WorldWideScience

Sample records for anhydrous interplanetary dust

  1. Correlated Nitrogen And Carbon Anomalies In An Anhydrous Interplanetary Dust Particles

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J; Dai, Z; Graham, G

    2003-10-31

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter from an anhydrous non-cluster IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  2. Correlated Nitrogen and Carbon Anomalies in an Anhydrous Interplanetary Dust Particle - Implications for Extraterrestrial Organic Matter Accreted by the Prebiotic Earth

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z; Bajt, S; Graham, G

    2003-12-17

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter within an anhydrous IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Our observations establish the presence of hetero-atomic organic compounds of presolar origin among the constant flux of carbonaceous material accreting to the terrestrial planets within IDPs. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  3. Dust in the Interplanetary Medium

    CERN Document Server

    Mann, Ingrid; Meyer-Vernet, Nicole; Zaslavsky, Arnaud; Lamy, Herve

    2010-01-01

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nano dust particles of sizes 1 - 10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nano dust are detected near 1AU with the plasma wave instrument onboard the STEREO spacecraft. Though such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  4. Dust in the interplanetary medium

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ingrid; Lamy, Herve [Belgian Institute for Space Aeronomy, Brussels (Belgium); Czechowski, Andrzej [Space Research Center, Polish Academy of Sciences, Warsaw (Poland); Meyer-Vernet, Nicole; Zaslavsky, Arnaud, E-mail: ingrid.mann@aeronomie.b [LESIA, Observatoire de Paris, Meudon (France)

    2010-12-15

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nanodust particles of sizes {approx_equal}1-10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nanodust are detected near 1 AU with the plasma wave instrument onboard the STEREO spacecraft. Although such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  5. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  6. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California

  7. Nitrogen Isotopic Anomalies in a Hydrous Interplanetary Dust Particle

    Science.gov (United States)

    Smith, J. B.; Dai, Z. R.; Weber, P. K.; Graham, G. A.; Hutcheon, I. D.; Bajt, S.; Ishii, H.; Bradley, J. P.

    2005-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere are the fine-grained end member (5 - 50 microns in size) of the meteoritic material available for investigation in the laboratory. IDPs are derived from either cometary or asteroidal sources. Some IDPs contain cosmically primitive materials with isotopic signatures reflecting presolar origins. Recent detailed studies using the NanoSIMS have shown there is a wide variation of isotopic signatures within individual IDPs; grains with a presolar signature have been observed surrounded by material with a solar isotopic composition. The majority of IDPs studied have been anhydrous. We report here results from integrated NanoSIMS/FIB/TEM/Synchrotron IR studies of a hydrous IDP, focused on understanding the correlations between the isotopic, mineralogical and chemical compositions of IDPs.

  8. Zodiacal light as an indicator of interplanetary dust

    Science.gov (United States)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  9. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  10. Inferring the interplanetary dust properties from remote observations and simulations

    CERN Document Server

    Lasue, Jeremie; Fray, Nicolas; Cottin, Hervé

    2016-01-01

    Since in situ studies and interplanetary dust collections only provide a spatially limited amount of information about the interplanetary dust properties, it is of major importance to complete these studies with properties inferred from remote observations of light scattered and emitted, with interpretation through simulations. Physical properties of the interplanetary dust in the near-ecliptic symmetry surface, such as the local polarization, temperature and composition, together with their heliocentric variations, may be derived from scattered and emitted light observations, giving clues to the respective contribution of the particles sources. A model of light scattering by a cloud of solid particles constituted by spheroidal grains and aggregates thereof is used to interpret the local light scattering data. Equilibrium temperature of the same particles allows us to interpret the temperature heliocentric variations. A good fit of the local polarization phase curve, $P_{\\alpha}$, near 1.5~AU from the Sun is ...

  11. Origin of Interplanetary Dust through Optical Properties of Zodiacal Light

    CERN Document Server

    Yang, Hongu

    2015-01-01

    This study investigates the origin of interplanetary dust particles (IDPs) through the optical properties, albedo and spectral gradient, of zodiacal light. The optical properties were compared with those of potential parent bodies in the solar system, which include D-type (as analogue of cometary nuclei), C-type, S-type, X-type, and B-type asteroids. We applied Bayesian inference on the mixture model made from the distribution of these sources, and found that >90% of the interplanetary dust particles originate from comets (or its spectral analogues, D-type asteroids). Although some classes of asteroids (C-type and X-type) may make a moderate contribution, ordinary chondrite-like particles from S-type asteroids occupy a negligible fraction of the interplanetary dust cloud complex. The overall optical properties of the zodiacal light were similar to those of chondritic porous IDPs, supporting the dominance of cometary particles in zodiacal cloud.

  12. Nano-metric Dust Particles as a Hardly Detectable Component of the Interplanetary Dust Cloud

    Indian Academy of Sciences (India)

    I. Simonia; Sh. Nabiyev

    2015-09-01

    The present work introduces the hypothesis of existence of a hardly detectable component of the interplanetary dust cloud and demonstrates that such a component is a dust formation consisting of the dust particles of nano-metric dimensions. This work describes the main physical properties of such a kind of nano-dust, and its possible chemical and mineralogical peculiarities proposes new explanations related to reddening of the dynamically cold transneptunian objects on account of scattering their light by nano-dust of the hardly detectable component of the interplanetary dust cloud. We propose the relation for the coefficient of absorption by the nano-dust and provide results of the statistical analysis of the TNO color index–orbital inclinations. We also present a critical assessment of the proposed hypothesis.

  13. Division F Commission 22: Meteors, Meteorites, and Interplanetary Dust

    Science.gov (United States)

    Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin

    2016-04-01

    Commission 22 (Meteors, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to meteor science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of meteors, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual meteor showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of meteor showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.

  14. Fractal signatures in analogs of interplanetary dust particles

    Science.gov (United States)

    Katyal, Nisha; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Interplanetary dust particles (IDPs) are an important constituent of the earths stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. (2007) [1] to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension dm≃1.75. The same fractal dimension also characterizes clusters obtained from diffusion limited aggregation (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically transported silicate particles.

  15. Fractal Signatures in Analogs of Interplanetary Dust Particles

    CERN Document Server

    Katyal, Nisha; Puri, Sanjay

    2014-01-01

    Interplanetary dust particles (IDPs) are an important constituent of the earth's stratosphere, interstellar and interplanetary medium, cometary comae and tails, etc. Their physical and optical characteristics are significantly influenced by the morphology of silicate aggregates which form the core in IDPs. In this paper we reinterpret scattering data from laboratory analogs of cosmic silicate aggregates created by Volten et al. \\cite{volten2007}, to extract their morphological features. By evaluating the structure factor, we find that the aggregates are mass fractals with a mass fractal dimension $d_{m} \\simeq 1.75$. The same fractal dimension also characterizes clusters obtained from {\\it diffusion limited aggregation} (DLA). This suggests that the analogs are formed by an irreversible aggregation of stochastically-transported silicate particles

  16. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    Science.gov (United States)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  17. Observations of the spectrum of the interplanetary dust emission

    Science.gov (United States)

    Salama, A.; de Bernardis, P.; Masi, S.; Moreno, G.

    Published data from satellite (IRAS), rocket-borne (ZIP), and balloon-borne (ARGO) spectroscopic observations of interplanetary dust emission in the FIR are compiled and analyzed, extending the spatial-distribution results of Salama et al. (1986) to evaluate the possible role of silicate and graphite grains in determining the FIR spectrum. The zodiacal dust spectra in the ecliptic plane at solar elongations epsilon = 45 and 90 deg are calculated on the basis of theoretical models and compared with the observations. A model based on a flat distribution of 10-micron-diameter silicate grains is shown to reproduce the observed spectrum at epsilon = 45 deg but not at epsilon = 90 deg, where a model with a mixture of silicate and graphite grains gives a better, but still unsatisfactory fit to the observations.

  18. Low voltage scanning electron microscopy of interplanetary dust particles

    Science.gov (United States)

    Blake, D. F.; Bunch, T. E.; Reilly, T. W.; Brownlee, D. E.

    1987-01-01

    The resolution of available low-voltage SEM (LVSEM) models used in the characterization of interplanetary dust particles (IDPs) is limited by a number of factors including energy spread in the electron source, beam brightness, scanning electron detector geometry, and various lens aberrations. This paper describes an improved model of LVSEM which offers an increased resolution at low voltage. The improvements include a cold cathode FE source which has an extremely low inherent energy spread and high brightness, a second condenser lens to converge the beam and maintain an optimum aperture half-angle, and a detector optimized for low-voltage scanning-electron collection. To reduce lens aberrations, the specimen is immersed in the objective lens field. The features of several IDP samples observed using the images obtained with this LVSEM model are described.

  19. Clay minerals in primitive meteorites and interplanetary dust 1

    Science.gov (United States)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  20. Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles

    Science.gov (United States)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2015-01-01

    Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred.

  1. LDEF (Prelaunch), AO201 : Interplanetary Dust Experiment, Tray B12

    Science.gov (United States)

    1984-01-01

    LDEF (Prelaunch), AO201 : Interplanetary Dust Experiment, Tray B12 The prelaunch photograph shows the six (6) inch deep Interplanetary Dust Experiment (IDE) master control tray. The tray has three (3) mounting/cover plates elevated on fiberglass stand-offs to provide clearance and protection for hardware and electronics located underneath. The stand-offs also raise the plates to a level that minimizes shading of detectors by the tray sidewalls. The mounting plate located at the left hand end of the tray is populated with eighty (80) metaloxide-silicon (MOS) capacitor-type impact sensors and one (1) solar sensor that is located approximately in the center of the mounting plate. The IDE sensors are two (2) inch diameter MOS capacitor structures approximately 250 um thick. The detectors are formed by growing either 0.4um or 1.0um thick silicon oxide, SiO2, layer on the 250um thick, B-doped polished silicon wafer. The top metal contact, the visible surface, was formed by vapor deposition of 1000A of aluminum on the SiO2 surface. Aluminum was also vapor deposited on the backside to form the contact with the silicon substrate. Gold wires are bonded to the front and back aluminum layers for use in connecting the detectors to the circuits. The complete wafers, IDE detectors, are mounted on chromic anodized aluminum frames by bonding the detector backside to the aluminum frame with a space qualified RTV silicon adhesive, de-volatized RTV-511. The difference in colors of the detectors is caused by reflections in the metallized surfaces. A reflection of one of the technicians is visible in the three (3) rows of detector on the left hand side of the mounting plate. The solar sensor, located at the mounting plate center, consist of four (4) silicon solar cells connected in series and associated circuity bonded to an aluminum baseplate. The solar sensor registered each orbital sunrise independant of LDEF orientation at the time of sunrise. When IDE solar sensor data from the six

  2. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    Science.gov (United States)

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  3. A database of interplanetary and interstellar dust detected by the Wind spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B.

    2016-10-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 μm radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  4. Interplanetary dust particles collected from the stratosphere: Physical, chemical, and mineralogical properties and implications for their sources

    Science.gov (United States)

    Flynn, George J.

    1994-01-01

    The suggestion that significant quantities of interplanetary dust are produced by both main-belt asteroids and comets is based on the Infrared Astronomical Satellite (IRAS) detection of dust trails or bands associated with these objects. Gravitational focusing strongly biases all near-Earth collections of interplanetary dust in favor of particles with the lowest geocentric velocities, that is the dust from main-belt asteroids spiraling into the Sun under the influence of Poynting-Robertson radiation drag. The major dust bands in the main-belt appear to be associated with the catastrophic disruptions which produced the Eos, Themis and Koronis families of asteroids. If dust particles are produced in the catastrophic collision process, then Poynting-Robertson radiation drag is such an efficient transport mechanism from the main-belt to 1 AU that near-Earth collections of interplanetary dust should include, and perhaps be dominated by, this material. Interplanetary dust particles from 5 to 100 micrometers in diameter have been recovered from the stratosphere of the Earth by NASA sampling aircraft since the mid-1970s. The densities of a large fraction of these interplanetary dust particles are significantly lower than the densities of their constituent silicate mineral phases, indicating significant porosites. The majority of the particles are chemically and mineralogically similar to, but not identical to, the carbonaceous chondrite meteorites. Most stony interplanetary dust particles have carbon contents exceeding those of Allende, a carbonaceous chondrite meteorite having a low albedo. Higher albedo particles corresponding to S-type asteroids are underrepresented or absent from the stratospheric collections, and primitive carbonaceous particles seem to be overrepresented in the stratospheric collections compared to the fraction of main-belt asteroids classified as primitive. This suggests that much of the interplanetary dust may be generated by a stochastic process

  5. Solar wind plasma profiles during interplanetary field enhancements (IFEs): Consistent with charged-dust pickup

    Science.gov (United States)

    Lai, H. R.; Wei, H. Y.; Russell, C. T.

    2013-06-01

    The solar wind contains many magnetic structures, and most of them have identifiable correlated changes in the flowing plasma. However, the very characteristic rise and fall of the magnetic field in an interplanetary field enhancement has no clear solar wind counterpart. It appears to be a pure magnetic ``barrier'' that transfers solar wind momentum to charged dust produced in collisions of interplanetary bodies in the size range of tens to hundreds of meters. This transfer lifts the fine scale dust out of the Sun's gravitational well. We demonstrate the lack of field-plasma correlation with several examples from spacecraft records as well as show an ensemble average velocity profile during IFEs which is consistent with our IFE formation hypothesis.

  6. Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores

    Science.gov (United States)

    Brook, Edward

    2002-01-01

    This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.

  7. Characterization of biogenic elements in interplanetary dust particles

    Science.gov (United States)

    Bunch, T. E.

    1986-01-01

    Those particles that were designated cometary are aggregates of amorphous materials including carbon, iron-magnesium silicates, sulfides, metal and trace amounts of unusual phases. Most aggregates are carbon-rich with major and minor element abundances similar to a fine grained matrix of carbonaceous chondrites. Several particles were analyzed by a laser microprobe. The negative ionic species identified to date include carbon clusters, protonated carbon clusters, CN-, HCN-, CNO-, PO2-, PO3-, S-, S2- asnd OH-. These species are similar to those observed in cometary spectra and they support the assumption that organic materials are present. The occurance of phosphate ions suggests the presence of apatite or whitlockite. Cometary particle characteristics may indicate that the component grains represent primitive unaltered dust whose overall properties are extremely similar to altered primitive dust in carbonaceous chondrites.

  8. Implantation in interplanetary dust of rare-gas ions from solar flares.

    Science.gov (United States)

    Tilles, D

    1966-08-26

    Measurements of excess Ar(36) + Ar(38) ( released mainly at 1200 degrees C) in magnetic concentrates of Pacific sediments and in a dense concentrate of Greenland dust agree within an order of magnitude with expected concentrations implanted by solar-flare ion streams of energy less than 10 Mev per atomic-mass unit. The agreement implies that more than 10 percent of each concentrate may be extraterrestrial, depending on size distribution and flare spectra. Rare-gas measurements on fine-grained dust can provide data on: solar-flare "paleo-ion" fluxes, energy spectra, and isotopic abundances; identification, mineralogy, and chemistry of interplanetary dust; influx rates to Earth and sedimentation rates of oceanic cores; and lunar-surface residence and mixing times.

  9. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    Science.gov (United States)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  10. Data screening and reduction in interplanetary dust measurement by IKAROS-ALADDIN

    Science.gov (United States)

    Hirai, Takayuki; Yano, Hajime; Fujii, Masayuki; Hasegawa, Sunao; Moriyama, Nobuhiro; Okamoto, Chisato; Tanaka, Makoto

    2017-03-01

    We describe data screening and reduction procedures for dust impact measurements performed by the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) during its observation period of about 300 days in 2010-2011. The ALADDIN is a polyvinylidene fluoride (PVDF) -based in-situ dust impact detector onboard the IKAROS solar sail. Its main scientific objective is to reveal the distribution of dust particles larger than 10 μm in the interplanetary space between 0.72 AU and 1.1 AU with higher time-space resolution than any former in-situ dust detectors. Among the downlinked 4427 events, there were some apparent and potential non-impact events. After screening the non-impact events, 1773 events were identified as the most promising dust impact events. In order to deduce the mass of impacted dust particles from the downlinked amplitude value, dV, we investigated both analog and digital characteristics of the ALADDIN electronics. The analog response was assessed by laboratory impact experiments with the ALADDIN flight spares. According to the developed calibration estimate, the mass range of the impacted dust particles corresponding to the dynamic range of analog peak amplitude is from 6.3 ×10-14 kg to 1.2 ×10-11 kg (4-22 μm diameter at the density of 2.0 g/cm3) at the typical impact velocity at 1 AU from the Sun. In addition, it was found that the digital characteristics, i.e., slow signal-sampling rate, leads a probabilistic effect on the interpretation of the recorded dV values. For an example, the data set of dV higher than 1 V at 1 AU from the Sun includes ∼ 50% of the true impact number of dust particles with masses of 1.4 ×10-11 kg, and ∼ 100% of the impacts with particle masses above 4.7 ×10-10 kg. Even though the ALADDIN has undetectable range in the detection of smaller particles due to the sampling effect, it was proven that the ALADDIN is well suited to observe the distribution of dust particles larger than 10 μm in the Earth

  11. Pristine stratospheric collection of interplanetary dust on an oil-free polyurethane foam substrate

    Science.gov (United States)

    Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Clemett, Simon J.

    2015-08-01

    We performed chemical, mineralogical, and isotopic studies of the first interplanetary dust particles (IDPs) collected in the stratosphere without the use of silicone oil. The collection substrate, polyurethane foam, effectively traps impacting particles, but the lack of an embedding medium results in significant particle fragmentation. Two dust particles found on the collector exhibit the typical compositional and mineralogical properties of chondritic porous interplanetary dust particles (CP-IDPs). Hydrogen and nitrogen isotopic imaging revealed isotopic anomalies of typical magnitude and spatial variability observed in previous CP-IDP studies. Oxygen isotopic imaging shows that individual mineral grains and glass with embedded metal and sulfide (GEMS) grains are dominated by solar system materials. No systematic differences are observed in element abundance patterns of GEMS grains from the dry collection versus silicone oil-collected IDPs. This initial study establishes the validity of a new IDP collection substrate that avoids the use of silicone oil as a collection medium, removing the need for this problematic contaminant and the organic solvents necessary to remove it. Additional silicone oil-free collections of this type are needed to determine more accurate bulk element abundances of IDPs and to examine the indigenous soluble organic components of IDPs.

  12. Interplanetary dust collected in the earth's stratosphere - The question of solar flare tracks

    Science.gov (United States)

    Fraundorf, P.; Flynn, G. J.; Walker, R. M.; Shirck, J.

    1980-01-01

    The negative result of a transmission electron microscope (TEM) search for solar flare tracks in 10 micron interplanetary dust particles (Flynn et al., 1978) which have been collected in the earth's stratosphere with a program of sampling initiated by Brownlee et al. (1976) has been reported previously. In this paper, it is shown that silicates in the particles record laboratory iron-ion tracks which are detectable in the TEM. The absence of tracks in the silicates could be due to track annealing on atmospheric entry, and may indicate a particle emissivity below 0.3, or that many of the particles broke up on encounter with the atmosphere. Alternatively, the lifetime of 10 micron dust particles at 1 AU could be shorter than that given by previous estimates.

  13. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles

    Science.gov (United States)

    Rietmeijer, F. J. M.

    1989-01-01

    Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.

  14. Ion microprobe elemental analyses of impact features on interplanetary dust experiment sensor surfaces

    Science.gov (United States)

    Hunter, Jerry L.; Wortman, Jim J.; Griffis, Dieter P.; Simon, Charles G.

    1991-01-01

    Hypervelocity impact features on several of the electro-active dust sensors utilized in the Interplanetary Dust Experiment (IDE) were subjected to elemental analysis using an ion microprobe. The negatively biased dust sensor surfaces acted as ion traps for cations produced in the plasma plumes of impacting particles. Impactor residue surrounds most impact features to two or three feature diameters. After etching away a layer of carbonaceous/silicaceous surface contamination, low mass resolution elemental survey scans are used to tentatively identify the presence of impactor debris. High mass resolution two-dimensional elemental maps and three dimensional depth profiling of the feature and surrounding area show the distribution and relative composition of the debris. The location of these sensors on the six primary Long Duration Exposure Facility (LDEF) sides provides a unique opportunity to further define the debris environment. Researchers applied the same techniques to impact and contaminant features on a set of ultra-pure, highly polished single crystal germanium wafer witness plates that were mounted on row 12 and exposed to the environment during the entire mission.

  15. Interplanetary dust particles, not wind blown dust, control high altitude ice clouds on Mars

    Science.gov (United States)

    Hartwick, Victoria; Toon, Owen B.

    2016-10-01

    Water ice clouds on Mars are commonly observed at high altitudes. However, current generation Mars three-dimensional general circulation models (GCM) struggle to reproduce clouds above approximately 20-30 km. On Mars, as on Earth, ice cloud formation likely initiates by heterogeneous nucleation, which requires a population of suspended ice nuclei contiguous with supersaturated atmospheric water vapor. Although supersaturation is observed at high altitudes and has been reproduced in models, models predict very few ice nuclei. The small number of ice nuclei in the upper atmosphere is due to the assumption in Mars GCMs that the only source of ice nuclei is dust from the Martian surface. However, terrestrial mesospheric noctilucent clouds have been shown to form by ice nucleation on particles originating from ablated micrometeroids. Therefore, it is reasonable to assume that a population of micrometeoric ablation biproducts on Mars exists and can act as a site for cloud nucleation at high altitudes. We present simulations using the Community Atmosphere Model for Mars (MarsCAM) based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model for Earth,coupled with a physically based, state-of-the-art cloud and dust physics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) to show that ablating micrometeoroids can yield abundant ice nuclei throughout the upper atmosphere of Mars. We find that simulations including a constant annual micrometeoroid flux allows us to reproduce the observed properties of high altitude water ice clouds including vertical distribution and particle size. In general, effective radius decreases with increasing altitude. We have additionally explored the impact of variable ablation rates. Preliminary results suggest that relatively high ablation rates, near or greater than 50%, are required to reproduce observed cloud features.

  16. Charged dust grain dynamics subject to solar wind, Poynting-Robertson drag, and the interplanetary magnetic field

    CERN Document Server

    Lhotka, Christoph; Narita, Yasuhito

    2016-01-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason we derive a secular theory of motion by the means of averaging method and validate it with numerical simulations of the un-averaged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semi-major axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces unde...

  17. Stable motions of charged dust grains subject to solar wind, Poynting-Robertson drag, and the mean interplanetary magnetic field

    Science.gov (United States)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito

    2016-10-01

    We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.

  18. Investigating the Role of Earth's Quasi-Satellite Resonance in the Accretion of Interplanetary Dust

    Science.gov (United States)

    Kortenkamp, S.

    2012-12-01

    We studied the orbital evolution of low inclination asteroidal interplanetary dust particles (IDPs) decaying towards 1 AU under the influence of radiation pressure, PR drag, and solar wind drag. We used a series of β values (the ratio of radiation pressure to central gravity) ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm-3 these β values correspond to diameters ranging from 200 down to 25 microns, respectively. Simulations with the larger IDPs (>50 microns) typically showed that 100% of the dust particles became temporarily trapped in mean-motion resonances outside Earth's orbit. When trapped in these outer resonances a dust particle's orbital eccentricity significantly increases (sometimes to e > 0.2) while its decay in semi-major axis is halted. Most dust particles eventually slip out of these outer resonances and their orbits continue decaying inwards toward 1 AU. We found that a significant fraction of the initial populations subsequently became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, IDPs also became trapped as so-called quasi-satellites. About 1% of the smallest IDPs (25 microns) and 10% of the largest (200 microns) became trapped in the quasi-satellite resonance for some length of time. Quasi-satellite IDPs always remain relatively near to Earth, within about 0.2-0.3 AU, and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their eccentricities continue to decrease, forcing the IDPs onto more Earth-like orbits and causing them to spiral closer and closer to Earth. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the IDPs. After about 104 years in the quasi-satellite resonance IDPs are typically less than 0.1 AU from Earth and consistently coming within about

  19. Cometary Evolution: Clues on Physical Properties from Chondritic Interplanetary Dust Particles

    Science.gov (United States)

    Reitmeijer, Frans J. M.; Mackinnon, Ian D. R.

    1997-01-01

    chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

  20. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two {sup 15}N-rich N-hotspots have correlated {sup 13}C anomalies. CN{sup -}/C{sup -} ratios suggest that most of the {sup 15}N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct very D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in the IDPs. The O isotopic compositions of the grains are similar to those found in presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the {sup 17}O and {sup 18}O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being ''isotopically primitive'' and consists of those IDPs that have anomalous bulk N isotopic

  1. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    Science.gov (United States)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  2. Identification and Characterization of Early Solar system Organic Matter Preserved in Chondritic Porous Interplanetary Dust Particles

    Science.gov (United States)

    Flynn, George; Wirick, Sue; Keller, Lindsay

    2015-04-01

    The chondritic porous interplanetary dust particles (CP IDPs), collected by NASA from the Earth's stratosphere, have experienced minimal aqueous or thermal alteration since their formation. These CP IDPs are the best preserved samples of the minerals and organic matter that was present in the primitive Solar Nebula that are currently available for laboratory analysis [1]. The ~10 μm CP IDPs are aggregates of tens-of-thousands of mostly sub-micron grains of diverse compositions and mineralogies. Many of the individual mineral grains are coated by a 50 to 200 nm thick rims of carbonaceous material, and other carbonaceous material occurs as larger, discrete subunits within the particles [2]. We characterize this carbonaceous material using two high-resolution, synchrotron-based instruments: a Scanning Transmission X-ray Microscope (STXM) to locate and map the carbon and to identify its major functional groups by X-ray Absorption Near-Edge Structure (XANES) spectroscopy, and a micro-Fourier Transform Infrared (μ-FTIR) spectrometer to further characterize the functional groups by mid-infrared spectroscopy. Carbon-XANES spectroscopy identifies the rims coating the individual grains in CP IDPs as organic matter, dominated by the C=C, likely C-rings, and the C=O functional groups [3]. This structure, with the organic rims being the contact surfaces between the grains, implies a 3-step formation sequence: grain condensation, organic rim emplacement, and, finally, aggregation of the grains to form the dust particles. This suggests these organic rims formed very early in the evolution of the Solar Nebula, after grain condensation but before grain aggregation [3]. These organic rims coat grains of diverse compositions, including silicates, sulfides, and carbonates, which is inconsistent with formation by Fischer-Tropsch-like, mineral-specific catalysis, one of the mechanisms suggested for the formation of primitive organic matter. Our observations are consistent with an

  3. A Fluorescent Aerogel for Capture and Identification of Interplanetary and Interstellar Dust

    CERN Document Server

    Dominguez, G; Phillips, M L F; Jones, S M; Dominguez, Gerardo; Westphal, Andrew J.; Phillips, Mark L.F.; Jones, Steven M.

    2003-01-01

    Contemporary interstellar dust has never been analyzed in the laboratory, despite its obvious astronomical importance and its potential as a probe of stellar nucleosynthesis and galactic chemical evolution. Here we report the discovery of a novel fluorescent aerogel which is capable of capturing hypervelocity dust grains and passively recording their kinetic energies. An array of these "calorimetric" aerogel collectors in low earth orbit would lead to the capture and identification of large numbers of interstellar dust grains.

  4. Micro-analyses of Interplanetary Dust Particles (IDPs) and Micrometeorites (MMs): Implications for sample return missions to undifferentiated protoplanets

    Science.gov (United States)

    Rietmeijer, F.

    The good news is that the original, typically non-chondritic, presolar dust had an extremely simple mineralogy of predominantly Mg-rich olivines and -pyroxenes, pyrrhotite (Fe7 S8 ), Fe-o xides and Fe,Ni-metal. This unique property is preserved in the least modified protoplanets for in situ sampling (e.g. STARDUST, MUSES-C) and in their debris in the form of stratospheric IDPs and MMs. The corollary is that mineralogical complexity in all extraterrestrial materials is an evolved secondary property. The earliest stages of solar system evolution were defined by hierarchical dust accretion whereby the accreting dust was recycled prior to the formation of the final surviving protoplanets. This recycling concentrated initially minor elements so they could form new minerals , e.g. alkali-feldspars and plagioclase. The least- modified protoplanets are comet nuclei, i.e. random mixtures of rubble piles and dirty snowballs, and the icy (ultra)carbonaceous asteroids. Second best are the dormant, extinct and rare active comet nuclei among the near-Earth asteroids that are relatively easy to access by sample return missions. Third are the anhydrous CO/CV carbonaceous chondrites and the low metamorphic grade, unequilibrated ordinary chondrites from the main asteroid belt. Lithification of the original rubble piles in these asteroids erased all structural properties but not the mineralogy and chemistry of the accreted entities, i.e. matrix, chondrules and CAIs.Consequently , returned samples of small chips, fragments or powders from the surface of undifferentiated protoplanets will amply suffice for a full mineralogical and chemical characterization of these small bodies, including modifications from interactions with the space environment, e.g. space weathering, regolith formation and the black mantle on icy-protoplanets. Major improvements in the sensitivity of available micro-analytical tools means that in situ acquired samples can be analyzed at scales of individual, n m-s i

  5. In situ extraction and analysis of volatiles and simple molecules in interplanetary dust particles, contaminants, and silica aerogel

    Science.gov (United States)

    Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.

    1990-01-01

    Results are presented for the analyses of eight interplanetary dust particles (IDPs) for the volatile elements H, C, N, O, and S and their molecular species, as well as of the volatiles associated with contaminants (i.e., the compounds used during the collection and curation of IDPs), which were carried out using a laser microprobe interfaced with a quadrupole mass spectrometer. It was found that the volatile species from contaminants were always present in the spectra of IDPs. Despite the contamination problems, several indigenous molecular species could be identified, including OH, CO2 or C2H4, C and CS2, CO2 along with CO (possibly indicating the presence of carbonate), H2S, SO, COS, SO2, and CS2. In some cases, the sulfur components can be attributed to aerosols; however, in one of the IDPs, the presence of H2S, SO, COS, and SO2 indicates the possible presence of elemental sulfur.

  6. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    Science.gov (United States)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  7. Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment.

    Science.gov (United States)

    Tabata, Makoto; Yano, Hajime; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko

    2015-06-01

    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.

  8. Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment

    CERN Document Server

    Tabata, Makoto; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko

    2015-01-01

    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles comprising two layers with densities of 0.01 and 0.03 g/cm$^3$ developed using our production technique were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.

  9. Microparticle impact calibration of the Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) onboard the solar power sail demonstrator IKAROS

    Science.gov (United States)

    Hirai, Takayuki; Cole, Michael J.; Fujii, Masayuki; Hasegawa, Sunao; Iwai, Takeo; Kobayashi, Masanori; Srama, Ralf; Yano, Hajime

    2014-10-01

    The Arrayed Large-Area Dust Detectors in INterplanetary space (ALADDIN) is an array of polyvinylidene fluoride (PVDF) based dust detectors aboard the solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). The total sensor area of ALADDIN (0.54 m2) is the world's largest among the past PVDF-based dust detectors. IKAROS was launched in May 2010 and then ALADDIN measured cosmic dust impacts for 16 months while orbiting around between 0.7 and 1.1 AU. The main scientific objective of ALADDIN is to reveal number density of ≥10-μm-sized dust in the zodiacal cloud with much higher time-space resolution than that achieved by any past in-situ measurements. The distribution of ≥10-μm-sized dust can be also observed mainly with the light scattering by optical instruments. This paper gives the scientific objectives, the instrumental description, and the results of microparticle impact calibration of ALADDIN conducted in ground laboratories. For the calibration tests we used Van de Graaf accelerators (VdG), two-stage light gas guns (LGG), and a nano-second pulsed Nd:YAG laser (nsPL). Through these experiments, we obtained depolarization charge signal caused by hypervelocity impacts or laser irradiation using the flight spare of 20-μm-thick PVDF sensor and the electronics box of ALADDIN. In the VdG experiment we accelerated iron, carbon, and silver microparticles at 1-30 km/s, while in the LGG experiment we performed to shoot 100's-μm-sized particles of soda-lime glass and stainless steel at 3-7 km/s as single projectile. For interpolation to ≥10-μm size, we irradiated infrared laser at the energy of 15-20 mJ directly onto the PVDF sensor. From the signal analysis, we developed a calibration law for estimation of masses of impacted dust particles. The dynamic range of ALADDIN corresponds from 9×10-14 kg to 2×10-10 kg (4-56 μm in diameter at density of 2.0 g/cm3) at the expected impact velocity of 10 km/s at 1 AU

  10. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin?

    Science.gov (United States)

    Nakamura, K.; Messenger, S.; Keller, L. P.

    2005-01-01

    Chondritic interplanetary dust particles (IDPs) are subdivided into (1) particles that form highly porous aggregates (chondritic porous "CP" IDPs), and (2) smooth particles ("CS" IDPs). Infrared (IR) spectroscopy has been a valuable tool for non-destructively determining the bulk mineralogy of IDPs. Most IDPs fall within three distinct IR groups: (1) olivine-rich particles, (2) pyroxene-rich particles, and (3) phyllosilicate-rich particles. From the IR studies, IDPs dominated by anhydrous minerals tend to be fine grained (CP), while phyllosilicate-rich IDPs are mostly CS. CP IDPs have been linked to cometary sources based on their compositions, spectral properties, and atmospheric entry velocities. Since no spectral signatures of hydrated minerals have been detected in comets, CS IDPs are thought to derive from primitive asteroids. Transmission electron microscopy (TEM) studies have revealed that the mineralogical distinctions between CP and CS IDPs are not always clear. Previous investigators have reported trace amounts of hydrous minerals in dominantly anhydrous particles. A better understanding of these particles will help to elucidate whether there is a genetic relationship between anhydrous and hydrated IDPs, provide insight into the earliest stages of aqueous alteration of primitive materials, and may help to determine whether comets have experienced any aqueous processing. Here we report a combined TEM and isotopic imaging study of an unusual anhydrous IDP with hydrated phases. Additional information is included in the original extended abstract.

  11. Comparison of the Oxidation State of Fe in Comet 81P/Wild 2 and Chondritic-Porous Interplanetary Dust Particles

    CERN Document Server

    Ogliore, R C; Fakra, S C; Gainsforth, Z; Marcus, M A; Westphal, A J

    2010-01-01

    The fragile structure of chondritic-porous interplanetary dust particles (CP- IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alteration have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed ~300 nanograms of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are >2{\\sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent body, or parent bodies, of CP-IDPs. If all J...

  12. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  13. Dust in the Solar System - Properties and Origins

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko

    2013-01-01

    Interplanetary dust pervades the inner Solar System, giving rise to a prominent glow above the horizon at sunrise and sunset known as the zodiacal light. This dust derives from the disintegration of comets as they approach the Sun and from collisions among main-belt asteroids. The Earth accretes roughly 4x10(exp 6) kg/year of 1 - 1,000 micron dust particles as they spiral into the Sun under the influence of Poynting-Robertson drag and solar wind drag. Samples of these grains have been collected from deep sea sediments, Antarctic ice and by high-altitude aircraft and balloon flights. Interplanetary dust particles (IDPs) collected in the stratosphere have been classified by their IR spectra into olivine, pyroxene, and hydrated silicate-dominated classes. Most IDPs have bulk major and minor element abundances that are similar to carbonaceous chondrite meteorites. Hydrated silicate-rich IDPs are thought to derive from asteroids based on their mineralogy and low atmospheric entry velocities estimated from peak temperatures reached during atmospheric entry. Anhydrous IDPs are typically aggregates of 0.1 - approx. 1 micron Mg-rich olivine and pyroxene, amorphous silicates (GEMS), Fe, Nisulfides and rare spinel and oxides bound together by carbonaceous material. These IDPs are often argued to derive from comets based on compositional similarities and high atmospheric entry velocities that imply high eccentricity orbits. Infrared spectra obtained from anhydrous IDPs closely match remote IR spectra obtained from comets. The most primitive (anhydrous) IDPs appear to have escaped the parent-body thermal and aqueous alteration that has affected meteorites. These samples thus consist entirely of grains that formed in the ancient solar nebula and pre-solar interstellar and circumstellar environments. Isotopic studies of IDPs have identified silicate stardust grains that formed in the outflows of red giant and asymptotic giant branch stars and supernovae]. These stardust grains

  14. Dusty Plasma Effects in the Interplanetary Medium?

    Science.gov (United States)

    Mann, Ingrid; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Belheouane, Soraya

    Cosmic dust particles exist in a variety of compositions and sizes in the interplanetary medium. There is little direct information on the composition, but those interplanetary dust particles that are collected in the upper Earth’s atmosphere and can be studied in the laboratory typically have an irregular, sometimes porous structure on scales carbide, iron-nickel and iron-sulfur compounds, calcium- and aluminum oxides, and chemical compounds that contain a large mass fraction of carbon (e.g. carbonaceous species). A fraction of the dust originates from comets, but because of their bulk material temperature of about 280 K near 1 AU, most icy compounds have disappeared. The dust particles are embedded in the solar wind, a hot plasma with at 1 AU kinetic temperatures around 100 000 K and flow direction nearly radial outward from the Sun at supersonic bulk velocities around 400 km/s. Since the dust particles carry an electric surface charge they are subject to electromagnetic forces and the nanodust particles are efficiently accelerated to velocities of order of solar wind speed. The acceleration of the nanodust is similar, but not identical to the formation of pick-up ions. The S/WAVES radio wave instrument on STEREO measured a flux of nanodust at 1 AU [1]. The nanodust probably forms in the region inward of 1 AU and is accelerated by the solar wind as discussed. We also discuss the different paths of dust - plasma interactions in the interplanetary medium and their observations with space experiments. Comparing these interactions we show that the interplanetary medium near 1 AU can in many cases be described as “dust in plasma" rather than "dusty plasma”. [1] S. Belheouane, N. Meyer-Vernet, K. Issautier, G. Le Chat, A. Zaslavsky, Y. Zouganelis, I. Mann, A. Czechowski: Dynamics of nanoparticles detected at 1 AU by S/WAVES onboard STEREO spacecraft, in this session.

  15. The Cosmic DUNE dust astronomy mission

    Science.gov (United States)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  16. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  17. 7 CFR 58.325 - Anhydrous milkfat.

    Science.gov (United States)

    2010-01-01

    ... eligible for official certification, the anhydrous milkfat shall be made by a continuous separation process directly from milk or cream. The cream used shall be comparable to the flavor quality specified above for...

  18. 21 CFR 573.180 - Anhydrous ammonia.

    Science.gov (United States)

    2010-04-01

    ... silage. (2)(i) The food additive anhydrous ammonia is applied directly to corn plant material for use in... to corn plant material containing 28 to 38 percent dry matter. (iv) The silage treated with...

  19. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  20. NQR frequencies of anhydrous carbamazepine polymorphic phases

    CERN Document Server

    Bonin, C J; Pusiol, D J

    2010-01-01

    In this work we propose the Nuclear Quadrupole Resonance (NQR) technique as an analytical method suitable for polymorphism detection in active parts (or active principles) of pharmaceuticals with high pharmacological risk. Samples of powder carbamazepine (5H-dibenz(b,f)-azepine-5-carboxamide) are studied. In its anhydrous state, this compound presents at least three different polymorphic forms: form III, the commercial one, form II, and form I. Of these, only form III possesses desirable therapeutic effects. By using the NQR technique, it was possible to characterize two of the three polymorphic phases (I and III) for anhydrous carbamazepine in few minutes at room temperature, detecting the characteristic frequencies of 14N nuclei (I=1) present in their chemical composition and in the frequency range 2.820-3.935 MHz. For form II, characteristic lines were not detected within this range of frequencies. The lines detected for form III are centered at the frequencies \

  1. The use of anhydrous ammonia for bioventing

    Energy Technology Data Exchange (ETDEWEB)

    Zytner, R.G.; Hallman, M.; Gimenez, B.F.; Jennings, R.; Leek, K. [Guelph Univ., ON (Canada). Faculty of Graduate Studies

    2002-07-01

    Soils contaminated with hydrocarbons can be effectively treated using bioventing remediation technology, an ideal method for removing residual contamination left by soil vapour extraction (SVE). Bioventing uses low or intermitted air flow rates to produce oxygen-rich conditions in the vadose zone, thereby promoting the formation of micro-organisms that can mineralize the hydrocarbons if enough nutrients are present. There is concern regarding the use of nutrients (the addition of nitrogen) to the subsurface because current applications methods cannot uniformly disperse nitrogen throughout the entire subsurface. Two research studies are being conducted using gasoline contaminated soil to address this concern. The first phase of the study focuses on how to best deliver nitrogen to the subsurface. Injecting anhydrous ammonia into the contaminated surface was one suggestion for stimulating the growth of hydrocarbon degraders. SVE extraction well models indicated this was an effective and safe way to disperse nitrogen. The second phase of the study involved the use of respirometers to compare total petroleum hydrocarbon (TPH) degradation with nitrogen additions in the form of NH{sub 4}Cl or anhydrous ammonia. The respirometers were run for about 1 month after which time it was determined that the use of anhydrous ammonia is an effective method to promote bioventing.

  2. High-Nickel Iron-Sulfides in Anhydrous, Gems-Rich CP IDPs

    Science.gov (United States)

    FLynn, G. J.; Keller, L. P.; Wirick, S.; Hu, W.; Li, L.; Yan, H.; Huang, X.; Nazaretski, E.; Lauer, K.; Chu, Y. S.

    2016-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) that were not severly heated during atmospheric deceleration are the best preserved samples of the solids that condensed from the Solar protoplanetary disk, as well as pre-Solar grains thatr survived incorporation into the disk, currently available for laboratory analysis [1]. These CP IDPs never experienced the aqueous and/or thermal processing, gravitational compaction, and shock effects that overprinted the record of Solar nebula processes in meteorites.

  3. Interplanetary Type IV Bursts

    CERN Document Server

    Hillaris, Alexander; Nindos, Alexander

    2016-01-01

    In this work we study the characteristics of moving type IV radio bursts which extend to the hectometric wavelengths (interplanetary type IV or type IV IP bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprised 48 Interplanetary type IV bursts observed by the Wind/WAVES in the 13.825 MHz?20 KHz frequency range. The dynamic spec tra of the RSTN, DAM, ARTEMIS-IV, CULGOORA, Hiraiso and IZMIRAN Radio-spectrographs were used to track the evolution of the events in the low corona; these were supplemented with SXR ?ux recordings from GOES and CME data from LASCO. Positional information for the coronal bursts were obtained by the Nan\\c{c}ay radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs and SXR ?ares. The majority of the events (45) were characterized as compact; their duration was on average 106 min. This type of events were, mostly, associated with M and X class ?ares (40 out of 45) and fast CMEs; 32 of these events had CME...

  4. An element with a liquid, anhydrous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nankay, S.; Indzima, T.; Toyeguti, Y.

    1982-09-01

    A liquid anhydrous element and a heat treated Mn0/sub 2/ cathode, to which sodium silicate in the form of Na/sub 2/0 with 5/2Si0/sub 2/ liquid glass is added in a volume of 3 grams per 100 grams of Mn0/sub 2/ is used in the element with a light metal, lithium type anode. Moreover 4.5 grams of acetylene soot is added to the active cathode mass. A fluorine bearing resin is used as the binder. The cathode stores well.

  5. Interplanetary Type IV Bursts

    Science.gov (United States)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  6. 2002 Kuiper prize lecture: Dust Astronomy

    Science.gov (United States)

    Grün, Eberhard; Srama, Ralf; Krüger, Harald; Kempf, Sascha; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg

    2005-03-01

    Dust particles, like photons, carry information from remote sites in space and time. From knowledge of the dust particles' birthplace and their bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is called "Dust Astronomy" which is carried out by means of a dust telescope on a Dust Observatory in space. Targets for a dust telescope are the local interstellar medium and nearby star forming regions, as well as comets and asteroids. Dust from interstellar and interplanetary sources is distinguished by accurately sensing their trajectories. Trajectory sensors may use the electric charge signals that are induced when charged grains fly through the detector. Modern in-situ dust impact detectors are capable of providing mass, speed, physical and chemical information of dust grains in space. A Dust Observatory mission is feasible with state-of-the-art technology. It will (1) provide the distinction between interstellar dust and interplanetary dust of cometary and asteroidal origin, (2) determine the elemental composition of impacting dust particles, and (3) monitor the fluxes of various dust components as a function of direction and particle masses.

  7. 46 CFR 98.25-5 - How anhydrous ammonia may be carried.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false How anhydrous ammonia may be carried. 98.25-5 Section 98... Anhydrous Ammonia in Bulk § 98.25-5 How anhydrous ammonia may be carried. (a) Anhydrous ammonia shall be..., except as otherwise provided in paragraph (b) of this section. (b) When anhydrous ammonia is to...

  8. Chemical and mineralogical size segregation in the impact disruption of anhydrous stone meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, G.J.; Durda, D.D. (SUNYP); (SW Research Institute)

    2005-02-02

    We performed impact disruption experiments on pieces from eight different anhydrous chondritic meteorites - four weathered ordinary chondrite finds from North Africa (NWA791, NWA620, NWA869 and MOR001), three almost unweathered ordinary chondrite falls (Mbale, Gao, and Saratov), and an almost unweathered carbonaceous chondrite fall (Allende). In each case the impactor was a small (1/8 or 1/4 in) aluminum sphere fired at the meteorite target at {approx} 5 km/s, comparable to the mean collision speed in the main-belt. Some of the {approx}5 to {approx} 150 {micro}m debris from each disruption was collected in aerogel capture cells, and the captured particles were analyzed by in situ synchrotron-based X-ray fluorescence. For each meteorite, many of the smallest particles (< 10 {micro}m up to 35 {micro}m in size, depending on the meteorite) exhibit very high Ni/Fe ratios compared to the Ni/Fe ratios measured in the larger particles (> 45 {micro}m), a composition consistent with the smallest debris being dominated by matrix material while the larger debris is dominated by fragments from olivine chondrules. These results may explain why the {approx} 10 {micro}m interplanetary dust particles (IDPs) collected from the Earth's stratosphere are C-rich and volatile-rich compared to the presumed solar nebula composition. The {approx} 10 {micro}m IDPs may simply sample the matrix of an inhomogeneous parent body, structurally and mineralogically similar to the chondritic meteorites, which are inhomogeneous assemblages of compact, strong, C- and volatile-poor chondrules that are distributed in a more porous, C- and volatile-rich matrix. In addition, these results may explain why the micrometeorites, which are {approx} 50 {micro}m to millimeters in size, recovered from the polar ices are Ni- and S-poor compared to chondritic meteorites, since these polar micrometeorites may preferentially sample fragments from the Ni- and S-poor olivine chondrules. These results indicate that

  9. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  10. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    Science.gov (United States)

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  11. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  12. The interplanetary exchange of photosynthesis.

    Science.gov (United States)

    Cockell, Charles S

    2008-02-01

    Panspermia, the transfer of organisms from one planet to another, either through interplanetary or interstellar space, remains speculation. However, its potential can be experimentally tested. Conceptually, it is island biogeography on an interplanetary or interstellar scale. Of special interest is the possibility of the transfer of oxygenic photosynthesis between one planet and another, as it can initiate large scale biospheric productivity. Photosynthetic organisms, which must live near the surface of rocks, can be shown experimentally to be subject to destruction during atmospheric transit. Many of them grow as vegetative cells, which are shown experimentally to be susceptible to destruction by shock during impact ejection, although the effectiveness of this dispersal filter can be shown to be mitigated by the characteristics of the cells and their local environment. Collectively these, and other, experiments reveal the particular barriers to the cross-inoculation of photosynthesis. If oxygen biosignatures are eventually found in the atmospheres of extrasolar planets, understanding the potential for the interplanetary exchange of photosynthesis will aid in their interpretation.

  13. Probing exoplanetary materials using sublimating dust

    NARCIS (Netherlands)

    van Lieshout, R.

    2015-01-01

    Planetary systems consist of more than just planets orbiting a central star. They also include a wide range of smaller bodies, such as asteroids, comets, and interplanetary dust grains. All these materials can be investigated to increase our understanding of planetary systems. In the study of extras

  14. Preparation of anhydrous lanthanum bromide for scintillation crystal growth

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tong; LI Hongwei; ZHAO Chunlei; YU Jinqiu; HU Yunsheng; CUI Lei; HE Huaqiang

    2012-01-01

    This paper reported an efficient and economical method for preparation of anhydrous LaBr3 for scintillation crystal growth.High purity anhydrous LaBr3 powders in large quantities were successfully obtained by stepped dehydration of LaBr3·7H2O using NH4Br as additive.Experiments revealed that adding proper amount of NH4Br could effectively restrain the hydrolysis of LaBr3 during dehydration and thus decreased the yield of deleterious impurity of LaOBr.Optimum preparation conditions,including the amount of NH4Br in use,the dehydration temperature and atmosphere,were investigated by DTA/TG and water/oxygen analysis.The Raman characterization of the as-prepared anhydrous LaBr3 was also presented.

  15. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  16. Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver

    CERN Document Server

    Chat, G Le; Meyer-Vernet, N; Issautier, K; Belheouane, S; Pantellini, F; Maksimovic, M; Zouganelis, I; Bale, S D; Kasper, J C

    2013-01-01

    New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to speeds up to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal, despite their low mass. The WAVES instruments on the twin Solar TErre...

  17. On the Effect of the Interplanetary Medium on Nanodust Observations by the Solar Terrestrial Relations Observatory

    CERN Document Server

    Chat, G Le; Zaslavsky, A; Pantellini, F; Meyer-Vernet, N; Belheouane, S; Maksimovic, M

    2015-01-01

    New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to speeds up to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal, despite their low mass. The WAVES instruments on the twin Solar TErre...

  18. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  19. Imaging Interplanetary Disturbances Causing Forbush Decreases

    Science.gov (United States)

    2005-01-01

    NUMBER Imaging Interplanetary Disturbances Causing Forbush Decreases 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F • 6. AUTHOR(S) 5d. PROJECT...3-10 AUG 05. 14. ABSTRACT Forbush decreases (FDs) in neutron monitor (NM) counting rates are caused by enhanced magnetic fields in interplanetary...VS-HA-TR-2007-1044 29th International Cosmic Ray Conference Pune (2005) 2, 267-270 Imaging Interplanetary Disturbances Causing Forbush Decreases S.W

  20. Investigation of the dynamics of nanometer-size dust particles in the inner heliosphere

    Science.gov (United States)

    O'brien, L.

    2015-12-01

    The spatial and size distribution of submicron-sized interplanetary dust particles at 1 AU is highly variable due to the nature of its production and transport through the solar system. Nano-dust particles are thought to be produced by mutual collisions between interplanetary dust particles slowly spiraling toward the Sun and are accelerated outward to high velocities by interaction with the solar wind. The WAVES instruments on the two STEREO spacecraft reported the detection, strong temporal variation, and potentially high flux of these particles [Meyer-Vernet et al., 2009]. Simulations of nano-dust dynamics are performed to gain an understanding of their transport in the inner heliosphere and distribution near 1 AU where they can potentially be detected. Simulations show that the temporal variation in nano-dust detection, as suggested by the STEREO observations, can be described by the dust's interaction with the complex structure of the interplanetary magnetic field (IMF) [Juhasz and Horanyi, 2013]. The dust trajectories and their distribution near Earth's orbit is a function of the initial conditions of both nano-dust particles and the IMF. Le Chat et al. (2015) reported on the correlation between high nano-dust fluxes observed by STEREO and the observed Interplanetary Coronal Mass Ejections (ICMEs). We present the results from simulating nano-dust interaction with ICMEs that are modeled as magnetic clouds, and report that the dust trajectories and, thus, their distribution and velocities at 1 AU are significantly altered.

  1. Process for the production of sodium carbonate anhydrate

    NARCIS (Netherlands)

    Oosterhof, H.; Van Rosmalen, G.M.; Witkamp, G.J.; De Graauw, J.

    2000-01-01

    The invention is directed to a process for the production of sodium carbonate-anhydrate having a bulk density of at least 800 kg/m<3>, said process comprising: providing a suspension of solid sodium carbonate and/or solid sodium bicarbonate and/or solid double salts at least comprising one of

  2. Counter Data of the Cosmic Dust Analyzer aboard the Cassini spacecraft and possible "dust clouds" at Saturn

    OpenAIRE

    Khalisi, Emil; Srama, Ralf; Grün, Eberhard

    2014-01-01

    We present the impact rates of dust particles recorded by the Cosmic Dust Analyzer (CDA) aboard the Cassini spacecraft. The "dust counters" evaluate the quality of an impact and give rise to the apparent density of dust particles in space. The raw data is pre-selected and refined to a new structure that serves to a better investigation of densities, flows, and properties of interplanetary dust grains. Our data is corrected for the dead time of the instrument and corresponds to an assumed Kepl...

  3. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  4. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Maximum anhydrous citric acid permissible for... Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible for corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content...

  5. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  6. Method of synthesis of anhydrous thorium(IV) complexes

    Science.gov (United States)

    Kiplinger, Jaqueline L; Cantat, Thibault

    2013-04-30

    Method of producing anhydrous thorium(IV) tetrahalide complexes, utilizing Th(NO.sub.3).sub.4(H.sub.2O).sub.x, where x is at least 4, as a reagent; method of producing thorium-containing complexes utilizing ThCl.sub.4(DME).sub.2 as a precursor; method of producing purified ThCl.sub.4(ligand).sub.x compounds, where x is from 2 to 9; and novel compounds having the structures: ##STR00001##

  7. Interplanetary magnetic field and geomagnetic Dst variations.

    Science.gov (United States)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  8. Interplanetary Physics Laboratory (IPL): A concept for an interplanetary mission in the mid-eighties

    Science.gov (United States)

    Burlaga, L. F.; Ogilvie, K. W.; Feldman, W.

    1977-01-01

    A concept for a near-earth interplanetary mission in the mid-eighties is described. The proposed objectives would be to determine the composition of the interplanetary constituents and its dependence on source-conditions and to investigate energy and momentum transfer processes in the interplanetary medium. Such a mission would accomplish three secondary objectives: (1) provide a baseline for deep space missions, (2) investigate variations of the solar wind with solar activity, and (3) provide input functions for magnetospheric studies.

  9. E ring dust sources: Implications from Cassini's dust measurements

    Science.gov (United States)

    Spahn, Frank; Albers, Nicole; Hörning, Marcel; Kempf, Sascha; Krivov, Alexander V.; Makuch, Martin; Schmidt, Jürgen; Seiß, Martin; Miodrag Sremčević

    2006-08-01

    The Enceladus flybys of the Cassini spacecraft are changing our understanding of the origin and sustainment of Saturn's E ring. Surprisingly, beyond the widely accepted dust production caused by micrometeoroid impacts onto the atmosphereless satellites (the impactor-ejecta process), geophysical activities have been detected at the south pole of Enceladus, providing an additional, efficient dust source. The dust detector data obtained during the flyby E11 are used to identify the amount of dust produced in the impactor-ejecta process and to improve related modeling [Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V.V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A., Economou, T., Grün, E., 2006. Cassini dust measurements at Enceladus: implications for Saturn's E ring. Science, in press]. With this, we estimate the impact-generated dust contributions of the other E ring satellites and find significant differences in the dust ejection efficiency by two projectile families - the E ring particles (ERPs) and the interplanetary dust particles (IDPs). Together with the Enceladus south-pole source, the ERP impacts play a crucial role in the inner region, whereas the IDP impacts dominate the particle production in the outer E ring, possibly accounting for its large radial extent. Our results can be verified in future Cassini flybys of the E ring satellites. In this way poorly known parameters of the dust particle production in hypervelocity impacts can be constrained by comparison of the data and theory.

  10. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  11. The cosmic dust analyser onboard cassini: ten years of discoveries

    Science.gov (United States)

    Srama, R.; Kempf, S.; Moragas-Klostermeyer, G.; Altobelli, N.; Auer, S.; Beckmann, U.; Bugiel, S.; Burton, M.; Economomou, T.; Fechtig, H.; Fiege, K.; Green, S. F.; Grande, M.; Havnes, O.; Hillier, J. K.; Helfert, S.; Horanyi, M.; Hsu, S.; Igenbergs, E.; Jessberger, E. K.; Johnson, T. V.; Khalisi, E.; Krüger, H.; Matt, G.; Mocker, A.; Lamy, P.; Linkert, G.; Lura, F.; Möhlmann, D.; Morfill, G. E.; Otto, K.; Postberg, F.; Roy, M.; Schmidt, J.; Schwehm, G. H.; Spahn, F.; Sterken, V.; Svestka, J.; Tschernjawski, V.; Grün, E.; Röser, H.-P.

    2011-12-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after 7 years of cruise phase. The German cosmic dust analyser (CDA) was developed under the leadership of the Max Planck Institute for Nuclear Physics in Heidelberg under the support of the DLR e.V. This instrument measures the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries. In 1999, CDA detected interstellar dust in the inner solar system followed by the detection of electrical charges of interplanetary dust grains during the cruise phase between Earth and Jupiter. The instrument determined the composition of interplanetary dust and the nanometre-sized dust streams originating from Jupiter's moon Io. During the approach to Saturn in 2004, similar streams of submicron grains with speeds in the order of 100 km/s were detected from Saturn's inner and outer ring system and are released to the interplanetary magnetic field. Since 2004 CDA measured more than one million dust impacts characterising the dust environment of Saturn. The instrument is one of the three experiments which discovered the active ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the water ice grains in Saturn's E ring system led to the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus. Finally, the determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as predicted) allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. This paper summarizes the discoveries of a 10-year story of success based on reliable measurements with the most advanced dust detector flown in space until today. This paper focuses on cruise results and findings achieved at Saturn with a focus on flux and density measurements. CDA discoveries related to the detailed dust stream

  12. Techniques for Galactic Dust Measurements in the Heliosphere

    CERN Document Server

    Grün, E; Horányi, M; Kissel, J; Krüger, H; Srama, R A; Svedhem, H; Withnell, P; Grün, Eberhard; Landgraf, Markus; Horány, Mihaly; Kissel, Jochen; Krüger, Harald; Srama, Ralf; Withnell, Peter

    1999-01-01

    Galactic interstellar dust (ISD) is the major ingredient in planetary formation. However, information on this important material has been extremely limited. Recently the Ulysses dust detector has identified and measured interstellar dust outside 1.8~AU from the Sun at ecliptic latitudes above $50^{\\circ}$. Inside this distance it could not reliably distinguish interstellar from interplanetary dust. Modeling the Ulysses data suggests that up to 30 % of dust flux with masses above $10^{-16}\\rm kg$ at 1~AU is of interstellar origin. From the Hiten satellite in high eccentric orbit about the Earth there are indications that ISD indeed reaches the Earth's orbit. Two new missions carrying dust detectors, Cassini and Stardust, will greatly increase our observational knowledge. In this paper we briefly review instruments used on these missions and compare their capabilities. The Stardust mission [{\\em Brownlee et al.}, 1996] will analyze the local interstellar dust population by an in-situ chemical analyzer and colle...

  13. Dust en-route to Jupiter and the Galilean satellites

    CERN Document Server

    Krüger, H; Krueger, Harald; Gruen, Eberhard

    2002-01-01

    Spacecraft investigations during the last ten years have vastly improved our knowledge about dust in the Jovian system. All Galilean satellites, and probably all smaller satellites as well, are sources of dust in the Jovian system. In-situ measurements with the dust detectors on board the Ulysses and Galileo spacecraft have for the first time demonstrated the electromagnetic interaction of charged dust grains with the interplanetary magnetic field and with a planetary magnetosphere. Jupiter's magnetosphere acts as a giant mass-velocity spectrometer for charged 10-nanometer dust grains. These dust grains are released from Jupiter's moon Io with typical rate of 1 kg s^1. The dust streams probe the plasma conditions in the Io plasma torus and can be used as a potential monitor of Io's volcanic plume activity. The other Galilean satellites are surrounded by tenuous impact-generated clouds of mostly sub-micrometer ejecta grains. Galileo measurements have demonstrated that impact-ejecta derived from hypervelocity i...

  14. An interplanetary magnetic field enhancement observed by five spacecraft: Deducing the magnetic structure, size and mass

    Science.gov (United States)

    Lai, H.; Russell, C. T.; Delzanno, G.; Angelopoulos, V.

    2012-12-01

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records and attributed to the interaction between solar wind and dust particles from comets or asteroids, but the physics of this interaction remained obscure. Our current understanding is that IFEs result from collisions of small interplanetary bodies that produce electrically charged nanometer-scale dust particles possibly enhanced by tribo-electric charging in the collision. These charged dust particles in turn interact with the magnetized solar wind. Momentum is transferred from the solar wind to the dust cloud via the collective effect of the formation of a magnetic barrier. This momentum transfer accelerates the particles to near the solar wind speed and moves the dust outward through the solar gravitational potential well. Multi-spacecraft observations can help us to determine the speed of the IFE and the orientation of the current sheet. They enable us to reconstruct the pressure profile of an IFE in three dimensions and estimate the mass contained in the IFE. We have done these reconstructions with an IFE observed on March 3, 2011 with Wind, ACE, ARTEMIS P1 and P2 and Geotail. We find that the magnetic field near the center of the IFE is highly twisted indicating a complicated magnetic topology as expected in a plasma-charged dust interaction. The magnetic field and plasma properties during this event distinguish it from a typical flux rope. Based on the statistical results obtained at 1 AU and the assumption that all the IFEs are self-similar, we find that this IFE has a radial scale length several times longer than the cross flow radius and contains a mass of about 108 kg. The rates of collisions expected for objects of this size are consistent with the observed rates of these disturbances.

  15. Anhydrous crystals of DNA bases are wide gap semiconductors.

    Science.gov (United States)

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  16. A New Thickener for CO2 Anhydrous Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2015-01-01

    Full Text Available CO2 dry fracturing technology is well-known for its advantages. Little water is used in this technology, which is able to ease the pressure of consumption on water resources. Many abroad theoretical researches, laboratory experiments and field tests have been taken to explore the yield mechanism, the adaptability and the technology of pure liquid CO2 fracturing. These achievements have been applied to a variety of reservoirs transformation and improven the effectiveness of stimulation treatment in a degree. The researches and studies in the domestic didn’t get popular until recent years. Thus, this article firstly introduces the main development and application about pure CO2 anhydrous fracturing technology, and sums up the effect and evaluation of its fluid through application examples both in the domestic and abroad. However, although this technology has many excellent qualities, but systematic studies indicate that its proppant-carrying capacity is less competitive because of the low viscosity of pure CO2 liquid and other reasons. In a consequence, it is necessary to develop an appropriate thickener for CO2 anhydrous fracturing fluid to improve its carrying capacity. Then this article describes some studies of previous scholars about CO2 thickener. Then we put forward our own research ideas and transform it into actual experiments. Thanks to the valid performances of these tests, we successfully develop a thickener X and cosolvent B.

  17. Formulation and in vitro evaluation of theophylline anhydrous bioadhesive tablets

    Directory of Open Access Journals (Sweden)

    Deshmukh V

    2009-01-01

    Full Text Available The aim of the current study was to design oral controlled release (CR theophylline anhydrous bioadhesive tablets and to optimize the drug release profile and in vitro bioadhesion strength. Different types of natural hydrophilic polymers such as xanthun gum, locust bean gum, guar gum, karaya gum, and their combinations were used to formulate matrix tablets. Tablets of anhydrous theophylline were prepared by the direct compression method and were subjected to in vitro drug dissolution for 12 hours using the USP dissolution apparatus basket type at a speed of 100 rpm and temperature of 37 ± 0.5°C using gastric fluid (pH 1.2. The bioadhesive strength of the tablets was measured as the force of detachment against the porcine gastric mucosa. The in vitro release study as well as the retention time of the bioadhesive tablets on the mucous membrane were investigated to develop a bioadhesive polymer-based CR delivery system and to evaluate the performance of such a delivery device. The combination of karaya gum:guar gum (6:4 tablet showed a greater bioadhesive strength as compared with a single gum and other gum combination tablets. Karaya gum:guar gum-loaded tablets were not discharged from the mucous membrane and were dissolved in the gastric fluid. An increase in the gum concentration increases the drug release profile beyond 12 hours whereas there is no significant effect of gum concentration on the bioadhesive strength of the tablet.

  18. Magnetic reconnection events in the interplanetary space

    Institute of Scientific and Technical Information of China (English)

    魏奉思; R.Schwenn; 胡强

    1997-01-01

    Magnetic field and plasma measurements in the period of 1975-1981 with 0. 18-h averages from Helios spacecrafts are analyzed. It is discovered that magnetic reconnection phenomena exist in the interplanetary space. By means of the reconstruction of magnetic field configuration in the azimuth angle plane, it is found that the magnetic reconnection event with time scale of the order of day is a significant form of magnetic reconnection phenomena in the interplanetary space, which consists of a mediate body (or a plasma bulk) and two magnetic separator lines. It could originate from coronal mass ejection event or magnetic cloud in the interplanetary space. Numerical simulation has reproduced the basic characteristics of the magnetic reconnection events.

  19. The Microwave Thermal Emission from the Zodiacal Dust Cloud Predicted with Contemporary Meteoroid Models

    CERN Document Server

    Dikarev, Valery V

    2015-01-01

    Predictions of the microwave thermal emission from the interplanetary dust cloud are made using several contemporary meteoroid models to construct the distributions of cross-section area of dust in space, and applying the Mie light-scattering theory to estimate the temperatures and emissivities of dust particles in broad size and heliocentric distance ranges. In particular, the model of the interplanetary dust cloud by Kelsall et al. (1998, ApJ 508: 44-73), the five populations of interplanetary meteoroids of Divine (1993, JGR 98(E9): 17,029-17,048) and the Interplanetary Meteoroid Engineering Model (IMEM) by Dikarev et al. (2004, EMP 95: 109-122) are used in combination with the optical properties of olivine, carbonaceous and iron spherical particles. The Kelsall model has been widely accepted by the Cosmic Microwave Background (CMB) community. We show, however, that it predicts the microwave emission from interplanetary dust remarkably different from the results of application of the meteoroid engineering m...

  20. Interplanetary Space Weather and Its Planetary Connection

    Science.gov (United States)

    Crosby, Norma; Bothmer, Volker; Facius, Rainer; Grießmeier, Jean-Mathias; Moussas, Xenophon; Panasyuk, Mikhail; Romanova, Natalia; Withers, Paul

    2008-01-01

    Interplanetary travel is not just a science fiction scenario anymore, but a goal as realistic as when our ancestors started to cross the oceans. With curiosity driving humans to visit other planets in our solar system, the understanding of interplanetary space weather is a vital subject today, particularly because the physical conditions faced during a space vehicle's transit to its targeted solar system object are crucial to a mission's success and vital to the health and safety of spacecraft crew, especially when scheduling planned extravehicular activities.

  1. 7 CFR 58.715 - Cream, plastic cream and anhydrous milkfat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream, plastic cream and anhydrous milkfat. 58.715 Section 58.715 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... Service 1 Quality Specifications for Raw Material § 58.715 Cream, plastic cream and anhydrous...

  2. Solar wind collimation of the Jupiter high velocity dust streams

    Science.gov (United States)

    Flandes, A.; Krueger, H.

    2006-12-01

    The dust bursts discovered by the Ulysses dust sensor when approaching Jupiter in 1992 were later confirmed as collimated streams of high velocity (~200 km/s) charged (~5V) dust grains escaping from Jupiter and dominated by the interplanetary Magnetic field (IMF). With Cassini, a similar phenomenon was observed in Saturn. It was demonstrated that the Jovian dust streams are closely related to the solar wind compressed regions, either Corotating interaction regions (CIRs) or Coronal mass ejections (CMEs) ¨Cto a minor extent-. Actually the dust streams seem ultimately to be generated by such events. This can be explained considering that dust grains are accelerated as they gain substantial energy while compressed at the forward and reverse shocks that bound or precede these solar wind regions.

  3. Impact-Generated Dust Clouds Surrounding the Galilean Moons

    CERN Document Server

    Krüger, H; Grün, E; Kr\\"uger, Harald~; Krivov, Alexander V.; Gr\\"un, Eberhard

    2003-01-01

    Tenuous dust clouds of Jupiter's Galilean moons Io, Europa, Ganymede and Callisto have been detected with the in-situ dust detector on board the Galileo spacecraft. The majority of the dust particles have been sensed at altitudes below five radii of these lunar-sized satellites. We identify the particles in the dust clouds surrounding the moons by their impact direction, impact velocity, and mass distribution. Average particle sizes are 0.5 to $\\rm 1 \\mu m$, just above the detector threshold, indicating a size distribution with decreasing numbers towards bigger particles. Our results imply that the particles have been kicked up by hypervelocity impacts of micrometeoroids onto the satellites' surfaces. The measured radial dust density profiles are consistent with predictions by dynamical modeling for satellite ejecta produced by interplanetary impactors (Krivov et al., PSS, 2003, 51, 251--269), assuming yield, mass and velocity distributions of the ejecta from laboratory measurements. The dust clouds of the th...

  4. Dust Sources of Saturn's E Ring

    Science.gov (United States)

    Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.; Sremcevic, M.

    The recent detection of a dust plume at Enceladus' south pole sheds new light on the origin of the E ring of Saturn. The particles probably condense from gas vents escaping from a system of cracks covering the south pole that appears unusually hot in the Cassini infrared experiments. The main fraction of the E ring dust is created in these gas vents. Still, significant amounts of dust should originate from grains ejected by hypervelocity impacts of E ring particles (ERPs), or alternatively, of interplanetary dust grains (IDPs) on the Saturnian moons embedded in the E ring. We estimate the contributions of impactor -ejecta created dust at these various satellites in the ring, relative to the production rate of grains in the plume at Enceladus. Furthermore, we compare the amount of dust created by both projectile families - ERPs and IDPs - and predict that one can clearly discriminate between the ejecta raised by either projectile families in the data of the Cassini dust detector (CDA) collected at close flybys with the moons embedded in the E ring.

  5. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  6. Diffusive Acceleration of Ions at Interplanetary Shocks

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

    2005-01-01

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

  7. Interplanetary shocks and solar wind extremes

    Science.gov (United States)

    Vats, Hari

    The interplanetary shocks have a very high correlation with the annual sunspot numbers during the solar cycle; however the correlation falls very low on shorter time scale. Thus poses questions and difficulty in the predictability. Space weather is largely controlled by these interplanetary shocks, solar energetic events and the extremes of solar wind. In fact most of the solar wind extremes are related to the solar energetic phenomena. It is quite well understood that the energetic events like flares, filament eruptions etc. occurring on the Sun produce high speed extremes both in terms of density and speed. There is also high speed solar wind steams associated with the coronal holes mainly because the magnetic field lines are open there and the solar plasma finds it easy to escape from there. These are relatively tenuous high speed streams and hence create low intensity geomagnetic storms of higher duration. The solar flares and/or filament eruptions usually release excess coronal mass into the interplanetary medium and thus these energetic events send out high density and high speed solar wind which statistically found to produce more intense storms. The other extremes of solar wind are those in which density and speed are much lower than the normal values. Several such events have been observed and are found to produce space weather consequences of different kind. It is found that such extremes are more common around the maximum of solar cycle 20 and 23. Most of these have significantly low Alfven Mach number. This article is intended to outline the interplanetary and geomagnetic consequences of observed by ground based and satellite systems for the solar wind extremes.

  8. Novel anhydrous emulsions: formulation as controlled release vehicles.

    Science.gov (United States)

    Suitthimeathegorn, Orawan; Jaitely, Vikas; Florence, Alexander T

    2005-07-25

    Novel anhydrous emulsions, which may offer some advantages as depot or reservoir vehicles for lipophilic drugs in controlled delivery systems, were formulated using castor oil as the disperse phase and dimethicone or cyclopentasiloxane as the continuous phase. Among the emulsifiers studied only silicone surfactants (cyclomethicone/dimethicone copolyols) which were miscible in silicone oil stabilized the emulsions. Cyclomethicone/PEG/PPG-18/18 Dimethicone and Cyclopentasiloxane/PEG/PPG-18/18 Dimethicone were more effective in lowering the interfacial tension between castor oil and both dimethicone and cyclopentasiloxane. Emulsions formulated using either of these two surfactants were found to be stable against phase separation and exhibited least globule growth over 168 h. The average particle size was found to be 2-6 microm in these systems formed by probe sonication. Slow release patterns of 3H-dehydroepiandrosterone (DHEA) and 3H-dexamethasone solubilized in the disperse castor oil phase into an aqueous dialyzing medium were observed over 48 h.

  9. Periodic quantum chemical studies on anhydrous and hydrated acid clinoptilolite.

    Science.gov (United States)

    Valdiviés Cruz, Karell; Lam, Anabel; Zicovich-Wilson, Claudio M

    2014-08-07

    Periodic quantum chemistry methods as implemented in the crystal09 code were considered to study acid clinoptilolite (HEU framework type), both anhydrous and hydrated. The most probable location of acid sites and water molecules together with other structural details has been the object of particular attention. Calculations were performed at hybrid and pristine DFT levels of theory with a VDZP quality basis set in order to compare performances. It arises that PBE0 provides the best agreement with experimental data as concerns structural features and the most stable Al distribution in the framework. The role of the water molecule distribution in the stability of the systems, the most probable structure that they induce in the material, and their eventual influence on further chemical modification processes, such as dealumination, are discussed in detail. Results show that, apart from the usually considered interactions of water molecules with the zeolite framework, that is, a H-bond with Brönsted acid sites and coordination with framework Al as Lewis ones, it is necessary to consider cooperation of other weaker effects so as to fully understand the hydration effect in this kind of materials.

  10. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  11. Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts

    DEFF Research Database (Denmark)

    Li, Han-Jung; Lausche, Adam C.; Peterson, Andrew A.

    2015-01-01

    Abstract Direct dehydrogenation of methanol to produce anhydrous formaldehyde is investigated using periodic density functional theory (DFT) and combining the microkinetic model to estimate rates and selectivities on stepped (211) surfaces under a desired reaction condition. Binding energies of r...

  12. Activation of Anhydrate Phosphogypsmn by K2SO4 and Hemihydrate Gypsum

    Institute of Scientific and Technical Information of China (English)

    YANG Min; QIAN Jueshi

    2011-01-01

    Lime pretreated phosphogypsum(PG) was calcined at 500 ℃ to produce anhydrate gypsum cement.Due to the slow hydration of anhydrate gypsum,additives,K2SO4 and hemihydrate gypsum were selected to accelerate the hydration of anhydrate.The hydration characteristics,the resistance to hydrodynamic water,and the mineralogical studies were investigated.The experimental results suggest that activated by K2SO4 and hemihydrate,anhydrate PG hydrates much more rapidly than that in the presence of only K2SO4 or in the absence of additives.The binder has proper setting time,good strength development,and relatively better resistance to water.The hardened binder has hydrated products of rod or stick like shaped dihydrate gypsum crystals.

  13. Study on the Stability of DeoxyArbutin in an Anhydrous Emulsion System

    OpenAIRE

    Chiu-Wen Chen; Shu-Mei Lee; Yi-Shyan Chen; Pey-Shiuan Wu; Nai-Fang Chang; Chao-Hsun Yang; Chih-Chien Lin

    2011-01-01

    The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w) or water-in-oil (w/o) systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive ...

  14. Water in Nominally Anhydrous Minerals from Nakhlites and Shergottites

    Science.gov (United States)

    Peslier, Anne H.

    2013-01-01

    Estimating the amount of water in the interior of terrestrial planets has tremendous implications on our understanding of solar nebula evolution, planet formation and geological history, and extraterrestrial volcanism. Mars has been a recent focus of such enquiry with complementary datasets from spacecrafts, rovers and martian meteorite studies. In planetary interiors, water can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) such as olivine, pyroxene, or feldspar [1-3]. Measuring water in Martian meteorite NAM is challenging because the minerals are fragile and riddled with fractures from impact processes that makes them break apart during sample processing. Moreover, curing the sample in epoxy causes problems for the two main water analysis techniques, Fourier transform infrared spectrometry (FTIR) and secondary ionization mass spectrometry (SIMS). Measurements to date have resulted in a heated debate on how much water the mantle of Mars contains. SIMS studies of NAM [4], amphiboles [5], and apatites [6-8] from Martian meteorites report finding enough water in these phases to infer that the martian mantle is as hydrous as that of the Earth. On the other hand, a SIMS study of glass in olivine melt inclusions from shergottites concludes that the Martian mantle is much drier [9]. The latter interpretation is also supported by the fact that most martian hydrous minerals generally have the relevant sites filled with Cl and F instead of H [10,11]. As for experimental results, martian basalt compositions can be reproduced using water as well as Cl in the parent melts [12,13]. Here FTIR is used to measure water in martian meteorite minerals in order to constrain the origin of the distribution of water in martian meteorite phases.

  15. Problems of Interplanetary and Interstellar Trade

    Science.gov (United States)

    Hickman, John

    2008-01-01

    If and when interplanetary and interstellar trade develops, it will be novel in two respects. First, the distances and time spans involved will reduce all or nearly all trade to the exchange of intangible goods. That threatens the possibility of conducting business in a genuinely common currency and of enforcing debt agreements, especially those involving sovereign debt. Second, interstellar trade suggests trade between humans and aliens. Cultural distance is a probable obstacle to initiating and sustaining such trade. Such exchange also threatens the release of new and potentially toxic memes.

  16. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  17. Carbonaceous Components in the Comet Halley Dust

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  18. Interplanetary Physics Research in China: 2006-2008

    Institute of Scientific and Technical Information of China (English)

    WANG Chi; FENG Xueshang

    2008-01-01

    This brief report summarized the latest advances of the interplanetary physics research in China during the period of 2006-2007,made independently by Chinese space physicists and through international collaboration.The report covers all aspects of the interplanetary physics,including theoretical studies,numerical simulation and data analysis.

  19. The interplanetary gamma ray burst network

    Science.gov (United States)

    Cline, T.

    The Interplanetary Gamma-Ray Burst Network (IPN) is providing gamma-ray burst (GRB) alerts and localizations at the maximum rate anticipated before the launch of the Swift mission. The arc-minute source precision of the IPN is again permitting searches for GRB afterglows in the radio and optical regimes with delays of only hours up to 2 days. The successful addition of the Mars Odyssey mission has compensated for the loss of the asteroid mission NEAR, to reconstitute a fully long- baseline interplanetary network, with Ulysses at > 5 AU and Konus-Wind and HETE-2 near the Earth. In addition to making unassisted GRB localizations that enable a renewed supply of counterpart observations, the Mars/Ulysses/Wind IPN is confirming and reinforcing GRB source localizations with HETE-2. It has also confirmed and reinforced localizations with the BeppoSAX mission before the BeppoSAX termination in May and has detected and localized both SGRs and an unusual hard x-ray transient that is neither an SGR nor a GRB. This IPN is expected to operate until at least 2004.

  20. Regulation of the interplanetary magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.; Gosling, J.T.; Phillips, J.L.

    1991-01-01

    In this study we use a recently developed technique for measuring the 2-D magnetic flux in the ecliptic plane to examine (1) the long term variation of the magnetic flux in interplanetary space and (2) the apparent rate at which coronal mass ejections (CMEs) may be opening new flux from the Sun. Since there is a substantial variation ({approximately}50%) of the flux in the ecliptic plane over the solar cycle, we conclude that there must be some means whereby new flux can be opened from the Sun and previously open magnetic flux can be closed off. We briefly describe recently discovered coronal disconnections events which could serve to close off previously open magnetic flux. CMEs appear to retain at least partial magnetic connection to the Sun and hence open new flux, while disconnections appear to be likely signatures of the process that returns closed flux to the Sun; the combination of these processes could regulate the amount of open magnetic flux in interplanetary space. 6 refs., 3 figs.

  1. Interplanetary magnetic field ensemble at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Matthaeus, W.H.; Goldstein, M.L.; King, J.H.

    1985-04-01

    A method for calculation ensemble averages from magnetic field data is described. A data set comprising approximately 16 months of nearly continuous ISEE-3 magnetic field data is used in this study. Individual subintervals of this data, ranging from 15 hours to 15.6 days comprise the ensemble. The sole condition for including each subinterval in the averages is the degree to which it represents a weakly time-stationary process. Averages obtained by this method are appropriate for a turbulence description of the interplanetary medium. The ensemble average correlation length obtained from all subintervals is found to be 4.9 x 10 to the 11th cm. The average value of the variances of the magnetic field components are in the approximate ratio 8:9:10, where the third component is the local mean field direction. The correlation lengths and variances are found to have a systematic variation with subinterval duration, reflecting the important role of low-frequency fluctuations in the interplanetary medium.

  2. Waves near interplanetary shocks observed by STEREO

    Science.gov (United States)

    Aguilar-Rodriguez, E.; Blanco-Cano, X.; Russell, C. T.; Luhmann, J. G.; Krauss-Varban, D.

    2007-12-01

    We investigate the properties of interplanetary shocks that form ahead of virtually all fast propagating coronal mass ejections (CMEs). Understanding the characteristics of these shocks and their surrounding regions is of great interest as they play a major role in the acceleration of solar energetic particles (SEPs). In this work we study low frequency waves upstream and downstream of interplanetary shocks (IP) observed by the twin spacecraft mission STEREO. In the upstream region waves can be generated by ion beams reflected or otherwise energized at the shock. Downstream the wave spectrum may be formed by both, waves generated locally and waves transmitted through the shock.The efficiency of wave generation and wave convection to the shock depends on the shock Mach number, and the angle between the IMF and the shock normal. Waves can disturb the shock and participate in ion acceleration processes. Multi-point STEREO measurements will allow us to study wave characteristics in different regions near IP shocks and determine the effects that these fluctuations have on particle energization.

  3. Study on the Stability of DeoxyArbutin in an Anhydrous Emulsion Systemy

    Directory of Open Access Journals (Sweden)

    Chiu-Wen Chen

    2011-09-01

    Full Text Available The skin-whitening agent, deoxyArbutin, is a potent tyrosinase inhibitor that is safer than hydroquinone and arbutin. However, it is thermolabile in aqueous solutions, where it decomposes to hydroquinone. Pharmaceutical and cosmetic emulsions are normally oil-in-water (o/w or water-in-oil (w/o systems; however, emulsions can be formulated with no aqueous phase to produce an anhydrous emulsion system. An anhydrous emulsion system could offer a stable vehicle for compounds that are sensitive to hydrolysis or oxidation. Therefore, to enhance the stability of deoxyArbutin in formulations, we chose the polyol-in-silicone, anhydrous emulsion system as the basic formulation for investigation. The quantity of deoxyArbutin and the accumulation of hydroquinone in both hydrous and anhydrous emulsions at various temperatures were analyzed through an established high performance liquid chromatographic (HPLC method. The results indicated that water increased the decomposition of deoxyArbutin in the formulations and that the polyol-in-silicone, oil-based, anhydrous emulsion system provided a relatively stable surrounding for the deoxyArbutin that delayed its degradation at 25 °C and 45 °C. Moreover, the composition of the inner hydrophilic phase, containing different amounts of glycerin and propylene glycol, affected the stability of deoxyArbutin. Thus, these results will be beneficial when using deoxyArbutin in cosmetics and medicines in the future.

  4. Effect of nitrapyrin on emission of nitrous oxide from soil fertilized with anhydrous ammonia

    Science.gov (United States)

    Bremner, J. M.; Breitenbeck, G. A.; Blackmer, A. M.

    1981-04-01

    Field studies using a chamber technique to measure emissions of nitrous oxide (N2O) showed that the N2O emissions induced by fertilization of soil with anhydrous ammonia (180 kg N ha-1) were markedly reduced by addition of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine] to this fertilizer. The emission of N2O induced by application of anhydrous ammonia in the fall was reduced 63% by addition of nitrapyrin at the rate of 0.56 kg ha-1. The corresponding reduction when nitrapyrin was added to anhydrous ammonia applied in the spring was 87%. These observations indicate that nitrapyrin has potential value for reduction of the N2O emissions induced by nitrogen fertilization of soils and the possible adverse effects of these emissions on our climate.

  5. Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process.

    Science.gov (United States)

    Yoo, Chang Geun; Nghiem, Nhuan P; Hicks, Kevin B; Kim, Tae Hyun

    2011-11-01

    A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30-70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40-120°C) for 48-144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1g-ammonia+1.0 g-water per g biomass, 80°C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan+xylan in corn stover).

  6. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  7. Laser-fusion rocket for interplanetary propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  8. Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    Science.gov (United States)

    Wilson, L. B., III

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.

  9. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  10. Interplanetary space transport using inertial fusion propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  11. Modeling of an interplanetary disturbance event tracked by the interplanetary scintillation method

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.-I.; Lee, L.-H.

    1989-01-01

    Using the method which we have developed during the last few years, an interplanetary disturbance event on 25-29 August 1978, was modeled in an attempt to reproduce the corresponding interplanetary scintillation observation, as well as the simultaneous ISEE-3 satellite data. It is shown that a shock wave generated from the region of a disappearing filament on 23 August can account for the observed shock wave structure and the scintillation sky maps but fails to explain the broad high speed stream behind the shock wave, which lasted until about 5 September. On the other hand, it is also shown that a shock wave generated by the sudden activation of the coronal hole on the same day can account for the high speed stream, but not the observed shock wave. Therefore, an attempt is made to combine the effects of both the filament and the coronal hole. The simulation results reproduce fairly well the major events between 27 August and 5 September 1978. Several specific suggestions are made to improve the scheme for forecasting interplanetary disturbance events.

  12. Modeling of an interplanetary disturbance event tracked by the interplanetary scintillation method. Scientific Report No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.; Lee, L.H.

    1989-01-01

    Using a method that we have developed, we modelled an interplanetary disturbance event on 25-29 August 1978, in an attempt to reproduce the corresponding interplanetary scintillation observation as well as the simultaneous ISEE-3 satellite data. It is shown that a shock wave generated from the region of a disappearing filament of 23 August can account for the observed shock wave structure and the scintillation sky maps reconstructed by Tappin et al. (1983), but fails to explain the broad high speed stream behind the shock wave, which lasted until about 5 September. On the other hand, it is also shown that a shock wave generated by the sudden activation of the coronal hole on the same day, suggested by Hewish et al, can account for the high speed stream, but not the observed shock wave. Therefore, an attempt is made to combine the effects of both the filament and the coronal hole. The simulation results reproduce fairly well the major events between 27 August and 5 September 1978. Several specific suggestions are made to improve the scheme for forecasting interplanetary disturbance events.

  13. Solar wind and motion of dust grains

    CERN Document Server

    Klacka, J; Pastor, P; Komar, L

    2009-01-01

    Action of solar wind on arbitrarily shaped interplanetary dust particle is investigated. The final relativistically covariant equation of motion of the particle contains both orbital evolution and change of particle's mass. Non-radial solar wind velocity vector is also included. The covariant equation of motion reduces to the Poynting-Robertson effect in the limiting case when spherical particle is treated, the speed of the incident solar wind corpuscles tends to the speed of light and the corpuscles spread radially from the Sun. The results of quantum mechanics have to be incorporated into the physical considerations, in order to obtain the limiting case. The condition for the solar wind effect on motion of spherical interplanetary dust particle is $\\vec{p}'_{out}$ $=$ (1 $-$ $\\sigma'_{pr} / \\sigma'_{tot}$) $\\vec{p}'_{in}$, where $\\vec{p}'_{in}$ and $\\vec{p}'_{out}$ are incoming and outgoing radiation momenta (per unit time) measured in the proper frame of reference of the particle; $\\sigma'_{pr}$ and $\\sigm...

  14. An unrealistic drift in assay on anhydrous basis towards content limit

    Directory of Open Access Journals (Sweden)

    Shivram K

    2009-01-01

    Full Text Available The assay on anhydrous basis is a mathematically derived value from an experimental results of assay and water content tests. The results of assay and water content tests are determined, separately, on as-is basis. The industry-accepted formula for assay on anhydrous basis = (assay on as-is basis×100/(100-%water. Statistically, the two variables involved in accepted formula are assay on as-is basis and water to obtain assay on anhydrous basis. The experimental errors associated with these two variables propagate in assay on anhydrous basis. The error propagates either in constructive or destructive mode. The constructive mode of error propagation is combination of positive error of assay on as-is basis and positive error of water or negative error of assay on as-is basis and negative error of water. The constructive mode of error propagation has more impact on assay on anhydrous basis values and its confidence interval. The destructive mode of error propagation is combination of a positive error of assay on as-is basis and a negative error of water or vice versa. The destructive mode of error propagation has lesser impact on assay on anhydrous basis values and its confidence interval in comparison to the constructive mode of error propagation. In accepted formula said above, the constructive or destructive error propagation causes unrealistic drift of assay on anhydrous basis towards either lower or higher side of content limit of substance. The risk of rejection of pharmaceutical use substance is higher based on assay test results that results are calculated from industry-accepted formula. The purpose of the study is to propose an alternative formula to overcome limitations of accepted formula and justify the propagation of errors in realistic way. We have given three examples of pharmaceutical use substances to emphasise the above proposition. The proposed formula for assay on anhydrous basis= (assay on as-is basis×F/(F-%water in which F is

  15. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    Science.gov (United States)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  16. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    Science.gov (United States)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  17. Aquarius, a reusable water-based interplanetary human spaceflight transport

    Science.gov (United States)

    Adamo, Daniel R.; Logan, James S.

    2016-11-01

    Attributes of a reusable interplanetary human spaceflight transport are proposed and applied to example transits between the Earth/Moon system and Deimos, the outer moon of Mars. Because the transport is 54% water by mass at an interplanetary departure, it is christened Aquarius. In addition to supporting crew hydration/hygiene, water aboard Aquarius serves as propellant and as enhanced crew habitat radiation shielding during interplanetary transit. Key infrastructure and technology supporting Aquarius operations include pre-emplaced consumables and subsurface habitat at Deimos with crew radiation shielding equivalent to sea level on Earth, resupply in a selenocentric distant retrograde orbit, and nuclear thermal propulsion.

  18. Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    CERN Document Server

    Meyer-Vernet, N; Czechowski, A; Mann, I; Zouganelis, I; Goetz, K; Kaiser, M L; Cyr, O C St; Bougeret, J L; Bale, S D

    2009-01-01

    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.

  19. Real Dust Particles and Unimportance of the Poynting-Robertson Effect

    CERN Document Server

    Kocifaj, M

    1999-01-01

    The importance of the Poynting-Robertson effect on the motion of interplanetary dust particles is discussed. Precise numerical calculations for real dust particle show that condition for the validity of the Poynting-Robertson effect is not fulfilled. The interaction of the (solar) electromagnetic radiation with really shaped dust particle is different from that which yields the Poynting-Robertson effect. The magnitude of the Poynting-Robertson effect's deceleration term is in one to two orders in magnitude (it depends on particle's size) less important than terms corresponding to nonforward (or, nonbackward) scattering.

  20. Corn yield and nitrate loss in subsurface drainage affected by timing of anhydrous ammonia application

    Science.gov (United States)

    Surprisingly little research has examined the corn yield, N use efficiency, and water quality implications of N fertilizer timing. We applied anhydrous ammonia either in the fall after harvest (F) at 196 kg ha-1, or in the spring before planting (PP) or as an early sidedress (SD) at rates of 168 kg ...

  1. Melt-processed anhydrous proton exchange membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Mokrini, A.; Siu, A.; Diaz, G.; Crites, C.; Robitaille, L. [National Research Council of Canada, Boucherville, PQ (Canada). Industrial Materials Inst.

    2009-07-01

    The current benchmark materials for proton exchange membrane (PEM) fuel cells are perfluorosulfonic acid resins (PFSA) because of their excellent stability and proton conductivity of 0.1 s/cm at 80 degrees C when fully humidified. However their performance decreases significantly at higher temperatures and low humidity. This paper presented the properties of nanocomposite PEMs incorporating a series of anhydrous charge carriers that are viable candidates for making water-free membranes that can operate at temperatures above 120 degrees C. However, the volatility or leaching of these anhydrous charge carriers could prevent them from being successfully used in open electrochemical systems. Therefore, in this study, the anhydrous charge carriers were immobilized on inorganic nanoparticles and incorporated into PEMs formulations. Nanoparticles with diameters ranging from 50-200 nm were synthesized via a sol-gel process and the desired anhydrous charge carriers immobilized on their surfaces. Nanocomposite PEMs were prepared using melt-processing technologies, by blending the grafted nanoparticles and fluorinated polymers such as poly (vinylidene fluoride) (PVDF) and ionomers such as Nafion. This paper presented the properties of the PEMs developed as a function of nanoparticles size and content, as well as the proton conductivity at controlled temperature and RH.

  2. Multi-Purpose Interplanetary Deployable Aerocapture System (MIDAS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Altius Space Machines and MSNW LLC propose the development of a cubesat-scale Multipurpose Interplanetary Deployable Aerocapture System (MIDAS), to provide cubesats...

  3. A user's guide for a generalized interplanetary trajectory generation program

    Science.gov (United States)

    1972-01-01

    The analysis, structure, and capability of a generalized precision interplanetary trajectory computation program are discussed, with emphasis being placed on the description of input and output. Sample cases showing input and output information are included.

  4. LiAISON: Linked, Autonomous Interplanetary Satellite Orbit Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new navigation technique known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) may be used to propel the benefits of GPS to new orbits,...

  5. Radar Characterization of the Interplanetary Meteoroid Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new modeling effort that will make substantial refinements and improvements to our existing models of the interplanetary meteoroid environment near...

  6. The interplanetary and solar magnetic field sector structures, 1962 - 1968

    Science.gov (United States)

    Jones, D. E.

    1972-01-01

    The interplanetary magnetic field sector structure was observed from late 1962 through 1968. During this time it has been possible to study the manner in which the sector pattern and its relation to the photospheric magnetic field configuration changes from solar minimum to solar maximum. Observations were also made relating sector boundaries to specific regions on the solar disk. These and other observations related to the solar origin of the interplanetary field are briefly reviewed.

  7. A new method to generate dust with astrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J F; van Breugel, W; Bringa, E M; Graham, G A; Remington, B A; Taylor, E A; Tielens, A G

    2010-04-21

    In interstellar and interplanetary space, the size distribution and composition of dust grains play an important role. For example, dust grains determine optical and ultraviolet extinction levels in astronomical observations, dominate the cooling rate of our Galaxy, and sets the thermal balance and radiative cooling rates in molecular clouds, which are the birth place of stars. Dust grains are also a source of damage and failure to space hardware and thus present a hazard to space flight. To model the size distribution and composition of dust grains, and their effect in the above scenarios, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new experiment which employs a laser to subject dust grains to pressure spikes similar to those of colliding astrophysical dust, and which accelerates the grains to astrophysical velocities. The new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields.

  8. Impact Angle Control of Interplanetary Shock Geoeffectiveness

    CERN Document Server

    Oliveira, D M

    2015-01-01

    We use OpenGGCM global MHD simulations to study the nightside magnetospheric, magnetotail, and ionospheric responses to interplanetary (IP) fa st forward shocks. Three cases are presented in this study: two inclined oblique shocks, here after IOS-1 and IOS-2, where the latter has a Mach number twice stronger than the former. Both shocks have impact angles of 30$^o$ in relation to the Sun-Earth line. Lastly, we choose a frontal perpendicular shock, FPS, whose shock normal is along the Sun-Earth line, with the same Mach number as IOS-1. We find that, in the IOS-1 case, due to the north-south asymmetry, the magnetotail is deflected southward, leading to a mild compression. The geomagnetic activity observed in the nightside ionosphere is then weak. On the other hand, in the head-on case, the FPS compresses the magnetotail from both sides symmetrically. This compression triggers a substorm allowing a larger amount of stored energy in the magnetotail to be released to the nightside ionosphere, resulting in stronger...

  9. Anatomy of Depleted Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B., IV

    2017-01-01

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE/SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C6+/C5+ and O7+/O6+ depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  10. Carbon petrology in cometary dust

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons

  11. Whistler Waves Associated with Weak Interplanetary Shocks

    Science.gov (United States)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  12. On the Evolution of Dust Mineralogy, From Protoplanetary Disks to Planetary Systems

    CERN Document Server

    Oliveira, Isa; Pontoppidan, Klaus M; van Dishoeck, Ewine F; Augereau, Jean-Charles; Merin, Bruno

    2011-01-01

    Mineralogical studies of silicate features emitted by dust grains in protoplanetary disks and Solar System bodies can shed light on the progress of planet formation. The significant fraction of crystalline material in comets, chondritic meteorites and interplanetary dust particles indicates a modification of the almost completely amorphous ISM dust from which they formed. The production of crystalline silicates thus must happen in protoplanetary disks, where dust evolves to build planets and planetesimals. Different scenarios have been proposed, but it is still unclear how and when this happens. This paper presents dust grain mineralogy of a complete sample of protoplanetary disks in the young Serpens cluster. These results are compared to those in the young Taurus region and to sources that have retained their protoplanetary disks in the older Upper Scorpius and Eta Chamaeleontis stellar clusters, using the same analysis technique for all samples. This comparison allows an investigation of the grain mineralo...

  13. Method of Preparation for High-Purity Nanocrystalline Anhydrous Cesium Perrhenate

    Directory of Open Access Journals (Sweden)

    Katarzyna Leszczyńska-Sejda

    2017-03-01

    Full Text Available This paper is devoted to the preparation of high-purity anhydrous nanocrystalline cesium perrhenate, which is applied in catalyst preparation. It was found that anhydrous cesium perrhenate with a crystal size <45 nm can be obtained using cesium ion sorption and elution using aqueous solutions of perrhenic acid with subsequent crystallisation, purification, and drying. The following composition of the as-obtained product was reported: 34.7% Cs; 48.6% Re and <2 ppm Bi; <3 ppm Zn; <2 ppm As; <10 ppm Ni; < 3 ppm Mg; <5 ppm Cu; <5 ppm Mo; <5 ppm Pb; <10 ppm K; <2 ppm Na; <5 ppm Ca; <3 ppm Fe.

  14. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine.

    Science.gov (United States)

    Srivastava, Santosh K; Singh, Vipin B

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  15. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  16. Inhaled dust and disease

    Energy Technology Data Exchange (ETDEWEB)

    Holt, P.F.

    1987-01-01

    This book discusses the following: the respiratory system; respirable dust; the fate of inhaled dust; translocation and some general effects of inhaled dust; silicosis; experimental research on silica-related disease; natural fibrous silicates; asbestos dust levels and dust sources; asbestos-related diseases - asbestosis, lung cancer, mesothelioma and other diseases, cancers at sites other than lung and pleura; experimental research relating to asbestos-related diseases; asbestos hazard - mineral types and hazardous occupations, neighbourhood and domestic hazard; silicates other than asbestos-man-made mineral fibres, mineral silicates and cement; metals; coal mine dust, industrial carbon and arsenic; natural and synthetic organic substances; dusts that provoke allergic alveolitis; tobacco smoke.

  17. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    Science.gov (United States)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  18. Neutron diffraction analysis of residual stresses near unannealed welds in anhydrous ammonia nurse tanks.

    Science.gov (United States)

    Becker, A T; Chumbley, L S; Goettee, D; Russell, A M

    2014-01-01

    Neutron diffraction analysis was employed to measure residual stresses near welds in used anhydrous ammonia nurse tanks. Tensile residual stresses contribute to stress corrosion cracking of nurse tanks, which can cause tanks to release toxic ammonia vapor. The analysis showed that tensile residual stresses were present in the tanks measured, and the magnitudes of these stresses approached the yield strength of the steel. Implications for agricultural safety and health are discussed.

  19. THE PRODUCTION OF PURE ABSOLUTE ALCOHOL WITH CALCIUM CARBIDE AND ANHYDROUS COPPER SULPHATE.

    Science.gov (United States)

    Lyons, R E; Smith, L T

    1925-09-01

    (1) The above is recommended as an economical, convenient and quick method for producing absolute alcohol on a laboratory scale. If the distillation is executed with free flame, excessive or careless heating must be avoided near the end of the operation because of the copper acetylide in the residue. (2) Calcium carbide is recommended over potassium permanganate or anhydrous copper sulphate as a qualitative reagent in detecting traces of water in alcohol.

  20. Preparation and characteristic research of anhydrous magnesium chloride with dehydrated ammonium carnallite

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ning-bo; CHEN Bai-zhen; HE Xin-kuai; LI Yi-bing

    2006-01-01

    Taking the saline lake bischofite and NH4Cl that was removed with the ammonia method and continuwas synthesized. And then the ammonium carnallite was dehydrated to some extent at 160℃ for 4 h. Ammonium carnallite reacted with ammonia at 240℃ for 150 min and the ammonation ammonium carnallite was produced. Finally, the ammonation ammonium carnallite was calcined at 750℃ into anhydrous magnesium chloride containing only 0.1% (mass fraction) of MgO. On the other hand, dehydrated ammonium carnallite was mixed with the solid ammonium chloride at mass ratio 1:4 at high temperature and with the differential pressure of HN3 above 30.5 kPa. The dehydrated ammonium carnallite of mixture was dehydrated at 410℃, and then calcined at 700℃ into anhydrous magnesium chloride with only 0. 087% (mass fraction) of MgO. X-ray diffraction and electron microscopy analysis results prove that anhydrous magnesium chloride obtained by both methods hasn't mixed phases, the particle is large and even has good dispersion, which is suitable for preparation of metal magnesium in the electrolysis.

  1. Preparation of anhydrous magnesium chloride in a gas-solid reaction with ammonium carnallite

    Institute of Scientific and Technical Information of China (English)

    Zhou Ningbo; Chen Baizhen; He Xinkuai; Li Yibing

    2006-01-01

    Dehydrated ammonium carnallite was synthesized with bischofite from salt lake and ammonium chloride solution in a 1:1 molar ratio of MgCl2:NH4Cl,dehydrated at 160℃ for about 4 h.The yield was above 85%.The product was then mixed with solid-state ammonium chloride with a 1:4 mass ratio for the further dehydration at 410℃.The decomposition of NH4Cl made a pressure of NH3 at 30.5 kPa to prevent the hydrolysis of ammonium carnallite.The anhydration of magnesium chloride was achieved at 700℃.The results showed that anhydrous magnesium chloride contains magnesium oxide in an amount that was less than 0.1% by weight.XRD pattern and SEM micrograph showed a good dispersion of ammonium carnallite and anhydrous magnesium chloride crystals with well-distributed big grains,just enough to meet the need for the production of magnesium metal in the electrolysis process.

  2. Use of lycopene as a natural antioxidant in extending the shelf-life of anhydrous cow milk fat.

    Science.gov (United States)

    Siwach, Ruby; Tokas, Jayanti; Seth, Raman

    2016-05-15

    Oxidative rancidity in anhydrous cow milk fat leads to reduction in its shelf life. Use of synthetic antioxidants is prevalent in dairy industry to prevent the development of rancidity. Keeping in view the increasing demand for natural additives, the present study was carried out to explore the potential of lycopene as a natural antioxidant in anhydrous cow milk fat. Lycopene at five different levels (30, 60, 90, 120 and 150 ppm) and butylated hydroxyl anisole (200 ppm), were incorporated in anhydrous cow milk fat. Potential of lycopene extract to enhance the shelf life of anhydrous cow milk fat was evaluated by measuring Free Fatty Acids, peroxide value, Thiobarbituric Acid value and color value during 12 months of storage at ambient conditions (30°C). Lycopene significantly (pLycopene containing samples scored significantly higher in terms of sensory attributes as compared to control.

  3. Start-Time of Magnetic Reconnection in Interplanetary Space

    Institute of Scientific and Technical Information of China (English)

    范全林; 魏奉思; 冯学尚

    2003-01-01

    Start-time of magnetic reconnection under typical interplanetary parameters has been numerically simulated by using the two-dimensional compressible magnetohydrodynamic equations with a third-order compact upwind scheme. Magnetic reconnection would occur near the interplanetary current sheet impacted by a plasmoid.Its initiation is associated with the interplanetary plasma parameter β and the momentum of the plasmoid.The higher the β value is, the faster the reconnection takes place. Meanwhile the reconnection occurs earlier with increasing the plasmoid momentum, and increasing driving velocity is more effective in initializing the reconnection than that of the plasma density when the other factors are kept to be the same. The evolution of the reconnection with the heliocentric distance is also investigated.

  4. Conceptual Design For Interplanetary Spaceship Discovery

    Science.gov (United States)

    Benton, Mark G.

    2006-01-01

    With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR

  5. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials.

  6. Search Coil vs. Fluxgate Magnetometer Measurements at Interplanetary Shocks

    Science.gov (United States)

    Wilson, L.B., III

    2012-01-01

    We present magnetic field observations at interplanetary shocks comparing two different sample rates showing significantly different results. Fluxgate magnetometer measurements show relatively laminar supercritical shock transitions at roughly 11 samples/s. Search coil magnetometer measurements at 1875 samples/s, however, show large amplitude (dB/B as large as 2) fluctuations that are not resolved by the fluxgate magnetometer. We show that these fluctuations, identified as whistler mode waves, would produce a significant perturbation to the shock transition region changing the interpretation from laminar to turbulent. Thus, previous observations of supercritical interplanetary shocks classified as laminar may have been under sampled.

  7. The interplanetary mass ejections behaviour in the heliosphere

    CERN Document Server

    Dumitrache, Cristiana

    2014-01-01

    We present here an overview of an important solar phenomenon with major implication for space weather and planetary life. The coronal mass ejections (CMEs) come from the Sun and expand in the heliosphere, becoming interplanetary coronal mass ejections (ICMEs). They represent huge clouds of plasma and magnetic fields that travel with velocities reaching even 2000 km/s and perturbing the planetary and interplanetary field. The magnetic clouds (MC) are a special class of ICMEs. We summarize some aspects as the ICMEs identification, propagation and track back to the Sun, where the solar source could be found. We notice here few known catalogs of the ICMEs and magnetic clouds.

  8. An improved method of inferring interplanetary sector structure, 1905-present

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Zieger, B.; Friis-Christensen, Eigil

    2001-01-01

    A new method of estimating interplanetary sector polarity from geomagnetic activity is presented. The method is based on a linear multiregression between the By component of the interplanetary magnetic field and hourly values of the magnetic perturbation (DeltaX, DeltaY, DeltaZ) at selected magne....... This is accomplished by including the two subauroral stations Sitka and Sodankyla, which have not previously been used for polarity determination. A major problem with this early polarity determination is a strong asymmetry favoring toward sectors....

  9. Trace Element Abundance Measurements on Cosmic Dust Particles

    Science.gov (United States)

    Flynn, George

    1996-01-01

    The X-Ray Microprobe on beamline X-26A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was used to determine the abundances of elements from Cr through Sr in individual interplanetary dust particles (IDPs) collected from the Earth's stratosphere and the Scanning Transmission X-ray Microscope (STXM) on beamline X-1A at the NSLS was used to determine the carbon abundances and spatial distributions in IDPs. In addition, modeling was performed in an attempt to associate particular types of IDPs with specific types of parent bodies, and thus to infer the chemistry, mineralogy, and structural properties of those parent bodies.

  10. Dust That's Worth Keeping

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-25

    's Ames Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, ''Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space''. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.

  11. CLIpSAT for Interplanetary Missions: Common Low-cost Interplanetary Spacecraft with Autonomy Technologies

    Science.gov (United States)

    Grasso, C.

    2015-10-01

    Blue Sun Enterprises, Inc. is creating a common deep space bus capable of a wide variety of Mars, asteroid, and comet science missions, observational missions in and near GEO, and interplanetary delivery missions. The spacecraft are modular and highly autonomous, featuring a common core and optional expansion for variable-sized science or commercial payloads. Initial spacecraft designs are targeted for Mars atmospheric science, a Phobos sample return mission, geosynchronous reconnaissance, and en-masse delivery of payloads using packetized propulsion modules. By combining design, build, and operations processes for these missions, the cost and effort for creating the bus is shared across a variety of initial missions, reducing overall costs. A CLIpSAT can be delivered to different orbits and still be able to reach interplanetary targets like Mars due to up to 14.5 km/sec of delta-V provided by its high-ISP Xenon ion thruster(s). A 6U version of the spacecraft form fits PPOD-standard deployment systems, with up to 9 km/s of delta-V. A larger 12-U (with the addition of an expansion module) enables higher overall delta-V, and has the ability to jettison the expansion module and return to the Earth-Moon system from Mars orbit with the main spacecraft. CLIpSAT utilizes radiation-hardened electronics and RF equipment, 140+ We of power at earth (60 We at Mars), a compact navigation camera that doubles as a science imager, and communications of 2000 bps from Mars to the DSN via X-band. This bus could form the cornerstone of a large number asteroid survey projects, comet intercept missions, and planetary observation missions. The TugBot architecture uses groups of CLIpSATs attached to payloads lacking innate high-delta-V propulsion. The TugBots use coordinated trajectory following by each individual spacecraft to move the payload to the desired orbit - for example, a defense asset might be moved from GEO to lunar transfer orbit in order to protect and hide it, then returned

  12. Development of a high resolution interstellar dust engineering model - overview of the project

    Science.gov (United States)

    Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.

    2013-09-01

    Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.

  13. Evolving Coronal Holes and Interplanetary Erupting Stream Disturbances

    Indian Academy of Sciences (India)

    Rajendra Shelke

    2006-06-01

    Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of newcoronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support high-speed flow trailing behind the compression zone of the erupting stream for several days.

  14. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  15. Jovian Dust Streams: A monitor of Io's volcanic plume activity

    CERN Document Server

    Krüger, H; Horányi, M; Graps, A L; Kempf, S; Srama, R; Moragas-Klostermeyer, G; Moissl, R; Johnson, T V; Grün, E; Krueger, Harald; Geissler, Paul; Horanyi, Mihaly; Graps, Amara L.; Kempf, Sascha; Srama, Ralf; Moragas-Klostermeyer, Georg; Moissl, Richard; Johnson, Torrence V.; Gruen, Eberhard

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over $\\rm 200 km s^{-1}$. Galileo, which was the first orbiter spacecraft of Jupiter, has continuously monitored the dust streams during 34 revolutions about the planet between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between $10^{-3}$ and $\\mathrm{10} \\rm kg s^{-1}$, and is typically in the range of 0.1 to $\\rm 1 kg s^{-1}$. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes.

  16. Dust-off

    OpenAIRE

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  17. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  18. Dust in the Universe

    Science.gov (United States)

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  19. The Cl Isotope Composition of the Moon as evidence for an Anhydrous Mantle (Invited)

    Science.gov (United States)

    Sharp, Z. D.; Shearer, C., Jr.; McKeegan, K. D.; Barnes, J.; Wang, Y.

    2010-12-01

    The chlorine isotope composition of primitive terrestrial basalts and carbonaceous chondrites cover a narrow range centered around 0‰ with a total variation of ± 0.5‰. In contrast, the chlorine isotope composition of bulk samples and in situ ion microprobe analyses of lunar basalts and glasses cover a range of 25‰. Three possibilities were considered to explain the large spread: 1) initial isotopic heterogeneities, 2) devolatilization from solar wind/micrometeorite bombardment, 3) degassing under anhydrous conditions. The first of these possibilities is rejected because the Moon went through an magma ocean stage which would have homogenized any isotopic heterogeneities. To examine surface effects, we chose samples that have extremely different degrees of surface exposure. We find no correlation between the Cl isotope composition and surface exposure. We also conducted a laboratory experiment in which a thin film of NaCl was bombarded with a proton source for 24 hours with no change in Cl isotope composition. The third possibility is that the fractionation is explained by the anhydrous character of the Moon. On Earth, the volatiling Cl species is HCl. HCl is known to preferentially incorporate 37Cl relative to 35Cl due to the high bond strength of the molecule. This is offset by the higher translational velocity of H35Cl, so that overall, there is very little Cl isotope fractionation during degassing. We propose that lunar basalts were anhydrous and the volatile Cl species were metal chlorides, such as ZnCl2, NaCl, FeCl2, etc. The bond strength of metal chlorides and Cl dissolved in a basalt are similar, so that fractionation is caused mainly by volatilization, with the light isotopologue preferentially lost to the vapor phase. This idea is supported by the consistent lower Cl isotope ratios of water soluble salt fraction (~10 ‰ lower) and the lowest lunar Cl isotope values close to those of bulk Earth. The H content of lunar magmas must have been lower

  20. The Interplanetary Internet: A Communications Infrastructure for Mars Exploration

    Science.gov (United States)

    Burleigh, S.; Cerf, V.; Durst, R.; Fall, K.; Hooke, A.; Scott, K.; Weiss, H.

    2002-01-01

    A successful program of Mars Exploration will depend heavily on a robust and dependable space communications infrastructure that is well integrated with the terrestrial Internet. In the same way that the underpinnings of the Internet are the standardized "TCP/IP" suite of protocols, an "Interplanetary Internet" will need a similar set of capabilities that can support reliable communications across vast distances and highly stressed communications environments. For the past twenty years, the Consultative Committee for Space Data Systems (CCSDS) has been developing standardized long- haul space link communications techniques that are now in use by over two hundred missions within the international space community. New CCSDS developments, shortly to be infused into Mars missions, include a proximity link standard and a store-and- forward file transfer protocol. As part of its `Next Generation Internet' initiative, the U.S. Defense Advanced Projects Agency (DARPA) recently supported an architectural study of a future "InterPlaNetary Internet" (IPN). The IPN architecture assumes that in short-delay environments - such as on and around Mars - standard Internet technologies will be adapted to the locally harsh environment and deployed within surface vehicles and orbiting relays. A long-haul interplanetary backbone network that includes Deep Space Network (DSN) gateways into the terrestrial Internet will interconnect these distributed internets that are scattered across the Solar System. Just as TCP/IP unites the Earth's "network of networks" to become the Internet, a new suite of protocols known as "Bundling" will enable the IPN to become a "network of internets" to support true interplanetary dialog. An InterPlaNetary Internet Research Group has been established within the Internet community to coordinate this research and NASA has begun to support the further development of the IPN architecture and the Bundling protocols. A strategy is being developed whereby the

  1. Toxicity of lunar dust

    CERN Document Server

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  2. Amino Acid Formation on Interstellar Dust Particles

    Science.gov (United States)

    Meierhenrich, U. J.; Munoz Caro, G. M.; Barbier, B.; Brack, A.; Thiemann, W.; Goesmann, F.; Rosenbauer, H.

    2003-04-01

    In the dense interstellar medium dust particles accrete ice layers of known molecular composition. In the diffuse interstellar medium these ice layers are subjected to energetic UV-irradiation. Here, photoreactions form complex organic molecules. The interstellar processes were recently successfully simulated in two laboratories. At NASA Ames Research Center three amino acids were detected in interstellar ice analogues [1], contemporaneously, our European team reported on the identification of 16 amino acids therein [2]. Amino acids are the molecular building blocks of proteins in living organisms. The identification of amino acids on the simulated icy surface of interstellar dust particles strongly supports the assumption that the precursor molecules of life were delivered from interstellar and interplanetary space via (micro-) meteorites and/or comets to the earyl Earth. The results shall be verified by the COSAC experiment onboard the ESA cometary mission Rosetta [3]. [1] M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola: itshape Nature \\upshape 416 (2002), 401-403. [2] G.M. Muñoz Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Sergovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg: itshape Nature \\upshape 416 (2002), 403-406. [3] U. Meierhenrich, W.H.-P. Thiemann, H. Rosenbauer: itshape Chirality \\upshape 11 (1999), 575-582.

  3. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jankovic, B., E-mail: bojanjan@ffh.bg.ac.r [Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, P. O. Box 137, 11001 Belgrade (Serbia); Mentus, S. [Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, P. O. Box 137, 11001 Belgrade (Serbia); Jelic, D. [Faculty of Medicine, University of Banja Luka, 78000 Banja Luka (Bosnia and Herzegowina)

    2009-08-01

    The non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere was investigated. The kinetic analysis of decomposition process was performed using Friedman (FR), Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) isoconversional methods. The kinetic model was determined by the Malek's method. The composite differential method I was used for checking the established reaction model. It was found that the value of E{sub a} calculated by composite differential method (E{sub a}=147.1 kJ mol{sup -1}) represents the medium value between the values of the apparent activation energy calculated by FR (E{sub a,FR}=152.8 kJ mol{sup -1}) and FWO (E{sub a,FWO}=143.1 kJ mol{sup -1}) methods. Using two special functions (y(alpha) and z(alpha)), it was found that the two-parameter autocatalytic model (Sestak-Berggren (SB) kinetic model) with kinetic exponents M=0.23 and N=1.14 is the most adequate one to describe the decomposition kinetics of the studied system at various heating rates. The obtained non-isothermal differential conversion curves from the experimental data show the results being accordant with those theoretically calculated. It was concluded that the SB kinetic model can be used for a quantitative description of non-isothermal decomposition process of anhydrous nickel nitrate which involves the partially overlapping nucleation and growth phases.

  4. Anhydrous proton conducting materials based on sulfonated dimethylphenethylchlorosilane grafted mesoporous silica/ionic liquid composite.

    Science.gov (United States)

    Amiinu, Ibrahim Saana; Liang, Xinmiao; Tu, Zhengkai; Zhang, Haining; Feng, Jiwen; Wan, Zhongmin; Pan, Mu

    2013-11-27

    Efficient membrane proton conductivity at elevated temperatures (>100 °C) and reduced humidification conditions is a critical issue hindering fuel cell commercialization. Herein, proton conducting materials consisting of high surface area acid catalyzed mesoporous silica functionalized with sulfonated dimethylphenethylchlorosilane was investigated under anhydrous conditions. The organic moiety covalently bonded to the silica substrate via active hydroxyl groups on the silica pore surface. The structure and dynamic phases of the attached organic molecule were characterized and qualitatively determined by XRD, TEM, FT-IR, and solid state NMR. The amount of grafted organic molecules was estimated to be 2.45 μmol m(-2) by carbon elemental analysis. The so-formed composite materials showed adequate thermal stability up to 300 °C as determined by TGA. Under anhydrous conditions, ionic conductivity of the composite material upon ionic liquid impregnation reaches a peak value of 1.14 × 10(-2) S cm(-1) at 160 °C associated with the activation energy of 9.24 kJ mol(-1) for proton transport.

  5. Anhydrous ethanol production in sugar mills; Produccion de etanol anhidro en ingenios azucareros

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez Poy, Manuel. E-mail:poymanuel@prodigy.net.mx

    2007-04-15

    The anhydrous ethanol production is recent and limited, because the disadvantage of the renewable energies is the economic impossibility of the projects. Nevertheless, there are aspects to consider to achieve the anhydrous ethanol production, among which are: the cost of the raw material, the self-sufficiency of energy from the sugar cane bagasse without the need of oil burning, the larger size of the distilleries, incorporation of the Cogeneration with delivery of electricity to the public network in the sugar mill facilities, the introduction of the biotechnology to improve the processes of fermentation and subsidies to agriculture. [Spanish] La produccion de etanol anhidro es reciente y limitada, debido a que la desventaja de las energias renovables es la inviabilidad economica de los proyectos. Sin embargo hay aspectos a considerar para lograr la produccion de etanol anhidro, entre los cuales estan: el costo de la materia prima, la autosuficiencia energetica a partir del bagazo de la cana sin necesidad de petroleo, mayor tamano de las destilerias, incorporacion de la Cogeneracion con entrega de electricidad a la red publica en el ingenio, la introduccion de la biotecnologia para mejorar los procesos de fermentacion y subsidios a la agricultura.

  6. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity

    Science.gov (United States)

    Zhang, Haoqin; Wu, Wenjia; Li, Yifan; Liu, Yong; Wang, Jingtao; Zhang, Bing; Liu, Jindun

    2015-04-01

    Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed by impregnating imidazole-type ionic liquids (ILs). Within the composite membrane, the lumens of PMCs act as IL reservoirs, which provide large space for IL storage and thus significantly elevate the IL uptake. The IL leaching measurement suggests that the cross-linked shells of PMCs manipulate the IL release, endowing the composite membrane with high IL retention. Moreover, the high IL retention renders the composite membrane more anhydrous hopping sites (e.g., the imidazole groups on IL and the acid-base pairs between imidazole and sulfonic acid groups), imparting a facilitated proton conduction via Grotthuss mechanism. In particular, the composite membrane containing 12% PMCs achieves a high anhydrous proton conductivity of 33.7 mS cm-1 at 150 °C. The same membrane also exhibits a surprising steady-state IL retention of 36.9% after leaching in liquid water.

  7. Structural characterization of anhydrous naloxone- and naltrexone hydrochloride by high resolution laboratory X-ray powder diffraction and thermal analysis.

    Science.gov (United States)

    Sugimoto, Kunihisa; Dinnebier, Robert E; Zakrzewski, Marek

    2007-12-01

    The crystal structures of the analgesic compounds anhydrous naloxone and naltrexone hydrochloride were determined ab initio from high resolution laboratory X-ray powder diffraction data. Both compounds crystallize in the orthorhombic space group P2(1)2(1)2(1) with lattice parameters of a = 14.6588(10) A, b = 17.4363(9) A, c = 7.96200(22) A, and V = 2035.06(23) A(3) for naloxone hydrochloride and a = 15.4560(5) A, b = 14.9809(4) A, c = 7.84121(18) A, and V = 1815.58(11) A(3) for naltrexone hydrochloride. The crystal structure of anhydrous naloxone hydrochloride forms one-dimensional chains through hydrogen bonds. In the crystal structure of anhydrous naltrexone hydrochloride, two-dimensional sheets are formed by hydrogen bonds. The dehydration processes of naloxone hydrochloride dehydrate and naltrexone hydrochloride tetrahydrate was analyzed by DTA, DSC, TG, and MG.

  8. Atypical Particle Heating at a Supercritical Interplanetary Shock

    Science.gov (United States)

    Wilson, Lynn B., III

    2010-01-01

    We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  9. Simulation of interplanetary scintillation with SSSF and SSDF mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The sun has the biggest effect on the Earth in many ways. Observing the solar wind is an important method to study the solar-earth environment. Ground-based interplanetary scintillation observations are an effective method of monitoring solar wind speed, studying the random fluctuations of the interplanetary plasma and the structures of radio sources. Two modes of single-station observations, namely, single station-single frequency (SSSF) and single station dual-frequency (SSDF), are briefly introduced and numerically simulated in this paper. The SSSF mode are easier to carry out and has been widely used. Although the observing system and data processing system of the SSDF mode are more complicated, it can measure the solar wind speed more accurately. A new SSDF system is under construction in Miyun, NAOC (the National Astronomical Observatories, Chinese Academy of Sciences), with a 50 m telescope, which will serve the Meridian Project, and this paper is devoted to preparing for this new system.

  10. Identification of configuration and boundaries of interplanetary magnetic clouds

    Science.gov (United States)

    Feng, H. Q.; Wu, D. J.; Chao, J. K.

    2006-07-01

    To study interplanetary magnetic clouds (IMCs), it is important to find their configurations and boundaries from the observed magnetic field data. This paper presents a novel method of identifying the configuration and boundaries of IMCs, wherein the interplanetary magnetic field data, which are measured in the Geocentric Solar Ecliptic (GSE) coordinate system, are converted into an IMC natural coordinate system that can more clearly display the configuration and boundaries of the IMC as a flux tube. The establishment of the natural coordinate system is based on the idea that the IMC is a flux rope with approximately constant α force-free field configuration. We also apply this method to analyze four IMCs observed by the Wind spacecraft. Two of them are identified as having the flux rope configuration lying in the ecliptic plane, and the other two are flux ropes vertical to the ecliptic plane. The results demonstrate that our method can work well for real IMCs.

  11. Some considerations on velocity vector accuracy in dust trajectory analysis

    Science.gov (United States)

    Jackson, A. A.; Zook, Herbert A.

    1994-01-01

    The relative contributions of comets and asteroids to the reservoir of dust in the interplanetary medium is not known. There are direct observations of dust released from comets and there is evidence to associate the IRAS dust bands with possible collisions of asteroids in the main belt. A means towards sorting out the parent sources has been proposed in the establishment of a dust collector in orbit about the Earth. The purpose of such a facility would be to collect not only cosmic dust particles intact but also the state vectors, as they arrive at the detector, the idea being that one may combine analytical laboratory analysis of the physics and chemistry of the captured particles with orbital data in order to help distinguish between bodies and identify parent bodies. The theoretical study of dust particle orbits in the solar system takes on greatly more importance if we use collected trajectory data. The orbital motion of dust when radiation and forces alone are acting is well understood. When gravitational forces due to the planets are included, the motion can become quite complex. In order to characterize the orbits of particles as they crossed the Earth's orbits, a study of the long-time dust orbital evolution was undertaken. We have considered various parameters associated with these dust orbits to see if one may in a general way discriminate between particles evolved from comets and asteroids. We proceed in this study as we have done previously. That is, we considered the dust particles as ideal black bodies, of density 1 gm/cc, spherical, with radii 10-100 microns. Particles of this size are affected by radiation forces, photon pressure, and Poynting-Robertson drag. Account was also taken of solar wind drag, which amounts to about 30 percent of the Poynting-Robertson drag negligible. The gravitational forces due to the planets are included, unlike in our previous study; the planetary orbits are those of true n-body interaction so that the possibility of

  12. Pioneer 10 studies of interplanetary shocks at large heliocentric distances

    Science.gov (United States)

    Mihalov, J. D.; Wolfe, J. H.

    1979-01-01

    Pioneer 10 Ames plasma analyzer data collected in the 6.1 to 12.6 AU range of heliocentric distances (November 1974 to April 1977) have been examined for interplanetary shock waves. Eighteen shock signatures have been identified, with four of these being of the reverse type and the remainder the forward type. Sonic Mach numbers in the range from 3 to 10 are estimated for these events.

  13. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    Science.gov (United States)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  14. Prediction of the In-Situ Dust Measurements of the Stardust Mission to Comet 81P/Wild 2

    CERN Document Server

    Landgraf, M; Grün, E; Landgraf, Markus; Müller, Michael; Grün, Eberhard

    1999-01-01

    We predict the amount of cometary, interplanetary, and interstellar cosmic dust that is to be measured by the Cometary and Interstellar Dust Analyzer (CIDA) and the aerogel collector on-board the Stardust spacecraft during its fly-by of comet P/Wild 2 and during the interplanetary cruise phase. We give the dust flux on the spacecraft during the encounter with the comet using both, a radially symmetric and an axially symmetric coma model. At closest approach, we predict a total dust flux of $10^{6.0} m^{-2} s^{-1}$ for the radially symmetric case and $10^{6.5} m^{-2} s^{-1}$ for the axially symmetric case. This prediction is based on an observation of the comet at a heliocentric distance of $1.7 {\\rm AU}$. We reproduce the measurements of the Giotto and VEGA missions to comet P/Halley using the same model as for the Stardust predictions. The planned measurements of {\\em interstellar} dust by Stardust have been triggered by the discovery of interstellar dust impacts in the data collected by the Ulysses and Gali...

  15. Energetic Particle Pressure at Interplanetary Shocks: STEREO-A Observations

    CERN Document Server

    Lario, D; Roelof, E C; Vinas, A -F

    2015-01-01

    We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic ($\\geq$83 keV) protons ($P_{EP}$) is larger than the pressure exerted by the interplanetary magnetic field ($P_{B}$). In the majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when $P_{EP}$ exceeds $P_{B}$ by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of the energetic particle intensities. When solar wind parameters are available, $P_{EP}$ also exceeds the pressure exerted by the solar wind thermal population ($P_{TH}$). Prolonged periods ($>$12 h) with both $P_{EP}$$>$$P_{B}$ and $P_{EP}$$>$$P_{TH}$ may also occur when energetic particles accelerated by an approaching shock encounter a region well-upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential incre...

  16. Interplanetary Lyman $\\alpha$ line profiles: variations with solar activity cycle

    CERN Document Server

    Quemerais, E; Bertaux, J L; Koutroumpa, D; Clarke, J; Kyrola, E; Schmidt, W; Qu\\'emerais, Eric; Lallement, Rosine; Bertaux, Jean-Loup; Koutroumpa, Dimitra; Clarke, John; Kyrola, Erkki; Schmidt, Walter

    2006-01-01

    Interplanetary Lyman alpha line profiles are derived from the SWAN H cell data measurements. The measurements cover a 6-year period from solar minimum (1996) to after the solar maximum of 2001. This allows us to study the variations of the line profiles with solar activity. These line profiles were used to derive line shifts and line widths in the interplanetary medium for various angles of the LOS with the interstellar flow direction. The SWAN data results were then compared to an interplanetary background upwind spectrum obtained by STIS/HST in March 2001. We find that the LOS upwind velocity associated with the mean line shift of the IP \\lya line varies from 25.7 km/s to 21.4 km/s from solar minimum to solar maximum. Most of this change is linked with variations in the radiation pressure. LOS kinetic temperatures derived from IP line widths do not vary monotonically with the upwind angle of the LOS. This is not compatible with calculations of IP line profiles based on hot model distributions of interplanet...

  17. Calibration of impact ionization cosmic dust detectors: first tests to investigate how the dust density influences the signal

    Science.gov (United States)

    Jasmin Sterken, Veerle; Moragas-Klostermeyer, Georg; Hillier, Jon; Fielding, Lee; Lovett, Joseph; Armes, Steven; Fechler, Nina; Srama, Ralf; Bugiel, Sebastian; Hornung, Klaus

    2016-10-01

    Impact ionization experiments have been performed since more than 40 years for calibrating cosmic dust detectors. A linear Van de Graaff dust accelerator was used to accelerate the cosmic dust analogues of submicron to micron-size to speeds up to 80 km s^-1. Different materials have been used for calibration: iron, carbon, metal-coated minerals and most recently, minerals coated with conductive polymers. While different materials with different densities have been used for instrument calibration, a comparative analysis of dust impacts of equal material but different density is necessary: porous or aggregate-like particles are increasingly found to be present in the solar system: e.g. dust from comet 67P Churyumov-Gerasimenko [Fulle et al 2015], aggregate particles from the plumes of Enceladus [Gao et al 2016], and low-density interstellar dust [Westphal 2014 et al, Sterken et al 2015]. These recalibrations are relevant for measuring the size distributions of interplanetary and interstellar dust and thus mass budgets like the gas-to-dust mass ratio in the local interstellar cloud.We report about the calibrations that have been performed at the Heidelberg dust accelerator facility for investigating the influence of particle density on the impact ionization charge. We used the Cassini Cosmic Dust Analyzer for the target, and compared hollow versus compact silica particles in our study as a first attempt to investigate experimentally the influence of dust density on the signals obtained. Also, preliminary tests with carbon aerogel were performed, and (unsuccessful) attempts to accelerate silica aerogel. In this talk we explain the motivation of the study, the experiment set-up, the preparation of — and the materials used, the results and plans and recommendations for future tests.Fulle, M. et al 2015, The Astrophysical Journal Letters, Volume 802, Issue 1, article id. L12, 5 pp. (2015)Gao, P. et al 2016, Icarus, Volume 264, p. 227-238Westphal, A. et al 2014, Science

  18. Four years of Ulysses dust data 1996 to 1999

    CERN Document Server

    Krüger, H; Landgraf, M; Dermott, S; Fechtig, H; Gustafson, B A; Hamilton, D P; Hanner, M S; Horányi, M; Kissel, J; Lindblad, B A; Linkert, D; Linkert, G; Mann, I; McDonnell, J A M; Morfill, G E; Polanskey, C; Schwehm, G; Srama, R A; Zook, H A

    2001-01-01

    The Ulysses spacecraft is orbiting the Sun on a highly inclined ellipse ($ i = 79^{\\circ}$, perihelion distance 1.3 AU, aphelion distance 5.4 AU). Between January 1996 and December 1999 the spacecraft was beyond 3 AU from the Sun and crossed the ecliptic plane at aphelion in May 1998. In this four-year period 218 dust impacts were recorded with the dust detector on board. We publish and analyse the complete data set of both raw and reduced data for particles with masses $\\rm 10^{-16} g$ to $\\rm 10^{-8}$ g. Together with 1477 dust impacts recorded between launch of Ulysses and the end of 1995 published earlier \\cite{gruen1995c,krueger1999b}, a data set of 1695 dust impacts detected with the Ulysses sensor between October 1990 and December 1999 is now available. The impact rate measured between 1996 and 1999 was relatively constant with about 0.2 impacts per day. The impact direction of the majority of the impacts is compatible with particles of interstellar origin, the rest are most likely interplanetary parti...

  19. Superaromatics: The key to a unified cosmic dust theory

    Science.gov (United States)

    Manuel, Lawrence R.

    1989-01-01

    The theory of Superaromatics, the key to a unified cosmic dust theory, was constructed by analyzing several thousand astronomical features covering every major aspect of astrophysics and astrochemistry relating to dust. To insure consistency between disciplines, the logical structure of the conclusions in each field was checked rather than accepting the current consensus. No substantial contradictory features are known to the author. The analysis falls into seven major parts: (1) kinetics of grain formation and destruction; (2) optical spectra of the interstellar medium (ISM); (3) meteorite interplanetary dust particle (IPD) chemistry; (4) structure and chemistry of the interstellar medium arising from surface catalysis; (6) dynamics of circumstellar and interstellar dust clouds, including galactic morphology; and (7) the chemistry and physics of previously unidentified compounds. Only tentative conclusions are presented here. The principle conclusion is that quantum mechanics as it is normally formulated is incomplete. The probable cause is that it is formulated with complex numbers rather than the more fundamental quaternion system. The manifestation in astrochemistry is that the most stable compounds are superaromatic and exotic enough to confound most classical analysis.

  20. Operational Dust Prediction

    Science.gov (United States)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  1. IDIS Small Bodies and Dust Node

    Science.gov (United States)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    Node aims at becoming a focus point in the fields of Solar System's minor bodies and interplanetary dust by providing the community with a central, user friendly resource and service inventory and contact point. The main aim of the Small Bodies and Dust Node will be to: • support collaborative work in the field of Small Bodies and Dust • provide information about databases and scientific tools in this field • establish a scientific information management system • define and develop Science Cases regarding IDIS

  2. Structural study and crystallography of the major compound of anhydrous cement: tri-calcium silicate; Etude structurale et cristallographie du compose majoritaire du ciment anhydre: le silicate tricalcique

    Energy Technology Data Exchange (ETDEWEB)

    Noirfontaine, M.N. de

    2000-01-01

    Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)

  3. Crystallization behavior of anhydrous milk fat-sunflower oil wax blends.

    Science.gov (United States)

    Kerr, Rebekah M; Tombokan, Xenia; Ghosh, Supriyo; Martini, Silvana

    2011-03-23

    This research evaluates the effect of sunflower oil wax (SFOw) addition on the crystallization behavior and functional properties of anhydrous milk fat (AMF). Induction times of nucleation, melting behavior, microstructure of crystals, and hardness were evaluated for samples of pure AMF and AMF with 0.1 and 0.25% SFOw. Results from this research show that the addition of waxes induced the onset of crystallization of AMF by inducing its nucleation, as evidenced by decreased induction times of nucleation and the formation of smaller crystals. Crystal growth after tempering was also promoted by waxes, and significantly harder lipid networks were obtained. Results presented in this paper suggest that SFOw can be used as an additive to alter the physiochemical properties of low trans-fatty acid lipids.

  4. Detection of anhydrous hydrochloric acid, HCl, in IRC+10216 with the Herschel SPIRE and PACS spectrometers

    CERN Document Server

    Cernicharo, J; Barlow, M J; Agundez, M; Royer, P; Vandenbussche, B; Wesson, R; Polehampton, E T; De Beck, E; Blommaert, J A D L; Daniel, F; De Meester, W; Exter, K M; Feuchtgruber, H; Gear, W K; Goicoechea, J R; Gomez, H L; Groenewegen, M A T; Hargrave, P C; Huygen, R; Imhof, P; Ivison, R J; Jean, C; Kerschbaum, F; Leeks, S J; Lim, T L; Matsuura, M; Olofsson, G; Posch, T; Regibo, S; Savini, G; Sibthorpe, B; Swinyard, B M; Vandenbussche, B; Waelkens, C

    2010-01-01

    We report on the detection of anhydrous hydrochloric acid (hydrogen chlorine, HCl) in the carbon-rich star IRC+10216 using the spectroscopic facilities onboard the Herschel satellite. Lines from J=1-0 up to J=7-6 have been detected. From the observed intensities, we conclude that HCl is produced in the innermost layers of the circumstellar envelope with an abundance relative to H2 of 5x10^-8 and extends until the molecules reach its photodissociation zone. Upper limits to the column densities of AlH, MgH, CaH, CuH, KH, NaH, FeH, and other diatomic hydrides have also been obtained.

  5. Highly Efficient and Versatile Synthesis of Some Important Precursors from 1,6-Anhydrous-β-D-glucopyranose as a Green Starting Material

    Institute of Scientific and Technical Information of China (English)

    WEI Guohua; CAI Chao; DU Yuguo

    2009-01-01

    Some important precursors (1,6-anhydrous-2-deoxy-2-azido-β-D-glucopyranose (3),1,6-anhydrous-2-deoxy-2-azido-3,4-di-O-benzyl-β-D-mannopyranose (5), 1,6:2,3-dianhydrouso-β-D-glucopyranose (6), 1,6-anhydrous-3-deoxy-3-azido-β-D-glucopyranose (10) and 1,6-anhydrous-2,4-di-O-benzoyl-β-D-glucopyranose (11)) for complex oligosaccharide synthesis were readily prepared from a green starting material 1,6-anhydrous-β-D-glucopyranose in one or two steps with moderate to high yields.These improved methods established herein will greatly facilitate the assembly of some complex oligosaccharides for the biological study.

  6. Effects of coffee and caffeine anhydrous on strength and sprint performance.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E; Roelofs, Erica J; Hirsch, Katie R; Mock, Meredith G

    2016-09-01

    Caffeine and coffee are widely used among active individuals to enhance performance. The purpose of the current study was to compare the effects of acute coffee (COF) and caffeine anhydrous (CAF) intake on strength and sprint performance. Fifty-four resistance-trained males completed strength testing, consisting of one-rep max (1RM) and repetitions to fatigue (RTF) at 80% of 1RM for leg press (LP) and bench press (BP). Participants then completed five, 10-second cycle ergometer sprints separated by one minute of rest. Peak power (PP) and total work (TW) were recorded for each sprint. At least 48 hours later, participants returned and ingested a beverage containing CAF (300 mg flat dose; yielding 3-5 mg/kg bodyweight), COF (8.9 g; 303 mg caffeine), or placebo (PLA; 3.8 g non-caloric flavouring) 30 minutes before testing. LP 1RM was improved more by COF than CAF (p = .04), but not PLA (p = .99). Significant interactions were not observed for BP 1RM, BP RTF, or LP RTF (p > .05). There were no sprint × treatment interactions for PP or TW (p > .05). 95% confidence intervals revealed a significant improvement in sprint 1 TW for CAF, but not COF or PLA. For PLA, significant reductions were observed in sprint 4 PP, sprint 2 TW, sprint 4 TW, and average TW; significant reductions were not observed with CAF or COF. Neither COF nor CAF improved strength outcomes more than PLA, while both groups attenuated sprint power reductions to a similar degree. Coffee and caffeine anhydrous may be considered suitable pre-exercise caffeine sources for high-intensity exercise.

  7. Distribution and recovery of nitrogen-15-labeled liquid anhydrous ammonia among various soil fractions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, R.J.; Kurtz, L.T.; Stevenson, F.J.

    Since liquid anhydrous ammonia (LAA) is a major N fertilizer, information was sought about the proportions of LAA that enter into various combinations in soils. Liquid anhydrous NH/sub 3/, labeled with /sup 15/N was injected into three soils (Drummer, Typic Haplaquoll; Blount, Aeric Ochraqualf; Cisne, Mollic Albaqualf) in the laboratory at a rate equivalent to a field application of 206 kg N ha /sup 1/ in 76.2 cm knife-spacings. At 1, 7, 14, 28, 56, and 112 d after application, fertilizer N present in different soil fractions was determined in five concentric zones with radii of 0 to 1.5, 1.5 to 3.0, 3.0 to 4.5, 4.5 to 6.0, and 6.0 to 7.0 cm around the point of application. Depending on the soil, from 68 to 83% of the applied /sup 15/N was accounted for as (exchangeable NH/sub 4//sup +/ + NO/sub 3//sup -/ + NO/sub 2//sup -/)-N by the 112th day following application, the remainder being accounted for as clay-fixed NH/sub 4//sup +/ (1.9-4.9%), organic matter-fixed NH/sub 3/ (4.0-6.0%), and biologically immobilized organic N (3.9-9.3%). From 50 to 70% of the organic matter-fixed NH/sub 3/-N was released by hydrolysis with dilute KOH solution as compared to 10 to 15% for the immobilized N. Total recovery of /sup 15/N at 112 d ranged from 77% for the Cisne soil to about 97% for the Drummer and Blount soils. Lateral distributions and transformations of NH/sub 4//sup +/ and NO/sub 3//sup -/ and pH trends after LAA applications were similar to those reported by previous investigators.

  8. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications.

    Science.gov (United States)

    Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert

    2009-06-01

    A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.

  9. Biomarker generation from Type II-S kerogens in claystone and limestone during hydrous and anhydrous pyrolysis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Carson, F.C.; Lewan, M.D.

    1998-01-01

    A claystone and a limestone containing immature Type II-S kerogen were thermally matured in the presence and absence of water, to study the influence of water and clay minerals on the generation of biomarkers. In contrast to hydrous pyrolysis, anhydrous pyrolysis of the claystone did not generate bi

  10. 75 FR 70687 - Storage and Handling of Anhydrous Ammonia Standard; Extension of the Office of Management and...

    Science.gov (United States)

    2010-11-18

    ... containers and systems to store and transfer anhydrous ammonia in the workplace. DATES: Comments must be... INFORMATION.'' Docket: To read or download comments or other material in the docket, go to http://www....g., copyrighted material) is not publicly available to read or download through the Web site....

  11. 78 FR 78393 - Standard on the Storage and Handling of Anhydrous Ammonia; Extension of the Office of Management...

    Science.gov (United States)

    2013-12-26

    ... containers and systems to store and transfer anhydrous ammonia in the workplace. DATES: Comments must be... material in the docket, go to http://www.regulations.gov or the OSHA Docket Office at the address above....regulations.gov index; however, some information (e.g., copyrighted material) is not publicly available...

  12. Crystal structure of aspartame anhydrate from powder diffraction data. Structural aspects of the dehydration process of aspartame

    NARCIS (Netherlands)

    Guguta, C.; Meekes, H.L.M.; Gelder, R. de

    2006-01-01

    Aspartame has three pseudo-polymorphic forms, two hydrates and a hemi-hydrate, for which crystal structures were determined from single-crystal diffraction data. This paper presents the crystal structure of the anhydrate, which was obtained by dehydrating the hemi-hydrate. The crystal structure of a

  13. Anhydrous ZnCl2: A Highly Efficient Reagent for Facile and Regioselective Conversion of Epoxides to β-Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Ronak Eisavi

    2016-01-01

    Full Text Available Facile conversion of structurally different epoxides to the corresponding β-chlorohydrins was carried out successfully with anhydrous ZnCl2 in CH3CN. The reactions were carried out within 10-50 min to give β-chlorohydrins with perfect regioselectivity and high yields (80-97%.

  14. Stone dusting process advance

    Energy Technology Data Exchange (ETDEWEB)

    Matt Ryan; David Humphreys [Mining Attachments (Qld.) Pty Ltd. (Australia)

    2009-01-15

    The coal mining industry has, for many years, used dry stone dust or calcium carbonate (CaCO{sub 3}) in the prevention of the propagation of coal dust explosions throughout their underground mines in Australia. In the last decade wet stone dusting has been introduced. This is where stone dust and water are mixed together to form a paste like slurry. This mixture is pumped and sprayed on to the underground roadway surfaces. This method solved the contamination of the intake airways but brought with it a new problem known as 'caking'. Caking is the hardened layer that is formed as the stone dust slurry dries. It was proven that this hardened layer compromises the dispersal characteristics of the stone dust and therefore its ability to suppress a coal dust explosion. This project set out to prove a specially formulated, non toxic slurry additive and process that could overcome the caking effect. The slurry additive process combines dry stone dust with water to form a slurry. The slurry is then treated with the additive and compressed air to create a highly vesicular foam like stone dusted surface. The initial testing on a range of additives and the effectiveness in minimising the caking effect of wet dusting were performed at Applied Chemical's research laboratory in Melbourne, Victoria and independently tested at the SGS laboratory in Paget, Queensland. The results from these tests provided the platform to conduct full scale spraying trials at the Queensland Mines Rescue Station and Caledon Coal's Cook Colliery, Blackwater. The project moved into the final stage of completion with the collection of data. The intent was to compare the slurry additive process to dry stone dusting in full-scale methane explosions at the CSIR Kloppersbos explosion facility in Kloppersbos, South Africa.

  15. Comet Dust: The Diversity of "Primitive" Particles and Implications

    Science.gov (United States)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  16. The physical and compositional properties of dust: what do we really know?

    CERN Document Server

    Jones, Ant

    2014-01-01

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., astronomical silicates, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these three pillars of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the three pillars approach and to seek more physically-realistic interstellar dust analogues. The analy- sis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and abso...

  17. Galactic dust properties

    Science.gov (United States)

    Paradis, D.

    2011-12-01

    Recent studies have shown evidence for variations in the dust emissivity law with temperature and wavelength. A recent dust emission model, called TLS model (for two-level systems), based on the description of the disordered internal structure of the amorphous dust grains has been developped to interpret observations in the far-infrared/submillimeter (FIR/submm) domain. A recent work focusing on the comparison between data of the diffuse interstellar medium seen by FIRAS-WMAP, as well as Archeops compact sources, with the TLS model allowed us to constrain the model parameters characterizing the general Galactic dust properties. Using the newly available Herschel/Hi-GAL data of the inner Galactic plane, we report a 500 μm emissivity excess in the peripheral parts of the Galactic plane, that can reach up to 20% of the emissivity. Results of the TLS modeling indicate significant changes in the dust properties from the central to peripheral parts of the Galactic plane.

  18. The pioneers of interplanetary communication: From Gauss to Tesla

    Science.gov (United States)

    Raulin-Cerceau, Florence

    2010-12-01

    The present overview covers the period from 1820 to the beginning of the 20th century. Emphasis is laid on the latter half of the 19th century because many efforts have been done at that time to elaborate schemes for contacting our neighboring planets by interplanetary telegraphy. This period knew many advances not only in planetary studies but also in the nascent field of telecommunications. Such a context led astronomers who were also interested in the problem of planetary habitability, to envisage that other planets could be contacted, especially the planet Mars. Interplanetary communication using a celestial telegraphy was planned during this period of great speculations about life on Mars. This paper focuses on four authors: the Frenchmen C. Flammarion, Ch. Cros, A. Mercier and the Serbian N. Tesla, who formulated early proposals to communicate with Mars or Venus. The first proposals (which remained only theoretical) showed that an initial reflection had started as early as the second part of the 19th century on the type of language that could be both universal and distinguishable from a natural signal. Literary history of interplanetary communication preceded by far the scientific one. Authors of the 1900s were very prolific on this topic. French fictions are mentioned in this paper as examples of such a literature. This incursion into selected texts stresses the fact that the problem of techniques and messages employed to communicate with other planets goes beyond the strict scientific framework. Finally, this paper aims to highlight the similarities as well as the differences between the different proposals and to underline what that could possibly help present SETI research to define messages supposed to be sent to other planetary systems.

  19. Earth's Magnetosphere Impinged by Interplanetary Shocks of Different Orientations

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Cheng; HU You-Qiu; WANG Chi

    2005-01-01

    @@ Using a recently developed PPMLR-MHD code, we carry out a global numerical simulation of the interaction between interplanetary shocks and Earth's magnetosphere. The initial magnetosphere is in a quasi-steady state,embedded in a uniform solar wind and a spiral interplanetary magnetic field (IMF). An interplanetary (IP)shock interacts in turn with the bow shock, the magnetosheath, the magnetopause, and the magnetosphere, and changes the magnetosphere in shape and structure, and the distribution of the electric current and potential in the ionosphere as well. A preliminary comparison is made between two IP shocks of the same solar wind dynamic pressure and a vanishing IMF Bz on the downstream side, but with different propagation directions, one parallel and the other oblique to the Sun-Earth line. The numerical results show that both shocks cause a compression of the magnetosphere, an enhancement of magnetic field strength and field-aligned current in the magnetosphere, and an increase of the dawn-dusk electric potential drops across the polar ionosphere. Moreover, the magnetosphereionosphere system approaches a similar quasi-steady state after the interaction, for the downstream states are very close for the two shocks. However, the evolution processes of the system are remarkably different during the interaction with the two shocks of different orientations. The shock with the normal oblique to the Sun-Earth line results in a much longer evolution time for the system. This demonstrates that the shock orientation plays an important role in determining the associated geophysical effects and interpreting multisatellite observations of IP shock-magnetosphere interaction events.

  20. Magnetic reconnection in the interior of interplanetary coronal mass ejections.

    Science.gov (United States)

    Fermo, R L; Opher, M; Drake, J F

    2014-07-18

    Recent in situ observations of interplanetary coronal mass ejections (ICMEs) found signatures of reconnection exhausts in their interior or trailing edge. Whereas reconnection on the leading edge of an ICME would indicate an interaction with the coronal or interplanetary environment, this result suggests that the internal magnetic field reconnects with itself. In light of this data, we consider the stability properties of flux ropes first developed in the context of astrophysics, then further elaborated upon in the context of reversed field pinches (RFPs). It was shown that the lowest energy state of a flux rope corresponds to ∇ × B = λB with λ a constant, the so-called Taylor state. Variations from this state will result in the magnetic field trying to reorient itself into the Taylor state solution, subject to the constraints that the toroidal flux and magnetic helicity are invariant. In reversed field pinches, this relaxation is mediated by the reconnection of the magnetic field, resulting in a sawtooth crash. If we likewise treat the ICME as a flux rope, any deviation from the Taylor state will result in reconnection within the interior of the flux tube, in agreement with the observations by Gosling et al. Such a departure from the Taylor state takes place as the flux tube cross section expands in the latitudinal direction, as seen in magnetohydrodynamic (MHD) simulations of flux tubes propagating through the interplanetary medium. We show analytically that this elongation results in a state which is no longer in the minimum energy Taylor state. We then present magnetohydrodynamic simulations of an elongated flux tube which has evolved away from the Taylor state and show that reconnection at many surfaces produces a complex stochastic magnetic field as the system evolves back to a minimum energy state configuration.

  1. Enhanced interplanetary magnetic fields as the cause of Forbush decreases

    Science.gov (United States)

    Burlaga, L. F.; Barouch, E.

    1975-01-01

    A strong correlation is observed between neutron monitor variations and variations in the interplanetary magnetic field intensity. It is thought that the cosmic ray intensity depressions are caused by perpendicular gradient drifts. The perpendicular gradient drift velocity for particles with energies exceeding 500 MeV in a magnetic field configuration produced by a representative stream is at least a few times the solar wind velocity. Thus particles can be swept away from the ecliptic by such a blob faster than the blob advances. It is suggested that this mechanism might be the cause of Forbush decreases and other cosmic ray variations near 1 AU.

  2. INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Pal' shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Cline, T.; Trombka, J.; McClanahan, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Boynton, W.; Fellows, C.; Harshman, K., E-mail: val@mail.ioffe.ru [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); and others

    2013-08-15

    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

  3. The Role of Hydrogen Bonding on Laminar Burning Velocity of Hydrous and Anhydrous Ethanol Fuel with Small Addition of n-Heptane

    Directory of Open Access Journals (Sweden)

    I Made Suarta

    2016-01-01

    Full Text Available The molecular structure of mixed hydrous and anhydrous ethanol with up to 10% v n-heptane had been studied. The burning velocity was examined in a cylindrical explosion combustion chamber. The result showed that the burning velocity of hydrous ethanol is higher than anhydrous ethanol and n-heptane at stoichiometric, rich, and very rich mixtures. The burning velocity of hydrous ethanol with n-heptane drops drastically compared to the burning velocity of anhydrous ethanol with n-heptane. It is caused by two reasons. Firstly, there was a composition change of azeotropic hydrous ethanol molecules within the mixture of fuel. Secondly, at the same volume the number of ethanol molecules in hydrous ethanol was less than in anhydrous ethanol at the same composition of the n-heptane in the mixture. At the mixture of anhydrous ethanol with n-heptane, the burning velocity decreases proportionally to the addition of the n-heptane composition. The burning velocity is between the velocities of anhydrous ethanol and n-heptane. It shows that the burning velocity of anhydrous ethanol mixed with n-heptane is only influenced by the mixture composition.

  4. Forward modelling to determine the observational signatures of white-light imaging and interplanetary scintillation for the propagation of an interplanetary shock in the ecliptic plane

    CERN Document Server

    Xiong, Ming; Bisi, M M; Owens, M J; Fallows, R A; Dorrian, G D; Davies, J A; Thomasson, P

    2011-01-01

    Recent coordinated observations of interplanetary scintillation (IPS) and stereoscopic heliospheric imagers (HIs) are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly-constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun-Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity...

  5. Criteria of interplanetary parameters causing intense magnetic storms (Dst less than -100nT)

    Science.gov (United States)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    Ten intense storms occurred during the 500 days of August 16, 1978 to December 28, 1979. From the analysis of ISEE-3 field and plasma data, it is found that the interplanetary cause of these storms are long-duration, large and negative IMF B sub Z events, associated with interplanetary duskward-electric fields greater than 5 mV/m. Because a one-to-one relationship was found between these interplanetary events and intense storms, it is suggested that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. These B sub Z events are found to occur in association with large amplitudes of the IMF magnitude within two days after the onset of either high-speed solar wind streams or of solar wind density enhancement events, giving important clues to their interplanetary origin. Some obvious possibilities will be discussed. The close proximity of B sub Z events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported, and thus the two interplanetary features corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity B sub Z events with the same criteria show that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity.

  6. Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms

    Indian Academy of Sciences (India)

    Santosh Kumar; M. P. Yadav; Amita Raizada

    2008-03-01

    The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to 121 moderate geomagnetic storms (MGS) have been investigated using the neutron monitor, solar geophysical and interplanetary data during the period 1978–99. Further, the duration of recovery phase has been observed to be greater than the duration of main phase in most of the cases of MGS. It has further been noted that Ap-index increases on sudden storm commencement (SSC) day than its previous day value and acquires maximum value on the day of maximum solar activity. Generally, the decrease in cosmic ray (CR) intensity and Dst begins few hours earlier than the occurrence of MGS at Earth. Furthermore, negative Bz pointing southward plays a key causal role in the occurrence of MGS and the magnitude and the duration of Bz and Bav also play a significant role in the development of MGS. The solar features H, X-ray solar flares and active prominences and disappearing filaments (APDFs) which have occurred within lower helio-latitudinal/helio-longitudinal zones produce larger number of MGS. Solar flares seem to be the major cause for producing MGS.

  7. First Taste of Hot Channel in Interplanetary Space

    Science.gov (United States)

    Song, H. Q.; Zhang, J.; Chen, Y.; Cheng, X.; Li, G.; Wang, Y. M.

    2015-04-01

    A hot channel (HC) is a high temperature (˜10 MK) structure in the inner corona first revealed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Eruptions of HCs are often associated with flares and coronal mass ejections (CMEs). Results of previous studies have suggested that an HC is a good proxy for a magnetic flux rope (MFR) in the inner corona as well as another well known MFR candidate, the prominence-cavity structure, which has a normal coronal temperature (˜1-2 MK). In this paper, we report a high temperature structure (HTS, ˜1.5 MK) contained in an interplanetary CME induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R ⊙ , and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds, which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit expansion of the HC and cool it down to a low temperature.

  8. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  9. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    CERN Document Server

    Fallows, R A; Forte, B; Ulich, Th; Konovalenko, A A; Mann, G; Vocks, C

    2016-01-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan {\\it et al} (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2\\,s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of night-side IPS using LOFAR, w...

  10. Magnetohydrodynamic Shocks in the Interplanetary Space: a Theoretical Review

    Science.gov (United States)

    Oliveira, D. M.

    2017-02-01

    I discuss in this brief review some properties of magnetohydrodynamic (MHD) discontinuities in the interplanetary space. My emphasis is on a special case of MHD discontinuity, namely interplanetary (IP) shocks, and those that are found at 1 AU. I derive the Rankine-Hugoniot (RH) equations to evaluate plasma parameters in the downstream region (shocked plasma) in relation to the upstream region (unshocked plasma). These properties are used to classify IP shocks in terms of their geometry and their direction of propagation in relation to the Sun. The shock geometry is determined in terms of two angles: θ _{Bn}, the angle between the upstream magnetic field and the shock normal, and θ _{xn}, the angle between the shock normal and the Sun-Earth line. Sources of IP shocks frequently found in the solar wind at Earth's orbit are presented. Then the RH equations are solved for two categories of IP shocks in a special case: perpendicular shocks, when θ _{Bn} is 90 ∘, and oblique shocks, when that angle is 45 ∘. Finally, I highlight the importance of knowing the shock geometry, mainly the impact angle θ _{xn}, specially whether the shock is frontal or inclined, for space weather-related investigations. IP shocks are known to be more geoeffective if they strike the Earth's magnetosphere frontally, or with impact angle nearly null. These results have been reported both by modeling and experimental studies in the literature.

  11. Separating Nightside Interplanetary and Ionospheric Scintillation with LOFAR

    Science.gov (United States)

    Fallows, R. A.; Bisi, M. M.; Forte, B.; Ulich, Th.; Konovalenko, A. A.; Mann, G.; Vocks, C.

    2016-09-01

    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan et al. presenting observations using the Murchison Widefield Array (MWA) reports evidence of nightside IPS on two radio sources within their field of view. However, the low time cadence of 2 s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To check this assumption, this Letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of nightside IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a coronal mass ejection expected to be observed in another.

  12. Effect of Interplanetary Transients on Cosmic Ray Anisotropic Variations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present work the cosmic ray intensity data recorded with ground-based neutron monitor at Deep River has investigated taking into account the associated interplanetary magnetic field and solar wind plasma data during 1981-1994. A large number of days having abnormally high/low amplitudes for successive number of five or more days as compared to annual average amplitude of diurnal anisotropy have been taken as high/low amplitude anisotropic wave train events (HAE/LAE). The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth. The High-Speed Solar Wind Streams (HSSWS) do not play any significant role in causing these types of events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic ray decreases. Hα solar flares have a good positive correlation with both amplitude and direction of the anisotropy for HAEs,whereas PMSs have a good positive correlation with both amplitude and direction of the anisotropy for LAEs.The source responsible for these unusual anisotropic wave trains in CR has been proposed.

  13. First Taste of Hot Channel in Interplanetary Space

    CERN Document Server

    Song, Hongqiang; Chen, Yao; Cheng, Xin; Li, Gang; Wang, Yuming

    2015-01-01

    Hot channel (HC) is a high temperature ($\\sim$10 MK) structure in the inner corona revealed first by Atmospheric Imaging Assembly (AIA) on board \\textit{Solar Dynamics Observatory}. Eruption of HC is often associated with flare and coronal mass ejection. Previous studies suggest that HC is a good proxy of magnetic flux rope (MFR) in the inner corona, in addition to another well-known MFR candidate, the prominence-cavity structure that is with a normal coronal temperature ($\\sim$1-2 MK). In this paper, we report a high temperature structure (HTS, $\\sim$1.5 MK) contained in an interplanetary coronal mass ejection induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R$_\\odot$, and it maintained a much higher temperature than the background solar win...

  14. Time-dependent radiation dose simulations during interplanetary space flights

    Science.gov (United States)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  15. Acceleration of 3HE and heavy ions at interplanetary shocks

    Science.gov (United States)

    Desai, M. I.; Mason, G. M.; Dwyer, J. R.; Mazur, J. E.; Smith, C. W.; Koug, R. M.

    2001-08-01

    We have surveyed the 0.5-2.0 MeV nucleon-1 ion composition of 56 interplanetary shocks (IP) observed with the Ultra-Low-Energy Isotope Spectrometer (ULEIS) on board the Advanced Composition Explorer (ACE) from 1997 October 1 through 2000 November 30. Our results show the first ever measurement (25 cases) of 3 He ions being accelerated at IP shocks. The 3 He/4 He ratio at the 25 shocks exhibited a wide range of values between 0.00140.24; the ratios were enhanced between factors of ~3-600 over the solar wind value. During the survey period, the occurrence probability of 3 He-rich shocks increased with rising solar activity as measured in terms of the daily occurrence rates of sunspots and X-ray flares. The 3 He enhancements at IP shocks cannot be attributed to rigidity dependent acceleration of solar wind ions and are better explained if the shocks accelerate ions from multiple sources, one being remnant impulsive solar flare material enriched in 3 He ions. Our results also indicate that the contribution of impulsive flares to the seed population for IP shocks varies from event to event, and that the interplanetary medium is being replenished with impulsive material more frequently during periods of increased solar activity. 1. Introduction Enhancements in the intensities of energetic ions associated with transient interplanetary (IP) shocks have been observed routinely at 1 AU since the 1960's (e.g., Reames 1999). It is presently believed that the majority of such IP shocks are driven by fast coronal mass ejections or CMEs as they propagate through interplanetary space (e.g., Gosling 1993), and that the associated ion intensity enhancements are due to diffusive shock acceleration of solar wind ions (Lee 1983; Jones and Ellison 1991; Reames 1999). However, the putative solar wind origin of the IP-shock accelerated ions is based on composition measurements associated with a very limited number of individual IP shocks (Klecker et al. 1981; Hovestadt et al. 1982; Tan et

  16. Preparation and Characterization of Anhydrous Magnesium Chloride in Organic Solvent%有机溶剂法无水氯化镁的制备与表征

    Institute of Scientific and Technical Information of China (English)

    周宁波; 陈白珍; 何新快; 李义兵

    2005-01-01

    Ammonium carnallite was synthesized by hydrated magnesium chloride in salt lake and ammonium chloride solution. Dehydrated ammonium carnallite was dissolved in methanol under low temperature by feeding ammonia, to prepare anhydrous magnesium chloride. The results show that anhydrous magnesium chloride contains magnesium oxide in an amount less than 0.1% by weight, the yield of magnesium chloride was above 99.5%. Ammonium carnallite, ammoniation magnesium chloride and anhydrous magnesium chloride were characterized by thermoanalysis, X-ray powder diffraction and scanning electron microscopy.

  17. Positive and negative sudden impulses caused by fast forward and reverse interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrioli, Vania Fatima; Savian, Jairo Francisco, E-mail: vaniafatima@gmail.com, E-mail: savian@lacesm.ufsm.br [Space Science Laboratory of Santa Maria - LACESM/CT - UFSM, Universidade Federal de Santa Maria - UFSM, Centro Tecnologico, Santa Maria, RS (Brazil); Echer, Ezequiel, E-mail: eecher@dge.inpe.br [National Institute for Space Research - INPE - MCT, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge, E-mail: njschuch@lacesm.ufsm.br [Southern Regional Space Research Center - CRSPE/INPE - MCT, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS (Brazil)

    2007-07-01

    Fast forward interplanetary shocks (FFS) are characterized by positive jump in all interplanetary plasma parameters (solar wind speed, temperature and density) and interplanetary magnetic field. However the fast reverse interplanetary shocks (FRS) are characterized by negative jump in all mentioned parameters except solar wind speed. Observations show that FFS cause positive sudden impulses (SI) while FRS cause negative SI in the H-component of the geomagnetic field. In this work we investigate the SI caused by interplanetary shocks. We use the observed plasma parameters, upstream and downstream, to calculate the variation of dynamic pressure. We observe that the SI amplitude is larger for positive SI than for negative ones, as a consequence of the fact that FFS have larger dynamic pressure variations as compared to FRS. (author)

  18. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  19. Nano Dust Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new highly sensitive instrument to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and...

  20. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  1. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  2. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    Science.gov (United States)

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)).

  3. Taste Masking of Griseofulvin and Caffeine Anhydrous Using Kleptose Linecaps DE17 by Hot Melt Extrusion.

    Science.gov (United States)

    Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha

    2016-02-01

    The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.

  4. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate.

    Science.gov (United States)

    Santos, Olimpia Maria Martins; Freitas, Jennifer Tavares Jacon; Cazedey, Edith Cristina Laignier; de Araújo, Magali Benjamim; Doriguetto, Antonio Carlos

    2016-03-09

    Orbifloxacin (ORBI) is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API) is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures.

  5. Structure, Solubility and Stability of Orbifloxacin Crystal Forms: Hemihydrate versus Anhydrate

    Directory of Open Access Journals (Sweden)

    Olimpia Maria Martins Santos

    2016-03-01

    Full Text Available Orbifloxacin (ORBI is a widely used antimicrobial drug of the fluoroquinolone class. In the official pharmaceutical compendia the existence of polymorphism in this active pharmaceutical ingredient (API is reported. No crystal structure has been reported for this API and as described in the literature, its solubility is very controversial. Considering that different solid forms of the same API may have different physicochemical properties, these different solubilities may have resulted from analyses inadvertently carried out on different polymorphs. The solubility is the most critical property because it can affect the bioavailability and may compromise the quality of a drug product. The crystalline structure of ORBI determined by SCXRD is reported here for the first time. The structural analysis reveals that the ORBI molecule is zwitterionic and hemihydrated. ORBI hemihydrated form was characterized by the following techniques: TG/DTA, FTIR-ATR, and PXRD. A second crystalline ORBI form is also reported: the ORBI anhydrous form was obtained by heating the hemihydrate. These ORBI solid forms were isomorphous, since no significant change in unit cell and space group symmetry were observed. The solid-state phase transformation between these forms is discussed and the equilibrium solubility data were examined in order to check the impact of the differences observed in their crystalline structures.

  6. Laboratory-Scale Membrane Reactor for the Generation of Anhydrous Diazomethane.

    Science.gov (United States)

    Dallinger, Doris; Pinho, Vagner D; Gutmann, Bernhard; Kappe, C Oliver

    2016-07-15

    A configurationally simple and robust semibatch apparatus for the in situ on-demand generation of anhydrous solutions of diazomethane (CH2N2) avoiding distillation methods is presented. Diazomethane is produced by base-mediated decomposition of commercially available Diazald within a semipermeable Teflon AF-2400 tubing and subsequently selectively separated from the tubing into a solvent- and substrate-filled flask (tube-in-flask reactor). Reactions with CH2N2 can therefore be performed directly in the flask without dangerous and labor-intensive purification operations or exposure of the operator to CH2N2. The reactor has been employed for the methylation of carboxylic acids, the synthesis of α-chloro ketones and pyrazoles, and palladium-catalyzed cyclopropanation reactions on laboratory scale. The implementation of in-line FTIR technology allowed monitoring of the CH2N2 generation and its consumption. In addition, larger scales (1.8 g diazomethane per hour) could be obtained via parallelization (numbering up) by simply wrapping several membrane tubings into the flask.

  7. Dust Versus Cosmic Acceleration

    CERN Document Server

    Aguirre, A N

    1999-01-01

    Two groups have recently discovered a statistically significant deviation in the fluxes of high-redshift type Ia supernovae from the predictions of a Friedmann model with zero cosmological constant. This letter argues that bright, dusty, starburst galaxies would preferentially eject a dust component with a shallower opacity curve (hence less reddening) and a higher opacity/mass than the observed galactic dust which is left behind. Such dust could cause the falloff in flux at high-z without violating constraints on reddening or metallicity. The specific model presented is of needle-like dust, which is expected from the theory of crystal growth and has been detected in samples of interstellar dust. Carbon needles with conservative properties can supply the necessary opacity, and would very likely be ejected from galaxies as required. The model is not subject to the arguments given in the literature against grey dust, but may be constrained by future data from supernova searches done at higher redshift, in clust...

  8. A quantitative study of the geoeffectiveness of interplanetary structures

    Science.gov (United States)

    Vieira, L. A.

    2001-05-01

    The time-integrated values of the injection function F(E) necessary to observe variations in the Dst index during the main phase of intense magnetic storms at levels of -50, -75, -100, -125 and -150 nT, were estimated for a set of 12 interplanetary coronal mass ejections events. The dataset was classified into four groups concerning the occurrence of sheath fields just behind the shock and the polarity of the magnetic clouds: (i) magnetic clouds with polarity NS, (ii) magnetic clouds with SN polarity, (iii) magnetic clouds with southward field (Y polarity) and (iv) sheath fields. The injection function was estimated using two models of the evolution of the Dst. The time-integrated values estimated for the subset of Y clouds were found to be greater than for the other subsets. This occurs as a consequence of the slow increase of the Bs for Y clouds that leads to a smaller difference between the energy injection and the loss in the ring current that for the other groups. It is important to remember that while the energy injection is driven by the dawn-dusk component of the interplanetary electric field, the energy loss is proportional to the ring current population, with a decay time τ that varies from 3 to 20 h. The time-integrated values estimated for the subset of NS were found to be high. This is also associated to the profile of the Bs. Otherwise, sheath field and the SN magnetic cloud events seems to have shorter time-integrated values as a consequence of the sharp variation of the Bs component. In this case the energy injection is much greater than the loss energy during the main phase. These results have shown that, for the dataset studied, different structures of the interplanetary events are associated to different main phase development of the ring current. We would like to acknowledge the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo for the financial support. Project numbers 98/04734-4 and 98/15959-0.

  9. Interplanetary double-shock ensembles with anomalous electrical conductivity

    Science.gov (United States)

    Dryer, M.

    1972-01-01

    Similarity theory is applied to the case of constant velocity, piston-driven, shock waves. This family of solutions, incorporating the interplanetary magnetic field for the case of infinite electric conductivity, represents one class of experimentally observed, flare-generated shock waves. This paper discusses the theoretical extension to flows with finite conductivity (presumably caused by unspecified modes of wave-particle interactions). Solutions, including reverse shocks, are found for a wide range of magnetic Reynolds numbers from one to infinity. Consideration of a zero and nonzero ambient flowing solar wind (together with removal of magnetic considerations) enables the recovery of earlier similarity solutions as well as numerical simulations. A limited comparison with observations suggests that flare energetics can be reasonably estimated once the shock velocity, ambient solar wind velocity and density, and ambient azimuthal Alfven Mach number are known.

  10. Heliocentric distance dependence of the interplanetary magnetic field

    Science.gov (United States)

    Behannon, K. W.

    1978-01-01

    Numerous spacecraft measurements bearing on the heliocentric distance dependencies of both large- and small-scale properties of the interplanetary magnetic field (IMF) are assembled and compared. These data tend to indicate that the average of the radial field component varies as the inverse square of distance. However, the azimuthal component is rather strongly a function of time, being influenced by both the time-dependent solar wind speed and the evolution of the source field at the sun. Thus, unless the solar wind speed dependence is taken into account, individual sets of measurements by a single spacecraft give an azimuthal component gradient which is steeper than the inverse distance dependence predicted from the Parker spiral model. A least squares fit to the composite (five spacecraft) solar rotation average data set gives a result close to the inverse distance dependence. Preliminary Helios results suggest general consistency with the spiral model.

  11. Transport of solar electrons in the turbulent interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ablaßmayer, J.; Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Dresing, N., E-mail: dresing@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 11, D-24118 Kiel (Germany)

    2016-01-15

    The turbulent transport of solar energetic electrons in the interplanetary magnetic field is investigated by means of a test-particle Monte-Carlo simulation. The magnetic fields are modeled as a combination of the Parker field and a turbulent component. In combination with the direct calculation of diffusion coefficients via the mean-square displacements, this approach allows one to analyze the effect of the initial ballistic transport phase. In that sense, the model complements the main other approach in which a transport equation is solved. The major advancement is that, by recording the flux of particles arriving at virtual detectors, intensity and anisotropy-time profiles can be obtained. Observational indications for a longitudinal asymmetry can thus be explained by tracing the diffusive spread of the particle distribution. The approach may be of future help for the systematic interpretation of observations for instance by the solar terrestrial relations observatory (STEREO) and advanced composition explorer (ACE) spacecrafts.

  12. Planetary and Interplanetary Environmental Models for Radiation Analysis

    Science.gov (United States)

    DeAngelis, G.; Cucinotta, F. A.

    2005-01-01

    The essence of environmental modeling is presented as suited for radiation analysis purposes. The variables of fundamental importance for radiation environmental assessment are discussed. The characterization is performed by dividing modeling into three areas, namely the interplanetary medium, the circumplanetary environment, and the planetary or satellite surface. In the first area, the galactic cosmic rays (GCR) and their modulation by the heliospheric magnetic field as well as and solar particle events (SPE) are considered, in the second area the magnetospheres are taken into account, and in the third area the effect of the planetary environment is also considered. Planetary surfaces and atmospheres are modeled based on results from the most recent targeted spacecraft. The results are coupled with suited visualization techniques and radiation transport models in support of trade studies of health risks for future exploration missions.

  13. Designing Complex Interplanetary Trajectories for the Global Trajectory Optimization Competitions

    CERN Document Server

    Izzo, Dario; Simões, Luís F; Märtens, Marcus

    2015-01-01

    The design of interplanetary trajectories often involves a preliminary search for options that are later refined into one final selected trajectory. It is this broad search that, often being intractable, inspires the international event called Global Trajectory Optimization Competition. In the first part of this chapter, we introduce some fundamental problems of space flight mechanics, building blocks of any attempt to participate successfully in these competitions and we describe the use of the open source software PyKEP to assemble them into a final global solution strategy. In the second part, we formulate an instance of a multiple asteroid rendezvous problem, related to the 7th edition of the competition, and we show step by step how to build a possible solution strategy. We introduce two new techniques useful in the design of this particular mission type: the use of an asteroid phasing value and its surrogates and the efficient computation of asteroid clusters. We show how basic building blocks, sided to...

  14. On interplanetary coronal mass ejection identification at 1 AU

    Science.gov (United States)

    Mulligan, T.; Russell, C. T.; Gosling, J. T.

    1999-06-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978-1980.

  15. Interplanetary Coronal Mass Ejections observed by MESSENGER and Venus Express

    CERN Document Server

    Good, S W

    2015-01-01

    Interplanetary coronal mass ejections (ICMEs) observed by the MESSENGER (MES) and Venus Express (VEX) spacecraft have been catalogued and analysed. The ICMEs were identified by a relatively smooth rotation of the magnetic field direction consistent with a flux rope structure, coinciding with a relatively enhanced magnetic field strength. A total of 35 ICMEs were found in the surveyed MES data (primarily from March 2007 to April 2012), and 84 ICMEs in the surveyed VEX data (from May 2006 to December 2013). The ICME flux rope configurations have been determined. Ropes with northward leading edges were about four times more common than ropes with southward leading edges, in agreement with a previously established solar cycle dependence. Ropes with low inclinations to the solar equatorial plane were about four times more common than ropes with high inclinations, possibly an observational effect. Left and right-handed ropes were observed in almost equal numbers. In addition, data from MES, VEX, STEREO-A, STEREO-B ...

  16. The Interplanetary Magnetic Field and Solar Wind Driven Magnetospheric Reconfiguration

    CERN Document Server

    Savov, E

    2002-01-01

    The magnetic disturbances are associated with electric currents as it is well checked at laboratory room scales and described by the Maxwell's equations of electromagnetic field. The analysis of spacecraft observations for more than a quarter of a century failed to provide a self-consistent three-dimensional picture of the solar wind-magnetosphere dynamo generated magnetospheric and ionospheric current systems. The proposed solar wind and the interplanetary magnetic field (IMF) driven reconfiguration of the earth's magnetosphere directly accounts for the observed magnetic disturbances. So role of the magnetospheric currents in creation of the magnetic disturbances is reconsidered in accordance with some poorly understood observations. A quantitative agreement with observations is demonstrated and a laboratory experiment to test the suggested model of the solar wind/IMF-magnetosphere interaction is described.

  17. The Interplanetary Internet: a communications infrastructure for Mars exploration

    Science.gov (United States)

    Burleigh, Scott; Cerf, Vinton; Durst, Robert; Fall, Kevin; Hooke, Adrian; Scott, Keith; Weiss, Howard

    2003-01-01

    A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  18. Criteria of interplanetary parameters causing intense magnetic storms (Dsub(st) < -100 nT)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, W.D.; Tsurutani, B.T.

    1987-09-01

    Ten intense magnetic storms (Dsub(st) < -100 nT) occurred during the 500 days from 16 August 1978 to 28 December 1979. From our analysis of ISEE-3 field and plasma data, it is found that the interplanetary causes of these storms are long-duration, large and negative (< - 10nT) IMF Bsub(z) events, associated with interplanetary duskward-electric fields > 5 mV m/sup -1/, that last for intervals > 3 h. Because we find a one-to-one relationship between these interplanetary events and intense storms, we suggest that these criteria can, in the future, be used as predictors of intense storms by an interplanetary monitor such as ISEE-3. The close proximity of the Bsub(z) events and magnetic storms to the onset of high speed streams or density enhancement events is in sharp contrast to interplanetary Alfven waves and HILDCAA events previously reported and thus the two interplanetary features and corresponding geomagnetic responses can be thought of as being complementary in nature. An examination of opposite polarity (northward) Bsub(z) events with the same criteria shows that their occurrence is similar both in number as well as in their relationship to interplanetary disturbances, and that they lead to low levels of geomagnetic activity.

  19. Solar sail time-optimal interplanetary transfer trajectory design

    Institute of Scientific and Technical Information of China (English)

    Sheng-Ping Gong; Yun-Feng Gao; Jun-Feng Li

    2011-01-01

    The fuel consumption associated with some interplanetary transfer trajectories using chemical propulsion is not affordable.A solar sail is a method of propulsion that does not consume fuel.Transfer time is one of the most pressing problems of solar sail transfer trajectory design.This paper investigates the time-optimal interplanetary transfer trajectories to a circular orbit of given inclination and radius.The optimal control law is derived from the principle of maximization.An indirect method is used to solve the optimal control problem by selecting values for the initial adjoint variables,which are normalized within a unit sphere.The conditions for the existence of the time-optimal transfer are dependent on the lightness number of the sail and the inclination and radius of the target orbit.A numerical method is used to obtain the boundary values for the time-optimal transfer trajectories.For the cases where no time-optimal transfer trajectories exist,first-order necessary conditions of the optimal control are proposed to obtain feasible solutions.The results show that the transfer time decreases as the minimum distance from the Sun decreases during the transfer duration.For a solar sail with a small lightness number,the transfer time may be evaluated analytically for a three-phase transfer trajectory.The analytical results are compared with previous results and the associated numerical results.The transfer time of the numerical result here is smaller than the transfer time from previous results and is larger than the analytical result.

  20. An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions

    Science.gov (United States)

    Ojeda-Gonzalez, A.; Mendes, O.; Calzadilla, A.; Domingues, M. O.; Prestes, A.; Klausner, V.

    2017-03-01

    Spatio-temporal entropy (STE) analysis is used as an alternative mathematical tool to identify possible magnetic cloud (MC) candidates. We analyze Interplanetary Magnetic Field (IMF) data using a time interval of only 10 days. We select a convenient data interval of 2500 records moving forward by 200 record steps until the end of the time series. For every data segment, the STE is calculated at each step. During an MC event, the STE reaches values close to zero. This extremely low value of STE is due to MC structure features. However, not all of the magnetic components in MCs have STE values close to zero at the same time. For this reason, we create a standardization index (the so-called Interplanetary Entropy, IE, index). This index is a worthwhile effort to develop new tools to help diagnose ICME structures. The IE was calculated using a time window of one year (1999), and it has a success rate of 70% over other identifiers of MCs. The unsuccessful cases (30%) are caused by small and weak MCs. The results show that the IE methodology identified 9 of 13 MCs, and emitted nine false alarm cases. In 1999, a total of 788 windows of 2500 values existed, meaning that the percentage of false alarms was 1.14%, which can be considered a good result. In addition, four time windows, each of 10 days, are studied, where the IE method was effective in finding MC candidates. As a novel result, two new MCs are identified in these time windows.

  1. Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: Charge carrier effective masses point to semiconducting behavior

    Science.gov (United States)

    Silva, A. M.; Silva, B. P.; Sales, F. A. M.; Freire, V. N.; Moreira, E.; Fulco, U. L.; Albuquerque, E. L.; Maia, F. F., Jr.; Caetano, E. W. S.

    2012-11-01

    Density functional theory (DFT) computations within the local-density approximation and generalized gradient approximation in pure form and with dispersion correction (GGA+D) were carried out to investigate the structural, electronic, and optical properties of L-aspartic acid anhydrous crystals. The electronic (band structure and density of states) and optical absorption properties were used to interpret the light absorption measurements we have performed in L-aspartic acid anhydrous crystalline powder at room temperature. We show the important role of the layered spatial disposition of L-aspartic acid molecules in anhydrous L-aspartic crystals to explain the observed electronic and optical properties. There is good agreement between the GGA+D calculated and experimental lattice parameters, with (Δa, Δb, Δc) deviations of (0.029,-0.023,-0.024) (units in Å). Mulliken [J. Chem. Phys.JCPSA60021-960610.1063/1.1740588 23, 1833 (1955)] and Hirshfeld [Theor. Chim. ActaTCHAAM0040-574410.1007/BF00549096 44, 129 (1977)] population analyses were also performed to assess the degree of charge polarization in the zwitterion state of the L-aspartic acid molecules in the DFT converged crystal. The lowest-energy optical absorption peaks related to transitions between the top of the valence band and the bottom of the conduction band involve O 2p valence states and C 1p and O 2p conduction states, with the carboxyl and COOH lateral chain group contributing significantly to the energy band gap. Among the calculated band gaps, the lowest GGA+D (4.49-eV) gap is smaller than the experimental estimate of 5.02 eV, as obtained by optical absorption. Such a wide-band-gap energy together with the small carrier effective masses estimated from band curvatures allows us to suggest that an L-aspartic acid anhydrous crystal can behave as a wide-gap semiconductor. A comparison of effective masses among directions parallel and perpendicular to the L-aspartic molecules layers reveals that charge

  2. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields.

    Science.gov (United States)

    Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert

    2017-02-28

    A static deuterium nuclear magnetic resonance ((2)HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d2 In the absence of an electric field, the (2)H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.

  3. Solar sources of interplanetary southward Bz events responsible for major magnetic storms (1978-1979)

    Science.gov (United States)

    Tang, Frances; Tsurutani, Bruce T.; Smith, Edward J.; Gonzalez, Walter D.; Akasofu, Syun I.

    1989-01-01

    The solar sources of interplanetary southward Bz events responsible for major magnetic storms observed in the August 1978-December 1979 period were studied using a full complement of solar wind plasma and field data from ISEE 3. It was found that, of the ten major storms observed, seven were initiated by active region flares, and three were associated with prominence eruptions in solar quiet regions. Nine of the storms were associated with interplanetary shocks. However, a comparison of the solar events' characteristics and those of the resulting interplanetary shocks indicated that standard solar parameters did not correlate with the strengths of the resulting shocks at 1 AU.

  4. The role of CMEs and interplanetary shocks in IMF winding angle statistics

    Science.gov (United States)

    Smith, Charles W.; Phillips, John L.

    1996-07-01

    We examine the possible role of CMEs and interplanetary shocks in past analyses of the large-scale winding of the IMF by extracting CME and shock observations from the ISEE-3 dataset and analyzing periods of the disturbed and undisturbed solar wind separately. We use the full ISEE-3 dataset representing the entire L1 mission (1978-1982). We conclude that CMEs, the shocks upstream of CMEs and other interplanetary shocks are responsible for the apparent overwinding of the IMF spiral relative to the Parker prediction. The IMF winding angle asymmetry appears to be preserved after the removal of the interplanetary disturbances.

  5. Interplanetary magnetic field enhancements in the solar wind statistical properties at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Arghavani, M.R.; Russell, C.T.; Luhmann, J.G.; Elphic, R.C.

    1985-05-01

    The present investigation is concerned with interplanetary magnetic field (IMF) enhancements which do not resemble any of the previously reported amplifications in the IMF. The magnetic field enhacements observed increase slowly at first and then more rapidly to a peak followed by a symmetrical decay. Interplanetary magnetic field enhacement observed by ISEE-3 on various dates are considered, giving attention to observations on June 5, 1979; September 8-9, 1980; February 5, 1981; and June 14-15, 1981. Interplanetary magnetic field enhancement observed with the aid of IMP-8 are also considered. A total of 45 events is found in surveying a 9-year period of magnetic field data. 9 references.

  6. The role of CMEs and interplanetary shocks in IMF winding angle statistics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.W. [Bartol Research Institute, University of Delaware, Newark (United States); Phillips, J.L. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    1996-07-01

    We examine the possible role of CMEs and interplanetary shocks in past analyses of the large-scale winding of the IMF by extracting CME and shock observations from the ISEE-3 dataset and analyzing periods of the disturbed and undisturbed solar wind separately. We use the full ISEE-3 dataset representing the entire L{sub 1} mission (1978{endash}1982). We conclude that CMEs, the shocks upstream of CMEs and other interplanetary shocks are responsible for the apparent overwinding of the IMF spiral relative to the Parker prediction. The IMF winding angle asymmetry appears to be preserved after the removal of the interplanetary disturbances. {copyright} {ital 1996 American Institute of Physics.}

  7. Oblique dust density waves

    Science.gov (United States)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  8. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  9. Dust exposure in Finnish foundries.

    Science.gov (United States)

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  10. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  11. Dust Devil Tracks

    Science.gov (United States)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  12. Dust during the Reionization

    CERN Document Server

    Elfgren, E; Elfgren, Erik

    2003-01-01

    The possibility that population III stars have reionized the Universe at redshifts greater than 6 has recently gained momentum with WMAP polarization results. Here we analyse the role of early dust produced by these stars and ejected into the intergalactic medium. We show that this dust, heated by the radiation from the same population III stars, produces a submillimetre excess. The electromagnetic spectrum of this excess is compatible with the FIRAS (Far Infrared Absolute Spectrophotometer) cosmic far infrared background. This spectrum, a Doppler spectrum times the $\

  13. Dust Devil Days

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 6 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. Dust devils, small cyclonic wind storms, are common in the American Southwest and on Mars. As the dust devil moves across the surface it picks up the loose dust, leaving behind a dark track to mark its passage. These dust devil tracks are in the Argyre Basin. Image information: VIS instrument. Latitude -46.6, Longitude 317.5 East (42.5 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the

  14. Electrostatic Characterization of Lunar Dust

    Science.gov (United States)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  15. Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications allowing moving up from UHF, S or X to get higher gain for a given diameter.

  16. Research Progress of Solar Corona and Interplanetary Physics in China: 2010-2012

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xinhua; XIANG Changqing

    2012-01-01

    The scientific objective of solar corona and interplanetary research is the understanding of the various phenomena related to solar activities and their effects on the space environments of the Earth. Great progress has been made in the study of solar corona and interplanetary physics by the Chinese space physics community during the past years. This paper will give a brief report about the latest progress of the corona and interplanetary research in China during the years of 2010--2012. The paper can be divided into the following parts: solar corona and solar wind, CME- ICME, magnetic reconnection, energetic particles, space plasma, space weather numerical modeling by 3D SIP-CESE MHD model, space weather prediction methods, and proposed missions. They constitute the abundant content of study for the complicated phenomena that originate from the solar corona, propagate in interplanetary space, and produce geomagnetic disturbances. All these progresses are acquired by the Chinese space physicists, either independently or through international collaborations.

  17. Tongues, bottles, and disconnected loops: The opening and closing of the interplanetary magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J. [Los Alamos National Lab., NM (United States). Space and Atmospheric Sciences Group

    1994-06-01

    For years the field of Space Physics has had a problem, a really big problem for it occurs on the largest spatial scales in Space physics -- across the entire region under the Sun`s influence, the heliosphere. The problem is that the Sun appears to keep opening new magnetic flux into interplanetary space with no obvious way for this flux to close back off again. This state of affairs, without some previously unknown method for closing the open interplanetary magnetic field (IMF), leads to an ever growing amount of magnetic flux in interplanetary space: the magnetic flux catastrophe. Recently, considerable progress has been made in understanding why this catastrophic state is not the observed state of the heliosphere. This brief article paints the newly emerging picture of the opening and closing of the IMF and how these processes may account for the observed variation in the amount of magnetic flux in interplanetary space over the solar cycle.

  18. MeV Ion Anisotropies in the Vicinity of Interplanetary Shocks

    Science.gov (United States)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2007-05-01

    The anticipated signatures of interplanetary shock acceleration to be found in energetic ion anisotropies in the vicinity of interplanetary shocks include near-isotropic particle distributions consistent with of diffusive shock acceleration, "pancake" distributions indicative of shock drift acceleration, and flow reversals suggestive of a particle acceleration region passing by the observing spacecraft. In practice, while clear examples of these phenomena exist, more typically, particle anisotropies near interplanetary shocks show considerable variation in time and space, both in individual events and from event to event. We investigate the properties of MeV/n ions in the vicinity of a number of interplanetary shocks associated with the largest energetic particle events of solar cycle 23, and previous cycles, including their intensity-time profiles, anisotropies, and relationship with local solar wind structures, using observations from the IMP 8, ISEE-3, Helios 1 and 3 spacecraft. The aim is to help to understand the role of shocks in major solar energetic particle events.

  19. High-Efficiency Data-Rate-Scalable Laser Transmitter for Interplanetary Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interplanetary missions are at the core of NASA's current space exploration program and are expected to lead the way to new resource discovery in the next decade...

  20. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  1. Identification of the exploatation dust in road dust

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-01-01

    Full Text Available The aim of this publication is to determine models of explore dust from vehicle brake systems and the presentationof measurement results of the exploitation dust, which is separate from road dust. The following methods and measuring devices were used: T-01M device, screen analysis, analysis of chemical composition with the use of a scanning microscope with Energy Dispersive x-ray Spectroscopy (EDS analyser. The measurements for identifying this type of dust were conducted on marked sections of roads: motorway, city road and mountain road. The explored dust was distinguished in the following car systems: brakes, clutch plates, tyres and catalytic converters.

  2. Optimization of interplanetary trajectories to Mars via electrical propulsion

    Science.gov (United States)

    Williams, Powtawche Neengay

    Although chemical rocket propulsion is widely used in space transportation, large amounts of propellant mass limit designs for spacecraft missions to Mars. Electrical propulsion, which requires a smaller propellant load, is an alternative propulsion system that can be used for interplanetary flight. After the recent successes of the NASA Deep Space 1 spacecraft and the ESA SMART 1 spacecraft, which incorporate an electrical propulsion system, there is a strong need for trajectory tools to support these systems. This thesis describes the optimization of interplanetary trajectories from Earth to Mars for spacecraft utilizing low-thrust electrical propulsion systems. It is assumed that the controls are the thrust direction and the thrust setting. Specifically, the minimum time and minimum propellant problems are studied and solutions are computed with the sequential gradient-restoration algorithm (SGRA). The results indicate that, when the thrust direction and thrust setting are simultaneously optimized, the minimum time and minimum propellant solutions are not identical. For minimum time, it is found that the thrust setting must be at the maximum value; also, the thrust direction has a normal component with a switch at midcourse from upward to downward. This changes the curvature of the trajectory, has a beneficial effect on time, but a detrimental effect on propellant mass; indeed, the propellant mass ratio of the minimum time solution is about twice that of the Hohmann transfer solution. Thus, the minimum time solution yields a rather inefficient trajectory. For minimum propellant consumption, it is found that the best thrust setting is bang-zero-bang (maximum thrust, followed by coasting, followed by maximum thrust) and that the best thrust direction is tangent to the trajectory. This is a rather efficient trajectory; to three significant digits, the associated mass ratio is the same as that of the Hohmann transfer solution, even for thrust-to-weight ratios of

  3. Left in the Dust

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    NASA's Stardust spacecraft ended its seven-year voyage January 15 after a safe landing on earth, bringing back a capsule of comet particles and samples of interstellar dust that exceeded the loftiest of expectations of mission scientists. The ensuing studies of the cosmic treasure are expected to shed light on the origins of the solar system and earth itself.

  4. Cylindrically symmetric dust spacetime

    CERN Document Server

    Senovilla, J M M; Senovilla, Jose M. M.; Vera, Raul

    2000-01-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has new surprising features. The universe is ``closed'' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is ``enclosed'' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable agai...

  5. Cylindrically symmetric dust spacetime

    Science.gov (United States)

    Senovilla, José M. M.

    2000-07-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.

  6. Dust devil dynamics

    Science.gov (United States)

    Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V.

    2016-06-01

    A self-consistent hydrodynamic model for the solar heating-driven onset of a dust devil vortex is derived and analyzed. The toroidal flows and vertical velocity fields are driven by an instability that arises from the inversion of the mass density stratification produced by solar heating of the sandy surface soil. The nonlinear dynamics in the primary temperature gradient-driven vertical airflows drives a secondary toroidal vortex flow through a parametric interaction in the nonlinear structures. While an external tangential shear flow may initiate energy transfer to the toroidal vortex flow, the nonlinear interactions dominate the transfer of vertical-radial flows into a fast toroidal flow. This secondary flow has a vertical vorticity, while the primary thermal gradient-driven flow produces the toroidal vorticity. Simulations for the complex nonlinear structure are carried out with the passive convection of sand as test particles. Triboelectric charging modeling of the dust is used to estimate the charging of the sand particles. Parameters for a Dust Devil laboratory experiment are proposed considering various working gases and dust particle parameters. The nonlinear dynamics of the toroidal flow driven by the temperature gradient is of generic interest for both neutral gases and plasmas.

  7. In vitro study on the interaction of ketotifen fumarate with anhydrous theophylline

    Directory of Open Access Journals (Sweden)

    Mohammed Aktar Sayeed

    2012-06-01

    Full Text Available The purpose of the present study was to investigate the interaction between ketotifen fumarate and anhydrous theophylline in aqueous media of various pH (1.2 and 6.8. Using Job's continuous-variation analysis and Ardon's spectrophotomeric measurement methods, the values of the stability constants of theophylline with ketotifen were determined at a fixed temperature (37 ºC at various pH. The stability constants, ranging between 5.66 and 9.92, were derived from Ardon's plot, indicating that comparatively stable complexes had formed as a result of an interaction between the drugs. However, following the interaction of theophylline with ketotifen, stability constants were O objetivo do presente estudo foi investigar a interação entre o fumarato de cetotifeno e a teofilina anidra em meios aquosos com vários pH (1,2 e 6,8. Utilizando a análise da variação contínua de Job e os métodos de medida espectrofotométrica de Ardon, os valores das constantes de estabilidade da teofilina com o cetotifeno foram determinados em temperatura fixa (37 oC em vários pH. As constantes de estabilidade, variando entre 5,66 e 9,92 derivaram-se a partir do delineamento de Ardon, indicando, comparativamente, que complexos estáveis se formaram como resultado da interação entre os fármacos. Entretanto, seguindo a interação da teofilina com o cetotifeno, as constantes de estabilidade foram <1, em pH gástrico (1,2 e intestinal (8,8. A administração concomitante de cetotifeno e teofilina poderia resultar na formação de complexo estável, o que reduz a atividade terapêutica de ambos os fármacos.

  8. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn;

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...... on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra...

  9. Special topical approach to the treatment of acne. Suppression of sweating with aluminum chloride in an anhydrous formulation.

    Science.gov (United States)

    Hurley, H J; Shelley, W B

    1978-12-01

    A new topical approach to acne treatment--the use of aluminum chloride hexahydrate in anhydrous ethanol (ACAE)--was studied in 141 patients. Using sequential treatment schedules, paired comparison techniques, and various concentrations of ACAE, we established maximal efficacy with minimal local irritation for the 6.25% strength solution. Clinical efficacy and lack of toxicity of this formulation were confirmed by the additional clinical study of 65 patients. The antiperspirant and antibacterial actions of 6.25% ACAE solution were then verified on acne skin areas. It is postulated that the clinical improvement in acne that follows the topical use of ACAE results from one or both of these actions.

  10. A Safe and Brief Way for Preparing Anhydrous LnCl3 (Ln=Sc, Y, La to Lu)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Anhydrous lanthanide chlorides LnCl3 (Ln=Sc, Y, La to Lu except for Pm), which are difficult to prepare in other ways, were prepared by chemical vapor transport (CVT) process. Rare earth oxide reacted with Al2Cl6 at 300℃ to produce LnCl3, which was then separated from other solids by means of CVT at a temperature gradient from 400 to 180℃. Residual Al2Cl6 (g) was removed by carrier of dry N2 gas at 200℃. The yielding rates were >90%, and the purity of products was >99.5%.

  11. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  12. Characteristics of Weak Interplanetary Shocks and Shock-like Events

    Science.gov (United States)

    Balogh, A.; Gloag, J. M.

    The variation of magnetic and plasma parameters across the discontinuity of a colli- sionless shock wave are clearly understood and presented in MHD theory. The anal- ysis of 116 shock waves appearing on the Ulysses shock list in the period mid 1996 to the end of 1999 show that in the cases of the stronger shock waves, measured by the ratio of downstream to upstream magnetic field magnitudes, this MHD descrip- tion is adequate. However in the case of many of the weaker shocks there are events which are not clearly characterised in MHD terms and in these cases plasma param- eters are particularly difficult to interpret. To explore the issues associated with these very weak shocks further, a set of shock-like events is considered which have shock characteristics in the high frequency wave data measured by the plasma wave inves- tigation(URAP) but are not considered to be clearly shock waves purely considering magnetic and plasma data. These shock-like events are thought to extend the spectrum of interplanetary shocks at the very weakest end and possibly beyond what should be considered a collisionless shock wave.

  13. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  14. Effects of interplanetary shock inclinations on auroral power intensity

    CERN Document Server

    Oliveira, D M; Tsurutani, B T; Gjerloev, J W

    2015-01-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectivness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and WIND spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earths magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some...

  15. Effects of Interplanetary Shock Inclinations on Nightside Auroral Power Intensity

    Science.gov (United States)

    Oliveira, D. M.; Raeder, J.; Tsurutani, B. T.; Gjerloev, J. W.

    2016-02-01

    We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectiveness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and Wind spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanced versions of the traditional geomagnetic indices. The SuperMAG auroral electroject SME index, an enhanced version of the traditional AE index, is used as an auroral power (AP) indicator. AP intensity jumps triggered by shock impacts are correlated with both shock speed and impact angle. It is found that high AP intensity events typically occur when high speed IP shocks impact the Earth's magnetosphere with the shock normal almost parallel to the Sun-Earth line. This result suggests that symmetric and strong magnetospheric compression leads to favorable conditions for intense auroral power release, as shown previously by simulations and observations. Some potential mechanisms will be discussed.

  16. The local dayside reconnection rate for oblique interplanetary magnetic fields

    CERN Document Server

    Komar, Colin M

    2016-01-01

    We present an analysis of local properties of magnetic reconnection at the dayside magnetopause for various interplanetary magnetic field (IMF) orientations in global magnetospheric simulations. This has heretofore not been practical because it is difficult to locate where reconnection occurs for oblique IMF, but new techniques make this possible. The approach is to identify magnetic separators, the curves separating four regions of differing magnetic topology, which map the reconnection X-line. The electric field parallel to the X-line is the local reconnection rate. We compare results to a simple model of local two-dimensional asymmetric reconnection. To do so, we find the plasma parameters that locally drive reconnection in the magnetosheath and magnetosphere in planes perpendicular to the X-line at a large number of points along the X-line. The global magnetohydrodynamic simulations are from the three-dimensional Block-Adaptive, Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code with a uniform resisti...

  17. Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    Science.gov (United States)

    Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.

    2012-01-01

    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.

  18. Landau damping and steepening of interplanetary nonlinear hydromagnetic waves

    Science.gov (United States)

    Barnes, A.; Chao, J. K.

    1977-01-01

    According to collisionless shock theories, the thickness of a shock front should be of the order of the characteristic lengths of the plasmas (the Debye length, the proton and Larmor radii, etc.). Chao and Lepping (1974), found, however, that 30% of the observed interplanetary shocks at 1 AU have thicknesses much larger than these characteristic lengths. It is the objective of the present paper to investigate whether the competition between nonlinear steepening and Landau damping can result in a wave of finite width that does not steepen into a shock. A heuristic model of such a wave is developed and tested by the examples of two structures that are qualitatively shocklike, but thicker than expected from theory. It is found that both events are in the process of steepening and their limiting thicknesses due to Landau damping are greater than the corresponding proton Larmor radius for both structures as observed at Mariner 5 (nearer the sun than 1 AU) but are comparable to the proton Larmor radius for Explorer (near 1 AU) observations.

  19. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    Science.gov (United States)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  20. On interplanetary coronal mass ejection identification at 1 AU

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, T.; Russell, C.T. [Institute of Geophysics and Planetary Physics and the Department of Earth and Space Sciences University of California Los Angeles (United States); Gosling, J.T. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    1999-06-01

    Coronal mass ejections are believed to be produced in the corona from closed magnetic regions not previously participating in the solar wind expansion. At 1 AU their interplanetary counterparts (ICMEs) generally have a number of distinct plasma and field signatures that distinguish them from the ambient solar wind. These include heat flux dropouts, bi-directional streaming, enhanced alpha particle events, times of depressed proton temperatures, intervals of distorted or enhanced magnetic field, and times of large magnetic field rotations characteristic of magnetic clouds. The first three of these signatures are phenomena that occur at some point within the ICME, but do not necessarily persist throughout the entire ICME. The large scale magnetic field rotations, distortions and enhancements, and the proton temperature depressions tend to mark more accurately the beginning and end of the ICME proper. We examine herein the reliability with which each of these markers identifies ICMEs utilizing ISEE-3 data from 1978{endash}1980. {copyright} {ital 1999 American Institute of Physics.}

  1. Impact Angle Control of Interplanetary Shock Geoeffectiveness: A Statistical Study

    CERN Document Server

    Oliveira, D M

    2015-01-01

    We present a survey of interplanetary (IP) shocks using WIND and ACE satellite data from January 1995 to December 2013 to study how IP shock geoeffectiveness is controlled by IP shock impact angles. A shock list covering one and a half solar cycle is compiled. The yearly number of IP shocks is found to correlate well with the monthly sunspot number. We use data from SuperMAG, a large chain with more than 300 geomagnetic stations, to study geoeffectiveness triggered by IP shocks. The SuperMAG SML index, an enhanced version of the familiar AL index, is used in our statistical analysis. The jumps of the SML index triggered by IP shock impacts on the Earth's magnetosphere is investigated in terms of IP shock orientation and speed. We find that, in general, strong (high speed) and almost frontal (small impact angle) shocks are more geoeffective than inclined shocks with low speed. The strongest correlation (correlation coefficient R = 0.70) occurs for fixed IP shock speed and varying the IP shock impact angle. We ...

  2. Recovery phase of magnetic storms induced by different interplanetary drivers

    CERN Document Server

    Yermolaev, Yu I; Nikolaeva, N S; Yermolaev, M Yu

    2011-01-01

    Statistical analysis of Dst behaviour during recovery phase of magnetic storms induced by different types of interplanetary drivers is made on the basis of OMNI data in period 1976-2000. We study storms induced by ICMEs (including magnetic clouds (MC) and Ejecta) and both types of compressed regions: corotating interaction regions (CIR) and Sheaths. The shortest, moderate and longest durations of recovery phase are observed in ICME-, CIR-, and Sheath-induced storms, respectively. Recovery phases of strong ($Dst_{min} < -100$ nT) magnetic storms are well approximated by hyperbolic functions $Dst(t)= a/(1+t/\\tau_h)$ with constant $\\tau_h$ times for all types of drivers while for moderate ($-100 < Dst_{min} < -50$ nT) storms $Dst$ profile can not be approximated by hyperbolic function with constant $\\tau_h$ because hyperbolic time $\\tau_h$ increases with increasing time of recovery phase. Relation between duration and value $Dst_{min}$ for storms induced by ICME and Sheath has 2 parts: $Dst_{min}$ and d...

  3. How are Forbush decreases related with interplanetary magnetic field enhancements ?

    CERN Document Server

    Arunbabu, K P; Dugad, S R; Gupta, S K; Hayashi, Y; Kawakami, S; Mohanty, P K; Oshima, A; Subramanian, P

    2015-01-01

    Aims. Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods. We use muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We select those FD events that have a reasonably clean profile, and magnitude > 0.25%. We use IMF data from ACE/WIND spacecrafts. We look for correlations between the FD profile and that of the one hour averaged IMF. We ask if the diffusion of high energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results. The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably simil...

  4. An analysis of whistler waves at interplanetary shocks

    Science.gov (United States)

    Lengyel-Frey, D.; Farrell, W. M.; Stone, R. G.; Balogh, A.; Forsyth, R.

    1994-01-01

    We present an analysis of whistler wave magnetic and electric field amplitude ratios from which we compute wave propagation angles and energies of electrons in resonance with the waves. To do this analysis, we compute the theoretical dependence of ratios of wave components on the whistler wave propagation angle Theta for various combinations of orthogonal wave components. Ratios of wave components that would be observed by a spinning spacecraft are determined, and the effects of arbitrary inclinations of the spacecraft to the ambient magnetic field and to the whistler wave vector are studied. This analysis clearly demonstrates that B/E, the ratio of magnetic to electric field amplitudes, cannot be assumed to be the wave index of refraction, contrary to assumptions of some earlier studies. Therefore previous interpretations of whistler wave observations based on this assumption must be reinvestigated. B/E ratios derived using three orthogonal wave components can be used to unambiguously determine Theta. Using spin plane observations alone, a significant uncertainty occurs in the determination of Theta. Nevertheless, for whistler waves observed downstream of several interplanetary shocks by the Ulysses plasma wave experiment we find that Theta is highly oblique. We suggest that the analysis of wave amplitude ratios used in conjunction with traditional stability analyses provide a promising tool for determining which particle distributions and resonances are likely to be dominant contributors to wave growth.

  5. Effects of standard and modified gravity on interplanetary ranges

    CERN Document Server

    Iorio, Lorenzo

    2010-01-01

    We numerically investigate the impact on the two-body range by several Newtonian and non-Newtonian dynamical effects for some Earth-planet pairs in view of the expected cm-level accuracy in future planned or proposed interplanetary ranging operations. The general relativistic gravitomagnetic Lense-Thirring effect should be modeled and solved-for in future, accurate ranging tests of Newtonian and post-Newtonian gravity because it falls within their measurability domain. It could a-priori "imprint" the determination of some of the target parameters of the tests considered. Moreover, the ring of the minor asteroids, Ceres, Pallas, Vesta and the Trans-Neptunian Objects (TNOs) act as sources of non-negligible systematic uncertainty on the larger gravitoelectric post-Newtonian signals from which it is intended to determine the parameters \\gamma and \\beta of the Parameterized Post Newtonian (PPN) formalism with very high precision (orders of magnitude better than the current 10^-4-10^-5 levels). Also other putative,...

  6. Achievements and Future Plan of Interplanetary CubeSats and Micro-Sats in Japan

    Science.gov (United States)

    Funase, Ryu

    2016-07-01

    This paper introduces Japanese achievements and future plans of CubeSats and Micro-Sats for deep space exploration. As the first step toward deep space mission by such tiny spacecraft, University of Tokyo and Japan Aerospace Exploration Agency (JAXA) developed the world's first deep space micro-spacecraft PROCYON (Proximate Object Close flYby with Optical Navigation). Its mission objective is to demonstrate a micro-spacecraft bus technology for deep space exploration and proximity flyby to asteroids performing optical measurements. PROCYON was launched into the Earth departure trajectory on December 3, 2014 together with Japanese asteroid sample return mission Hayabusa-2. PROCYON successfully completed the bus system demonstration mission in its interplanetary flight. Currently, Japan is not only pursuing the improvement and utilization of the demonstrated micro-sat deep space bus system with a weight of tens of kg or more for more practical scientific deep space missions, but also trying to develop smaller spacecraft with a weight of less than tens of kg, namely CubeSats, for deep space exploration. We are proposing a self-contained 6U CubeSat mission for the rideshare opportunity on the USA's SLS EM-1 mission, which will fly to a libration orbit around Earth-Moon L2 point and perform scientific observations of the Earth and the Moon. We are also seeking the possibility of CubeSats which is carried by a larger spacecraft to the destination and supports the mission by taking advantage of its low-cost and risk-tolerable feature. As an example of such style of CubeSat missions, we are studying a CubeSat for close observations of an asteroid, which will be carried to the target asteroid by a larger mother spacecraft. This CubeSat is released from the mother spacecraft to make a close flyby for scientific observations, which is difficult to be performed by the mother spacecraft if we consider the risk of the collision to the target asteroid or dust particles ejected

  7. Variations in cometary dust composition from Giotto to Rosetta, clues to their formation mechanisms

    Science.gov (United States)

    Engrand, Cécile; Duprat, Jean; Dartois, Emmanuel; Benzerara, Karim; Leroux, Hugues; Baklouti, Donia; Bardyn, Anaïs; Briois, Christelle; Cottin, Hervé; Fischer, Henning; Fray, Nicolas; Godard, Marie; Hilchenbach, Martin; Langevin, Yves; Paquette, John; Rynö, Jouni; Schulz, Rita; Silén, Johan; Stenzel, Oliver; Thirkell, Laurent; Cosima Team

    2016-11-01

    This paper reviews the current knowledge on the composition of cometary dust (ice, minerals and organics) in order to constrain their origin and formation mechanisms. Comets have been investigated by astronomical observations, space missions (Giotto to Rosetta), and by the analysis of cometary dust particles collected on Earth, chondritic porous interplanetary dust particles (CP-IDPs) and ultracarbonaceous Antarctic micrometeorites (UCAMMs). Most ices detected in the dense phases of the interstellar medium (ISM) have been identified in cometary volatiles. However, differences also suggest that cometary ices cannot be completely inherited from the ISM. Cometary minerals are dominated by crystalline Mg-rich silicates, Fe sulphides and glassy phases including GEMS (glass with embedded metals and sulphides). The crystalline nature and refractory composition of a significant fraction of the minerals in comets imply a high temperature formation/processing close to the proto-Sun, resetting a possible presolar signature of these phases. These minerals were further transported up to the external regions of the disc and incorporated in comet nuclei. Cometary matter contains a low abundance of isotopically anomalous minerals directly inherited from the presolar cloud. At least two different kinds of organic matter are found in dust of cometary origin, with low or high nitrogen content. N-poor organic matter is also observed in primitive interplanetary materials (like carbonaceous chondrites) and its origin is debated. The N-rich organic matter is only observed in CP-IDPs and UCAMMs and can be formed by Galactic cosmic ray irradiation of N2- and CH4-rich icy surface at large heliocentric distance beyond a `nitrogen snow line'.

  8. Dust processing in elliptical galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Villaume, Alexa; Srinivasan, Sundar

    2015-01-01

    We reconsider the origin and processing of dust in elliptical galaxies. We theoretically formulate the evolution of grain size distribution, taking into account dust supply from asymptotic giant branch (AGB) stars and dust destruction by sputtering in the hot interstellar medium (ISM), whose temperature evolution is treated by including two cooling paths: gas emission and dust emission (i.e. gas cooling and dust cooling). With our new full treatment of grain size distribution, we confirm that dust destruction by sputtering is too efficient to explain the observed dust abundance even if AGB stars continue to supply dust grains, and that, except for the case where the initial dust-to-gas ratio in the hot gas is as high as $\\sim 0.01$, dust cooling is negligible compared with gas cooling. However, we show that, contrary to previous expectations, cooling does not help to protect the dust; rather, the sputtering efficiency is raised by the gas compression as a result of cooling. We additionally consider grain grow...

  9. Southern Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 9 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. In our final dust devil image we are again looking at the southern hemisphere of Mars. These tracks occur mainly on the northeast side of the topographic ridges. Of course, there are many exceptions, which makes understanding the dynamics that initiate the actual dust devil cyclone difficult. Image information: VIS instrument. Latitude -47.6, Longitude 317.3 East (42.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed

  10. Plentiful Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 8 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. These dust devil tracks occur on the northern plains of Mars. The majority of the surface seen in the image has been affected by the passage of dust devils. Image information: VIS instrument. Latitude -54.6, Longitude 79.3 East (280.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are

  11. Laboratory measurements of light scattering properties of a carbonaceous interstellar dust analogue (soot particles)

    Science.gov (United States)

    Gogoi, Ankur; Choudhury, Amarjyoti; Ahmed, Gazi A.; Kashyap Boruah, Goutam

    2012-07-01

    Dust particles are present everywhere in the solar system, cometary comae and tail, interstellar dust clouds, asteroidal atmospheres and aerosols of other planetary atmospheres. The in situ sampling of the cometary dust composition conducted by CIDA (Cometary and Interstellar Dust Analyzer) and observed interstellar extinction and polarization revealed the presence of amorphous carbon, graphite, silicate, graphite, carbonates, metal oxide grains, ice particles and nanodiamonds in the interstellar medium. These particles act as the heterogeneous media to scatter solar or steller light. Observations and simulations of the light scattered by dust particles in cometary comae, interplanetary space and planetary regolith (or analogous terrestrial dust aggregates) is necessary to deduce the physical properties of their constituent particles and may lead to a better understanding of the formation of solar system. Notably the measurement of the volume scattering function (VSF) and degree of linear polarization (DLP) can be used to estimate parameters like size, porosity and roughness of the dust particles. In this contribution we report the design and fabrication of a laser based laboratory light scattering instrument that uses an array of 16 static Si photodetectors and can be operated at three different incident wavelengths (543.5 nm, 594.5 nm and 632.8 nm). The accuracy and the reliability of the setup were verified by conducting light scattering measurements on spherical water droplets and comparing the results with theoretical Mie calculations. The results of the measurements of the VSF and DLP of carbonaceous soot particles (agglomerates) that were sprayed in front of the laser beam by using an aerosol sprayer are presented. The experimental results were further analyzed by comparing with theoretically generated T-matrix and DDA (Discrete Dipole Approximation) plots with estimated parameters to yield more fruitful conclusions. Significant variations of the light

  12. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications.

    Science.gov (United States)

    Liu, Sa; Zhou, Li; Wang, Pengjie; Zhang, Fangfang; Yu, Shuchun; Shao, Zhigang; Yi, Baolian

    2014-03-12

    An ionic-liquid-doped poly(benzimidazole) (PBI) proton-conducting membrane for an anhydrous H2/Cl2 fuel cell has been proposed. Compared with other ionic liquids, such as imidazole-type ionic liquids, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) showed better electrode reaction kinetics (H2 oxidation and Cl2 reduction reaction at platinum) and was more suitable for a H2/Cl2 fuel cell. PBI polymer and [dema][TfO] were compatible with each other, and the hybrid membranes exhibited high stability and good ionic conductivity, reaching 20.73 mS cm(-1) at 160 °C. We also analyzed the proton-transfer mechanism in this ionic-liquid-based membrane and considered that both proton-hopping and diffusion mechanisms existed. In addition, this composite electrolyte worked well in a H2/Cl2 fuel cell under non-water conditions. This work would give a good path to study the novel membranes for anhydrous H2/Cl2 fuel-cell application.

  13. Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology

    Science.gov (United States)

    Fournel, F.; Continni, L.; Morales, C.; Da Fonseca, J.; Moriceau, H.; Rieutord, F.; Barthelemy, A.; Radu, I.

    2012-05-01

    Bonding energy represents an important parameter for direct bonding applications as well as for the elaboration of physical mechanisms at bonding interfaces. Measurement of bonding energy using double cantilever beam (DCB) under prescribed displacement is the most used technique thanks to its simplicity. The measurements are typically done in standard atmosphere with relative humidity above 30%. Therefore, the obtained bonding energies are strongly impacted by the water stress corrosion at the bonding interfaces. This paper presents measurements of bonding energies of directly bonded silicon wafers under anhydrous nitrogen conditions in order to prevent the water stress corrosion effect. It is shown that the measurements under anhydrous nitrogen conditions (less than 0.2 ppm of water in nitrogen) lead to high stable debonding lengths under static load and to higher bonding energies compared to the values measured under standard ambient conditions. Moreover, the bonding energies of Si/SiO2 or SiO2/SiO2 bonding interfaces are measured overall the classical post bond annealing temperature range. These new results allow to revisit the reported bonding mechanisms and to highlight physical and chemical phenomena in the absence of stress corrosion effect.

  14. Dynamical evolution of interplanetary dust particles trapped in Earth's horseshoe and quasi-satellite co-orbital resonance regions

    Science.gov (United States)

    Kortenkamp, Stephen J.

    2016-10-01

    We use numerical integrations to model the orbital evolution of IDPs decaying from the asteroid belt into the inner solar system under the influence of radiation pressure, Poynting-Roberston light drag, and solar wind drag. In our models the ratio of radiation pressure to solar gravity ranges from 0.0025 up to 0.02, corresponding to IDP diameters ranging from about 200 microns down to about 25 microns, respectively. In this size range nearly 100% of IDPs become temporarily trapped in mean-motion resonances just outside Earth's orbit. While trapped in these outer resonances the orbital eccentricities of IDPs significantly increases. This causes most IDPs to eventually escape the resonances, allowing their orbits to continue decaying inwards past 1 AU. We've shown previously (Kortenkamp, Icarus 226, 1550-1558, 2013) that significant fractions of IDPs in this size range can subsequently become trapped in Earth's co-orbital horseshoe and quasi-satellite resonance regions, with semi-major axes just inside of 1 AU. Here, we present new results on the long-term effects of Earth's varying orbital eccentricity and inclination on the trapping and evolution of these co-orbital IDPs.

  15. [House dust mite allergy].

    Science.gov (United States)

    Carrard, A; Pichler, C

    2012-04-01

    House dust mites can be found all over the world where human beings live independent from the climate. Proteins from the gastrointestinal tract- almost all known as enzymes - are the allergens which induce chronic allergic diseases. The inhalation of small amounts of allergens on a regular base all night leads to a slow beginning of the disease with chronically stuffed nose and an exercise induced asthma which later on persists. House dust mites grow well in a humid climate - this can be in well isolated dwellings or in the tropical climate - and nourish from human skin dander. Scales are found in mattresses, upholstered furniture and carpets. The clinical picture with slowly aggravating complaints leads quite often to a delayed diagnosis, which is accidently done on the occasion of a wider spectrum of allergy skin testing. The beginning of a medical therapy with topical steroids as nasal spray or inhalation leads to a fast relief of the complaints. Although discussed in extensive controversies in the literature - at least in Switzerland with the cold winter and dry climate - the recommendation of house dust mite avoidance measures is given to patients with good clinical results. The frequent ventilation of the dwelling with cold air in winter time cause a lower indoor humidity. Covering encasings on mattresses, pillow, and duvets reduces the possibility of chronic contact with mite allergens as well as the weekly changing the bed linen. Another option of therapy is the specific immunotherapy with extracts of house dust mites showing good results in children and adults. Using recombinant allergens will show a better quality in diagnostic as well as in therapeutic specific immunotherapy.

  16. Developing Insights into Debris Disk Composition from Dust Scattering

    Science.gov (United States)

    Weinberger, Alycia

    Science Goals: To enable interpretation of visible to near-IR spectrophotometric imaging of debris disks, we propose realistic modeling of scattering of light by small aggregate dust grains and new laboratory measurements of meteoritic organic analogs. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets bear clues to the history of a planetary system including migration and thermal processing. In the solar system, small bodies delivered volatiles to Earth, and they presumably play the same role for exoplanets. Because directly imaged debris disks are cold, they have no solid-state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Hubble Space Telescope (HST) imaging showed debris disks to be populated with small grains, a few tenths of a micron and larger. Radiation pressure and blasting by the interstellar medium sweep the dust away. New work from HST and ground-based adaptive optics systems reveal the color and polarization of the scattered light at wavelengths from visible to near-IR, with two dozen disks imaged at some subset of wavelengths. Far-IR and submm images from Herschel and ALMA show that the same disks also contain large, i.e. mm-sized, grains. Our goal is to develop dust calculations so that spectrophotometry of disks can determine dust compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes

  17. A coal dust burner

    Energy Technology Data Exchange (ETDEWEB)

    Vakhrshev, B.M.; Khasnullin, I.G.; Krauze, Ye.G.; Ushakov, Yu.A.; Zinovyev, V.G.

    1982-01-01

    The burner for combustion of coal dust fuel, primarily, in rotating furnaces, contains coaxially disposed pipes, a branch pipe for feeding in the air mixture and a rotating mechanism. The first two pipes are switched in to an air source. The third pipe on the input end has an oblique section and the pipe may be rotated around an axis by a mechanism. The first pipe has ports and it may be moved in an axial direction. By installing the third pipe in the first and second positions, it is possible to direct the dust coming from the branch pipe along the central (the larger part of the dust) or the central pipe, respectively, which makes it possible to regulate the configuration of the torch and its temperature. Hot air is sucked from the furnace through the ports in the perforated first pipe to the mouth of the burner, which makes it possible to intensify combustion. By moving the fifitpipe to the right it is possible to overlap the ports with the projections and to rule out suction of the air. The possibility of regulating combustion in wide ranges makes it possible to reduce the expenditure of fuel by 2 to 3 percent.

  18. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, N. G.

    2003-12-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health

  19. How are Forbush decreases related to interplanetary magnetic field enhancements?

    Science.gov (United States)

    Arunbabu, K. P.; Antia, H. M.; Dugad, S. R.; Gupta, S. K.; Hayashi, Y.; Kawakami, S.; Mohanty, P. K.; Oshima, A.; Subramanian, P.

    2015-08-01

    Aims: A Forbush decrease (FD) is a transient decrease followed by a gradual recovery in the observed galactic cosmic ray intensity. We seek to understand the relationship between the FDs and near-Earth interplanetary magnetic field (IMF) enhancements associated with solar coronal mass ejections (CMEs). Methods: We used muon data at cutoff rigidities ranging from 14 to 24 GV from the GRAPES-3 tracking muon telescope to identify FD events. We selected those FD events that have a reasonably clean profile, and magnitude >0.25%. We used IMF data from ACE/WIND spacecrafts. We looked for correlations between the FD profile and that of the one-hour averaged IMF. We wanted to find out whether if the diffusion of high-energy protons into the large scale magnetic field is the cause of the lag observed between the FD and the IMF. Results: The enhancement of the IMF associated with FDs occurs mainly in the shock-sheath region, and the turbulence level in the magnetic field is also enhanced in this region. The observed FD profiles look remarkably similar to the IMF enhancement profiles. The FDs typically lag behind the IMF enhancement by a few hours. The lag corresponds to the time taken by high-energy protons to diffuse into the magnetic field enhancement via cross-field diffusion. Conclusions: Our findings show that high-rigidity FDs associated with CMEs are caused primarily by the cumulative diffusion of protons across the magnetic field enhancement in the turbulent sheath region between the shock and the CME. Appendices are available in electronic form at http://www.aanda.org

  20. Clouds and Dust Storms

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote

  1. Optimizing Saharan dust CALIPSO retrievals

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2013-06-01

    Full Text Available We demonstrate improvements in CALIPSO dust extinction retrievals over North Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and co-located AERONET measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS co-located AOD product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1 by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2 by applying an averaging scheme that includes zero extinction values for the non-dust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and co-located dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per sub-region examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model, makes this dataset an ideal candidate for the provision of an accurate and robust multi-year dust climatology over North Africa and Europe.

  2. In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schaef, Herbert T.; Ilton, Eugene S.; Qafoku, Odeta; Martin, Paul F.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-01-09

    Reactions involving scCO2 and a calcium saturated dioctahedral smectite (Ca-STX-1) were examined by in situ high-pressure x-ray diffraction over a range of temperatures (50° to 100°C) and pressures (90, 125, and 180 bar) relevant to long term geologic storage of CO2. Exposure of Ca-STX-1 containing one water of hydration (1W) to anhydrous scCO2 at 50°C and 90 bar produced an immediate increase of ~0.8 Å in the d001 basal reflection that was sustained for the length of the experiment (~44 hours). Higher ordered basal reflections displayed similar shifts. Following depressurization, positions of basal reflections and FWHM values (d001) returned to initial values, with no measurable modification to the clay structure or water content. Similar results were obtained for tests conducted at 50°C and higher pressures (125 and 180 bar). Exposure of Ca-STX-1 containing two waters of hydration (2W) to scCO2 resulted in a decrease in the d001 reflection from 14.48 Å to 12.52 Å, after pressurization, indicating a partial loss of interlayer water. In addition, the hydration state of the clay became more homogeneous during contact with anhydrous scCO2 and after depressurization. In the presence of scCO2 and water, the clay achieved a 3W hydration state, based on a d001 spacing of 18.8 Å. In contrast to scCO2, comparable testing with N2 gas indicated trivial changes in the d001 series regardless of hydration state (1W or 2W). In the presence of free water and N2, the basal spacing for the Ca-STX-1 expanded slightly, but remained in the 2W hydration state. These experiments indicate that scCO2 can intercalate hydrated clays, where the 1W hydrate state is stable when exposed to anhydrous scCO2 under conditions proposed for geologic storage of CO2. Consequently, clays can act as secondary CO2 traps where potential collapse or expansion of the interlayer spacing depends on the initial hydration state of the clay and scCO2.

  3. Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary-Magnetic-Field Polar Correction

    CERN Document Server

    Bobik, P; Boschini, M J; Consolandi, C; Della Torre, S; Gervasi, M; Grandi, D; Kudela, K; Pensotti, S; Rancoita, P G; Rozza, D; Tacconi, M

    2012-01-01

    The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2-D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1\\,AU and allowed one to investigate how latitudinal gradients of proton...

  4. Structure on Interplanetary Shock Fronts: Type II Radio Burst Source Regions

    CERN Document Server

    Pulupa, M

    2007-01-01

    We present \\emph{in situ} observations of the source regions of interplanetary (IP) type II radio bursts, using data from the Wind spacecraft during the period 1996-2002. We show the results of this survey as well as in-depth analysis of several individual events. Each event analyzed in detail is associated with an interplanetary coronal mass ejection (ICME) and an IP shock driven by the ICME. Immediately prior to the arrival of each shock, electron beams along the interplanetary magnetic field (IMF) and associated Langmuir waves are detected, implying magnetic connection to a quasiperpendicular shock front acceleration site. These observations are analogous to those made in the terrestrial foreshock region, indicating that a similar foreshock region exists on IP shock fronts. The analogy suggests that the electron acceleration process is a fast Fermi process, and this suggestion is borne out by loss cone features in the electron distribution functions. The presence of a foreshock region requires nonplanar st...

  5. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-02-01

    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  6. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  7. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    Science.gov (United States)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and

  8. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  9. Quantitative determination of amorphous nicardipine hydrochloride in long acting formula (NIC-LA) using light anhydrous silicic acid.

    Science.gov (United States)

    Kohinata, Takeru; Fujii, Mitsuo; Nakamura, Souichiro; Hamada, Noritaka; Yonemochi, Etsuo; Terada, Katsuhide

    2004-12-01

    We investigated a method to quantitatively determine amorphous nicardipine hydrochloride (NIC) in the NIC-long acting formula (LA) model formulas prepared using NIC, light anhydrous silicic acid (LASA) and carboxymethylethylcellulose (CMEC). Consequently, since the quantity of total NIC in the formula can be determined by means of HPLC and crystal NIC can be determined by the differential scanning calorimetry (DSC) method because the heat of fusion (85.08 J/g) of NIC is constant and unaffected by excipients, we developed the HPLC-DSC method by which the quantity of amorphous NIC is calculated as the difference between the quantity of total NIC determined by HPLC and the quantity of crystal NIC determined by DSC. This practical HPLC-DSC method was confirmed to have good accuracy and reproducibility.

  10. Kinetic analysis for non-isothermal decomposition of un-irradiated and gamma-irradiated anhydrous cadmium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Culas, S.; Samuel, J. [Mar Ivanios College, Kerala (India). Dept. of Chemistry

    2014-04-01

    The thermal decomposition of untreated and γ-irradiated samples of anhydrous cadmium nitrate was performed under non-isothermal conditions at different heating rates (5, 10, 15 and 20 C min{sup -1}). The results showed that the decomposition proceeds in one major step with the formation of cadmium oxide as solid residue. The data were analysed by using both isoconversional and non-isoconversional methods. The activation energy was calculated by various model-free isoconversional methods: Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Friedman (FR) methods. Irradiation enhances the decomposition and the effect increases with the irradiation dose. The activation energy decreases on irradiation. The appropriate conversion model for the thermal decomposition process selected by means of the master-plot method agrees with phase boundary reaction with spherical symmetry (R3 mechanism) for both untreated and irradiated salts at all heating rates. (orig.)

  11. Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K

    Directory of Open Access Journals (Sweden)

    Liqing He

    2015-11-01

    Full Text Available Metal dodecaborates M2/nB12H12 are regarded as the dehydrogenation intermediates of metal borohydrides M(BH4n that are expected to be high density hydrogen storage materials. In this work, thermal decomposition processes of anhydrous alkali metal dodecaborates M2B12H12 (M = Li, Na, K synthesized by sintering of MBH4 (M = Li, Na, K and B10H14 have been systematically investigated in order to understand its role in the dehydrogenation of M(BH4n. Thermal decomposition of M2B12H12 indicates multistep pathways accompanying the formation of H-deficient monomers M2B12H12−x containing the icosahedral B12 skeletons and is followed by the formation of (M2B12Hzn polymers. The decomposition behaviors are different with the in situ formed M2B12H12 during the dehydrogenation of metal borohydrides.

  12. Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component.

    Science.gov (United States)

    Meng, C.-I.; Tsurutani, B.; Kawasaki, K.; Akasofu, S.-I.

    1973-01-01

    A cross-correlation study between magnetospheric activity (the AE index) and the southward-directed component of the interplanetary magnetic field (IMF) is made for a total of 792 hours (33 days) with a time resolution of about 5.5 min. The peak correlation tends to occur when the interplanetary data are shifted approximately 40 min later with respect to the AE index data. Cross-correlation analysis is conducted on some idealized wave forms to illustrate that this delay between southward turning of the IMF and the AE index should not be interpreted as being the duration of the growth phase.

  13. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    YOUNGJUNE ePARK

    2015-10-01

    Full Text Available CO2 capture by amine scrubbing, which has a high CO2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO2 capture solvents including high volatility and corrosiveness of the amine solutions, as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO2 capture solvents, which are often anhydrous, have been developed as the third-generation CO2 capture solvents. These novel classes of liquid materials include: Ionic Liquids (ILs, CO2-triggered switchable solvents (i.e., CO2 Binding Organic Liquids (CO2BOLs, Reversible Ionic Liquids (RevILs, and Nanoparticle Organic Hybrid Materials (NOHMs. This paper provides a review of these various anhydrous solvents and their potential for CO2 capture. Particular attention is given to the mechanisms of CO2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO2 capture media.

  14. Crystalline anhydrous {alpha},{alpha}-trehalose (polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose: A calorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana S. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: susanapinto@ist.utl.pt; Diogo, Herminio P. [Centro de Quimica Estrutural, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: hdiogo@ist.utl.pt; Moura-Ramos, Joaquim J. [Centro de Quimica-Fisica Molecular, Complexo Interdisciplinar, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: mouraramos@ist.utl.pt

    2006-09-15

    The mean values of the standard massic energy of combustion of crystalline anhydrous {alpha},{alpha}-trehalose (C{sub 12}H{sub 22}O{sub 11}, polymorph {beta}) and crystalline dihydrate {alpha},{alpha}-trehalose (C{sub 12}H{sub 26}O{sub 13}) measured by static-bomb combustion calorimetry in oxygen, at the temperature T=298.15K, are {delta}{sub c}u{sup o}=-(16434.05+/-4.50)J.g{sup -1} and {delta}{sub c}u{sup o}=-(14816.05+/-3.52)J.g{sup -1}, respectively. The standard (p{sup o}=0.1MPa) molar enthalpy of formation of these compounds were derived from the corresponding standard molar enthalpies of combustion, respectively, {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 22}O{sub 11},cr)=-(2240.9+/-3.9)kJ.mol{sup -1}, and {delta}{sub f}H{sub m}{sup o} (C{sub 12}H{sub 26}O{sub 13},cr)=-(2832.6+/-3.6)kJ.mol{sup -1}. The values of the standard enthalpies of formation obtained in this work, together with data on enthalpies of solution at infinite dilution ({delta}{sub sol}H{sup {approx}}) for crystalline dihydrate and amorphous anhydrous trehalose, allow a better insight on the thermodynamic description of the trehalose system which can provide, together with the future research on the subject, a contribution for understanding the metabolism in several organisms, as well as the phase transition between the different polymorphs.

  15. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  16. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Cordoba, Argentina.

    Directory of Open Access Journals (Sweden)

    Enrique H Bucher

    Full Text Available Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina, the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite, and a superficial and variable water table, which may result in the periodic development of a characteristic "fluffy" surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr, and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons.

  17. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    Science.gov (United States)

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  18. Trace element partitioning between ilmenite, armalcolite and anhydrous silicate melt: Implications for the formation of lunar high-Ti mare basalts

    NARCIS (Netherlands)

    Kan Parker, M. van; Mason, P.R.D.; Westrenen, W. van

    2011-01-01

    We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon. Ex

  19. Control of powdery mildew on glasshouse-grown roses and tomatoes in the Netherlands using anhydrous milk fat and soybean oil emulsions

    NARCIS (Netherlands)

    Wurms, K.V.; Hofland-Zijlstra, Jantineke

    2015-01-01

    Powdery mildew (PM) is a very serious disease affecting glasshouse-grown roses and tomatoes in the Netherlands. Control is limited because of resistance to existing fungicides. Anhydrous milk fat (AMF) and soybean oil (SBO) emulsions were evaluated for control of PM in roses and tomatoes. Both AM

  20. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  1. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  2. Charged Dust Aggregate Interactions

    Science.gov (United States)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  3. Modelling an encounter between a spacecraft and a cometary meteoroid trail in interplanetary space: The case of the Venus Climate Orbiter and comet 27P/Crommelin

    Science.gov (United States)

    Christou, Apostolos A.; Vaubaillon, Jeremie

    2010-06-01

    We combine modern meteor activity predictors with classical techniques in astrodynamics to formulate a method of predicting encounters between cometary meteoroid trails and spacecraft in interplanetary trajectories. To demonstrate the method, we apply it to the upcoming encounter between the Venus Climate Orbiter spacecraft, due for launch in 2010, and the debris trail of comet 27P/Crommelin which is expected to reach perihelion in mid-2011. We find that a spacecraft utilising a Type II launch window to Venus in 2010 will approach the P/Crommelin dust trail to 0.025 AU on, or around, the 21st November 2010. Adherence to a launch constraint imposed by the current flight plan that limits the declination of the departure asymptote to values shallower than -30° increases this distance to 0.04 AU. A backup, Type-IV launch window for VCO exists in May-June 2011 with arrival at Venus in the Autumn of 2012. In that case, we find that the VCO spacecraft intercepts the trail twice, in late November 2011 and late September 2012, respectively. In the latter case, the expected dust fluence on the spacecraft is 3 × 10 -6 particles with an uncertainty of at least an order of magnitude. In the former case, which we model indirectly since our code can only predict the position of P/Crommelin dust in the vicinity of Venus itself, we find a fluence several times higher than the case in late 2012 but with a higher uncertainty. In both cases, the same declination constraint that was applied for the case of the primary launch window prevents trail interception. Instead, the spacecraft flies by the dust trail at a minimum distance of 0.0175 AU in the latter case and 0.0225 AU in the former case. We advocate studies such as the one presented here as part of mission analysis for future planetary missions. Further direct observations of cometary dust trails will address the main source of model uncertainty.

  4. 16 Years of Ulysses Interstellar Dust Measurements in the Solar System: I. Mass Distribution and Gas-to-Dust Mass Ratio

    CERN Document Server

    Krüger, Harald; Gruen, Eberhard; Sterken, Veerle J

    2015-01-01

    In the early 1990s, contemporary interstellar dust (ISD) penetrating deep into the heliosphere was identified with the in-situ dust detector on board the Ulysses spacecraft. Between 1992 and the end of 2007 Ulysses monitored the ISD stream. The interstellar grains act as tracers of the physical conditions in the local interstellar medium surrounding our solar system. Earlier analyses of the Ulysses ISD data measured between 1992 and 1998 implied the existence of 'big' ISD grains [up to 10^-13kg]. The derived gas-to-dust-mass ratio was smaller than the one derived from astronomical observations, implying a concentration of ISD in the very local interstellar medium. We analyse the entire data set from 16 yr of Ulysses ISD measurements in interplanetary space. This paper concentrates on the overall mass distribution of ISD. An accompanying paper investigates time-variable phenomena in the Ulysses ISD data, and in a third paper we present the results from dynamical modelling of the ISD flow applied to Ulysses. We...

  5. Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections

    Science.gov (United States)

    Bhaskar, Ankush; Vichare, Geeta; Arunbabu, K. P.; Raghav, Anil

    2016-07-01

    The relationship of Forbush decreases (FDs) observed in Moscow neutron monitor with the interplanetary magnetic field (B) and solar wind speed (Vsw) is investigated in detail for the FDs associated with Interplanetary Coronal Mass Ejections (ICMEs) during 2001-2004. The classical two-step FD events are selected, and characteristics of the first step (mainly associated with shock), as well as of complete decrease (main phase) and recovery phase, are studied here. It is observed that the onset of FD occurs generally after zero to a few hours of shock arrival, indicating in the post-shock region that mainly sheath and ICME act as important drivers of FD. A good correlation is observed between the amplitude of B and associated FD magnitude observed in the neutron count rate of the main phase. The duration of the main phase observed in the neutron count rate also shows good correlation with B. This might indicate that stronger interplanetary disturbances have a large dimension of magnetic field structure which causes longer fall time of FD main phase when they transit across the Earth. It is observed that Vsw and neutron count rate time profiles show considerable similarity with each other during complete FD, especially during the recovery phase of FD. Linear relationship is observed between time duration/e-folding time of FD recovery phase and Vsw. These observations indicate that the FDs are influenced by the inhibited diffusion of cosmic rays due to the enhanced convection associated with the interplanetary disturbances. We infer that the inhibited cross-field diffusion of the cosmic rays due to enhanced B is mainly responsible for the main phase of FD whereas the expansion of ICME contributes in the early recovery phase and the gradual variation of Vsw beyond ICME boundaries contributes to the long duration of FD recovery through reduced convection-diffusion.

  6. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  7. Anhydrate to hydrate solid-state transformations of carbamazepine and nitrofurantoin in biorelevant media studied in situ using time-resolved synchrotron X-ray diffraction.

    Science.gov (United States)

    Boetker, Johan P; Rantanen, Jukka; Arnfast, Lærke; Doreth, Maria; Raijada, Dhara; Loebmann, Korbinian; Madsen, Cecilie; Khan, Jamal; Rades, Thomas; Müllertz, Anette; Hawley, Adrian; Thomas, Diana; Boyd, Ben J

    2016-03-01

    Transformation of the solid-state form of a drug compound in the lumen of the gastrointestinal tract may alter the drug bioavailability and in extreme cases result in patient fatalities. The solution-mediated anhydrate-to-hydrate phase transformation was examined using an in vitro model with different biorelevant media, simulated fasted and fed state intestinal fluids containing bile salt and dioleoylphosphatidylcholine (DOPC) micelles, DOPC/sodium dodecyl sulfate (SDS) mixture, bile salt solution and water. Two anhydrate compounds (carbamazepine, CBZ and nitrofurantoin, NF) with different overall transformation time into hydrate form were used as model compounds. The transformations were monitored using direct structural information from time-resolved synchrotron X-ray diffraction. The kinetics of these transformations were estimated using multivariate data analysis (principal component analysis, PCA) and compared to those for nitrofurantoin (NF). The study showed that the solution-mediated phase transformation of CBZ anhydrate was remarkably faster in the DOPC/SDS medium compared to transformation in all the other aqueous dispersion media. The conversion time for CBZ anhydrate in water was shorter than for DOPC/SDS but still faster than the conversion seen in fed and fasted state micellar media. The conversion of CBZ anhydrate to hydrate was the slowest in the solution containing bile salt alone. In contrast, the solution-mediated phase transformations of NF did only show limited kinetic dependence on the dispersion media used, indicating the complexity of the nucleation process. Furthermore, when the CBZ and NF material was compacted into tablets the transformation times were remarkably slower. Results suggest that variations in the composition of the contents of the stomach/gut may affect the recrystallization kinetics, especially when investigating compounds with relatively fast overall transformation time, such as CBZ.

  8. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  9. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  10. Management of flight control for "ExoMars-2018" robotic interplanetary space station

    Science.gov (United States)

    Shirshakov, A. E.; Artyukhov, M. I.; Kazakevich, Yu. V.; Kalashnikov, A. I.

    2015-12-01

    The article covers the current status of activities on development of "ExoMars-2018" robotic interplanetary space station in terms of SC Composite flight program, results of onboard systems interaction functional design study. Organizational structure of p]Russian part of ground control and management of its interaction with European part of ground control are proposed.

  11. High-latitude ionospheric convection during strong interplanetary magnetic field B-y

    DEFF Research Database (Denmark)

    Huang, C.S.; Sofko, G.J.; Murr, D.;

    1999-01-01

    . The interplanetary magnetic field (IMF) conditions corresponding to the occurrence of the ionospheric convection were B-x approximate to 1 nT, B-y approximate to 10 nT, and B-z B-z\\ much less than B-y). We have compared our observations with statistical patterns and MHD numerical models for similar IMF...

  12. The role of aerodynamic drag in propagation of interplanetary coronal mass ejections

    DEFF Research Database (Denmark)

    Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup;

    2010-01-01

    Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind paramete...

  13. Interplanetary Space Weather Effects on Lunar Reconnaissance Orbiter Avalanche Photodiode Performance

    Science.gov (United States)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-01-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  14. Interplanetary magnetic field variations and slow mode transitions in the Earth's magnetosheath

    Science.gov (United States)

    Hubert, Daniel

    2001-04-01

    The event observed on September 17, 1978 on ISEE 1-2, which led to the concept of a stationary slow mode transition region (SMT) in the magnetosheath in front of the magnetopause, is revisited. We establish that the two edges of this SMT have an exogenous origin induced by two discontinuities of the interplanetary magnetic field. The key of our analysis is that the outer edge of the SMT is built up by a tangential interplanetary discontinuity which is observed on ISEE-3 at a large distance from the Sun-Earth line and which has an unusual direction. In this SMT the subsolar magnetosheath is entirely downstream of a quasi-parallel bow shock, while upstream this SMT the subsolar magnetosheath is downstream of a quasi-perpendicular shock. We identify three effects at the origin of the density enhancement in this SMT. We extend this approach to the original statistical study and we find that any SMT is connected to interplanetary magnetic field variations. This corroborates our hypothesis that SMTs have an exogeneous origin driven by interplanetary magnetic field variations.

  15. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity

    Science.gov (United States)

    Wu, D. J.; Feng, H. Q.; Chao, J. K.

    2008-03-01

    Context: Recent observations of the solar wind show that interplanetary magnetic flux ropes (IMFRs) have a continuous scale-distribution from small-scale flux ropes to large-scale magnetic clouds. Aims: In this work, we investigate the energy spectrum of IMFRs and its possible connection with solar activity. Methods: In consideration of the detectable probability of an IMFR to be proportional to its diameter, the actual energy spectrum of IMFRs can be obtained from the observed spectrum based on spacecraft observations in the solar wind. Results: It is found that IMFRs have a negative power-law spectrum with an index α = 1.36±0.03, which is similar to that of solar flares, and is probably representative of interplanetary energy spectrum of coronal mass ejections (CMEs), that is, the energy spectrum of interplanetary CMEs (ICMEs). This indicates that the energy distribution of CMEs has a similar negative power-law spectrum. In particular, there are numerous small-scale CMEs in the solar corona, and their interplanetary consequences may be directly detected in situ by spacecraft in the solar wind as small-scale IMFRs, although they are too weak to appear clearly in current coronagraph observations. Conclusions: The presence of small-scale CMEs, especially the energy spectrum of CMEs is potentially important for understanding both the solar magneto-atmosphere and CMEs.

  16. Reconstruction of Open Solar Magnetic Flux and Interplanetary Magnetic Field in the 20Th Century

    Science.gov (United States)

    Ivanov, V. G.; Miletsky, E. V.

    2004-10-01

    We reconstruct mean magnitudes of the open solar magnetic field since 1915 using α magnetic synoptic charts of the Sun. The obtained series allows estimation of the interplanetary magnetic field. They also confirm the known conclusion about the secular increase of the solar open magnetic flux in the first half of the 20th century.

  17. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    Science.gov (United States)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  18. On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.

    Science.gov (United States)

    Paresce, F.; Bowyer, S.

    1973-01-01

    Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.

  19. The interaction of a very large interplanetary magnetic cloud with the magnetosphere and with cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Lepping, R.P.; Burlaga, L.F.; Ogilvie, K.W. (NASA Goddard Space Flight Center, Greenbelt, MD (USA)); Tsurutani, B.T. (California Inst. of Tech., Pasadena (USA)); Lazarus, A.J. (Massachusetts Inst. of Tech., Cambridge (USA)); Evans, D.S. (Lockheed Missiles and Space Co., Inc., Palo Alto, CA (USA)); Klein, L.W. (Applied Research Corp., Landover, MD (USA))

    1991-06-01

    A large interplanetary magnetic cloud has been observed in the mid-December 1982 data from ISEE 3. It is estimated to have a heliocentric radial extent of {approx gt} 0.4 AU, making it one of the largest magnetic clouds yet observed at 1 AU. The magnetic field measured throughout the main portion of the cloud was fairly tightly confined to a plane as it changed direction by 174 {degree} while varying only moderately in magnitude. Throughout nearly the entire duration of the cloud's passage, IMP 8 was located in the Earth's dawn magnetosheath providing observations of this cloud's interaction with the bow shock and magnetopause; the cloud is shown to maintain its solar wind characteristics during the interaction. Near the end of the cloud passage, at 0806 UT on December 17, ISEE 3 (and IMP 8 at nearly the same time) observed an oblique fast forward interplanetary shock closely coincident in time with a geomagnetic storm sudden commencement. The shock, moving much faster than the cloud (radial speeds of 700 and 390 km/s, respectively, on the average), was in the process of overtaking the cloud. The index Dst decreased monotonically by {approx} 130 nT during the 2-day cloud passage by the Earth and was well correlated with the B{sub z}component of the interplanetary magnetic field. There was no significant decrease in the cosmic ray intensity recorded by ground-based neutron monitors at this time of rather strong, smoothly changing fields. However, a Forbush decrease did occur immediately after the interplanetary shock, during a period of significant field turbulence. Thus a large, smooth, interplanetary helical magnetic field configuration engulfing the Earth does not necessarily deflect cosmic rays sufficiently to cause a Forbush decrease, but there is a suggestion that such a decrease may be caused by particle scattering by turbulent magnetic fields.

  20. Dust Storms: Why Are Dust Storms a Concern?

    Science.gov (United States)

    ... Radon Solvents Styrene Sulfur Dioxide Toluene Uranium Volatile Organic Compounds (VOCs) For Educators Introduction Tox Town-Based Curriculum Units / Science Club Careers in Environmental Health, Chemistry, and Toxicology More Resources Dust Storms en español ...

  1. [Causation, prevention and treatment of dust explosion].

    Science.gov (United States)

    Dong, Maolong; Jia, Wenbin; Wang, Hongtao; Han, Fei; Li, Xiao-Qiang; Hu, Dahai

    2014-10-01

    With the development of industrial technology, dust explosion accidents have increased, causing serious losses of people's lives and property. With the development of economy, we should lay further emphasis on causation, prevention, and treatment of dust explosion. This article summarizes the background, mechanism, prevention, and treatment of dust explosion, which may provide some professional knowledge and reference for the treatment of dust explosion.

  2. A numerical study on dust devils with implications to global dust budget estimates

    Science.gov (United States)

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  3. The maximum water storage capacities in nominally anhydrous minerals in the mantle transition zone and lower mantle

    Science.gov (United States)

    Inoue, T.; Yurimoto, H.

    2012-12-01

    Water is the most important volatile component in the Earth, and affects the physicochemical properties of mantle minerals, e.g. density, elastic property, electrical conductivity, thermal conductivity, rheological property, melting temperature, melt composition, element partitioning, etc. So many high pressure experiments have been conducted so far to determine the effect of water on mantle minerals. To clarify the maximum water storage capacity in nominally anhydrous mantle minerals in the mantle transition zone and lower mantle is an important issue to discuss the possibility of the existence of water reservoir in the Earth mantle. So we have been clarifying the maximum water storage capacity in mantle minerals using MA-8 type (KAWAI-type) high pressure apparatus and SIMS (secondary ion mass spectroscopy). Upper mantle mineral, olivine can contain ~0.9 wt% H2O in the condition just above 410 km discontinuity in maximum (e.g. Chen et al., 2002; Smyth et al., 2006). On the other hand, mantle transition zone mineral, wadsleyite and ringwoodite can contain significant amount (about 2-3 wt.%) of H2O (e.g. Inoue et al., 1995, 1998, 2010; Kawamoto et al., 1996; Ohtani et al., 2000). But the lower mantle mineral, perovskite can not contain significant amount of H2O, less than ~0.1 wt% (e.g. Murakami et al., 2002; Inoue et al., 2010). In addition, garnet and stishovite also can not contain significant amount of H2O (e.g. Katayama et al., 2003; Mookherjee and Karato, 2010; Litasov et al., 2007). On the other hand, the water storage capacities of mantle minerals are supposed to be significantly coupled with Al by a substitution with Mg2+, Si4+ or Mg2+ + Si4+, because Al3+ is the trivalent cation, and H+ is the monovalent cation. To clarify the degree of the substitution, the water contents and the chemical compositions of Al-bearing minerals in the mantle transition zone and the lower mantle were also determined in the Al-bearing systems with H2O. We will introduce the

  4. Impact experiments of exotic dust grain capture by highly porous primitive bodies

    Science.gov (United States)

    Okamoto, Takaya; Nakamura, Akiko M.; Hasegawa, Sunao; Kurosawa, Kosuke; Ikezaki, Katsutoshi; Tsuchiyama, Akira

    2013-05-01

    Small primitive bodies were presumably highly porous when they formed and some still have low densities that are indicative of a high pore content. Therefore, after their formation, interplanetary dust impacting on their surface may have been captured because of their porous structure. The mechanism of dust penetration is thus of importance to understand the evolution of small bodies and the origin of their internal dust particles. Impact experiments of sintered glass-bead targets characterized by 80%, 87%, and 94% bulk porosity were conducted using metal and basalt projectiles at impact velocities ranging from 1.6 to 7.2 km s-1. Track morphology and penetration processes were analyzed using both X-ray tomography and a flash X-ray system. Two types of track were observed, as previously also found in the Stardust aerogel: a thin and long track (carrot-shaped track), and a "bulb" with tails (bulb-shaped track). The track shape changed with initial dynamic pressure. We found that the transition between "carrot" and "bulb" occurred at a pressure of roughly 20 times the projectile's tensile strength. The deceleration process of projectiles without severe deformation and fragmentation was reproduced by a drag equation composed of an inertia drag that was proportional to the square of the projectile's velocity and a constant drag proportional to the target's compressive strength. We applied this deceleration equation to silicate dust penetrating into hypothetical porous icy bodies which were homogeneous on much smaller scales than the impacting dust particles. The penetration depth was approximately 100 times the projectile diameter for the bodies with 90% porosity.

  5. Metals and dust in high redshift AGNs

    CERN Document Server

    Maiolino, R; Marconi, A; Schneider, R; Bianchi, S; Pedani, M; Pipino, A; Matteucci, F; Cox, P; Caselli, P

    2006-01-01

    We summarize some recent results on the metallicity and dust properties of Active Galactic Nuclei (AGN) at high redshift (110). The properties of dust in high-z QSOs are discussed within the context of the dust production mechanisms in the early universe. The dust extinction curve is observed to evolve beyond z>4, and by z~6 it is well described by the properties expected for dust produced by SNe, suggesting that the latter is the main mechanism of dust production in the early universe. We also show that the huge dust masses observed in distant QSOs can be accounted for by SN dust within the observational constraints currently available. Finally, we show that QSO winds, which have been proposed as an alternative mechanism of dust production, may also contribute significantly to the total dust budget at high redshift.

  6. A tale of two very different comets: ISO and MSX measurements of dust emission from 126P/IRAS (1996) and 2P/Encke (1997)

    Science.gov (United States)

    Lisse, C. M.; Fernández, Y. R.; A'Hearn, M. F.; Grün, E.; Käufl, H. U.; Osip, D. J.; Lien, D. J.; Kostiuk, T.; Peschke, S. B.; Walker, R. G.

    2004-10-01

    We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a "gassy" comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×10 9 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ɛ proportional to a steep power law in wavelength λ: ɛ∝ λ- α, where α=0.50±0.20 (2σ) . This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0

  7. Wormhole shadows in rotating dust

    Science.gov (United States)

    Ohgami, Takayuki; Sakai, Nobuyuki

    2016-09-01

    As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.

  8. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  9. Dust Evolution in Protoplanetary Disks

    CERN Document Server

    Testi, Leonardo; Ricci, Luca; Andrews, Sean; Blum, Juergen; Carpenter, John; Dominik, Carsten; Isella, Andrea; Natta, Antonella; Williams, Jonathan; Wilner, David

    2014-01-01

    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational...

  10. Surface System Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will perform a detailed examination of dust mitigation and tolerance strategies for connections and mechanisms to be employed on the lunar...

  11. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  12. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  13. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  14. 无水氯化锶的制备工艺研究%Preparation Technology of Anhydrous Strontium Chloride

    Institute of Scientific and Technical Information of China (English)

    邹兴武; 王树轩; 杨占寿; 王舒娅; 祁米香

    2012-01-01

    依托青海锶资源优势,以次等品碳酸锶和工业盐酸为原料,制备了无水氯化锶.并对除钡、除铁、除硫、脱水干燥等工艺进行了研究.产品能达到一般工业品的要求.氯化锶的制备不仅丰富我省锶产品的种类,而且增加了锶资源企业的抗风险能力.%Relying on the advantage of Qinghai strontium resources, the anhydrous strontium chloride was prepared by low-grade strontium carbonate and industrial hydrochloric acid. The process of removal of barium, sulfur and other impurities from low-grade strontium carbonate was studied,and evaporation,concentration , crystallization, filtering and drying processes were also investigated. The quality of products can reach the requirements of the general industrial. Preparation of strontium chloride, not only enrich the types of strontium products in Qinghai province,but also increase the ability of resiting risk of Strontium production enterprises.

  15. Crystal structure of barium perchlorate anhydrate, Ba(ClO42, from laboratory X-ray powder data

    Directory of Open Access Journals (Sweden)

    Jeonghoo H. Lee

    2015-06-01

    Full Text Available The previously unknown crystal structure of barium perchlorate anhydrate, determined and refined from laboratory X-ray powder diffraction data, represents a new structure type. The title compound was obtained by heating hydrated barium perchlorate [Ba(ClO42·xH2O] at 423 K in vacuo for 6 h. It crystallizes in the orthorhombic space group Fddd. The asymmetric unit contains one Ba (site symmetry 222 on special position 8a, one Cl (site symmetry 2 on special position 16f and two O sites (on general positions 32h. The structure can be described as a three-dimensional polyhedral network resulting from the corner- and edge-sharing of BaO12 polyhedra and ClO4 tetrahedra. Each BaO12 polyhedron shares corners with eight ClO4 tetrahedra, and edges with two ClO4 tetrahedra. Each ClO4 tetrahedron shares corners with four BaO12 polyhedra, and an edge with the other BaO12 polyhedron.

  16. Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes

    OpenAIRE

    Makuch, Martin

    2007-01-01

    Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in g...

  17. Solid Phase Synthesis of Anhydrous Zinc Borate from Zinc and Boron Oxide and Utilization as a Flame Retardant in Dye and Textile

    OpenAIRE

    AYAR, Barış; GÜRÜ, Metin; ÇAKANYILDIRIM, Çetin

    2014-01-01

    Durability of materials to flame and stability at high temperatures are very important in order to increase the field of use. Non-flammability is not the only requirement materials should not have toxic gas products during the burning, also. Anhydrous zinc borate was chosen as flame retardant due to its advantages, such as; light weight, high melting point, low thermal expansion, and intrinsic smoke suppressant and corrosion resistance properties. For the synthesis, metallic zinc and anhydrou...

  18. The use of anhydrous CeCl{sub 3} as a recyclable and selective catalyst for the acetalization of aldehydes and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Claudio C.; Mendes, Samuel R.; Ziembowicz, Francieli I. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica; Lenardao, Eder J.; Perin, Gelson [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias

    2010-07-01

    An efficient, clean, chemoselective and solvent-free method for the synthesis of ketone and aldehyde dimethyl acetals was developed using trimethyl orthoformate and commercially available anhydrous CeCl{sub 3} as a recyclable catalyst. The method is general and affords the protected carbonyl compounds in good yields and under mild conditions, including aryl and alkyl ketones and activated aldehydes. The catalyst could be utilised directly for 3 cycles, without significant loss of activity. (author)

  19. Two expedient ‘one-pot’ methods for synthesis of -aryl--mercaptoketones over anhydrous potassium carbonate or amberlyst-15 catalyst

    Indian Academy of Sciences (India)

    Chayan Guha; Rina Mondal; Rammohan Pal; Asok K Mallik

    2013-11-01

    Two expedient one-pot methods have been developed for synthesis of -aryl--mercaptoketones using acetophenones, benzaldehydes and thiols as starting materials. The methods involve microwave irradiation (5min) of 1:1 mixtures of acetophenones and benzaldehydes over neutral alumina supported anhydrous potassium carbonate or amberlyst-15 in the first step, and that is followed by addition of thiol to the resulting material and keeping at room temperature for 1.5 h.

  20. Determining the amount of anhydrous alcohol evaporated in vertical cylindrical tanks; Determinacao da quantidade de alcool etilico anidro evaporado em tanques cilindricos verticais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elcio Cruz de [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In order to assess the anhydrous alcohol evaporated amount in vertical cylindrical tanks was developed a calculation methodology based on the rate of mass transfer of the product, the Reynolds number and the mass transfer coefficient. An Excel spreadsheet was prepared with data entry of the tank and physical and chemical properties of the product (temperature and density). For a temperature of 50 deg C, the volume evaporated reaches values of 0.8% by day. (author)

  1. Formation of GEMS from shock-accelerated crystalline dust in superbubbles

    CERN Document Server

    Westphal, A J

    2004-01-01

    Interplanetary dust particles (IDPs) contain enigmatic sub-micron components called GEMS (Glass with Embedded Metal and Sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ion- izing radiation but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS; they are stoichiometrically enriched in oxygen and systematically deple- ted in S, Mg, Ca and Fe (relative to solar abundances), most have normal (solar) oxygen isotopic compositions, they exhibit a strikingly narrow size distribution (0.1-0.5 $\\mu$m diameter), and some of them contain ``relict'' crystals within their glass matrices. We show that these properties are incon- sistent with amorphization by particles accelerated by diffusive shock accel- eration. Instead, we propose that GEMS are formed from crystalline grains that condense in outflows from m...

  2. The influence of excipients on the stability of the moisture sensitive drugs aspirin and niacinamide: comparison of tablets containing lactose monohydrate with tablets containing anhydrous lactose.

    Science.gov (United States)

    Du, J; Hoag, S W

    2001-01-01

    The purpose of this study is to test the hypothesis that in tablet formulations, moisture-sensitive drugs formulated with lactose monohydrate have the same stability as formulations containing anhydrous lactose, and to characterize the kinetics of niacinamide degradation in the solid state. Aspirin and niacinamide decomposition were used as indicators of stability. Aspirin and niacinamide tablets containing either lactose monohydrate or anhydrous lactose were separately investigated at different temperatures and relative humidities; the stability tests were done at 25 degrees C--60% RH, 40 degrees C--80% RH, 60 degrees C--60% RH, 60 degrees C--80% RH, and 80 degrees C--80% RH. Official U.S. Pharmacopeia methods were used for the aspirin and niacinamide assays. Statistical analysis showed that tablets containing lactose monohydrate have the same stability as tablets containing anhydrous lactose, which means that even though water is present in the crystal structure, the bound water does not influence the reaction rate. In addition, niacinamide degradation in the solid-state can be described by a third order rate equation.

  3. Lower Nitrous Oxide Emissions from Anhydrous Ammonia Application Prior to Soil Freezing in Late Fall Than Spring Pre-Plant Application.

    Science.gov (United States)

    Tenuta, Mario; Gao, Xiaopeng; Flaten, Donald N; Amiro, Brian D

    2016-07-01

    Fall application of anhydrous ammonia in Manitoba is common but its impact on nitrous oxide (NO) emissions is not well known. A 2-yr study compared application before freeze-up in late fall to spring pre-plant application of anhydrous ammonia on nitrous oxide (NO) emissions from a clay soil in the Red River Valley, Manitoba. Spring wheat ( L.) and corn ( L.) were grown on two 4-ha fields in 2011 and 2012, respectively. Field-scale flux of NO was measured using a flux-gradient micrometeorological approach. Late fall treatment did not induce NO emissions soon after application or in winter likely because soil was frozen. Application time did alter the temporal pattern of emissions with late fall and spring pre-plant applications significantly increasing median daily NO flux at spring thaw and early crop growing season, respectively. The majority of emissions occurred in early growing season resulting in cumulative emissions for the crop year being numerically 33% less for late fall than spring pre-plant application. Poor yield in the first year with late fall treatment occurred because of weed and volunteer growth with delayed planting. Results show late fall application of anhydrous ammonia before freeze-up increased NO emissions at thaw and decreased emissions for the early growing season compared to spring pre-plant application. However, improved nitrogen availability of late fall application to crops the following year is required when planting is delayed because of excessive moisture in spring.

  4. Anhydrate to hydrate solid-state transformations of carbamazepine and nitrofurantoin in biorelevant media studied in situ using time-resolved synchrotron X-ray diffraction

    DEFF Research Database (Denmark)

    Bøtker, Johan Peter; Rantanen, Jukka; Arnfast, Lærke

    2016-01-01

    with different biorelevant media, simulated fasted and fed state intestinal fluids containing bile salt and dioleoylphosphatidylcholine (DOPC) micelles, DOPC/sodium dodecyl sulfate (SDS) mixture, bile salt solution and water. Two anhydrate compounds (carbamazepine, CBZ and nitrofurantoin, NF) with different......Abstract Transformation of the solid-state form of a drug compound in the lumen of the gastrointestinal tract may alter the drug bioavailability and in extreme cases result in patient fatalities. The solution-mediated anhydrate-to-hydrate phase transformation was examined using an in vitro model...... analysis, PCA) and compared to those for nitrofurantoin (NF). The study showed that the solution-mediated phase transformation of CBZ anhydrate was remarkably faster in the DOPC/SDS medium compared to transformation in all the other aqueous dispersion media. The conversion time for CBZ anhydrate in water...

  5. Particle Lifting Processes in Dust Devils

    Science.gov (United States)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-10-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  6. Elemental tracers for Chinese source dust

    Institute of Scientific and Technical Information of China (English)

    张小曳; 张光宇; 朱光华; 张德二; 安芷生; 陈拓; 黄湘萍

    1996-01-01

    The mass-particle size distributions of 10 dust-carrying elements in aerosol particles were determined tor 12 sites in desert regions of northern China. The desert dust is proved to he of origin of eolian loess deposited on the Loess Plateau. Their transport to the loess was mainly attributable to the non-dust storm processes under the interglacial climate condition. The impact ot" dust storm on the accumulation of the loess increased in the glacial stage. On the basis of the signatures of 4 dust elements (Al. Fe, Mg and Sc). Chinese dust is believed to have 3 major desert sources (northwestern deserts, northern high dust deserts and northern low dust deserts). With a chemical element balance model, an elemental tracer system is established to proportion the export of China-source dust.

  7. Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than -100 nT)

    Science.gov (United States)

    Gonzalez, Walter D.; Tsurutani, Bruce T.

    1987-01-01

    An analysis of ISEE-3 field and plasma data shows that 10 intense magnetic storms that occurred in 1979 were caused by long-duration, large-amplitude (13-30 nT) and negative (less than -10 nT) IMF Bz events associated with interplanetary duskward-electric fields of greater than 5 mV/m. The results suggest that these criteria may be used as predictors of intense storms. A study of opposite polarity (northward) Bz events with the same criteria shows that their occurrence is similar both in number and in their relationship to interplanetary disturbances. The amplitudes of the storms were not found to vary with shock strengths.

  8. Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere

    Science.gov (United States)

    Wang, Chengrui; Rankin, Robert; Zong, Qiugang

    2015-04-01

    Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.

  9. New Evidence for Magnetic Reconnection in the Tail of Interplanetary Magnetic Cloud

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ding-Kun; WEI Feng-Si; FENG Xue-Shang; YANG Fang

    2005-01-01

    @@ We analyse the WIND data of an interplanetary magnetic cloud (MC) on 2 November 2001, and find new evidences for magnetic reconnection in the tail of this MC. In the MC tail, the largely dip and the large change of the orientation of the magnetic field occurred simultaneously, △θ≈ 45°, and △φ changed from 90° to 320°. Correspondingly, the number density of ions increased, and the superthermal electrons were heated and accelerated,however its number density decreased. Meanwhile, inverse jets and Hall term were observed. The pitch-angle distributions of the electrons with lower energy and higher energy showed strong turbulence and bi-direction flow, respectively. The plasma wave activity enhanced near the electron plasma frequency, fpe and 2 fpe. These important physical characteristics are new evidences for magnetic reconnection existing in interplanetary space.

  10. Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles

    CERN Document Server

    Kubo, Yûki; Sato, Tatsuhiko

    2015-01-01

    Solar energetic particles (SEPs) are one of the extreme space weather phenomena. A huge SEP event increases the radiation dose received by aircrews, who should be warned of such events as early as possible. We developed a warning system for aviation exposure to SEPs. This article describes one component of the system, which calculates the temporal evolution of the SEP intensity and the spectrum immediately outside the terrestrial magnetosphere. To achieve this, we performed numerical simulations of SEP transport in interplanetary space, in which interplanetary SEP transport is described by the focused transport equation. We developed a new simulation code to solve the equation using a set of stochastic differential equations. In the code, the focused transport equation is expressed in a magnetic field line coordinate system, which is a non-orthogonal curvilinear coordinate system. An inverse Gaussian distribution is employed as the injection profile of SEPs at an inner boundary located near the Sun. We applie...

  11. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    Science.gov (United States)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.; Yuan, C.-J.; Lui, A. T. Y.; Spence, H. E.; Blake, J. B.; Baker, D. N.; Reeves, G. D.

    2016-06-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ˜1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or "dropout echoes", constitute a new phenomenon referred to as a "drifting electron dropout" with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ˜1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  12. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    Science.gov (United States)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  13. INTERPLANETARY SCINTILLATION RADIO SOURCES DETECTED WITH THE MEXICAN ARRAY RADIO TELESCOPE (MEXART)

    Science.gov (United States)

    Mejia Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, A.; Aguilar-Rodriguez, E.; Andrade-Mascote, E.; Carrillo-Vargas, A.

    2009-12-01

    The Mexican Array Radio Telescope (MEXART) has an antenna composed by 4096 full-wavelength dipoles, covering about 9800 square meters. The instrument is primary devoted to carry out observations of compact stelar radio sources presenting Interplanetary Scintillation (IPS) at 140 MHz. The IPS technique is a very useful tool to perform observations of large-scale solar wind density disturbances in the inner heliosphere at heliocentric ranges where no other instruments can cover. These observations can help to track the evolution of CMEs and shocks in the interplanetary medium. We present the first catalog of IPS sources detected with the MEXART. We show the power spectrum analysis to obtain information of solar wind velocity and density.

  14. Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    Science.gov (United States)

    Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.

    1985-01-01

    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.

  15. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  16. The Effect of Interplanetary Scintillation on Epoch of Reionisation Power Spectra

    CERN Document Server

    Trott, Cathryn M

    2015-01-01

    Interplanetary Scintillation (IPS) induces intensity fluctuations in small angular size astronomical radio sources via the distortive effects of spatially and temporally varying electron density associated with outflows from the Sun. These radio sources are a potential foreground contaminant signal for redshifted HI emission from the Epoch of Reionisation (EoR) because they yield time-dependent flux density variations in bright extragalactic point sources. Contamination from foreground continuum sources complicates efforts to discriminate the cosmological signal from other sources in the sky. In IPS, at large angles from the Sun applicable to EoR observations, weak scattering induces spatially and temporally correlated fluctuations in the measured flux density of sources in the field, potentially affecting the detectability of the EoR signal by inducing non-static variations in the signal strength. In this work, we explore the impact of interplanetary weak scintillation on EoR power spectrum measurements, acc...

  17. Polar solar wind and interstellar wind properties from interplanetary Lyman-alpha radiation measurements

    Science.gov (United States)

    Witt, N.; Blum, P. W.; Ajello, J. M.

    1981-01-01

    The analysis of Mariner 10 observations of Lyman-alpha resonance radiation shows an increase of interplanetary neutral hydrogen densities above the solar poles. This increase is caused by a latitudinal variation of the solar wind velocity and/or flux. Using both the Mariner 10 results and other solar wind observations, the values of the solar wind flux and velocity with latitude are determined for several cases of interest. The latitudinal variation of interplanetary hydrogen gas, arising from the solar wind latitudinal variation, is shown to be most pronounced in the inner solar system. From this result it is shown that spacecraft Lyman-alpha observations are more sensitive to the latitudinal anisotropy for a spacecraft location in the inner solar system near the downwind axis.

  18. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  19. The Interplanetary Network Supplement to the HETE-2 Gamma-Ray Burst Catalog

    CERN Document Server

    Hurley, K; Barraud, C; Pelangeon, A; Boër, M; Vanderspek, R; Ricker, G; Mazets, E; Golenetskii, S; Frederiks, D D; Pal'shin, V D; Aptekar, R L; Smith, D M; Wigger, C; Hajdas, W; Rau, A; Von Kienlin, A; Mitrofanov, I G; Golovin, D V; Kozyrev, A S; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Barthelmy, K Harshman S; Cline, T; Cummings, J; Gehrels, N; Krimm, H; Yamaoka, K; Ohno, M; Fukazawa, Y; Hanabata, Y; Takahashi, T; Tashiro, M; Terada, Y; Murakami, T; Makishima, K; Guidorzi, C; Frontera, F; Montanari, C E; Rossi, F; Trombka, J; McClanahan, T; Goldsten, R Starr J; Gold, R

    2009-01-01

    Between 2000 November and 2006 May, one or more spacecraft of the interplanetary network (IPN) detected 226 cosmic gamma-ray bursts that were also detected by the FREGATE experiment aboard the HETE-II spacecraft. During this period, the IPN consisted of up to nine spacecraft, and using triangulation, the localizations of 154 bursts were obtained. We present the IPN localization data on these events.

  20. THE INTERPLANETARY NETWORK SUPPLEMENT TO THE HETE-2 GAMMA-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Atteia, J.-L.; Barraud, C.; Pelangeon, A. [IRAP, Universite de Toulouse, CNRS, 14, avenue Edouard Belin, F-31400 Toulouse (France); Boeer, M. [Observatoire de Haute-Provence, 04870 Saint Michel l' Observatoire (France); Vanderspek, R.; Ricker, G. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Mazets, E.; Golenetskii, S.; Frederiks, D. D.; Pal' shin, V. D.; Aptekar, R. L. [Ioffe Physico-Technical Institute of the Russian Academy of Sciences, St. Petersburg, 194021 (Russian Federation); Smith, D. M. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Wigger, C.; Hajdas, W. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Rau, A.; Von Kienlin, A. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, Postfach 1312, Garching 85748 (Germany); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S., E-mail: khurley@ssl.berkeley.edu [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); and others

    2011-12-01

    Between 2000 November and 2006 May, one or more spacecraft of the interplanetary network (IPN) detected 226 cosmic gamma-ray bursts that were also detected by the French Gamma-Ray Telescope experiment on board the High Energy Transient Experiment 2 spacecraft. During this period, the IPN consisted of up to nine spacecraft, and using triangulation, the localizations of 157 bursts were obtained. We present the IPN localization data on these events.

  1. The Interplanetary Network Supplement to the BeppoSAX Gamma-Ray Burst Catalogs

    CERN Document Server

    Hurley, K; Frontera, F; Montanari, E; Rossi, F; Feroci, M; Mazets, E; Golenetskii, S; Frederiks, D D; Pal'shin, V D; Aptekar, R L; Cline, T; Trombka, J; McClanahan, T; Starr, R; Atteia, J -L; Barraud, C; Pelangeon, A; Boer, M; Vanderspek, R; Ricker, G; Mitrofanov, I G; Golovin, D V; Kozyrev, A S; Litvak, M L; Sanin, A B; Boynton, W; Fellows, C; Harshman, K; Goldsten, J; Gold, R; Smith, D M; Wigger, C; Hajdas, W

    2010-01-01

    Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events.

  2. The global atmospheric loading of dust aerosols

    Science.gov (United States)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  3. Dust characterization in FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Angeli, M., E-mail: deangeli@ifp.cnr.it [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Maddaluno, G. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Laguardia, L. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Perelli Cippo, E. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Apicella, M.L. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Conti, C. [Istituto per la Conservazione e la Valorizzazione dei Beni Culturali – CNR, Milan (Italy); Giacomi, G. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Grosso, G. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy)

    2015-08-15

    Dust present in the vessel of FTU has been collected and analysed. Being FTU a device with full metal plasma facing components for the whole life and equipped with a liquid lithium limiter (LLL) make FTU of special interest from a point of view of dust studies. Analyses were conducted by standard dust analysis methods and by dedicated analysis, as X-rays and neutron diffraction, to investigate the presence of lithium compounds due the presence of the LLL in FTU. Dust collected near the LLL presents a different elemental composition, namely Li compounds, compared to the dust collected in the rest of the vessel; in particular LiO{sub 2}, LiOH, and Li{sub 2}CO{sub 3}. On the basis of these results, the formation of Li{sub 2}CO{sub 3} is proposed via a two steps process. Results of fuel retention measured by thermal desorption spectroscopy (TDS) method show that fuel retention should not be an issue for FTU.

  4. The Cubesat mission to study Solar Particles (CuSP), an interplanetary cubesat

    Science.gov (United States)

    Christian, E. R.; Desai, M. I.; Allegrini, F.; Jahn, J. M.; Kanekal, S.; Livi, S. A.; Murphy, N.; Ogasawara, K.; Paschalidis, N.

    2015-12-01

    The Cubesat mission to study Solar Particles (CuSP) is a funded 6U interplanetary cubesat scheduled to fly on the EM-1 SLS launch in 2018. CuSP has three small but capable instruments from the Southwest Research Institute (SwRI), NASA Goddard Space Flight Center (GSFC), and the NASA Jet Propulsion Laboratory (JPL). Its primary scientific goal is high-cadence precise measurements of the suprathermal (ST) tail in the solar wind. The suprathermal tail is the critical bridge between the thermal solar wind plasma and the dangerous high-energy solar energetic particles. CuSP also measures the energy spectra and composition of the ~1-50 MeV/nucleon H-Fe ions that evolve from the STs and the interplanetary magnetic field that is closely coupled to the particle distributions. CuSP is a stepping-stone to future interplanetary cubesats, smallsats, and constellations for both scientific and space weather applications. The challenges for this mission and future missions will also be discussed.

  5. Relationship between Interplanetary (IP) Parameters and Geomagnetic Indices during IP Shock Events of 2005

    Indian Academy of Sciences (India)

    Jatin Rathod; Girija Rajaram; Radharani Alyana; A. Chandrasekhar Reddy; D. S. Misra; C. G. Patil; M. Y. S. Prasad; A. G. Ananth

    2008-03-01

    In the present study, we investigate the possible relationship of IP parameters of solar wind and interplanetary magnetic field with ground-based geomagnetic indices. To carry out the study, we take all the IP shock events listed by Proton Monitor onboard Solar and Heliospheric Observatory (SOHO) during 2005, and plot the time variations of all the IP parameters and geomagnetic parameters (±5 days), centered at the shock arrival time. Next, we obtain scatter plots of absolute values of solar wind parameters such as Vsw, Nsw and Interplanetary Magnetic Field (IMF) components Bx, By, Bz and total B with the values of geomagnetic parameters such as Dst, Kp indices, dayside Magnetopause (MP) distance and Cosmic-Ray Neutron Monitor count (CRNM). The scatter plots show that before the IP shock, the pattern is random with no clear relationship. Following the shock, a clear pattern emerges with a type of relationship being seen – clear for SHARP shocks and less clear for DIFFUSE shocks. A total of 10 shock events for 2005 have been studied. Typical examples of this behaviour are the shock events of January 21, 2005 and May 15, 2005. Our study suggests a definite correlation between changes in the solar wind and interplanetary magnetic field parameters and ground-based geomagnetic response. We are trying to obtain quantitative relationships between these for shock events of 2005.

  6. Interplanetary coronal mass ejections at Mercury: Database and effects on the magnetosphere

    Science.gov (United States)

    Winslow, Reka; Anderson, Brian J.; Schwadron, Nathan; Lugaz, Noé; Farrugia, Charles; Philpott, Lydia; Paty, Carol

    2016-07-01

    We use observations from the MESSENGER spacecraft, in orbit around Mercury, to investigate interplanetary coronal mass ejections (ICMEs) near 0.3 AU. MESSENGER is the first spacecraft since Helios 1 and 2 in the 1980s to make in situ measurements of the interplanetary medium at heliocentric distances < 0.5 AU. Because extensive observations, both remote sensing and in-situ, are available throughout the MESSENGER mission, these data present a unique opportunity for observing the innermost heliosphere and the development of the solar wind and interplanetary transients. We catalog ICME events observed by the MESSENGER Magnetometer between 2011 and 2015 and present statistical analyses of ICME properties at Mercury. In addition, using existing data sets of ICMEs at 1 AU, we investigate key ICME property changes from Mercury to 1 AU. Using our database of nearly 70 ICMEs, we also statistically characterize Mercury's magnetosphere during times of ICMEs, when Mercury's magnetosphere becomes significantly altered. We conduct a systematic investigation of the large-scale processes in Mercury's magnetosphere during extreme solar wind conditions, by studying the motion of the bow shock and magnetopause boundaries, erosion of the dayside magnetosphere, the size, extent, and plasma pressure of the cusp region, and the plasma precipitation to the surface.

  7. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    Science.gov (United States)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  8. Forbush decreases in cosmic-ray intensity and large-scale magnetic configuration of interplanetary

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin [Aligarth Muslim Univ., Aligarth (India). Dept. of Physics

    2000-06-01

    The paper presents the results of an analysis to study the effects of shock front, sheath region and driver gas (ejecta) on the transient decreases of cosmic-ray intensity. In this work interplanetary plasma and field data along with hourly neutron monitor cosmic-ray intensity records have been subjected to superposed epoch analysis. The variations in interplanetary plasma/field parameters (viz. solar wind speed, magnetic field strength and its variance) and cosmic-ray intensity during the passage of individual transient interplanetary structures have also studied. The sudden decrease in intensity starts after the arrival of certain shocks. The shock front itself is not sufficient for the Forbush decreases but the turbulence generated in sheath region appears to be its main cause. A shock structure is that the extent of the shock front is much more than the ejecta and magnetic turbulence is usually present in the limited region of sheath. Based on this, the reason behind the observation that all the shock-associated disturbances do not produce Forbush decreases on reaching the Earth is discussed.

  9. Statistical Study of Shocks and CMEs Associated With Interplanetary Type II Bursts

    Science.gov (United States)

    Aguilar-Rodriguez, E.; Gopalswamy, N.; MacDowall, R.; Yashiro, S.; Kaiser, M. L.

    2005-05-01

    We present a study of some spectral properties associated with interplanetary Type II radio emission. Type II radio bursts are signatures of violent eruptions from the Sun that result in shock waves propagating through the corona and the interplanetary medium. We investigated the relative bandwidth of all the type II bursts observed by the Radio and Plasma Wave Experiment (WAVES) on board the Wind spacecraft from 1997 up to 2003. We obtained three sets of events, based on the frequency domain of occurrence: 109 events in the low frequency domain (30 KHz to 1000 kHz detected by the RAD1 receiver), 216 events in the high frequency domain (1-14 MHz, observed by the RAD2 receiver), and 73 events that spanned both domains (RAD1 and RAD2). We present statistical results for the bandwidth-to-frequency ratio (BFR) in the three subsets as well as a comparision of our results with the Type II solar radio bursts observed by ISEE-3 radio experiment, which is similar to WAVES/RAD1. We analyzed the bandwidth and BFR evolution with the heliocentric distance as well as an analysis of drift rate magnitude of type II radio bursts and its starting frequency. We also present some properties of shocks and coronal mass ejections associated with interplanetary type II bursts. This work is partially supported by NSF/SHINE (ATM 0204588)

  10. Travelling interplanetary shocks: their local orientations and inference of their global characteristics

    Science.gov (United States)

    Berdichevsky, D. B.; Reames, D. V.; Lepping, R. P.; Schwenn, R.; Farrugia, C. J.; Wu, C.; MacDowall, R. J.; Kaiser, M. L.; Lazarus, A. J.; Kaspers, J. C.

    2004-05-01

    The orientation of the evaluated normal direction to the interplanetary shock tells us of its local propagation in the interplanetary medium. It has recently been established for case studies like the Oct 19, 1995 and the July 15, 2000 (1) interplanetary magnetic clouds that the orientation of the respective shock normals appear consistent with their overall evolution, e.g., orientation and propagation of the driver. We test this result for a series of shocks observed simultaneously at widely extended locations. Preliminary single case studies (Jan 1978, Sept 1978, and Apr 1979) are used to infer the global geometry of the shock. We examine the relationship between the existence of a strong shock and the level of energization and intensity of the gradual solar energetic particle events. We will test hypotheses on the possible correlation between the extension of the strong shock and the level of energization and flux intensity observed for gradual solar energetic particle events. For selected cases, we also apply type II radio burst remote sensing using ISEE-3 radio data. Also we compare with some unusual shocks of the current solar cycle. For this purpose we will mainly use Wind magnetic field and plasma data from the MFI and SWE instruments, as well as radio emissions from its radio receiver WAVES. The shock normal will be tested against shock passage at other spacecraft (ACE, IMP-8). [(1) see e.g. Lepping et al, Sol Phys, 204, 287, 2001.

  11. Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction

    Directory of Open Access Journals (Sweden)

    P. Bobik

    2013-01-01

    Full Text Available The cosmic rays differential intensity inside the heliosphere, for energy below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2D (radius and colatitude Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift, and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0, was used to determine the effects on the differential intensity of Proton at 1 AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions.

  12. Coronal type III radio bursts and their X-ray flare and interplanetary type III counterparts

    CERN Document Server

    Reid, Hamish A S

    2016-01-01

    Type III bursts and hard X-rays are both produced by flare energetic electron beams. The link between both emissions has been investigated in many previous studies, but no statistical studies have compared both coronal and interplanetary type III bursts with X-ray flares. Using coronal radio events above 100 MHz exclusively from type III bursts, we revisited long-standing questions: Do all coronal type III bursts have X-ray counterparts. What correlation, if any, occurs between radio and X-ray intensities. What X-ray and radio signatures above 100 MHz occur in connection with interplanetary type III bursts below 14 MHz. We analysed data from 2002 to 2011 starting with coronal type III bursts above 100 MHz. We used RHESSI X-ray data greater than 6 keV to make a list of 321 events that have associated type III bursts and X-ray flares, encompassing at least 28 percent of the initial sample of type III events. We examined the timings, intensities, associated GOES class, and any interplanetary radio signature. For...

  13. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  14. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  15. Low to Extremely Low Water Abundances Measured in Nominally Anhydrous Minerals in Mafic to Granitic Apollo Rock Clasts

    Science.gov (United States)

    Simon, J. I.; Christoffersen, R.; Wang, J.; Alexander, C. M. O'D.; Mills, R. D.; Hauri, E. H.

    2017-01-01

    Lunar sample-based volatile studies have focused on assessing the inventory and distribution of water in the Moon. Some have focused on the relatively young mare basalts and pyroclastic glasses, which result from partial melting of the relatively young lunar mantle. Less certain is the water inventory for the oldest materials available, which have the greater potential to record the earliest history of volatiles in the Moon (and thus provide evidence for the "wet" vs. "dry" accretion hypotheses of the Earth-Moon system. Studies of volatiles in ancient lunar rocks have largely focused on apatite. One recent FTIR (Fourier Transform Infrared Radiometer) study of plagioclase reported a relatively "wet" (approximately 320 parts per million) magma for primordial ferroan anorthosites (FANs). Another, a NanoSIMS study of alkali feldspar, reported a "wet" (approximately 1 weight percentage) felsic magma, but due to the differentiation processes required for silicic magmatism in the lunar crust, predicted an essentially "dry" (less than 100 parts per million) bulk Moon. Thus, despite evidence that appears to complicate the early "dry" Moon paradigm, there is no apparent unanimity among the measurements, even those on apatite. This disparity is clearly seen by the order of magnitude different water estimates for lunar "alkali-rich suite rocks" (Fig. 1). Some of the apparent differences may be explained by recent improvements in the apatite-based water estimates that better account for relative compatibilities of OH-, Cl, and F. In the present work, we seek to expand our understanding of the volatile abundances in early formed lunar magmas, their source reservoirs, and to address the potential role that felsic magmas play on the lunar hydrogen budget over time by employing NanoSIMS analysis of nominally anhydrous minerals.

  16. Planetary Magnetosphere Probed by Charged Dust Particles

    Science.gov (United States)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  17. Dust remobilization in fusion plasmas

    CERN Document Server

    Tolias, P; De Angeli, M; De Temmerman, G; Ripamonti, D; Riva, G; Bykov, I; Shalpegin, A; Vignitchouk, L; Brochard, F; Bystrov, K; Bardin, S; Litnovsky, A

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions - detachment, sliding, rolling - are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  18. Coal dust: the real cost

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S. [Independent Editorial and Technical Services, Oxford (United Kingdom)

    1998-04-01

    A recent British court case awarded retired coal miners compensation for asthma, chronic bronchitis and emphysema. Although the sums involved were small, large numbers of retired coal miners are likely to be eligible for such awards, as British safety in mines was not substantially worse than most other producers at the time, and was better than many. In some parts of the world safety standards are still poor. Dust suppression should be used on coal cutting machines, and dust controlled in transit. This may prove less expensive than it initially appears since the coal dust can be used instead of lost. This particularly important for transport in open trucks. Employers must also ensure that the safety equipment supplied is both comfortable and used. 3 refs., 5 photos.

  19. Microwave Emission from Aligned Dust

    CERN Document Server

    Lazarian, A

    2003-01-01

    Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. We discuss potential difficulties associated with this foreground, namely, the existence of different grain populations with very different emission/polarization properties and variations of the polarization yield with grain temperature. In particular, we discuss observational evidence in favor of rotational emission from tiny PAH particles with dipole moments, i.e. ``spinning dust'', and also consider magneto-dipole emission from strongly magnetized grains. We argue that in terms of polarization, the magneto-dipole emission may dominate even if its contribution to total emissivity is subdominant. Addressing polarized emission at frequencies larger than approsimately 100 GHz, we discuss the complications arising from the existence of dust components with different temperatures and possibly different alignment properties.

  20. Polarized Emission from Interstellar Dust

    CERN Document Server

    Vaillancourt, J E

    2006-01-01

    Observations of far-infrared (FIR) and submillimeter (SMM) polarized emission are used to study magnetic fields and dust grains in dense regions of the interstellar medium (ISM). These observations place constraints on models of molecular clouds, star-formation, grain alignment mechanisms, and grain size, shape, and composition. The FIR/SMM polarization is strongly dependent on wavelength. We have attributed this wavelength dependence to sampling different grain populations at different temperatures. To date, most observations of polarized emission have been in the densest regions of the ISM. Extending these observations to regions of the diffuse ISM, and to microwave frequencies, will provide additional tests of grain and alignment models. An understanding of polarized microwave emission from dust is key to an accurate measurement of the polarization of the cosmic microwave background. The microwave polarization spectrum will put limits on the contributions to polarized emission from spinning dust and vibrat...

  1. Evidence for the interplanetary electric potential? WIND observations of electrostatic fluctuations

    Directory of Open Access Journals (Sweden)

    C. Lacombe

    Full Text Available In the solar wind at 1 AU, coherent electrostatic waveforms in the ion acoustic frequency range (~ 1 kHz have been observed by the Time Domain Sampler (TDS instrument on the Wind spacecraft. Small drops of electrostatic potential (Df > 10-3 V have been found across some of these waveforms, which can thus be considered as weak double layers (Mangeney et al., 1999. The rate of occurrence of these potential drops, at 1 AU, is estimated by a comparison of the TDS data with simultaneous data of another Wind instrument, the Thermal Noise Receiver (TNR, which measures continuously the thermal and non-thermal electric spectra above 4 kHz. We assume that the potential drops have a constant amplitude and a constant rate of occurrence between the Sun and the Earth. The total potential drop between the Sun and the Earth, which results from a succession of small potential drops during the Sun-Earth travel time, is then found to be about 300 V to 1000 V, of the same order of magnitude as the interplanetary potential implied by a two-fluid or an exospheric model of the solar wind: the interplanetary potential may manifest itself as a succession of weak double layers. We also find that the hourly average of the energy of the non-thermal ion acoustic waves, observed on TNR between 4 and 6 kHz, is correlated to the interplanetary electrostatic field, parallel to the spiral magnetic field, calculated with a two-fluid model: this is another evidence of a relation between the interplanetary electrostatic field and the electrostatic fluctuations in the ion acoustic range. We have yet to discuss the role of the Doppler effect, which is strong for ion acoustic waves in the solar wind, and which can bias the measure of the ion acoustic wave energy in the narrow band 4–6 kHz.

    Key words. Interplanetary physics (plasma waves and turbulence; solar wind plasma Space plasma physics (electro-static structures

  2. [Effect of lunar dust on humans: -lunar dust: regolith-].

    Science.gov (United States)

    Morimoto, Yasuo; Miki, Takeo; Higashi, Toshiaki; Horie, Seichi; Tanaka, Kazunari; Mukai, Chiaki

    2010-09-01

    We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.

  3. Efficient radiative transfer in dust grain mixtures

    CERN Document Server

    Wolf, S

    2003-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially with increasing optical depth, converging towards the temperature distribution resulting from the approximation of mean dust grain parameters, and (2) the resulting spectral energy distributions do not differ by more than 10% if >= 2^5 grain sizes are considered which justifies the mean parameter approximation and the many results obtained under its assumption so far. Nevertheless, the dust grain temperature dispersion at the inner boundary of a dust shell may amount to >>100K and has therefore to be considered in the cor...

  4. Dust Mitigation for the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The lunar surface is to a large extent covered with a dust layer several meters thick. Known as lunar regolith, it poses a hazard in the form of dust clouds being...

  5. Dust transport into Martian polar latitudes

    Science.gov (United States)

    Murphy, J. R.; Pollack, J. B.

    1992-01-01

    The presence of suspended dust in the Martian atmosphere, and its return to the planet's surface, is implicated in the formation of the polar layered terrain and the dichotomy in perennial CO2 polar cap retention in the two hemispheres. A three dimensional model was used to study Martian global dust storms. The model accounts for the interactive feedbacks between the atmospheric thermal and dynamical states and an evolving radiatively active suspended dust load. Results from dust storm experiments, as well as from simulations in which there is interest in identifying the conditions under which surface dust lifting occurs at various locations and times, indicate that dust transport due to atmospheric eddy motions is likely to be important in the arrival of suspended dust at polar latitudes. The layered terrain in both polar regions of Mars is interpreted as the reality of cyclical episodes of volatile (CO2, H2O) and dust deposition.

  6. Durable Dust Repellent Coating for Metals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Durable Dust Repellent Coating (DDRC) consists of nano-phase silica, titania, or other oxide coatings to repel dust in a vacuum environment over a wide range of...

  7. Stardust interstellar dust calibration: Hydrocode modeling of impacts on Al-1100 foil at velocities up to 300 km s-1 and validation with experimental data

    Science.gov (United States)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Howard, Lauren E.; Hillier, Jon K.; Starkey, Natalie A.; Wozniakiewicz, Penny J.; Cole, Mike J.

    2012-04-01

    We present initial results from hydrocode modeling of impacts on Al-1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys' AUTODYN to model impacts of micrometer-scale, and smaller projectiles onto Stardust foil (100 μm thick Al-1100) at velocities up to 300 km s-1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from glass) to 7.8 kg m-3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m-3.

  8. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  9. History and Applications of Dust Devil Studies

    Science.gov (United States)

    Lorenz, Ralph D.; Balme, Matthew R.; Gu, Zhaolin; Kahanpää, Henrik; Klose, Martina; Kurgansky, Michael V.; Patel, Manish R.; Reiss, Dennis; Rossi, Angelo Pio; Spiga, Aymeric; Takemi, Tetsuya; Wei, Wei

    2016-11-01

    Studies of dust devils, and their impact on society, are reviewed. Dust devils have been noted since antiquity, and have been documented in many countries, as well as on the planet Mars. As time-variable vortex entities, they have become a cultural motif. Three major stimuli of dust devil research are identified, nuclear testing, terrestrial climate studies, and perhaps most significantly, Mars research. Dust devils present an occasional safety hazard to light structures and have caused several deaths.

  10. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  11. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  12. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    compositions of the bulk dust samples. Traces of minerals in the clay fraction of the Harmattan period dust may have their origin in the Bodélé Depression or other saline environments. The Harmattan dust deposited in Ghana shows only little resemblance to dust from the Chad basin and with Harmattan dust...... deposited in Niger. This study therefore suggests that the dust deposited during the Harmattan period in northern Ghana is not under significant influence of sediments from the Bodélé Depression. Similarity in the mineral and elemental composition of the dust from both the Harmattan and Monsoon periods...

  13. Modeling of dust deposition in central Asia

    Science.gov (United States)

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  14. House dust extracts contain potent immunological adjuvants

    NARCIS (Netherlands)

    Beukelman, C.J.; Dijk, H. van; Aerts, P.C.; Rademaker, P.M.; Berrens, L.; Willers, J.M.N.

    1987-01-01

    A crude aqueous extract of house dust and two house dust subfractions were tested for adjuvant activity in a sensitivity assay performed in mice. Evidence is presented that house dust contains at least two potent immunological adjuvants. One of these, present in both subfractions, was probably endot

  15. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the particles

  16. Dust tori in radio galaxies

    NARCIS (Netherlands)

    van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.

    2010-01-01

    Aims: We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods: Using VISIR on the VLT, we acquired sub-arcsecond (~0.40 arcsec) resolution N-band images, at a wavelength of 11.85 μm, of the nuclei of a sample of 27 radio gala

  17. A new look at Apollo 17 LEAM data: Nighttime dust activity in 1976

    Science.gov (United States)

    Grün, Eberhard; Horányi, Mihály

    2013-12-01

    One of the unresolved enigmas from the Apollo era is the existence and characteristics of highly electrically charged dust floating above the lunar surface. Potential evidence for this hypothesized phenomenon came from the Lunar Ejecta and Meteorites (LEAM) experiment on Apollo 17. The LEAM instrument consisted of three sets of multi-coincidence dust sensors facing different directions. Recently, new arguments were raised (O'Brien, 2011) that the signals recorded by LEAM may be caused by interferences from heater current switching, which occurred most frequently near sunrise and sunset. In order to shed light on this controversy a new look into the LEAM data was initiated within the Colorado Center for Lunar and Dust and Atmospheric Studies (CCLDAS) team of NASA's Lunar Science Institute (NLSI). The purpose of this analysis is to verify the earlier analysis by Berg et al. (1975), and to find evidence for impacts of interplanetary meteoroids in the LEAM data available to us. A second goal is to find in the LEAM house keeping data evidence for excessive power switching and correlated signals in the LEAM science data. The original analysis by Berg et al. (1975) covered LEAM data during 22 lunations (~22 months) in 1973 and 1974. This data set is no longer available. For the present study, we had access to LEAM data for only about 5 lunations (140 days) in 1976. We analyzed the housekeeping data and observed excessive heating from about 24 h after sunrise until about 24 h before sunset. We defined sunrise and sunset when the LEAM temperature measurement reached -20 °C above which significant solar heating was apparent. For about 9 days around lunar noon the temperatures were so high that LEAM was switched off. During the times of excessive heating LEAM became very noisy. We limit our current analysis to about 24 h before sunset to about 24 h after sunrise when the LEAM temperatures were moderate <60 °C. This carefully analyzed data set of 74.6 days constitutes about

  18. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions

    Science.gov (United States)

    Cornelissen, Gerard; Rutherford, David W.; Arp, Hans Peter H.; Dorsch, Peter; Kelly, Charlene N.; Rostad, Colleen E.

    2013-01-01

    Suppression of nitrous oxide (N2O) emissions from soil is commonly observed after amendment with biochar. The mechanisms accounting for this suppression are not yet understood. One possible contributing mechanism is N2O sorption to biochar. The sorption of N2O and carbon dioxide (CO2) to four biochars was measured in an anhydrous system with pure N2O. The biochar data were compared to those for two activated carbons and other components potentially present in soils—uncharred pine wood and peat—and five inorganic metal oxides with variable surface areas. Langmuir maximum sorption capacities (Qmax) for N2O on the pine wood biochars (generated between 250 and 500 °C) and activated carbons were 17–73 cm3 g–1 at 20 °C (median 51 cm3 g–1), with Langmuir affinities (b) of 2–5 atm–1 (median 3.4 atm–1). Both Qmaxand b of the charred materials were substantially higher than those for peat, uncharred wood, and metal oxides [Qmax 1–34 cm3 g–1 (median 7 cm3 g–1); b 0.4–1.7 atm–1 (median 0.7 atm–1)]. This indicates that biochar can bind N2O more strongly than both mineral and organic soil materials. Qmax and b for CO2 were comparable to those for N2O. Modeled sorption coefficients obtained with an independent polyparameter—linear free-energy relationship matched measured data within a factor 2 for mineral surfaces but underestimated by a factor of 5–24 for biochar and carbonaceous surfaces. Isosteric enthalpies of sorption of N2O were mostly between −20 and −30 kJ mol–1, slightly more exothermic than enthalpies of condensation (−16.1 kJ mol–1). Qmax of N2O on biochar (50000–130000 μg g–1 biochar at 20 °C) exceeded the N2O emission suppressions observed in the literature (range 0.5–960 μg g–1 biochar; median 16 μg g–1) by several orders of magnitude. Thus, the hypothesis could not be falsified that sorption of N2O to biochar is a mechanism of N2O emission suppression.

  19. Modeling Thermal Dust Emission and Implications

    Science.gov (United States)

    Liang, Zhuohan

    2014-01-01

    An accurate model of thermal dust emission at the far-infrared and millimeter wavelengths is important for studying the cosmic microwave background anisotropies and for understanding the cycling of matter and energy between stars and the interstellar medium. I will present results of fitting all-sky one-component dust models with fixed or variable emissivity spectral index to the 210-channel dust spectra from the COBE-FIRAS, the 100 - 240 μm maps from the COBE-DIRBE, and the 94 GHz dust map from the WMAP. I will also discuss the implications of the analysis on understanding astrophysical processes and the physical properties of dust grains.

  20. Reducing Coal Dust With Water Jets

    Science.gov (United States)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  1. Linear Alkylbenzenesulfonates in indoor Floor Dust

    DEFF Research Database (Denmark)

    Wolkoff, Peder; Madsen, Jørgen Øgaard

    1999-01-01

    The amount of Linear Alkylbenzenesulfonates (LAS) in the particle fraction of floor dust sampled from 7 selected public buildings varied between 34 and 1500 microgram per gram dust, while the contents of the fibre fractions generally were higher with up to 3500 microgram LAS/g dust. The use...... of a cleaning agent with LAS resulted in an increase of the amount of LAS in the floor dust after floor wash relative to just before floor wash. However, the most important source of LAS in the indoor floor dust appears to be residues of detergent in clothing. Thus, a newly washed shirt contained 2960 microgram...

  2. Global amount of dust in the universe

    CERN Document Server

    Fukugita, Masataka

    2011-01-01

    It is pointed out that the total amount of dust in the Universe that is produced in stellar evolution in the entire cosmic time is consistent with the observed amount, if we add to the dust amount inferred for galactic discs the amount recently uncovered in galactic haloes and the surrounding of galaxies in reddening of the quasar light passing through the vicinity of galaxies. The inventory concerning the dust closes. This implies that dust produced from stars should survive effectively for the cosmic time, and that a substantial amount of dust is produced in the burning phase of evolved stars of intermedaite mass.

  3. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; Jones, L; Lu, S.; Menut, L.; Mulcahy, J.; Nickovic, S.; Morcrette, J.-J.; Perez, C.; Reid, J. S.; Sekiyama, T. T.; Tanaka, T.; Terradellas, E.; Westphal, D. L.; Zhang, X.-Y.; Zhou, C.-H.

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  4. Adulteration determination of the anhydrous ethanol fuels samples with methanol; Determinacao de adulteracao por metanol em amostras de alcool etilico anidro combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Eduardo; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: eduardoc@dh.com.br; cmota@iq.ufrj.br

    2003-07-01

    A fast test made to evidence an adulteration of anhydrous ethanol with methanol consist in mixing the alcohol with gasoline. A pink coloration indicates the adulteration by methanol. Samples of gasoline A, ethanol and high purity methanol were mixed at different proportions, but no color change was observed. On the other hand, samples of gasoline A, ethanol and formaldehyde 40% showed the characteristic pink coloration, for methanol adulteration. This result indicates that the test is sensible to the presence of formaldehyde, probably presence as impurity or formed by oxidation of the methanol. A lower detection limit of 4.8% of formaldehyde in the alcohol was determined. (author)

  5. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method.

    Science.gov (United States)

    Tezuka, Teruaki; Tadanaga, Kiyoharu; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2006-12-27

    Inorganic-organic hybrid membranes with anhydrous proton conduction were prepared from 3-aminopropyltriethoxysilane and H2SO4 by the sol-gel method. The membrane has a unique structure: a hexagonal phase formed by the stacking of rodlike polysiloxanes with ion complexes of ammonium groups and HSO4- extruded outside. The membranes showed high conductivity of 2 x 10-3 S cm-1 at 200 degrees C under dry atmosphere. In the membrane, protons probably migrate through the outside of the rodlike polysiloxanes along hydrogen-bond chains formed among HSO4- anions.

  6. Ice nucleation properties of agricultural soil dusts

    Science.gov (United States)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  7. Dust Measurements in the Outer Solar System

    CERN Document Server

    Grün, E; Landgraf, M; Grün, Eberhard; Krüger, Harald; Landgraf, Markus

    1999-01-01

    Dust measurements in the outer solar system are reviewed. Only the plasma wave instrument on board Voyagers 1 and 2 recorded impacts in the Edgeworth-Kuiper belt (EKB). Pioneers 10 and 11 measured a constant dust flux of 10-micron-sized particles out to 20 AU. Dust detectors on board Ulysses and Galileo uniquely identified micron-sized interstellar grains passing through the planetary system. Impacts of interstellar dust grains onto big EKB objects generate at least about a ton per second of micron-sized secondaries that are dispersed by Poynting-Robertson effect and Lorentz force. We conclude that impacts of interstellar particles are also responsible for the loss of dust grains at the inner edge of the EKB. While new dust measurements in the EKB are in an early planning stage, several missions (Cassini and STARDUST) are en route to analyze interstellar dust in much more detail.

  8. A lunar dust simulant: CLDS-i

    Science.gov (United States)

    Tang, Hong; Li, Xiongyao; Zhang, Sensen; Wang, Shijie; Liu, Jianzhong; Li, Shijie; Li, Yang; Wu, Yanxue

    2017-02-01

    Lunar dust can make serious damage to the spacecrafts, space suits, and health of astronauts, which is one of the most important problems faced in lunar exploration. In the case of rare lunar dust sample, CLDS-i with high similarity to the real lunar dust is an important objective for studying dust protection and dust toxicity. The CLDS-i developed by the Institute of Geochemistry Chinese Academy Sciences contains ∼75 vol% glass and a little nanophase metal iron (np-Fe0), and with a median particle size about 500 nm. The CLDS-i particles also have complicated shape and sharp edges. These properties are similar to those of lunar dust, and make the CLDS-i can be applied to many fields such as the scientific researches, the treatment technology and toxicological study of lunar dust.

  9. The magnetopause as an intermediary between interplanetary structures and the Earth's inner magnetosphere

    Science.gov (United States)

    Hwang, K.; Sibeck, D. G.; Fok, M. H.; Zheng, Y.; Glocer, A.; Mitchell, D. G.

    2013-12-01

    Observational studies using data from multipoint spacecraft combined with global modeling of the Earth's magnetosphere are presented to understand the magnetopause as an intermediary between interplanetary structures and the inner magnetosphere in response to a variety of solar-wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs), interplanetary shocks, and pressure pulses. The importance of the magnetopause in the solar wind-inner magnetosphere coupling arises not only from its global motion, which determines the location of the magnetopause relative to the drift paths of outer radiation-belt particles, but also from physical processes occurring at the magnetopause boundary layer. Common physical processes occurring at the magnetopause boundary layer include Kelvin-Helmholtz waves and newly-identified velocity fluctuations, which both provide multiple channels to increase, decrease, or modulate inner-magnetospheric particle density/energy fluxes. We have surveyed the data sets, finding a number of events in which THEMIS observed magnetopause boundary waves while the Van Allen Probes observed flux enhancements in response to various solar-wind structures. Ultra-Low-Frequency (ULF) waves are often excited by, or enhanced, during these boundary fluctuations. Simultaneous intensifications and/or modulations in the energetic radiation belt and ring current populations are common. Amongst these events, we present categorized case studies in which inner-magnetospheric fluxes are regulated by different solar wind-magnetopause couplings. These results provide evidence that the energy from the interplanetary structures is transferred into the inner magnetosphere via magnetopause dynamics. We use measurements from multiple spacecraft including the Van Allen Probes and the THEMIS and global MHD simulations to track down the mechanisms by which this transport is implemented.

  10. A New Prediction Method for the Arrival Time of Interplanetary Shocks

    Science.gov (United States)

    Feng, Xueshang; Zhao, Xinhua

    2006-10-01

    Solar transient activities such as solar flares, disappearing filaments, and coronal mass ejections (CMEs) are solar manifestations of interplanetary (IP) disturbances. Forecasting the arrival time at the near Earth space of the associated interplanetary shocks following these solar disturbances is an important aspect in space weather forecasting because the shock arrival usually marks the geomagnetic storm sudden commencement (SSC) when the IMF Bz component is appropriately southward and/or the solar wind dynamic pressure behind the shock is sufficiently large. Combining the analytical study for the propagation of the blast wave from a point source in a moving, steady-state, medium with variable density (wei, 1982; wei and dryer 1991) with the energy estimation method in the ISPM model (smith and dryer 1990, 1995), we present a new shock propagation model (called SPM below) for predicting the arrival time of interplanetary shocks at Earth. The duration of the X-ray flare, the initial shock speed and the total energy of the transient event are used for predicting the arrival of the associated shocks in our model. Especially, the background speed, i.e., the convection effect of the solar wind is considered in this model. Applying this model to 165 solar events during the periods of January 1979 to October 1989 and February 1997 to August 2002, we found that our model could be practically equivalent to the prevalent models of STOA, ISPM and HAFv.2 in forecasting the shock arrival time. The absolute error in the transit time in our model is not larger than those of the other three models for the same sample events. Also, the prediction test shows that the relative error of our model is ≤10% for 27.88% of all events, ≤30% for 71.52%, and ≤50% for 85.46%, which is comparable to the relative errors of the other models. These results might demonstrate a potential capability of our model in terms of real-time forecasting.

  11. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    Science.gov (United States)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  12. Coronal Mass Ejections, Interplanetary Shocks In Relation With Forbush Decreases Associated With Intense Geomagnetic Storms

    Science.gov (United States)

    Verma, P. L.; Patel, Nand Kumar; Prajapati, Mateswari

    2014-05-01

    Coronal mass ejections (CMEs} are the most energetic solar events in which large amount of solar plasma materials are ejected from the sun into heliosphere, causing major disturbances in solar wind plasma, Interplanetary shocks, Forbush decrease(Fds) in cosmic ray intensity and geomagnetic storms. We have studied Forbush decreases associated with intense geomagnetic storms observed at Oulu super neutron monitor, during the period of May 1998-Dec 2006 with coronal mass ejections (CMEs), X-ray solar flares and interplanetary shocks. We have found that all the (100%) Forbush decreases associated with intense geomagnetic storms are associated with halo and partial halo coronal mass ejections (CMEs). The association rate between halo and partial halo coronal mass ejections are found 96.00%and 04.00% respectively. Most of the Forbush decreases associated with intense geomagnetic storms (96.29%) are associated with X-ray solar flares of different categories . The association rates for X-Class, M-Class, and C- Class X -ray solar flares are found 34.62%, 50.00% and 15.38% respectively .Further we have concluded that majority of the Forbush decrease associated with intense geomagnetic storms are related to interplanetary shocks (92.30 %) and the related shocks are forward shocks. We have found positive co-relation with co-relation co-efficient .7025 between magnitudes of Forbush decreases associated with intense geomagnetic storms and speed of associated coronal mass ejections. Positive co-relation with co-relation co-efficient 0.48 has also been found between magnitudes of intense geomagnetic storms and speed of associated coronal mass ejections.

  13. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    Science.gov (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  14. Presolar Grains from Novae: Evidence from Neon and Helium Isotopes in Comet Dust Collections

    CERN Document Server

    Pepin, Robert O; Gehrz, Robert D; Starrfield, Sumner; 10.1088/0004-637X/742/2/86

    2012-01-01

    Presolar grains in meteorites and interplanetary dust particles (IDPs) carry non-solar isotopic signatures pointing to origins in supernovae, giant stars, and possibly other stellar sources. There have been suggestions that some of these grains condensed in the ejecta of classical nova outbursts, but the evidence is ambiguous. We report neon and helium compositions in particles captured on stratospheric collectors flown to sample materials from comets 26P/Grigg-Skjellerup and 55P/Tempel-Tuttle that point to condensation of their gas carriers in the ejecta of a neon (ONe) nova. The absence of detectable 3He in these particles indicates space exposure to solar wind (SW) irradiation of a few decades at most, consistent with origins in cometary dust streams. Measured 4He/20Ne, 20Ne/22Ne, 21Ne/22Ne and 20Ne/21Ne isotope ratios, and a low upper limit on 3He/4He, are in accord with calculations of nucleosynthesis in neon nova outbursts. Of these, the uniquely low 4He/20Ne and high 20Ne/22Ne ratios are the most diagn...

  15. Siliceous Fragments in Space Micro-dust: evidence for a New Class of Fossil

    Science.gov (United States)

    Miyake, N.; Wallis, M. K.; Al-Mufti, S.

    2011-10-01

    Collection of Interplanetary dust particles (IDPs) by stratospheric balloon-borne cryosamplers has shown in recent years has shown this to be a superior technique to collection by rockets and aircraft. IDPs in the Cardiff collection from 40km altitude have been studied via scanning electron microscopy and associated X-ray emissions. This paper reports the identification of IDPs containing carbonbaceous-siliceous fibres and whiskers, unlike the mineral silicate particles normally identified with astrophysical silicate. The integration in some cases into cometary agglomerate particles and coatins with salt and other components shows aggregation on the comet. Two examples of fibres have also been found in a carbonaceous chondrite (Tagish Lake) which is thought to have a cometary origin. The fibres and and whiskers may have formed in the comet environment, but their accumulation from the pre-solar dust cloud is not excluded. An astrophysical origin as high temperature condensate in stellar outflows does not however explain the fibre mophologies. We therefore suggest the fibres and whiskers are fragments of fossilized organisms, like some species of terrestrial diatoms.

  16. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

  17. Distributed Interplanetary Delay/Disruption Tolerant Network (DTN) Monitor and Control System

    Science.gov (United States)

    Wang, Shin-Ywan

    2012-01-01

    The main purpose of Distributed interplanetary Delay Tolerant Network Monitor and Control System as a DTN system network management implementation in JPL is defined to provide methods and tools that can monitor the DTN operation status, detect and resolve DTN operation failures in some automated style while either space network or some heterogeneous network is infused with DTN capability. In this paper, "DTN Monitor and Control system in Deep Space Network (DSN)" exemplifies a case how DTN Monitor and Control system can be adapted into a space network as it is DTN enabled.

  18. Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium

    Science.gov (United States)

    Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.

    1979-01-01

    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.

  19. Evolution of the Interplanetary Magnetic Field sector structure during the last 15 solar cycles

    Science.gov (United States)

    Vokhmyanin, Mikhail

    We have inferred for the first time Interplanetary Magnetic Field (IMF) polarities from ground-based geomagnetic observations back to 1844. Reconstructions are reliable enough to study sector structure of the IMF in the past. The inferred daily polarities demonstrate solar-cycle changes during the nineteenth and twentieth centuries. We have analyzed statistics of the sector boundaries and found recurrences that reflect evolution of the solar wind sources. Additionally, seasonal variations of the ratio of positive and negative sectors provide evidence of solar magnetic field reversals during the last 15 solar cycles.

  20. A Study on the Technique of Observing Interplanetary Scintillation with Simultaneous Dual-Frequency Measurements

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach of monitoring solar wind speed. We describe both the principle and method of observing the solar wind speed by using the normalized cross-spectrum of simultaneous dualfrequency IPS measurement. The effects of the solar wind properties and the angular size of the scintillation source on the measurement of solar wind speed are investigated by numerical analysis. We carry out a comparison of this method with the traditional single station-single frequency method. We outline a new IPS observation system using this method now under construction at the National Astronomical Observatories, CAS (NAOC).

  1. Study of the interplanetary disturbances on 1-4 April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.I.; Lee, L.H.

    1988-01-01

    Three interplanetary shock events during the first week of April 1979 are modeled by the method developed originally by Hakamada and Akasofu (1982). There occurred a large number of weak and medium intensity solar flares during this period. However, solar wind observations at three points, the Earth (ISEE-3), Helios A and B, enables us to choose three solar flares and their parameters in such a way that the simulated arrival times and the speed jumps of the shock waves at the three points are in fair agreement with the observations.

  2. Study of the interplanetary disturbances on 1-4 April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Akasofu, S.-I.; Liher Lee

    1988-07-01

    Three interplanetary shock events during the first week of April 1979 are modeled by the method developed originally by Hakamada and Akasofu. There occurred a large number of weak and medium intensity solar flares during this period. However, solar wind observations at three points, the Earth (ISEE-3), Helios A and B, enabled us to choose three solar flares and their parameters in such a way that the simulated arrival times and the speed jumps of the shock waves at the three points are in fair agreement with the observations.

  3. Regional characteristics of dust events in China

    Institute of Scientific and Technical Information of China (English)

    WANGShigong; WANGJinyan; ZHOUZijiang; SHANGKezheng; YANGDebao; ZHAO

    2003-01-01

    The regional characteristics of dust events in China has been mainly studied by using the data of dust storm,wind-blown sand and floating dust from 338 observation stations through China from 1954 to 2000.The results of this study are as follows:(1)In China,there are two high frequent areas of dust events,one is located in the area of Minfeng and Hotan in the South xinjiang Basin,the other is situated in the area of Minqin and Jilantai in the Hexi Region.Furthermore,the spatial distributions of the various types of dust events are different.The dust storms mainly occur in the arid and semiarid areas covering the deserts and the areas undergoing desertification in northern China.Wind-blown sand and floating-dust not only occur in the areas where dust storms occur,but also extend to the neighboring areas.The range of wind-blown sand extends northeastward and southeastward,but floating-dust mainly extends southeastward to the low-latitude region such as the East China Plain and the area of the middloe and lower reaches of the Yangtze River.Compared with wind-blown sand,the floating-dust seldom occurs in the high latitude areas such as North xinjiang and Northeast China.(2)The affected areas of dust storms can be divided into seven sub-regions,that is,North Xinjiang Region,South Xinjiang Region,Hexi Region,Qaidam Basin Region,Hetao Region.Northeastem China Region and Qinghai-Xizang (Tibet) Region.The area of the most frequent occurrence of dust storms and floating-dust is in South Xinjiang Region,and of wind-blown sang in the Hexi Region.In general,the frequency of dust events in all the seven regions shows a decreasing thendency from 1954 to 2000,but there are certain differences between various dust events in different regions.The maximum interannual change and ariance of dust events during this time happened in South Xinjiang Region and Hexi Region.The udst events generally occur most frequently in April in most parts of China.The spring occurred days of dust events

  4. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  5. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.

    Science.gov (United States)

    Myers, Timothy J

    2008-11-15

    Metal powders or dusts can represent significant dust explosion hazards in industry, due to their relatively low ignition energy and high explosivity. The hazard is well known in industries that produce or use aluminum powders, but is sometimes not recognized by facilities that produce aluminum dust as a byproduct of bulk aluminum processing. As demonstrated by the 2003 dust explosion at aluminum wheel manufacturer Hayes Lemmerz, facilities that process bulk metals are at risk due to dust generated during machining and finishing operations [U.S. Chemical Safety and Hazard Investigation Board, Investigation Report, Aluminum Dust Explosion Hayes Lemmerz International, Inc., Huntington, Indiana, Report No. 2004-01-I-IN, September 2005]. Previous studies have shown that aluminum dust explosions are more difficult to suppress with flame retardants or inerting agents than dust explosions fueled by other materials such as coal [A.G. Dastidar, P.R. Amyotte, J. Going, K. Chatrathi, Flammability limits of dust-minimum inerting concentrations, Proc. Saf. Progr., 18-1 (1999) 56-63]. In this paper, an inerting method is discussed to reduce the dust explosion hazard of residue created in an aluminum buffing operation as the residue is generated. This technique reduces the dust explosion hazard throughout the buffing process and within the dust collector systems making the process inherently safer. Dust explosion testing results are presented for process dusts produced during trials with varying amounts of flame retardant additives.

  6. A Dynamical Analysis of the Dust Tail of Comet C/1995 O1 (Hale-Bopp) at High Heliocentric Distances

    CERN Document Server

    Kramer, Emily A; Lisse, Carey M; Kelley, Michael S; Woodney, Laura M

    2014-01-01

    Comet C/1995 O1 (Hale-Bopp) has provided an unprecedented opportunity to observe a bright comet over a wide range of heliocentric distances. We present here Spitzer Space Telescope observations of Hale-Bopp from 2005 and 2008 that show a distinct coma and tail, the presence of which is uncommon given its large heliocentric distance (21.6 AU and 27.2 AU, respectively). The morphology of the dust is compared to dynamical models to understand the activity of the comet. Our analysis shows that the shape of Hale-Bopp's dust tail in these images cannot be explained using the usual Finson-Probstein (solar gravity + solar radiation pressure) dynamical model. Several alternative explanations are explored. The analysis suggests that the most likely cause of the discrepancy is that the dust is being charged by the solar wind, then being affected by the interplanetary magnetic field via the Lorentz force. Though this effect has been explored previously, if correct, this seems to be the first time that the Lorentz force h...

  7. Dynamics of aspherical dust grains in a cometary atmosphere: I. axially symmetric grains in a spherically symmetric atmosphere

    Science.gov (United States)

    Ivanovski, S. L.; Zakharov, V. V.; Della Corte, V.; Crifo, J.-F.; Rotundi, A.; Fulle, M.

    2017-01-01

    In-situ measurements of individual dust grain parameters in the immediate vicinity of a cometary nucleus are being carried by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. For the interpretations of these observational data, a model of dust grain motion as realistic as possible is requested. In particular, the results of the Stardust mission and analysis of samples of interplanetary dust have shown that these particles are highly aspherical, which should be taken into account in any credible model. The aim of the present work is to study the dynamics of ellipsoidal shape particles with various aspect ratios introduced in a spherically symmetric expanding gas flow and to reveal the possible differences in dynamics between spherical and aspherical particles. Their translational and rotational motion under influence of the gravity and of the aerodynamic force and torque is numerically integrated in a wide range of physical parameters values including those of comet 67P/Churyumov-Gerasimenko. The main distinctions of the dynamics of spherical and ellipsoidal particles are discussed. The aerodynamic characteristics of the ellipsoidal particles, and examples of their translational and rotational motion in the postulated gas flow are presented.

  8. Fluctuations in the interplanetary electric potential and energy coupling between the solar-wind and the magnetosphere

    CERN Document Server

    Badruddin,

    2013-01-01

    We utilize solar rotation average geomagnetic index ap and various solar wind plasma and field parameters for four solar cycles 20-23. We perform analysis to search for a best possible coupling function at 27-day time resolution. Regression analysis using these data at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that the time variation of interplanetary electric potential is a better coupling function for solar wind-magnetosphere coupling. We suspect that a faster rate of change in interplanetary electric potential at the magnetopause might enhance the reconnection rate and energy transfer from the solar wind into the magnetosphere. The possible mechanism that involves the interplanetary potential fluctuations in influencing the solar wind-magnetosphere coupling is being investigated.

  9. Recombinant house dust mite allergens

    OpenAIRE

    2013-01-01

    House dust mites (HDM) are a globally important source of allergen responsible for the sensitization of more than 50% of allergic patients. Specific immunotherapy with HDM extracts is effective but allergen extracts cannot be fully standardized and severe side-effects can occur during the protracted course of treatment. The introduction of molecular biological techniques into allergy research allowed the indentification of more than 20 groups of HDM allergens. Recombinant HDM allergens can be...

  10. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  11. The Dust & Gas Properties of M83

    CERN Document Server

    Foyle, K; Mentuch, E; Bendo, G; Dariush, A; Parkin, T; Pohlen, M; Sauvage, M; Smith, M W L; Roussel, H; Baes, M; Boquien, M; Boselli, A; Clements, D L; Cooray, A; Davies, J I; Eales, S A; Madden, S; Page, M J; Spinoglio,

    2012-01-01

    We examine the dust and gas properties of the nearby, barred galaxy M83, which is part of the Very Nearby Galaxy Survey. Using images from the PACS and SPIRE instruments of Herschel, we examine the dust temperature and dust mass surface density distribution. We find that the nuclear, bar and spiral arm regions exhibit higher dust temperatures and masses compared to interarm regions. However, the distribution of dust temperature and mass are not spatially coincident. Assuming a trailing spiral structure, the dust temperature peaks in the spiral arms lie ahead of the dust surface density peaks. The dust mass surface density correlates well with the distribution of molecular gas as traced by CO (J=3-2) images (JCMT) and the star formation rate as traced by H?2 with a correction for obscured star formation using 24 micron emission. Using HI images from THINGS to trace the atomic gas component, we make total gas mass surface density maps and calculate the gas-to-dust ratio. We find a mean gas-to-dust ratio of 84 \\...

  12. House dust mites, our intimate associates.

    Science.gov (United States)

    Nadchatram, M

    2005-06-01

    House dust mites have lived in human contact from time immemorial. Human dander or dead skin constitutes the major organic component of the house dust ecosystem. Because the mites feed on dander, dust mites and human association will continue to co-exist as part of our environment. Efficient house-keeping practice is the best form of control to reduce infestation. However, special precautions are important when individuals are susceptible or sensitive to dust mites. House dust mites are responsible for causing asthma, rhinitis and contact dermatitis. The respiratory allergies are caused by the inhalation of dead or live mites, their faecal matter or other byproducts. Immune factors are of paramount importance in the development of dust related or mite induced respiratory diseases. House dust mites were found in some 1,000 samples of dust taken from approximately 330 dwellings in Peninsular Malaysia and Singapore. Mattresses, carpets, corners of a bedroom, and floor beneath the bed are favourable dust mite habitats. The incriminating species based on studies here and elsewhere, as well as many other species of dust mites of unknown etiological importance are widely distributed in Malaysian homes. Density of dust mites in Malaysia and Singapore is greater than in temperate countries. Prevention and control measures with reference to subjects sensitive to dust mite allergies, including chemical control described in studies conducted in Europe and America are discussed. However, a cost free and most practical way to remove mites, their faecal matter and other products is to resort to sunning the bedding and carpets to kill the living mites, and then beaten and brushed to remove the dust and other components.

  13. Metal Dusting-Mechanisms and Preventions

    Institute of Scientific and Technical Information of China (English)

    J.Q.ZHANG; D.J.YOUNG

    2009-01-01

    Metal dusting attacks iron, low and high alloy steels and nickel-or cobalt-base alloys by disintegrating bulk metals and alloys into metal particles in a coke deposit. It occurs in strongly carburising gas atmospheres (carbon activity aC>1) at elevated temperatures (400℃~1000℃). This phenomenon has been studied for decades, but the detailed mechanism is still not well understood. Current methods of protection against metal dusting are either directed to the process conditions-temperature and gas composition-or to the development of a dense adherent oxide layer on the surface of the alloy by selective oxidation. However, metal dusting still occurs by carbon dissolving in the base metal via defects in the oxide scale. The research work at UNSW is aimed at determining the detailed mechanism of metal dusting of both ferritic and austenitic alloys, in particular the microprocesses of graphite deposition, nanoparticle formation and underlying metal destruction. This work was carried out using surface observation, cross-section analysis by focused ion beam and electron microscopic examination of coke deposits at different stages of the reaction. It was found that surface orientation affected carbon deposition and metal dusting at the initial stage of the reaction. Metal dusting occurred only when graphite grew into the metal interior where the volume expansion is responsible for metal disintegration and dusting. It was also found that the metal dusting process could be significantly changed by alterations in alloy chemistry. Germanium was found to affect the iron dusting process by destabilising FeC but increasing the rate of carbon deposition and dusting, which questions the role of cementite in ferritic alloy dusting. Whilst adding copper to iron did not change the carburisation kinetics, cementite formation and coke morphology, copper alloying reduced nickel and nickel-base alloy dusting rates significantly. Application of these fundamental results to the dusting

  14. Ringwoodite growth rates from olivine with ~75 ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Atmospheric, Earth and Energy Division; Sharp, Thomas G. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration; Mosenfelder, Jed L. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences; Leinenweber, Kurt [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration

    2013-04-15

    It has been previously demonstrated that as little as 300 ppmw H2O increases wadsleyite and ringwoodite growth rates to magnitudes that are inconsistent with the metastable olivine hypothesis. To further test this hypothesis, we present new ringwoodite growth rate measurements from olivine with ~75 ppmw H2O at 18 GPa and 700, 900, and 1100 °C. These growth rates are nearly identical to those from olivine with ~300 ppmw H2O, and significantly higher than those from nominally anhydrous olivine. We infer that transformation of olivine with 75-300 ppmw H2O is primarily enhanced by hydrolytic weakening of reaction rims, which reduces the elastic strain-energy barrier to growth. We present a new method for fitting nonlinear nominally anhydrous data, to demonstrate that reduction of growth rates by elastic strain energy is an additional requirement for metastable olivine. In conclusion, based on previous thermokinetic modeling, these enhanced growth rates are inconsistent with the persistence of metastable olivine wedges into the mantle transition zone. Metastable persistence of olivine into the mantle transition-zone would therefore require < 75 ppmw H2O.

  15. Scientific Opinion on the safety and efficacy of betaine anhydrous as a feed additive for all animal species based on a dossier submitted by Danisco Animal Nutrition

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP

    2013-05-01

    Full Text Available Glycine betaine (betaine acts as a methyl group donor in transmethylation reactions in organisms. Betaine occurs in numerous vertebrate tissues as an osmolyte, ensuring osmoprotection. Betaine is safe for piglets at the maximum supplementation rate of 2 000 mg/kg complete feed with a margin of safety below 5. This conclusion is extended to all pigs and extrapolated to all animal species and categories. The use of betaine as a feed additive up to a supplementation rate of 2 000 mg/kg complete feed is unlikely to pose concerns for consumer safety. Users’ inhalation exposure to betaine is expected to be minimal. Betaine anhydrous should be considered irritant to skin, eyes and mucous membranes and a skin sensitiser. It is likely to cause skin sensitisation. The supplementation of feed with betaine anhydrous does not pose a risk to the environment. Betaine has the potential to become efficacious in all animal species and categories when administered via feed or water for drinking. The FEEDAP Panel made some recommendations on (i introduction of a maximum content for supplemental betaine in complete feed and water for drinking; (ii avoidance of simultaneous use of betaine in feed and water for drinking; and (iii avoidance of simultaneous inclusion of betaine and choline chloride in premixtures.

  16. Capture of interplanetary bodies in geocentric orbits and early lunar evolution

    Indian Academy of Sciences (India)

    Malapaka Shivakumar; N Bhandari

    2005-12-01

    During the accretion of planets such as Earth,which are formed by collisional accretion of plan-etesimals,the probability of capture of interplanetary bodies in planetocentric orbits is calculated following the approach of Hills (1973)and the -body simulation,using simplectic integration method.The simulation,taking an input mass equal to about 50%of the present mass of the inner planets,distributed over a large number of planetoids,starting at 4 My after the formation of solar system,yielded four inner planets within a period of 30 My.None of these seed bodies,out of which the planets formed,remained at this time and almost 40%mass was transferred beyond 100 AU. Based on these calculations, we conclude that ∼1.4 times the mass of the present inner planets was needed to accumulate them.The probability of capture of planetoids in geocentric orbits is found to be negligible.The result emphasizes the computational difficulty in ‘probability of capture ’of planetesimals around the Earth before the giant impact.This conclusion,however,is in contradiction to the recent observations of asteroids being frequently captured in transient orbits around the Earth,even when the current population of such interplanetary bodies is smaller by several orders of magnitude compared to the planetary accumulation era.

  17. Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF Bz

    Science.gov (United States)

    Wei, Yong; Hong, Minghua; Wan, Weixing; Du, Aimin; Lei, Jiuhou; Zhao, Biqiang; Wang, Wenbin; Ren, Zhipeng; Yue, Xinan

    2008-01-01

    During November 11-16, 2003, the interplanetary magnetic field (IMF) B z oscillated between northward and southward directions, which suggests discontinuous magnetic reconnection associated with the multiple pulses-like reconnection electric field. The Jicamarca incoherent scatter radar (ISR) measurements of ionospheric zonal electric field showed similar fluctuations during this period. The high correlation coefficient of 0.71 between the reconnection electric field and equatorial zonal electric field during 125 hours suggests that the interplanetary electric field (IEF) pulsively penetrated into the equatorial ionosphere due to the discontinuous magnetic reconnection. It is implied that the short lifetime (<3 hours) dawn-dusk IEF pulses can penetrate into ionosphere without shielding, in other words, they may exhibit the ``shielding immunity''. The averaged penetration efficiency is about 0.136 and highly local time-dependent. Furthermore, the intense AU and AL indices imply that the multiple electric field penetration is associated with a ``High-Intensity Long-Duration Continuous AE Activity (HILDCAA).''

  18. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Institute of Scientific and Technical Information of China (English)

    FANQuan-Lin; WEIFeng-Si; FENGXue-Shang

    2003-01-01

    The formation med2aniRm of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet.The compressible 2.51:) MHD equations are solved. R~sults show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of maguetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc.

  19. Numerical Simulation on a Possible Formation Mechanism of Interplanetary Magnetic Cloud Boundaries

    Institute of Scientific and Technical Information of China (English)

    FAN Quan-Lin; WEI Feng-Si; FENG Xue-Shang

    2003-01-01

    The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigatedby simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet.The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possibleformation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features arefound. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by adriven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flowas a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these twoboundaries appear large value of the plasma parameterβ, clear increase of plasma temperature and density, distinctdecrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of thepresent simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc.

  20. A study of solar and interplanetary parameters of CMEs causing major geomagnetic storms during SC 23

    Directory of Open Access Journals (Sweden)

    C. Oprea

    2013-08-01

    Full Text Available In this paper we analyse 25 Earth-directed and strongly geoeffective interplanetary coronal mass ejections (ICMEs which occurred during solar cycle 23, using data provided by instruments on SOHO (Solar and Heliospheric Observatory, ACE (Advanced Composition Explorer and geomagnetic stations. We also examine the in situ parameters, the energy transfer into magnetosphere, and the geomagnetic indexes. We compare observed travel times with those calculated by observed speeds projected into the plane of the sky and de-projected by a simple model. The best fit was found with the projected speeds. No correlation was found between the importance of a flare and the geomagnetic Dst (disturbance storm time index. By comparing the in situ parameters with the Dst index we find a strong connection between some of these parameters (such as Bz, Bs · V and the energy transfer into the magnetosphere with the strength of the geomagnetic storm. No correlation was found with proton density and plasma temperature. A superposed epoch analysis revealed a strong dependence of the Dst index on the southward component of interplanetary magnetic field, Bz, and to the Akasofu coupling function, which evaluates the energy transfer between the ICME and the magnetosphere. The analysis also showed that the geomagnetic field at higher latitudes is disturbed before the field around the Earth's equator.

  1. Scaling exponents of the velocity structure functions in the interplanetary medium

    Directory of Open Access Journals (Sweden)

    V. Carbone

    Full Text Available We analyze the scaling exponents of the velocity structure functions, obtained from the velocity fluctuations measured in the interplanetary space plasma. Using the expression for the energy transfer rate which seems the most relevant in describing the evolution of the pseudo-energy densities in the interplanetary medium, we introduce an energy cascade model derived from a simple fragmentation process, which takes into account the intermittency effect. In the absence and in the presence of the large-scale magnetic field decorrelation effect the model reduces to the fluid and the hydromagnetic p-model, respectively. We show that the scaling exponents of the q-th power of the velocity structure functions, as obtained by the model in the absence of the decorrelation effect, furnishes the best-fit to the data analyzed from the Voyager 2 velocity field measurements at 8.5 AU. Our results allow us to hypothesize a new kind of scale-similarity for magnetohydrodynamic turbulence when the decorrelation effect is at work, related to the fourth-order velocity structure function.

  2. The Entropy Index (EI): an Auxiliary Tool to Identify the Occurrence of Interplanetary Magnetic Clouds

    CERN Document Server

    Ojeda, G A; Calzadilla, M A; Domingues, M O

    2011-01-01

    By the study of the dynamical processes related to entropy, this work aims to create a mathematical tool to identify magnetic clouds (MCs) in the interplanetary space using only interplanetary magnetic field (IMF) data. Used as basis for an analysis methodology, the spatio-temporal entropy (STE) measures the image (recurrence plots) "structuredness" in both space and time domains. Initially we worked with the Huttunen et al. 2005's dataset and studied the 41 MCs presenting a shock wave identified before the cloud. The STE values for each Bx, By, Bz IMF time series, with dimension and time delay equal to one, were respectively calculated. We found higher STE values in the sheaths and zero STE values in some of the three components in most of the MCs (30 among 41 events). In a physically consistent manner, data windows of 2500 magnetic records were selected as the calculation interval for the time series. As not all MCs have zero STE simultaneously, we created a standardization index (an entropy index, called a...

  3. Wind Observations of Wave Heating and/or Particle Energization at Supercritical Interplanetary Shocks

    Science.gov (United States)

    Wilson, Lynn Bruce, III; Szabo, Adam; Koval, Andriy; Cattell, Cynthia A.; Kellogg, Paul J.; Goetz, Keith; Breneman, Aaron; Kersten, Kris; Kasper, Justin C.; Pulupa, Marc

    2011-01-01

    We present the first observations at supercritical interplanetary shocks of large amplitude (> 100 mV/m pk-pk) solitary waves, approx.30 mV/m pk-pk waves exhibiting characteristics consistent with electron Bernstein waves, and > 20 nT pk-pk electromagnetic lower hybrid-like waves, with simultaneous evidence for wave heating and particle energization. The solitary waves and the Bernstein-like waves were likely due to instabilities driven by the free energy provided by reflected ions [Wilson III et al., 2010]. They were associated with strong particle heating in both the electrons and ions. We also show a case example of parallel electron energization and perpendicular ion heating due to a electromagnetic lower hybrid-like wave. Both studies provide the first experimental evidence of wave heating and/or particle energization at interplanetary shocks. Our experimental results, together with the results of recent Vlasov [Petkaki and Freeman, 2008] and PIC [Matsukyo and Scholer, 2006] simulations using realistic mass ratios provide new evidence to suggest that the importance of wave-particle dissipation at shocks may be greater than previously thought.

  4. Magnetic reconnection structures in the boundary layer of an interplanetary magnetic cloud

    Institute of Scientific and Technical Information of China (English)

    WEI; Fengsi; LIU; Rui; FENG; Xueshang; ZHONG; Dingkun; YAN

    2004-01-01

    An interplanetary magnetic diffusion region was detected by WIND during 0735-0850 UT on May 15, 1997 when the front boundary layer of a magnetic cloud passed through the spacecraft about 190 earth radii upstream of the earth. The main signals of magnetic reconnection processes are: (ⅰ) Flow reversal was detected at about 0810 UT. The counter-streaming flows have the speeds of about 65 and 41 km/s, respectively, with an angle of about 140 degree between them. (ⅱ) Hall magnetic field was detected. The Hall fields ?By and +By, perpendicular to the X-Z plane, with their magnitude up to ~7.0 nT, are superposed upon a guide field about 12 nT. (ⅲ) Alfvenic fluctuations are obviously intensified inside the reconnection region; at the front boundary of the reconnection region, a slow-mode-like discontinuity was detected. (ⅳ) Ions are heated intensively inside the reconnection region, with their temperature three times higher than that ahead of the boundary layer; electrons are also heated, with a little enhancement in their temperature. The above observations indicate that magnetic reconnection processes could take place in interplanetary space.

  5. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    CERN Document Server

    Wang, Yuming; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the mod...

  6. Interplanetary Coronal Mass Ejection (ICME) and Cosmic rays transmission during Forbush decreases

    Science.gov (United States)

    Okpala, K. C.

    2015-12-01

    Forbush decrease (FD) is an observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors often associated energetic events on the Sun such as coronal mass ejections (CME). FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of galactic origin will occur during Geomagnetic storms. In this study we examine sixty-three (63) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2013. The negative peaks of the FDs and the Dst coincided for most of the events (~70%). There was good correlation (>0.67) between the FDs and Dst. Signatures of influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.

  7. The acceleration of low energy protons by quasi-perpendicular interplanetary shocks

    Energy Technology Data Exchange (ETDEWEB)

    Erdos, G. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Balogh, A. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1990-03-01

    New aspects of the acceleration of low energy (35-1000 keV) protons by quasi-perpendicular interplanetary shocks are presented, using observations and numerical simulations. Time reverse trajectory calculations of particles are used to derive the behaviour of the angular distribution and spectrum through the shock. These calculations show that for simple planar geometries of the magnetic field and for a power-law spectrum of pre-accelerated particles the expected omnidirectional enhancements are smaller than observed. Pitch angle distributions in the vicinity of six interplanetary shocks have been determined from the measurements carried out onboard the ISEE-3 spacecraft. Reflection of particles was clearly identifiable by the loss cone type angular distribution observed upstream of the shock. Downstream of the shock, the shape and the energy dependence of the pitch angle distributions provide support for the scatter-free model in some cases. However, the observed spikes at the shock passage and bidirectional upstream distributions measured at the nearest to perpendicular shocks, together with other features of particle spectra and angular distributions which cannot be readily explained by model calculations suggest that fluctuations in the magnetic field might also seriously affect the acceleration process. (author).

  8. Radial Speed Evolution of Interplanetary Coronal Mass Ejections during Solar Cycle 23

    CERN Document Server

    Iju, Tomoya; Fujiki, Ken'ichi

    2013-01-01

    We report radial speed evolution of interplanetary coronal mass ejections (ICMEs) detected by the SOHO/LASCO coronagraph, interplanetary scintillation (IPS) at 327 MHz, and in-situ observations. In this study, we analyze solar wind disturbance factor (g-value) data derived from IPS observations during 1997-2009 covering nearly whole period of Solar Cycle 23. By comparing observations from the SOHO/LASCO, IPS, and in-situ, we then identify 39 ICMEs that could be analyzed carefully. Here, we define two speeds VSOHO and Vbg that are initial speed of ICME and the speed of background solar wind, respectively. Examinations for them yield the following results; 1) Fast ICMEs (with VSOHO - Vbg > 500 km/s) rapidly decelerate, moderate ICMEs (with 0 km/s < VSOHO - Vbg < 500 km/s) show either gradually decelerating or uniform motion, and slow ICMEs (with VSOHO - Vbg < 0 km/s) accelerate. The radial speeds converge on the speed of background solar wind during their outward propagation. We subsequently find; 2) b...

  9. Relationship of Interplanetary Shock Micro and Macro Characteristics: A Wind Study

    Science.gov (United States)

    Szabo, Adam; Koval, A

    2008-01-01

    The non-linear least squared MHD fitting technique of Szabo 11 9941 has been recently further refined to provide realistic confidence regions for interplanetary shock normal directions and speeds. Analyzing Wind observed interplanetary shocks from 1995 to 200 1, macro characteristics such as shock strength, Theta Bn and Mach numbers can be compared to the details of shock micro or kinetic structures. The now commonly available very high time resolution (1 1 or 22 vectors/sec) Wind magnetic field data allows the precise characterization of shock kinetic structures, such as the size of the foot, ramp, overshoot and the duration of damped oscillations on either side of the shock. Detailed comparison of the shock micro and macro characteristics will be given. This enables the elucidation of shock kinetic features, relevant for particle energization processes, for observations where high time resolution data is not available. Moreover, establishing a quantitative relationship between the shock micro and macro structures will improve the confidence level of shock fitting techniques during disturbed solar wind conditions.

  10. ACE EPAM and Van Allen Probes RBSPICE measurements of interplanetary oxygen injection to the inner magnetosphere

    Science.gov (United States)

    Patterson, J. D.; Manweiler, J. W.; Gerrard, A. J.; Lanzerotti, L. J.

    2015-12-01

    On March 17, 2015, a significant oxygen-rich interplanetary event was measure by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument. At the same time the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument recorded significant enhancements of oxygen in the inner magnetosphere. We present a detailed analysis of this event utilizing a new method of exploiting the EPAM Pulse Height Analyzer (PHA) data to precisely resolve helium and oxygen spectra within the 0.5 to 5 MeV/nuc range. We also present the flux, partial particle pressures, and pitch angle distributions of the ion measurements from RBSPICE. During this event, both EPAM and RBSPICE measured O:He ratios greater than 10:1. The pitch angle distributions from RBSPICE-B show a strong beam of oxygen at an L ~ 5.8 early on March 17th during orbit. The timing between the observations of the oxygen peak at ACE and the beam observed at RBSPICE-B is consistent with the travel-time required for energetic particle transport from L1 to Earth and access to the magnetosphere. We assert that the oxygen seen by RBSPICE during the initial phase of this event is the result of direct injection from the interplanetary medium of energetic ions. This poster contains the observations and detailed calculations to support this assertion.

  11. Effect of the Interplanetary Electric Field on the Magnetopause From Global MHD Simulations

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhaohui; DING Kai; WANG Chi

    2012-01-01

    The north-south component B_z of the Interplanetary Magnetic Field(IMF) and solar wind dynamic pressure P_d are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere.By using the 3D global MHD simulations,we investigate the effect of the Interplanetary Electric Field(IEF) on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by P_d and B_z,as expected.However,the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection,thus affecting the size and shape of the magnetopause.Higher solar wind speed with the same B_z will lead to bigger dawn-dusk IEFs,which means the higher reconnection rate,and then results in more magnetic flux removal from the dayside. Consequently,the dayside magnetopause moves inward and flank magnetopause moves outward.

  12. Alfvén waves as a solar-interplanetary driver of the thermospheric disturbances.

    Science.gov (United States)

    Guo, Jianpeng; Wei, Fengsi; Feng, Xueshang; Liu, Huixin; Wan, Weixing; Yang, Zhiliang; Xu, Jiyao; Liu, Chaoxu

    2016-01-01

    Alfvén waves have been proposed as an important mechanism for the heating of the Sun's outer atmosphere and the acceleration of solar wind, but they are generally believed to have no significant impact on the Earth's upper atmosphere under quiet geomagnetic conditions due to their highly fluctuating nature of interplanetary magnetic field (i.e., intermittent southward magnetic field component). Here we report that a long-duration outward propagating Alfvén wave train carried by a high-speed stream produced continuous (~2 days) and strong (up to ± 40%) density disturbances in the Earth's thermosphere in a way by exciting multiple large-scale gravity waves in auroral regions. The observed ability of Alfvén waves to excite large-scale gravity waves, together with their proved ubiquity in the solar atmosphere and solar wind, suggests that Alfvén waves could be an important solar-interplanetary driver of the global thermospheric disturbances.

  13. On the probability distribution function of small scale interplanetary magnetic field fluctuations

    CERN Document Server

    Bruno, R; Carbone, V; Primavera, L; Malara, F; Sorriso-Valvo, L; Veltri, P

    2004-01-01

    In spite of a large number of papers dedicated to study MHD turbulence in the solar wind there are still some simple questions which have never been sufficiently addressed like: a)do we really know how the magnetic field vector orientation fluctuates in space? b) what is the statistics followed by the orientation of the vector itself? c) does the statistics change as the wind expands into the interplanetary space? A better understanding of these points can help us to better characterize the nature of interplanetary fluctuations and can provide useful hints to investigators who try to numerically simulate MHD turbulence. This work follows a recent paper presented by the same authors. This work follows a recent paper presented by some of the authors which shows that these fluctuations might resemble a sort of random walk governed by a Truncated Leevy Flight statistics. However, the limited statistics used in that paper did not allow final conclusions but only speculative hypotheses. In this work we aim to addre...

  14. Interaction between an interplanetary magnetic cloud and the Earth's magnetosphere: Motions of the bow shock

    Science.gov (United States)

    Wu, D. J.; Chao, J. K.; Lepping, R. P.

    2000-06-01

    An interplanetary magnetic cloud (IMC) is an important solar-terrestrial connection event. It is an ideal object for the study of solar-terrestrial relations and space weather because the Earth's space environment can be affected considerably during an IMC passage. An IMC was observed to pass the Earth during October 18-20, 1995. Wind recorded its interplanetary characteristics at ~175RE upstream of the Earth's bow shock, and ~45 min later, Geotail, being near the nominal location of the dawn bow shock, detected IMC-related multiple bow shock crossings. Using simultaneous measurements from Wind and Geotail, we analyzed, with a semiempirical bow shock model with two parameters, the bow shock motion caused by the interaction of the IMC with the magnetosphere during the passage. We also compared the bow shock motion predicted by the model, and hence the predicted Geotail bow shock crossings, with Geotail observations of the actual crossings. The results showed that the observed multiple bow shock crossings, which were obviously due to temporal variations of the upstream solar wind, can be well explained by the model-predicted bow shock motion.

  15. Aerosol optical absorption by dust and black carbon in Taklimakan Desert, during no-dust and dust-storm conditions

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Wenshou Wei; Mingzhe Liu; Weidong Gao; Xi Han

    2012-01-01

    Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol.The linear statistical regression analysis approach introduced by Fialho et al.(2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients,and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006.Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December,2006.The absorption exponent of BC absorption coefficient α is estimated as (-0.95 ±0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient β during the 6 dust storm periods (strong dust storm) is (-2.55 ± 0.009).Decoupling analysis of the measured light absorption coefficients demonstrates that,on average,the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm,floating dust,blowing dust),the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hinterland of desert in spring,dust aerosol is also the major contributor to the total aerosol light absorption,more than that of black carbon aerosol.

  16. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  17. Do other components of bedding dust affect sensitisation to house dust mites?

    Science.gov (United States)

    Smith, Claire; Stanley, Thorsten; Crane, Julian; Siebers, Robert

    2011-01-01

    Bedding dust is a mixture of many components, of which the house dust mite (HDM) allergen, Der p 1, is the most allergenic. There has been little work to investigate the effect of other bedding dust components on HDM sensitisation. The objective of the study was to determine the effect of endotoxin in bedding dust on the allergic response in HDM-sensitised individuals. Twenty-nine house dust mite-sensitised adults were skin prick and allergen patch tested against a sterile solution of their own bedding dust and against a solution containing the same concentration of Der p 1 as the bedding solution for comparison. There was no significant difference in wheal size between the diluted house dust mite solution and the bedding dust in spite of their high levels of endotoxin. Symptomatic subjects had larger, but not statistically significant, responses to commercial house dust mite solution than asymptomatic subjects. Allergen patch test responses were negative in 22/29 of subjects using either bedding dust solutions or comparable diluted house dust mite solutions. An individual's own bedding dust does not appear to contain factors that enhance skin prick test or atopy patch test responses to house dust mites.

  18. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  19. Astrophysics of Dust in Cold Clouds

    CERN Document Server

    Draine, B T

    2003-01-01

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alig...

  20. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.