most commonly detected in the environment. To characterize the bisphenols-model membrane interactions we applied multiple mutually independent methods of physical chemistry; namely: the Langmuir monolayer technique, surface potential measurements, Brewster angle microscopy for the visualization of the monolayers' texture and grazing incidence X-ray diffraction for the discussion of the phospholipids packing within the monolayers. Our studies indicated that all the investigated bisphenols interact with the model membrane, but the strength of the interactions is dependent on the bisphenol structure and hydrophobicity and the fluidity of the model membranes. We proved that bisphenol S often treated as the least toxic BPA analog can also be incorporated to the model membranes changing their structure and fluidity.

  14. Solvent accessible surface area (ASA) of simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Tuchsen, E.; Jensen, Morten Østergaard; Westh, P.

    2003-01-01

    The membrane-solvent interface has been investigated through calculations of the solvent accessible surface area (ASA) for simulated membranes of DPPC and POPE. For DPPC at 52 degreesC we found an ASA of 126 +/- 8 Angstrom(2) per lipid molecule, equivalent to twice the projected lateral area...... compensated by increased exposure of the ethylene and phosphate moieties. The ASA of the polar moieties Of (PO4, NH3 and COO) constitutes 65% of the total accessible area for POPE, making this interface more polar than that of DPPC. It is suggested that ASA information can be valuable in attempts...

  15. Volume-Energy Correlations in the Slow Degrees of Freedom of Computer-Simulated Phospholipid Membranes

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Peters, Günther H.j.; Schröder, T.B.;

    2008-01-01

    by Heimburg from experiments focusing on the phase transition between the Lα and the Lβ phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two...... temperatures showing that the correlation coefficient increases as the phase transition is approached.......Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid Lα phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly...

  16. Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Peters, Günther H.; Schrøder, Thomas;

    by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied...... at two temperatures showing that the correlation coefficient increases as the phase transition is approached......Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly...

  17. Lipid specific penetration of melittin into phospholipid model membranes

    OpenAIRE

    Batenburga, A. M.; Hibbeln, J. C.L.; de Kruijff, B.

    1987-01-01

    The relative depth of penetration of melittin into egg phosphatidylcholine and bovine heart cardiolipin model membranes was investigated using fluorescence spectroscopy techniques. The tryptophan intrinsic fluorescence shift suggests a more hydrophobic surrounding of this residue in cardiolipin, while the accessibility for charged and uncharged aqueous quenchers is decreased in the cardiolipin system when compared with the phosphatidylcholine-bound situation. A lipid incorporated hydrophobic,...

  18. Interaction of enterocyte FABPs with phospholipid membranes: clues for specific physiological roles.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Franchini, Gisela R; Guerbi, María Ximena; Storch, Judith; Córsico, Betina

    2011-01-01

    Intestinal and liver fatty acid binding proteins (IFABP and LFABP, respectively) are cytosolic soluble proteins with the capacity to bind and transport hydrophobic ligands between different sub-cellular compartments. Their functions are still not clear but they are supposed to be involved in lipid trafficking and metabolism, cell growth, and regulation of several other processes, like cell differentiation. Here we investigated the interaction of these proteins with different models of phospholipid membrane vesicles in order to achieve further insight into their specificity within the enterocyte. A combination of biophysical and biochemical techniques allowed us to determine affinities of these proteins to membranes, the way phospholipid composition and vesicle size and curvature modulate such interaction, as well as the effect of protein binding on the integrity of the membrane structure. We demonstrate here that, besides their apparently opposite ligand transfer mechanisms, both LFABP and IFABP are able to interact with phospholipid membranes, but the factors that modulate such interactions are different for each protein, further implying different roles for IFABP and LFABP in the intracellular context. These results contribute to the proposed central role of intestinal FABPs in the lipid traffic within enterocytes as well as in the regulation of more complex cellular processes. PMID:21539932

  19. Determining membrane permeability of giant phospholipid vesicles from a series of videomicroscopy images

    CERN Document Server

    Peterlin, Primoz; Pisanski, Tomaz

    2008-01-01

    A technique for determining the permeability of a phospholipid membrane from a sequence of videomicrographs is described. A single giant unilamellar vesicle (GUV) is transferred using a micropipette from a solution of an impermeable solute (e.g., glucose or sucrose) into an iso-osmolar solution of a solute with a higher membrane permeability (e.g., glycerol). Upon the transfer, the vesicle swells until it reaches the tensile strength of the membrane, when the membrane breaks and a fraction of the vesicle volume is ejected, sufficient for the membrane to return to its relaxed value. The swelling-burst cycle repeats itself until the composition of the solution in the vesicle interior equilibrates with the external solution. A sequence of ~10.000 image frames is obtained from a CCD camera mounted on the optical microscope, documenting the process. On each frame, the vesicle radius is determined, and from the rate of swelling the membrane permeability can be obtained.

  20. SUPPRESSION OF CELL ADHESION ON POLYACRYLONITRILE-BASED MEMBRANES BY THE ANCHORING OF PHOSPHOLIPID MOIETIES

    Institute of Scientific and Technical Information of China (English)

    Xiao-jun Huang; Xiao-dan Huang; Ai-fu Che; Zhi-kang Xu; Ke Yao

    2006-01-01

    In this work, the membrane surface of poly(acrylonitrile-co-2-hydroxyethyl methacrylate) (PANCHEMA) waschemically modified by anchoring of phospholipid moieties. The process involved the reaction of hydroxyl groups on the membrane surface with 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP) followed by the ring-opening reaction of COP with trimethylamine. Chemical differences between the original and the modified membranes were characterized by FT-IR and XPS. It was found that the amount of macrophage adhered on the modified membrane surface is substantially lower than that on polyacrylonitrile (PAN) and PANCHEMA membranes under the same condition. The morphological change of the adherent cell is also suppressed by the generation ofphospholipid moieties on the membrane surface.

  1. Interaction of a radioprotector: cysteamine, with phospholipidic model membranes

    International Nuclear Information System (INIS)

    Besides the observation of molecular systems, spin labeling techniques make possible a description of oxygen diffusion of concentration in lipid membranes. In such a system, cysteamine presents a dynamic interaction ruled by pH conditions, either with polar heads or acyl chains according to lipid thermic phases, and inhibits oxygen transport. These results allow improvements in liposome cysteamine entrapment, and provide an original explanation to cellular hypoxia after cysteamine administration

  2. Self-quenching of nitrobenzoxadiazole labeled phospholipids in lipid membranes

    Science.gov (United States)

    Brown, R. Stephen; Brennan, John D.; Krull, Ulrich J.

    1994-04-01

    The emission intensity, wavelength, and lifetime of the fluorophore nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine (NBD-PE) are sensitive to the local environmental structure when this species is present as a component of an amphiphilic membrane. Alterations of the physical and electrostatic structure of a membrane can result in changes in the fluorescence signal owing to changes in the extent of self-quenching of the probe. To investigate self-quenching, NBD-PE was incorporated into monolayers and vesicles composed of Egg phosphatidylcholine at concentrations of 0.1 to 50 mol %. Monolayer samples were dipcast onto glass slides at a pressure of 35 mN m-1. Both the integrated intensity per fluorophore (quantum yield) from vesicles and dipcast monolayers, and the mean fluorescence lifetime from vesicles decreased as the concentration of fluorophore in the membranes was increased. At all concentrations studied the decay of NBD-PE fluorescence was fitted to two discrete exponentials, and both lifetime components were observed to change with concentration. The complexity of the fluorescence decay did not permit the use of standard theoretical models such as the Klafter-Blumen or Stern-Volmer equations which are normally employed to describe changes in fluorescence lifetime with changes in quencher concentration. Instead, a phenomenological approach was used to develop an empirical model of fluorescence self-quenching which could describe the observed alterations in the fluorescence lifetime and intensity. The model was based on a combination of Perrin quenching and Förster energy transfer. The fluorescence data was fit by a model wherein NBD-PE formed nonemissive trap sites with a critical radius of Rc=1.0±0.1 nm (Perrin quenching), with Förster energy transfer occurring to the trap sites with an R0 value of 2.55±0.10 nm as determined from spectral overlap integrals.

  3. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.

    OpenAIRE

    Kolber, M A; Haynes, D H

    1981-01-01

    The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somew...

  4. Relationship between gramacidin conformation dependent induction of phospholipid transbilayer movement and hexagonal HII phase formation in erythrocyte membranes

    NARCIS (Netherlands)

    Tournois, Huibert; Henseleit, U.; Gier, J. de; Kruijff, B. de; Haest, C.W.M.

    1988-01-01

    Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of

  5. Immobilization and Properties of Lipase from Candida rugosa on Electrospun Nanofibrous Membranes with Biomimetic Phospholipid Moities

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun; YU An-guo; GE Dan; XU Zhi-kang

    2008-01-01

    Reported here is a protocol to fabricate a biocatalyst with high enzyme loading and activity retention,from the conjugation of electrospun nanofibrous membrane having biomimetic phospholipid moiety and lipase.To improve the catalytic efficiency and activity of the immobilized enzyme,poly(acrylonitrile-co-2-methacryloyloxyethyl phosphorylcholine)s(PANCMPCs)were,respectively,electrospun into nanofibrous membranes with a mean diameter of 90 nm,as a support for enzyme immobilization.Lipase from Candida rugosa Was immobilized on these nanofibrous membranes by adsorption.Properties of immobilized lipase on PANCMPC nanofibrous membranes were compared with those of the lipase immobilized on the polyacrylonitrile(PAN)nanofibrous and sheet membranes,respectively.Efiective enzyme loading on the nanofibrous membranes was achieved up to22mg/g,which was over 10times that on the sheet membrane.The activity retention of immobilized lipase increased from 56.4%to 76.8%with an increase in phospholipid moiety from 0 to 9.6%(molar fraction)in the nanofibrous membrane.Kinetic parameter Km was also determined for free and immobilized lipase.The Km valae of the immobilized lipase on the nanofibrous membrane was obviously lower than that on the sheet membrane.The optimum pH was 7.7 for free lipase.but shifted to 8.3-8.5 for immobilized lipases.The optimum temperature was determined to be 35℃ for the free enzyme.but 42-44℃ for the immobilized ones,respectively.In addition,the thermal stability,reusability,and storage stability of the immobilized lipase were obviously improved compared to the free one.

  6. Tissue factor residues that putatively interact with membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ke Ke

    Full Text Available Blood clotting is initiated by the two-subunit enzyme consisting of the plasma protease, factor VIIa (the catalytic subunit, bound to the integral membrane protein, tissue factor (the regulatory subunit. Molecular dynamics simulations have predicted that certain residues in the tissue factor ectodomain interact with phosphatidylserine headgroups to ensure optimal positioning of the tissue factor/factor VIIa complex relative to its membrane-bound protein substrates, factors IX and X. In this study, we individually mutated to alanine all the putative phosphatidylserine-interactive residues in the tissue factor ectodomain and measured their effects on tissue factor cofactor function (activation of factors IX and X by tissue factor/factor VIIa, and clotting of plasma. Some tissue factor mutants exhibited decreased activity in all three assays, with the most profound defects observed from mutations in or near the flexible loop from Lys159 to Gly164. The decreased activity of all of these tissue factor mutants could be partially or completely overcome by increasing the phosphatidylserine content of tissue factor-liposomes. Additionally, yeast surface display was used to screen a random library of tissue factor mutants for enhanced factor VIIa binding. Surprisingly, mutations at a single amino acid (Lys165 predominated, with the Lys165→Glu mutant exhibiting a 3-fold enhancement in factor VIIa binding affinity. Our studies reveal the functional contributions of residues in the C-terminal half of the tissue factor ectodomain that are implicated in interacting with phosphatidylserine headgroups to enhance tissue factor cofactor activity, possibly by allosterically modulating the conformation of the adjacent substrate-binding exosite region of tissue factor.

  7. Phospholipid flippase associates with cisplatin resistance in plasma membrane of lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fusion of the liposomes containing N-(7-nitro-2, 1, 3-benzoxadiazol-4-yl)-i ,2-hexadecanoylSn-glycero-3-1abeled phosphatidylethanolamine (NBD-PE) with A549 and A549/DDP cells was performed, and the activity of the phospholipid flippase in the plasma membrane of the cells was measured by fluorescence intensity change of NBDPE in the outer membrane. When A549 or A549/DDP cells containing N BD-PE were incubated at 37 C for 0, 30, 60 and 90 min, the fluorescence intensities in the outer membrane of the cells were 0%, 1.4%, 2.9% and 7.8% for A59cells, and 0%, 10.5 %, 15. 5 % and 18.3 % for A549/DDP cells respectively, demonstrating that the phospholipid flippase was distributed in the plasma membrane of As49 cells, but its activity in the drug-resistant A549/DDP cells was much higher than that in the A549 cells. When the A549/DDP cells were incubated with a multidrug resistance reverse agent, verapamil, for 60 min at 37C, the results showed that the NBD-PE in outer membrane decreased by 25.0% compared with the control's. Furthermore, when A549/DDP cells were incubated with 25 μmol/L cisplatin, which is a specific anticancer drug, the flippase activity decreased by 31.6%, and it further decreased with the increase of cisplatin concentration, suggesting that phospholipid flippase in the membrane might be related to the cisplatin-resistance of human lung adenocarcinoma cancer cells.

  8. Correlated volume-energy fluctuations of phospholipid membranes: A simulation study

    DEFF Research Database (Denmark)

    Pedersen, Ulf. R.; Peters, Günther H.J.; Schröder, Thomas B.;

    2010-01-01

    This paper reports all-atom computer simulations of five phospholipid membranes (DMPC, DPPC, DMPG, DMPS, and DMPSH) with focus on the thermal equilibrium fluctuations of volume, energy, area, thickness, and chain order. At constant temperature and pressure, volume and energy exhibit strong...... membranes, showing a similar picture. The cause of the observed strong correlations is identified by splitting volume and energy into contributions from tails, heads, and water, and showing that the slow volume−energy fluctuations derive from van der Waals interactions of the tail region; they are thus...

  9. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet

    DEFF Research Database (Denmark)

    Tjällström, H; Hellgren, Lars; Wieslander, Å;

    2010-01-01

    barrier) and rafts both contain only trace amounts of DGDG, we conclude that this lipid class is not compatible with membrane functions requiring a high degree of lipid order. By not replacing phospholipids site specifically with DGDG, negative functional effects of this lipid in the plasma membrane...... are avoided.-Tjellström, H., Hellgren, L. I., Wieslander, A., Sandelius, A. S. Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet.......As in other eukaryotes, plant plasma membranes contain sphingolipids, phospholipids, and free sterols. In addition, plant plasma membranes also contain sterol derivatives and usually 5 mol% DGDG was included. As both the apoplastic plasma membrane leaflet (probably the major water permeability...

  10. Functional redundancy of CDP-ethanolamine and CDP-choline pathway enzymes in phospholipid biosynthesis: ethanolamine-dependent effects on steady-state membrane phospholipid composition in Saccharomyces cerevisiae.

    OpenAIRE

    McGee, T. P.; Skinner, H B; Bankaitis, V A

    1994-01-01

    It has been established that yeast membrane phospholipid content is responsive to the inositol and choline content of the growth medium. Alterations in the levels of transcription of phospholipid biosynthetic enzymes contribute significantly to this response. We now describe conditions under which ethanolamine can exert significant influence on yeast membrane phospholipid composition. We demonstrate that mutations which block a defined subset of the reactions required for the biosynthesis of ...

  11. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    Science.gov (United States)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. PMID:27433988

  12. Dynamical and Phase Behavior of a Phospholipid Membrane Altered by an Antimicrobial Peptide at Low Concentration.

    Science.gov (United States)

    Sharma, V K; Mamontov, E; Tyagi, M; Qian, S; Rai, D K; Urban, V S

    2016-07-01

    The mechanism of action of antimicrobial peptides is traditionally attributed to the formation of pores in the lipid cell membranes of pathogens, which requires a substantial peptide to lipid ratio. However, using incoherent neutron scattering, we show that even at a concentration too low for pore formation, an archetypal antimicrobial peptide, melittin, disrupts the regular phase behavior of the microscopic dynamics in a phospholipid membrane, dimyristoylphosphatidylcholine (DMPC). At the same time, another antimicrobial peptide, alamethicin, does not exert a similar effect on the DMPC microscopic dynamics. The melittin-altered lateral motion of DMPC at physiological temperature no longer resembles the fluid-phase behavior characteristic of functional membranes of the living cells. The disruptive effect demonstrated by melittin even at low concentrations reveals a new mechanism of antimicrobial action relevant in more realistic scenarios, when peptide concentration is not as high as would be required for pore formation, which may facilitate treatment with antimicrobial peptides. PMID:27232190

  13. Role of phospholipids in destabilization of lysosomal membranes in chronic alcohol poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Tadevosyan, Y.V.; Batikyan, T.B.; Gevorkyan, G.A.; Karagezyan, K.G.

    1986-04-01

    The aim of this investigation was to study changes in the phospholipids (PL) spectrum and possible activity of membrane-bound phospholipase A/sub 2/ in lysosomal membranes from albino rat liver under conditions of the normally metabolizing tissue and during long-term alcohol poisoning. Changes in stability of the lysosomal membranes were determined by measuring nonsedimented acid phosphatase (AP) activity. The substance 1-acyl-2-(1-/sup 14/C)-oleoyl-phosphatidyl-choline (/sup 14/C-PCh) was synthesized by an enzymic method. Phospholipase A/sub 2/ activity was determined in an incubation medium of Tris-Maleate buffer containing 20 nanomoles (/sup 14/C)-PCH, 8 mM CaC1/sub 2/, and about 100 micrograms protein.

  14. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    Directory of Open Access Journals (Sweden)

    Manik C Ghosh

    Full Text Available Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  15. Hemoglobin oxidation products extract phospholipids from the membrane of human erythrocytes.

    Science.gov (United States)

    Moxness, M S; Brunauer, L S; Huestis, W H

    1996-06-01

    Hydrogen peroxide oxidation of human erythrocytes induces a transfer of phospholipid from the membrane into the cytosol [Brunauer, L.S., Moxness, M.S., & Huestis, W.H. (1994) Biochemistry 33, 4527-4532]. The current study examines the mechanism of lipid reorganization in oxidized cells. Exogenous phosphatidylserine was introduced into the inner monolayer of erythrocytes, and its distribution was monitored by microscopy and radioisotopic labeling. Pretreatment of cells with carbon monoxide prevented both hemoglobin oxidation and the transfer of phosphatidyserine into the cytosolic compartment. The roles of the various hemoglobin oxidation products in lipid extraction were investigated using selective oxidants. Nitrite treatment of intact cells produced almost complete conversion to methemoglobin, but no detectable lipid extraction. Treatments designed to produce the green hemoglobin derivatives, sulfhemoglobin and choleglobin, resulted in cytosolic extraction of phosphatidylserine. Ion exchange and size exclusion chromatography of oxidized cytosolic components revealed a lipid-hemoglobin complex. The interaction between lipid and hemoglobin oxidation products was verified in a model system. Purified hemoglobin, enriched in sulfhemoglobin and choleglobin by treatment with H2O2, H2S, or ascorbate, extracted phospholipid from small unilamellar phospholipid vesicles. Electron paramagnetic resonance studies demonstrated that hemoglobin oxidation products also adsorb fatty acids from solution. This newly described activity of hemoglobin may play a role in the clearance of oxidatively damaged and senescent cells from circulation.

  16. Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy

    Science.gov (United States)

    Volkov, V. V.; Chelli, R.; Zhuang, W.; Nuti, F.; Takaoka, Y.; Papini, A. M.; Mukamel, S.; Righini, R.

    2007-01-01

    The inter- and intramolecular interactions of the carbonyl moieties at the polar interface of a phospholipid membrane are probed by using nonlinear femtosecond infrared spectroscopy. Two-dimensional IR correlation spectra separate homogeneous and inhomogeneous broadenings and show a distinct cross-peak pattern controlled by electrostatic interactions. The inter- and intramolecular electrostatic interactions determine the inhomogeneous character of the optical response. Using molecular dynamics simulation and the nonlinear exciton equations approach, we extract from the spectra short-range structural correlations between carbonyls at the interface. PMID:17881567

  17. Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles

    OpenAIRE

    Drašler, Barbara; Pajnič, Manca; Šuštar, Vid; Štukelj, Roman; Kononenko, Veno; Šimundić, Metka; Hägerstrand, Henry; Kralj-Iglič, Veronika; Makovec, Darko; Drobne, Damjana; Krek, Judita Lea

    2016-01-01

    Background We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy. Populations of erythrocytes and GUVs were analyzed: t...

  18. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax.

    Science.gov (United States)

    Lidman, Martin; Pokorná, Šárka; Dingeldein, Artur P G; Sparrman, Tobias; Wallgren, Marcus; Šachl, Radek; Hof, Martin; Gröbner, Gerhard

    2016-06-01

    Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface. PMID:26947183

  19. Neutron spin echo study on elastic properties of phospholipid membranes interacting with pore-forming peptides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hwan

    2010-02-15

    Cell membranes, which consist of phospholipid bilayers, play important roles in cells as barriers for maintaining concentrations and matrices to host membrane proteins. During cellular processes such as endo- and exo-cytosis, cell fission and fusion, the cell membranes undergo various morphological changes which are mainly governed by the interplay between protein and lipid membranes. A number of mechanisms have been proposed for protein-induced membrane deformations, including insertion of amphipathic helices, direct or indirect scafolding, and oligomerization of membrane proteins which change membrane curvature. However, it is not well exploited how the elastic properties of membranes, which play a key role in membrane deformation, are affected by the protein-membrane interactions. Therefore, to understand cell functions related protein-membrane interactions, in terms of the elastic properties of the membrane, is an important step toward elucidating the mechanisms of protein functions in membranes. A well-known example of protein-membrane interaction is the activity of antimicrobial peptides. Such peptides associate with a lipid bilayer in two distinct ways. At low peptide to lipid molar ratio P/L, the peptides adsorb horizontally to the surface of membrane and above a threshold concentration P/L*, the peptides begin to insert into the membrane, forming trans-membrane pores. Here, we report, for the first time, the thermal fuctuation and elasticity of dioleoyl phosphocholine large unilamellar vesicle membranes interacting with pore-forming peptides, melittin, which were measured by in-situ neutron spin echo spectroscopy (NSE). The relaxation behavior of the intermediate dynamic structure factors of the membrane at different P/L can be divided into three regions, resulting from characteristic changes of the effective bending modulus Κ(Κ = +d{sup 2}k, where Κ is the bending modulus, d is the height of the neutral surface from bilayer midplane and k is the

  20. Photocrosslinking and click chemistry enable the specific detection of proteins interacting with phospholipids at the membrane interface.

    Science.gov (United States)

    Gubbens, Jacob; Ruijter, Eelco; de Fays, Laurence E V; Damen, J Mirjam A; de Kruijff, Ben; Slijper, Monique; Rijkers, Dirk T S; Liskamp, Rob M J; de Kroon, Anton I P M

    2009-01-30

    New lipid analogs mimicking the abundant membrane phospholipid phosphatidylcholine were developed to photocrosslink proteins interacting with phospholipid headgroups at the membrane interface. In addition to either a phenylazide or benzophenone photoactivatable moiety attached to the headgroup, the lipid analogs contained azides attached as baits to the acyl chains. After photocrosslinking in situ in the biomembrane, these baits were used for the attachment of a fluorescent tetramethylrhodamine-alkyne conjugate or a biotin-alkyne conjugate using click chemistry, allowing for the selective detection and purification of crosslink products, respectively. Proteins crosslinked to the lipid analogs in inner mitochondrial membranes from Saccharomyces cerevisiae were detected and subsequently identified by mass spectrometry. Established interaction partners of phosphatidylcholine were found, as well as known integral and peripheral inner membrane proteins, and proteins that were not previously considered mitochondrial inner membrane proteins. PMID:19171301

  1. Some relationships between membrane phospholipid domains, conformational order, and cell shape in intact human erythrocytes.

    Science.gov (United States)

    Moore, D J; Gioioso, S; Sills, R H; Mendelsohn, R

    1999-01-01

    A novel method developed in this laboratory [D.J. Moore et al., Biochemistry 35 (1996) 229-235; D.J. Moore et al., Biochemistry 36 (1997) 660-664] to study the conformational order and the propensity for domain formation of specific phospholipids in intact human erythrocytes is extended to two additional species. Acyl chain perdeuterated 1,2-dilauroylphosphatidylethanolamine (diC12PE-d46) was incorporated preferentially (in separate experiments) into the inner leaflet of stomatocytic erythrocytes and into the outer leaflet of echinocytic erythrocytes, while acyl chain perdeuterated 1,2-dipentadecanoylphosphatidylcholine (diC15PC-d58) was incorporated into the outer leaflet of echinocytic erythrocytes. The conformational order and phase behavior of the incorporated molecules were monitored through FT-IR studies of the temperature dependence of the CD2 stretching vibrations. For both diC12PE-d46 and diC15PC-d58, the gel-->liquid crystal phase transition persisted when these lipids were located in the outer leaflet of echinocytic cells, a result indicative of the persistence of phospholipid domains. In each case, the transition widths were broadened compared to the pure lipids, suggestive of either small domains or the presence of additional molecular components within the domains. The conformational order of diC12PE-d46 differed markedly depending on its location and the morphology of the cells. When located predominantly in the inner membrane of stomatocytes, the phase transition of this species was abolished and the conformational order compared with pure lipid vesicles at the same temperature was much lower. The current results along with our previous studies provide a sufficient experimental basis to deduce some general principles of phospholipid conformational order and organization in both normal and shape-altered erythrocytes. PMID:9889394

  2. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells

    Science.gov (United States)

    Deligöz, Hüseyin; Yılmazoğlu, Mesut

    The paper deals with the synthesis and characterization of a new type of acid doped highly conductive complex membrane based on sulfonated polyimide (sPI) and ionic liquid (IL) for high temperature anhydrous fuel cells. For this purpose, 2,4-diaminobenzene sulfonic acid (2,4-DABSA) is reacted with benzophenontetracarboxylic dianhydride (BTDA) to yield sulfonated poly(amic acid) (sPAA) intermediate. Subsequently, IL is added into sPAA to form an interaction between sulfonic acid and imidazolium group of IL followed by acid doping. The ionic conductivity of acid doped sPI/IL complex polymer membrane is higher than that of IL containing composite membranes reported in the literature (5.59 × 10 -2 S cm -1 at 180 °C). Furthermore, dynamic mechanical analysis (DMA) results of acid doped sPI/IL complex membrane show that the mechanical strength of the complex product is slightly changed until 350 °C due to the formation of ionic interactions between sulfonic acid groups of sPI and imidazolium groups of IL. Consequently, the ionic interaction not only provides high ionic conductivity with excellent thermomechanical properties (the storage module of 0.91 GPa at 300 °C) but also results in a positive effect in long term conductivity stability by blocking IL migration through the membrane.

  3. Relationship between gramacidin conformation dependent induction of phospholipid transbilayer movement and hexagonal HII phase formation in erythrocyte membranes

    OpenAIRE

    Tournois, Huibert; Henseleit, U.; Gier, J.; de Kruijff, B.; Haest, C.W.M.

    1988-01-01

    Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of peptide incorporation. The same solvent dependence is observed for the enhancement of transbilayer reorientation of lysophospholipids and unspecific leak formation in intact erythrocytes at lower ...

  4. Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Clare L [McMaster University; Barrett, M [McMaster University; Toppozini, L [McMaster University; Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Katsaras, John [ORNL; Fragneto, Giovanna [Institut Laue-Langevin (ILL); Rheinstadter, Maikel C [McMaster University

    2012-01-01

    Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.

  5. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content.

    Directory of Open Access Journals (Sweden)

    Nagendra N Mishra

    Full Text Available BACKGROUND: The lipopeptide antibiotic, daptomycin (DAP interacts with the bacterial cell membrane (CM. Development of DAP resistance during therapy in a clinical strain of Enterococcus faecalis was associated with mutations in genes encoding enzymes involved in cell envelope homeostasis and phospholipid metabolism. Here we characterized changes in CM phospholipid profiles associated with development of DAP resistance in clinical enterococcal strains. METHODOLOGY: Using two clinical strain-pairs of DAP-susceptible and DAP-resistant E. faecalis (S613 vs. R712 and E. faecium (S447 vs. R446 recovered before and after DAP therapy, we compared four distinct CM profiles: phospholipid content, fatty acid composition, membrane fluidity and capacity to be permeabilized and/or depolarized by DAP. Additionally, we characterized the cell envelope of the E. faecium strain-pair by transmission electron microscopy and determined the relative cell surface charge of both strain-pairs. PRINCIPAL FINDINGS: Both E. faecalis and E. faecium mainly contained four major CM PLs: phosphatidylglycerol (PG, cardiolipin, lysyl-phosphatidylglycerol (L-PG and glycerolphospho-diglycodiacylglycerol (GP-DGDAG. In addition, E. faecalis CMs (but not E. faecium also contained: i phosphatidic acid; and ii two other unknown species of amino-containing PLs. Development of DAP resistance in both enterococcal species was associated with a significant decrease in CM fluidity and PG content, with a concomitant increase in GP-DGDAG. The strain-pairs did not differ in their outer CM translocation (flipping of amino-containing PLs. Fatty acid content did not change in the E. faecalis strain-pair, whereas a significant decrease in unsaturated fatty acids was observed in the DAP-resistant E. faecium isolate R446 (vs S447. Resistance to DAP in E. faecium was associated with distinct structural alterations of the cell envelope and cell wall thickening, as well as a decreased ability of DAP to

  6. Trans Fatty Acid Derived Phospholipids Show Increased Membrane Cholesterol and Reduced Receptor Activation as Compared to Their Cis Analogs

    OpenAIRE

    Niu, Shui-Lin; Mitchell, Drake C.; Litman, Burton J.

    2005-01-01

    The consumption of trans fatty acid (TFA) is linked to the elevation of LDL cholesterol and is considered to be a major health risk factor for coronary heart disease. Despite several decades of extensive research on this subject, the underlying mechanism of how TFA modulates serum cholesterol levels remains elusive. In this study, we examined the molecular interaction of TFA-derived phospholipid with cholesterol and the membrane receptor rhodopsin in model membranes. Rhodopsin is a prototypic...

  7. The binding of the radioprotective agent cysteamine with the phospholipidic membrane headgroup-interface region

    International Nuclear Information System (INIS)

    The interaction of the aminothiol radioprotector cysteamine (β-mercaptoethylamine)(CYST) with dipalmitoylphosphatidylcholine (DPPC) artificial membranes has been studied by differential scanning calorimetry (DSC), turbidimetry and spin labeling. This hydrophilic molecule displays a biphasic, concentration-dependent binding to the phospholipidic head groups at neutral pH. In the CYST/DPPC molar ratio 1:160-1:2 (mole/mole) an increasing ordering effect is observed. At high concentrations (over 3:1 ratio), this ordering effect decreases. With the symmetric disulfide dimer cystamine, the biphasic effect is not shown and the membrane rigidity decrease is obtained only at concentration ratio higher than 1:1. The charge repartition of the cysteamine molecule has been shown to be disymmetric, +0.52 e on the NH3 group and +0.19 e on the SH extremity, whereas the cystamine molecule is electrostatically symmetrical. These properties could be related to their membrane effects. With cysteamine, at a low concentration, an electrostatic bridging between the negatively charged phosphate groups of the polar heads induces the increase in membrane stability: the molecules behave like a divalent cation. At high concentration a displacement of the slightly charged SH extremity by the amine disrupts the bridges and induces the decrease in rigidity: the drug behaves like a monovalent cation. Due to its symmetric charge and its double length, such an effect is not observed with cystamine. This study could bring further information about the interactions between cysteamine and polyelectrolytic structures (ADN for example) and about the radioprotective properties of this drug. (author)

  8. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    Science.gov (United States)

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  9. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Science.gov (United States)

    Cerbón, J; Calderón, V

    1995-04-12

    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity. PMID:7718598

  10. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.; Wang, Yu-Hsiu; Slochower, David; Janmey, Paul A.; Lemmon, Mark A. (UPENN-MED)

    2011-09-28

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importance of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.

  11. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska

    2014-06-01

    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  12. TRANSLOCATION OF FLUORESCENT ETHER PHOSPHOLIPID, BUT NOT ITS DIACYL COUNTERPART, AFTER INSERTION IN PLASMA-MEMBRANES OF CONTROL AND PLASMALOGEN-DEFICIENT FIBROBLASTS

    NARCIS (Netherlands)

    VANDERVEER, E; VANDERWEIDE, D; HEIJMANS, HSA; HOEKSTRA, D

    1993-01-01

    Fluorescently labelled ether phospholipid (1-0-alkyl/alkenyl-2-acyl-glycerophosphocholine) readily internalizes at low temperatures (2-degrees-C) after insertion into the plasma membrane of cultured fibroblasts. This fate differs markedly from that of its diacyl phospholipid analogue, which remains

  13. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    Science.gov (United States)

    Zhang, Lei; Hao, Changchun; Feng, Ying; Gao, Feng; Lu, Xiaolong; Li, Junhua; Sun, Runguang

    2016-09-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure-area (π-A) and pressure-time (π-T) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central

  14. Correlation between fluidising effects on phospholipid membranes and mitochondrial respiration of propofol and p-nitrosophenol homologues.

    Science.gov (United States)

    Momo, Federico; Fabris, Sabrina; Wisniewska, Anna; Fiore, Cristina; Bindoli, Alberto; Scutari, Guido; Stevanato, Roberto

    2003-03-25

    Nitrosopropofol (2-6-diisopropyl-4-nitrosophenol) has dramatic consequences for respiration, ATP synthesis and the transmembrane potential of isolated rat liver mitochondria at concentrations at which propofol (2-6-diisopropylphenol) does not cause any apparent effects. These results correlate well with the observation that nitrosopropofol is also a stronger perturbing agent of phospholipid membranes. In this paper we verify the possible biological activity of different phenols and nitrosophenols on mitochondrial respiration. We then discuss their interactions with phospholipid liposomes, studied with differential scanning calorimetry, spin labelling techniques and UV-Vis spectrophotometry, in order to obtain information on drug distribution and the modifications they impose on lipid bilayer. The results of the experiments performed on mitochondria and model membranes prove an interesting correlation between the effects of the molecules on both systems.

  15. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme.

    Science.gov (United States)

    Li, Xiaoxu; Gao, Lianghui; Fang, Weihai

    2016-01-01

    In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD) force field is developed for phospholipids. The coarse-grained (CG) models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on this four-to-one CG mapping scheme. Then, we optimize the DPD force parameters for phospholipids. The feasibility of this model is demonstrated by simulating the structural and thermodynamic properties of lipid bilayer membranes, including the membrane thickness, the area per lipid, the lipid tail orientation, the bending rigidity, the rupture behavior, and the potential of mean force for lipid flip-flop. PMID:27137463

  16. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme.

    Directory of Open Access Journals (Sweden)

    Xiaoxu Li

    Full Text Available In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD force field is developed for phospholipids. The coarse-grained (CG models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on this four-to-one CG mapping scheme. Then, we optimize the DPD force parameters for phospholipids. The feasibility of this model is demonstrated by simulating the structural and thermodynamic properties of lipid bilayer membranes, including the membrane thickness, the area per lipid, the lipid tail orientation, the bending rigidity, the rupture behavior, and the potential of mean force for lipid flip-flop.

  17. Conformations of double-headed, triple-tailed phospholipid oxidation lipid products in model membranes

    DEFF Research Database (Denmark)

    Hermetter, Albin; Kopec, Wojciech; Khandelia, Himanshu

    2013-01-01

    Products of phospholipid oxidation can produce lipids with a carbonyl moiety at the end of a shortened lipid acyl tail, such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC). The carbonyl tail of POVPC can covalently bond to the free tertiary amine of a phosphatidylethanolamin...... work provides the first detailed structural model of this unique new class of lipids that may have important roles to play in modulating membrane properties and cell physiology....... lipid in a Schiff base reaction to form a conjugate lipid (SCH) with two head groups, and three acyl tails. We investigate the conformations and properties of this unique class of adduct lipids using molecular dynamics simulations, and show that their insertion into lipid bilayers of POPC increases...... the average cross-sectional area per lipid and decreases bilayer thickness. Significant increase in acyl tail fluidity is only observed at 25% SCH concentration. The SCH occupies a larger area per lipid than expected for a lipid with three acyl tails, owing to the interfacial location of the long spacer...

  18. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.

    Science.gov (United States)

    Fernández-Carvajal, Asia M; Encinar, José A; Poveda, José Antonio; de Juan, Entilio; Martínez-Pinna, Juan; Ivorra, Isabel; Ferragut, José Antonio; Morales, Andrés; González-Ros, José Manuel

    2006-01-01

    Ligand-gated ion channels (LGICs) constitute an important family of complex membrane proteins acting as receptors for neurotransmitters (Barnard, 1992; Ortells and Lunt, 1995). The nicotinic acetylcholine receptor (nAChR) from Torpedo is the most extensively studied member of the LGIC family and consists of a pentameric transmembrane glycoprotein composed of four different polypeptide subunits (alpha, beta, gamma, and delta) in a 2:1:1:1 stoichiometry (Galzi and Changeux, 1995; Hucho et al., 1996) that are arranged pseudosymmetrically around a central cation-selective ion channel. Conformational transitions, from the closed (nonconducting), to agonist-induced open (ion-conducting), to desensitized (nonconducting) states, are critical for functioning of the nAChR (Karlin, 2002). The ability of the nAChR to undergo these transitions is profoundly influenced by the lipid composition of the bilayer (Barrantes, 2004). Despite existing information on lipid dependence of AChR function, no satisfactory explanation has been given on the molecular events by which specific lipids exert such effects on the activity of an integral membrane protein. To date, several hypotheses have been entertained, including (1) indirect effects of lipids through the alteration of properties of the bilayer, such as fluidity (an optimal fluidity hypothesis [Fong and McNamee, 1986]) or membrane curvature and lateral pressure (Cantor, 1997; de Kruijff, 1997), or (2) direct effects through binding of lipids to defined sites on the transmembrane portion of the protein (Jones and McNamee, 1988; Blanton and Wang, 1990; Fernández et al., 1993; Fernández-Ballester et al., 1994), which has led to the postulation of a possible role of certain lipids as peculiar allosteric ligands of the protein. In this paper we have reconstituted purified AChRs from Torpedo into complex multicomponent lipid vesicles in which the phospholipid composition has been systematically altered. Stopped-flow rapid kinetics of

  19. Effect of gramicidin A on the dipole potential of phospholipid membranes.

    OpenAIRE

    Shapovalov, V L; Kotova, E A; Rokitskaya, T I; Antonenko, Y N

    1999-01-01

    The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin ...

  20. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes

    International Nuclear Information System (INIS)

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E

  1. Phospholipid: diacylglycerol acyltransferase contributes to the conversion of membrane lipids into triacylglycerol in Myrmecia incisa during the nitrogen starvation stress.

    Science.gov (United States)

    Liu, Xiao-Yu; Ouyang, Long-Ling; Zhou, Zhi-Gang

    2016-01-01

    In addition to the Kennedy pathway for de novo biosynthesis, triacylglycerol (TAG), the most important stock for microalgae-based biodiesel production, can be synthesized by phospholipid: diacylglycerol acyltransferase (PDAT) that transfers an acyl group from phospholipids (PLs) to diacylglycerol (DAG). This study presents a novel gene that encodes PDAT from the green microalga Myrmecia incisa Reisigl H4301 (designated MiPDAT ). MiPDAT is localized on the plasma membrane (PM) via the agroinfiltration of tobacco leaves with a green fluorescent protein-fused construct. MiPDAT synthesizes TAG based on functional complementary experiments in the mutant yeast strain H1246 and the membrane lipid phosphatidylcholine (PC) is preferentially used as substrates as revealed by in vitro enzyme activity assay. The gradually increased transcription levels of MiPDAT in M. incisa during the cultivation under nitrogen starvation conditions is proposed to be responsible for the decrease and increase of the PC and TAG levels, respectively, as detected by liquid chromatography-mass spectrometry after 4 d of nitrogen starvation. In addition, the mechanism by which MiPDAT in this microalga uses PC to yield TAG is discussed. Accordingly, it is concluded that this PM-located PDAT contributes to the conversion of membrane lipids into TAG in M. incisa during the nitrogen starvation stress. PMID:27216435

  2. THE USE OF INFRARED SPECTROSCOPY FOR FOLLOWING DRUG-MEMBRANE INTERACTIONS: PROBING PACLITAXEL (TAXOL-CELL PHOSPHOLIPID SURFACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu

    2009-01-01

    Full Text Available Over the past two decades, of the several new chemotherapeutic agents, taxol (Paclitaxel has played a crucial role in the treatment of various malignancies, including those of the ovary, breast, lung, head and neck, esophagus, as well as Kaposi's sarcoma. Despite its well documented mechanisms of action causing cell cycle arrest and apoptosis following microtubule stabilization, further details still remain to be clarified. Alterations of lipid membrane composition of cancer cells as compared with normal cells are well established. In addition, the mechanisms of drug resistance, which severely limit the effectiveness of cancer chemotherapy are undertaken by membrane located proteins such as multidrug resistance (MDR-1 or P-glycoprotein (Pgp. On the other hand, recent chemotherapeutic regimens employ anticancer drug induced apoptosis, during which dynamic structural changes occur in cellular dynamics characterizing cell death phase leading to fragmentation into membrane-bound apoptotic bodies. Thus, cell membranes represent an attractive research field in cellular carcinogenesis and cancer therapy. Besides DNA, plasma membrane is considered as the most important target for many antineoplastic drugs. However, its role in chemotherapy-induced cell death is not well understood. Hence, it is interesting to study the molecular interactions of the anticancer drugs in phospholipid environment. Both cell biological and biotechnological aspects are aimed. By further clarifying the precise mechanisms of taxol-lipid interactions, better understanding of its pharmacological targets can be obtained. Moreover, gaining further insights on such drug-lipid interactions would encourage the design of novel lipid based antitumor drug formulations with improved bioavailability properties and decreased toxic side effects. The currently employed analytical approaches to follow drug-cell or drug-membrane interactions are limited by either the requirement of experienced

  3. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    NARCIS (Netherlands)

    Hoekstra, D.

    1982-01-01

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol

  4. The interaction of single walled carbon nanotube (SWCNT with phospholipids membrane: in point view of solvent effect

    Directory of Open Access Journals (Sweden)

    Akbar Elsagh

    2015-03-01

    Full Text Available In this research, we have studied the structural properties of phospholipids, surrounding single-walled carbon nanotube (SWCNT, by using ab-inition and molecular dynamics simulation. Carbon nanotubes (SWCNTs are very common in medical research and are being highly studied in the fields of biosensing methods for disease treatment and efficient drug delivery and health monitoring. The transportation of SWCNT through the cell membrane widely investigated because of many advantages. Because of the differences among force fields, the energy of a molecule calculated using two different force fields will not be the same. In this study difference in force field illustrated by comparing the energy of calculated by using force fields, MM+, Amber and OPLS. The quantum Mechanics (QM calculations were carried out with the GAUSSIAN 09 program based on density functional theory (DFT at B1LYP/6-31G* level. In our recent study the electronic structure of open-end of SWCNT and transportation of SWCNT through the phospholipids in skin cell membrane have been discussed for both vacuum and solvent media.

  5. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I;

    2000-01-01

    Arabidopsis proteins were predicted which share an 80 residue zinc finger domain known from ADP-ribosylation factor GTPase-activating proteins (ARF GAPs). One of these is a 37 kDa protein, designated ZAC, which has a novel domain structure in which the N-terminal ARF GAP domain and a C-terminal C2...... and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins...

  6. 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 μs). The cells remained in a permeable state without loss of viability for several hours at 40C. A new anisotropic peak with respect to control cells was observed on 31P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The 31P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells

  7. Effects of smoking on fatty acid composition of phospholipid sperm membrane and the malondialdehyde levels in human seminal plasma.

    Science.gov (United States)

    Štramová, X; Čegan, A; Hampl, R; Kanďár, R

    2015-11-01

    The aim of this study was to investigate fatty acids composition of sperm phospholipids, level of lipoperoxidation represented by malondialdehyde and to examine differences between recent smokers and nonsmokers. The levels of malondialdehyde were in the group of all patients 1.51 ± 0.56 μmol l(-1) , in smokers 1.36 ± 0.59 μmol l(-1) and in nonsmokers 1.53 ± 0.55 μmol l(-1) . Total sperm membrane phospholipid fatty acids were profiled into several groups, saturated acids (in smokers 61.86 ± 9.02%, in nonsmokers 61.20 ± 11.66%), polyunsaturated acids n-3 (in smokers 12.62 ± 8.18%, in nonsmokers 14.28 ± 13.65%), polyunsaturated acids n-6 (in smokers 9.13 ± 4.37%, in nonsmokers 10.10 ± 3.79%) and other acids (in smokers 14.36 ± 3.94%, in nonsmokers 13.88 ± 2.31%). Significant correlations were found between the level of malondialdehyde (MDA) and total sperm motility in all patients (r = -0.358, P = 0.013), between both the level of MDA and progressive motility (r = -0.465, P = 0.001) and between the level of MDA and total motility (r = -0.382, P = 0.037) in nonsmokers. There were no statistically significant differences between composition of sperm phospholipid important fatty acids in smokers and nonsmokers. Significant correlations between selected sperm fatty acids and sperm motility and morphology in smokers and nonsmokers were not observed. PMID:25311153

  8. Terahertz dielectric relaxation of biological water confined in model membranes made of lyotropic phospholipids

    NARCIS (Netherlands)

    D. Paparo; K.J. Tielrooij; H.J. Bakker; M. Bonn

    2009-01-01

    Understanding water-membrane interactions is a fundamental issue in biophysics since these interactions are at the basis of many key molecular processes occurring in membranes. The hydrogen-bond network of water molecules is highly dynamic and its dynamical structure influences membrane fluidity and

  9. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers.

    Science.gov (United States)

    Epand, Richard M; Bach, Diana; Wachtel, Ellen

    2016-09-01

    Cholesterol has limited solubility in phospholipid bilayers. The solubility limit is strongly dependent on the nature of the lipid with which the cholesterol is mixed while properties of the crystals formed can be modified by phospholipid-cholesterol interactions. In this review we summarize the various methods that have been developed to prepare hydrated mixtures of cholesterol and phospholipid. We point out some of the factors that determine the form adopted when cholesterol crystallizes in such mixtures, i.e. two- or three-dimensional, monohydrate or anhydrous. These differences can greatly affect the ability to experimentally detect the presence of these crystals in a membrane. Several methods for detecting cholesterol crystals are discussed and compared including DSC, X-ray and GIXRD diffraction methods, NMR and EPR spectroscopy. The importance of the history of the sample in determining the amount and nature of the cholesterol crystals formed is emphasized. PMID:27370110

  10. Interaction of an odorant lactone with model phospholipid bilayers and its strong fluidizing action in yeast membrane.

    Science.gov (United States)

    Aguedo, Mario; Beney, Laurent; Waché, Yves; Belin, Jean-Marc

    2003-02-15

    Some odorant lactones are naturally present in fruits or in fermented products; they can also be used as food additives and can be produced by microorganisms at the industrial scale by biotechnological processes. Gamma-decalactone was previously shown to have antimicrobial properties. We determined by infrared spectroscopy measurements that this compound rapidly diffused into model phospholipid bilayers (within 2 min), modifying the general physical state of a dimyristoyl-L-alpha-phosphatidylcholine (DMPC) film. In vivo, the lactone strongly increased membrane fluidity in the model yeast Yarrowia lipolytica, as evaluated by fluorescence anisotropy measurements. This effect was more important than that of benzyl alcohol, which is known as a fluidizing agent in living cells, and may explain the toxic action of gamma-decalactone in microorganisms. PMID:12423922

  11. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids

    OpenAIRE

    Lange, Yvonne; Ye, Jin; Steck, Theodore L.

    2004-01-01

    How do cells sense and control their cholesterol levels? Whereas most of the cell cholesterol is located in the plasma membrane, the effectors of its abundance are regulated by a small pool of cholesterol in the endoplasmic reticulum (ER). The size of the ER compartment responds rapidly and dramatically to small changes in plasma membrane cholesterol around the normal level. Consequently, increasing plasma membrane cholesterol in vivo from just below to just above the basal level evoked an ac...

  12. Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids.

    Science.gov (United States)

    Hofbauer, Harald F; Schopf, Florian H; Schleifer, Hannes; Knittelfelder, Oskar L; Pieber, Bartholomäus; Rechberger, Gerald N; Wolinski, Heimo; Gaspar, Maria L; Kappe, C Oliver; Stadlmann, Johannes; Mechtler, Karl; Zenz, Alexandra; Lohner, Karl; Tehlivets, Oksana; Henry, Susan A; Kohlwein, Sepp D

    2014-06-23

    Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particular chain length is evolutionarily highly conserved and presumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription. PMID:24960695

  13. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids.

    Science.gov (United States)

    Kidd, Parris M

    2007-09-01

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are orthomolecular, conditionally essential nutrients that enhance quality of life and lower the risk of premature death. They function exclusively via cell membranes, in which they are anchored by phospholipid molecules. DHA is proven essential to pre- and postnatal brain development, whereas EPA seems more influential on behavior and mood. Both DHA and EPA generate neuroprotective metabolites. In double-blind, randomized, controlled trials, DHA and EPA combinations have been shown to benefit attention deficit/hyperactivity disorder (AD/HD), autism, dyspraxia, dyslexia, and aggression. For the affective disorders, meta-analyses confirm benefits in major depressive disorder (MDD) and bipolar disorder, with promising results in schizophrenia and initial benefit for borderline personality disorder. Accelerated cognitive decline and mild cognitive impairment (MCI) correlate with lowered tissue levels of DHA/EPA, and supplementation has improved cognitive function. Huntington disease has responded to EPA. Omega-3 phospholipid supplements that combine DHA/EPA and phospholipids into the same molecule have shown marked promise in early clinical trials. Phosphatidylserine with DHA/EPA attached (Omega-3 PS) has been shown to alleviate AD/HD symptoms. Krill omega-3 phospholipids, containing mostly phosphatidylcholine (PC) with DHA/EPA attached, markedly outperformed conventional fish oil DHA/EPA triglycerides in double-blind trials for premenstrual syndrome/dysmenorrhea and for normalizing blood lipid profiles. Krill omega-3 phospholipids demonstrated anti-inflammatory activity, lowering C-reactive protein (CRP) levels in a double-blind trial. Utilizing DHA and EPA together with phospholipids and membrane antioxidants to achieve a triple cell membrane synergy may further diversify their currently wide range of clinical applications. PMID:18072818

  14. Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes: Methodology development and its application to studies of porcine lens membranes.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-11-01

    An electron paramagnetic resonance spin-labeling method has been developed that allows quantitative evaluation of the amounts of phospholipids and cholesterol in lipid domains of intact fiber-cell plasma membranes isolated from cortical and nuclear regions of eye lenses. The long term goal of this research is the assessment of organizational changes in human lens fiber cell membranes that occur with age and during cataract development. The measurements needed to be performed on lens membranes prepared from eyes of single donors and from single eyes. For these types of studies it is necessary to separate the age/cataract related changes from preparation/technique related changes. Human lenses differ not only because of age, but also because of the varying health histories of the donors. To solve these problems the sample-to-sample preparation/technique related changes were evaluated for cortical and nuclear lens membranes prepared from single porcine eyes. It was assumed that the differences due to the age (animals were two year old) and environmental conditions for raising these animals were minimal. Mean values and standard deviations from preparation/technique changes for measured amounts of lipids in membrane domains were calculated. Statistical analysis (Student's t-test) of the data also allowed determining the differences of mean values which were statistically significant with P ≤ 0.05. These differences defined for porcine lenses will be used for comparison of amounts of lipids in domains in human lens membranes prepared from eyes of single donors and from single eyes. Greater separations will indicate that differences were statistically significant with (P ≤ 0.05) and that they came from different than preparation/technique sources. Results confirmed that in nuclear porcine membranes the amounts of lipids in domains created due to the presence of membrane proteins were greater than those in cortical membranes and the differences were larger than

  15. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus.

    Directory of Open Access Journals (Sweden)

    Sylvain Giroud

    Full Text Available Polyunsaturated fatty acids (PUFA have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6 lengthens torpor bout duration and enables animals to reach lower body temperatures (T(b and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR Ca(2+-ATPase 2a (SERCA in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6 in SR phospholipids (PL should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum T(b in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus in vitro at 35 °C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3. SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower T(b during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum T(b tolerated by hibernators.

  16. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding

    International Nuclear Information System (INIS)

    The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6HB trimer and the membrane affinity of gp41’s ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41’s transmembrane helix to prevent complete dissociation of the trimer during the course of fusion

  17. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Julien; Louis, John M.; Aniana, Annie [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States); Ghirlando, Rodolfo [National Institutes of Health, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States)

    2015-04-15

    The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6HB trimer and the membrane affinity of gp41’s ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41’s transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.

  18. Myotonic muscular dystrophy: defective phospholipid metabolism in the erythrocyte plasma membrane.

    OpenAIRE

    Grey, J E; Gitelman, H J; Roses, A D

    1980-01-01

    Myotonic muscular dystrophy (MyD) is a systemic genetic disorder that is thought to result from a generalized cellular membrane defect although the exact nature of this defect is unknown. This study examines two calcium-dependent membrane processes that have been observed in erythrocytes from healthy individuals: calcium-stimulated phosphatidic acid accumulation and calcium-induced potassium leak. We find that erythrocytes from MyD patients, in contrast to controls, have markedly impaired pho...

  19. Multi-scale molecular dynamics study of cholera pentamer binding to a GM1-phospholipid membrane.

    Science.gov (United States)

    Sridhar, Akshay; Kumar, Amit; Dasmahapatra, Ashok Kumar

    2016-07-01

    The AB5 type toxin produced by the Vibrio cholerae bacterium is the causative agent of the cholera disease. The cholera toxin (CT) has been shown to bind specifically to GM1 glycolipids on the membrane surface. This binding of CT to the membrane is the initial step in its endocytosis and has been postulated to cause significant disruption to the membrane structure. In this work, we have carried out a combination of coarse-grain and atomistic simulations to study the binding of CT to a membrane modelled as an asymmetrical GM1-DPPC bilayer. Simulation results indicate that the toxin binds to the membrane through only three of its five B subunits, in effect resulting in a tilted bound configuration. Additionally, the binding of the CT can increase the area per lipid of GM1 leaflet, which in turn can cause the membrane regions interacting with the bound subunits to experience significant bilayer thinning and lipid tail disorder across both the leaflets. PMID:27474868

  20. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming.

    Directory of Open Access Journals (Sweden)

    José F W Sprícigo

    Full Text Available The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM. Four different maturation systems were tested: 1 in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136; 2 in vitro maturation using immature oocytes obtained by ovum pick-up (OPU from unstimulated heifers (IMA; n = 433; 3 in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444; and 4 in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658. A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT, while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P0.05 for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%. MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1 + H]+, which was more highly expressed in MII compared to FSH (P<0.05. The results suggest that although maturation systems improve embryonic development, they do not change the PM composition nor the resistance of bovine oocytes to vitrification.

  1. Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.

    Science.gov (United States)

    Rokitskaya, Tatyana I; Murphy, Michael P; Skulachev, Vladimir P; Antonenko, Yuri N

    2016-10-01

    Many mitochondria-targeted antioxidants (MTAs) that comprise a quinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation are widely used for evaluating the role of mitochondria in pathological processes involving oxidative stress. The potency of MTAs to carry electrons across biological membranes and thereby mediate transmembrane redox processes was unknown. To assess this, we measured the rate of ferricyanide reduction inside liposomes by external ascorbate. Here, we show that MTAs containing ubiquinone (MitoQ series) or plastoquinone (SkQ series) can carry electrons through lipid membranes, with the rate being inversely proportional to the length of the hydrocarbon linker group. Furthermore, this process was stimulated by the hydrophobic anion tetraphenylborate suggesting that permeation of the cationic MTA through the membrane was the rate-limiting step of the process. This conclusion was supported by the observation that the rate of MTA-induced electron transfer was insensitive to nigericin, in contrast to electron transfer mediated by neutral quinone derivatives. These findings indicate that MTAs can be utilized to transfer electrons across lipid membranes and this may be applicable to the study of the electron-transport chain in mitochondria and other natural membranes exhibiting redox processes. PMID:27182824

  2. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, C.; Bitbol, M.; Watts, A. (Oxford Univ. (England))

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  3. Ion transport through chemically induced pores in protein-free phospholipid membranes.

    Science.gov (United States)

    Gurtovenko, Andrey A; Anwar, Jamshed

    2007-11-29

    We address the possibility of being able to induce the trafficking of salt ions and other solutes across cell membranes without the use of specific protein-based transporters or pumps. On the basis of realistic atomic-scale molecular dynamics simulations, we demonstrate that transmembrane ionic leakage can be initiated by chemical means, in this instance through addition of dimethyl sulfoxide (DMSO), a solvent widely used in cell biology. Our results provide compelling evidence that the small amphiphilic solute DMSO is able to induce transient defects (water pores) in membranes and to promote a subsequent diffusive pore-mediated transport of salt ions. The findings are consistent with available experimental data and offer a molecular-level explanation for the experimentally observed activities of DMSO solvent as an efficient penetration enhancer and a cryoprotectant, as well as an analgesic. Our findings suggest that transient pore formation by chemical means could emerge as an important general principle for therapeutics. PMID:17983219

  4. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    International Nuclear Information System (INIS)

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that α-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  5. Interaction between active ruthenium complex [RuCl3(dppb)(VPy)] and phospholipid Langmuir monolayers: Effects on membrane electrical properties

    Science.gov (United States)

    Sandrino, B.; Wrobel, E. C.; Nobre, T. M.; Caseli, L.; Lazaro, S. R.; Júnior, A. C.; Garcia, J. R.; Oliveira, O. N.; Wohnrath, K.

    2016-04-01

    We report on the interaction between mer-[RuCl3(dppb)(VPy)] (dppb = 1,4-bis(diphenylphosphine)butane and VPy = 4-vinylpyridine) (RuVPy) and dipalmitoyl phosphatidyl serine (DPPS), in Langmuir and Langmuir-Blodgett (LB) films. Interaction of RuVPy with DPPS, which predominates in cancer cell membranes, should be weaker than for other phospholipids since RuVPy is less toxic to cancer cells than to healthy cells. Incorporation of RuVPy induced smaller changes in electrochemical properties of LB films of DPPS than for other phospholipids, but the same did not apply to surface pressure isotherms. This calls for caution in establishing correlations between effects from a single property and phenomena on cell membranes.

  6. Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition.

    Science.gov (United States)

    Aston, John E; Peyton, Brent M

    2007-09-01

    The haloalkaliphile Halomonas campisalis, isolated near Soap Lake, Washington, was grown under both aerobic and denitrifying conditions from 0 to 260 g L(-1) NaCl, with optimal growth occurring at 20 and 30 g L(-1) NaCl, respectively. Halomonas campisalis was observed to produce high concentrations of compatible solutes, most notably ectoine (up to 500 mM within the cytoplasm), but hydroxyectoine and glycine betaine were also detected. The types and amounts of compatible solutes produced depended on salinity and specific growth rate, as well as on the terminal electron acceptor available (O(2) or NO(3) (-)). A decrease in ectoine production was observed with NO(3) (-) as compared with O(2) as the terminal electron acceptor. In addition, changes in the phospholipid fatty acid composition were measured with changing salinity. An increase in trans fatty acids was observed in the absence of salinity, and may be a response to membrane instability. Cyclic fatty acids were also observed to increase, both in the absence of salinity, and at very high salinities, indicating cell stress at these conditions. PMID:17651393

  7. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil); Rezende, K.R. [Laboratório de Biofarmácia e Farmacocinética de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO (Brazil); Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2013-09-06

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO{sub 4}/H{sub 2}O{sub 2}, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO{sub 4}/H{sub 2}O{sub 2}, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO{sub 4}/H{sub 2}O{sub 2}. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.

  8. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    International Nuclear Information System (INIS)

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation

  9. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics.

    OpenAIRE

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543-33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) ...

  10. Contribution of the Tyr-1 in Plantaricin149a to Disrupt Phospholipid Model Membranes

    Directory of Open Access Journals (Sweden)

    Georgina Tonarelli

    2013-06-01

    Full Text Available Plantaricin149a (Pln149a is a cationic antimicrobial peptide, which was suggested to cause membrane destabilization via the carpet mechanism. The mode of action proposed to this antimicrobial peptide describes the induction of an amphipathic α-helix from Ala7 to Lys20, while the N-terminus residues remain in a coil conformation after binding. To better investigate this assumption, the purpose of this study was to determine the contributions of the Tyr1 in Pln149a in the binding to model membranes to promote its destabilization. The Tyr to Ser substitution increased the dissociation constant (KD of the antimicrobial peptide from the liposomes (approximately three-fold higher, and decreased the enthalpy of binding to anionic vesicles from −17.2 kcal/mol to −10.2 kcal/mol. The peptide adsorption/incorporation into the negatively charged lipid vesicles was less effective with the Tyr1 substitution and peptide Pln149a perturbed the liposome integrity more than the analog, Pln149S. Taken together, the peptide-lipid interactions that govern the Pln149a antimicrobial activity are found not only in the amphipathic helix, but also in the N-terminus residues, which take part in enthalpic contributions due to the allocation at a lipid-aqueous interface.

  11. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    Science.gov (United States)

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species.

  12. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    Science.gov (United States)

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. PMID:25416794

  13. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    Science.gov (United States)

    Kono, K; Henmi, A; Takagishi, T

    1999-09-21

    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  14. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    Science.gov (United States)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  15. Modulating alignment of membrane proteins in liquid-crystalline and oriented gel media by changing the size and charge of phospholipid bicelles

    Energy Technology Data Exchange (ETDEWEB)

    Lorieau, Justin L.; Maltsev, Alexander S.; Louis, John M.; Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Laboratory of Chemical Physics (United States)

    2013-04-15

    We demonstrate that alignment of a structured peptide or small protein solubilized in mixed phospholipid:detergent micelles or bicelles, when embedded in a compressed gel or liquid crystalline medium, can be altered by either changing the phospholipid aggregate shape, charge, or both together. For the hemagglutinin fusion peptide solubilized in bicelles, we show that bicelle shape and charge do not change its helical hairpin structure but impact its alignment relative to the alignment medium, both in charged compressed acrylamide gel and in liquid crystalline d(GpG). The method can be used to generate sets of residual dipolar couplings that correspond to orthogonal alignment tensors, and holds promise for high-resolution structural refinement and dynamic mapping of membrane proteins.

  16. Influence of lipids with hydroxyl-containing head groups on Fe2+ (Cu2+)/H2O2-mediated transformation of phospholipids in model membranes.

    Science.gov (United States)

    Olshyk, Viktoriya N; Melsitova, Inna V; Yurkova, Irina L

    2014-01-01

    Under condition of ROS formation in lipid membranes, free radical reactions can proceed in both hydrophobic (peroxidation of lipids, POL) and polar (free radical fragmentation) parts of the bilayer. Free-radical fragmentation is typical for the lipids containing a hydroxyl group in β-position with respect to an ester or amide bond. The present study has been undertaken to investigate free-radical transformations of phospholipids in model membranes containing lipids able to undergo fragmentation in their polar part. Liposomes from egg yolk lecithin containing saturated or monounsaturated glycero- and sphingolipids were subjected to the action of an HO* - generating system - Fe(2+)(Cu(2+))/H2O2/Asc, and the POL products were investigated. In parallel with this, the effects of monoacylglycerols and scavengers of reactive species on Fe(2+)(Cu(2+))/H2O2/Asc - mediated free-radical fragmentation of phosphatidylglycerols were studied. Hydroxyl-containing sphingolipids and glycerolipids, which undergo free-radical fragmentation under such conditions, manifested antioxidant properties in the model membranes. In the absence of HO groups in the lipid structure, the effect was either pro-oxidant or neutral. Monoacylglycerols slowed down the rate of both peroxidation in the hydrophobic part and free-radical fragmentation in the hydrophilic part of phospholipid membrane. Scavengers of reactive species inhibited the fragmentation of phosphatidylglycerol substantially. Thus, the ability of hydroxyl-containing lipids to undergo free-radical fragmentation in polar part apparently makes a substantial contribution to the mechanism of their protector action.

  17. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  18. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, S.B.; Madsbad, S.; Høy, Carl-Erik;

    2006-01-01

    analysis that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R-2 = 0.33, P ...Objective Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity....... Design Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  19. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E;

    2006-01-01

    that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, P...OBJECTIVE: Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity....... DESIGN Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  20. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases. PMID:27315139

  1. 21 CFR 573.180 - Anhydrous ammonia.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Anhydrous ammonia. 573.180 Section 573.180 Food... Additive Listing § 573.180 Anhydrous ammonia. (a) The food additive anhydrous ammonia is applied directly...: (1)(i) The food additive anhydrous ammonia is applied as a component of an aqueous premix...

  2. Impact of the β-Lactam Resistance Modifier (−-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Helena Rosado

    2015-07-01

    Full Text Available The polyphenol (−-epicatechin gallate (ECg inserts into the cytoplasmic membrane (CM of methicillin-resistant Staphylococcus aureus (MRSA and reversibly abrogates resistance to β-lactam antibiotics. ECg elicits an increase in MRSA cell size and induces thickened cell walls. As ECg partially delocalizes penicillin-binding protein PBP2 from the septal division site, reduces PBP2 and PBP2a complexation and induces CM remodelling, we examined the impact of ECg membrane intercalation on phospholipid distribution across the CM and determined if ECg affects the equatorial, orthogonal mode of division. The major phospholipids of the staphylococcal CM, lysylphosphatidylglycerol (LPG, phosphatidylglycerol (PG, and cardiolipin (CL, were distributed in highly asymmetric fashion; 95%–97% of LPG was associated with the inner leaflet whereas PG (~90% and CL (~80% were found predominantly in the outer leaflet. ECg elicited small, significant changes in LPG distribution. Atomic force microscopy established that ECg-exposed cells divided in similar fashion to control bacteria, with a thickened band of encircling peptidoglycan representing the most recent plane of cell division, less distinct ribs indicative of previous sites of orthogonal division and concentric rings and “knobbles” representing stages of peptidoglycan remodelling during the cell cycle. Preservation of staphylococcal membrane lipid asymmetry and mode of division in sequential orthogonal planes appear key features of ECg-induced stress.

  3. [ANALYSIS OF ARACHIDONIC ACID RELATIVE CONTENT CHANGES IN ERYTHROCYTES AND PLATELETS PHOSPHOLIPIDS MEMBRANES FEATURES IN CORONARY HEART DISEASE WITH ATRIAL FIBRILLATION PATIENTS].

    Science.gov (United States)

    Lizogub, V G; Zavalska, T V; Merkulova, I O; Bryuzgina, T S

    2015-01-01

    Erythrocytes and platelets phospholipid membranes fatty acid spectrum was detected in coronary heart disease and atrial fibrillation patients and in patients with coronary heart disease without atrial fibrillation. 87 patients were investigated. Significant decrease in the arachidonic acid relative content in coronary heart disease patients compared with healthy individuals was related. As well as a significant decrease in the arachidonic acid relative content in coronary heart disease and atrial fibrillation patients compared with coronary heart disease patients without atrial fibrillation was related too. These dates may indicate that decreasing relative content arachidonic acid can be possible pathogenetic link in the development of arrhythmias.

  4. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    Science.gov (United States)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by

  5. A new set of regulatory molecules in plants: A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton-translocating ATPase in membrane vesicles.

    Science.gov (United States)

    Scherer, G F; Martiny-Baron, G; Stoffel, B

    1988-08-01

    1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, an ether phospholipid from mammals known as platelet-activating factor (PAF), specifically stimulates proton transport in zucchini (Cucurbita pepo L.) microsomes (G.F.E. Scherer, 1985, Biochem. Biophys. Res. Commm. 133, 1160-1167). When plant lipids were analyzed by two-dimensional thin-layer chromatography a lipid was found with chromatographic properties very similar to the PAF (G.F.E. Scherer and B. Stoffel, 1987, Planta, 172, 127-130). This lipid was isolated from zucchini hypocotyls, red beet root, lupin root, maize seedlings and crude soybean phospholipids. It had biological activity similar to that of the PAF, based on phosphorus content, and stimulated the steady-state ΔpH in zucchini hypocotyl microsomes about twofold. Other phospholipids, monoglyceride, diglyceride, triglyceride, oleic acid, phorbol ester, and 1-O-alkylglycerol did not stimulate proton transport. When microsomes were washed the PAF was ineffective but when soluble protein was added the PAF stimulation of H(+) transport was reconstituted. The soluble protein responsible for the PAF-dependent stimulation of transport activity could be partially purified by diethylaminoethyl Sephacel column chromatography. In the same fractions where the PAF-dependent transport-stimulatory protien was found, a protein kinase was active. This protein kinase was stimulated twofold either by the PAF or by Ca(2+). When Ca(2+) was present the PAF did not stimulate protein-kinase activity. When either the PAF, protein kinase, or both were added to membranes isolated on a linear sucrose gradient, ATPase activity was stimulated up to 30%. Comparison with marker enzymes indicated the possibility that tonoplast and plasma-membrane H(+)-ATPase might be stimulated by the PAF and protein kinase. We speculate that a PAF-dependent protein kinase is involved in the regulation of proton transport in plants in vitro and in vivo.

  6. Interaction of an odorant lactone with model phospholipid bilayers and its strong fluidizing action in yeast membrane.

    OpenAIRE

    Aguedo, Mario; Beney, Laurent; Wache, Yves; Belin, Jean-Marc

    2002-01-01

    Some odorant lactones are naturally present in fruits or in fermented products; they can also be used as food additives and can be produced by microorganisms at the industrial scale by biotechnological processes. Gamma-decalactone was previously shown to have antimicrobial properties. We determined by infrared spectroscopy measurements that this compound rapidly diffused into model phospholipid bilayers (within 2 min), modifying the general physical state of a dimyristoyl-L-alpha-phosphatidyl...

  7. 31P-NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver

    NARCIS (Netherlands)

    Kruijff, B. de; Rietveld, A.; Cullis, P.R.

    1980-01-01

    1. 1. The 36.4 and 81 MHz 31P-NMR spectra of isolated rat liver microsomes, rat liver slices and perfused rat liver have been recorded in the 4–40°C temperature range. 2. 2. In isolated microsomes at 37°C the majority of the phospholipids undergo isotropic motion, whereas at 4°C most of the phospho

  8. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme

    OpenAIRE

    Xiaoxu Li; Lianghui Gao; Weihai Fang

    2016-01-01

    In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD) force field is developed for phospholipids. The coarse-grained (CG) models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on...

  9. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    Science.gov (United States)

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. PMID:26907692

  10. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Pashynska, Vlada, E-mail: vlada@vl.kharkov.ua [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Stepanian, Stepan [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Gömöry, Agnes; Vekey, Karoly [Institute of Organic Chemistry of Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudosok korutja, 2, Budapest H-1117 (Hungary); Adamowicz, Ludwik [University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721 (United States)

    2015-07-09

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms.

  11. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    International Nuclear Information System (INIS)

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms

  12. Dicarboxylic phospholipids and irradiated biomembranes

    International Nuclear Information System (INIS)

    It was decided to study the effects of ionizing radiations on biomembranes, with special reference to erythrocytes and liver microsomes representing two kinds of membrane very common in nature. Diacid phospholipids were observed at these membranes and the results are reported in part one of this work. It appeared essential to examine as far as possible the metabolism, in vitro and in animals, of these diacids and to find out whether certain harmful effects of radiations on the proteins (membrane permeability changes and enzyme inactivation) could be due to the action of these newly formed compounds. The study of acid compounds formed under irradiation was limited to nonanal-9-oic acid and azelaic acid. Part two deals with the incorporation of acid and diacid compounds into lipids and the effects of diacid phospholipids on the membrane permeability. A chapter is devoted to the changes in certain enzyme activities brought about by diacid phospholipids

  13. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin.

    Science.gov (United States)

    Chaves-Moreira, Daniele; Souza, Fernanda N; Fogaça, Rosalvo T H; Mangili, Oldemir C; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Chaim, Olga M; Veiga, Silvio S

    2011-09-01

    -mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.

  14. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  15. Vaccenic and elaidic acid modify plasma and splenocyte membrane phospholipids and mitogen-stimulated cytokine production in obese insulin resistant JCR: LA-cp rats.

    Science.gov (United States)

    Ruth, Megan R; Wang, Ye; Yu, Howe-Ming; Goruk, Susan; Reaney, Martin J; Proctor, Spencer D; Vine, Donna F; Field, Catherine J

    2010-02-01

    This study assessed the long-term effects of dietary vaccenic acid (VA) and elaidic acid (EA) on plasma and splenocyte phospholipid (PL) composition and related changes in inflammation and splenocyte phenotypes and cytokine responses in obese/insulin resistant JCR:LA-cp rats. Relative to lean control (Ctl), obese Ctl rats had higher serum haptoglobin and impaired T-cell-stimulated cytokine responses. VA and EA diets improved T-cell-stimulated cytokine production; but, only VA normalized serum haptoglobin. However, EA- and VA-fed rats had enhanced LPS-stimulated cytokine responses. The changes elicited by VA were likely due changes in essential fatty acid composition in PL; whereas EA-induced changes may due to direct incorporation into membrane PL.

  16. Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid langmuir monolayers and AOT reverse micelles.

    Science.gov (United States)

    Sostarecz, Audra G; Gaidamauskas, Ernestas; Distin, Steve; Bonetti, Sandra J; Levinger, Nancy E; Crans, Debbie C

    2014-04-22

    We explore the interactions of V(III) -, V(IV) -, and V(V) -2,6-pyridinedicarboxylic acid (dipic) complexes with model membrane systems and whether these interactions correlate with the blood-glucose-lowering effects of these compounds on STZ-induced diabetic rats. Two model systems, dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers and AOT (sodium bis(2-ethylhexyl)sulfosuccinate) reverse micelles present controlled environments for the systematic study of these vanadium complexes interacting with self-assembled lipids. Results from the Langmuir monolayer studies show that vanadium complexes in all three oxidation states interact with the DPPC monolayer; the V(III) -phospholipid interactions result in a slight decrease in DPPC molecular area, whereas V(IV) and V(V) -phospholipid interactions appear to increase the DPPC molecular area, an observation consistent with penetration into the interface of this complex. Investigations also examined the interactions of V(III) - and V(IV) -dipic complexes with polar interfaces in AOT reverse micelles. Electron paramagnetic resonance spectroscopic studies of V(IV) complexes in reverse micelles indicate that the neutral and smaller 1:1 V(IV) -dipic complex penetrates the interface, whereas the larger 1:2 V(IV) complex does not. UV/Vis spectroscopy studies of the anionic V(III) -dipic complex show only minor interactions. These results are in contrast to behavior of the V(V) -dipic complex, [VO2 (dipic)](-) , which penetrates the AOT/isooctane reverse micellar interface. These model membrane studies indicate that V(III) -, V(IV) -, and V(V) -dipic complexes interact with and penetrate the lipid interfaces differently, an effect that agrees with the compounds' efficacy at lowering elevated blood glucose levels in diabetic rats. PMID:24615733

  17. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning1

    Institute of Scientific and Technical Information of China (English)

    Holger A SCHEIDT; Daniel HUSTER

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological impor-tance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  18. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization.

    Science.gov (United States)

    Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Kurasawa, James H; Sarafanov, Andrey G; Chambost, Herve; Vasil'ev, Sergey A; Demina, Irina A; Ataullakhanov, Fazly I; Alessi, Marie-Christine; Panteleev, Mikhail A

    2016-06-01

    Binding of coagulation factors X (fX) and Xa (fXa) to activated platelets is required for the formation of membrane-dependent enzymatic complexes of intrinsic tenase and prothrombinase. We carried out an in-depth characterization of fX/fXa binding to phospholipids and gel-filtered, thrombin-activated platelets. Flow cytometry, surface plasmon resonance, and computational modeling were used to investigate interactions of fX/fXa with the membranes. Confocal microscopy was employed to study fXa binding to platelet thrombi formed in flowing whole blood under arterial conditions. Binding of fX/fXa to either vesicles or procoagulant platelets did not follow a traditional one-step reversible binding model. Their dissociation was a two-step process resulting in a plateau that was up to 10-fold greater than the saturation value observed in the association experiments. Computational modeling and experimental evidence suggested that this was caused by a combination of two-step association (mainly for fX) and multimerization on the membrane (mainly for fXa). Importantly, fX formed multimers with fXa, thereby improving its retention. The same binding/dissociation hysteresis was observed for annexin V known to form trimers on the membranes. Experiments with platelets from gray syndrome patients showed that alpha-granular factor Va provided an additional high-affinity binding site for fXa that did not affect the hysteresis. Confocal microscopy observation of fXa binding to platelet thrombi in a flow chamber and its wash-out confirmed that this phenomenon persisted under physiologically relevant conditions. This suggests its possible role of "locking" coagulation factors on the membrane and preventing their inhibition in plasma and removal from thrombi by flow.

  19. 13C-labeled 18 : 2n-6 recovered in brush border membrane phospholipids short time after administration

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Høy, Carl-Erik

    2004-01-01

    administered intragastrically a bolus of ML*M, M*LM*, L*L*L* or M*M*M* (* = C-13- labeled fatty acid). Rats were decapitated 2 hours and 6 hours later, and the fatty acid composition and C-13-enrichment of BBM-PC and -PE were determined. C-13-enriched 18:2n-6 was observed in BBM-PC after intragastric...... administration of L*L*L* and ML*M, whereas no C-13-labeled fatty acids were recovered after administration of M*LM* or M*M*M*. Interestingly, no C-13-labeled fatty acids were detected in the BBM-PE fraction. This could be due to a lower turnover of PE than PC and to a different ratio of saturated and unsaturated...... fatty acids in the two phospholipid pools. Minor effects on BBM-PC and BBM-PE fatty acid profiles (mole-%) were observed. The present study demonstrated for the first time incorporation of C-13-labeled 18:2n-6 into BBM-PC 2 hours and 6 hours after intragastric administration of L*L*L* or ML...

  20. Protein-mediated inward translocation of phospholipids occurs in both the apical and basolateral plasma membrane domains of epithelial cells

    NARCIS (Netherlands)

    Pomorski, T.; Herrmann, A.; Müller, P.; van Meer, G.F.B.P.; Burger, K.N.J.

    1999-01-01

    The translocation of spin-labeled analogues of phosphatidylcholine (4- doxylpentanoyl-PC, SLPC), phosphatidylethanolamine (SL-PE), phosphatidylserine (SL-PS), and sphingomyelin (SL-SM) from the outer to the inner leaflet of the plasma membrane bilayer was investigated in dog kidney MDCK II and human

  1. Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes.

    Directory of Open Access Journals (Sweden)

    Jorge L Porfido

    Full Text Available BACKGROUND: Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs. CONCLUSIONS/SIGNIFICANCE: This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.

  2. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Tomcala, Ales; Sørensen, Jesper G;

    2008-01-01

    and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance...... acclimation was associated with the increase in proportion of ethanolamine (from 52.7% to 58.5% in 25 degrees C-acclimated versus 15 degrees C-acclimated flies, respectively) at the expense of choline in GPLs. Relatively small, but statistically significant changes in lipid molecular composition were observed...... acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster. Udgivelsesdato: 2008-Mar...

  3. Nonlinear Optical Properties of Fluorescent Dyes Allow for Accurate Determination of Their Molecular Orientations in Phospholipid Membranes.

    Science.gov (United States)

    Timr, Štěpán; Brabec, Jiří; Bondar, Alexey; Ryba, Tomáš; Železný, Miloš; Lazar, Josef; Jungwirth, Pavel

    2015-07-30

    Several methods based on single- and two-photon fluorescence detected linear dichroism have recently been used to determine the orientational distributions of fluorescent dyes in lipid membranes. However, these determinations relied on simplified descriptions of nonlinear anisotropic properties of the dye molecules, using a transition dipole-moment-like vector instead of an absorptivity tensor. To investigate the validity of the vector approximation, we have now carried out a combination of computer simulations and polarization microscopy experiments on two representative fluorescent dyes (DiI and F2N12S) embedded in aqueous phosphatidylcholine bilayers. Our results indicate that a simplified vector-like treatment of the two-photon transition tensor is applicable for molecular geometries sampled in the membrane at ambient conditions. Furthermore, our results allow evaluation of several distinct polarization microscopy techniques. In combination, our results point to a robust and accurate experimental and computational treatment of orientational distributions of DiI, F2N12S, and related dyes (including Cy3, Cy5, and others), with implications to monitoring physiologically relevant processes in cellular membranes in a novel way. PMID:26146848

  4. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection.

    Science.gov (United States)

    Stukes, Sabriya; Coelho, Carolina; Rivera, Johanna; Jedlicka, Anne E; Hajjar, Katherine A; Casadevall, Arturo

    2016-08-15

    Cryptococcus neoformans is a fungal pathogen with a unique intracellular pathogenic strategy that includes nonlytic exocytosis, a phenomenon whereby fungal cells are expunged from macrophages without lysing the host cell. The exact mechanism and specific proteins involved in this process have yet to be completely defined. Using murine macrophages deficient in the membrane phospholipid binding protein, annexin A2 (ANXA2), we observed a significant decrease in both phagocytosis of yeast cells and the frequency of nonlytic exocytosis. Cryptococcal cells isolated from Anxa2-deficient (Anxa2(-/-)) bone marrow-derived macrophages and lung parenchyma displayed significantly larger capsules than those isolated from wild-type macrophages and tissues. Concomitantly, we observed significant differences in the amount of reactive oxygen species produced between Anxa2(-/-) and Anxa2(+/+) macrophages. Despite comparable fungal burden, Anxa2(-/-) mice died more rapidly than wild-type mice when infected with C. neoformans, and Anxa2(-/-) mice exhibited enhanced inflammatory responses, suggesting that the reduced survival reflected greater immune-mediated damage. Together, these findings suggest a role for ANXA2 in the control of cryptococcal infection, macrophage function, and fungal morphology. PMID:27371724

  5. Effects of hypothermic liquid storage and cryopreservation on basal and induced plasma membrane phospholipid disorder and acrosome exocytosis in boar spermatozoa.

    Science.gov (United States)

    Guthrie, H D; Welch, G R

    2005-01-01

    Flow cytometry was utilised to determine whether short-term (Day 1) or long-term hypothermic liquid storage (Day 5), or cryopreservation of boar spermatozoa (1) caused changes in plasma membrane phospholipid disorder (MPLD) and acrosome exocytosis (AE), indicative of an advanced stage of capacitation or acrosome status, and (2) facilitated or inhibited the induction of capacitation and the acrosome reaction. Merocyanine with Yo-Pro-1 and peanut agglutinin-fluorescein isothiocyanate with propidium iodide were used to identify MPLD and AE, respectively, in viable spermatozoa. The incidence of basal sperm MPLD and AE in fresh semen was very low (1.1 and 2.2%, respectively) and was increased (P semen (3-8%). Compared to no bicarbonate, incubation with bicarbonate increased MPLD, but the response was greatest (P semen than for Day 1 (45%) and Day 5 (57%) semen. In summary, hypothermic liquid storage and cryopreservation of boar spermatozoa did not advance capacitation or acrosome status in viable spermatozoa, but did alter their responses to induction of capacitation and the acrosome reaction. PMID:15899159

  6. Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues.

    Science.gov (United States)

    Nomikos, Michail; Mulgrew-Nesbitt, Anna; Pallavi, Payal; Mihalyne, Gyongyi; Zaitseva, Irina; Swann, Karl; Lai, F Anthony; Murray, Diana; McLaughlin, Stuart

    2007-06-01

    Phospholipase C-zeta (PLC-zeta) is a sperm-specific enzyme that initiates the Ca2+ oscillations in mammalian eggs that activate embryo development. It shares considerable sequence homology with PLC-delta1, but lacks the PH domain that anchors PLC-delta1 to phosphatidylinositol 4,5-bisphosphate, PIP2. Thus it is unclear how PLC-zeta interacts with membranes. The linker region between the X and Y catalytic domains of PLC-zeta, however, contains a cluster of basic residues not present in PLC-delta1. Application of electrostatic theory to a homology model of PLC-zeta suggests this basic cluster could interact with acidic lipids. We measured the binding of catalytically competent mouse PLC-zeta to phospholipid vesicles: for 2:1 phosphatidylcholine/phosphatidylserine (PC/PS) vesicles, the molar partition coefficient, K, is too weak to be of physiological significance. Incorporating 1% PIP2 into the 2:1 PC/PS vesicles increases K about 10-fold, to 5x10(3) M-1, a biologically relevant value. Expressed fragments corresponding to the PLC-zeta X-Y linker region also bind with higher affinity to polyvalent than monovalent phosphoinositides on nitrocellulose filters. A peptide corresponding to the basic cluster (charge=+7) within the linker region, PLC-zeta-(374-385), binds to PC/PS vesicles with higher affinity than PLC-zeta, but its binding is less sensitive to incorporating PIP2. The acidic residues flanking this basic cluster in PLC-zeta may account for both these phenomena. FRET experiments suggest the basic cluster could not only anchor the protein to the membrane, but also enhance the local concentration of PIP2 adjacent to the catalytic domain.

  7. Connexin channels and phospholipids: association and modulation

    Directory of Open Access Journals (Sweden)

    Harris Andrew L

    2009-08-01

    Full Text Available Abstract Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion

  8. Herpes simplex virus 1 induces de novo phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Esther [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Oliveira, Anna Paula de; Tobler, Kurt [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Sonda, Sabrina [Institute of Parasitology, University of Zuerich (Switzerland); Kaech, Andres [Center for Microscopy and Image Analysis, University of Zuerich (Switzerland); Lucas, Miriam S. [Electron Microscopy ETH Zuerich (EMEZ), Swiss Federal Institute of Technology, Zuerich (Switzerland); Ackermann, Mathias [Electron microscopy, Institute of Virology, University of Zuerich (Switzerland); Wild, Peter, E-mail: pewild@access.uzh.ch [Electron Microscopy, Institute of Veterinary Anatomy, University of Zuerich (Switzerland)

    2012-08-01

    Herpes simplex virus type 1 capsids bud at nuclear membranes and Golgi membranes acquiring an envelope composed of phospholipids. Hence, we measured incorporation of phospholipid precursors into these membranes, and quantified changes in size of cellular compartments by morphometric analysis. Incorporation of [{sup 3}H]-choline into both nuclear and cytoplasmic membranes was significantly enhanced upon infection. [{sup 3}H]-choline was also part of isolated virions even grown in the presence of brefeldin A. Nuclei expanded early in infection. The Golgi complex and vacuoles increased substantially whereas the endoplasmic reticulum enlarged only temporarily. The data suggest that HSV-1 stimulates phospholipid synthesis, and that de novo synthesized phospholipids are inserted into nuclear and cytoplasmic membranes to i) maintain membrane integrity in the course of nuclear and cellular expansion, ii) to supply membrane constituents for envelopment of capsids by budding at nuclear membranes and Golgi membranes, and iii) to provide membranes for formation of transport vacuoles.

  9. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  10. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  11. Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom.

    Science.gov (United States)

    Wille, Ana Carolina Martins; Chaves-Moreira, Daniele; Trevisan-Silva, Dilza; Magnoni, Mariana Gabriel; Boia-Ferreira, Marianna; Gremski, Luiza Helena; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches

    2013-06-01

    The mechanism through which brown spiders (Loxosceles genus) cause dermonecrosis, dysregulated inflammatory responses, hemolysis and platelet aggregation, which are effects reported following spider bites, is currently attributed to the presence of phospholipase-D in the venom. In the present investigation, through two-dimensional immunoblotting, we observed immunological cross-reactivity for at least 25 spots in crude Loxosceles intermedia venom, indicating high expression levels for different isoforms of phospholipase-D. Using a recombinant phospholipase-D from the venom gland of L. intermedia (LiRecDT1) in phospholipid-degrading kinetic experiments, we determined that this phospholipase-D mainly hydrolyzes synthetic sphingomyelin in a time-dependent manner, generating ceramide 1-phosphate plus choline, as well as lysophosphatidylcholine, generating lysophosphatidic acid plus choline, but exhibits little activity against phosphatidylcholine. Through immunofluorescence assays with antibodies against LiRecDT1 and using a recombinant GFP-LiRecDT1 fusion protein, we observed direct binding of LiRecDT1 to the membrane of B16-F10 cells. We determined that LiRecDT1 hydrolyzes phospholipids in detergent extracts and from ghosts of B16-F10 cells, generating choline, indicating that the enzyme can access and modulate and has activity against membrane phospholipids. Additionally, using Fluo-4, a calcium-sensitive fluorophore, it was shown that treatment of cells with phospholipase-D induced an increase in the calcium concentration in the cytoplasm, but without altering viability or causing damage to cells. Finally, based on the known endogenous activity of phospholipase-D as an inducer of cell proliferation and the fact that LiRecDT1 binds to the cell surface, hydrolyzing phospholipids to generate bioactive lipids, we employed LiRecDT1 as an exogenous source of phospholipase-D in B16-F10 cells. Treatment of the cells was effective in increasing their proliferation in a

  12. Transport of anhydrous ammoniac - risk assessment

    International Nuclear Information System (INIS)

    This risk analysis of anhydrous ammonia transport in France was done within a study initiated by the Department of dangerous goods of the Ministry of transport. The study deals with the road and rail transportation of bulk anhydrous ammonia. After analysis of transport system and traffic, the transport accident risks are estimated, as well as their distribution on the French territory. Finally after a synthesis of results, a number of safety measures to be undertaken were identified. This is a joint study of SMC-CEPN, with a specific role of SEMA-METRA-CONSEIL concerning the traffic frequency, and the center for risk evaluation concerning nuclear safety

  13. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    Science.gov (United States)

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight squalamine, but material with molecular weight >/=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher squalamine/phospholipid ratios, these

  14. Phospholipid membrane-interaction of a peptide from S4 segment of KvAP K(+) channel and the influence of the positive charges and an identified heptad repeat in its interaction with a S3 peptide.

    Science.gov (United States)

    Verma, Richa; Ghosh, Jimut Kanti

    2011-06-01

    In order to examine the ability of S3 and S4 segments of a Kv channel to interact with each other, two wild type short peptides derived from the S3 and S4 segments of KvAP channel were synthesized. Additionally, to evaluate the role of positive charges and an identified heptad repeat in the S4 segment, two S4 mutants of the same size as the S4 peptide, one with substitution of two leucine residues in the heptad repeat sequence by two alanine residues and in the other two arginine residues replaced by two glutamines residues were synthesized. Our results show that only the wild type S4 peptide, but not its mutants, self-assembled and permeabilized negatively charged phospholipid vesicles. The S3 peptide showed lesser affinity toward the same kind of lipid vesicles and localized onto its surface. However, the S3 peptide interacted only with S4 wild type peptide, but not with S4 mutants, and altered its localization onto the phospholipid membrane with increased resistance against the proteolytic enzyme, proteinase-k, in the presence of the S4 peptide. The results demonstrate that the selected, synthetic S3 and S4 segments possess the required amino acid sequences to interact with each other and show that the positive charges and the identified heptad repeat in S4 contribute to its assembly and interaction with S3 segment.

  15. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  16. Spectrin-phospholipid interaction. A monolayer study

    NARCIS (Netherlands)

    Mombers, C.; Gier, J. de; Demel, R.A.; Deenen, L.L.M. van

    1980-01-01

    1.(1) The interaction of synthetic and natural phospholipids with spectrin, purified from human erythrocyte membranes, was studied using the monolayer technique at constant surface pressure. Spectrin penetration into the lipid monolayer was recorded as the rate of surface area increase on a two-comp

  17. NQR frequencies of anhydrous carbamazepine polymorphic phases

    CERN Document Server

    Bonin, C J; Pusiol, D J

    2010-01-01

    In this work we propose the Nuclear Quadrupole Resonance (NQR) technique as an analytical method suitable for polymorphism detection in active parts (or active principles) of pharmaceuticals with high pharmacological risk. Samples of powder carbamazepine (5H-dibenz(b,f)-azepine-5-carboxamide) are studied. In its anhydrous state, this compound presents at least three different polymorphic forms: form III, the commercial one, form II, and form I. Of these, only form III possesses desirable therapeutic effects. By using the NQR technique, it was possible to characterize two of the three polymorphic phases (I and III) for anhydrous carbamazepine in few minutes at room temperature, detecting the characteristic frequencies of 14N nuclei (I=1) present in their chemical composition and in the frequency range 2.820-3.935 MHz. For form II, characteristic lines were not detected within this range of frequencies. The lines detected for form III are centered at the frequencies \

  18. Hepatic Bel-7402 Cell Proliferation on Different Phospholipid Surfaces

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Phospholipids are believed to be important biomaterials.However, limited information is available on their cytocompatibilities.The objective of this study is to evaluate the effects of different phospholipids on the proliferation of hepatic Bel-7402 cells by comparing the adhesion, viability and proliferation of Bel-7402 cells cultured on different phospholipid surfaces.The cell adhesion, determined by counting the number of adhered cells to the surface, indicated that the cell adhesion was enhanced on charged phospolipid membranes.The cell viability evaluated by MTT[3 (4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium-bromide] showed that cells cultured on charged phospholipids have greater viability than those cultured on the control, while cells cultured on neutral phospholipids showed lower viability.The cell cycle analysis using flow cytometry demonstrated that S phase entry increased on charged phospholipids, while S phase entry decreased on neutral phospholipids.The results suggested that charged phospholipids, especially positively charged phospholipids, show better cytocompatibilities than neutral phospholipids to hepatic Bel-7402 cell.

  19. The use of anhydrous ammonia for bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Zytner, R.G.; Hallman, M.; Gimenez, B.F.; Jennings, R.; Leek, K. [Guelph Univ., ON (Canada). Faculty of Graduate Studies

    2002-07-01

    Soils contaminated with hydrocarbons can be effectively treated using bioventing remediation technology, an ideal method for removing residual contamination left by soil vapour extraction (SVE). Bioventing uses low or intermitted air flow rates to produce oxygen-rich conditions in the vadose zone, thereby promoting the formation of micro-organisms that can mineralize the hydrocarbons if enough nutrients are present. There is concern regarding the use of nutrients (the addition of nitrogen) to the subsurface because current applications methods cannot uniformly disperse nitrogen throughout the entire subsurface. Two research studies are being conducted using gasoline contaminated soil to address this concern. The first phase of the study focuses on how to best deliver nitrogen to the subsurface. Injecting anhydrous ammonia into the contaminated surface was one suggestion for stimulating the growth of hydrocarbon degraders. SVE extraction well models indicated this was an effective and safe way to disperse nitrogen. The second phase of the study involved the use of respirometers to compare total petroleum hydrocarbon (TPH) degradation with nitrogen additions in the form of NH{sub 4}Cl or anhydrous ammonia. The respirometers were run for about 1 month after which time it was determined that the use of anhydrous ammonia is an effective method to promote bioventing.

  20. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    OpenAIRE

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulat...

  1. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport.

    Science.gov (United States)

    Coleman, Jonathan A; Quazi, Faraz; Molday, Robert S

    2013-03-01

    Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  2. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  3. THE INTEGRITY OF THE α-HELICAL DOMAIN OF INTESTINAL FATTY ACID BINDING PROTEIN IS ESSENTIAL FOR THE COLLISION-MEDIATED TRANSFER OF FATTY ACIDS TO PHOSPHOLIPID MEMBRANES

    OpenAIRE

    Franchini, G. R.; Storch, J.; Corsico, B.

    2008-01-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane-collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structu...

  4. An element with a liquid, anhydrous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nankay, S.; Indzima, T.; Toyeguti, Y.

    1982-09-01

    A liquid anhydrous element and a heat treated Mn0/sub 2/ cathode, to which sodium silicate in the form of Na/sub 2/0 with 5/2Si0/sub 2/ liquid glass is added in a volume of 3 grams per 100 grams of Mn0/sub 2/ is used in the element with a light metal, lithium type anode. Moreover 4.5 grams of acetylene soot is added to the active cathode mass. A fluorine bearing resin is used as the binder. The cathode stores well.

  5. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    Science.gov (United States)

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  6. The integrity of the alpha-helical domain of intestinal fatty acid binding protein is essential for the collision-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Franchini, G R; Storch, J; Corsico, B

    2008-04-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the alphaI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the 'body' (ligand binding domain) of IFABP and the alphaI-helix of LFABP (alpha(I)LbetaIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from alpha(I)LbetaIFABP compared to IFABP. The results indicate that the alphaI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the alphaII-helix in the formation of a protein-membrane "collisional complex". Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further support the importance of the alphaI helix of IFABP in its physical interaction with membranes. PMID:18284926

  7. 46 CFR 98.25-5 - How anhydrous ammonia may be carried.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false How anhydrous ammonia may be carried. 98.25-5 Section 98... Anhydrous Ammonia in Bulk § 98.25-5 How anhydrous ammonia may be carried. (a) Anhydrous ammonia shall be..., except as otherwise provided in paragraph (b) of this section. (b) When anhydrous ammonia is to...

  8. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    Science.gov (United States)

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  9. The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Córsico, Betina; Liou, Heng Ling; Storch, Judith

    2004-03-30

    Intestinal fatty acid binding protein (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms for the transfer of fatty acids (FAs) to acceptor membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP, transfer occurs by diffusion through the aqueous phase. Earlier, we had shown that the helical domain of IFABP is critical in determining its collisional FA transfer mechanism. In the study presented here, we have engineered a pair of chimeric proteins, one with the "body" (ligand binding domain) of IFABP and the alpha-helical region of LFABP (alphaLbetaIFABP) and the other with the ligand binding pocket of LFABP and the helical domain of IFABP (alphaIbetaLFABP). The objective of this work was to determine whether the change in the alpha-helical domain of each FABP would alter the rate and mechanism of transfer of FA from the chimeric proteins in comparison with those of the wild-type proteins. The fatty acid transfer properties of the FABP chimeras were examined using a fluorescence resonance transfer assay. The results showed a significant modification of the absolute rate of FA transfer from the chimeric proteins compared to that of the wild type, indicating that the slower rate of FA transfer observed for wild-type LFABP relative to that of wild-type IFABP is, in part, determined by the helical domain of the proteins. In addition to these quantitative changes, it was of great interest to observe that the apparent mechanism of FA transfer also changed when the alpha-helical domain was exchanged, with transfer from alphaLbetaIFABP occurring by aqueous diffusion and transfer from alphaIbetaLFABP occurring via protein-membrane collisional interactions. These results demonstrate that the alpha-helical region of LFABP is responsible for its diffusional mechanism of fatty acid transfer to membranes. PMID:15035630

  10. Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jørgensen, Kent

    2005-01-01

    A new and unnatural type of lipid analogs with the phosphocholine and phosphoglycerol head groups linked to the C-2 position of the glycerol moiety have been synthesized and the thermodynamic lipid membrane behavior has been investigated using differential scanning calorimetry. From the heat capa...... results also suggest new approaches to rationally design liposomal drug carries that can undergo a triggered activation in diseased tissue by overexpressed PLA2....

  11. Interaction of isopropylthioxanthone with phospholipid liposomes.

    Science.gov (United States)

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto

    2007-04-01

    Isopropylthioxanthone (ITX) is a highly lipophilic molecule which can be released in foods and beverages from the packages, where it is present as photoinitiator of inks in printing processes. Recently it was found in babies milk, and its toxicity cannot be excluded. The structure of the molecule suggests a possible strong interaction with the lipid moiety of biological membranes, and this is the first study of its effects on phospholipid organization, using differential scanning calorimetry (DSC) and spin labelling techniques. The data obtained with multilamellar liposomes of saturated phospholipids of different length, with and without cholesterol, point out that the molecule changes the lipid structure; in particular, in the gel state, behaving like a disordering agent it increases the mobility of the bilayer, while, in the fluid state, tends to rigidify the membrane, in a cholesterol like way. This behavior supports the hypothesis that ITX experiences a relocation process when the lipid matrix passes from the gel to the fluid state.

  12. Surfactant phospholipid metabolism.

    Science.gov (United States)

    Agassandian, Marianna; Mallampalli, Rama K

    2013-03-01

    Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23026158

  13. Crystallization kinetics of citric acid anhydrate

    Science.gov (United States)

    Nemdili, L.; Koutchoukali, O.; Bouhelassa, M.; Seidel, J.; Mameri, F.; Ulrich, J.

    2016-10-01

    The solubility curve, metastable zone width (MSZW) and Crystallization kinetics (nucleation and growth) were measured and estimated during batch crystallization of citric acid anhydrate (CAA). The solubility of citric acid in pure water was measured over the temperature range from 15 to 60 °C using a refractometer. The experimental data were correlated by the modified Apelblat equation. The MSZW was determined under four cooling rates for different citric acid concentrations by means of an ultrasonic technique. The primary nucleation kinetics of CAA was calculated based on these data and the polythermal method of Nyvlt. It was found that the MSZW obtained is in good agreement with literature. Crystal growth rates were calculated by two methods. The first one used seeded isothermal growth experiments (desupersaturation curve) and the derivatives method of Garside. The second method used the measurement of the dimension change of a single crystal in a microscopic cell at different supersaturation levels.

  14. Biosynthesis of ether-phospholipids including plasmalogens, peroxisomes and human disease: new insights into an old problem

    NARCIS (Netherlands)

    R.J.A. Wanders; P. Brites

    2010-01-01

    Ether-phospholipids represent an important subclass of phospholipids in animal cell membranes characterized by the presence of an ether bond at the sn-I position and the enrichment of PUFAs at the sn-2 position. Of the different ether-phospholipids, plasmalogens are the most abundant form and their

  15. Annexin-Phospholipid Interactions. Functional Implications

    Directory of Open Access Journals (Sweden)

    Javier Turnay

    2013-01-01

    Full Text Available Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6 homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.

  16. Molecular phospholipid films on solid supports

    DEFF Research Database (Denmark)

    Czolkos, Ilja; Jesorka, Aldo; Orwar, Owe

    2011-01-01

    Phospholipid membranes are versatile structures for mimicking biological surfaces. Bilayer and monolayer membranes can be formed on solid supports, leading to enhanced stability and accessibility of the biomimetic molecular film. This has facilitated functional studies of membrane proteins...... and aided the development of membrane-based applications in, for example, biosensing, self-assembled reaction kinetics and catalysis. Assembly and preparation of lipid films on supporting surfaces is a challenging engineering task with the goal of fabricating mechanically, chemically and thermodynamically...... stable lipid membranes. In this review, the current state of the art of molecularly thin lipid layer fabrication is presented with an emphasis on support materials, film formation mechanisms, characterisation methods, and applications....

  17. Control of phospholipid flip-flop by transmembrane peptides

    Energy Technology Data Exchange (ETDEWEB)

    Kaihara, Masanori; Nakao, Hiroyuki; Yokoyama, Hirokazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Endo, Hitoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ishihama, Yasushi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Handa, Tetsurou [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minami-Tamagaki-cho, Suzuka, Mie 513-8670 (Japan); Nakano, Minoru, E-mail: mnakano@pha.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2013-06-20

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity.

  18. Control of phospholipid flip-flop by transmembrane peptides

    International Nuclear Information System (INIS)

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity

  19. The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane.

    Science.gov (United States)

    Härtel, H; Essigmann, B; Lokstein, H; Hoffmann-Benning, S; Peters-Kottig, M; Benning, C

    1998-12-01

    The pho1 mutant of Arabidopsis has been shown to respond to the phosphate deficiency in the leaves by decreasing the amount of phosphatidylglycerol (PG). PG is thought to be of crucial importance for the organization and function of the thylakoid membrane. This prompted us to ask what the consequences of the PG deficiency may be in the pho1 mutant when grown under low or high light. While in the wild-type, the lipid pattern was almost insensitive to changes in the growth light, PG was reduced to 45% under low light in the mutant, and it decreased further to 35% under high light. Concomitantly, sulfoquinovosyl diacylglycerol (SQDG) and to a lesser extent digalactosyl diacylglycerol (DGDG) increased. The SQDG increase correlated with increased amounts of the SQD1 protein, an indicator for an actively mediated process. Despite of alterations in the ultrastructure, mutant thylakoids showed virtually no effects on photosynthetic electron transfer, O2 evolution and excitation energy allocation to the reaction centers. Our results support the idea that PG deficiency can at least partially be compensated for by the anionic lipid SQDG and the not charged lipid DGDG. This seems to be an important strategy to maintain an optimal thylakoid lipid milieu for vital processes, such as photosynthesis, under a restricted phosphate availability. PMID:9858733

  20. The GacS/A-RsmA Signal Transduction Pathway Controls the Synthesis of Alkylresorcinol Lipids that Replace Membrane Phospholipids during Encystment of Azotobacter vinelandii SW136

    Science.gov (United States)

    Romero, Yanet; Guzmán, Josefina; Moreno, Soledad; Cocotl-Yañez, Miguel; Vences-Guzmán, Miguel Ángel; Castañeda, Miguel; Espín, Guadalupe; Segura, Daniel

    2016-01-01

    Azotobacter vinelandii is a soil bacterium that undergoes a differentiation process that forms cysts resistant to desiccation. During encystment, a family of alkylresorcinols lipids (ARs) are synthesized and become part of the membrane and are also components of the outer layer covering the cyst, where they play a structural role. The synthesis of ARs in A. vinelandii has been shown to occur by the activity of enzymes encoded in the arsABCD operon. The expression of this operon is activated by ArpR, a LysR-type transcriptional regulator whose transcription occurs during encystment and is dependent on the alternative sigma factor RpoS. In this study, we show that the two component response regulator GacA, the small RNA RsmZ1 and the translational repressor protein RsmA, implicated in the control of the synthesis of other cysts components (i.e., alginate and poly-ß-hydroxybutyrate), are also controlling alkylresorcinol synthesis. This control affects the expression of arsABCD and is exerted through the regulation of arpR expression. We show that RsmA negatively regulates arpR expression by binding its mRNA, repressing its translation. GacA in turn, positively regulates arpR expression through the activation of transcription of RsmZ1, that binds RsmA, counteracting its repressor activity. This regulatory cascade is independent of RpoS. We also show evidence suggesting that GacA exerts an additional regulation on arsABCD expression through an ArpR independent route. PMID:27055016

  1. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2-2H]DOPS) or at the 11-position of the acyl chains ([11,11-2H2]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2-2H]DOPS and [11,11-2H2]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine)100, which were included for reasons of comparison, reveal increased Δvq values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  2. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    Energy Technology Data Exchange (ETDEWEB)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B. (Univ. of Utrecht (Netherlands))

    1991-01-29

    Deuterium nuclear magnetic resonance ({sup 2}H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the {beta}-position of the serine moiety ((2-{sup 2}H)DOPS) or at the 11-position of the acyl chains ((11,11-{sup 2}H{sub 2})DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both (2-{sup 2}H)DOPS and (11,11-{sup 2}H{sub 2})DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine){sub 100}, which were included for reasons of comparison, reveal increased {Delta}v{sub q} values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component {sup 2}H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. {sup 2}H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides.

  3. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    Science.gov (United States)

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to ...

  4. Surfactant phospholipid metabolism

    OpenAIRE

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant compone...

  5. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    Science.gov (United States)

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  6. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Melissa Q. McDougall

    2016-08-01

    Full Text Available We hypothesized that vitamin E (α-tocopherol is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6, the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio defined diets without (E− or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01 to a light/dark stimulus at 96 h post-fertilization (hpf, demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL and lysophospholipid (lyso-PL composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA, including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001, were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001 and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos.

  7. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos.

    Science.gov (United States)

    McDougall, Melissa Q; Choi, Jaewoo; Stevens, Jan F; Truong, Lisa; Tanguay, Robert L; Traber, Maret G

    2016-08-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E-) or with added α-tocopherol (E+, 500mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E- and E+ embryos. The E- compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E- compared with E+ embryos at 24, 48, 72, and 120hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E- at all time-points. Additionally, H2(18)O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E- compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E- embryos. PMID:26774753

  8. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  9. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  10. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  11. Tetracycline diffusion through phospholipid bilayers and binding to phospholipids.

    OpenAIRE

    Argast, M; Beck, C.F.

    1984-01-01

    The ability of tetracycline to pass through phospholipid bilayers by diffusion was investigated. Liposomes did not retain enclosed tetracycline. Accumulation of tetracycline was observed with liposomes containing entrapped Tet repressor protein. These results indicate that the drug can pass through lipid bilayers. The antibiotic was also shown to bind to liposomes and isolated phospholipids.

  12. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Science.gov (United States)

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility. PMID:25630300

  13. Dynamic phospholipid signaling by G protein-coupled receptors

    NARCIS (Netherlands)

    Weernink, Paschal A. Oude; Han, Li; Jakobs, Karl H.; Schmidt, Martina

    2007-01-01

    G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP

  14. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  15. Effect of cellular phospholipid modification on phorbol diester binding

    International Nuclear Information System (INIS)

    The influence of cellular lipid composition on the specific binding of [20-3H]phorbol-12,13-dibutyrate to intact human promyelocytic leukemia cells was investigated. Cellular phospholipid composition could be manipulated by culturing cells in serum-free, chemically defined media containing base analogues of phospholipid polar head groups. Human promyelocytic leukemia cells grown in the presence of dimethylethanolamine, monomethylethanolamine, 3-aminopropanol, or isopropylethanolamine assimilated these natural and unnatural base moieties into endogenous phospholipids to the extent that 22 to 52% of the cell glycerophospholipids contained the base analogue. The formation of the phospholipid analogues was accompanied by a pronounced reduction in the levels of intracellular choline and ethanolamine glycerophospholipids. Analogue-supplemented cultures exhibited a reduced growth rate compared to control cells maintained in choline-containing medium. Specific [20-3H ]phorbol-12,13-dibutyrate binding was examined in lipid-altered cells and shown to be markedly higher (approximately 200% of control) in cells grown with dimethyl- or monomethylethanolamine. In contrast, exposure of cells to 3-aminopropanol or isopropylethanolamine resulted in a major reduction in [20-3H]phorbol-12,13-dibutyrate binding. Only minimal changes in nonspecific binding occurred between control and experimental cells. Because phorbol esters are highly membrane targeted, it is possible that phospholipid modification or the resulting changes in membrane organization influence receptor dynamics

  16. Preparation of anhydrous lanthanum bromide for scintillation crystal growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; LI Hongwei; ZHAO Chunlei; YU Jinqiu; HU Yunsheng; CUI Lei; HE Huaqiang

    2012-01-01

    This paper reported an efficient and economical method for preparation of anhydrous LaBr3 for scintillation crystal growth.High purity anhydrous LaBr3 powders in large quantities were successfully obtained by stepped dehydration of LaBr3·7H2O using NH4Br as additive.Experiments revealed that adding proper amount of NH4Br could effectively restrain the hydrolysis of LaBr3 during dehydration and thus decreased the yield of deleterious impurity of LaOBr.Optimum preparation conditions,including the amount of NH4Br in use,the dehydration temperature and atmosphere,were investigated by DTA/TG and water/oxygen analysis.The Raman characterization of the as-prepared anhydrous LaBr3 was also presented.

  17. The Effects of Gramicidin on the Structure of Phospholipid Assemblies

    OpenAIRE

    Szule, J. A.; Rand, R. P.

    2003-01-01

    Gramicidin is an antibiotic peptide that can be incorporated into the monolayers of cell membranes. Dimerization through hydrogen bonding between gramicidin monomers in opposing leaflets of the membrane results in the formation of an iontophoretic channel. Surrounding phospholipids influence the gating properties of this channel. Conversely, gramicidin incorporation has been shown to affect the structure of spontaneously formed lipid assemblies. Using small-angle x-ray diffraction and model s...

  18. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien;

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit...

  19. Langmuir films containing ibuprofen and phospholipids

    Science.gov (United States)

    Geraldo, Vananélia P. N.; Pavinatto, Felippe J.; Nobre, Thatyane M.; Caseli, Luciano; Oliveira, Osvaldo N.

    2013-02-01

    This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

  20. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of

  1. Shear-induced morphology in mixed phospholipid films

    Science.gov (United States)

    Hirsa, Amir; Young, James; Posada, David; Lopez, Juan

    2014-11-01

    Flow of mixed phospholipid films on liquid surfaces plays a significant role in biological processes ranging from lipid bilayer fluidity and the associated behavior of cellular membranes, to flow on the liquid lining in the lungs. Phospholipid films are also central to the process of two-dimensional protein crystallization below a ligand-bearing film. Here, we study a binary mixture of phospholipids that form an insoluble monolayer on the air-water interface. Brewster angle microscopy reveals that a shearing flow induces a phase separation in the binary film, resulting in the appearance of 10 micron-scale dark domains. Hydrodynamic response of the binary film is quantified at the macro-scale by measurements of the surface shear viscosity, via a deep-channel surface viscometer. Reynolds number was shown to be a state variable, along with surface pressure, controlling the surface shear viscosity of a biotinylated lipid film.

  2. Phospholipid profiles of Clostridium difficile.

    OpenAIRE

    Drucker, D B; Wardle, H. M.; Boote, V.

    1996-01-01

    Phospholipid molecular species present in 32 isolates of Clostridium difficile were examined by fast atom bombardment-mass spectrometry in negative-ion mode. This revealed major anions consistent with the expected presence of the following phosphatidylglycerol (PG) analogs: PG(31:2), PG(32:1), PG(33:2), PG(33:1), PG(34:2), and PG(34:1). The major phospholipid molecular species are distinct from those of other bacterial groups examined.

  3. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content...

  4. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  5. Method of synthesis of anhydrous thorium(IV) complexes

    Science.gov (United States)

    Kiplinger, Jaqueline L; Cantat, Thibault

    2013-04-30

    Method of producing anhydrous thorium(IV) tetrahalide complexes, utilizing Th(NO.sub.3).sub.4(H.sub.2O).sub.x, where x is at least 4, as a reagent; method of producing thorium-containing complexes utilizing ThCl.sub.4(DME).sub.2 as a precursor; method of producing purified ThCl.sub.4(ligand).sub.x compounds, where x is from 2 to 9; and novel compounds having the structures: ##STR00001##

  6. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    Science.gov (United States)

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  7. Evolution of phospholipid contents during the production of quark cheese from buttermilk.

    Science.gov (United States)

    Ferreiro, T; Martínez, S; Gayoso, L; Rodríguez-Otero, J L

    2016-06-01

    We report the evolution of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylserine (PS), and sphingomyelin (SM) contents during the production of quark cheese from buttermilk by successive ultrafiltration concentration, enrichment with cream, concurrent homogenization and pasteurization, fermentative coagulation, and separation of quark from whey by further ultrafiltration. Buttermilk is richer than milk itself in phospholipids that afford desirable functional and technological properties, and is widely used in dairy products. To investigate how phospholipid content is affected by end-product production processes such as ultrafiltration, homogenization, pasteurization or coagulation, we measured the phospholipids at several stages of each of 5 industrial-scale quark cheese production runs. In each run, 10,000L of buttermilk was concentrated to half volume by ultrafiltration, enriched with cream, homogenized, pasteurized, inoculated with lactic acid bacteria, incubated to coagulation, and once more concentrated to half volume by ultrafiltration. Phospholipid contents were determined by HPLC with evaporative light scattering detection in the starting buttermilk, concentrated buttermilk, ultrafiltrate, cream-enriched concentrated buttermilk (both before and after concurrent homogenization and pasteurization), coagulate, and quark, and also in the rinsings obtained when the ultrafiltration equipment was washed following initial concentration. The average phospholipid content of buttermilk was approximately 5 times that of milk, and the phospholipid content of buttermilk fat 26 to 29 times that of milk fat. Although phospholipids did not cross ultrafiltration membranes, significant losses occurred during ultrafiltration (due to retention on the membranes) and during the homogenization and pasteurization process. During coagulation, however, phospholipid content rose, presumably as a consequence of the proliferation of the

  8. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells

    OpenAIRE

    Smith, Tim A. D.; Phyu, Su M.

    2016-01-01

    Introduction The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. Methods MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14...

  9. Effect of dipolar-angle on phospholipid assembly

    CERN Document Server

    Paul, Tanay

    2016-01-01

    We report the effect of lipid head-group dipole orientation on phase behaviour of phospholipid assembly. The work explains molecular-scale mechanism of ion-lipid, anesthetic-lipid interactions where reorientation of dipoles play important role in membrane potential modification. Molecular Dynamics simulations are performed to analyse structure-property relationship and dynamical behaviour of lipid biomembranes considering coarse-grained model interactions.

  10. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.

    Science.gov (United States)

    Khan, Junaid; Alexander, Amit; Ajazuddin; Saraf, Swarnlata; Saraf, Shailendra

    2013-05-28

    The phyto-phospholipid complexation technique has emerged as one of the leading methods of improving bioavailability of phytopharmaceuticals having poor competency of solubilizing and crossing the biological membranes. Several plant actives in spite having potent in vitro pharmacological activities have failed to demonstrate similar in vivo response. Such plant actives have been made more effective systemically by incorporating them with dietary phospholipids forming new cellular structures which are amphipathic in nature. In the last few years phospholipids have been extensively explored for improved bioavailability and efficacy of plant drugs. Further, it is also much relevant to mention that phospholipids show unique compatibility with biological membranes and have inherent hepatoprotective activity. Different methods have been adopted to formulate phospholipid complexes of plant extractives utilizing varying solvent systems, molar ratios of drug/phospholipids and different drying techniques. Some methods of formulating such drug-phospholipid complexes have been patented as well. However, the stability of phyto-phospholipid complexes is still a matter of concern which needs attention. But still a number of products exploiting this technique are under clinical trials and some of them are now in market. The current review highlights key findings of recent years with our own viewpoints which can give the new directions to this strategy and also includes advancements in the technical aspects of phyto-phospholipid formulations which have been done in the recent past with future challenges. PMID:23474031

  11. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    OpenAIRE

    Letts, V A; Henry, S. A.

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. ...

  12. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  13. Islet amyloid polypeptide inserts into phospholipid monolayers as monomer.

    Science.gov (United States)

    Engel, Maarten F M; Yigittop, HaciAli; Elgersma, Ronald C; Rijkers, Dirk T S; Liskamp, Rob M J; de Kruijff, Ben; Höppener, Jo W M; Antoinette Killian, J

    2006-02-24

    Amyloid deposits in the pancreatic islets of Langerhans are thought to be a main factor responsible for death of the insulin-producing islet beta-cells in type 2 diabetes. It is hypothesized that beta-cell death is related to interaction of the 37 amino acid residue human islet amyloid polypeptide (hIAPP), the major constituent of islet amyloid, with cellular membranes. However, the mechanism of hIAPP-membrane interactions is largely unknown. Here, we study the nature and the molecular details of the initial step of hIAPP-membrane interactions by using the monolayer technique. It is shown that both freshly dissolved hIAPP and the non-amyloidogenic mouse IAPP (mIAPP) have a pronounced ability to insert into phospholipid monolayers, even at lipid packing conditions that exceed the conditions that occur in biological membranes. In contrast, the fibrillar form of hIAPP has lost the ability to insert. These results, combined with the observations that both the insertion kinetics and the dependence of insertion on the initial surface pressure are similar for freshly dissolved hIAPP and mIAPP, indicate that hIAPP inserts into phospholipid monolayers most likely as a monomer. In addition, our results suggest that the N-terminal part of hIAPP, which is nearly identical with that of mIAPP, is largely responsible for insertion. This is supported by experiments with hIAPP fragments, which show that a peptide consisting of the 19 N-terminal residues of hIAPP efficiently inserts into phospholipid monolayers, whereas an amyloidogenic decapeptide, consisting of residues 20-29 of hIAPP, inserts much less efficiently. The results obtained here suggest that hIAPP monomers might insert with high efficiency in biological membranes in vivo. This process could play an important role as a first step in hIAPP-induced membrane damage in type 2 diabetes. PMID:16403520

  14. Stability of charged membranes

    OpenAIRE

    Bensimon, D; David, F.; Leibler, S.; Pumir, A.

    1990-01-01

    The electrostatic contribution to the bending elastic modulus of charged phospholipid bilayers in an ionic solution is computed. It is found to be the same for conducting and non-conducting membranes and is always stabilizing. This stability for free membranes is shown to be a simple consequence of the vanishing of the physical surface tension.

  15. Rheological Study of Mutarotation of Fructose in Anhydrous State

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yangyang [ORNL; Wlodarczyk, Patryk [Institute ofNon-Ferrous Metals, Sowinskiego Gliwice, POLAND; Sokolov, Alexei P [ORNL; Paluch, Marian W [ORNL

    2013-01-01

    Rheological measurement was employed to study the mutarotation of D-fructose in anhydrous state. By monitoring the evolution of shear viscosity with time, rate constants for mutarotation were estimated, and two different stages of this reaction were identified. One of the mutarotation stages is rapid and has a low activation energy, whereas the other is much slower and has a much higher activation energy. Possible conversions corresponding to these two phases are discussed. This work demonstrates that, in addition to the routine techniques such polarimetry and gas liquid chromatography, rheological measurement can be used as an alternative method to continuously monitor the mutarotation of sugars.

  16. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Bhunia, Susanta Kumar; Kolusheva, Sofiya; Jopp, Jürgen; Jelinek, Raz

    2016-05-10

    Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.

  17. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  18. Anhydrous crystals of DNA bases are wide gap semiconductors

    Science.gov (United States)

    Maia, F. F.; Freire, V. N.; Caetano, E. W. S.; Azevedo, D. L.; Sales, F. A. M.; Albuquerque, E. L.

    2011-05-01

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  19. A New Thickener for CO2 Anhydrous Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available CO2 dry fracturing technology is well-known for its advantages. Little water is used in this technology, which is able to ease the pressure of consumption on water resources. Many abroad theoretical researches, laboratory experiments and field tests have been taken to explore the yield mechanism, the adaptability and the technology of pure liquid CO2 fracturing. These achievements have been applied to a variety of reservoirs transformation and improven the effectiveness of stimulation treatment in a degree. The researches and studies in the domestic didn’t get popular until recent years. Thus, this article firstly introduces the main development and application about pure CO2 anhydrous fracturing technology, and sums up the effect and evaluation of its fluid through application examples both in the domestic and abroad. However, although this technology has many excellent qualities, but systematic studies indicate that its proppant-carrying capacity is less competitive because of the low viscosity of pure CO2 liquid and other reasons. In a consequence, it is necessary to develop an appropriate thickener for CO2 anhydrous fracturing fluid to improve its carrying capacity. Then this article describes some studies of previous scholars about CO2 thickener. Then we put forward our own research ideas and transform it into actual experiments. Thanks to the valid performances of these tests, we successfully develop a thickener X and cosolvent B.

  20. Phospholipid metabolism in an industry microalga Chlorella sorokiniana: the impact of inoculum sizes.

    Directory of Open Access Journals (Sweden)

    Shuhuan Lu

    Full Text Available Chlorella sorokiniana is an important industry microalga potential for biofuel production. Inoculum size is one of the important factors in algal large-scale culture, and has great effects on the growth, lipid accumulation and metabolism of microalgae. As the first barrier of cell contents, membrane plays a vital role in algal inoculum-related metabolism. The knowledge of phospholipids, the main membrane component and high accumulation of phospholipids as the major content of total lipids mass in some microalgae, is necessary to understand the role of membrane in cell growth and metabolism under different inoculum density. Profiling of C. sorokiniana phospholipids with LC-MS led to the identification of 119 phospholipid species. To discover the phospholipid molecules most related to change of inoculum sizes, Partial Least Squares Discriminant Analysis (PLS-DA was employed and the results revealed that inoculum sizes significantly affected phospholipid profiling. Phosphatidylglycerol (PG, phosphatidyl- ethanolamine (PE and several phosphatidylcholine (PC species might play an important role under our experimental conditions. Further analysis of these biomarkers indicated that cell membrane status of C. sorokiniana might play an important role in the adaption to the inoculum sizes. And the culture with inoculum size of 1 × 10(6 cells mL(-1 presented the best membrane status with the highest content of PC and PG, and the lowest content of PE. We discovered that the inoculum size of 1 × 10(6 cells mL(-1 might provide the best growth condition for C. sorokiniana. Also we proposed that PG, PE and several PC may play an important role in inoculum-related metabolism in C. sorokiniana, which may work through thylakoid membrane and photosynthetic pathway. Thus this study would provide more potential targets for metabolic engineering to improve biofuel production and productivity in microalgae.

  1. Phospholipid and Respiratory Quinone Analyses From Extreme Environments

    Science.gov (United States)

    Pfiffner, S. M.

    2008-12-01

    Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.

  2. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    Science.gov (United States)

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. PMID:27342371

  3. Oxidative stability of marine phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale;

    Many studies have shown that marine phospholipids (MPL) provide more advantages than fish oil. They have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil). The objective...... prepared in the form of emulsions by high pressure homogenizer. Then, the oxidative and hydrolytic stability of phospholipids was investigated by measurement of simple chemical analyses such as Peroxide Value and Free Fatty Acids, and 31PNMR after 32 days storage at 2ºC. The oxidative stability of MPL...... was further investigated through measurement of secondary volatile compounds by Solid Phase Microextraction at several time intervals. On the other hand, the Maillard reaction was investigated through the measurement of color changes and pyrrole content before and after 32 days storage. Preliminary result...

  4. Nanomechanics of electrospun phospholipid fiber

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana C., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S., E-mail: anac@food.dtu.dk, E-mail: ioach@food.dtu.dk [Technical University of Denmark, DTU-Food, Søltofts Plads B227, DK-2800, Kgs. Lyngby (Denmark); Nikogeorgos, Nikolaos; Lee, Seunghwan [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  5. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    OpenAIRE

    Trevor Lithgow; Lisa Martin; Hsin-Hui Shen

    2013-01-01

    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of mem...

  6. Effect of oral treatment with pantethine on platelet and plasma phospholipids in IIa hyperlipoproteinemia.

    Science.gov (United States)

    Prisco, D; Rogasi, P G; Matucci, M; Paniccia, R; Abbate, R; Gensini, G F; Neri Serneri, G G

    1987-03-01

    In a single-blind, crossover, completely randomized study, the effects of oral treatment with pantethine or placebo on fatty acid composition of plasma and platelet phospholipids were investigated in 10 IIa hyperlipoproteinemic patients. A significant decrease of total cholesterol and total phospholipids was observed both in plasma and in platelets after a twenty-eight-day treatment. In plasma, pantethine induced a decrease of the ratio sphingomyelin/phosphatidylcholine. Moreover, a relative increase of n3-polyunsaturated fatty acids both in plasma and in platelet phospholipids and a decrease of arachidonic acid in plasma phospholipids were observed. These results indicate that pantethine can affect plasma and platelet lipid composition with possibly favorable influences on the determinants of cell membrane fluidity. PMID:3551695

  7. 29 CFR 1910.111 - Storage and handling of anhydrous ammonia.

    Science.gov (United States)

    2010-07-01

    ... approved by NIOSH under 42 CFR part 84 are suitable for emergency action involving most anhydrous ammonia... National Institute for Occupational Safety and Health (NIOSH) under 42 CFR part 84 for use with anhydrous...—Regulations of the Department of Transportation published in 49 CFR Chapter I. (b) Basic rules. This...

  8. Analysis of the phospholipid profile of metaphase II mouse oocytes undergoing vitrification.

    Directory of Open Access Journals (Sweden)

    Jaehun Jung

    Full Text Available Oocyte freezing confers thermal and chemical stress upon the oolemma and various other intracellular structures due to the formation of ice crystals. The lipid profiles of oocytes and embryos are closely associated with both, the degrees of their membrane fluidity, as well as the degree of chilling and freezing injuries that may occur during cryopreservation. In spite of the importance of lipids in the process of cryopreservation, the phospholipid status in oocytes and embryos before and after freezing has not been investigated. In this study, we employed mass spectrometric analysis to examine if vitrification has an effect on the phospholipid profiles of mouse oocytes. Freshly prepared metaphase II mouse oocytes were vitrified using copper grids and stored in liquid nitrogen for 2 weeks. Fresh and vitrified-warmed oocytes were subjected to phospholipid extraction procedure. Mass spectrometric analyses revealed that multiple species of phospholipids are reduced in vitrified-warmed oocytes. LIFT analyses identified 31 underexpressed and 5 overexpressed phospholipids in vitrified mouse oocytes. The intensities of phosphatidylinositol (PI {18∶2/16∶0} [M-H]- and phosphatidylglycerol (PG {14∶0/18∶2} [M-H]- were decreased the most with fold changes of 30.5 and 19.1 in negative ion mode, respectively. Several sphingomyelins (SM including SM {d38∶3} [M+H]+ and SM {d34∶0} [M+K]+ were decreased significantly in positive ion mode. Overall, the declining trend of multiple phospholipids demonstrates that vitrification has a marked effect on phospholipid profiles of oocytes. These results show that the identified phospholipids can be used as potential biomarkers of oocyte undergoing vitrification and will allow for the development of strategies to preserve phospholipids during oocyte cryopreservation.

  9. Physicochemical properties of new amide-based protic ionic liquids and their use as materials for anhydrous proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Jin [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081 (China); Chen Renjie, E-mail: chenrj@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081 (China); National Development Center of High Technology Green Materials, Beijing 100081 (China); Wu Feng, E-mail: wufeng863@vip.sina.com [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081 (China); National Development Center of High Technology Green Materials, Beijing 100081 (China); Li Li; Chen Shi [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081 (China); National Development Center of High Technology Green Materials, Beijing 100081 (China); Zou Qinqin [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing 100081 (China)

    2011-09-01

    We prepared 3 protic ionic liquids based on trifluoromethanesulfonic acid and an amide, namely isobutyramide (ITSA), n-butyramide(NTSA), and benzamide(BTSA). All of the protic ionic liquids exhibit excellent thermal stability (above 200 deg. C). ITSA has the highest ionic conductivity, which is 32.6 mS/cm at 150 deg. C. ITSA was used to prepare anhydrous, conducting composite membranes based on polymers of polyvinylidene-fluoride (PVDF) to serve as intermediate temperature proton exchange membrane fuel cells. This type of composite membrane possesses good thermal stability, high ionic conductivity and good mechanical properties. Increasing the polymer content leads to the improvement of mechanical properties, but is accompanied by a reduction in ionic conductivity. We made efforts to eliminate the trade-off between strength and conductivity of the ITSA/PVDF composite membrane by adding polyamide imide, which resulted in a simultaneous increase in strength and conductivity. A conductivity of 7.5 mS/cm is achieved in a membrane containing 60 wt.% ITSA and 5 wt.% PAI in PVDF at 150 deg. C.

  10. Forms, Crosstalks, and the Role of Phospholipid Biosynthesis in Autophagy

    Directory of Open Access Journals (Sweden)

    Leanne Pereira

    2012-01-01

    Full Text Available Autophagy is a highly conserved cellular process occurring during periods of stress to ensure a cell's survival by recycling cytosolic constituents and making products that can be used in energy generation and other essential processes. Three major forms of autophagy exist according to the specific mechanism through which cytoplasmic material is transported to a lysosome. Chaperone-mediated autophagy is a highly selective form of autophagy that delivers specific proteins for lysosomal degradation. Microautophagy is a less selective form of autophagy that occurs through lysosomal membrane invaginations, forming tubes and directly engulfing cytoplasm. Finally, macroautophagy involves formation of new membrane bilayers (autophagosomes that engulf cytosolic material and deliver it to lysosomes. This review provides new insights on the crosstalks between different forms of autophagy and the significance of bilayer-forming phospholipid synthesis in autophagosomal membrane formation.

  11. Phospholipid liposomes functionalized by protein

    Science.gov (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  12. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed

  13. Exploring the World of Phospholipids and Their Interactions with Proteins: The Work of William Dowhan

    OpenAIRE

    2012-01-01

    The Gene Encoding the Phosphatidylinositol Transfer Protein Is Essential for Cell Growth (Aitken, J. F., van Heusden, G. P., Temkin, M., and Dowhan, W. (1990) J. Biol. Chem. 265, 4711–4717) A Phospholipid Acts as a Chaperone in Assembly of a Membrane Transport Protein (Bogdanov, M., Sun, J., Kaback, H. R., and Dowhan, W. (1996) J. Biol. Chem. 271, 11615–11618)

  14. Interest of Fluorescence Derivatization and Fluorescence Probe Assisted Post-column Detection of Phospholipids: A Short Review

    OpenAIRE

    Pratrice Prognon; Athena Kasselouri; Eric Caudron; Hanadi Ibrahim

    2010-01-01

    Phospholipids are essential constituents of all living cell membranes. There are many analytical methods available for the quantitative and qualitative determination of phospholipids, but since these molecules lack chromophores, common absorbance based methods are of limited use. Beside mass spectrometry, some less specific approaches that are routinely used are evaporative light scattering detection or fluorescence, which exhibit sufficient sensitivity. Here, we focus on fluorescence, which ...

  15. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    Energy Technology Data Exchange (ETDEWEB)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-07-26

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary /sup 31/P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure.

  16. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  17. Effect of EPA and DHA Containing Glycerophospholipid Molecular Species on the Fluidity of Erythrocyte Cell Membranes

    OpenAIRE

    Nojima, Masahiro; Hosokawa, Masashi; Takahashi, Koretaro; HATANO, Mutsuo

    1994-01-01

    Fluorescence depolarization of erythrocytes was measured to evaluate the increase in fluidity of cell membrane due to treatment with soy phospholipids, hydrogenated soy phospholipids, icosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) containing phospholipids. When the erythrocytes were treated with EPA or DHA containing phosphatidylethanolamine or phosphatidylserine, the least fluorescence polarization was observed, followed by EPA or DHA containing phosphatidylcholine. All of the hy...

  18. Curvature-Dependent Recognition of Ethanolamine Phospholipids by Duramycin and Cinnamycin

    OpenAIRE

    Iwamoto, Kunihiko; Hayakawa, Tomohiro; Murate, Motohide; Makino, Asami; Ito, Kazuki; Fujisawa, Tetsuro; Kobayashi, Toshihide

    2007-01-01

    Duramycin is a 19-amino-acid tetracyclic lantibiotic closely related to cinnamycin (Ro09-0198), which is known to bind phosphatidylethanolamine (PE). The lipid specificity of duramycin was not established. The present study indicates that both duramycin and cinnamycin exclusively bind to ethanolamine phospholipids (PE and ethanolamine plasmalogen). Model membrane study indicates that the binding of duramycin and cinnamycin to PE-containing liposomes is dependent on membrane curvature, i.e., t...

  19. Products and mechanism of the reaction of ozone with phospholipids in unilamellar phospholipid vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Santrock, J.; Gorski, R.A.; O' Gara, J.F. (Biomedical Science Department, General Motors Research Laboratories, Warren, MI (United States))

    1992-01-01

    While considerable effort has been expended on determining the health effects of exposure to typical urban concentrations of O3, little is known about the chemical events responsible for toxicity. Phospholipids containing unsaturated fatty acids in the cell membranes of lung cells are likely reaction sites for inhaled ozone (O3). In this study, we examined the reaction of O3 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in unilamellar phospholipid vesicles. Reaction of ozone with the carbon-carbon double bond of POPC yielded an aldehyde and a hydroxy hydroperoxide. The hydroxy hydroperoxide eliminated H2O2 to yield a second aldehyde. Upon further ozonolysis, the aldehydes were oxidized to the corresponding carboxylic acids. A material balance showed that no other reaction consumed POPC and O3 or produced these products. As a mechanistic probe, we measured incorporation of oxygen-18 from 18O3 into aldehyde, carboxylic acid, and H2O2. Approximately 50% of the aldehyde oxygen atoms were derived from O3. Oxygen in H2O2 was derived solely from O3, where both oxygen atoms in a molecule of H2O2 were from the same molecule of O3. One of the carboxylic acid oxygen atoms was derived from the precursor aldehyde, while the other was derived from O3. These results support the following mechanism. Cleavage of the carbon-carbon double bond of POPC by O3 yields a carbonyl oxide and an aldehyde. Reaction of H2O with the carbonyl oxide yields a hydroxy hydroperoxide, preventing formation ozonide by reaction of the carbonyl oxide and aldehyde. Elimination of H2O2 from the hydroxy hydroperoxide yields a second aldehyde. Oxidation of the aldehydes by O3 yields carboxylic acids.

  20. Essential phospholipids in fatty liver: a scientific update

    Directory of Open Access Journals (Sweden)

    Gundermann KJ

    2016-05-01

    Full Text Available Karl-Josef Gundermann,1 Simon Gundermann,2 Marek Drozdzik,1 VG Mohan Prasad3 1Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland; 2Department of Radiology, Hospital Hohenlind, Cologne, Germany; 3VGM Hospital Institute of Gastroenterology, Coimbatore, India Aim: Although essential phospholipids (EPL from soybean are often used in membrane-associated disorders and diseases, their high quality of purification and effects on prevalent liver diseases, especially on fatty liver diseases (FLDs of different origin, are still widely unknown and a matter of continuous active research. The aim of this article is to review, discuss, and summarize the available results of EPL in the treatment of FLD. Methods: Database research was carried out on Medline, Embase, Cochrane Library, country-specific journals, and follow-up literature citations for relevant hepatogastroenterological articles published between 1988 and 2014. We searched for and reviewed only those papers that indicated minimum extraction amount of 72% (3-sn-phosphatidylcholine from soybean as being necessary to treat patients with a considerable amount of 1,2-dilinoleoylphosphatidylcholine as a key component in EPL. Results: EPL has a well-established mode of action, therapeutic effectiveness, and lack of toxicity, which ensures clinically relevant efficacy-to-safety ratio. It influences membrane-dependent cellular functions and shows anti-inflammatory, antioxidant, antifibrogenic, antiapoptotic, membrane-protective, and lipid-regulating effects. Due to its positive effects on membrane composition and functions, it accelerates the improvement or normalization of subjective symptoms; pathological, clinical, and biochemical findings; hepatic imaging; and liver histology. It is justified to administer EPL together with other therapeutic measurements in the liver. Conclusion: Pharmacological and clinical results confirm the efficacy of EPL in the treatment of FLD. Keywords

  1. Formation of β-cyclodextrin complexes in an anhydrous environment.

    Science.gov (United States)

    Sifaoui, Hocine; Modarressi, Ali; Magri, Pierre; Stachowicz-Kuśnierz, Anna; Korchowiec, Jacek; Rogalski, Marek

    2016-09-01

    The formation of inclusion complexes of β-cyclodextrin was studied at the melting temperature of guest compounds by differential scanning calorimetry. The complexes of long-chain n-alkanes, polyaromatics, and organic acids were investigated by calorimetry and IR spectroscopy. The complexation ratio of β-cyclodextrin was compared with results obtained in an aqueous environment. The stability and structure of inclusion complexes with various stoichiometries were estimated by quantum chemistry and molecular dynamics calculations. Comparison of experimental and theoretical results confirmed the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds. This finding gives new insight into the mechanism of formation of host-guest complexes and shows that hydrophobic interactions play a secondary role in this case. Graphical abstract The formation of complexes of β-cyclodextrin with selected n-alkanes, polyaromatics, and organic acids in an anhydrous environment is studied by differential scanning calorimetry, IR spectroscopy, and molecular modeling. The results obtained confirm the possible formation of multiple inclusion complexes with guest molecules capable of forming hydrogen bonds and give a new perspective on the mechanism of formation of host-guest complexes. PMID:27518085

  2. Arachidonoyl-Phospholipid Remodeling in Proliferating Murine T Cells

    Directory of Open Access Journals (Sweden)

    Ando Soichiro

    2004-01-01

    Full Text Available Abstract Backgound Previous studies have shown that the functional capacity of T cells may be modulated by the composition of fatty acids within, and the release of fatty acids from membrane phospholipids, particulary containing arachidonic acid (AA. The remodeling of AA within membrane phospholipids of resting and proliferating CD4+ and CD8+ T cells is examined in this study. Results Splenic T cells were cultured in the presence or absence of anti-CD3 mAb for 48 h then labeled with [3H]AA for 20 min. In unstimulated cells, labeled AA was preferentially incorporated into the phosphoglycerides, phosphatidylcholine (PC followed by phosphatidylinositol (PI and phosphatidylethanolamine (PE. During a subsequent chase in unlabeled medium unstimulated CD4+ and CD8+ T cells demonstrated a significant and highly selective transfer of free, labeled AA into the PC pool. In contrast, proliferating CD4+ and CD8+ T cells distributed labeled [3H]AA predominantly into PI followed by PC and PE. Following a chase in AA-free medium, a decline in the content of [3H]AA-PC was observed in association with a comparable increase in [3H]AA-PE. Subsequent studies revealed that the cold AA content of all PE species was increased in proliferating T cells compared with that in non-cycling cells, but that enrichment in AA was observed only in the ether lipid fractions. Finally, proliferating T cells preincubated with [3H]AA exhibited a significant loss of labeled arachidonate in the PC fraction and an equivalent gain in labeled AA in 1-alk-1'-enyl-2-arachidonoyl-PE during a chase in unlabeled medium. Conclusion This apparent unidirectional transfer of AA from PC to ether-containing PE suggests the existence of a CoA-independent transacylase system in T cells and supports the hypothesis that arachidonoyl phospholipid remodeling may play a role in the regulation of cellular proliferation.

  3. Activation of Anhydrate Phosphogypsmn by K2SO4 and Hemihydrate Gypsum

    Institute of Scientific and Technical Information of China (English)

    YANG Min; QIAN Jueshi

    2011-01-01

    Lime pretreated phosphogypsum(PG) was calcined at 500 ℃ to produce anhydrate gypsum cement.Due to the slow hydration of anhydrate gypsum,additives,K2SO4 and hemihydrate gypsum were selected to accelerate the hydration of anhydrate.The hydration characteristics,the resistance to hydrodynamic water,and the mineralogical studies were investigated.The experimental results suggest that activated by K2SO4 and hemihydrate,anhydrate PG hydrates much more rapidly than that in the presence of only K2SO4 or in the absence of additives.The binder has proper setting time,good strength development,and relatively better resistance to water.The hardened binder has hydrated products of rod or stick like shaped dihydrate gypsum crystals.

  4. Molecular structure and vibration spectra of anhydrous zinc acetate and anhydrous magnesium acetate by density functional theory and AB initio hartree-fock calculations

    International Nuclear Information System (INIS)

    Full text : The molecular geometry and vibrational frequencies of anhydrous zinc acetate and anhydrous magesium acetate in the ground state have been calculated using the Hartree-Fock and density functional method with 6-31G basic set. The optimized geometric band tengths and bond angles obtained by using HF and DFT show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of melamine diborate with calculated results by density functional B3LYP and Hatree-Fock methods indicate that B3LYP is superior to the scaled Hatree-Fock approach for molecular vibrational problems

  5. Solubility of fluorides of alkaline earth metals and some rare earths in anhydrous trifluoroacetic acid

    International Nuclear Information System (INIS)

    Solubility of fluorides of alkaline earth and some rare earth metals in anhydrous trifluoroacetic acid is studied. For each type of fluoride solubility depends on the ionic radius of the cation. Solubility of fluorides of alkaline earth metals grows from magnesium to barium. All the fluorides in anhydrous trifluoroacetic acid form solvates. Solvates of strontium and scandium fluorides are shown to decompose at 110 and 150 deg C respectively

  6. Study on the Stability of DeoxyArbutin in an Anhydrous Emulsion System

    OpenAIRE

    Chiu-Wen Chen; Shu-Mei Lee; Yi-Shyan Chen; Pey-Shiuan Wu; Nai-Fang Chang; Chao-Hsun Yang; Chih-Chien Lin

    2011-01-01

    The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w) or water-in-oil (w/o) systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive ...

  7. Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers.

    Science.gov (United States)

    Capponi, Sara; Freites, J Alfredo; Tobias, Douglas J; White, Stephen H

    2016-02-01

    Organized as bilayers, phospholipids are the fundamental building blocks of cellular membranes and determine many of their biological functions. Interactions between the two leaflets of the bilayer (interleaflet coupling) have been implicated in the passage of information through membranes. However, physically, the meaning of interleaflet coupling is ill defined and lacks a structural basis. Using all-atom molecular dynamics simulations of fluid phospholipid bilayers of five different lipids with differing degrees of acyl-chain asymmetry, we have examined interleaflet mixing to gain insights into coupling. Reasoning that the transbilayer distribution of terminal methyl groups is an appropriate measure of interleaflet mixing, we calculated the transbilayer distributions of the acyl chain terminal methyl groups for five lipids: dioleoylphosphatidylcholine (DOPC), palmitoyloleoylphosphatidylcholine (POPC), stearoyloleoylphosphatidylcholine (SOPC), oleoylmyristoylphosphatidylcholine (OMPC), and dimyristoylphosphatidylcholine (DMPC). We observed in all cases very strong mixing across the bilayer midplane that diminished somewhat with increasing acyl-chain ordering defined by methylene order parameters. A hallmark of the interleaflet coupling idea is complementarity, which postulates that lipids with short alkyl chains in one leaflet will preferentially associate with lipids with long alkyl chains in the other leaflet. Our results suggest a much more complicated picture for thermally disordered bilayers that we call distributed complementarity, as measured by the difference in the peak positions of the sn-1 and sn-2 methyl distributions in the same leaflet. PMID:26657692

  8. Pollen viability and membrane lipid composition.

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid composit

  9. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Peter, E-mail: pewild@access.uzh.ch [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Oliveira, Anna Paula de [Institute of Virology, University of Zuerich (Switzerland); Sonda, Sabrina [Institute for Parasitology, University of Zuerich (Switzerland); Schraner, Elisabeth M. [Institute of Veterinary Anatomy, University of Zuerich (Switzerland); Institute of Virology, University of Zuerich (Switzerland); Ackermann, Mathias; Tobler, Kurt [Institute of Virology, University of Zuerich (Switzerland)

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  10. [Change in phospholipid content in platelets, immunocompetent cells and myometrial tissue in patients with internal endometriosis].

    Science.gov (United States)

    Damirov, M M; Kulakov, V I; Sliusra', N N; Bakuleva, L P; Kargapolov, A V

    1994-01-01

    A method of flow horizontal chromatography has been developed permitting investigation of blood and tissue cellular phospholipids ruling out lipid peroxidation effects on cellular membranes. Phospholipid levels of blood and myometrial tissue cells were measured by this method in 67 patients with histologically verified internal endometriosis. Phospholipid and phosphatidyl inosite levels in platelets and immunocompetent cells of these patients reliably differed from those in healthy women. Phosphatidyl inosite levels of heterotopic endometrial tissue was increased by 1.4 times vs. the norm on an average. In parallel with this, a reliable change of phosphatidyl cholines and inosites levels in endometriosis foci were detected as against their levels in intact tissue. The authors suggest a method for the diagnosis of internal endometriosis by phosphatidyl inosite levels in blood lymphocytes. PMID:8209956

  11. Scientific Opinion on the safety and efficacy of betaine (betaine anhydrous and betaine hydrochloride as a feed additive for all animal species based on a dossier submitted by VITAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available Glycine betaine (betaine acts as a methyl group donor in transmethylation reactions in organisms. Betaine occurs in numerous vertebrate tissues as an osmolyte, ensuring osmoprotection. Betaine is safe for piglets at the maximum supplementation rate of 2 000 mg/kg complete feed with a margin of safety below 5. This conclusion is extended to all pigs and extrapolated to all animal species and categories. The use of betaine anhydrous and betaine hydrochloride as feed additives up to a supplementation rate of 2 000 mg betaine/kg complete feed is unlikely to pose concerns for consumer safety. In the absence of data, betaine anhydrous and betaine hydrochloride should be considered hazardous by inhalation, as irritant to skin, eyes and mucous membranes, and skin sensitisers. The supplementation of feed with betaine anhydrous and betaine hydrochloride does not pose a risk to the environment. Betaine has the potential to become efficacious in all animal species and categories when administered via feed or water for drinking. Betaine anhydrous and betaine hydrochloride are considered as nutritionally equivalent sources of betaine. The FEEDAP Panel made some recommendations on (i introduction of a maximum content for supplemental betaine in complete feed and water for drinking; (ii avoidance of simultaneous use of betaine in feed and water for drinking; (iii avoidance of simultaneous inclusion of betaine and choline chloride in premixtures; and (iv protection of users when handling the additives.

  12. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium...... and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...

  13. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures.

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillén, Yahaira; Muñoz-Sánchez, J Armando; Vázquez-Flota, Felipe; Monforte-González, Miriam; Hernández-Sotomayor, S M Teresa

    2013-10-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  14. Characterization of the physicochemical properties of phospholipid vesicles prepared in CO2/water systems at high pressure.

    Science.gov (United States)

    Nakamura, Hidemi; Taguchi, Shogo; Suga, Keishi; Hayashi, Keita; Jung, Ho-Sup; Umakoshi, Hiroshi

    2015-01-01

    Phospholipid vesicles were prepared by the nonsolvent method using high-pressure CO2/water systems. The membrane properties of vesicles prepared at different pressures and temperatures were mainly characterized based on analysis of the membrane fluidity and membrane polarity, using the fluorescent probes 1,6-diphenyl-1,3,5-hexatriene and 6-dodecanoyl-N,N-dimethyl-2-naphthylamine, respectively. The CO2(liquid)/water(liquid) and the CO2(supercritical)/water(liquid) two-phase (heterogeneous) systems resulted in the formation of vesicles with high yield (ca. 85%-88%). The membrane fluidity and polarity of the vesicles were similar to those of liposomes prepared by the conventional method. It is suggested that high-pressure CO2 can be used to form an appropriate hydrophobic-hydrophilic interface where phospholipid molecules as a self-assembled membrane. PMID:26296356

  15. Phospholipid and Hydrocarbon Interactions with a Charged Electrode Interface.

    Science.gov (United States)

    Levine, Zachary A; DeNardis, Nadica Ivošević; Vernier, P Thomas

    2016-03-22

    Using a combination of molecular dynamics simulations and experiments we examined the interactions of alkanes and phospholipids at charged interfaces in order to understand how interfacial charge densities affect the association of these two representative molecules with electrodes. Consistent with theory and experiment, these model systems reveal interfacial associations mediated through a combination of Coulombic and van der Waals forces. van der Waals forces, in particular, mediate rapid binding of decane to neutral electrodes. No decane binding was observed at high surface charge densities because of interfacial water polarization, which screens hydrophobic attractions. The positively charged choline moiety of the phospholipid palmitoyloleoylphosphatidylcholine (POPC) is primarily responsible for POPC attraction by a moderately negatively charged electrode. The hydrocarbon tails of POPC interact with the hydrophobic electrode interface similarly to decane. Previously reported electrochemical results confirm these findings by demonstrating bipolar displacement currents from PC vesicles adhering to moderately negatively charged interfaces, originating from the choline interactions observed in simulations. At more negatively charged interfaces, choline-to-surface binding was stronger. In both simulations and experiments the maximal interaction of anionic PS occurs with a positively charged interface, provided that the electrostatic forces outweigh local Lennard-Jones interactions. Direct comparisons between the binding affinities measured in experiments and those obtained in simulations reveal previously unobserved atomic interactions that facilitate lipid vesicle adhesion to charged interfaces. Moreover, the implementation of a charged interface in molecular dynamics simulations provides an alternative method for the generation of large electric fields across phospholipid bilayers, especially for systems with periodic boundary conditions, and may be useful for

  16. Guidelines for the use of protein domains in acidic phospholipid imaging

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2015-01-01

    Acidic phospholipids are minor membrane lipids but critically important for signaling events. The main acidic phospholipids are phosphatidylinositol phosphates (PIPs also known as phosphoinositides), phosphatidylserine (PS) and phosphatidic acid (PA). Acidic phospholipids are precursors of second messengers of key signaling cascades or are second messengers themselves. They regulate the localization and activation of many proteins, and are involved in virtually all membrane trafficking events. As such, it is crucial to understand the subcellular localization and dynamics of each of these lipids within the cell. Over the years, several techniques have emerged in either fixed or live cells to analyze the subcellular localization and dynamics of acidic phospholipids. In this chapter, we review one of them: the use of genetically encoded biosensors that are based on the expression of specific lipid binding domains (LBDs) fused to fluorescent proteins. We discuss how to design such sensors, including the criteria for selecting the lipid binding domains of interest and to validate them. We also emphasize the care that must be taken during data analysis as well as the main limitations and advantages of this approach. PMID:26552684

  17. VISUALIZATION AND ANALYSIS OF LPS DISTRIBUTION IN BINARY PHOSPHOLIPID BILAYERS

    Science.gov (United States)

    Florencia, Henning María; Susana, Sanchez; Laura, Bakás

    2010-01-01

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram negative bacteria during infections. It have been reported that LPS may play a rol in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or Cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4°C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery. PMID:19324006

  18. Essential phospholipids in fatty liver: a scientific update

    Science.gov (United States)

    Gundermann, Karl-Josef; Gundermann, Simon; Drozdzik, Marek; Mohan Prasad, VG

    2016-01-01

    Aim Although essential phospholipids (EPL) from soybean are often used in membrane-associated disorders and diseases, their high quality of purification and effects on prevalent liver diseases, especially on fatty liver diseases (FLDs) of different origin, are still widely unknown and a matter of continuous active research. The aim of this article is to review, discuss, and summarize the available results of EPL in the treatment of FLD. Methods Database research was carried out on Medline, Embase, Cochrane Library, country-specific journals, and follow-up literature citations for relevant hepatogastroenterological articles published between 1988 and 2014. We searched for and reviewed only those papers that indicated minimum extraction amount of 72% (3-sn-phosphatidyl)choline from soybean as being necessary to treat patients with a considerable amount of 1,2-dilinoleoylphosphatidylcholine as a key component in EPL. Results EPL has a well-established mode of action, therapeutic effectiveness, and lack of toxicity, which ensures clinically relevant efficacy-to-safety ratio. It influences membrane- dependent cellular functions and shows anti-inflammatory, antioxidant, antifibrogenic, anti apoptotic, membrane-protective, and lipid-regulating effects. Due to its positive effects on membrane composition and functions, it accelerates the improvement or normalization of subjective symptoms; pathological, clinical, and biochemical findings; hepatic imaging; and liver histology. It is justified to administer EPL together with other therapeutic measurements in the liver. Conclusion Pharmacological and clinical results confirm the efficacy of EPL in the treatment of FLD. PMID:27217791

  19. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Maria Florencia [Instituto de Investigaciones Bioquimicas La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Medicas, UNLP, Calles 60 y 120, 1900 La Plata (Argentina); Sanchez, Susana [Laboratory for Fluorescence Dynamics, University of California-Irvine, Irvine, CA (United States); Bakas, Laura, E-mail: lbakas@biol.unlp.edu.ar [Instituto de Investigaciones Bioquimicas La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Medicas, UNLP, Calles 60 y 120, 1900 La Plata (Argentina); Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, UNLP, Calles 47 y 115, 1900 La Plata (Argentina)

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.

  20. Study on the Stability of DeoxyArbutin in an Anhydrous Emulsion Systemy

    Directory of Open Access Journals (Sweden)

    Chiu-Wen Chen

    2011-09-01

    Full Text Available The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w or water-in-oil (w/o systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive to hydrolysis or oxidation. Therefore, to enhance the stability of deoxyArbutin in formulations, we chose the polyol-in-silicone, anhydrous emulsion system as the basic formulation for investigation. The quantity of deoxyArbutin and the accumulation of hydroquinone in both hydrous and anhydrous emulsions at various temperatures were analyzed through an established high performance liquid chromatographic (HPLC method. The results indicated that water increased the decomposition of deoxyArbutin in the formulations and that the polyol-in-silicone, oil-based, anhydrous emulsion system provided a relatively stable surrounding for the deoxyArbutin that delayed its degradation at 25 °C and 45 °C. Moreover, the composition of the inner hydrophilic phase, containing different amounts of glycerin and propylene glycol, affected the stability of deoxyArbutin. Thus, these results will be beneficial when using deoxyArbutin in cosmetics and medicines in the future.

  1. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    -assemble in combination with phospholipids to form discoidal shaped particles that can stabilize membrane proteins. In the present study, we have investigated an ApoA1 mimetic peptide with respect to its solution structure when in complex with phospholipids. This was achieved using a powerful combination of small-angle X...... show that, like the ApoA1 and derived nanodiscs, these peptide discs can accommodate and stabilize a membrane protein. Finally, we exploit their dynamic properties and show that the 18A discs may be used for transferring membrane proteins and associated phospholipids directly and gently...

  2. Spontaneous structural transition in phospholipid-inspired aromatic phosphopeptide nanostructures.

    Science.gov (United States)

    Pellach, Michal; Atsmon-Raz, Yoav; Simonovsky, Eyal; Gottlieb, Hugo; Jacoby, Guy; Beck, Roy; Adler-Abramovich, Lihi; Miller, Yifat; Gazit, Ehud

    2015-01-01

    Phospholipid membranes could be considered a prime example of the ability of nature to produce complex yet ordered structures, by spontaneous and efficient self-assembly. Inspired by the unique properties and architecture of phospholipids, we designed simple amphiphilic decapeptides, intended to fold in the center of the peptide sequence, with a phosphorylated serine "head" located within a central turn segment, and two hydrophobic "tails". The molecular design also included the integration of the diphenylalanine motif, previously shown to facilitate self-assembly and increase nanostructure stability. Secondary structure analysis of the peptides indeed indicated the presence of stabilized conformations in solution, with a central turn connecting two hydrophobic "tails", and interactions between the hydrophobic strands. The mechanisms of assembly into supramolecular structures involved structural transitions between different morphologies, which occurred over several hours, leading to the formation of distinctive nanostructures, including half-elliptical nanosheets and curved tapes. The phosphopeptide building blocks appear to self-assemble via a particular combination of aromatic, hydrophobic and ionic interactions, as well as hydrogen bonding, as demonstrated by proposed constructed simulated models of the peptides and self-assembled nanostructures. Molecular dynamics simulations also gave insight into mechanisms of structural transitions of the nanostructures at a molecular level. Because of the biocompatibility of peptides, the phosphopeptide assemblies allow for expansion of the library of biomolecular nanostructures available for future design and application of biomedical devices. PMID:25802000

  3. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  4. Changes in membrane lipid composition of Mycoplasma capricolum affect the cell volume.

    OpenAIRE

    N. Romano; Shirvan, M H; Rottem, S.

    1986-01-01

    The cellular water volume of Mycoplasma capricolum was markedly increased by a decrease in the cholesterol-to-phospholipid molar ratio in the membrane. An increase in cell volume was also observed with the increase in the phospholipid cell membrane content obtained by the incorporation of exogenous phosphatidylcholine from the growth medium.

  5. Polymorphic phase behaviour of phosphatidylglycerine in spinach thylakoid membranes

    NARCIS (Netherlands)

    Krumova, S.K.B.; Dijkema, C.; Garab, G.; Amerongen, van H.

    2005-01-01

    Our data show that the phospholipids of chloroplast thylakoid membranes participate in non-lamellar phases and polymorphic changes. Although 31P NMR is sensitive solely to phospholipids, it seems plausible to assume that the transitions involve the entire lipid mixture, the non-lamellar propensity o

  6. Pros and cons of phospholipid asymmetry in erythrocytes

    Directory of Open Access Journals (Sweden)

    Aiswarya Sathi

    2014-01-01

    Full Text Available Phospholipids of erythrocyte are found as bilayer with choline containing phospholipid like phosphatidyl choline and sphingomylein in the outer layer and amine containing phospholipid like phosphatidyl ethanolamine and phosphatidyl serine in the inner layer. This arrangement is known as phospholipid asymmetry. Lipid asymmetry is maintained throughout the entire life span of red blood cell and is disturbed when cells enter into the stage of apoptosis. We here discuss some of the conditions in which phospholipid asymmetry of erythrocyte is maintained and disturbed and the various detection methods to check the distortion phospholipid asymmetry of it.

  7. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.;

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid dipa...... polymer groups. Indeed, the lack of packing disruptions by the oligosaccharide groups indicates that protein-GM, interactions, including binding, insertion, chain fluidization, and domain formation (lipid rafts), can be studied in 2-D monolayers using scattering techniques....... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  8. An unrealistic drift in assay on anhydrous basis towards content limit

    Directory of Open Access Journals (Sweden)

    Shivram K

    2009-01-01

    Full Text Available The assay on anhydrous basis is a mathematically derived value from an experimental results of assay and water content tests. The results of assay and water content tests are determined, separately, on as-is basis. The industry-accepted formula for assay on anhydrous basis = (assay on as-is basis×100/(100-%water. Statistically, the two variables involved in accepted formula are assay on as-is basis and water to obtain assay on anhydrous basis. The experimental errors associated with these two variables propagate in assay on anhydrous basis. The error propagates either in constructive or destructive mode. The constructive mode of error propagation is combination of positive error of assay on as-is basis and positive error of water or negative error of assay on as-is basis and negative error of water. The constructive mode of error propagation has more impact on assay on anhydrous basis values and its confidence interval. The destructive mode of error propagation is combination of a positive error of assay on as-is basis and a negative error of water or vice versa. The destructive mode of error propagation has lesser impact on assay on anhydrous basis values and its confidence interval in comparison to the constructive mode of error propagation. In accepted formula said above, the constructive or destructive error propagation causes unrealistic drift of assay on anhydrous basis towards either lower or higher side of content limit of substance. The risk of rejection of pharmaceutical use substance is higher based on assay test results that results are calculated from industry-accepted formula. The purpose of the study is to propose an alternative formula to overcome limitations of accepted formula and justify the propagation of errors in realistic way. We have given three examples of pharmaceutical use substances to emphasise the above proposition. The proposed formula for assay on anhydrous basis= (assay on as-is basis×F/(F-%water in which F is

  9. Negatively cooperative binding of melittin to neutral phospholipid vesicles

    Science.gov (United States)

    Torrens, Francisco; Castellano, Gloria; Campos, Agustín; Abad, Concepción

    2007-05-01

    The association of basic amphipathic peptides to neutral phospholipid membranes is investigated in terms of binding and partition models. The binding of native and modified melittin to egg-yolk phosphatidylcholine vesicles is studied by steady-state fluorescence spectroscopy. The effect of the ionic strength shows an enhancement of the association as the ionic strength increases. After correction for electrostatic effects by the Gouy-Chapman theory, the melittin binding isotherms could be described by a partition model. In terms of conventional binding mechanisms, which do not take into account electrostatic effects, this would correspond to a negative cooperativity. A plausible way in which the interaction occurs is proposed, based on the calculated Hill coefficient.

  10. Glycosidated phospholipids: uncoupling of signalling pathways at the plasma membrane

    OpenAIRE

    Danker, Kerstin; Reutter, Werner; Semini, Geo

    2010-01-01

    Cell expansion and metastasis are considered hallmarks of tumour progression. Therefore, efforts have been made to develop novel anti-cancer drugs that inhibit both the proliferation and the motility of tumour cells. Synthetic alkylphospholipids, compounds with aliphatic side chains that are ether linked to a glycerol backbone, are structurally derived from platelet-activating factor and represent a new class of drugs with anti-proliferative properties in tumour cells. These compounds do not ...

  11. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2014-12-15

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.

  12. Interference of a short-chain phospholipid with ion transport pathways in frog skin

    DEFF Research Database (Denmark)

    Unmack, M A; Frederiksen, O; Willumsen, N J

    1997-01-01

    The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport...... of the frog skin epithelium and opens a paracellular tight junction pathway. Both effects may be caused by incorporation of DDPC in the apical cell membrane....

  13. Interaction of melittin with negatively charged phospholipids: Consequences for lipid organization

    OpenAIRE

    A. M. Batenburg; van Esch, J. H; Leunissen-Bijvelt, J.; Verkleij, A.J.; de Kruijff, B.

    1987-01-01

    A characterization of the structural alterations induced by melittin in model-membranes of dioleoylphosphatidic acid and egg phosphatidylglycerol is presented, based on the use of 31P-NMR, freeze-fracture electron microscopy and small angle X-ray scattering. In accordance with earlier findings on the cardiolipinmelittin system, melittin is found to have an inverted phase inducing effect on these negatively charged lipids, in contrast to the influence on zwitterionic phospholipids. In phosphat...

  14. Enzymatic modification of phospholipids forfunctional applications and human nutrition

    DEFF Research Database (Denmark)

    Guo, Zheng; Vikbjerg, Anders / Falk; Xu, Xuebing

    2005-01-01

    Rapid progress in biochemistry of phospholipids and evolution of modern bioengineering has brought forth a number of novel concepts and technical advancements in the modification of phospholipids for industrial applications and human nutrition. Highlights cover preparation of novel phospholipid...... analogs based on the latest understanding of pivotal role of phospholipids in manifold biological processes, exploration of remarkable application potentials of phospholipids in meliorating human health, as well as development of new chemical and biotechnological approaches applied to the modification...... of phospholipids. This work reviews the natural occurrence and structural characteristics of phospholipids, their updated knowledge on manifold biological and nutritional functions, traditional and novel physical and chemical approaches to modify phospholipids as well as their applications to obtain novel...

  15. Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition

    OpenAIRE

    O’Shea, Karen M.; Khairallah, Ramzi J.; Sparagna, Genevieve C.; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Robert C. Murphy; Fiskum, Gary; Stanley, William C.

    2009-01-01

    Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospho...

  16. Impact of the charge density of phospholipid bilayers on lubrication of articular cartilage surfaces2O3-ZrO2(nano) (12 mol% CeO2) ceramics

    OpenAIRE

    Z. Pawlak; J. Kotynska; Figaszewski, Z A; A. Oloyede; A. Gadomski; A. Gudaniec

    2007-01-01

    Purpose: We attempt to answer the question how some changes in acid - base equilibrium have an impact on the charge density of a phospholipid bilayer formed during lubrication occurring at articular cartilage surfaces.Design/methodology/approach: Liposomes have been used to mimic biological phospholipid membranes on articular cartilage surface where proteins are bounded, ions are transported, energy is transducted, and cellular processes are taking place. The charge density of the membrane wa...

  17. Storage stability of marine phospholipids emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale;

    Marine phospholipids (MPL) are believed to provide more advantages than fish oil from the same source. They are considered to have a better bioavailability, a better resistance towards oxidation and a higher content of polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic...

  18. Process design for enzymatic peptide synthesis in near-anhydrous organic media

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Stuart, M.A.C.; Tramper, J.

    2013-01-01

    This work is a case study on a process design for enzymatic peptide synthesis, which is based on and inspired by previously established data about the Alcalase-catalyzed coupling of an amino acid amide and a chemically synthesized activated N-protected amino acid carbamoylmethyl ester in near-anhydr

  19. Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein-Polymer Surfactant Nanoconstructs.

    Science.gov (United States)

    Brogan, Alex P S; Hallett, Jason P

    2016-04-01

    Nonaqueous biocatalysis is rapidly becoming a desirable tool for chemical and fuel synthesis in both the laboratory and industry. Similarly, ionic liquids are increasingly popular anhydrous reaction media for a number of industrial processes. Consequently, the use of enzymes in ionic liquids as efficient, environment-friendly, commercial biocatalysts is highly attractive. However, issues surrounding the poor solubility and low stability of enzymes in truly anhydrous media remain a significant challenge. Here, we demonstrate for the first time that engineering the surface of a protein to yield protein-polymer surfactant nanoconstructs allows for dissolution of dry protein into dry ionic liquids. Using myoglobin as a model protein, we show that this method can deliver protein molecules with near native structure into both hydrophilic and hydrophobic anhydrous ionic liquids. Remarkably, using temperature-dependent synchrotron radiation circular dichroism spectroscopy to measure half-denaturation temperatures, our results show that protein stability increases by 55 °C in the ionic liquid as compared to aqueous solution, pushing the solution thermal denaturation beyond the boiling point of water. Therefore, the work presented herein could provide a platform for the realization of biocatalysis at high temperatures or in anhydrous solvent systems. PMID:26976718

  20. Effect of enzyme dehydration on alcalase-catalyzed dipeptide synthesis in near-anhydrous organic media.

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2013-01-01

    The effect of enzyme dehydration by molecular sieves on the coupling of phenylalanine amide and the carbamoylmethyl ester of N-protected phenylalanine in near-anhydrous tetrahydrofuran was investigated. This coupling was catalyzed by Alcalase covalently immobilized onto macroporous acrylic beads (Co

  1. Kinetics of Alcalase-catalyzed dipeptide synthesis in near-anhydrous organic media

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2013-01-01

    The coupling kinetics of phenylalanine amide and the carbamoylmethyl ester of N-protected phenylalanine in near-anhydrous tetrahydrofuran were investigated. This coupling was catalyzed by Alcalase covalently immobilized onto macroporous acrylic beads; these immobilized enzymes were hydrated prior to

  2. Influence of amorphous content on compaction behaviour of anhydrous alpha-lactose.

    Science.gov (United States)

    Ziffels, S; Steckel, H

    2010-03-15

    Modified lactoses are widely used as filler-binders in direct compression of tablets. Until today, little about the compaction behaviour of anhydrous alpha-lactose is known. In this study, a new method to prepare anhydrous alpha-lactose from alpha-lactose monohydrate by desiccation with heated ethanol was evaluated and the influence of amorphous content in the lactose powder prior to modification on powder properties, compaction behaviour and storage stability was determined. The modification process led to anhydrous alpha-lactose with decreased bulk and tapped density, increased flow rate and significantly higher specific surface area. Due to the higher specific surface area, the compaction behaviour of the anhydrous alpha-lactose was found to be significantly better than the compaction behaviour of powder blends consisting of alpha-lactose monohydrate and amorphous lactose. An influence of the amorphous content prior to modification could be observed only at higher compaction forces. In general, tablets of modified powders needed longer time to disintegrate directly after compression. However, the storage stability of modified tablets was found to be better compared to the amorphous-crystalline tablets which were influenced by storage conditions, initial crushing strength as well as amorphous content due to the re-crystallization of amorphous lactose during storage. PMID:20005927

  3. Ammonium-iodide route to anhydrous EuI2:mechanism and preparation

    Institute of Scientific and Technical Information of China (English)

    刁成鹏; 余金秋; 李红卫; 彭鹏; 吴浩; 何华强; 颜世宏; 胡运生

    2015-01-01

    Anhydrous EuI2 is an essential raw material for novel Eu2+-doped halide scintillators such as SrI2:Eu, CsBa2I5:Eu and BaBrI:Eu. An efficient and economic method to produce high purity anhydrous EuI2 is critical for future development and applications of these scintillators. In this paper, the ammonium-iodide route to anhydrous EuI2 was investigated, and anhydrous EuI2 with purity of 99.95 wt.%was successfully prepared. The dehydration mechanisms of europium iodide hydrate and its mixture with NH4I were comparatively investigated by X-ray diffraction (XRD), thermal analysis and fluorescence spectroscopy. The thermal decomposition process of individual europium iodide hydrate was revealed as follows:EuI3·9H2O→EuI3·8H2O→EuI3·7H2O→EuI2·H2O→EuI2, and the hydrolysis mechanism of europium hydrate was comprehensively studied. When europium iodide hydrate was dehydrated with NH4I, NH4Eu2I5 formed as an intermediate product, and the hydrolysis of EuI2 was effectively restrained. The role of NH4I as an io-dination agent was also discussed.

  4. 75 FR 40765 - Hours of Service; Limited Exemption for the Distribution of Anhydrous Ammonia in Agricultural...

    Science.gov (United States)

    2010-07-14

    ... Management System published in the Federal Register on January 17, 2008 (73 FR 3316), or you may visit http... of the retail or wholesale distribution point (54 FR 13441). The waiver extended the agricultural... Distribution of Anhydrous Ammonia in Agricultural Operations AGENCY: Federal Motor Carrier...

  5. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid (1-acyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]ca

  6. SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study

    Energy Technology Data Exchange (ETDEWEB)

    Khattari, Z. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany); Brotons, G. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany); Arbely, E. [Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904 (Israel); Arkin, I.T. [Alexander Silberman Institute of Life Sciences, Department of Biological Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904 (Israel); Metzger, T.H. [European Synchrotron Radiation Facility, Boite Postale 220, 38043 Grenoble (France); Salditt, T. [Institut fuer Roentgenphysik, Universitaet Goettingen, Geiststrasse 11, 37073 Goettingen (Germany)]. E-mail: tsaldit@gwdg.de

    2005-02-28

    We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.

  7. Scientific Opinion on the safety and efficacy of betaine anhydrous as a feed additive for all animal species based on a dossier submitted by Danisco Animal Nutrition

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available Glycine betaine (betaine acts as a methyl group donor in transmethylation reactions in organisms. Betaine occurs in numerous vertebrate tissues as an osmolyte, ensuring osmoprotection. Betaine is safe for piglets at the maximum supplementation rate of 2 000 mg/kg complete feed with a margin of safety below 5. This conclusion is extended to all pigs and extrapolated to all animal species and categories. The use of betaine as a feed additive up to a supplementation rate of 2 000 mg/kg complete feed is unlikely to pose concerns for consumer safety. Users’ inhalation exposure to betaine is expected to be minimal. Betaine anhydrous should be considered irritant to skin, eyes and mucous membranes and a skin sensitiser. It is likely to cause skin sensitisation. The supplementation of feed with betaine anhydrous does not pose a risk to the environment. Betaine has the potential to become efficacious in all animal species and categories when administered via feed or water for drinking. The FEEDAP Panel made some recommendations on (i introduction of a maximum content for supplemental betaine in complete feed and water for drinking; (ii avoidance of simultaneous use of betaine in feed and water for drinking; and (iii avoidance of simultaneous inclusion of betaine and choline chloride in premixtures.

  8. The Phospholipid Profile of Mycoplasmas

    Directory of Open Access Journals (Sweden)

    Jonathan D. Kornspan

    2012-01-01

    Full Text Available The de novo synthesized polar lipids of Mycoplasma species are rather simple, comprising primarily of the acidic glycerophospholipids PG and CL. In addition, when grown in a medium containing serum, significant amounts of PC and SPM are incorporated into the mycoplasma cell membrane although these lipids are very uncommon in wall-covered bacteria. The exogenous lipids are either incorporated unchanged or the PC incorporated is modified by a deacylation-acylation enzymatic cycle to form disaturated PC. Although their small genome, in some Mycoplasma species, other genes involved in lipid biosynthesis were detected, resulting in the synthesis of a variety of glycolipis, phosphoglycolipids and ether lipids. We suggest that analyses and comparisons of mycoplasma polar lipids may serve as a novel and useful tool for classification. Nonetheless, to evaluate the importance of polar lipids in mycoplasma, further systematic and extensive studies on more Mycoplasma species are needed. While studies are needed to elucidate the role of lipids in the mechanisms governing the interaction of mycoplasmas with host eukaryotic cells, the finding that a terminal phosphocholine containing glycolipids of M. fermentans serves both as a major immune determinants and as a trigger of the inflammatory responses, and the findings that the fusogenicity of M. fermentans with host cells is markedly stimulated by lyso-ether lipids, are important steps toward understanding the molecular mechanisms of M. fermentans pathogenicity.

  9. Phospholipid Binding Protein C Inhibitor (PCI Is Present on Microparticles Generated In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Einfinger

    Full Text Available Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.

  10. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng;

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...

  11. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, Inés; Rivas, Luis; Keough, Kevin M W;

    2004-01-01

    In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate...... spontaneously with bilayers composed of either zwitterionic (phosphatidylcholine) or anionic (phosphatidylglycerol) phospholipids. The peptides show higher affinity for anionic than for zwitterionic membranes. Interaction of the peptides with both zwitterionic and anionic membranes promotes phospholipid vesicle...... aggregation, and leakage of the aqueous content of the vesicles. The lipid-peptide interaction includes a significant hydrophobic component for both zwitterionic and anionic membranes, although the interaction with phosphatidylglycerol bilayers is also electrostatic in nature. The effects of the SP-C N...

  12. Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy.

    Science.gov (United States)

    Mottola, Milagro; Wilke, Natalia; Benedini, Luciano; Oliveira, Rafael Gustavo; Fanani, Maria Laura

    2013-11-01

    Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine+ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5×10(5) and a ΔGp=-6.7kcal·mol(-1). The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug. PMID:23806650

  13. Increased Concentration of Polyvalent Phospholipids in the Adsorption Domain of a Charged Protein

    CERN Document Server

    Haleva, E; Diamant, H; Haleva, Emir; Ben-Tal, Nir; Diamant, Haim

    2004-01-01

    We studied the adsorption of a charged protein onto an oppositely charged membrane, composed of mobile phospholipids of differing valence, using a statistical-thermodynamical approach. A two-block model was employed, one block corresponding to the protein-affected region on the membrane, referred to as the adsorption domain, and the other to the unaffected remainder of the membrane. We calculated the protein-induced lipid rearrangement in the adsorption domain as arising from the interplay between the electrostatic interactions in the system and the mixing entropy of the lipids. Equating the electrochemical potentials of the lipids in the two blocks yields an expression for the relations among the various lipid fractions in the adsorption domain, indicating a sensitive (exponential) dependence on lipid valence. This expression is a result of the two-block picture but does not depend on further details of the protein-membrane interaction. We subsequently calculated the lipid fractions themselves using the Pois...

  14. Identification of unusual phospholipid fatty acyl compositions of Acanthamoeba castellanii.

    Directory of Open Access Journals (Sweden)

    Marta Palusinska-Szysz

    Full Text Available Acanthamoeba are opportunistic protozoan pathogens that may lead to sight-threatening keratitis and fatal granulomatous encephalitis. The successful prognosis requires early diagnosis and differentiation of pathogenic Acanthamoeba followed by aggressive treatment regimen. The plasma membrane of Acanthamoeba consists of 25% phospholipids (PL. The presence of C20 and, recently reported, 28- and 30-carbon fatty acyl residues is characteristic of amoeba PL. A detailed knowledge about this unusual PL composition could help to differentiate Acanthamoeba from other parasites, e.g. bacteria and develop more efficient treatment strategies. Therefore, the detailed PL composition of Acanthamoeba castellanii was investigated by 31P nuclear magnetic resonance spectroscopy, thin-layer chromatography, gas chromatography, high performance liquid chromatography and liquid chromatography-mass spectrometry. Normal and reversed phase liquid chromatography coupled with mass spectrometric detection was used for detailed characterization of the fatty acyl composition of each detected PL. The most abundant fatty acyl residues in each PL class were octadecanoyl (18∶0, octadecenoyl (18∶1 Δ9 and hexadecanoyl (16∶0. However, some selected PLs contained also very long fatty acyl chains: the presence of 28- and 30-carbon fatty acyl residues was confirmed in phosphatidylethanolamine (PE, phosphatidylserine, phosphatidic acid and cardiolipin. The majority of these fatty acyl residues were also identified in PE that resulted in the following composition: 28∶1/20∶2, 30∶2/18∶1, 28∶0/20∶2, 30∶2/20∶4 and 30∶3/20∶3. The PL of amoebae are significantly different in comparison to other cells: we describe here for the first time unusual, very long chain fatty acids with Δ5-unsaturation (30∶35,21,24 and 30∶221,24 localized exclusively in specific phospholipid classes of A. castellanii protozoa that could serve as specific biomarkers for the presence of

  15. Interactions of biocidal guanidine hydrochloride polymer analogs with model membranes: a comparative biophysical study

    Institute of Scientific and Technical Information of China (English)

    Zhongxin Zhou; Anna Zheng; Jianjiang Zhong

    2011-01-01

    Four synthesized biocidal guanidine hydrochloride polymers with different alkyl chain length,including polyhexamethylene guanidine hydrochloride and its three new analogs,were used to investigate their interactions with phospholipids vesicles mimicking bacterial membrane.Characterization was conducted by using fluorescence dye leakage,isothermal titration calorimetry,and differential scanning calorimetry.The results showed that the gradually lengthened alkyl chain of the polymer increased the biocidal activity,accompanied with the increased dye leakage rate and the increased binding constant and energy change value of polymer-membrane interaction.The polymer-membrane interaction induced the change of pretransition and main phase transition (decreased temperature and increased width) of phospholipids vesicles,suggesting the conformational change in the phospholipids headgroups and disordering in the hydrophobic regions of lipid membranes.The above information revealed that the membrane disruption actions of guanidine hydrochloride polymers are the results of the polymer's strong binding to the phospholipids membrane and the subsequent perturbations of the polar headgroups and hydrophobic core region of the phospholipids membrane.The alkyl chain structure significantly affects the binding constant and energy change value of the polymer-membrane interactions and the perturbation extent of the phospholipids membrane,which lead to the different biocidal activity of the polymer analogs.This work provides important information about the membrane disruption action mechanism of biocidal guanidine hydrochloride polymers.

  16. Dietary Phospholipids and Intestinal Cholesterol Absorption

    OpenAIRE

    Sally Tandy; Chung, Rosanna W. S.; Elaine Wat; Alvin Kamili; Cohn, Jeffrey S.

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the abili...

  17. Conducting gramicidin channel activity in phospholipid monolayers.

    OpenAIRE

    A. Nelson

    2001-01-01

    Potential step amperometry (chronoamperometry) of the Tl(I)/Tl(Hg) electrochemical reduction process has been used to investigate the underlying mechanisms of gramicidin activity in phospholipid monolayers. The experiments were carried out at gramicidin-modified dioleoyl phosphatidylcholine (DOPC)-coated electrodes. Application of a potential step to the coated electrode system results in a current transient that can be divided into two regions. An initial exponential decay of current corresp...

  18. Human Monoclonal Antiphospholipid Antibodies Disrupt the Annexin A5 Anticoagulant Crystal Shield on Phospholipid Bilayers

    Science.gov (United States)

    Rand, Jacob H.; Wu, Xiao-Xuan; Quinn, Anthony S.; Chen, Pojen P.; McCrae, Keith R.; Bovill, Edwin G.; Taatjes, Douglas J.

    2003-01-01

    The antiphospholipid (aPL) syndrome is an autoimmune condition that is marked by recurrent pregnancy losses and/or systemic vascular thrombosis in patients who have antibodies against phospholipid/co-factor complexes. The mechanism(s) for pregnancy losses and thrombosis in this condition is (are) not known. Annexin A5 is a potent anticoagulantprotein, expressed by placental trophoblasts and endothelial cells, that crystallizes over anionic phospholipids, shielding them from availability for coagulation reactions. We previously presented data supporting the hypothesis that aPL antibody-mediated disruption of the anticoagulant annexin A5 shield could be a thrombogenic mechanism in the aPL syndrome. However, this has remained a subject of controversy. We therefore used atomic force microscopy, a method previously used to study the crystallization of annexin A5, to image the effects of monoclonal human aPL antibodies on the crystal structure of the protein over phospholipid bilayers. In the presence of the aPL monoclonal antibodies (mAbs) and β2-GPI, the major aPL co-factor, structures presumed to be aPL mAb-antigen complexes were associated with varying degrees of disruption to the annexin A5 crystallization pattern over the bilayer. In addition, measurements of prothrombinase activity on the phospholipid bilayers showed that the aPL mAbs reduced the anti-coagulant effect of annexin A5 and promoted thrombin generation. These data provide morphological evidence that support the hypothesis that aPL antibodies can disrupt annexin A5 binding to phospholipid membranes and permit increased generation of thrombin. The aPL antibody-mediated disruption of the annexin A5 anticoagulant shield may be an important prothrombotic mechanism in the aPL syndrome. PMID:12937161

  19. Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Drücker, Patrick [Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster (Germany); Gerke, Volker [Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster (Germany); Galla, Hans-Joachim, E-mail: gallah@uni-muenster.de [Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster (Germany)

    2014-10-10

    Highlights: • We show long-term mechanical stabilization of solid supported bilayers. • Bilayer integrity is essential for the investigation of protein–lipid interactions. • Protein adsorption to a bilayer containing defects causes membrane destruction. - Abstract: The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO{sub 2} and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P{sub 2} (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P{sub 2} and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.

  20. Adsorption of Egg-PC to an Air/Water and Triolein/Water Bubble Interface: Use of the 2-Dimensional Phase Rule to Estimate the Surface Composition of a Phospholipid/Triolein/Water Surface as a Function of Surface Pressure

    OpenAIRE

    Mitsche, Matthew A.; Wang, Libo; Small, Donald M.

    2010-01-01

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bu...

  1. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    Science.gov (United States)

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  2. Membrane Organization and Dynamics in Cell Polarity

    OpenAIRE

    Orlando, Kelly; Guo, Wei

    2009-01-01

    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  3. Synthesis of anhydrous K2TiOF4 via a mild hydrothermal method

    Science.gov (United States)

    Felder, Justin B.; Yeon, Jeongho; zur Loye, Hans-Conrad

    2015-10-01

    The synthesis of anhydrous K2TiOF4 has been previously attempted by transforming precursor compounds, such as the peroxide (K2Ti(O2)F4), hydrate (K2TiOF4·H2O) and fluoride (K2TiF6). Due to the large structural differences between these precursors and the anhydrous oxyfluorides, however, these preparations have been unsuccessful. Therefore, a direct method of synthesis has been employed to grow single crystals of K2TiOF4 that were characterized by single crystal x-ray diffraction. K2TiOF4 was found to be isostructural with the previously known K2VOF4.

  4. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  5. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    Science.gov (United States)

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  6. Interest of Fluorescence Derivatization and Fluorescence Probe Assisted Post-column Detection of Phospholipids: A Short Review

    Directory of Open Access Journals (Sweden)

    Pratrice Prognon

    2010-01-01

    Full Text Available Phospholipids are essential constituents of all living cell membranes. There are many analytical methods available for the quantitative and qualitative determination of phospholipids, but since these molecules lack chromophores, common absorbance based methods are of limited use. Beside mass spectrometry, some less specific approaches that are routinely used are evaporative light scattering detection or fluorescence, which exhibit sufficient sensitivity. Here, we focus on fluorescence, which remains an interesting way to quantify phospholipids. Two ways of detecting phospholipids by fluorescence are possible coupled with separation techniques such as thin layer chromatography (TLC, high performance liquid chromatography (HPLC and capillary electrophoresis (CE: firstly, pre-column derivatization procedures and secondly, probe assisted post-column detection with suitable fluorescence reagents. In both cases, the common purpose is to increase the detection sensitivity. It is shown that, whereas pre-column derivatization is characterized by selectivity due to the chemical functionality of the analyte involved in the derivatization process, in supramolecular post-column derivatization, the selectivity only proceeds from the capacity of the lipid to involve supramolecular assemblies with a fluorescence probe. The aim of this review is to summarize available experiments concerning fluorescence detection of phospholipids. The interest and limitation of such detection approaches are discussed.

  7. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    Science.gov (United States)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  8. Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts

    DEFF Research Database (Denmark)

    Li, Han-Jung; Lausche, Adam C.; Peterson, Andrew A.;

    2015-01-01

    Abstract Direct dehydrogenation of methanol to produce anhydrous formaldehyde is investigated using periodic density functional theory (DFT) and combining the microkinetic model to estimate rates and selectivities on stepped (211) surfaces under a desired reaction condition. Binding energies......-type transition metal alloys are screened based on their predicted rates and selectivities, as well as their estimated stabilities and prices. We finally propose several promising candidates for the dehydrogenation of CH3OH....

  9. THE PRODUCTION OF PURE ABSOLUTE ALCOHOL WITH CALCIUM CARBIDE AND ANHYDROUS COPPER SULPHATE.

    Science.gov (United States)

    Lyons, R E; Smith, L T

    1925-09-01

    (1) The above is recommended as an economical, convenient and quick method for producing absolute alcohol on a laboratory scale. If the distillation is executed with free flame, excessive or careless heating must be avoided near the end of the operation because of the copper acetylide in the residue. (2) Calcium carbide is recommended over potassium permanganate or anhydrous copper sulphate as a qualitative reagent in detecting traces of water in alcohol.

  10. Neutron diffraction analysis of residual stresses near unannealed welds in anhydrous ammonia nurse tanks.

    Science.gov (United States)

    Becker, A T; Chumbley, L S; Goettee, D; Russell, A M

    2014-01-01

    Neutron diffraction analysis was employed to measure residual stresses near welds in used anhydrous ammonia nurse tanks. Tensile residual stresses contribute to stress corrosion cracking of nurse tanks, which can cause tanks to release toxic ammonia vapor. The analysis showed that tensile residual stresses were present in the tanks measured, and the magnitudes of these stresses approached the yield strength of the steel. Implications for agricultural safety and health are discussed.

  11. Using neurolipidomics to identify phospholipid mediators of synaptic (dysfunction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Steffany A L Bennett

    2013-07-01

    Full Text Available Not all of the mysteries of life lie in our genetic code. Some can be found buried in our membranes. These shells of fat, sculpted in the central nervous system into the cellular (and subcellular boundaries of neurons and glia, are themselves complex systems of information. The diversity of neural phospholipids, coupled with their chameleon-like capacity to transmute into bioactive molecules, provides a vast repertoire of immediate response second messengers. The effects of compositional changes on synaptic function have only begun to be appreciated. Here, we mined 29 different neurolipidomic datasets for changes in neuronal membrane phospholipid metabolism in Alzheimer’s Disease. Three overarching metabolic disturbances were detected. We found that an increase in the hydrolysis of platelet activating factor precursors and ethanolamine-containing plasmalogens, coupled with a failure to regenerate relatively rare alkyl-acyl and alkenyl-acyl structural phospholipids, correlated with disease severity. Accumulation of specific bioactive metabolites (i.e., PC(O-16:0/2:0 and PE(P-16:0/0:0 was associated with aggravating tau pathology, enhancing vesicular release, and signaling neuronal loss. Finally, depletion of PI(16:0/20:4, PI(16:0/22:6, and PI(18:0/22:6 was implicated in accelerating Aβ42 biogenesis. Our analysis further suggested that converging disruptions in platelet activating factor, plasmalogen, phosphoinositol and phosphoethanolamine, and docosahexaenoic acid metabolism may contribute mechanistically to catastrophic vesicular depletion, impaired receptor trafficking, and morphological dendritic deformation. Together, this analysis supports an emerging hypothesis that aberrant phospholipid metabolism may be one of multiple critical determinants required for Alzheimer disease conversion.

  12. Design, simulation and testing of capacitive micromachined ultrasound transducer-based phospholipidic biosensor elements

    International Nuclear Information System (INIS)

    In this study we present theoretical proof of the principle of using interdigital capacitive micromachined ultrasound transducers (CMUT IDTs) for the detection of phospholipid membrane elasticity. Proof of principle was needed to find out whether the new type of microelectromechanical sensors of the toxins incorporated with the lipid membranes was feasible. CMUT IDTs for 10 MHz operation in water, with 146 µm spaced double fingers were designed and fabricated using the surface micromachining technique. Fabricated CMUTs were tested for their resonance in air and for Scholte-type wave transmission in deionized water and isopropanol solutions containing 0%, 10% and 20% water. The amplitude and phase velocity of the excited and received Scholte waves were measured in a 200 µm height microchannel, capped with a thick layer of soft polymer, which suppressed the production of non-informative guided waves. It was determined that the average sensitivity of Scholte wave phase velocity within the given range of solution concentrations is 2.9 m s−1 per one percent. Experimental data were also used to verify the adequacy of the finite element model, which was found to be suitable for reliable prediction of the phospholipid membrane elasticity impact on the Scholte wave phase velocity or the resonance frequency in the present IDT structure. It was determined that for the analyzed conditions (the elasticity of simulated phospholipid membrane changed from 1 to 5 GPa) the sensitivity of the measurement channel is expected to be no worse than 2 kHz GPa−1 in terms of the Scholte wave and CMUT IDT resonance frequency. This leads to a positive conclusion on the feasibility of the new sensor type. (paper)

  13. Design, simulation and testing of capacitive micromachined ultrasound transducer-based phospholipidic biosensor elements

    Science.gov (United States)

    Sapeliauskas, E.; Vanagas, G.; Barauskas, D.; Mikolajunas, M.; Pakenas, E.; Pelenis, D.; Sergalis, G.; Jukna, T.; Virzonis, D.

    2015-07-01

    In this study we present theoretical proof of the principle of using interdigital capacitive micromachined ultrasound transducers (CMUT IDTs) for the detection of phospholipid membrane elasticity. Proof of principle was needed to find out whether the new type of microelectromechanical sensors of the toxins incorporated with the lipid membranes was feasible. CMUT IDTs for 10 MHz operation in water, with 146 µm spaced double fingers were designed and fabricated using the surface micromachining technique. Fabricated CMUTs were tested for their resonance in air and for Scholte-type wave transmission in deionized water and isopropanol solutions containing 0%, 10% and 20% water. The amplitude and phase velocity of the excited and received Scholte waves were measured in a 200 µm height microchannel, capped with a thick layer of soft polymer, which suppressed the production of non-informative guided waves. It was determined that the average sensitivity of Scholte wave phase velocity within the given range of solution concentrations is 2.9 m s-1 per one percent. Experimental data were also used to verify the adequacy of the finite element model, which was found to be suitable for reliable prediction of the phospholipid membrane elasticity impact on the Scholte wave phase velocity or the resonance frequency in the present IDT structure. It was determined that for the analyzed conditions (the elasticity of simulated phospholipid membrane changed from 1 to 5 GPa) the sensitivity of the measurement channel is expected to be no worse than 2 kHz GPa-1 in terms of the Scholte wave and CMUT IDT resonance frequency. This leads to a positive conclusion on the feasibility of the new sensor type.

  14. Preparation of anhydrous magnesium chloride in a gas-solid reaction with ammonium carnallite

    Institute of Scientific and Technical Information of China (English)

    Zhou Ningbo; Chen Baizhen; He Xinkuai; Li Yibing

    2006-01-01

    Dehydrated ammonium carnallite was synthesized with bischofite from salt lake and ammonium chloride solution in a 1:1 molar ratio of MgCl2:NH4Cl,dehydrated at 160℃ for about 4 h.The yield was above 85%.The product was then mixed with solid-state ammonium chloride with a 1:4 mass ratio for the further dehydration at 410℃.The decomposition of NH4Cl made a pressure of NH3 at 30.5 kPa to prevent the hydrolysis of ammonium carnallite.The anhydration of magnesium chloride was achieved at 700℃.The results showed that anhydrous magnesium chloride contains magnesium oxide in an amount that was less than 0.1% by weight.XRD pattern and SEM micrograph showed a good dispersion of ammonium carnallite and anhydrous magnesium chloride crystals with well-distributed big grains,just enough to meet the need for the production of magnesium metal in the electrolysis process.

  15. Preparation and characteristic research of anhydrous magnesium chloride with dehydrated ammonium carnallite

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ning-bo; CHEN Bai-zhen; HE Xin-kuai; LI Yi-bing

    2006-01-01

    Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuwas synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1% (mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1:4 at high temperature and with the differential pressure of HN3 above 30.5 kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0. 087% (mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn't mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.

  16. Use of lycopene as a natural antioxidant in extending the shelf-life of anhydrous cow milk fat.

    Science.gov (United States)

    Siwach, Ruby; Tokas, Jayanti; Seth, Raman

    2016-05-15

    Oxidative rancidity in anhydrous cow milk fat leads to reduction in its shelf life. Use of synthetic antioxidants is prevalent in dairy industry to prevent the development of rancidity. Keeping in view the increasing demand for natural additives, the present study was carried out to explore the potential of lycopene as a natural antioxidant in anhydrous cow milk fat. Lycopene at five different levels (30, 60, 90, 120 and 150 ppm) and butylated hydroxyl anisole (200 ppm), were incorporated in anhydrous cow milk fat. Potential of lycopene extract to enhance the shelf life of anhydrous cow milk fat was evaluated by measuring Free Fatty Acids, peroxide value, Thiobarbituric Acid value and color value during 12 months of storage at ambient conditions (30°C). Lycopene significantly (p<0.05) prevented the development of oxidative rancidity. Lycopene containing samples scored significantly higher in terms of sensory attributes as compared to control. PMID:26776006

  17. Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids.

    Directory of Open Access Journals (Sweden)

    Ofelia Maniti

    Full Text Available BACKGROUND: Penetratin is a protein transduction domain derived from the homeoprotein Antennapedia. Thereby it is currently used as a cell penetrating peptide to introduce diverse molecules into eukaryotic cells, and it could also be involved in the cellular export of transcription factors. Moreover, it has been shown that it is able to act as an antimicrobial agent. The mechanisms involved in all these processes are quite controversial. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we report spectroscopic, calorimetric and biochemical data on the penetratin interaction with three different phospholipids: phosphatidylcholine (PC and phosphatidylethanolamine (PE to mimic respectively the outer and the inner leaflets of the eukaryotic plasma membrane and phosphatidylglycerol (PG to mimic the bacterial membrane. We demonstrate that with PC, penetratin is able to form vesicle aggregates with no major change in membrane fluidity and presents no well defined secondary structure organization. With PE, penetratin aggregates vesicles, increases membrane rigidity and acquires an α-helical structure. With PG membranes, penetratin does not aggregate vesicles but decreases membrane fluidity and acquires a structure with both α-helical and β-sheet contributions. CONCLUSIONS/SIGNIFICANCE: These data from membrane models suggest that the different penetratin actions in eukaryotic cells (membrane translocation during export and import and on prokaryotes may result from different peptide and lipid structural arrangements. The data suggest that, for eukaryotic cell penetration, penetratin does not acquire classical secondary structure but requires a different conformation compared to that in solution.

  18. Swelling of phospholipids by monovalent salt

    OpenAIRE

    Petrache, Horia I.; Tristram-Nagle, Stephanie; Harries, Daniel; Kučerka, Norbert; Nagle, John F.; Parsegian, V. Adrian

    2005-01-01

    Critical to biological processes such as membrane fusion and secretion, ion-lipid interactions at the membrane-water interface still raise many unanswered questions. Using reconstituted phosphatidylcholine membranes, we confirm here that multilamellar vesicles swell in salt solutions, a direct indication that salt modifies the interactions between neighboring membranes. By varying sample histories, and by comparing with data from ion carrier-containing bilayers, we eliminate the possibility t...

  19. Critical assessment of phospholipid measurement in amniotic fluid.

    Science.gov (United States)

    Badham, L P; Worth, H G

    1975-09-01

    We assessed several methods of inorganic phosphate assay for their suitability in estimating phospholipids in digested extracts of amniotic fluids. The extraction and digestion procedures used for phospholipids from amniotic fluid were also examined critically. The effect of contamination by blood or obstetric cream has been examined. Accordingly, we suggest a method for measuring total phospholipids in amniotic fluids, and results of it are compared with the lecithin/sphingomyelin ratio measurement in some clinical situations. PMID:1157310

  20. Ice Formation in Model Biological Membranes in the Presence of Cryoprotectors

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Ollivon, M

    2000-01-01

    Ice formation in model biological membranes is studied by SAXS and WAXS in the presence of cryoprotectors: dimethyl sulfoxide and glycerol. Three types of phospholipid membranes: DPPC, DMPC, DSPC are chosen for the investigation as well-studied model biological membranes. A special cryostat is used for sample cooling from 14.1C to -55.4C. The ice formation is only detected by WAXS in binary phospholipid/water and ternary phospholipid/cryoprotector/water systems in the condition of excess solvent. Ice formation in a binary phospholipid/water system creates an abrupt decrease of the membrane repeat distance by delta-d, so-called ice-induced dehydration of intermembrane space. The value of delta-d decreases as the cryoprotector concentration increases. The formation of ice does not influence the membrane structure (delta-d = 0) for cryoprotector mole fractions higher than 0.05.

  1. Asymmetry in the renewal of molecular classes of phosphatidylcholine in the rat-erythrocyte membrane

    NARCIS (Netherlands)

    Renooij, W.; Golde, L.M.G. van

    1979-01-01

    1. 1. Rat-blood phospholipids were labeled in vivo with [32P]phosphate. The erythrocytes were treated with phospholipase A2 plus sphingomyelinase to discriminate between the labeling patterns of the phospholipids from the inner and outer layer of the membrane. 2. 2. The specific activities of the m

  2. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    CERN Document Server

    Peterlin, Primoz

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modelled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kHz range, and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied AC electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys. J. 95:L19--L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of m...

  3. Synthesis and characterisation of cationically modified phospholipid polymers.

    Science.gov (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  4. Isolation and Analysis of Phospholipids in Dairy Foods.

    Science.gov (United States)

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela; Rodríguez-Alcalá, Luis Miguel

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors. PMID:27610267

  5. Incorporation of peptides in phospholipid aggregates using ultrasound.

    Science.gov (United States)

    Silva, Raquel; Little, Collin; Ferreira, Helena; Cavaco-Paulo, Artur

    2008-09-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LLLLK LLLLK; LLLLL LCLCL LLKAK AK) was made by the thin film hydration method. The LUVs (uni-lamellar vesicles) were obtained by sonication, applying different experimental conditions, such as depth (mm) and power intensity (%). Photon-correlation spectroscopy (PCS) and electronic microscopy (EM) results confirmed that the incorporation of these peptides, with different sequence of amino acids, presented differences on the diameter, zeta-potential of membrane surface and shape of liposomes. The liposomes that included peptide LLLLK LLLLK LLLLK LLLLK present an increased in zeta-potential values after using ultrasound and an "amorphous" aspect. Conversely, the liposomes that incorporated the peptide LLLLL LCLCL LLKAK AK presented a define shape (rod shape) and the potential surface of liposome did not change significantly by the use of ultrasound. PMID:18467154

  6. Isolation and Analysis of Phospholipids in Dairy Foods

    Directory of Open Access Journals (Sweden)

    Lígia Pimentel

    2016-01-01

    Full Text Available The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer’s disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.

  7. Isolation and Analysis of Phospholipids in Dairy Foods

    Science.gov (United States)

    Pimentel, Lígia; Gomes, Ana; Pintado, Manuela

    2016-01-01

    The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors. PMID:27610267

  8. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    Directory of Open Access Journals (Sweden)

    Ya-Wen eLu

    2015-02-01

    Full Text Available The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step towards delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: 1 oxidative phosphorylation (subunits and assembly factors; 2 mitochondrial DNA maintenance and expression; 3 mitochondrial protein import and assembly; 4 mitochondrial quality control (chaperones and proteases; 5 iron-sulfur cluster homeostasis; and 6 mitochondrial dynamics (fission and fusion. Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  9. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Harris, Joel M

    2016-09-01

    Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain

  10. Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE

    OpenAIRE

    Suefuji, Kyoko; Valluzzi, Regina; RayChaudhuri, Debabrata

    2002-01-01

    Accurate positioning of the division septum at the equator of Escherichia coli cells requires a rapid oscillation of MinD ATPase between the polar halves of the cell membrane, together with the division inhibitor MinC, under MinE control. The mechanism underlying MinD oscillation remains poorly understood. Here, we demonstrate that purified MinD assembles into protein filaments in the presence of ATP. Incubation with phospholipid vesicles further stimulates MinD polymerization. Addition of pu...

  11. Effect of Phospholipids and a Transmembrane Peptide on the Stability of the Cubic Phase of Monoolein: Implication for Protein Crystalization from a Cubic Phase

    Science.gov (United States)

    Chupin, V.; Killian, J. A.; de Kruijff, B.

    2003-01-01

    The cubic phase of monoolein has successfully been used for crystallization of a number of membrane proteins. However, the mechanism of protein crystallization in the cubic phase is still unknown. It was hypothesized, that crystallization occurs at locally formed patches of bilayers. To get insight into the stability of the cubic phase, we investigated the effect of different phospholipids and a model transmembrane peptide on the lipid organization in mixed monoolein systems. Deuterium-labeled 1-oleoyl-rac-[2H5]-glycerol was used as a selective probe for 2H NMR. The phase behavior of the phospholipids was followed by 31P NMR. Upon incorporation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, or phosphatidic acid, the cubic phase of monoolein transformed into the Lα or HII phase depending on the phase preference of the phospholipid and its concentration. The ability of phospholipids to destabilize the cubic phase was found to be dependent on the phospholipid packing properties. Electrostatic repulsion facilitated the cubic-to-Lα transition. Incorporation of the transmembrane peptide KALP31 induced formation of the Lα phase with tightly packed lipid molecules. In all cases when phase separation occurs, monoolein and phospholipid participate in both phases. The implications of these findings for protein crystallization are discussed. PMID:12668446

  12. Screening for the drug-phospholipid interaction: correlation to phospholipidosis

    DEFF Research Database (Denmark)

    Alakoskela, Juha-Matti; Vitovic, Pavol; Kinnunen, Paavo K J

    2009-01-01

    Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic pro...

  13. Phospholipid flippases Lem3p-Dnf1p and Lem3p-Dnf2p are involved in the sorting of the tryptophan permease Tat2p in yeast.

    Science.gov (United States)

    Hachiro, Takeru; Yamamoto, Takaharu; Nakano, Kenji; Tanaka, Kazuma

    2013-02-01

    The type 4 P-type ATPases are flippases that generate phospholipid asymmetry in membranes. In budding yeast, heteromeric flippases, including Lem3p-Dnf1p and Lem3p-Dnf2p, translocate phospholipids to the cytoplasmic leaflet of membranes. Here, we report that Lem3p-Dnf1/2p are involved in transport of the tryptophan permease Tat2p to the plasma membrane. The lem3Δ mutant exhibited a tryptophan requirement due to the mislocalization of Tat2p to intracellular membranes. Tat2p was relocalized to the plasma membrane when trans-Golgi network (TGN)-to-endosome transport was inhibited. Inhibition of ubiquitination by mutations in ubiquitination machinery also rerouted Tat2p to the plasma membrane. Lem3p-Dnf1/2p are localized to endosomal/TGN membranes in addition to the plasma membrane. Endocytosis mutants, in which Lem3p-Dnf1/2p are sequestered to the plasma membrane, also exhibited the ubiquitination-dependent missorting of Tat2p. These results suggest that Tat2p is ubiquitinated at the TGN and missorted to the vacuolar pathway in the lem3Δ mutant. The NH(2)-terminal cytoplasmic region of Tat2p containing ubiquitination acceptor lysines interacted with liposomes containing acidic phospholipids, including phosphatidylserine. This interaction was abrogated by alanine substitution mutations in the basic amino acids downstream of the ubiquitination sites. Interestingly, a mutant Tat2p containing these substitutions was missorted in a ubiquitination-dependent manner. We propose the following model based on these results; Tat2p is not ubiquitinated when the NH(2)-terminal region is bound to membrane phospholipids, but if it dissociates from the membrane due to a low level of phosphatidylserine caused by perturbation of phospholipid asymmetry in the lem3Δ mutant, Tat2p is ubiquitinated and then transported from the TGN to the vacuole.

  14. The Cl Isotope Composition of the Moon as evidence for an Anhydrous Mantle (Invited)

    Science.gov (United States)

    Sharp, Z. D.; Shearer, C., Jr.; McKeegan, K. D.; Barnes, J.; Wang, Y.

    2010-12-01

    The chlorine isotope composition of primitive terrestrial basalts and carbonaceous chondrites cover a narrow range centered around 0‰ with a total variation of ± 0.5‰. In contrast, the chlorine isotope composition of bulk samples and in situ ion microprobe analyses of lunar basalts and glasses cover a range of 25‰. Three possibilities were considered to explain the large spread: 1) initial isotopic heterogeneities, 2) devolatilization from solar wind/micrometeorite bombardment, 3) degassing under anhydrous conditions. The first of these possibilities is rejected because the Moon went through an magma ocean stage which would have homogenized any isotopic heterogeneities. To examine surface effects, we chose samples that have extremely different degrees of surface exposure. We find no correlation between the Cl isotope composition and surface exposure. We also conducted a laboratory experiment in which a thin film of NaCl was bombarded with a proton source for 24 hours with no change in Cl isotope composition. The third possibility is that the fractionation is explained by the anhydrous character of the Moon. On Earth, the volatiling Cl species is HCl. HCl is known to preferentially incorporate 37Cl relative to 35Cl due to the high bond strength of the molecule. This is offset by the higher translational velocity of H35Cl, so that overall, there is very little Cl isotope fractionation during degassing. We propose that lunar basalts were anhydrous and the volatile Cl species were metal chlorides, such as ZnCl2, NaCl, FeCl2, etc. The bond strength of metal chlorides and Cl dissolved in a basalt are similar, so that fractionation is caused mainly by volatilization, with the light isotopologue preferentially lost to the vapor phase. This idea is supported by the consistent lower Cl isotope ratios of water soluble salt fraction (~10 ‰ lower) and the lowest lunar Cl isotope values close to those of bulk Earth. The H content of lunar magmas must have been lower

  15. Regulation of lung surfactant phospholipid synthesis and metabolism.

    Science.gov (United States)

    Goss, Victoria; Hunt, Alan N; Postle, Anthony D

    2013-02-01

    The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states. PMID:23200861

  16. Molecular dynamic study of MlaC protein in Gram-negative bacteria: conformational flexibility, solvent effect and protein-phospholipid binding.

    Science.gov (United States)

    Huang, Yu-Ming M; Miao, Yinglong; Munguia, Jason; Lin, Leo; Nizet, Victor; McCammon, J Andrew

    2016-08-01

    The composition of the outer membrane in Gram-negative bacteria is asymmetric, with the lipopolysaccharides found in the outer leaflet and phospholipids in the inner leaflet. The MlaC protein transfers phospholipids from the outer to inner membrane to maintain such lipid asymmetry in the Mla pathway. In this work, we have performed molecular dynamics simulations on apo and phospholipid-bound systems to study the dynamical properties of MlaC. Our simulations show that the phospholipid forms hydrophobic interactions with the protein. Residues surrounding the entrance of the binding site exhibit correlated motions to control the site opening and closing. Lipid binding leads to increase of the binding pocket volume and precludes entry of the water molecules. However, in the absence of the phospholipid, water molecules can freely move in and out of the binding site when the pocket is open. Dehydration occurs when the pocket closes. This study provides dynamic information of the MlaC protein and may facilitate the design of antibiotics against the Mla pathway of Gram-negative bacteria. PMID:27111825

  17. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Composite membranes based on poly(2,2′(m-phenylene)-5,5′bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials

  18. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes.

    Directory of Open Access Journals (Sweden)

    Luis Felipe Pineda De Castro

    Full Text Available In contrast to the majority of organisms that have cells bound by di-ester phospholipids, archaeal membranes consist of di- and tetraether phospholipids. Originating from organisms that withstand harsh conditions (e.g., low pH and a wide range of temperatures such membranes have physical properties that make them attractive materials for biological research and biotechnological applications. We developed force-field parameters based on the widely used Generalized Amber Force Field (GAFF to enable the study of anionic tetraether membranes of the model archaean Sulfolobus acidocaldarius by computer simulations. The simulations reveal that the physical properties of these unique membranes depend on the number of cyclopentane rings included in each lipid unit, and on the size of cations that are used to ensure charge neutrality. This suggests that the biophysical properties of Sulfolobus acidocaldarius cells depend not only on the compositions of their membranes but also on the media in which they grow.

  19. The impact of phospholipids and phospholipid removal on bioanalytical method performance.

    Science.gov (United States)

    Carmical, Jennifer; Brown, Stacy

    2016-05-01

    Phospholipids (PLs) are a component of cellmembranes, biological fluids and tissues. These compounds are problematic for the bioanalytical chemist, especially when PLs are not the analytes of interest. PL interference with bioanalysis highly impacts reverse-phase chromatographic methods coupled with mass spectrometric detection. Phospholipids are strongly retained on hydrophobic columns, and can cause significant ionization suppression in the mass spectrometer, as they outcompete analyte molecules for ionization. Strategies for improving analyte detection in the presence of PLs are reviewed, including in-analysis modifications and sample preparation strategies. Removal of interfering PLs prior to analysis seems to be most effective atmoderating thematrix effects fromthese endogenous cellular components, and has the potential to simplify chromatography and improve column lifetime. Products targeted at PL removal for sample pre-treatment, as well as products that combine multiplemodes of sample preparation (i.e. Hybrid SPE), show significant promise inmediating the effect on PL interference in bioanalysis. PMID:26773720

  20. Conformation and Orientation of Phospholipid Molecule in Pure Phospholipid Monolayer During Compressing

    Institute of Scientific and Technical Information of China (English)

    XUE Weilan; WANG Dan; ZENG Zuoxiang; GAO Xuechao

    2013-01-01

    On the basis of energy conservation law and surface pressure isotherm,the conformation energy changes of dipalmitoylphosphatidylcholine(DPPC)and dipalmitoylphosphatidylglycerol(DPPG)in pure phospholipid monolayer at the air/water interface during compression are derived.The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software.Based on following assumptions:(1)the conformation energy change is mainly caused by the rotation of one special bond;(2)the atoms of glycerol near the water surface are active;(3)the rotation is motivated by hydrogen-bond action;(4)the rotation of bond is inertial,one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs.dihedral angle.The thickness of the simulated phospholipid monolayer is consistent with published experimental result.According to molecular areas at different states,the molecular orientations in the compressing process are also developed.

  1. Oligomerization of daptomycin on membranes.

    Science.gov (United States)

    Muraih, Jawad K; Pearson, Andre; Silverman, Jared; Palmer, Michael

    2011-04-01

    Daptomycin is a lipopeptide antibiotic that kills Gram-positive bacteria by membrane depolarization. While it has long been assumed that the mode of action of daptomycin involves the formation of membrane-associated oligomers, this has so far not been experimentally demonstrated. We here use FRET between native daptomycin and an NBD-labeled daptomycin derivative to show that such oligomerization indeed occurs. The oligomers are observed in the presence of calcium ions on membrane vesicles isolated from Bacillus subtilis, as well as on model membranes containing the negatively charged phospholipid phosphatidylglycerol. In contrast, oligomerization does not occur on membranes containing phosphatidylcholine only, nor in solution at micromolar daptomycin concentrations. The requirements for oligomerization of daptomycin resemble those previously reported for antibacterial activity, suggesting that oligomerization is necessary for the activity. PMID:21223947

  2. Structural and Theoretical Investigation of Anhydrous 3,4,5-Triacetoxybenzoic Acid.

    Science.gov (United States)

    Carvalho, Paulo S; Almeida, Leonardo R; Araújo Neto, João H; Medina, Ana Carolina Q D; Menezes, Antonio C S; Sousa, José E F; Oliveira, Solemar S; Camargo, Ademir J; Napolitano, Hamilton B

    2016-01-01

    A comprehensive investigation of anhydrous form of 3,4,5-Triacetoxybenzoic acid (TABA) is reported. Single crystal X-ray diffraction, Thermal analysis, Fourier Transform Infrared spectroscopy (FTIR) and DFT calculations were applied for TABA characterization. This anhydrous phase crystallizes in the triclinic [Formula: see text] space group (Z' = 1) and its packing shows a supramolecular motif in a classical [Formula: see text] ring formed by acid-acid groups association. The phase stability is accounted in terms of supramolecular architecture and its thermal behaviour. Conformation search at B3LYP/6-311++G(2d,p) level of theory shows the existence of three stable conformers and the most stable conformation was found experimentally. The reactivity of TABA was investigated using the molecular orbital theory and molecular electrostatic potential. The calculation results were used to simulate the infrared spectrum. There is a good agreement between calculated and experimental IR spectrum, which allowed the assignment of the normal vibrational modes. PMID:27355378

  3. Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Murielle [ORNL; Kurkal-Siebert, V [University of Heidelberg; Dunn, Rachel V. [University of Manchester, UK; Tehei, M [University of Waikato, New Zealand; Finney, J.L. [University College, London; Smith, Jeremy C [ORNL; Daniel, R. M. [University of Waikato, New Zealand

    2010-10-01

    Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 ( 2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast ( nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties.

  4. Anhydrous ethanol production in sugar mills; Produccion de etanol anhidro en ingenios azucareros

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez Poy, Manuel. E-mail:poymanuel@prodigy.net.mx

    2007-04-15

    The anhydrous ethanol production is recent and limited, because the disadvantage of the renewable energies is the economic impossibility of the projects. Nevertheless, there are aspects to consider to achieve the anhydrous ethanol production, among which are: the cost of the raw material, the self-sufficiency of energy from the sugar cane bagasse without the need of oil burning, the larger size of the distilleries, incorporation of the Cogeneration with delivery of electricity to the public network in the sugar mill facilities, the introduction of the biotechnology to improve the processes of fermentation and subsidies to agriculture. [Spanish] La produccion de etanol anhidro es reciente y limitada, debido a que la desventaja de las energias renovables es la inviabilidad economica de los proyectos. Sin embargo hay aspectos a considerar para lograr la produccion de etanol anhidro, entre los cuales estan: el costo de la materia prima, la autosuficiencia energetica a partir del bagazo de la cana sin necesidad de petroleo, mayor tamano de las destilerias, incorporacion de la Cogeneracion con entrega de electricidad a la red publica en el ingenio, la introduccion de la biotecnologia para mejorar los procesos de fermentacion y subsidios a la agricultura.

  5. Quasi-anhydrous proton conducting di-ureasil hybrid electrolytes incorporating a protic ionic liquid

    International Nuclear Information System (INIS)

    Highlights: • Quasi-anhydrous proton conducting sol-gel derived hybrid electrolytes were developed. • The electrolytes synthesized contain N-ethylimidazolium trifluoromethanesulfonate. • The proton conductivity of the materials suggests applications in fuel cells. - Abstract: A wide range of concentrations of the [EIm][TfO] proton ionic liquid (PIL) were for the first time incorporated into a poly(oxyethyelene) (POE)/siloxane hybrid host matrix (d-U(2000)) belonging to the di-ureasil family. The synthesis procedure adopted, involving the lowest amount of water possible, resulted in the formation of essentially anhydrous electrolytes at certain PIL levels. The optimized sample d-U(2000)/[EIm][TfO]50 (where 50 represents the ratio in % of the mass of [EIm][TfO] per mass of POE precursor) is amorphous, thermally stable up to 200 °C, displays good mechanical properties and exhibits an ionic conductivity of 3.2×10-4 and 4.3×10-3 S cm-1 at 20 and 186 °C, respectively. These features have persisted for more than three years. These new electrolytes appear quite attractive for applications in fuel cells operating under non-humidified conditions

  6. X-ray crystal structure of anhydrous chitosan at atomic resolution.

    Science.gov (United States)

    Naito, Philip-Kunio; Ogawa, Yu; Sawada, Daisuke; Nishiyama, Yoshiharu; Iwata, Tadahisa; Wada, Masahisa

    2016-07-01

    We determined the crystal structure of anhydrous chitosan at atomic resolution, using X-ray fiber diffraction data extending to 1.17 Å resolution. The unit cell [a = 8.129(7) Å, b = 8.347(6) Å, c = 10.311(7) Å, space group P21 21 21 ] of anhydrous chitosan contains two chains having one glucosamine residue in the asymmetric unit with the primary hydroxyl group in the gt conformation, that could be directly located in the Fourier omit map. The molecular arrangement of chitosan is very similar to the corner chains of cellulose II implying similar intermolecular hydrogen bonding between O6 and the amine nitrogen atom, and an intramolecular bifurcated hydrogen bond from O3 to O5 and O6. In addition to the classical hydrogen bonds, all the aliphatic hydrogens were involved in one or two weak hydrogen bonds, mostly helping to stabilize cohesion between antiparallel chains. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 361-368, 2016. PMID:26930586

  7. Structural and Theoretical Investigation of Anhydrous 3,4,5-Triacetoxybenzoic Acid.

    Directory of Open Access Journals (Sweden)

    Paulo S Carvalho

    Full Text Available A comprehensive investigation of anhydrous form of 3,4,5-Triacetoxybenzoic acid (TABA is reported. Single crystal X-ray diffraction, Thermal analysis, Fourier Transform Infrared spectroscopy (FTIR and DFT calculations were applied for TABA characterization. This anhydrous phase crystallizes in the triclinic [Formula: see text] space group (Z' = 1 and its packing shows a supramolecular motif in a classical [Formula: see text] ring formed by acid-acid groups association. The phase stability is accounted in terms of supramolecular architecture and its thermal behaviour. Conformation search at B3LYP/6-311++G(2d,p level of theory shows the existence of three stable conformers and the most stable conformation was found experimentally. The reactivity of TABA was investigated using the molecular orbital theory and molecular electrostatic potential. The calculation results were used to simulate the infrared spectrum. There is a good agreement between calculated and experimental IR spectrum, which allowed the assignment of the normal vibrational modes.

  8. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  9. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A

    1976-01-01

    Progress in Surface and Membrane Science, Volume 10 covers the advances in surface and membrane science. The book discusses the selective changes of cellular particles influencing sedimentation properties; and the rotating disk and ring-disk electrodes in investigations of surface phenomena at the metal-electrolyte interface. The text also describes the membrane potential of phospholipid bilayer and biological membranes; the adsorption of surfactant monolayers at gas/liquid and liquid/liquid interfaces; and the enzymes immobilized on glass. Chemists and people involved in electrochemistry will

  10. Intermolecular exciton-exciton annihilation in phospholipid vesicles doped with [Ru(bpy)2dppz]2+

    Science.gov (United States)

    De la Cadena, Alejandro; Pascher, Torbjörn; Davydova, Dar'ya; Akimov, Denis; Herrmann, Felix; Presselt, Martin; Wächtler, Maria; Dietzek, Benjamin

    2016-01-01

    The ultrafast photophysics of [Ru(bpy)2dppz]2+ (dppz = dipyrido[3,2-a:2‧,3‧-c]-phenazine) embedded into the walls of phospholipid vesicles has been studied by femtosecond time-resolved pump-probe spectroscopy. While [Ru(bpy)2dppz]2+ has been studied intensively with respect to its intramolecular charge transfer processes, which are associated with the well known light-switch effect, this study focuses on intermolecular energy transfer processes taking place upon dense packing of the complexes into a phospholipid membrane composed of dipalmitoyl-L-α-phosphatidylglycerol, which can be thought of as a simplistic model of a cellular membrane. The data indicate additional quenching of excited [Ru(bpy)2dppz]2+ upon increasing the pump-pulse intensity. Hence, the observed photophysics, which is assigned to the presence of intermolecular exciton-exciton annihilation at high pump-intensities, might be related to the ultrafast photophysics of [Ru(bpy)2dppz]2+ when used as a chromophore to stain cells, an effect that may be taken into account during the employment of novel cellular markers based on Ru polypyridine complexes.

  11. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Giovanna Contarini

    2013-01-01

    Full Text Available Glycerophospholipids and sphingolipids are quantitatively the most important phospholipids (PLs in milk. They are located on the milk fat globule membrane (MFGM and in other membranous material of the skim milk phase. They include principally phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, while sphingomyelin is the dominant species of sphingolipids There is considerable evidence that PLs have beneficial health effects, such as regulation of the inflammatory reactions, chemopreventive and chemotherapeutic activity on some types of cancer, and inhibition of the cholesterol absorption. PLs show good emulsifying properties and can be used as a delivery system for liposoluble constituents. Due to the amphiphilic characteristics of these molecules, their extraction, separation and detection are critical points in the analytical approach. The extraction by using chloroform and methanol, followed by the determination by high pressure liquid chromatography (HPLC, coupled with evaporative light scattering (ELSD or mass detector (MS, are the most applied procedures for the PL evaluation. More recently, nuclear magnetic resonance spectrometry (NMR was also used, but despite it demonstrating high sensitivity, it requires more studies to obtain accurate results. This review is focused on milk fat phospholipids; their composition, biological activity, technological properties, and significance in the structure of milk fat. Different analytical methodologies are also discussed.

  12. Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.

    Science.gov (United States)

    Lee, Sun-Joo; Ren, Feifei; Zangerl-Plessl, Eva-Maria; Heyman, Sarah; Stary-Weinzinger, Anna; Yuan, Peng; Nichols, Colin G

    2016-09-01

    Inward rectifier potassium (Kir) channel activity is controlled by plasma membrane lipids. Phosphatidylinositol-4,5-bisphosphate (PIP2) binding to a primary site is required for opening of classic inward rectifier Kir2.1 and Kir2.2 channels, but interaction of bulk anionic phospholipid (PL(-)) with a distinct second site is required for high PIP2 sensitivity. Here we show that introduction of a lipid-partitioning tryptophan at the second site (K62W) generates high PIP2 sensitivity, even in the absence of PL(-) Furthermore, high-resolution x-ray crystal structures of Kir2.2[K62W], with or without added PIP2 (2.8- and 2.0-Å resolution, respectively), reveal tight tethering of the C-terminal domain (CTD) to the transmembrane domain (TMD) in each condition. Our results suggest a refined model for phospholipid gating in which PL(-) binding at the second site pulls the CTD toward the membrane, inducing the formation of the high-affinity primary PIP2 site and explaining the positive allostery between PL(-) binding and PIP2 sensitivity. PMID:27527100

  13. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects

    OpenAIRE

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F.; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R.; Meier, Beat H.; Epand, Richard M.; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are sti...

  14. Phosphocreatine Interacts with Phospholipids, Affects Membrane Properties and Exerts Membrane-Protective Effects

    OpenAIRE

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F.; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R.; Meier, Beat H.; Epand, Richard M.; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are sti...

  15. The molecular components of phospho- and glycolipid metabolism in plant cell membranes under the phosphorus deficiency

    Directory of Open Access Journals (Sweden)

    Svietlova N. B.

    2012-01-01

    Full Text Available One of the aspects of molecular regulation of phosphorus metabolism in plants, the lipid components of membrane structures, has been reviewed. The refocusing of phosphoand glycolipid metabolism is an indicator of phosphorus accessibility in plants. The compensatory mechanisms of substitution of phospholipids with non-phosphorus containing glycolipids in membranes, allow plants to adapt to the phosphate (Pi starvation. Phospholipids are the reserve pool of cellular phosphorus at reutilization of ions in the donor-acceptor system of plants. The mechanisms of transcriptional regulation of genes involved in the synthesis of phospholipids and glycolipids under Pi deficit have been analyzed.

  16. Preparation of anhydrous TFA solution for deposition of YBa2Cu3O7-x thin films

    International Nuclear Information System (INIS)

    The realisation of superconducting thin films by MOD is possible using different precursors; among them, the most promising approach is the use of trifluoroacetates (TFAMOD). However, one of the major drawbacks of this approach is the generation of water when trifluoroacetic acid (TFAH) is used. In this case, a lengthy purification process of the solution is necessary. As an alternative, trifluoroacetic anhydride (TFAA) has been used affording anhydrous TFA solutions without any additional purification. Anhydrous TFA solutions have allowed YBa2Cu3O7-x films to be obtained with high critical currents (Jc > 3-4 MA/cm2 at 77K, thickness 300nm)

  17. Direct Imaging by Cryo-TEM Shows Membrane Break-up by Phospholipase A2 Enzymatic Activity

    DEFF Research Database (Denmark)

    Callisen, Thomas Hønger; Talmon, Y.

    1998-01-01

    Phospholipid hydrolysis to free fatty acid and l-lyso-phospholipid by water-soluble phospholipase A(2) (PLA(2)) at the surface of lipid membranes exhibits a poorly understood transition from a low-activity lag phase to a burst regime of rapid hydrolysis. Understanding this kinetic phenomenon may ...

  18. Review: P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas

    DEFF Research Database (Denmark)

    Andersen, Jens P; Vestergaard, Anna L; Mikkelsen, Stine A;

    2016-01-01

    coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases...... of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head...... similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review...

  19. Nanoporous Silicified Phospholipids and Application to Controlled Glycolic Acid Release

    Directory of Open Access Journals (Sweden)

    Kang SangHwa

    2008-01-01

    Full Text Available Abstract This work demonstrates the synthesis and characterization of novel nanoporous silicified phospholipid bilayers assembled inorganic powders. The materials are obtained by silicification process with silica precursor at the hydrophilic region of phospholipid bilayers. This process involves the co-assembly of a chemically active phospholipids bilayer within the ordered porosity of a silica matrix and holds promise as a novel application for controlled drug release or drug containers with a high level of specificity and throughput. The controlled release application of the synthesized materials was achieved to glycolic acid, and obtained a zero-order release pattern due to the nanoporosity.

  20. Metabolism of fatty acids in rat brain in microsomal membranes

    International Nuclear Information System (INIS)

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  1. Isolation of Phospholipid from Egg Yolk with Ultrasonic Separation Technology

    Directory of Open Access Journals (Sweden)

    Yu-mei Jia

    2014-03-01

    Full Text Available This study presented a new solution of isolation for phospholipid from egg yolks by ultrasonic wave. Degradation of phospholipid was discussed with the aggregation of micro-particles. The frequency of ultrasonic wave was 20 kHz. Lubricant was treated for 9 min under 0, 200, 400, 600W, respectively. It was showed that concentration of phospholipid reduced as ultrasonic power and time increased. Ultrasonic wave was useful for degradation of high molecular protein. Phospholipid secondary structure transforming was also observed, which was affected by ultrasonic wave. Suspension particles aggregated under the different ultrasonic wave condition. Content of the aggregation increased and volume of the aggregate reduced as ultrasonic treatment time increased.

  2. Phospholipids of the lung in normal, toxic, and diseased states

    Energy Technology Data Exchange (ETDEWEB)

    Akino, T.; Ohno, K.

    1981-01-01

    The highly pulmonary concentration of 1,2-dipalmitoyl-sn-glycerol-3-phosphorylcholine (dipalmitoyllecithin) and its implication as an important component of lung surfactant have promoted investigation of phospholipid metabolism in the lung. This review will set the contents including recent informations for better understanding of phospholipid metabolism of the lung in normal state (physiological significances of lung phospholipids, characteristics of phospholipids in lung tissue and alveolar washing, biosynthetic pathways of dipalmitoyllecithin, etc.) as well as in toxic states (pulmonary oxygen toxicity, etc.) and in diseased states (idiopathic respiratory distress syndrome, pulmonary alveolar proteinosis, etc.) Since our main concern has been to clarify the most important route for supplying dipalmitoyllecithin, this review will be focused upon the various biosynthetic pathways leading to the formation of different molecular species of lecithin and their potential significance in the normal, toxic, and diseased lungs.

  3. Fish Oil Supplementation in Humans: Effects on Platelet Responses, Phospholipid Composition and Metabolism.

    Science.gov (United States)

    Skeaff, Clark Murray

    Platelets are believed to play a significant role in the development of occlusive vascular diseases. Epidemiological reports have correlated the high intake of marine foods, rich in omega3 fatty acids, with diminished platelet responses and a low incidence of arterial thrombosis and myocardial infarction. The activation of platelet responses is mediated by the accelerated metabolism of membrane phospholipid; therefore, it was of interest to examine, in human volunteers, the effect of a dietary fish oil concentrate (MaxEPA), enriched in omega 3 polyunsaturated fatty acids, on platelet aggregation and phospholipid composition/metabolism. For the complete separation of cellular phospholipids, a one-dimensional thin-layer chromatography system using silica-gel pre-coated glass plates was developed. The solvent system consisted of CHCl_3/CH_3OH/CH _3COOH/H_2O (50/37.5/3.5/2.0, by vol), required approximately 90-120 minutes for full phospholipid separation, and was highly reproducible even under conditions of variable humidity and temperature. The consumption of a fish oil concentrate (MaxEPA) for 6 weeks (3.6 g of 20:5omega 3 and 2.4 g of 22:6omega3 per day) diminished both the collagen- and platelet activating factor-induced maximum aggregation responses in washed human platelet suspensions by 50.1% and 27.2%, respectively, as compared to initial unsupplemented baseline responses. Thrombin -induced aggregation remained unchanged. Thrombin stimulation of intact human platelets produced a significant decrease in the mass of phosphatidylinositol in plasma membrane. In platelets pre-labelled with (2-^3H) glycerol and stimulated with either thrombin or low-dose collagen, the loss of (^3H) phosphatidylinositol did not differ between those subjects consuming olive oil or fish oil. Likewise, the thrombin-stimulated accumulation of diacylglycerol, an activator of protein kinase C, was unaffected by fish oil consumption. The ratio of collagen -induced increase in radioactivity

  4. Molecular Insights into Phospholipid -- NSAID Interactions

    Science.gov (United States)

    Babu Boggara, Mohan; Krishnamoorti, Ramanan

    2007-03-01

    Non steroidal anti inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. Using all atomistic simulations and two different methodologies, we studied the partitioning behavior of two model NSAIDs (Aspirin and Ibuprofen) as a function of pH and drug loading. The results from two methodologies are consistent in describing the equilibrium drug distribution in the bilayers. Additionally, the heterogeneity in density and polarity of the bilayer in the normal direction along with the fact that NSAIDs are amphiphilic (all of them have a carboxylic acid group and a non-polar part consisting of aromatic moieties), indicate that the diffusion mechanism in the bilayer is far different compared to the same in a bulk medium. This study summarizes the various effects of NSAIDs and their behavior inside the lipid bilayer both as a function of pH and drug concentration.

  5. Crystallization behavior of anhydrous milk fat-sunflower oil wax blends.

    Science.gov (United States)

    Kerr, Rebekah M; Tombokan, Xenia; Ghosh, Supriyo; Martini, Silvana

    2011-03-23

    This research evaluates the effect of sunflower oil wax (SFOw) addition on the crystallization behavior and functional properties of anhydrous milk fat (AMF). Induction times of nucleation, melting behavior, microstructure of crystals, and hardness were evaluated for samples of pure AMF and AMF with 0.1 and 0.25% SFOw. Results from this research show that the addition of waxes induced the onset of crystallization of AMF by inducing its nucleation, as evidenced by decreased induction times of nucleation and the formation of smaller crystals. Crystal growth after tempering was also promoted by waxes, and significantly harder lipid networks were obtained. Results presented in this paper suggest that SFOw can be used as an additive to alter the physiochemical properties of low trans-fatty acid lipids.

  6. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln

    Energy Technology Data Exchange (ETDEWEB)

    Repellin, Vincent; Govin, Alexandre; Guyonnet, Rene [Department of Physico-Chemistry of Multi-Components Materials (PMMC), SPIN Research Center, Ecole des Mines de Saint Etienne (EMSE), 158, Cours Fauriel, F-42023 Saint-Etienne (France); Rolland, Matthieu [Process Developments and Engineering Division, Chemical Engineering Department, Institut Francais du Petrole (IFP-Lyon), F-69390 Vernaison (France)

    2010-05-15

    Beech and spruce chips were torrefied in a batch rotating pilot kiln. For each torrefaction the temperature curve of the moving chips bed was recorded. The anhydrous weight loss (AWL) of each torrefaction was measured. Effect of torrefaction temperature and duration on the AWL was studied. In order to optimise short time torrefaction, models that can estimate the AWL from the chips temperature curve are required. Three phenomenological models were successfully applied. They all gave good correlations between experimental and calculated AWL. These three models can be employed to optimise industrial torrefaction. However, the more complex they are, the more difficult it is to understand their physical meaning. It is thus preferable to use simple model for the industrial control of torrefaction. (author)

  7. Correlated Nitrogen And Carbon Anomalies In An Anhydrous Interplanetary Dust Particles

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J; Dai, Z; Graham, G

    2003-10-31

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter from an anhydrous non-cluster IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  8. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  9. Solidus and liquidus temperatures and mineralogies for anhydrous garnet-lherzolite to 15 GPa

    Science.gov (United States)

    Herzberg, C. T.

    1983-01-01

    Strong convergence is noted, in experimental data for systems pertaining to anhydrous fertile garnet-lherzolite in the 6.5-15 GPa range, either to a common temperature or to temperatures differing by only about 100 C. The major element composition of magmas generated by even minor degrees of partial melting may be similar to the composition of the primordial, bulk silicate earth in an upper mantle stratigraphic column more than 160 km deep. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions is found to change from olivine, at low pressures, to pyroxene, garnet, or a solid solution of both, at pressures greater than 10-15 GPa.

  10. Structural study and crystallography of the major compound of anhydrous cement: tri-calcium silicate; Etude structurale et cristallographie du compose majoritaire du ciment anhydre: le silicate tricalcique

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, M.N. de

    2000-01-01

    Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)

  11. Effects of coffee and caffeine anhydrous on strength and sprint performance.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Mock, Meredith G

    2016-09-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3-5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p = .04), but not PLA (p = .99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p > .05). There were no sprint × treatment interactions for PP or TW (p > .05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise.

  12. Effects of coffee and caffeine anhydrous on strength and sprint performance.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Mock, Meredith G

    2016-09-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3-5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p = .04), but not PLA (p = .99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p > .05). There were no sprint × treatment interactions for PP or TW (p > .05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise. PMID:26394649

  13. The Optimization of the Oiling Bath Cosmetic Composition Containing Rapeseed Phospholipids and Grapeseed Oil by the Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Michał Górecki

    2015-04-01

    Full Text Available The proper condition of hydrolipid mantle and the stratum corneum intercellular matrix determines effective protection against transepidermal water loss (TEWL. Some chemicals, improper use of cosmetics, poor hygiene, old age and some diseases causes disorder in the mentioned structures and leads to TEWL increase. The aim of this study was to obtain the optimal formulation composition of an oiling bath cosmetic based on rapeseed phospholipids and vegetable oil with high content of polyunsaturated fatty acids. In this work, the composition of oiling bath form was calculated and the degree of oil dispersion after mixing the bath preparation with water was selected as the objective function in the optimizing procedure. The full factorial design 23 in the study was used. The concentrations of rapeseed lecithin ethanol soluble fraction (LESF, alcohol (E and non-ionic emulsifier (P were optimized. Based on the calculations from our results, the optimal composition of oiling bath cosmetic was: L (LESF 5.0 g, E (anhydrous ethanol 20.0 g and P (Polysorbate 85 1.5 g. The optimization procedure used in the study allowed to obtain the oiling bath cosmetic which gives above 60% higher emulsion dispersion degree 5.001 × 10−5 cm−1 compared to the initial formulation composition with the 3.096 × 10−5 cm−1.

  14. Phospholipid Synthesis in Sindbis Virus-Infected Cells

    Science.gov (United States)

    Waite, Marilynn R. F.; Pfefferkorn, E. R.

    1970-01-01

    We investigated the metabolic requirements for the decrease in phospholipid synthesis previously observed by Pfefferkorn and Hunter in primary cultures of chick embryo fibroblasts infected with Sindbis virus. The incorporation of 32PO4 into all classes of phospholipids was found to decline at the same rate and to the same extent; thus, incorporation of 14C-choline into acid-precipitable form provided a convenient measure of phospholipid synthesis that was used in subsequent experiments. Experiments with temperature-sensitive mutants suggested that some viral ribonucleic acid (RNA) synthesis was essential for the inhibition of choline incorporation, but that functional viral structural proteins were not required. The reduction in phospholipid synthesis was probably a secondary effect of infection resulting from viral inhibition of the cellular RNA and protein synthesis. All three inhibitory effects required about the same amount of viral RNA synthesis; the inhibition of host RNA and protein synthesis began sooner than the decline in phospholipid synthesis; and both actinomycin D and cycloheximide inhibited 14C-choline incorporation in uninfected cells. In contrast, incorporation of 14C-choline into BHK-21 cells was not decreased by 10 hr of exposure to actinomycin D and declined only slowly after cycloheximide treatment. Growth of Sindbis virus in BHK cells did not cause the marked stimulation of phospholipid synthesis seen in picornavirus infections of other mammalian cells; however, inhibition was seen only late in infection. PMID:5530011

  15. Dipeptide synthesis in near-anhydrous organic media: Long-term stability and reusability of immobilized Alcalase

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Nuijens, T.; Quaedflieg, P.J.L.M.; Cohen Stuart, M.A.; Tramper, J.

    2013-01-01

    The long-term stability and re-use of Alcalase covalently immobilized onto macroporous acrylic beads (Cov) in tetrahydrofuran (THF) were investigated. Cov can be used to synthesize dipeptides under near-anhydrous conditions in THF. Cov was incubated with and without molecular sieves (beads or powder

  16. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of a

  17. Scientific Opinion on the safety and efficacy of betaine anhydrous as a feed additive for all animal species based on a dossier submitted by Trouw Nutritional International B.V.

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available Glycine betaine (betaine acts as a methyl group donor in transmethylation reactions in organisms. Betaine occurs in numerous vertebrate tissues as an osmolyte, ensuring osmoprotection. Betaine is safe for piglets at the maximum supplementation rate of 2 000 mg/kg complete feed with a margin of safety below 5. This conclusion is extended to all pigs and extrapolated to all animal species and categories. The use of betaine as a feed additive up to a supplementation of 2 000 mg/kg complete feed is unlikely to pose concerns for consumer safety. In the absence of data, betaine anhydrous should be considered hazardous by inhalation, irritant to skin, eyes and mucous membranes and a skin sensitiser. The supplementation of feed with betaine anhydrous does not pose a risk to the environment. Betaine has the potential to become efficacious in all animal species and categories when administered via feed or water for drinking. The FEEDAP Panel made some recommendations on (i introduction of a maximum content for supplemental betaine in complete feed and water for drinking; (ii avoidance of simultaneous use of betaine in feed and water for drinking; and (iii avoidance of simultaneous inclusion of betaine and choline chloride in premixtures.

  18. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    The lipid membrane partitioning of lysolipids (lysoPC) and fatty acids (FA) into unilamellar vesicles composed of saturated DC$-16$/PC phospholipids has been determined by means of isothermal titration calorimetry (ITC). The calorimetric titrations were performed at low temperatures in the ordered...... gel phase and at high temperatures in the disordered fluid phase of the phospholipid membrane vesicles. The long saturated acyl chains of the lysolipids and fatty acids varied from 10 to 16 carbon atoms and all titrations were performed below the critical micellar concentrations (cmc...

  19. Ultrafiltration-based degumming of crude rice bran oil using a polymer membrane

    Directory of Open Access Journals (Sweden)

    Sehn, G. A.R.

    2016-03-01

    Full Text Available Membrane technology has been gaining momentum in industrial processes, especially in food technology. It is believed to simplify processes, reduce energy consumption, and eliminate pollutants. The objective was to study the performance of polyvinylidene fluoride (PVDF and polyethersulfone (PES polymeric membranes in the degumming of the miscella of crude rice bran oil by using a bench-scale tangential filtration module. In addition, oil miscella filtration techniques using hexane and anhydrous ethyl alcohol solvents were compared. All membranes showed the retention of phospholipids and high flow rates. However, the best performance was observed using the 50-kDa PVDF membrane in miscella hexane solvent, with a 95.5% retention of the phosphorus concentration (by a factor of 1.4, resulting in a permeate with 29 mg·kg−1 of phosphorus and an average flow rate of 48.1 L·m−2·h−1. This technology can be used as a low-pollution, economical alternative for the de-gumming of crude rice bran oil, being effective in the removal of hydratable and non-hydratable phospholipids, resulting in oils with a low phosphorus content.La tecnología de membrana ha ido ganando impulso en los procesos industriales, especialmente en tecnología de los alimentos. Se piensa que simplifica los procesos, reduce el consumo de energía, y elimina contaminantes. El objetivo fué estudiar el rendimiento de las membranas poliméricas de fluoruro de polivinilo (PVDF y poliétersulfona (PES en el desgomado de miscelas de aceite de salvado de arroz crudo, mediante el uso de un módulo de filtración de escalado tangencial. Además, se compararon las técnicas de filtración de miscelas de aceite, utilizando como disolventes hexano y alcohol etílico anhidro. Todas las membranas mostraron retención de los fosfolípidos y altas tasas de flujo. Sin embargo, se observó un mejor rendimiento usando la membrana de PVDF de 50-kDa con hexano como disolvente, con una retención del 95

  20. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Science.gov (United States)

    Hossain, Khondker R.; Al Khamici, Heba; Holt, Stephen A.; Valenzuela, Stella M.

    2016-01-01

    CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels. PMID:26875987

  1. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Directory of Open Access Journals (Sweden)

    Khondker R. Hossain

    2016-02-01

    Full Text Available CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels.

  2. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  3. Phospholipid Encapsulated AuNR@Ag/Au Nanosphere SERS Tags with Environmental Stimulus Responsive Signal Property.

    Science.gov (United States)

    Su, Xueming; Wang, Yunqing; Wang, Wenhai; Sun, Kaoxiang; Chen, Lingxin

    2016-04-27

    Surface-enhanced Raman scattering (SERS) tags draw much attention due to the ultrasensitivity and multiplex labeling capability. Recently, a new kind of SERS tags was rationally designed by encapsulating metal nanoparticles with phospholipid bilayers, showing great potential in theranostics. The lipid bilayer coating confers biocompatibility and versatility to changing surface chemistry of the tag; however, its "soft" feature may influence SERS signal stability, which is rarely investigated. Herein, we prepared phospholipid-coated AuNR@Ag/Au nanosphere SERS tags by using three different kinds of Raman reporters, i.e., thio-containing 4-nitrothiophenol (NT), nitrogen-containing hydrophobic chromophore cyanine 7 monoacid (Cy7), and alkyl chain-chromophore conjugate 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). It was found that signal responses were different upon additional stimulation which the tags may encounter in theranostic applications including the presence of detergent Triton X-100, lipid membrane, and photothermal treatment. Living-cell imaging also showed signal changing distinction. The different SERS signal performances were attributed to the different Raman reporter releasing behaviors from the tags. This work revealed that Raman reporter structure determined signal stability of lipid-coated SERS tags, providing guidance for the design of stimulus responsive tags. Moreover, it also implied the potential of SERS technique for real time drug release study of lipid based nanomedicine. PMID:27052206

  4. Urea-induced Inactivation and Unfolding of Recombinant Phospholipid Hydroperoxide Glutathione Peroxidase from Oryza sativa

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; ZHOU Hui-ping; KONG Bao-hua; FAN Jing-hua; CHEN Hai-ru; LIU Jin-yuan

    2007-01-01

    Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases. In this study, urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx) from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy. With the increase of urea concentration, the residual activity of OsPHGPx decreasea correspondingly. When the urea concentration is above 5.0 mol/L, there was no residual activity. In addition,the observed changes in intrinsic tryptophan fluorescence, the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition. The unfolding process comprises of three zones: the native base-line zone between 0 and 2.5 mol/L urea, the transition zone between 2.5 and 5.5 mol/L urea, and the denatured base-line zone above 5.5 mol/L urea. The transition zone has a midpoint at about 4.0 mol/L urea.

  5. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Tjellström Henrik

    2007-11-01

    Full Text Available Abstract Background The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER. The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. Results The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC. Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. Conclusion We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s resides in a fraction of the ER, closely

  6. Preparation and Characterization of Anhydrous Magnesium Chloride in Organic Solvent%有机溶剂法无水氯化镁的制备与表征

    Institute of Scientific and Technical Information of China (English)

    周宁波; 陈白珍; 何新快; 李义兵

    2005-01-01

    Ammonium carnallite was synthesized by hydrated magnesium chloride in salt lake and ammonium chloride solution. Dehydrated ammonium carnallite was dissolved in methanol under low temperature by feeding ammonia, to prepare anhydrous magnesium chloride. The results show that anhydrous magnesium chloride contains magnesium oxide in an amount less than 0.1% by weight, the yield of magnesium chloride was above 99.5%. Ammonium carnallite, ammoniation magnesium chloride and anhydrous magnesium chloride were characterized by thermoanalysis, X-ray powder diffraction and scanning electron microscopy.

  7. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool.

    Directory of Open Access Journals (Sweden)

    Hayette Benamara

    Full Text Available Bacteria cells within biofilms are physiologically distinct from their planktonic counterparts. In particular they are more resistant to detrimental environmental conditions. In this study, we monitored the evolution of the phospholipid composition of the inner and outer membranes of P. aeruginosa during the biofilm formation (i.e., from 1-, 2-, to 6-day-old biofilm. Lipidome analyses were performed by electrospray ionization mass spectrometry. In addition to the lipidomic analysis, the fatty acid composition was analysed by gas chromatography/mass spectrometry. We found that the lipidome alterations of the inner and the outer membranes varied with the biofilm age. These alterations in phospholipid compositions reflect a higher diversity in sessile organisms than in planktonic counterparts. The diversity is characterized by the presence of PE 30∶1, PE 31∶0 and PG 31∶0 for the lower masses as well as PE 38∶1, 38∶2, 39∶1, 39∶2 and PG 38∶0, 38∶1, 38∶2, 39∶1, 39∶2 for the higher masses. However, this lipidomic feature tends to disappear with the biofilm age, in particular the high mass phospholipids tend to disappear. The amount of branched chains phospholipids mainly located in the outer membrane decreased with the biofilm age, whereas the proportion of cyclopropylated phospholipids increased in both membranes. In bacteria present in oldest biofilms, i.e., 6-day-old, the phospholipid distribution moved closer to that of planktonic bacteria.

  8. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool.

    Science.gov (United States)

    Benamara, Hayette; Rihouey, Christophe; Abbes, Imen; Ben Mlouka, Mohamed Amine; Hardouin, Julie; Jouenne, Thierry; Alexandre, Stéphane

    2014-01-01

    Bacteria cells within biofilms are physiologically distinct from their planktonic counterparts. In particular they are more resistant to detrimental environmental conditions. In this study, we monitored the evolution of the phospholipid composition of the inner and outer membranes of P. aeruginosa during the biofilm formation (i.e., from 1-, 2-, to 6-day-old biofilm). Lipidome analyses were performed by electrospray ionization mass spectrometry. In addition to the lipidomic analysis, the fatty acid composition was analysed by gas chromatography/mass spectrometry. We found that the lipidome alterations of the inner and the outer membranes varied with the biofilm age. These alterations in phospholipid compositions reflect a higher diversity in sessile organisms than in planktonic counterparts. The diversity is characterized by the presence of PE 30∶1, PE 31∶0 and PG 31∶0 for the lower masses as well as PE 38∶1, 38∶2, 39∶1, 39∶2 and PG 38∶0, 38∶1, 38∶2, 39∶1, 39∶2 for the higher masses. However, this lipidomic feature tends to disappear with the biofilm age, in particular the high mass phospholipids tend to disappear. The amount of branched chains phospholipids mainly located in the outer membrane decreased with the biofilm age, whereas the proportion of cyclopropylated phospholipids increased in both membranes. In bacteria present in oldest biofilms, i.e., 6-day-old, the phospholipid distribution moved closer to that of planktonic bacteria. PMID:25265483

  9. Biophysical studies of membrane channel polypeptides

    CERN Document Server

    Galbraith, T P

    2001-01-01

    Membrane channels facilitate the flow of ions across biological membranes, a process which is important in numerous cellular functions. The study of large integral membrane proteins is made difficult by identification, production and purification problems, and detailed knowledge of their three-dimensional structures is relatively scarce. The study of simple 'model' membrane proteins has given valuable insight into the structures and dynamics of membrane proteins in general. The bacterial peptide gramicidin has been the subject of intense study for many years, and has provided important information into the structural basis of channel function. Peptaibols, a class of fungal membrane peptides which includes alamethicin and antiamoebin, have also been useful in relating structural details to molecular ion transport processes. Gramicidin crystals were grown in the presence of phospholipids with various headgroups and acyl chains. The diffraction patterns of the crystals obtained were processed, but found to be in...

  10. Improved Synthesis of 1,3-Diaryl-2-propen-1-one Oxime in the Presence of Anhydrous Sodium Sulfate%Improved Synthesis of 1,3-Diaryl-2-propen-1-one Oxime in the Presence of Anhydrous Sodium Sulfate

    Institute of Scientific and Technical Information of China (English)

    许晓亚; 李记太; 杜超; 宋亚丽

    2011-01-01

    Synthesis of 1,3-diaryl-2-propen-1-one oxime via the condensation of 1,3-diaryl-2-propen-1-one with hydroxylamine hydrochloride in the presence of anhydrous sodium sulfate was carried out in refluxing EtOH for 2-4 h in 83%-93% yields. The significant features of the present procedure include higher yield, shorter reaction time, reduced molar ratio of hydroxylamine hydrochloride to substrate, compared to the reported literature method.

  11. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    Science.gov (United States)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  12. [Tracheal phospholipid composition and respiratory distress syndrome of the newborn].

    Science.gov (United States)

    Obladen, M

    1979-03-01

    Tracheal or pharyngeal aspirates were collected in 50 newborn infants with and without respiratory distress syndrome (RDS). After lipid extraction the phospholipids were analyzed with 2-dimensional thin layer chromatography. Surface-active are lecithin (PC), phosphatidylglycerol (PG), and phosphatidylinositol (PI). Newborn infants with RDS always have a complete lack of PG, which makes up to 11% of phospholipid-phosphors in mature newborns. In all infants with and without RDS, a sharp increase of PC occurs in the lung effluent after birth. The recovery from RDS is characterized by marked changes of PI: this phospholipid rises up to twice its initial value if the infants survive. The PI-increase parallels the clinical improvement and reaches its maximum usually on the 5th day of life. At the time of the PI-peak, the infants' surfactant function is sufficient to maintain alveolar stability with spontaneous breathing. In infants dying from RDS the PI-increase was not observed.

  13. Membrane Insertion by Trichosanthin Using the Monolayer Method

    Institute of Scientific and Technical Information of China (English)

    薛毅; 夏晓峰; 隋森芳

    2003-01-01

    A monolayer technique was used to investigate the interaction between the ribosome inactivating protein trichosanthin (TCS) and phospholipid membrane.The adsorption experiments show that the negatively charged 1,2-dipalmitoyl-sn-glycerol-3-phosphoglycerol (DPPG) causes obvious enrichment of TCS beneath the monolayer, indicating electrostatic attraction between TCS and the negatively charged phospholipid.When TCS was incorporated into the DPPG monolayer at low pH, it could not be completely squeezed out until the monolayer collapsed.The results suggest that the electrostatic attraction and the hydrophobic force are involved in the interaction between TCS and phospholipids at different stages.These findings may be correlated with the membrane translocation mechanism of TCS.

  14. Influence of Lipid Oxidization on Structures and Functions of Biological Membranes

    OpenAIRE

    Korytowski, Agatha Anna

    2016-01-01

    The primary aim of this thesis is to clarify how the structures and functions of biological membranes are influenced by the oxidative damage mediated by free radicals. As a precisely defined model systems, artificially reconstituted lipid membranes (Langmuir monolayers, vesicles, supported membranes, multilamellar membranes) incorporating two oxidized phospholipids bearing aldehyde or carboxyl groups at the end of truncated sn-2 acyl chains were fabricated. By the combination of various exper...

  15. Systematic coarse graining from structure using internal states: application to phospholipid/cholesterol bilayer

    DEFF Research Database (Denmark)

    Murtola, Teemu; Karttunen, Mikko; Vattulainen, Ilpo

    2009-01-01

    We present a two-dimensional coarse-grained (CG) model for a lipid membrane composed of phospholipids and cholesterol. The effective CG interactions are determined using radial distribution functions (RDFs) from atom-scale molecular dynamics simulations using the inverse Monte Carlo (IMC) technique...... in the presence of internal states, in general, and present a modified IMC method for their inclusion. The new model agrees with the original models on large-scale structural features such as density fluctuations in pure dipalmitoylphosphocholine and cholesterol domain formation at intermediate concentrations...... and also indicates that ordered and disordered domains form at all cholesterol concentrations, even if the global density remains uniform. The inclusion of ordering also improves transferability of the interactions between different concentrations, but does not eliminate transferability problems completely...

  16. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate.

    Science.gov (United States)

    Santos, Olimpia Maria Martins; Freitas, Jennifer Tavares Jacon; Cazedey, Edith Cristina Laignier; de Araújo, Magali Benjamim; Doriguetto, Antonio Carlos

    2016-01-01

    Orbifloxacin (ORBI) is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API) is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures. PMID:27005603

  17. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate

    Directory of Open Access Journals (Sweden)

    Olimpia Maria Martins Santos

    2016-03-01

    Full Text Available Orbifloxacin (ORBI is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures.

  18. Combined Carbon, Nitrogen, and Oxygen XANES Spectroscopy on Hydrated and Anhydrous Interplanetary Dust Particles

    Science.gov (United States)

    Feser, M.; Wirick, S.; Flynn, G. J.; Keller, L. P.

    2003-01-01

    Interplanetary dust particles (IDPs) collected from the Earth s stratosphere generally contain percent-level concentrations of organic matter. This organic matter in IDPs is important for several reasons: 1) some IDPs contain interstellar organic matter, identified by high D/H or N-15, providing the opportunity to characterize this interstellar material, 2) comparison of the organic matter in anhydrous IDPs to that in hydrated IDPs can help establish the effects of parent body aqueous alteration, and, 3) IDPs are believed to have delivered to the surface of the early Earth pre-biotic organic matter important for the origin of life. X-Ray Absorption Near-Edge Structure (XANES) spectroscopy provides information on the functional groups present in a sample, and XANES can be performed on the nano-scale, comparable to the size of some of the sub-units of the IDPs. The energies of the XANES transitions are diagnostic of the type of bonding of the C, N, and O, allowing identification of the functional groups present in the sample. As part of our ongoing effort to characterize the organic matter in the IDPs, we have performed carbon- and oxygen- and the first nitrogen-XANES spectroscopy on two IDPs and acid-insoluble residue from the CM2 meteorite Murchison.

  19. Towards biomimetic scaffolds: anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers.

    Science.gov (United States)

    Hacker, Michael; Tessmar, Jörg; Neubauer, Markus; Blaimer, Andrea; Blunk, Torsten; Göpferich, Achim; Schulz, Michaela B

    2003-11-01

    The development of biomimetic materials and their processing into three-dimensional cell carrying scaffolds is one promising tissue engineering strategy to improve cell adhesion, growth and differentiation on polymeric constructs developing mature and viable tissue. This study was concerned with the fabrication of scaffolds made from amine-reactive diblock copolymers, N-succinimidyl tartrate monoamine poly(ethylene glycol)-block-poly(D,L-lactic acid), which are able to suppress unspecific protein adsorption and to covalently bind proteins or peptides. An appropriate technique for their processing had to be both anhydrous, to avoid hydrolysis of the active ester, and suitable for the generation of interconnected porous structures. Attempts to fabricate scaffolds utilizing hard paraffin microparticles as hexane-extractable porogens failed. Consequently, a technique was developed involving lipid microparticles, which served as biocompatible porogens on which the scaffold forming polymer was precipitated in the porogen extraction media (n-hexane). Porogen melting during the extraction and polymer precipitation step led to an interconnected network of pores. Suitable lipid mixtures and their melting points, extraction conditions (temperature and time) and a low-toxic polymer solvent system were determined for their use in processing diblock copolymers of different molecular weights (22 and 42 kDa) into highly porous off-the-shelf cell carriers ready for easy surface modification towards biomimetic scaffolds. Insulin was employed to demonstrate the principal of instant protein coupling to a prefabricated scaffold. PMID:12922156

  20. Preparation and characterization of 1,6 anhydrous Β-D-Glucopyranose from starch

    International Nuclear Information System (INIS)

    In order to prepare 2-deoxi-2-fluoride-D-glucosa (2FDG) in an inert form there are several synthesis methods, but the more interesting one for our study is based in a reaction from the 1,6 anhydrous, Β-D-glucopyranose (1,6AGP), in an attempt to compare the labelling efficiency rate of 2FDG with F-18, which is highly used in nuclear medicine. In the present paper the attainment of starch from white potatoe, infrared analysis of this starch and fusion point are included. Also results are compared with an analytical reactive standard. The process of preparation of 1,6AGP by pyrolysis of starch under reduced pressure, its separation and purification by crystallization and infrared characterization of 1,6AGP, nuclear magnetic resonance and mass spectrometry are also included. 10 kg. of potatoes were used, and 93059 g. ±5.8 of starch with an efficiency rate of 9.32 ±0.631; fusion point was 272 oC and there was a 9.83 ± 1.48 % of humidity. After the pyrolysis, crystallization an purification processes, 1.71 ±0.54 % of 1,6AGP were obtained. Later results of compound characterization, nuclear magnetic resonance, infrared and mass spectrometry were compared with a commercial product and it was proved that it corresponds to such pure compound. (Author)

  1. Taste Masking of Griseofulvin and Caffeine Anhydrous Using Kleptose Linecaps DE17 by Hot Melt Extrusion.

    Science.gov (United States)

    Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha

    2016-02-01

    The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form. PMID:26288942

  2. 锰硅炉无水炮泥试用实践%SILICON-MANGANESE FURNACE ANHYDROUS STEMMING TRIAL PRACTICE

    Institute of Scientific and Technical Information of China (English)

    康峰

    2015-01-01

    In order to prevent the leakage of molten alloy and furnace-wearing accident and extend life-span of tap hole, it analyzes that silicon-manganese furnace tries out anhydrous stemming, summarizes its production and test process. Practice has proved that long-term use of anhydrous stemming can effectively lower cost and improve economic benefit.%为防止锰硅炉跑眼和穿炉事故以及延长出铁口使用寿命,通过对锰硅炉试用无水炮泥实践的分析,总结了无水炮泥的制作、试用过程.实践证明:长期使用无水炮泥能有效降低成本,提高经济效益.

  3. Role of inositol phospholipid signaling in natural killer cell biology

    Directory of Open Access Journals (Sweden)

    Matthew eGumbleton

    2013-03-01

    Full Text Available Natural Killer (NK cells are important in the host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to prevent autoimmunity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the PI3K signaling pathway have defective development, natural killer cell repertoire expression (NKRR and effector function. Here we review the role of inositol phospholipid signaling in NK cell biology.

  4. Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters

    Science.gov (United States)

    Farber, Steven A.; Pack, Michael; Ho, Shiu-Ying; Johnson, Iain D.; Wagner, Daniel S.; Dosch, Roland; Mullins, Mary C.; Hendrickson, H. Stewart; Hendrickson, Elizabeth K.; Halpern, Marnie E.

    2001-05-01

    Zebrafish are a valuable model for mammalian lipid metabolism; larvae process lipids similarly through the intestine and hepatobiliary system and respond to drugs that block cholesterol synthesis in humans. After ingestion of fluorescently quenched phospholipids, endogenous lipase activity and rapid transport of cleavage products results in intense gall bladder fluorescence. Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing. Thus, fluorescent lipids provide a sensitive readout of lipid metabolism and are a powerful tool for identifying genes that mediate vertebrate digestive physiology.

  5. Roles played by acidic lipids in HIV-1 Gag membrane binding.

    Science.gov (United States)

    Olety, Balaji; Ono, Akira

    2014-11-26

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.

  6. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins.

    Science.gov (United States)

    Peitzsch, R M; McLaughlin, S

    1993-10-01

    We studied the binding of fatty acids and acylated peptides to phospholipid vesicles by making electrophoretic mobility and equilibrium dialysis measurements. The binding energies of the anionic form of the fatty acids and the corresponding acylated glycines were identical; the energies increased by 0.8 kcal/mol per number of carbons in the acyl chain (Ncarbon = 10, 12, 14, 16), a value identical to that for the classical entropy-driven hydrophobic effect discussed by Tanford [The Hydrophobic Effect (1980) Wiley, New York]. The unitary Gibbs free binding energy, delta Gou, of myristoylated glycine, 8 kcal/mol, is independent of the nature of the electrically neutral lipids used to form the vesicles. Similar binding energies were obtained with other myristoylated peptides (e.g., Gly-Ala, Gly-Ala-Ala). The 8 kcal/mol, which corresponds to an effective dissociation constant of 10(-4) M for myristoylated peptides with lipids, provides barely enough energy to attach a myristoylated protein in the cytoplasm to the plasma membrane. Thus, other factors that reduce (e.g., hydrophobic interaction of myristate with the covalently attached protein) or enhance (e.g., electrostatic interactions of basic residues with acidic lipids; protein-protein interactions with intrinsic receptor proteins) the interaction of myristoylated proteins with membranes are likely to be important and may cause reversible translocation of these proteins to the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    Directory of Open Access Journals (Sweden)

    Louis-Philippe eBernier

    2013-11-01

    Full Text Available P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane.All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e. homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C-linked metabotropic receptors and P2X receptor channels in DRG sensory neurons and microglia.

  8. Lowering of plasma phospholipid transfer protein activity by acute hyperglycaemia-induced hyperinsulinaemia in healthy men

    NARCIS (Netherlands)

    vanTol, A; Ligtenberg, JJM; Riemens, SC; vanHaeften, TW; Dullaart, RPF

    1997-01-01

    Human plasma contains two lipid transfer proteins involved in the remodelling of plasma lipoproteins: cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP). CETP mediates the transfer/exchange of cholesterylesters, triglycerides and phospholipids between high-density lip

  9. Membrane fusion induced by the major lipid-binding domain of the cytoskeletal protein talin

    NARCIS (Netherlands)

    Isenberg, G; Doerhoefer, S; Hoekstra, D; Goldmann, WH

    2002-01-01

    Secondary structure predictions have led to the identification of a major membrane-anchoring domain of the cytoskeletal protein talin spanning from amino acid 385 to 406. Using a synthetically derived peptide of this region, researchers have shown that it inserts into POPC/POPG phospholipid membrane

  10. Single-vesicle detection and analysis of peptide-induced membrane permeabilization

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Ehrlich, Nicky; Henriksen, Jonas Rosager;

    2015-01-01

    The capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection...

  11. Biogenesis of outer membranes in Gram-negative bacteria.

    Science.gov (United States)

    Tokuda, Hajime

    2009-03-23

    The outer membrane, an essential organelle of Gram-negative bacteria, is composed of four major components: lipopolysaccharide, phospholipids, beta-barrel proteins, and lipoproteins. The mechanisms underlying the transport of these components to outer membranes are currently under extensive examination. Among them, the sorting of lipoproteins to the outer membrane of Escherichia coli has been clarified in detail. The Lol system, composed of five proteins, catalyzes outer membrane sorting of lipoproteins. Various Lpt proteins have recently been identified as factors involved in the transport of lipopolysaccharide to the outer membrane, although the mechanism remains largely unknown. Proteins with alpha-helical membrane spanning segments are found in the inner membrane, whereas amphipathic beta-barrel proteins span the outer membrane. These beta-barrel proteins are inserted into the outer membranes through a central core protein BamA (YaeT) with the help of four outer membrane lipoproteins. In contrast, little is known about how phospholipids are transported to the outer membrane. PMID:19270402

  12. [Lipid composition in erythrocytic membranes of rats with various stress resistance during repeated immobilization].

    Science.gov (United States)

    Tsygvintsev, A A; Bryndina, I G

    2011-01-01

    The dependence between variation of erythrocyte phospholipid composition and stress resistance was studied in chronic experiment on nonline male albino rats, previously differed by their behavior in the 'open field' test. A significant exhausting of membrane pool by the basic classes of phospholipids was registered under influence of 2 hours daily immobilization during 5, 10, 20, 30 days, however, their metabolism for resistant and predisposed to stress animals flows variously. PMID:21688664

  13. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extens

  14. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers.

    OpenAIRE

    Peng, Z. Y.; Simplaceanu, V; Dowd, S R; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer...

  15. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution

    Directory of Open Access Journals (Sweden)

    Sergio Padilla-López

    2012-03-01

    BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease, has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H+-ATPase (V-ATPase activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ led to a decreased level of phosphatidylethanolamine (PtdEtn in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs, with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution.

  16. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution.

    Science.gov (United States)

    Padilla-López, Sergio; Langager, Deanna; Chan, Chun-Hung; Pearce, David A

    2012-03-01

    BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H(+)-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ) led to a decreased level of phosphatidylethanolamine (PtdEtn) in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer) decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ) led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs), with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer) transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution. PMID:22107873

  17. Prostaglandin phospholipid conjugates with unusual biophysical and cytotoxic properties

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Adolph, Sidsel K.; Andresen, Thomas Lars;

    2010-01-01

    in an aqueous buffer and both phospholipids are hydrolyzed by phospholipase A(2), but with different conversion rates and extent of hydrolysis. The cytotoxicity was evaluated in HT-29 and Colo205 cells and the conjugates induced cell death in the presence of phospholipase A(2) and surprisingly also...

  18. PHOSPHOLIPIDS OF FIVE PSEUDOMONAD ARCHETYPES FOR DIFFERENT TOLUENE DEGRADATION PATHWAYS

    Science.gov (United States)

    Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine phospholipid profiles for five reference pseudomonad strains harboring distinct toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, B...

  19. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka;

    2014-01-01

    . The additivity of the packing parameters of cholesterol and PZPC explains their cohabitation in a planar bilayer. Oxidized lipids are ubiquitously present in significant amounts in high- and low-density lipoprotein (HDL and LDL) particles, diseased tissues, and in model phospholipid mixtures containing...

  20. Biomembrane modeling: molecular dynamics simulation of phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.R.

    1979-01-01

    As a first step toward a computer model of a biomembrane-like bilayer, a dynamic, deterministric model of a phospholipid monolayer has been constructed. The model moves phospholipid-like centers of force according to an integrated law of motion in finite difference form. Forces on each phospholipid analogue are derived from the gradient of the local potential, itself the sum of Coulombic and short-range terms. The Coulombic term is approximated by use of a finite-difference form of Poisson's equation, while the short-range term results from finite-radius, pairwise summation of a Lennard-Jones potential. Boundary potentials are treated in such a way that the model is effectively infinite in extent in the plane of the monolayer. The two-dimensional virial theorem is used to find the surface pressure of the monolayer as a function of molecular area. Pressure-versus-area curves for simulated monolayers are compared to those of real monolayers. Dependence of the simulator's behavior on Lennard-Jones parameters and the specific geometry of the molecular analogue is discussed. Implications for the physical theory of phospholipid monolayers and bilayers are developed.

  1. Phospholipid signaling responses in salt-stressed rice leaves

    NARCIS (Netherlands)

    E. Darwish; C. Testerink; M. Khalil; O. El-Shihy; T. Munnik

    2009-01-01

    Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32 P-orthophosphate and the lipids extracted and analyzed

  2. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  3. Advances in studies of phospholipids as carriers in skin topical application

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:This article provides an overview of characteristics of phospholipids,the characteristics and influential factors of liposome and microemulsion as carriers for skin delivery of drugs,and the latest advances of the phospholipids carriers in transdermal delivery systems.The perspective is that phospholipids carriers may be capable of a wide range of applications in the transdermal defivery system.

  4. Using crosslinkable diacetylene phospholipids to construct two-dimensional packed beds in supported lipid bilayer separation platforms

    Directory of Open Access Journals (Sweden)

    Shu-Kai Hu, Sheng-Wen Hsiao, Hsun-Yen Mao, Ya-Ming Chen, Yung Chang and Ling Chao

    2013-01-01

    Full Text Available Separating and purifying cell membrane-associated biomolecules has been a challenge owing to their amphiphilic property. Taking these species out of their native lipid membrane environment usually results in biomolecule degradation. One of the new directions is to use supported lipid bilayer (SLB platforms to separate the membrane species while they are protected in their native environment. Here we used a type of crosslinkable diacetylene phospholipids, diynePC (1,2-bis(10,12-tricosadiynoyl-sn-glycero-3-phosphocholine, as a packed material to create a 'two-dimensional (2D packed bed' in a SLB platform. After the diynePC SLB is exposed to UV light, some of the diynePC lipids in the SLB can crosslink and the non-crosslinked monomer lipids can be washed away, leaving a 2D porous solid matrix. We incorporated the lipid vesicle deposition method with a microfluidic device to pattern the location of the packed-bed region and the feed region with species to be separated in a SLB platform. Our atomic force microscopy result shows that the nano-scaled structure density of the '2D packed bed' can be tuned by the UV dose applied to the diynePC membrane. When the model membrane biomolecules were forced to transport through the packed-bed region, their concentration front velocities were found to decrease linearly with the UV dose, indicating the successful creation of packed obstacles in these 2D lipid membrane separation platforms.

  5. IR-based Water Quantification in Nominally Anhydrous High-Pressure Minerals

    Science.gov (United States)

    Koch-Müller, Monika; Rhede, Dieter

    2010-05-01

    Infrared spectroscopy is a powerful tool to determine traces of OH and H2O in minerals and glasses. The application is based on the Beer Lambert law A = ɛ*c*t, where A is the absorbance, ɛ the absorption coefficient, e.g. in L mol H2O-1 cm-2, c the concentration in mol/L and t the thickness in cm. It has been shown in numerous experimental and theoretical studies, i.e. Paterson (1982) and Libowitzky and Rossman (1997) that ɛ generally increases with decreasing wavenumbers. However, this general trend seems to be valid only for hydrous minerals and glasses and should not be applied to water quantification in nominally anhydrous minerals (NAMs) which incorporate traces of water in their structures (e.g. Rossman 2006, Thomas et al. 2009). For example, Bell et al. (2003) showed that if the general IR calibration of Paterson (1982) is adopted, the water concentration of olivine is underestimated by about 25 %. A similar result has been obtained by Deon et al. (2010) for Mg-wadsleyite. Thomas et al. (2009) evidenced using a large variety of analytical methods that not using mineral-specific IR-calibrations for the OH quantification in NAMs (e.g. SiO2 polymorphs and olivine) leads to either underestimation as for olivine or overestimation of the water content as for stishovite and coesite. Thus, to quantify the water content of NAMs mineral specific absorption coefficients are needed but unfortunately only for a few minerals available. In this study we propose that within a polymorphic mineral series of the same composition ɛ positively correlates with the density and negatively with the molar volume of the respective mineral phase. To prove this hypothesis we determined ɛ-values for synthetic hydrous ringwoodite samples ranging in composition from xMg = 0.0 to 0.6 by combining results of FTIR-spectroscopy with those of Secondary Ion Mass Spectrometry. The ɛ-values plot well below the general calibration curves of Paterson (1982) and Libowitzky and Rossman (1997

  6. Fatty acid composition of total lipids and phospholipids of muscular tissue and brain of rats under the impact of vibration

    Directory of Open Access Journals (Sweden)

    N. M. Kostyshyn

    2016-06-01

    Full Text Available Fatty acids are important structural components of biological membranes, energy substrate of cells involved in fixing phospholipid bilayer proteins, and acting as regulators and modulators of enzymatic activity. Under the impact of vibration oscillations there can occur shifts in the ratio of different groups of fatty acids, and degrees of their saturation may change. The imbalance between saturated, monounsaturated and polyunsaturated fatty acids, which occurs later in the cell wall, disrupts fluidity and viscosity of lipid phase and causes abnormal cellular metabolism. Aim. In order to study the impact of vibration on the level of fatty acids of total lipids in muscular tissue and fatty acid composition of phospholipids in muscles and brain, experimental animals have been exposed to vertical vibration oscillations with different frequency for 28 days. Methods and results. Tissues fragments of hip quadriceps and brain of rats were used for obtaining methyl esters of fatty acids studied by the method of gas-liquid chromatography. It was found that the lipid content, ratio of its separate factions and fatty acid composition in muscular tissue and brain of animals with the action of vibration considerably varies. With the increase of vibration acceleration tendency to increase in absolute quantity of total lipids fatty acids can be observed at the account of increased level of saturated and monounsaturated ones. These processes are caused by activation of self-defense mechanisms of the body under the conditions of deviations from stabilized physiological norm, since adaptation requires certain structural and energy costs. Increase in the relative quantity of saturated and monounsaturated fatty acids in phospholipids of muscles and brain and simultaneous reduction in concentration of polyunsaturated fatty acids are observed. Conclusion. These changes indicate worsening of structural and functional organization of muscles and brain cell membranes of

  7. Influence of membrane composition on its flexibility

    International Nuclear Information System (INIS)

    Full text: Lamellar phases and vesicles composed of lipids have been used as model systems to investigate biological process related to cell membrane as well as promising carriers for drugs and gene therapy. The composition of the membrane determines its three dimensional shape and its properties such as rigidity and compressibility which play an important role on membrane fusion, protein adhesion, interactions between proteins, etc. We present systematic study of a lamellar system composed mainly of lecithin which is a biocompatible phospholipid and simusol, which is a mixture of fatty acids that acts as a cosurfactant introducing flexibility to the membrane. Using X ray scattering we determine the lamellar periodicity as a function of the hydration for different formulations of the membrane; ranging from 100 % to 50 % mass fraction of lecithin. The X-ray spectra are fitted using a 4 Gaussian model [1]that allows us to determine the lamellar periodicity and the Caille parameter [2]. The ideal swelling law relating the membrane volume fraction (φm) to the lamellar periodicity (D) is given by φm =δm/D, where δm is the thickness membrane, however, when steric interactions are dominant with respect to electrostatic and van der Waals interactions, deviations from this behavior are expected [3]. We present experimental data illustrating the swelling behavior for the membrane compositions and the respective behavior of the hydration limit, membrane Luzzati [4], of the Caille parameter and qualitative interpretation of the interaction forces the systems studying the parameter membrane square amplitude fluctuation[5]. [1] Private communication with Prof. Dr. Cristiano Luis Pinto de Oliveira. [2] Caille A. et all, Acad. Sci. Paris B274 (1972) 891. [3] E. Kurtisovski et all, PRL 98, 258103 (2007). [4] Nagle et all, Curr Opin Struct Biol. 2000 Aug;10(4):474-80. [5] H. I. Petrache. Structure and interactions of fluid phospholipids bilayers measured by high resolution X

  8. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids

    Energy Technology Data Exchange (ETDEWEB)

    Hauff, Simone [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany); Vetter, Walter [University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, D-70599 Stuttgart (Germany)], E-mail: w-vetter@uni-hohenheim.de

    2009-03-23

    Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was {approx}90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPC{sub eq}) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese

  9. Identification of a hemolysin from Actinobacillus pleuropneumoniae and characterization of its channel properties in planar phospholipid bilayers.

    Science.gov (United States)

    Lalonde, G; McDonald, T V; Gardner, P; O'Hanley, P D

    1989-08-15

    A proteinaceous hemolysin secreted by strain 4074 of serotype 1 of Actinobacillus pleuropneumoniae was purified by diafiltration and ion exchange chromatographic techniques. The hemolytic activity is associated with a 107-kDa band as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and confirmed by Western blotting and immunoprecipitation. This hemolysin produces pores in membranes as demonstrated by osmotic protection studies using red blood cells and carbohydrate compounds of various molecular weights. These assays suggest a pore diameter in the order of 2 nm. Phospholipid bilayers composed of 1:1 w/w phosphotidylserine:phosphotidylethanolamine exposed to this toxin display discrete current flow events typical of transmembrane channels and consistent with the interpretation that this toxin acts by forming pores in phospholipid membranes. The linear relationship of current amplitude to holding potential when examined over the -60 to +60 mV range indicates that this pore has a constant mean single channel conductance level of 350-400 pS. PMID:2474533

  10. Resting microglial cells exhibit tubular membrane protrusions

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2002-11-01

    Full Text Available Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991 as well as in organic (Schnur 1993; Oda et al. 1991 systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Iglic et al. 2001b. In this work we describe membrane protrusions in microglial cells.

  11. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  12. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  13. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2012-07-01

    PIP2 and PIP3 are implicated in a wide variety of cellular signaling pathways at the plasma membrane. We have used STORM imaging to localize clusters of PIP2 and PIP3 to distinct nanoscale regions within the plasma membrane of PC12 cells. With anti-phospholipid antibodies directly conjugated with AlexaFluor 647, we found that PIP2 clusters in membrane domains of 64.5±27.558 nm, while PIP3 clusters had a size of 125.6±22.408 nm. With two color direct STORM imaging we show that >99% of phospholipid clusters have only one or other phospholipid present. These results indicate that lipid nano-domains can be readily identified using super-resolution imaging techniques, and that the lipid composition and size of clusters is tightly regulated.

  14. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation.

    Science.gov (United States)

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; Scavone, Cristoforo; Mignaco, Julio Alberto; Barbosa, Leandro Augusto de Oliveira; Santos, Hérica de Lima

    2015-12-01

    The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.

  15. Voltammetry of 6,6'-dithiodinicotinic acid on a self-assembled phospholipid monolayer prive

    Science.gov (United States)

    Herrero, R.; Vilariño, T.; Barriada, J. L.; Sastre de Vicente, M. E.; López-Fonseca, J. M.; Moncelli, M. R.

    1999-04-01

    This paper reports a voltammetric study of 6,6'-dithiodinicotinic acid (CPDS) across a biomimetic membrane system consisting of a monolayer of dioleoylphosphatidylcholine, deposited on mercury. Because of the low solubility of this compound and its potential decomposition in alkaline media, estimation of pK values for the carboxyl and amino groups of the pyridine ring of the CPDS entailed using the Hammett equation. UV spectra seem to confirm the presence of the dianionic form of CPDS above pH=3-4. Differential capacity and cyclic voltammetry measurements were made in order to characterize the voltammetric behavior directly on mercury and through a monolayer of dioleoylphosphatidylcholine. Estimation of the CPDS hydrophobicity degree from the partition coefficient in octanol/ water suggests no penetration of the dianion into the monolayer and supports the fact that the named dianion undergoes protonation at the phospholipid/solution interface to give a neutral specie which penetration into the phospholipid region, favored by its higher hydrophobicity, is followed by electrochemical reduction at the mercury surface. Nous avons étudié par voltampérométrie le comportement de l'acide 6,6'-dithiodinicotinique (CPDS) sur l'électrode de mercure couverte par une monocouche de dioleoyl-phosphatidylcholine. La caractérisation électrochimique a été effectuée par des mesures de la capacité différentielle et par voltamétrie cyclique au dessus d'un pH 3-4. Le spectre UV paraît confirmer la présence de la forme dianionique du CPDS. Cependant les données expérimentales associées à une estimation de l'hydrophobicité de la forme dianionique suggèrent que seule la forme neutre du CPDS peut être réduite sur la surface de l'électrode.

  16. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn;

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...... on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra...

  17. Special topical approach to the treatment of acne. Suppression of sweating with aluminum chloride in an anhydrous formulation.

    Science.gov (United States)

    Hurley, H J; Shelley, W B

    1978-12-01

    A new topical approach to acne treatment--the use of aluminum chloride hexahydrate in anhydrous ethanol (ACAE)--was studied in 141 patients. Using sequential treatment schedules, paired comparison techniques, and various concentrations of ACAE, we established maximal efficacy with minimal local irritation for the 6.25% strength solution. Clinical efficacy and lack of toxicity of this formulation were confirmed by the additional clinical study of 65 patients. The antiperspirant and antibacterial actions of 6.25% ACAE solution were then verified on acne skin areas. It is postulated that the clinical improvement in acne that follows the topical use of ACAE results from one or both of these actions.

  18. Summary on Ferric Chloride Anhydrous Production%无水三氯化铁生产运行总结

    Institute of Scientific and Technical Information of China (English)

    卢峰

    2014-01-01

    In ferric chloride anhydrous production operation condition, improve the process, reduce consumption, improve operational control level, stable safety production and protecting the environment and social benefit is remarkable.%介绍了无水三氯化铁生产运行状况。通过实践改进工艺,降低消耗,提高操作控制水平,达到安全生产,环境、社会效益显著。

  19. Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison.

    Science.gov (United States)

    Rammohan, Alagappa; Kaduk, James A

    2016-08-01

    The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)] n , has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KO n ] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to the c axis. The only hydrogen bond is an intra-molecular one involving the hy-droxy group and the central carboxyl-ate group, with graph-set motif S(5). PMID:27536403

  20. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia;

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  1. Linking membrane physical properties and low temperature tolerance in arthropods.

    Science.gov (United States)

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod. PMID:24080490

  2. Incorporation of peptides in phospholipid aggregates using ultrasound

    OpenAIRE

    Silva, Raquel; Little, Collin; Ferreira, Helena; Paulo, Artur Cavaco

    2008-01-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LL...

  3. Role of inositol phospholipid signaling in natural killer cell biology

    OpenAIRE

    Gumbleton, Matthew; Kerr, William G.

    2013-01-01

    Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol ph...

  4. Ultradeformable phospholipid vesicles as a drug delivery system: a review

    OpenAIRE

    Romero, Eder Lilia

    2015-01-01

    Maria Jose Morilla, Eder Lilia RomeroNanomedicine Research Program, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina Abstract: Ultradeformable vesicles are highly deformable (elastic/flexible) liposomes made of phospholipids plus highly mobile hydrophilic detergents capable of penetrating the intact skin across the stratum corneum and reaching the viable epidermis. Ultradeformable vesicles are more effective than conventional liposomes in deliveri...

  5. Association of anti-phospholipid antibodies with connective tissue diseases

    OpenAIRE

    Reena Rai; Swetha, T.

    2015-01-01

    Background: The antiphospholipid antibodies (APLA) are directed against phospholipids and their binding proteins and are frequently found in association with connective tissue disorders. Systemic lupus erythematoses (SLE) with APLA may cause a diagnostic dilemma as there are several manifestations like haemolytic anemia, thrombocytopenia, neurologic manifestations, leg ulcerations, serositis proteinuria which overlap in both these conditions. We conducted a study to find out the association o...

  6. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.

    OpenAIRE

    Kozloff, L. M.; Turner, M.A.; Arellano, F; Lute, M

    1991-01-01

    The nature of the phospholipids of the various bacteria that have ice nucleation activity in supercooled water has been determined. The seven bacteria studied included Pseudomonas syringae, Erwinia herbicola, three Escherichia coli K-12 strains that are phenotypically Ice+ because they contain plasmids with different amounts of either P. syringae or E. herbicola cloned DNA, and two E. coli K-12 strains without cloned ice gene DNA. All five Ice+ bacterial strains contained small amounts (0.1 t...

  7. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers: evidence from atomic force microscopy and functional assay.

    Science.gov (United States)

    Rand, Jacob H; Wu, Xiao-Xuan; Quinn, Anthony S; Chen, Pojen P; McCrae, Keith R; Bovill, Edwin G; Taatjes, Douglas J

    2003-09-01

    The antiphospholipid (aPL) syndrome is an autoimmune condition that is marked by recurrent pregnancy losses and/or systemic vascular thrombosis in patients who have antibodies against phospholipid/co-factor complexes. The mechanism(s) for pregnancy losses and thrombosis in this condition is (are) not known. Annexin A5 is a potent anticoagulant protein, expressed by placental trophoblasts and endothelial cells, that crystallizes over anionic phospholipids, shielding them from availability for coagulation reactions. We previously presented data supporting the hypothesis that aPL antibody-mediated disruption of the anticoagulant annexin A5 shield could be a thrombogenic mechanism in the aPL syndrome. However, this has remained a subject of controversy. We therefore used atomic force microscopy, a method previously used to study the crystallization of annexin A5, to image the effects of monoclonal human aPL antibodies on the crystal structure of the protein over phospholipid bilayers. In the presence of the aPL monoclonal antibodies (mAbs) and beta(2)-GPI, the major aPL co-factor, structures presumed to be aPL mAb-antigen complexes were associated with varying degrees of disruption to the annexin A5 crystallization pattern over the bilayer. In addition, measurements of prothrombinase activity on the phospholipid bilayers showed that the aPL mAbs reduced the anti-coagulant effect of annexin A5 and promoted thrombin generation. These data provide morphological evidence that support the hypothesis that aPL antibodies can disrupt annexin A5 binding to phospholipid membranes and permit increased generation of thrombin. The aPL antibody-mediated disruption of the annexin A5 anticoagulant shield may be an important prothrombotic mechanism in the aPL syndrome. PMID:12937161

  8. Poly(imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Yuan, Sen; Guo, Xiaoxia; Aili, David;

    2014-01-01

    % orthophosphoric acid under pressure at 180°C to give acid uptakes as high as 780wt% and anhydrous proton conductivity of up to 0.26Scm-1 at elevated temperatures. The PIBI membrane with a 1:1molar ratio of APABI:ODA (PIBI-1/1) and with an acid uptake of 300wt% showed an elastic modulus of 0.1GPa at 160°C, which...

  9. Lipid membranes for the fabrication of functional micro- and nano-structures

    OpenAIRE

    Gopalakrishnan, Gopakumar; Vogel, Horst

    2007-01-01

    The central goal of this thesis work is to fabricate novel, functional fluorescent nanostructures in confined systems offered by phospholipid membranes, which are known to have highly ordered, thermotropic and lyotropic structures. In separate approaches, we have used three different lipid systems: multilamellar planar lipid membranes, unilamellar vesicular membranes as well as lipid monolayers for the development of functional fluorescent nano-, micro- and meso-scopic structures. Techniques ...

  10. Peripheral Blood Mononuclear Cell Membrane Fluidity and Disease Outcome in Patients with Multiple Sclerosis

    OpenAIRE

    Gloudina M Hon; Hassan, Mogamat S.; van Rensburg, Susan J.; Abel, Stefan; Erasmus, Rajiv T; Matsha, Tandi

    2011-01-01

    Immune cell membrane lipids are important determinants of membrane fluidity, eicosanoid production and phagocytosis and fatty acid metabolic abnormalities have been reported in immune cells from patients with multiple sclerosis. The aim of this study was to investigate the relationship between peripheral blood mononuclear cell membrane fluidity, permeability status, and disease outcome as measured by the Kurtzke expanded disability status scale. Phospholipids, fatty acids and cholesterol comp...

  11. Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization.

    Science.gov (United States)

    Eeman, M; Berquand, A; Dufrêne, Y F; Paquot, M; Dufour, S; Deleu, M

    2006-12-19

    Atomic force microscopy (AFM) combined with surface pressure-area isotherms were used to probe the interfacial behavior of phospholipid monolayers following penetration of surfactin, a cyclic lipopeptide produced by Bacillus subtilis strains. Prior to penetration experiments, interfacial behavior of different surfactin molecules (cyclic surfactins with three different aliphatic chain lengths--S13, S14, and S15--and a linear surfactin obtained by chemical cleavage of the cycle of the surfactin S15) has been investigated. A more hydrophobic aliphatic chain induces greater surface-active properties of the lipopeptide. The opening of the peptide ring reduces the surface activity. The effect of phospholipid acyl chain length (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine- (DPPC), and distearoylphosphatidylcholine) and phospholipid polar head (DPPC, dipalmitoylphosphatidylethanolamine and dipalmitoylphosphatidylserine) on monolayer penetration properties of the surfactin S15 has been explored. Results showed that while the lipid monolayer thickness and the presence of electrostatic repulsions from the interfacial film do not significantly influence surfactin insertion, these parameters strongly modulate the ability of the surfactin to alter the nanoscale organization of the lipid films. We also probed the effect of surfactin structure (influence of the aliphatic chain length and of the cyclic structure of the peptide ring) on the behavior of DPPC monolayers. AFM images and isotherms showed that surfactin penetration is promoted by longer lipopeptide chain length and a cyclic polar head. This indicates that hydrophobic interactions are of main importance for the penetration power of surfactin molecules.

  12. Maternal Baicalin Treatment Increases Fetal Lung Surfactant Phospholipids in Rats

    Directory of Open Access Journals (Sweden)

    Chung-Ming Chen

    2011-01-01

    Full Text Available Baicalin is a flavonoid compound purified from the medicinal plant Scutellaria baicalensis Georgi and has been reported to stimulate surfactant protein (SP-A gene expression in human lung epithelial cell lines (H441. The aims of this study were to determine whether maternal baicalin treatment could increase lung surfactant production and induce lung maturation in fetal rats. This study was performed with timed pregnant Sprague-Dawley rats. One-day baicalin group mothers were injected intraperitoneally with baicalin (5 mg/kg/day on Day 18 of gestation. Two-day baicalin group mothers were injected intraperitoneally with baicalin (5 mg/kg/day on Days 17 and 18 of gestation. Control group mothers were injected with vehicle alone on Day 18 of gestation. On Day 19 of gestation, fetuses were delivered by cesarean section. Maternal treatment with 2-day baicalin significantly increased saturated phospholipid when compared with control group and total phospholipid in fetal lung tissue when compared with control and 1-day baicalin groups. Antenatal treatment with 2-day baicalin significantly increased maternal growth hormone when compared with control group. Fetal lung SP-A mRNA expression and maternal serum corticosterone levels were comparable among the three experimental groups. Maternal baicalin treatment increases pulmonary surfactant phospholipids of fetal rat lungs and the improvement was associated with increased maternal serum growth hormone. These results suggest that antenatal baicalin treatment might accelerate fetal rat lung maturation.

  13. The micromethod for determination of cholesterol, cholesteryl esters and phospholipids

    Directory of Open Access Journals (Sweden)

    Okabe,Akinobu

    1974-12-01

    Full Text Available We examined the method for determining microquantities of lipids, including cholesterol, cholesteryl esters and phospholipids. A standard colorimetric procedure of cholesteryl esters was modified to accommodate a quantitative thin-layer chromatography. This method involved the following steps. (1 Separation of lipids by a thin-layer chromatography: Lipids were applied to Silica gel G plates. Plates were developed with petroleum ether-diethyl etheracetic acid (82: 18: 2, vIvIv. (2 Elution of cholesterol and its esters from scraped silica gel: After scraping the silica gel with adhered cholesterol and its esters, they were eluted with chloroform-methanol (4: 1, v,tv. In the case of phspholipids, the silica gel was calcified. (3 Colorimetric determination of the lipids: Cholesterol and its esters eluted from the silica gel were determined by the method of ZAK with ROSENTHAL'S color reagent directly and after saponification, respectively. Phospholipids were calculated from the phosphorous content determined by the method of KATES. On the basis of examination of recovery and analyses of lipids extracted from tissue, it was concluded that this method permitted a reliable estimation of microquantities of cholesterol, its esters and phospholipids from small amounts of biological materials.

  14. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. PMID:27286632

  15. Changes in phospholipid metabolism during B lymphocyte activation

    International Nuclear Information System (INIS)

    Phospholipid metabolism in murine B lymphocytes stimulated with anti-Ig bound to Sepharose has been examined. T cell-depleted splenic B lymphocytes cultured with Sepharose-coupled, affinity-purified goat anti-mouse Ig (GAMIg) increased the incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol within 3 hr and increased [3H]-thymidine uptake at 48 hr. No increase in labeling was observed in phosphatidylethanolamine, phosphatidylcholine, or phosphatidylserine. Based on both negative and positive selection procedures, it was demonstrated that these responses occurred in B lymphocytes. In contrast to the thymidine uptake response did not require the presence of accessory cells or exogenous cytokines. The same selective changes in phospholipid metabolism were observed in neoplastic B lymphocytes (BCL1) after treatment with Sepharose anti-μ, but not with Sepharose anti-Ia or Sepharose normal Ig. The dose-response relationships of 32PO4 incorporation into phosphatidic acid and phosphatidylinositol and [3H] thymidine uptake were nearly identical in BCL1 cells. The results of these experiments indicate that interaction B lymphocytes with insolubilized anti-Ig results in prompt and selective changes in phospholipid metabolism that appear to be correlated with B lymphocyte proliferation

  16. The effects of oxygen on the evolution of microbial membranes

    Science.gov (United States)

    Jahnke, L. L.

    1991-01-01

    One prokaryote, Methylococcus capsulatus, synthesizes both hopanoids and sterols and, thus, provides a unique opportunity to study the evolution of membrane function. When M. capsulatus was grown at different temperatures, lipid analysis of the whole cells showed that both sterol and unsaturated fatty acid levels decreased at higher growth temperatures; sterol concentrations were 0.116 micro mole/micro mole phospholipid at 30 C and 0.025 micro mole/mirco mole phospholipid at 45 C, while the saturated to unsaturated fatty acid ratio increased from 0.397 to 1.475. Hopane polyol levels were constant over this range; however, methylation of the A-ring decreased markedly in cells grown at 30 C. These results imply that sterol and hopane molecules are required for enhancement of some specific membrane function, potentially by modulating membrane fluidity.

  17. Rhodopseudomonas acidophila strain 10050 contains photosynthetic LH2 antenna complexes that are not enriched with phosphatidylglycerol, and the phospholipids have a fatty acyl composition that is unusual for purple non-sulfur bacteria.

    Science.gov (United States)

    Russell, Nicholas J; Coleman, Julie K; Howard, Tina D; Johnston, Evelyn; Cogdell, Richard J

    2002-12-01

    The phospholipid composition of Rhodopseudomonas acidophila strain 10050 grown aerobically or anaerobically in the light was determined. The major phospholipids present in the aerobic cells were phosphatidylethanolamine (PE; 54%), phosphatidylglycerol (PG; 24%) and cardiolipin (diphosphatidylglycerol, DPG) (14%), together with phosphatidylcholine (PC; 5%). On moving the cells to anaerobic photosynthetic growth in the light PE remained the major phospholipid (37-49%), but there was a major change in the proportion of PC, which increased to 31-33%, and corresponding reductions in the contents of PG to 11-16% and DPG to 4-5%. The fatty acid composition of the phospholipids was unusual, compared with other purple non-sulfur photosynthetic bacteria, in that it contained 16:0 (29%), 17:1 (20%) and 19:1 (9%) plus several mainly unsaturated 2-OH fatty acids (9% total) as major components, when grown aerobically in the dark. In contrast when grown photosynthetically under anaerobic conditions there was <2% 17:1 or 19:1 present, while the amounts of 16:1 and 18:1 increased, and 16:0 decreased. The phospholipid composition of the purified light-harvesting complex 2 (LH2) complex was PE (43%), PC (42%) and DPG (15%). Unexpectedly, there was no PG associated with the purified LH2. These findings contrast with previous studies on several other photosynthetic bacteria, which had shown an increase in PG upon photosynthetic growth [Biochem. J. 181 (1979) 339]. The prior hypothesis that phosphatidylglycerol has some specific role to play in the function of light-harvesting complexes cannot be true for Rps. acidophila. It is suggested that specific integral membrane proteins may strongly influence the phospholipid content of the host membranes into which they are inserted.

  18. Selenium-dependent glutathione peroxidases——A highlight of the role of phospholipid hydroperoxide glutathione peroxidase in protection against oxidative damage

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Since the discovery that selenium is an integral component of the active site of the mammalian glu-tathione peroxidase, four members of the glutathione peroxidase family have been characterised: classical cellular glu-tathione peroxidase, gastrointestinal glutathione peroxidase; plasma glutathione peroxidase and phospholipid hydroperox-ide glutathione peroxidase (PHGPx). They are products of different genes and have different specificities on hydrogenperoxide and lipid hydroperoxides, the latter are generated by free radicals and can damage cell membranes and disruptcellular functions. Interestingly, PHGPx is not only active on phospholipid hydroperoxide, but also active on thyminehydroperoxide (a model compound for DNA damage) and protein hydroperoxides. This review highlights the role ofPHGPx in protection against peroxidative damage of lipids, protein and DNA.

  19. The surface charge of a cell lipid membrane

    CERN Document Server

    Pekker, M

    2014-01-01

    In this paper the problem of surface charge of the lipid membrane is considered. It is shown that the membrane surface is negatively charged. Negative ions are in potential wells formed by the dipole heads of membrane phospholipids. The binding energy of the ion with the membrane surface is much greater than its thermal energy. A self-consistent model of the potential in solution is developed, and a stationary charge density on the membrane surface is found. The estimates given in the paper show that the potential difference across the membrane of the unexcited axon (resting potential) can be explained by the difference in surface densities of the bound charges on the inner and outer surfaces of the membrane.

  20. Lipids in the structure and functions of biological membranes

    Directory of Open Access Journals (Sweden)

    Kuznetsov V.I.

    2014-06-01

    Full Text Available Lipids are one of the main components of cellular membranes. Lipids make up 30-55% of the cell content depending on the types of cells. Phospholipids, sphingomyelins, cholesterol, etc. are characteristic to cellular membranes. The composition of lipids of the both sides of the membranes differs. This fact determines asymmetry of the structure of bili-pid layer. The reason for many pathologies is the changes in the properties of cellular membranes with the modification of their components. The study of structure and functioning of cellular biomembranes is essential for many researchers. The condition of membranes, their quality, their quantitative composition and modification under the influence of different factors as well as their interaction with carbohydrate and protein component are of great importance for the functioning of both membranes, cells and the body in general. Analysis and structuring of lipids and their functions in biological membranes are studied.

  1. Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli

    NARCIS (Netherlands)

    Snijder, H.J.; Kingma, R.L.; Kalk, K.H.; Egmond, M.R.; Dijkstra, B.W.

    2001-01-01

    Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that catalyses the hydrolysis of phospholipids. Enzymatic activity is regulated by reversible dimerisation and calcium-binding. We have investigated the role of calcium by X-ray crystallography. In monomeric OMPLA, one calcium ion

  2. Alterations in the homeostasis of phospholipids and cholesterol by antitumor alkylphospholipids

    Directory of Open Access Journals (Sweden)

    Segovia Josefa L

    2010-03-01

    biosynthesis as well as the receptor-mediated uptake of cholesterol. Thus, membrane-targeted alkylphospholipids exhibit a common mechanism of action through disruption of cholesterol homeostasis. The accumulation of cholesterol within the cell and the reduction in phosphatidylcholine and sphingomyelin biosyntheses certainly alter the ratio of choline-bearing phospholipids to cholesterol, which is critical for the integrity and functionality of specific membrane microdomains such as lipid rafts. Alkylphospholipid-induced alterations in lipid homeostasis with probable disturbance of the native membrane structure could well affect signaling processes vital to cell survival and growth.

  3. Design of Control System to Anhydrous Alcohol Production%无水酒精控制系统设计

    Institute of Scientific and Technical Information of China (English)

    李颖斌

    2014-01-01

    在熟悉无水酒精生产工艺流程的基础上,确立无水酒精控制方案和IO点数。通过运用SIMATIC STEP7软件,结合无水酒精生产工艺,利用PLC编程组态软件STEP7建立过程控制程序,并与上位机监控软件WinCC链接,达到模拟工艺的效果。%By using SIMATIC STEP7 original combination of anhydrous alcohol production process,PLC programming software config-uration STEP7 building process control procedures,and Computer Software WinCC link,configuration,simulation technology to achieve re-sults.In a familiar anhydrous alcohol production process and the master of the software operating circumstances ,familiar with the single-loop and master control program,familiar with and master the process control system development steps.

  4. A Sucrose Solution Application to the Study of Model Biological Membranes

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Lombardo, D; Killany, M; Lesieur, S; Ollivon, M

    2001-01-01

    The small-angle X-ray and neutron scattering, time resolved X-ray small-angle and wide-angle diffraction coupled with differential scanning calorimetry have been applied to the investigation of unilamellar and multilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose buffers with sucrose concentrations from 0 to 60%. Sucrose buffer decreased vesicle size and polydispersity and increased an X-ray contrast between phospholipid membrane and bulk solvent sufficiently. No influence of sucrose on the membrane thickness or mutual packing of hydrocarbon chains has been detected. The region of sucrose concentrations 30%-40% created the best experimental conditions for X-ray small-angle experiments with phospholipid vesicles.

  5. Developing Nanodiscs as a Tool for Low Resolution Studies of Membrane Proteins

    DEFF Research Database (Denmark)

    Skar-Gislinge, Nicholas

    Phospholipid nanodiscs are ⇠ 10 nm disc shaped particles consisting of about 150 phospholipids arranged in a central bilayer stabilized by two amphipathic protein ”belts” that wrap around the rim of the bilayer. Because they contain a small bilayer leaflet they can be used as a tool for solution...... studies of membrane proteins. So far most of the studies using nanodiscs have been concerning the function of the incorporated membrane protein. However, due to the good control of the size and lipid composition of the nanodisc system, they seem an ideal tool for expanding the use of small angle...

  6. Biophysical studies of membrane channel polypeptides

    Energy Technology Data Exchange (ETDEWEB)

    Galbraith, Toby Patrick

    2001-07-01

    Membrane channels facilitate the flow of ions across biological membranes, a process which is important in numerous cellular functions. The study of large integral membrane proteins is made difficult by identification, production and purification problems, and detailed knowledge of their three-dimensional structures is relatively scarce. The study of simple 'model' membrane proteins has given valuable insight into the structures and dynamics of membrane proteins in general. The bacterial peptide gramicidin has been the subject of intense study for many years, and has provided important information into the structural basis of channel function. Peptaibols, a class of fungal membrane peptides which includes alamethicin and antiamoebin, have also been useful in relating structural details to molecular ion transport processes. Gramicidin crystals were grown in the presence of phospholipids with various headgroups and acyl chains. The diffraction patterns of the crystals obtained were processed, but found to be insufficient for high-resolution structural refinement. Analysis of the crystal space group and cell dimensions suggest that gramicidin adopts the same conformation as the closed, ion-free pore form previously published. Circular dichroism studies of gramicidin in small unilamellar vesicles of phospholipids with acyl chains of varying length show that the conformation of gramicidin is affected by the width of the bilayer. The structure of antiamoebin I in deuterated methanol was determined using 2D NMR spectroscopy techniques. It was compared with previously published solid state structures of this molecule, and found to be significantly different. The solution structure may represent an intermediate pre-insertion conformation which is not feasible in the more highly ordered membrane or crystal environment. A possible mechanism for membrane insertion is proposed. (author)

  7. Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide.

    Science.gov (United States)

    Wu, Wenjia; Li, Yifan; Chen, Pingping; Liu, Jindun; Wang, Jingtao; Zhang, Haoqin

    2016-01-13

    Herein, nanocomposite membranes are fabricated based on functionalized graphene oxides (FGOs) and sulfonated poly(ether ether ketone) (SPEEK), followed by being impregnated with imidazole-type ionic liquid (IL). The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust their motion and stacking. As a result, the nanocomposite membranes possess tunable interfacial domains as determined by its free volume characteristic, which provides regulated location for IL storage. The stored ILs act as hopping sites for water-free proton conduction along the FGO-constructed interfacial channels. The microstructure at SPEEK-FGO interface governs the IL uptake and distribution in nanocomposite membrane. Different from GO and vinyl imidazole functionalized GO (VGO), the presence of acidic (-SO3H) groups confers the p-styrenesulfonic acid functionalized GO (SGO) incorporated nanocomposite membrane loose interface and strong electrostatic attraction with imidazole-type IL, imparting an enhanced IL uptake and anhydrous proton conductivity. Nanocomposite membrane containing 7.5% SGO attains the maximum IL uptake of 73.7% and hence the anhydrous conductivity of 21.9 mS cm(-1) at 150 °C, more than 30 times that of SPEEK control membrane (0.69 mS cm(-1)). In addition, SGOs generate electrostatic attractions to the ILs confined within SGO-SPEEK interface, affording the nanocomposite membrane enhanced IL retention ability. PMID:26666712

  8. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  9. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Science.gov (United States)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  10. Anhydrate to hydrate solid-state transformations of carbamazepine and nitrofurantoin in biorelevant media studied in situ using time-resolved synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Rantanen, Jukka; Arnfast, Lærke;

    2016-01-01

    dependence on the dispersion media used, indicating the complexity of the nucleation process. Furthermore, when the CBZ and NF material was compacted into tablets the transformation times were remarkably slower. Results suggest that variations in the composition of the contents of the stomach/gut may affect...... with different biorelevant media, simulated fasted and fed state intestinal fluids containing bile salt and dioleoylphosphatidylcholine (DOPC) micelles, DOPC/sodium dodecyl sulfate (SDS) mixture, bile salt solution and water. Two anhydrate compounds (carbamazepine, CBZ and nitrofurantoin, NF) with different...... analysis, PCA) and compared to those for nitrofurantoin (NF). The study showed that the solution-mediated phase transformation of CBZ anhydrate was remarkably faster in the DOPC/SDS medium compared to transformation in all the other aqueous dispersion media. The conversion time for CBZ anhydrate in water...

  11. Computer simulation of partitioning of ten pentapeptides Ace-WLXLL at the cyclohexane/water and phospholipid/water interfaces

    Directory of Open Access Journals (Sweden)

    Aliste Marcela P

    2005-12-01

    Full Text Available Abstract Background Peptide-membrane interactions play a key role in the binding, partitioning and folding of membrane proteins, the activity of antimicrobial and fusion peptides, and a number of other processes. To gain a better understanding of the thermodynamics of such interactions, White and Wimley created an interfacial hydrophobicity scale based of the transfer free energy from water to octanol or lipid bilayers of a series of synthetic peptapeptides (Ace-WLXLL, with X being any of the twenty natural amino acids (White and Wimley (1996 Nat. Struct. Biol. 3, 842–848. In this study, we performed molecular dynamics simulations of a representative set of ten of these peptides (X = D, K, R, N, A, T, S, I, F and W in two membrane mimetic interfaces: water-cyclohexane (10 ns and a fully solvated dioleoylphosphatidylcholine (DOPC bilayer (50 ns using both constant pressure and constant area ensembles. We focus on partitioning of the ten peptides at the cyclohexane/water and lipid/water interfaces. Results The peptides rapidly equilibrate (2 and simulations at constant pressure that approximately yield the same average area of 0.66 nm2. Conclusion These peptides were designed to assume extended conformations, which is confirmed by the simulations. The distribution of the X3 side chain depends on its nature, and can be determined from molecular dynamics simulations. The time scale of peptide motion at a phospholipids-water interface is too long to directly calculate the experimentally measured hydrophobicity scale to test and improve the simulation parameters. This should be possible at the water/cyclohexane interface and likely will become feasible in the future for the phospholipids/water case.

  12. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  13. Viscoelastic changes measured in partially suspended single bilayer membranes.

    Science.gov (United States)

    Hasan, Imad Younus; Mechler, Adam

    2015-07-21

    For studies involving biomimetic phospholipid membrane systems, such as membrane-protein interactions, it is crucial that the supported membrane is biomimetic in its physical properties as well as in its composition. Two often overlooked aspects of biomimicry are the need for unrestrained lipid mobility, reflected in the viscoelastic properties of the membrane, and sufficient space between the membrane and the support for the insertion of transmembrane proteins. Here we show for a series of DMPC-based membranes that a partially suspended single bilayer membrane can be formed on functionalized gold surface without tethering. These membranes exhibit sufficient freedom of motion to represent the viscoelastic properties of a free lamellar bilayer membrane as demonstrated by determining the phase transition temperatures of these single bilayer membranes from the viscosity change upon chain melting using the dissipation signal of a quartz crystal microbalance (QCM-D). Atomic force microscopy imaging confirmed confluent, smooth membrane coverage of the QCM-D sensor that completely obscured the roughness of the sputtered gold surface. High-force AFM imaging was able to push membrane patches into the valleys of the gold morphology, confirming the inherently suspended nature of the MPA supported membrane. We show that the correlation between frequency and dissipation changes in the QCM-D sensograms is a sensitive indicator of the morphology of the membrane. PMID:26073288

  14. Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces

    International Nuclear Information System (INIS)

    The biomimetic phospholipid anti-biofouling multilayers were constructed on the biomedical poly(ethylene terephthalate) (PET) through the combination of layer-by-layer assembly and Michael addition reaction. Two biomacromolecules with opposite charges, alginate and chitosan, were sequentially adsorbed onto PET samples. The assembled multilayer was subsequently crosslinked with glutaraldehyde and biomimetic phospholipids was introduced into the assembled multilayer through the Michael addition of 2-methacryloyloxyethyl phosphorylcholine (MPC). The multilayer and phospholipid-modified PETs showed excellent hemocompatibility

  15. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    OpenAIRE

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. T...

  16. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids.

    Science.gov (United States)

    Komaiko, Jennifer; Sastrosubroto, Ashtri; McClements, David Julian

    2015-11-18

    This study examined the possibility of producing oil-in-water emulsions using a natural surfactant (sunflower phospholipids) and a low-energy method (spontaneous emulsification). Spontaneous emulsification was carried out by titrating an organic phase (oil and phospholipid) into an aqueous phase with continuous stirring. The influence of phospholipid composition, surfactant-to-oil ratio (SOR), initial phospholipids location, storage time, phospholipid type, and preparation method was tested. The initial droplet size depended on the nature of the phospholipid used, which was attributed to differences in phospholipid composition. Droplet size decreased with increasing SOR and was smallest when the phospholipid was fully dissolved in the organic phase rather than the aqueous phase. The droplets formed using spontaneous emulsification were relatively large (d > 10 μm), and so the emulsions were unstable to gravitational separation. At low SORs (0.1 and 0.5), emulsions produced with phospholipids had a smaller particle diameter than those produced with a synthetic surfactant (Tween 80), but at a higher SOR (1.0), this trend was reversed. High-energy methods (microfluidization and sonication) formed significantly smaller droplets (d < 10 μm) than spontaneous emulsification. The results from this study show that low-energy methods could be utilized with natural surfactants for applications for which fine droplets are not essential.

  17. Update on anti-phospholipid antibodies in SLE: the Hopkins' Lupus Cohort.

    Science.gov (United States)

    Petri, M

    2010-04-01

    Anti-phospholipid antibodies are common in patients in the Hopkins' Lupus Cohort: 47% have anti-cardiolipin, 32.5% anti-beta(2)-glycoprotein I and 26% lupus anticoagulant (by dRVVT confirmatory testing). Systemic lupus erythematosus patients with the lupus anticoagulant at baseline have a 50% chance of a deep venous thrombosis/pulmonary embolus in the next 20 years. Anti-phospholipid antibodies differ in their association with thrombosis: the lupus anticoagulant is most strongly associated with arterial and venous thrombosis and is the only anti-phospholipid antibody associated with myocardial infarction. Anti-phospholipid antibodies are not associated with atherosclerosis.

  18. Presence of methyl sterol and bacteriohopanepolyol in an outer-membrane preparation from Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Jahnke, Linda L.; Stan-Lotter, Helga; Kato, Katharine; Hochstein, Lawrence I.

    1992-01-01

    Cytoplasmic/intracytoplasmic and outer membrane preparations of Methylococcus capsulatus (Bath) were isolated by sucrose density gradient centrifugation of a total membrane fraction prepared by disruption using a French pressure cell. The cytoplasmic and/or intracytoplasmic membrane fraction consisted of two distinct bands, Ia and Ib (buoyant densities 1.16 and 1.18 g ml (exp -1), respectively) that together contained 57% of the protein, 68% of the phospholipid, 73% of the ubiquinone and 89% of the CN-sensitive NADH oxidase activity. The only apparent difference between these two cytoplasmic bands was a much higher phospholipid content for Ia. The outer membrane fraction (buoyant density 1.23-1.24 g ml (exp -1)) contained 60% of the lipopolysaccharide-associated, beta-hydroxypalmitic acid, 74% of the methylsterol, and 66% of the bacteriohopanepolyol (BHP); phospholipid to methyl sterol or BHP ratios were 6:1. Methanol dehydrogenase activity and a c-type cytochrome were also present in this outer membrane fraction. Phospholipase A activity was present in borh the cytoplasmic membrane and outer membrane fractions. The unique distribution of cyclic triterpenes may reflect a specific role in conferring outer membrane stability in this methanotrophic bacterium.

  19. Hydrophobic compounds reshape membrane domains.

    Directory of Open Access Journals (Sweden)

    Jonathan Barnoud

    2014-10-01

    Full Text Available Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.

  20. The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids.

    Directory of Open Access Journals (Sweden)

    Gaelle Boncompain

    Full Text Available Chlamydia trachomatis is an obligate intracellular pathogen responsible for loss of eyesight through trachoma and for millions of cases annually of sexually transmitted diseases. The bacteria develop within a membrane-bounded inclusion. They lack enzymes for several biosynthetic pathways, including those to make some phospholipids, and exploit their host to compensate. Three-dimensional fluorescence microscopy demonstrates that small organelles of the host, peroxisomes, are translocated into the Chlamydia inclusion and are found adjacent to the bacteria. In cells deficient for peroxisome biogenesis the bacteria are able to multiply and give rise to infectious progeny, demonstrating that peroxisomes are not essential for bacterial development in vitro. Mass spectrometry-based lipidomics reveal the presence in C. trachomatis of plasmalogens, ether phospholipids whose synthesis begins in peroxisomes and have never been described in aerobic bacteria before. Some of the bacterial plasmalogens are novel structures containing bacteria-specific odd-chain fatty acids; they are not made in uninfected cells nor in peroxisome-deficient cells. Their biosynthesis is thus accomplished by the metabolic collaboration of peroxisomes and bacteria.