WorldWideScience

Sample records for anhydrase inhibitor induced

  1. Hyperkalaemia induced by carbonic anhydrase inhibitor.

    OpenAIRE

    Wakabayashi, Y.

    1991-01-01

    An 81-year-old man developed hyperkalaemic and hyperchloraemic metabolic acidosis following treatment with a carbonic anhydrase inhibitor for his glaucoma. He had mild renal failure and selective aldosterone deficiency was confirmed. In this case the treatment did not lead to hypokalaemia because of the limited potassium secretory capacity in the renal tubules from selective aldosterone deficiency; rather, it may have led to hyperkalaemia because metabolic acidosis induced by the carbonic anh...

  2. Toxic Epidermal Necrolysis Induced by the Topical Carbonic Anhydrase Inhibitors Brinzolamide and Dorzolamide

    OpenAIRE

    Chun, Ji Sun; Yun, Sook Jung; Lee, Jee Bum; Kim, Seong Jin; Won, Young Ho; Lee, Seung Chul

    2008-01-01

    Brinzolamide and dorzolamide are highly specific topical carbonic anhydrase inhibitors (CAIs). They lower intraocular pressure (IOP) by reducing the rate of aqueous humour formation without serious side effects. Although systemic CAIs are the most potent medications for lowering intraocular pressure for conditions with ocular hypertension, many cases with adverse systemic reactions have been reported, including Stevens-Johnson syndrome (SJS) and Toxic epidermal necrolysis (TEN). Here, we repo...

  3. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  4. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase Ⅱ inhibitor-induced hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Su-jong YU; Hyo-suk LEE; Jung-hwan YOON; Jeong-hoon LEE; Sun-jung MYUNG; Eun-sun JANG; Min-sun KWAK; Eun-ju CHO; Ja-june JANG; Yoon-jun KIM

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-Ⅸ (CA-Ⅸ) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-Ⅸ in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients.Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth was assessed using MTS assay. CA-IX expression and apoptotic/kinase signaling were evaluated using immunoblotting. The cells were transfected with CA-Ⅸ-specific siRNA, or treated with its inhibitor 4-(2-aminoethyl) benzenesulfonamide (CAI#1), and/or the hexokinase Ⅱ inhibitor, 3-bromopyruvate (3-BP). A clinic pathological analysis of 69 patients who underwent an HCC resection was performed using a tissue array.Results: Incubation of HCC cells under hypoxia (1% 02, 5% C02, 94% N2) for 36 h significantly increased CA-IX expression level. CAI#1(400 μmol/L) or CA-IX siRNA (100 μmol/L) did not influence HCC cell growth and induce apoptosis. However, CAI#1 or CA-IX siRNA at these concentrations enhanced the apoptosis induced by 3-BP (100 μmol/L). This enhancement was attributed to increased ER stress and JNK activation, as compared with 3-BP alone. Furthermore, a clinic pathological analysis of 69 HCC patients revealed that tumor CA-Ⅸ intensity was inversely related to E-cadherin intensity.Conclusion: Inhibition of hypoxia-induced CA-Ⅸ enhances hexokinase Ⅱ inhibitor-induced HCC apoptosis. Furthermore, CA-IX expres sion profiles may have prognostic implications in HCC patients. Thus, the inhibition of CA-Ⅸ, in combination with a hexokinase Ⅱ inhibitor, may be therapeutically useful in patients with HCCs that are aggressively growing in a hypoxic environment.

  5. Variable involvement of the perivascular retinal tissue in carbonic anhydrase inhibitor induced relaxation of porcine retinal arterioles in vitro

    DEFF Research Database (Denmark)

    Kehler, Anne Katrine; Holmgaard, Kim; Hessellund, Anders;

    2007-01-01

    PURPOSE: Inhibition of carbonic anhydrase in the eye is an important treatment modality for reducing the intraocular pressure in glaucoma. However, evidence suggests that carbonic anhydrase inhibition also exerts a relaxing effect on the vessels in the optic nerve, and it has been suggested......, and the vasodilating effect of acetazolamide almost disappeared. CONCLUSIONS: A further elucidation of the mechanisms of action of carbonic anhydrase-induced dilation of retinal arterioles may contribute to a better understanding of the regulation of retinal blood flow. The perivascular retinal tissue may play...... a significant role in diameter control of retinal arterioles. Udgivelsesdato: 2007-Oct...

  6. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase II inhibitor-induced hepatocellular carcinoma cell apoptosis

    OpenAIRE

    Yu, Su-jong; Yoon, Jung-Hwan; Lee, Jeong-Hoon; Myung, Sun-jung; Jang, Eun-sun; Kwak, Min-Sun; Cho, Eun-Ju; Jang, Ja-June; Kim, Yoon-jun; Lee, Hyo-Suk

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-IX (CA-IX) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-IX in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients. Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth wa...

  7. Heterocyclic compounds as carbonic anhydrase inhibitor.

    Science.gov (United States)

    Husain, Asif; Madhesia, Diwakar

    2012-12-01

    The carbonic anhydrases (CAs, EC 4.2.1.1) constitute interesting targets for the design of pharmacological agents useful in the treatment or prevention of a variety of disorders such as, glaucoma, acid-base disequilibria, epilepsy, and other neuromuscular diseases, altitude sickness, edema, and obesity. A quite new and unexpected application of the CA inhibitors (CAIs) is with regard to their potential use in the management (imaging and treatment) of hypoxic tumors. A series of sulfonamides, including some clinically used derivatives like acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and sulpiride, or indisulam, a compound in clinical development as antitumor drug, as well as the sulfamate antiepileptic drug topiramate have been reported to inhibit various human carbonic anhydrase isozyme. Various heterocyclic sulfonamides have been reported in this review with their potency to inhibit different carbonic anhydrases isozymes. PMID:21981003

  8. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    OpenAIRE

    S.Petchimuthu; Dr. N. Narayanan

    2013-01-01

    Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ) has a poor solubility and penetration power (BCS Class IV), various studies mentioned in the revi...

  9. Structural analysis of inhibitor binding to human carbonic anhydrase II.

    OpenAIRE

    Boriack-Sjodin, P. A.; Zeitlin, S; Chen, H H; Crenshaw, L.; Gross, S.; Dantanarayana, A.; P. Delgado; May, J. A.; Dean, T.; Christianson, D. W.

    1998-01-01

    X-ray crystal structures of carbonic anhydrase II (CAII) complexed with sulfonamide inhibitors illuminate the structural determinants of high affinity binding in the nanomolar regime. The primary binding interaction is the coordination of a primary sulfonamide group to the active site zinc ion. Secondary interactions fine-tune tight binding in regions of the active site cavity >5 A away from zinc, and this work highlights three such features: (1) advantageous conformational restraints of a bi...

  10. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    Directory of Open Access Journals (Sweden)

    S.Petchimuthu

    2013-09-01

    Full Text Available Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ has a poor solubility and penetration power (BCS Class IV, various studies mentioned in the review indicate that it is possible to successfully formulate topically effective ACZ by using:(i High concentration of the drug, (ii Surfactant gel preparations of ACZ, (iii ACZ loaded into liposomes, (iv Cyclodextrins to increase the solubility and hence bioavailability of ACZ, and Viscolyzers and other polymers either alone or in combination with cyclodextrins. With the advent of newer topical carbonic anhydrase inhibitors (CAIs like dorzolamide and brinzolamide, a localized effect with fewer side effects is expected.But whenever absorbed systemically, a similar range of adverse effects (attributable to sulphonamides may occur upon use. Furthermore, oral ACZ is reported to be more physiologically effective than 2% dorzolamide hydrochloridead ministered topically, even though in isolated tissues dorzolamide appears to be the most active as it shows the lowest IC50 values for CA-II and CA-IV. Hence, there exists considerable scope for the development of more/equally effective and inexpensive topically effective formulations of ACZ. The use of various formulation technologies discussed in this review can provide a fresh impetus to research in this area.

  11. Sarcoidosis patient: an unexpected reaction to carbonic anhydrase enzyme inhibitor

    OpenAIRE

    Khedr, Yahya A H; Khedr, Abdulla H

    2013-01-01

    Ocular diseases are very common in many of the systemic diseases such as sarcoidosis, and may sometimes be the presenting symptom of the disease. In this case report, we present an unusual reaction of the sarcoid granuloma to carbonic anhydrase enzyme inhibitors (CAIs), which was encountered in a patient with ocular sarcoidosis. This observation was taken after a 2-week interval between a CT scan orbits and an MRI orbits which showed a decrease in size from 4×3×4 cm to 2.5×2.5×2 cm, respectiv...

  12. Glaucoma and the applications of carbonic anhydrase inhibitors.

    Science.gov (United States)

    Scozzafava, Andrea; Supuran, Claudiu T

    2014-01-01

    Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the treatment of glaucoma, a disease affecting a large number of people and characterized by an elevated intraocular pressure (IOP). At least three isoforms, CA II, IV and XII are targeted by the sulfonamide inhibitors, some of which are clinically used drugs. Acetazolamide, methazolamide and dichlorophenamide are first generation CA inhibitors (CAIs) still used as systemic drugs for the management of this disease. Dorzolamide and brinzolamide represent the second generation inhibitors, being used topically, as eye drops, with less side effects compared to the first generation drugs. Third generation inhibitors have been developed by using the tail approach, but they did not reach the clinics yet. The most promising such derivatives are the sulfonamides incorporating either tails with nitric oxide releasing moieties or hybrid drugs possessing prostaglandin (PG) F agonist moieties in their molecules. Recently, the dithiocarbamates have also been described as CAIs possessing IOP lowering effects in animal models of glaucoma. CAIs are used alone or in combination with other drugs such as adrenergic agonist/antagonists, or PG analogs, being an important component of the antiglaucoma drugs armamentarium. PMID:24146387

  13. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  14. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture.......To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  15. Thermodynamics of binding of Zn2+ to carbonic anhydrase inhibitors

    Science.gov (United States)

    Remko, Milan; Garaj, Vladimír

    The Becke3LYP functional of DFT theory and the two-layered ONIOM (B3LYP/6-311+G(d,p): MNDO) method were used to characterize 46 gas-phase complexes of 34 neutral and anionic ligands (H2O, CH3OH, CH3COOH, CH3CONH2, HOSO2NH2, CO2, HSO2NH2, CH3SO2NH2, CH3C(=O)NHOH, imidazole, NH2SO2NH2, anions of 4-aminobenzenesulphonamide, saccharin, 1I9L, brinzolamide, dorzolamide, acetazolamide, further HO(-), CH3O(-), CH3COO(-), CH3CONH(-), N=N=N(-), S=C=N(-), CH3C(=O)NHO(-), HOCOO(-), imidazoleN(-), phenol-O(-), HOSO2NH(-), (-)OSO2NH(-), (-)OSO2NH2, H2NSO2NH(-), HSO2NH(-), CH3SO2NH(-), and CF3SO2NH(-), respectively) with Zn2+. Proton dissociation enthalpies and Gibbs energies of acidic inhibitors in the presence of zinc were computed. Their gas-phase acidity considerably increases upon chelation. Of the bases investigated, the weakest zinc affinity is exhibited by carbon dioxide (-313.5 kJ mol-1). Deprotonated inhibitors have higher affinities for zinc than the neutral ones. Compared to the other mono-deprotonated ligands the acetohydroxamic acid anion has the highest affinity for zinc (-1872.7 kJ mol-1). The zinc affinity of the acetazolamide anion computed using the hybrid ONIOM (B3LYP/6-311+G(d,p): MNDO) method is in very good agreement with the full DFT ones and this method can be adopted to model large complexes of inhibitors with the active site of carbonic anhydrase.

  16. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    Science.gov (United States)

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  17. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations.

    OpenAIRE

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Supuran, Claudiu T.

    2012-01-01

    The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residue...

  18. Strong topical steroid, NSAID, and carbonic anhydrase inhibitor cocktail for treatment of cystoid macular edema

    Directory of Open Access Journals (Sweden)

    Asahi MG

    2015-12-01

    Full Text Available Masumi G Asahi, Gabriela L Bobarnac Dogaru, Spencer M Onishi, Ron P GallemoreRetina Macula Institute, Torrance, CA, USA Purpose: To report the combination cocktail of strong steroid, non-steroidal anti-inflammatory drug (NSAID, and carbonic anhydrase inhibitor drops for treatment of cystoid macular edema. Methods: This is a retrospective case series of patients with cystoid macular edema managed with a topical combination of strong steroid (difluprednate, NSAID, and carbonic anhydrase inhibitor drops. The patients were followed with optical coherence tomography and fluorescein angiography. Results: In our six cases, resolution of the cystic edema with improvement in visual acuity was achieved with the use of a combination cocktail of drops. Leakage on fluorescein angiography and cystic edema on optical coherence tomography both responded to treatment with the topical cocktail of drops. Conclusion: A topical cocktail of strong steroid, NSAID, and carbonic anhydrase inhibitor drops are effective for managing cystoid macular edema. Further studies comparing this combination with more invasive treatments should be undertaken to determine the efficacy of this cocktail over other treatment options. Keywords: birdshot chorioretinopathy, diabetic macular edema, retinal vein occlusion

  19. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbonic anhydrase Ⅱ (CAⅡ) is an important enzyme complex with Zn2+,which is involved in many physiological and pathological processes, such as calcification, glaucoma and tumorigenicity. In order to search for novel inhibitors of CAⅡ, inhibition assay of carbonic anhydrase Ⅱ was performed, by which seven natural phenolic compounds, including four phenolics (grifolin, 4-O-methyl-grifolic acid, grifolic acid, and isovanillic acid) and three flavones (eriodictyol, quercetin and puerin A), showed in-hibitory activities against CAⅡ with IC50s in the range of 6.37-71.73 μmol/L. Grifolic acid is the most active one with IC50 of 6.37 μmol/L. These seven phenolic compounds were proved to be novel natural carbonic anhydraseinhibitors, which were obtained in flexible docking study with GOLD 3.0 soft-ware. Results indicated that the aliphatic chain and polar groups of hydroxyl and carboxyl are impor-tant to their inhibitory activities, providing a new insight into study on CA Ⅱ potent inhibitors.

  20. Sulfamate inhibitor S4 influences carbonic anhydrase IX ectodomain shedding in colorectal carcinoma cells.

    Science.gov (United States)

    Hektoen, Helga Helseth; Ree, Anne Hansen; Redalen, Kathrine Røe; Flatmark, Kjersti

    2016-10-01

    Carbonic anhydrase IX (CAIX) is a pivotal pH regulator under hypoxia, which by its tumor-specific expression represents an attractive target for cancer therapy. Here, we report on effects of the sulfamate CAIX inhibitor S4 (4-(3'-(3″,5″-dimethylphenyl)ureido)phenyl sulfamate) in colorectal carcinoma cell lines. S4 was administered under experimental hypoxia or normoxia to HT29, KM20L2 and HCT116 cells. Effects on survival, proliferation, pH, lactate extrusion and CAIX protein expression were evaluated. S4 treatment resulted in attenuated hypoxia-induced extracellular acidification and reduced clonogenic survival under hypoxia in HT29 cells. The pH effects were present only in a [Formula: see text]-free buffer system and were accompanied by decreased lactate extrusion. The main finding of this work was that S4 treatment caused alterations in CAIX ectodomain shedding. This merits further investigation to understand how sulfamates influence CAIX activity and how such drugs may be of use in cancer treatment. PMID:26244271

  1. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies.

    Science.gov (United States)

    Karataş, Mert Olgun; Uslu, Harun; Sarı, Suat; Alagöz, Mehmet Abdullah; Karakurt, Arzu; Alıcı, Bülent; Bilen, Cigdem; Yavuz, Emre; Gencer, Nahit; Arslan, Oktay

    2016-10-01

    Among many others, coumarin derivatives are known to show human carbonic anhydrase (hCA) inhibitory activity. Since hCA inhibition is one of the underlying mechanisms that account for the activities of some antiepileptic drugs (AEDs), hCA inhibitors are expected to have anti-seizure properties. There are also several studies reporting compounds with an imidazole and/or benzimidazole moiety which exert these pharmacological properties. In this study, we prepared fifteen novel coumarin-bearing imidazolium and benzimidazolium chloride, nine novel benzoxazinone-bearing imidazolium and benzimidazolium chloride derivatives and evaluated their hCA inhibitory activities and along with fourteen previously synthesized derivatives we scanned their anticonvulsant effects. As all compounds inhibited purified hCA isoforms I and II, some of them also proved protective against Maximal electroshock seizure (MES) and ScMet induced seizures in mice. Molecular docking studies with selected coumarin derivatives have revealed that these compounds bind to the active pocket of the enzyme in a similar fashion to that previously described for coumarin derivatives.

  2. Capsaicin: A Potent Inhibitor of Carbonic Anhydrase Isoenzymes

    Directory of Open Access Journals (Sweden)

    Betul Arabaci

    2014-07-01

    Full Text Available Carbonic anhydrase (CA, EC 4.2.1.1 is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2 and water (H2O into a proton (H+ and bicarbonate (HCO3– ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II.

  3. [Mode of action, clinical profile and relevance of carbonic anhydrase inhibitors in glaucoma therapy].

    Science.gov (United States)

    Eichhorn, M

    2013-02-01

    Since their introduction the local carbonic anhydrase inhibitors (CAH) dorzolamide and brinzolamide have become well established in the drug therapy of glaucoma. They lower intraocular pressure (IOP) by blocking specifically carbonic anhydrase in the ciliary epithelium and thereby the secretion of aqueous humor. The IOP lowering effect is comparable with that of beta-blockers, but less than that of prostaglandin agonists. Because of their specific mode of action they produce an additive pressure lowering effect with any other glaucoma drug. Therefore they are ideal for being combined with other drugs. In addition, CAH may improve perfusion of the posterior eye. Preliminary results in glaucoma patients under dorzolamide therapy suggesting a reduction in the risk of progression due to enhanced blood flow need further confirmation. PMID:23430679

  4. New selective carbonic anhydrase IX inhibitors: synthesis and pharmacological evaluation of diarylpyrazole-benzenesulfonamides.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Meignan, Samuel; Foulon, Catherine; Six, Perrine; Gros, Abigaëlle; Bal-Mahieu, Christine; Supuran, Claudiu T; Scozzafava, Andrea; Frédérick, Raphaël; Masereel, Bernard; Depreux, Patrick; Lansiaux, Amélie; Goossens, Jean-François; Gluszok, Sébastien; Goossens, Laurence

    2013-03-15

    Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1μM CA IX inhibitor. PMID:23168081

  5. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Anissa Belkaid

    2016-05-01

    Full Text Available Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2. Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites.

  6. Update and critical appraisal of combined timolol and carbonic anhydrase inhibitors and the effect on ocular blood flow in glaucoma patients

    Directory of Open Access Journals (Sweden)

    Adam M Moss

    2010-03-01

    Full Text Available Adam M Moss, Alon Harris, Brent Siesky, Deepam Rusia, Kathleen M Williamson, Yochai ShoshaniDepartment of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USAAbstract: Topical hypotensive therapy with both timolol and carbonic anhydrase inhibitors has been shown to be efficacious at reducing intraocular pressure. Many prospective studies have also suggested that carbonic anhydrase inhibitors augment ocular blood flow and vascular regulation independent of their hypotensive effects. Although consistent in their findings, these studies must be cautiously interpreted due to the limitations of study design and specific blood flow imaging modalities. The purpose of this review is to appraise and critically evaluate the current body of literature investigating the effects of combined treatment with topical carbonic anhydrase inhibitors and timolol in patients with glaucoma with respect to ocular blood flow, visual function, and optic nerve head structure.Keywords: ocular blood flow, carbonic anhydrase inhibitor, timolol, glaucoma, visual function, optic nerve head

  7. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    OpenAIRE

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C.; Silverman, D.; Anderson, P. M.; Fuchs, J A

    1993-01-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloto...

  8. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones.

    Science.gov (United States)

    Akıncıoğlu, Akın; Akıncıoğlu, Hülya; Gülçin, İlhami; Durdagi, Serdar; Supuran, Claudiu T; Göksu, Süleyman

    2015-07-01

    In this study, several novel sulfamides were synthesized and evaluated for their acetylcholine esterase (AChE) and human carbonic anhydrase I, and II isoenzymes (hCA I and II) inhibition profiles. Reductive amination of methoxyacetophenones was used for the synthesis of amines. Amines were converted to sulfamoylcarbamates with chlorosulfonyl isocyanate (CSI) in the presence of BnOH. Pd-C catalyzed hydrogenolysis of sulfamoylcarbamates afforded sulfamides. These novel compounds were good inhibitors of the cytosolic hCA I, and hCA II with Ki values in the range of 45.9±8.9-687.5±84.3 pM for hCA I, and 48.80±8.2-672.2±71.9pM for hCA II. The inhibitory effects of the synthesized novel compounds on AChE were also investigated. The Ki values of these compounds were in the range of 4.52±0.61-38.28±6.84pM for AChE. These results show that hCA I, II, and AChE were effectively inhibited by the novel sulfamoylcarbamates 17-21 and sulfamide derivatives 22-26. All investigated compounds were docked within the active sites of the corresponding enzymes revealing the reasons of the effective inhibitory activity. PMID:25921269

  9. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    Science.gov (United States)

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C; Silverman, D; Anderson, P M; Fuchs, J A

    1993-03-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and

  10. Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors.

    Science.gov (United States)

    Ceruso, Mariangela; Antel, Sabrina; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents. PMID:25792500

  11. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII.

    Science.gov (United States)

    Chandak, Navneet; Ceruso, Mariangela; Supuran, Claudiu T; Sharma, Pawan K

    2016-07-01

    Four novel scaffolds consisting of total 24 compounds (1a-1o, 2a-2c, 3a-3c and 4a-4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII. PMID:27137360

  12. Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives.

    Science.gov (United States)

    Fidan, İsmail; Salmas, Ramin Ekhteiari; Arslan, Mehmet; Şentürk, Murat; Durdagi, Serdar; Ekinci, Deniz; Şentürk, Esra; Coşgun, Sedat; Supuran, Claudiu T

    2015-12-01

    The inhibition of two human cytosolic carbonic anhydrase isozymes I and II, with some novel glycine and phenylalanine sulfonamide derivatives were investigated. Newly synthesized compounds G1-4 and P1-4 showed effective inhibition profiles with KI values in the range of 14.66-315μM for hCA I and of 18.31-143.8μM against hCA II, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico docking studies were applied. Atomistic molecular dynamic simulations were performed for docking poses which utilize to illustrate the inhibition mechanism of used inhibitors into active site of CAII. These sulfonamide containing compounds generally were competitive inhibitors with 4-nitrophenylacetate as substrate. Some investigated compounds here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide, sulfanilamide or mafenide and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.

  13. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure.

    Science.gov (United States)

    Huang, Qinhua; Rui, Eugene Y; Cobbs, Morena; Dinh, Dac M; Gukasyan, Hovhannes J; Lafontaine, Jennifer A; Mehta, Saurabh; Patterson, Brian D; Rewolinski, David A; Richardson, Paul F; Edwards, Martin P

    2015-03-26

    The antiglaucoma drugs dorzolamide (1) and brinzolamide (2) lower intraocular pressure (IOP) by inhibiting the carbonic anhydrase (CA) enzyme to reduce aqueous humor production. The introduction of a nitric oxide (NO) donor into the alkyl side chain of dorzolamide (1) and brinzolamide (2) has led to the discovery of NO-dorzolamide 3a and NO-brinzolamide 4a, which could lower IOP through two mechanisms: CA inhibition to decrease aqueous humor secretion (reduce inflow) and NO release to increase aqueous humor drainage (increase outflow). Compounds 3a and 4a have shown improved efficacy of lowering IOP in both rabbits and monkeys compared to brinzolamide (2). PMID:25728019

  14. A novel library of saccharin and acesulfame derivatives as potent and selective inhibitors of carbonic anhydrase IX and XII isoforms.

    Science.gov (United States)

    Carradori, Simone; Secci, Daniela; De Monte, Celeste; Mollica, Adriano; Ceruso, Mariangela; Akdemir, Atilla; Sobolev, Anatoly P; Codispoti, Rossella; De Cosmi, Federica; Guglielmi, Paolo; Supuran, Claudiu T

    2016-03-01

    Small libraries of N-substituted saccharin and N-/O-substituted acesulfame derivatives were synthesized and tested as atypical and selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Most of them inhibited hCA XII in the low nanomolar range, hCA IX with KIs ranging between 19 and 2482nM, whereas they were poorly active against hCA II (KIs >10μM) and hCA I (KIs ranging between 318nM and 50μM). Since hCA I and II are ubiquitous off-target isoforms, whereas the cancer-related isoforms hCA IX and XII were recently validated as drug targets, these results represent an encouraging achievement in the development of new anticancer candidates. Moreover, the lack of a classical zinc binding group in the structure of these inhibitors opens innovative, yet unexplored scenarios for different mechanisms of inhibition that could explain the high inhibitory selectivity. A computational approach has been carried out to further rationalize the biological data and to characterize the binding mode of some of these inhibitors. PMID:26810710

  15. Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies.

    Science.gov (United States)

    Carta, Fabrizio; Ferraroni, Marta; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-15

    Fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) were essential for demonstrating the role played by the tumor-associated isoform CA IX in acidification of tumors, cancer progression towards metastasis and for the development of imaging and therapeutic strategies for the management of hypoxic tumors which overexpress CA IX. However, the presently available such compounds are poorly water soluble which limits their use. Here we report new fluorescent sulfonamides 7, 8 and 10 with increased water solubility. The new derivatives showed poor hCA I inhibitory properties, but were effective inhibitors against the hCA II (KIs of 366-127 nM), CA IX (KIs of 8.1-36.9 nM), CA XII (KIs of 4.1-20.5 nM) and CA XIV (KIs of 12.8-53.6 nM). A high resolution X-ray crystal structure of one of these compounds bound to hCA II revealed the factors associated with the good inhibitory properties. Furthermore, this compound showed a three-fold increase of water solubility compared to a similar derivative devoid of the triazole moiety, making it an interesting candidate for ex vivo/in vivo studies. PMID:26682703

  16. Complexes With Biologically Active Ligands. Part 4. Coordination Compounds of Chlorothiazide With Transition Metal Ions Behave as Strong Carbonic Anhydrase Inhibitors

    OpenAIRE

    Supuran, Claudiu T.

    1996-01-01

    Complexes of the diuretic benzothiadiazine derivative chlorothiazide (6-chloro-7-sulfamoyl- 1,2,4-benzothiadiazine-1,1-dioxide) with V(IV); Fe(II); Co(II); Ni(II); Cu(II), Ag(I) and U(VI) were prepared and characterized by elemental analysis, spectroscopic, thermogravimetric, magnetic and conductimetric measurements. The complexes behave as effective inhibitors for two isozymes (I and II) of carbonic anhydrase (CA).

  17. Quantitative Characterization of the Interaction Space of the Mammalian Carbonic Anhydrase Isoforms I, II, VII, IX, XII, and XIV and their Inhibitors, Using the Proteochemometric Approach.

    Science.gov (United States)

    Rasti, Behnam; Karimi-Jafari, Mohammad H; Ghasemi, Jahan B

    2016-09-01

    The critical role of carbonic anhydrases in different physiological processes has put this protein family at the center of attention, challenging major diseases like glaucoma, neurological disorders such as epilepsy and Alzheimer's disease, obesity, and cancers. Many QSAR/QSPR (quantitative structure-activity/property relationship) researches have been carried out to design potent carbonic anhydrase inhibitors (CAIs); however, using inhibitors with no selectivity for different isoforms can lead to major side-effects. Given that QSAR/QSPR methods are not capable of covering multiple targets in a unified model, we have applied the proteochemometric approach to model the interaction space that governs selective inhibition of different CA isoforms by some mono-/dihydroxybenzoic acid esters. Internal and external validation methods showed that all models were reliable in terms of both validity and predictivity, whereas Y-scrambling assessed the robustness of the models. To prove the applicability of our models, we showed how structural changes of a ligand can affect the selectivity. Our models provided interesting information that can be useful for designing inhibitors with selective behavior toward isoforms of carbonic anhydrases, aiding in their selective inhibition. PMID:26990115

  18. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Directory of Open Access Journals (Sweden)

    Shenghua Huang

    Full Text Available The β-class carbonic anhydrases (β-CAs are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2-HCO(3(- interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules.

  19. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Science.gov (United States)

    Huang, Shenghua; Hainzl, Tobias; Grundström, Christin; Forsman, Cecilia; Samuelsson, Göran; Sauer-Eriksson, A Elisabeth

    2011-01-01

    The β-class carbonic anhydrases (β-CAs) are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2)-HCO(3)(-) interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules. PMID:22162771

  20. Potentiation of the effect of thiazide derivatives by carbonic anhydrase inhibitors: molecular mechanisms and potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available BACKGROUND: Carbonic anhydrase inhibitors (CAI are mild diuretics, hence not widely used in fluid overloaded states. They are however the treatment of choice for certain non-kidney conditions. Thiazides, specific inhibitors of Na-Cl cotransport (NCC, are mild agents and the most widely used diuretics in the world for control of mild hypertension. HYPOTHESIS: In addition to inhibiting the salt reabsorption in the proximal tubule, CAIs down-regulate pendrin, therefore leaving NCC as the major salt absorbing transporter in the distal nephron, and hence allowing for massive diuresis by the inhibitors of NCC in the setting of increased delivery of salt from the proximal tubule. EXPERIMENTAL PROTOCOLS AND RESULTS: Daily treatment of rats with acetazolamide (ACTZ, a known CAI, for 10 days caused mild diuresis whereas daily treatment with hydrochlorothiazide (HCTZ for 4 days caused hardly any diuresis. However, treatment of rats that were pretreated with ACTZ for 6 days with a combination of ACTZ plus HCTZ for 4 additional days increased the urine output by greater than 2 fold (p<0.001, n = 5 compared to ACTZ-treated animals. Sodium excretion increased by 80% in the ACTZ plus HCTZ group and animals developed significant volume depletion, metabolic alkalosis and pre-renal failure. Molecular studies demonstrated ∼75% reduction in pendrin expression by ACTZ. The increased urine output in ACTZ/HCTZ treated rats was associated with a significant reduction in urine osmolality and reduced membrane localization of AQP-2 (aquaporin2. CONCLUSIONS: These results indicate that ACTZ down-regulates pendrin expression and leaves NCC as the major salt absorbing transporter in the distal nephron in the setting of increased delivery of salt from the proximal tubule. Despite being considered mild agents individually, we propose that the combination of ACTZ and HCTZ is a powerful diuretic regimen.

  1. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  2. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties

    Science.gov (United States)

    Supuran, Claudiu T.

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC50 values around 10−8M against isozyme CA II, and 10−7 M against isozyme CAI. PMID:18472784

  3. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties.

    Science.gov (United States)

    Supuran, C T

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC(50) values around 10(-8)M against isozyme CA II, and 10(-7) M against isozyme CAI.

  4. Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Hann, Zachary S; Cohen, Seth M

    2013-11-01

    An ever-increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, zinc(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design of new therapeutics targeting metalloproteins.

  5. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA.

  6. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  7. Catecholamine-induced vasoconstriction is sensitive to carbonic anhydrase I activation

    Directory of Open Access Journals (Sweden)

    Puscas I.

    2001-01-01

    Full Text Available We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors, so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.

  8. Natural products that inhibit carbonic anhydrase.

    Science.gov (United States)

    Poulsen, Sally-Ann; Davis, Rohan A

    2014-01-01

    The chemical diversity, binding specificity and propensity to interact with biological targets has inspired many researchers to utilize natural products as molecular probes. Almost all reported carbonic anhydrase inhibitors comprise a zinc binding group in their structure of which the primary sulfonamide moiety (-SO2NH2) is the foremost example and to a lesser extent the primary sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products that comprise these zinc binding groups in their structure are however rare and relatively few natural products have been explored as a source for novel carbonic anhydrase inhibitors. This chapter will highlight the recent and growing interest in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural product chemical space presents a rich source of potential alternate chemotypes for the discovery of novel drug-like carbonic anhydrase inhibitors. PMID:24146386

  9. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Pavel Mader

    2014-01-01

    Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.

  10. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Science.gov (United States)

    Mader, Pavel; Pecina, Adam; Cígler, Petr; Lepšík, Martin; Šícha, Václav; Hobza, Pavel; Grüner, Bohumír; Fanfrlík, Jindřich; Brynda, Jiří; Řezáčová, Pavlína

    2014-01-01

    Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively. PMID:25309911

  11. Development of 3-(4-aminosulphonyl)-phenyl-2-mercapto-3H-quinazolin-4-ones as inhibitors of carbonic anhydrase isoforms involved in tumorigenesis and glaucoma.

    Science.gov (United States)

    Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Supuran, Claudiu T

    2016-03-15

    A series of heterocyclic benzenesulfonamides incorporating 2-mercapto-3H-quinazolin-4-one tails were prepared by condensation of substituted anthranilic acids with 4-isothiocyanato-benzenesulfonamide. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (trans-membrane, tumor-associated enzymes). They acted as medium potency inhibitors of hCA I (KIs of 81.0-3084 nM), being highly effective as hCA II (KIs in the range of 0.25-10.8 nM), IX (KIs of 3.7-50.4 nM) and XII (KIs of 0.60-52.9 nM) inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of three isoforms (CA II, IX and XII) is dysregulated. PMID:26875933

  12. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Directory of Open Access Journals (Sweden)

    Jérôme eDoyen

    2013-01-01

    Full Text Available The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases CAIX and CAXII constitute a robust pHi-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX and LS174Tr cells (inducible knock-down for ca9/ca12 were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pHo manipulations and hypoxia (1% O2 exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pHi-regulating capacity of fibroblasts through inhibition of NHE-1 sensitize cells to radiation-induced cell death. Secondly, the pHi-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50% and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pHi regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pHi-regulating carbonic anhydrases as an anti-cancer strategy.

  13. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.

    Science.gov (United States)

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T; Peyron, Jean-François; Imbert, Véronique

    2013-06-01

    The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis. The same results were observed with the SupT1 human T cell lymphoma line. In addition we observed an upregulation of CAXII in human T-ALL samples supporting the case that CAXII may represent a new therapeutic target for T-ALL/LL. PMID:23348702

  14. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII.

    Science.gov (United States)

    Eldehna, Wagdy M; Fares, Mohamed; Ceruso, Mariangela; Ghabbour, Hazem A; Abou-Seri, Sahar M; Abdel-Aziz, Hatem A; Abou El Ella, Dalal A; Supuran, Claudiu T

    2016-03-01

    By using a molecular hybridization approach, two series of amido/ureidosubstituted benzenesulfonamides incorporating substituted-isatin moieties were synthesized. The prepared derivatives were in vitro evaluated for their inhibitory activity against human carbonic anhydrase (hCA, EC 4.2.1.1) I, II (cytosolic) and IX, XII (transmembrane, tumor-associated) isoforms. All these isoforms were inhibited in variable degrees by the sulfonamides reported here. hCA I was inhibited with KIs in the range of 7.9-894 nM, hCA II in the range of 7.5-1645 nM (with one compound having a KI > 10 μM); hCA IX in the range of 5.0-240 nM, whereas hCA XII in the range of 0.47-2.83 nM. As all these isoforms are involved in various pathologies, in which their inhibition can be exploited therapeutically, the derivatives reported here may represent interesting extensions to the field of CA inhibitors of the sulfonamide type. PMID:26840366

  15. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX.

    Science.gov (United States)

    Pinard, Melissa A; Aggarwal, Mayank; Mahon, Brian P; Tu, Chingkuang; McKenna, Robert

    2015-10-01

    Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.

  16. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015).

    Science.gov (United States)

    Buzás, György M; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Puşcaş used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Puşcaş for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend. PMID:26108882

  17. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015).

    Science.gov (United States)

    Buzás, György M; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Puşcaş used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Puşcaş for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend.

  18. Vascular calcification: Inducers and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun, E-mail: dhlee@cau.ac.kr [Department of Biomedical Engineering, Division of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} Types of vascular calcification processes. {center_dot} Inducers of vascular calcification. {center_dot} Inhibitors of vascular calcifications. {center_dot} Clinical utility for vascular calcification therapy. {center_dot} Implications for the development of new tissue engineering strategies. - Abstract: Unlike the traditional beliefs, there are mounting evidences suggesting that ectopic mineral depositions, including vascular calcification are mostly active processes, many times resembling that of the bone mineralization. Numbers of agents are involved in the differentiation of certain subpopulation of smooth muscle cells (SMCs) into the osteoblast-like entity, and the activation and initiation of extracellular matrix ossification process. On the other hand, there are factors as well, that prevent such differentiation and ectopic calcium phosphate formation. In normal physiological environments, activities of such procalcific and anticalcific regulatory factors are in harmony, prohibiting abnormal calcification from occurring. However, in certain pathophysiological conditions, such as atherosclerosis, chronic kidney disease (CKD), and diabetes, such balances are altered, resulting in abnormal ectopic mineral deposition. Understanding the factors that regulate the formation and inhibition of ectopic mineral formation would be beneficial in the development of tissue engineering strategies for prevention and/or treatment of such soft-tissue calcification. Current review focuses on the factors that seem to be clinically relevant and/or could be useful in developing future tissue regeneration strategies. Clinical utilities and implications of such factors are also discussed.

  19. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. PMID:24375583

  20. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors.

  1. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors

    Directory of Open Access Journals (Sweden)

    Olga eSedlakova

    2014-01-01

    Full Text Available Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades and converting intracellular signals to extracellular effects on adhesion, proteolysis and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia

  2. Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines

    International Nuclear Information System (INIS)

    Bronchial carcinoids are pulmonary neuroendocrine cell-derived tumors comprising typical (TC) and atypical (AC) malignant phenotypes. The 5-year survival rate in metastatic carcinoid, despite multiple current therapies, is 14-25%. Hence, we are testing novel therapies that can affect the proliferation and survival of bronchial carcinoids. In vitro studies were used for the dose–response (AlamarBlue) effects of acetazolamide (AZ) and sulforaphane (SFN) on clonogenicity, serotonin-induced growth effect and serotonin content (LC-MS) on H-727 (TC) and H-720 (AC) bronchial carcinoid cell lines and their derived NOD/SCID mice subcutaneous xenografts. Tumor ultra structure was studied by electron microscopy. Invasive fraction of the tumors was determined by matrigel invasion assay. Immunohistochemistry was conducted to study the effect of treatment(s) on proliferation (Ki67, phospho histone-H3) and neuroendocrine phenotype (chromogranin-A, tryptophan hydroxylase). Both compounds significantly reduced cell viability and colony formation in a dose-dependent manner (0–80 μM, 48 hours and 7 days) in H-727 and H-720 cell lines. Treatment of H-727 and H-720 subcutaneous xenografts in NOD/SCID mice with the combination of AZ + SFN for two weeks demonstrated highly significant growth inhibition and reduction of 5-HT content and reduced the invasive capacity of H-727 tumor cells. In terms of the tumor ultra structure, a marked reduction in secretory vesicles correlated with the decrease in 5-HT content. The combination of AZ and SFN was more effective than either single agent. Since the effective doses are well within clinical range and bioavailability, our results suggest a potential new therapeutic strategy for the treatment of bronchial carcinoids

  3. Non-Classical Inhibition of Carbonic Anhydrase

    Science.gov (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  4. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  5. Inhibitory Effect of Furosemide on Carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    CUI Jianli; ZHAO Tongjin; JIANG Yan; ZHOU Haimeng

    2006-01-01

    This study investigated the inhibitory effect of a high efficiency diuretic, furosemide, on carbonic anhydrase (CA). First, comparing the inhibitory effect of acetazolamide, a low efficiency diuretic, on CA, shows that furosemide or acetazolamide can quickly make CA inactive when its concentration is close to the enzyme concentration, different from the usual inhibitory kinetics in which the concentration of the inhibitor is far higher than the enzyme concentration. Secondly, the reaction of the enzyme indicates that the inhibitory effect of furosemide or acetazolamide on carbonic anhydrase is quickly reversible. Finally, the degree of the inhibitory effect of furosemide and of acetazolamide on CA are compared. The results show that furosemide inhibits CA less than acetazolamide.

  6. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  7. Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis

    OpenAIRE

    Dutta., D; Fischler, M; McClung, A

    2001-01-01

    Secondary hyperkalaemic paralysis is a rare condition often mimicking the Guillain-Barré syndrome. There have been a few case reports of hyperkalaemia caused by renal failure, trauma, and drugs where the presentation has been with muscle weakness. A case of hyperkalaemic paralysis caused by an angiotensin converting enzyme inhibitor is reported.


Keywords: hyperkalaemia; paralysis; ACE inhibitors

  8. Visceral Angioedema Induced by Angiotensin Converting Enzyme Inhibitor: Case Report

    Directory of Open Access Journals (Sweden)

    Beatriz Frutuoso

    2016-05-01

    Conclusion: The diagnosis of intestinal angioedema induced by angiotensin converting enzyme inhibitor can be challenging and time consuming due to its rarity and nonspecific symptoms, which may lead to underdiagnosis of this entity.

  9. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten;

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  10. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten;

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  11. Influence of topical carbonic anhydrase inhibitor on the expression of aquaporin-1 in rat cornea with neovascularization%碳酸酐酶抑制剂的局部应用对大鼠角膜新生血管形成过程中水通道蛋白1表达的影响

    Institute of Scientific and Technical Information of China (English)

    张洁; 李立

    2011-01-01

    (t=2.48,P=0.02),2个组AQP1灰度值分别为88.01±11.03和58.10±12.14,差异有统计学意义(t=9.99,P=0.00).结论 布林佐胺滴眼液能抑制大鼠角膜碱烧伤后CNV形成过程中AQP1的高表达,从而间接影响VEGF的表达,抑制或延缓CNV的形成.%Background Researches showed that aquaporin-1 (AQP1) is closely associated with corneal neovescularization(CNV).Carbonic anhydrase inhibitor has the inhibitory effect on the AQP1 and further suppresses the CNV.However,the systemic adverse effect of Carbonic anhydrase inhibitor limit its clinical application.Therefore,the influence of topical carbonic anhydrase inhibitor on CNV is concerned.Objective Present study was to investigate the effects of topical carbonic anhydrase inhibitors on the expression of AQP1 in rat cornea after alkali burn and explore its role in corneal neovascularization (CNV).Methods The alkali-burn animal models were established in 60 eyes of 30 clean Sprague Dawley rats by putting the filter paper soaked 1 mol/L NaOH solution at the central cornea for 40 seconds.1% Brinzolamide was topically administered in the 30 eyes of 15 models (Brinzolamide group),and the normal saline solution was used at the same way in other 30 eyes of 15 rats (model group).The 10 eyes of 5 normal Sprague Dawley received the eye drops of normal saline solution as the normal control group.The corneal burning degree was graded on the Mahoney ' s criteria in the third day,and Ee ' s method was used to score the opacification of cornea and the CNV area was analyzed in 3,5,7,10 days under the slit lamp microscope.The cornea tissue was obtained in the tenth day after burning for the observation of the pathology under the light microscope and the ultrastructure under the transmission electron microscope.The expressions of AQP1 and vascular endothelial growth factor(VEGF) in cornea tissue were detected using immunohistochemistry.The use of animals complied with the Statement of ARVO.Results No significant

  12. Structure and function of carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-07-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. PMID:27407171

  13. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  14. Protein synthesis and auxin-induced growth: inhibitor studies

    Energy Technology Data Exchange (ETDEWEB)

    Bates, G.T.; Cleland, R.E.

    1979-01-01

    We have compared the effects of cycloheximide (CHI) and two other rapid and effective inhibitors of protein synthesis, pactamycin and 2-(4-methyl-2,6-dinitroanilino)-N-methyl proprionamide (MDMP), on protein synthesis, respiration, auxin-induced growth and H/sup +/-excretion of Avena sativa L. coleoptiles. All three compounds inhibit protein synthesis without affecting respiration. The effectiveness of the inhibitors against H/sup +/-excretion and growth correlates with their ability to inhibit protein synthesis. Both CHI and MDMP inhibit auxin-induced H/sup +/-excretion after a latent period of 5 to 8 min, and inhibit growth after a 8 to 10 min lag. These results support the idea that continued protein synthesis is required in the initial stages of the growth-promoting action of auxin.

  15. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: An animal model for human carbonic anhydrase II deficiency syndrome

    International Nuclear Information System (INIS)

    Electrophoretic screening of (C57BL/6J x DBA/2J)F1 progeny of male mice treated with N-ethyl-N-nitrosourea revealed a mouse that lacked the paternal carbonic anhydrase II (Ca II). Breeding tests showed that this trait was heritable and due to a null mutation at the Car-2 locus on chromosome 3. Like humans with the same inherited enzyme defect, animals homozygous for the new null allele are runted and have renal tubular acidosis. However, the prominent osteopetrosis found in humans with CA II deficiency could be detected even in very old homozygous null mice. A molecular analysis of the deficient mice shows that the mutant gene is not deleted and is transcribed. The CA II protein, which is normally expressed in most tissues, could not be detected by immunodiffusion analysis in any tissues of the CA II-deficient mice, suggesting a nonsense or a missense mutation at the Car-2 locus

  16. How many carbonic anhydrase inhibition mechanisms exist?

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes. PMID:26619898

  17. Histone deacetylase inhibitor panobinostat induces calcineurin degradation in multiple myeloma

    Science.gov (United States)

    Ohta, Eri; Takeda, Shu; Sunamura, Satoko; Ishibashi, Mariko; Tamura, Hideto; Wang, Yan-hua; Deguchi, Atsuko; Tanaka, Junji; Maru, Yoshiro; Motoji, Toshiko

    2016-01-01

    Multiple myeloma (MM) is a relapsed and refractory disease, one that highlights the need for developing new molecular therapies for overcoming of drug resistance. Addition of panobinostat, a histone deacetylase (HDAC) inhibitor, to bortezomib and dexamethasone improved progression-free survival (PFS) in relapsed and refractory MM patients. Here, we demonstrate how calcineurin, when inhibited by immunosuppressive drugs like FK506, is involved in myeloma cell growth and targeted by panobinostat. mRNA expression of PPP3CA, a catalytic subunit of calcineurin, was high in advanced patients. Panobinostat degraded PPP3CA, a degradation that should have been induced by inhibition of the chaperone function of heat shock protein 90 (HSP90). Cotreatment with HDAC inhibitors and FK506 led to an enhanced antimyeloma effect with a greater PPP3CA reduction compared with HDAC inhibitors alone both in vitro and in vivo. In addition, this combination treatment efficiently blocked osteoclast formation, which results in osteolytic lesions. The poor response and short PFS duration observed in the bortezomib-containing therapies of patients with high PPP3CA suggested its relevance to bortezomib resistance. Moreover, bortezomib and HDAC inhibitors synergistically suppressed MM cell viability through PPP3CA inhibition. Our findings underscore the usefulness of calcineurin-targeted therapy in MM patients, including patients who are resistant to bortezomib.

  18. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  19. Studies on the protective effect of ebrotidine on experimental ulcers induced by non-steroidal anti-inflammatory drugs in healthy volunteers.

    Science.gov (United States)

    Puscas, I; Puscas, C; Coltau, M; Torres, J; Márquez, M; Herrero, E; Fillat, O; Ortiz, J A

    1997-04-01

    Ebrotidine (N-[(E)-[[2-[[[2-[(diaminomethylene)amino]- 4-thiazolyl]methyl]thio]ethyl]amino]methylene]-4-bromo-benzenesulfonamid e, CAS 100981-43-9, FI-3542) is a new H2-receptor antagonist providing a new therapy for the prevention and healing of non-steroidal anti-inflammatory drugs-induced gastroduodenal lesions. Carbonic anhydrase is a zinc enzyme, and its isozyme (carbonic anhydrase II) in parietal cells plays a central role in HCl secretion. The effects of ebrotidine on carbonic anhydrase in human subjects are reported. Eighteen healthy volunteers were distributed in 3 equal subgroups and treated for 10 days as follows: ebrotidine 800 mg/d p.o. (Group A); indometacin 4 mg/kg/d p.o. in 3 divided doses (Group B); ebrotidine 800 mg/d p.o. plus indometacin 4 mg/kg/d p.o. (Group C). Assessment of the enzymatic activity of carbonic anhydrase was based on the colorimetric method of changing pH with the stopped-flow technique. In group A, ebrotidine reduced total gastric mucosal carbonic anhydrase activity by 62%; in group B, indometacin increased carbonic anhydrase activity in gastric mucosa by 138%; in group C, the combined treatment with ebrotidine plus indometacin decreased gastric mucosal carbonic anhydrase activity by 38%. The present study shows that, unlike ranitidine, ebrotidine, a competitive H2-receptor antagonist, is also a non-competitive inhibitor of carbonic anhydrase I and II. By antagonizing the activating effects of indometacin on gastric mucosal carbonic anhydrase, ebrotidine prevents mucosal lesions caused by anti-inflammatory drugs.

  20. Carbonic anhydrase in Escherichia coli. A product of the cyn operon.

    Science.gov (United States)

    Guilloton, M B; Korte, J J; Lamblin, A F; Fuchs, J A; Anderson, P M

    1992-02-25

    The product of the cynT gene of the cyn operon in Escherichia coli has been identified as a carbonic anhydrase. The cyn operon also includes the gene cynS, encoding the enzyme cyanase. Cyanase catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The carbonic anhydrase was isolated from an Escherichia coli strain overexpressing the cynT gene and characterized. The purified enzyme was shown to contain 1 Zn2+/subunit (24 kDa) and was found to behave as an oligomer in solution; the presence of bicarbonate resulted in partial dissociation of the oligomeric enzyme. The kinetic properties of the enzyme are similar to those of carbonic anhydrases from other species, including inhibition by sulfonamides and cyanate. The amino acid sequence shows a high degree of identity with the sequences of two plant carbonic anhydrases. but not with animal and algal carbonic anhydrases. Since carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate diffuses out of the cell faster than it would be hydrated to bicarbonate, the apparent function of the induced carbonic anhydrase is to catalyze hydration of carbon dioxide and thus prevent depletion of cellular bicarbonate.

  1. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation.

    Science.gov (United States)

    Ginter, Torsten; Bier, Carolin; Knauer, Shirley K; Sughra, Kalsoom; Hildebrand, Dagmar; Münz, Tobias; Liebe, Theresa; Heller, Regine; Henke, Andreas; Stauber, Roland H; Reichardt, Werner; Schmid, Johannes A; Kubatzky, Katharina F; Heinzel, Thorsten; Krämer, Oliver H

    2012-07-01

    Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation. PMID:22425562

  2. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    International Nuclear Information System (INIS)

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H2O2 concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution

  3. Stress inducible proteinase inhibitor diversity in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Mishra Manasi

    2012-11-01

    Full Text Available Abstract Background Wound-inducible Pin-II Proteinase inhibitors (PIs are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L. proteinase inhibitor (CanPIs genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS of Helicoverpa armigera or water. Results The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs. Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and −10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and −43. Conclusions Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating

  4. Selective serotonin-norepinephrine reuptake inhibitors-induced Takotsubo cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Rahul Vasudev

    2016-01-01

    Full Text Available Context: Takotsubo translates to "octopus pot" in Japanese. Takotsubo cardiomyopathy (TTC is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin-norepinephrine reuptake inhibitors (SNRI-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC.

  5. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia?

    Directory of Open Access Journals (Sweden)

    Avital F. Barak

    2011-12-01

    Full Text Available The outcome and quality of life of chronic myeloid leukemia (CML patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs. Currently, hematopoietic stem cell transplantation (HSCT is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombocytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.

  6. Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: molecular basis of isozyme-drug discrimination.

    OpenAIRE

    Stams, T.; Y. Chen; Boriack-Sjodin, P. A.; Hurt, J. D.; Liao, J; May, J. A.; Dean, T.; Laipis, P; Silverman, D. N.; Christianson, D. W.

    1998-01-01

    Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some...

  7. Structural Basis for the Inhibition of Helicobacter pylori α-Carbonic Anhydrase by Sulfonamides.

    Directory of Open Access Journals (Sweden)

    Joyanta K Modak

    Full Text Available Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA, an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological inhibitors of human carbonic anhydrases, acetazolamide and methazolamide. This analysis reveals that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the CO2 substrate in the Michaelis complex, whilst the zinc-coordinating sulfonamide nitrogen occupies the position of the catalytic water molecule. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit. This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.

  8. Carbonic anhydrases as targets for medicinal chemistry.

    Science.gov (United States)

    Supuran, Claudiu T; Scozzafava, Andrea

    2007-07-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc enzymes acting as efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate. 16 different alpha-CA isoforms were isolated in mammals, where they play crucial physiological roles. Some of them are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA XV), CA VA and CA VB are mitochondrial, and CA VI is secreted in saliva and milk. Three acatalytic forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP XI. Representatives of the beta-delta-CA family are highly abundant in plants, diatoms, eubacteria and archaea. The catalytic mechanism of the alpha-CAs is understood in detail: the active site consists of a Zn(II) ion co-ordinated by three histidine residues and a water molecule/hydroxide ion. The latter is the active species, acting as a potent nucleophile. For beta- and gamma-CAs, the zinc hydroxide mechanism is valid too, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. CAs are inhibited primarily by two classes of compounds: the metal complexing anions and the sulfonamides/sulfamates/sulfamides possessing the general formula RXSO(2)NH(2) (R=aryl; hetaryl; perhaloalkyl; X=nothing, O or NH). Several important physiological and physio-pathological functions are played by CAs present in organisms all over the phylogenetic tree, related to respiration and transport of CO(2)/bicarbonate between metabolizing tissues and the lungs, pH and CO(2) homeostasis, electrolyte secretion in a variety of tissues/organs, biosynthetic reactions, such as the gluconeogenesis and ureagenesis among others (in animals), CO(2) fixation (in plants and algae), etc. The presence of these ubiquitous enzymes in so many tissues and in so different isoforms represents an attractive goal for the design of inhibitors with biomedical applications. Indeed, CA inhibitors are clinically used as

  9. Inhibitors

    Science.gov (United States)

    ... wrong place in the body. Immune Tolerance Induction (ITI) Therapy: The goal of ITI therapy is to stop the inhibitor reaction from ... body to accept clotting factor concentrate treatments. With ITI therapy, people receive large amounts of clotting factor ...

  10. Increased oxidation-related glutathionylation and carbonic anhydrase activity in endometriosis.

    Science.gov (United States)

    Andrisani, Alessandra; Donà, Gabriella; Brunati, Anna Maria; Clari, Giulio; Armanini, Decio; Ragazzi, Eugenio; Ambrosini, Guido; Bordin, Luciana

    2014-06-01

    This study examined the possible involvement of carbonic anhydrase activation in response to an endometriosis-related increase in oxidative stress. Peripheral blood samples obtained from 27 healthy controls and 30 endometriosis patients, classified as having endometriosis by histological examination of surgical specimens, were analysed by multiple immunoassay and carbonic anhydrase activity assay. Red blood cells (RBC) were analysed for glutathionylated protein (GSSP) content in the membrane, total glutathione (GSH) in the cytosol and carbonic anhydrase concentration and activity. In association with a membrane increase of GSSP and a cytosolic decrease of GSH content in endometriosis patients, carbonic anhydrase significantly increased (P < 0.0001) both monomerization and activity compared with controls. This oxidation-induced activation of carbonic anhydrase was positively and significantly correlated with the GSH content of RBC (r = 0.9735, P < 0.001) and with the amount of the 30-kDa monomer of carbonic anhydrase (r = 0.9750, P < 0.001). Because carbonic anhydrase activation is implied in many physiological and biochemical processes linked to pathologies such as glaucoma, hypertension, obesity and infections, carbonic anhydrase activity should be closely monitored in endometriosis. These data open promising working perspectives for diagnosis and treatment of endometriosis and hopefully of other oxidative stress-related diseases. Endometriosis is a chronic disease associated with infertility and local inflammatory response, which is thought to spread rapidly throughout the body as a systemic subclinical inflammation. One of the causes in the pathogenesis/evolution of endometriosis is oxidative stress, which occurs when reactive oxygen species are produced faster than the endogenous antioxidant defence systems can neutralize them. Once produced, reactive oxygen species can alter the morphological and functional properties of endothelial cells, including

  11. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  12. The effects of some bromophenols on human carbonic anhydrase isoenzymes.

    Science.gov (United States)

    Taslimi, Parham; Gülçin, İlhami; Öztaşkın, Necla; Çetinkaya, Yasin; Göksu, Süleyman; Alwasel, Saleh H; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrases (CAs, EC 4.2.1.1), which are involved in a variety of physiological and pathological processes, are ubiquitous metalloenzymes mainly catalyzing the reversible hydration of carbon dioxide (CO2) to bicarbonate ([Formula: see text]) and proton (H(+)). In this study, a dozen of bromophenol derivatives (1-12) were evaluated as metalloenzyme CA (EC 4.2.1.1) inhibitors against the human carbonic anhydrase isoenzymes I and II (hCA I and II). Cytosolic hCA I and II isoenzymes were effectively inhibited by bromophenol derivatives (1-12) with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II, respectively. PMID:26133541

  13. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    Energy Technology Data Exchange (ETDEWEB)

    Weiwei, Zhang [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China); Hu, Renming, E-mail: taylorzww@gmail.com [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China)

    2009-12-18

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  14. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    International Nuclear Information System (INIS)

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  15. Isolated oedema of the uvula induced by intense snoring and ACE inhibitor

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; Mey, Kristianna; Bygum, Anette

    2014-01-01

    A case of snoring-induced angioedema of uvula is described in a patient who was treated with ACE inhibitor. The patient partially responded to complement C1-inhibitor concentrate and did not suffer any recurrences after the medication was withdrawn. When encountering a patient suffering from...

  16. Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice

    NARCIS (Netherlands)

    Hess, M.W.; Baaij, J.H.F. de; Gommers, L.M.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2015-01-01

    BACKGROUND: Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the

  17. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    Science.gov (United States)

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  18. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  19. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  1. 甘油果糖联合碳酸酐酶抑制剂对高眼压大鼠眼睫状体水通道蛋白1表达的影响%The influence of glyc-fructose combined with carbonic anhydrase inhibitor on the expression of AQP1 in rat eyes

    Institute of Scientific and Technical Information of China (English)

    盛毅; 金丽; 王进; 孙哲

    2015-01-01

    Objective To observe the effect of glyc-fructose combined with carbonic anhydrase inhibitor (CAI) on the expression of AQP 1 in rat eyes.Methods The model of intraocular hypertension in rats were established,and intervention on intraocular hypertension model rats were performed using glycerol fructose and carbonic anhydrase inhibitors.The expression of AQP 1 in the chamber angle tissue was detected in the mRNA and protein level.Results The expression of AQP 1 in the intraocular hypertension group (1,6,24,48 and 72 h) was significantly higher than those in the control group (1.55 ± 0.02,2.22±0.03,2.46 ±0.02,1.88 ±0.04,1.44±0.03; 1.21 ±0.02,3.58 ±0.03,3.81 ± 0.02,4.28 ± 0.04,4.44 ± 0.03,all P < 0.05).Carbonic anhydrase inhibitors could inhibit the expression of AQP 1 in the chamber angle tissue of the intraocular hypertension model rats (intraocular hypertension group vs.CAI group:1.41 ±0.02 vs.1.24 ±0.04; 4.41 ±0.02 vs.2.31 ± 0.04,all P < 0.05).The combined use of glyc-fructose with CAI could inhibit the expression more obviously(intraocular hypertension group vs.Glyc-fructose combined with CAI group:1.41 ± 0.02 vs.1.08±0.03; 4.41 ±0.02 vs.1.47 ±0.03,all P <0.05).Conclusion The expression of AQP1 was elevated in the intraocular hypertension group,and co-administrated with glycerol fructose and brinzolamide could inhibit the expression.%目的 观察联合应用甘油果糖和碳酸酐酶抑制剂对急性高眼压大鼠眼组织水通道蛋白1(AQP1)表达的影响.方法 建立高眼压大鼠模型,并使用甘油果糖和碳酸酐酶抑制剂对高眼压大鼠模型鼠进行干预,检测房角组织AQP1的基因及蛋白表达水平.结果 高眼压大鼠房角组织AQP1的基因和蛋白表达水平(造模后1、6、24、48、72 h:1.55±0.02、2.22±0.03、2.46±0.02、1.88±0.04、1.44±0.03;1.21±0.02、3.58±0.03、3.81±0.02、4.28±0.04、4.44±0.03)均显著高于对照组(1.00±0.00、1.00±0.00,P均<0.05).碳酸酐酶抑制剂

  2. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; Fisher, Gillian M; Andrews, Katherine T; Poulsen, Sally-Ann; Capasso, Clemente; Supuran, Claudiu T

    2014-09-15

    The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report. PMID:25168745

  3. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T.; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  4. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  5. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  6. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  7. The Cellular Physiology of Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Breton S

    2001-07-01

    Full Text Available Carbonic anhydrases are zinc metalloenzymes that catalyze the reversible hydration of CO(2 to form HCO(3(- and protons according to the following reaction: CO(2 + H(2O = H(2CO(3 = HCO(3(- + H(+. The first reaction is catalyzed by carbonic anhydrase and the second reaction occurs instantaneously. The carbonic anhydrase (CA gene family includes ten enzymatically active members, which are major players in many physiological processes, including renal and male reproductive tract acidification, bone resorption, respiration, gluconeogenesis, signal transduction, and formation of gastric acid. The newly identified CA IX (previously called MN and CA XII are related to cell proliferation and oncogenesis. Carbonic anhydrase isozymes have different kinetic properties and they are present in various tissues and in various cell compartments. CA I, II, III and VII are cytoplasmic, CA V is mitochondrial, and CA VI is present in salivary secretions. CA IV, IX, XII and XIV are membrane proteins: CA IV is a glycosyl-phosphatidylinositol-anchored protein, and CA IX, XII and XIV are transmembrane proteins. The present work will focus on the roles of CA II and CA IV in transepithelial proton secretion and bicarbonate reabsorption processes. The localization of these isoforms in selected epithelia that are involved in net acid/base transport, such as kidney proximal tubules and collecting ducts, and tubules from the male reproductive tract will be reviewed.

  8. DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice.

    Science.gov (United States)

    Lautar, Susan L; Rojas, Camilo; Slusher, Barbara S; Wozniak, Krystyna M; Wu, Ying; Thomas, Ajit G; Waldon, Daniel; Li, William; Ferraris, Dana; Belyakov, Sergei

    2005-06-28

    Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition.

  9. Specific MAPK inhibitors prevent hyperglycemia-induced renal diseases in type 1 diabetic mouse model.

    Science.gov (United States)

    Hong, Zhe; Hong, Zongyuan; Wu, Denglong; Nie, Hezhongrong

    2016-08-01

    Mitogen-activated protein kinase (MAPK) and renin-angiotensin system (RAS) play critical roles in the process of renal diseases, but their interaction has not been comprehensively discussed. In the present studies, we investigated the renoprotective effects of MPAK inhibitors on renal diseases in type 1 diabetic mouse model, and clarify the crosstalk among MAPK signaling. Type 1 diabetic mouse model was established in male C57BL/6 J mice, and treated with or without 10 mg/kg MAPK blockers, including ERK inhibitor PD98059, p38 inhibitor SB203850, and JNK inhibitor SP600125 for four weeks. Hyperglycemia induced renal injuries, but treating them with MAPK inhibitors significantly decreased glomerular volume and glycogen in renal tissues. Although slightly changed body weight and fasting blood glucose levels, MAPK inhibitors attenuated blood urea nitrogen, urea protein, and microalbuminuria. Administration also reduced the diabetes-induced RAS activation, including angiotensin II converting enzyme (c) and Ang II, which contributed to its renal protective effects in the diabetic mice. In addition, the anti-RAS of MAPK inhibitor treatment markedly reduced gene expression of tumor necrosis factor-α, interleukin-6, and inducible nitric oxide synthase, fibrotic accumulation, and transforming growth factor-β1 levels in renal tissues. Furthermore, chemical inhibitors and genetic siRNA results identified the crosstalk among the three MAPK signaling, and proved JNK signaling played a critical role in MAPK-mediated ACE pathway in hyperglycemia state. Collectively, these results support the therapeutic effects of MAPK-specific inhibitors, especially JNK inactivation, on hyperglycemia-induced renal damages. PMID:27389030

  10. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NFκB signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer

  11. Proton pump inhibitor-induced subacute cutaneous lupus erythematosus

    DEFF Research Database (Denmark)

    Sandholdt, L H; Laurinaviciene, R; Bygum, Anette

    2014-01-01

    Drug-induced subacute cutaneous lupus erythematosus (SCLE) has been known in the literature since 1985 and is increasingly recognized.......Drug-induced subacute cutaneous lupus erythematosus (SCLE) has been known in the literature since 1985 and is increasingly recognized....

  12. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.

    Science.gov (United States)

    Kogawa, Masakazu; Wijenayaka, Asiri R; Ormsby, Renee T; Thomas, Gethin P; Anderson, Paul H; Bonewald, Lynda F; Findlay, David M; Atkins, Gerald J

    2013-12-01

    The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings

  13. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Han-qiu CHEN; Jian ZHENG

    2004-01-01

    AIM: To investigate the ability of proteinase inhibitors to modulate nucleated cell infiltration into the peritoneum of mice induced by tryptase and chymase. METHODS: Human lung tryptase and skin chymase were purified by a similar procedure involving high salt extraction, heparin agarose affinity chromatography followed by S-200 Sephacryl gel filtration chromatography. The actions of proteinase inhibitors on tryptase and chymase induced nucleated cell accumulation were examined with a mouse peritoneum model. RESULTS: A selective chymase inhibitor Z-Ile-GluPro-Phe-CO2Me (ZIGPPF) was able to inhibit approximately 90% neutrophil, 73% eosinophil, 87% lymphocyte and 60% macrophage accumulation induced by chymase at 16 h following injection. Soy bean trypsin inhibitor (SBTI), chymostatin, and α1-antitrypsin showed slightly less potency than ZIGPPF in inhibition of the actions of chymase. While all tryptase inhibitors tested were able to inhibit neutrophil, eosinophil, and macrophage accumulation provoked by tryptase at 16 h following injection, only leupeptin, APC366, and aprotinin were capable of inhibiting tryptase induced lymphocyte accumulation. The inhibitiors of tryptase tested were also able to inhibit tryptase induced neutrophil and eosinophil accumulation at 6 h following injection. When being injected alone, all inhibitors of chymase and tryptase at the concentrations tested by themselves had no significant effect on the accumulation of nucleated cells in the peritoneum of mice at both 6 h and 16 h. CONCLUSION: Proteinase inhibitors significantly inhibited tryptase and chymase-induced nucleated cell accumulation in vivo, and therefore they are likely to be developed as a novel class of anti-inflammatory drugs.

  14. Visceral Angioedema Induced by Angiotensin Converting Enzyme Inhibitor: Case Report

    OpenAIRE

    Beatriz Frutuoso; Joana Esteves; Mafalda Silva; Pedro Gil; Ana Cristina Carneiro; Sílvio Vale

    2016-01-01

    Introduction: Intestinal angioedema is a rare adverse effect of angiotensin converting enzyme inhibitors. Clinical case: A 42-year old woman presented to the Emergency Department complaining of diffuse abdominal pain, predominantly in the right quadrants, with no other associated symptoms. She had been started on perindopril plus indapamide 72 h before the admission for arterial hypertension. There was no other relevant background. Physical examination suggested peritoneal irritation...

  15. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  16. Carbonic Anhydrase: In the Driver's Seat for Bicarbonate Transport

    Directory of Open Access Journals (Sweden)

    Sterling D

    2001-07-01

    Full Text Available Carbonic anhydrases are a widely expressed family of enzymes that catalyze the reversible reaction: CO(2 + H(2O = HCO(3(- + H(+. These enzymes therefore both produce HCO(3(- for transport across membranes and consume HCO(3(- that has been transported across membranes. Thus these enzymes could be expected to have a key role in driving the transport of HCO(3(- across cells and epithelial layers. Plasma membrane anion exchange proteins (AE transport chloride and bicarbonate across most mammalian membranes in a one-for-one exchange reaction and act as a model for our understanding of HCO(3(- transport processes. Recently it was shown that AE1, found in erythrocytes and kidney, binds carbonic anhydrase II (CAII via the cytosolic C-terminal tail of AE1. To examine the physiological consequences of the interaction between CAII and AE1, we characterized Cl(-/HCO(3(- exchange activity in transfected HEK293 cells. Treatment of AE1-transfected cells with acetazolamide, a CAII inhibitor, almost fully inhibited anion exchange activity, indicating that endogenous CAII activity is essential for transport. Further experiments to examine the role of the AE1/CAII interaction will include measurements of the transport activity of AE1 following mutation of the CAII binding site. In a second approach a functionally inactive CA mutant, V143Y, will be co-expressed with AE1 in HEK293 cells. Since over expression of V143Y CAII would displace endogenous wild-type CAII from AE1, a loss of transport activity would be observed if binding to the AE1 C-terminus is required for transport.

  17. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry

    Science.gov (United States)

    McMillan, Kirk; Adler, Marc; Auld, Douglas S.; Baldwin, John J.; Blasko, Eric; Browne, Leslie J.; Chelsky, Daniel; Davey, David; Dolle, Ronald E.; Eagen, Keith A.; Erickson, Shawn; Feldman, Richard I.; Glaser, Charles B.; Mallari, Cornell; Morrissey, Michael M.; Ohlmeyer, Michael H. J.; Pan, Gonghua; Parkinson, John F.; Phillips, Gary B.; Polokoff, Mark A.; Sigal, Nolan H.; Vergona, Ronald; Whitlow, Marc; Young, Tish A.; Devlin, James J.

    2000-01-01

    Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies. PMID:10677491

  18. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

    Science.gov (United States)

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-01-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275] PMID:26592933

  19. Thermostable Carbonic Anhydrases in Biotechnological Applications

    OpenAIRE

    Anna Di Fiore; Vincenzo Alterio; Simona M. Monti; Giuseppina De Simone; Katia D'Ambrosio

    2015-01-01

    Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques,...

  20. Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours

    Institute of Scientific and Technical Information of China (English)

    Antti J. Kivel(a); Jyrki Kivel(a); Juha Saarnio; Seppo Parkkila

    2005-01-01

    Carbonic anhydrases (CAs) catalyse the hydration of CO2to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membranebound isoenzymes Ⅸ and Ⅻ have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.

  1. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  2. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  3. Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats

    Institute of Scientific and Technical Information of China (English)

    Hai-ju ZHANG; Ruo-peng SUN; Ge-fei LEI; Lu YANG; Chun-xi LIU

    2008-01-01

    Objective: To examine modulations caused by cyclooxygenase-2 (COX-2) inhibitors on altered microenvironments and overbalanced neurotransmitters in pilocarpine-induced epileptic status rats and to investigate possible mechanisms. Methods:Celecoxib (a COX-2 inhibitor) was administered 45 min prior to pilocarpine administration. The effects of COX-2 inhibitors on mIPSCs (miniature GABAergic inhibitory postsynaptic currents) of CA3 pyramidal cells in the hippocampus were recorded. Expressions of COX-2, c-Fos, newly generated neurons, and activated microgliosis wore analyzed by immunohistochemistry, and expressions of α-subunit of γ-amino butyric acid (GABAA) receptors and mitogen-activated protein kinase/extracellular sig-nal-regulated protein kinase (MAPK/ERK) activity were detected by Western blotting. Results: Pretreatment with celecoxib showed protection against pilocarpine-induced seizures. Celecoxib prevented microglia activation in the hilus and inhibited the abnormal neurogenesis and astrogliosis in the hippocampus by inhibiting MAPK/ERK activity and c-Fos transcription. Celecoxib also up-regulated the expression of GABAA receptors. NS-398 (N-2-cyclohexyloxy-4-nitrophenyl-methanesuifonamide), another COX-2 inhibitor, enhanced the frequency and decay time of mIPSCs. Conclusion: The COX-2 inhibitor celecoxib decreased neuronal excitability and prevented epileptogenesis in pilocarpine-induced status epilepticus rats. Celecoxib regulates synaptic reorganization by inhibiting astrogliosis and ectopic neurogenesis by attenuating MAPK/ERK signal activity, mediated by a GABAergic mechanism.

  4. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.

    Science.gov (United States)

    Kozliak, E I; Guilloton, M B; Gerami-Nejad, M; Fuchs, J A; Anderson, P M

    1994-09-01

    Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.

  5. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Science.gov (United States)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  6. 7-Nitro indazole, an inhibitor of neuronal nitric oxide synthase, attenuates pilocarpine-induced seizures

    NARCIS (Netherlands)

    R. van Leeuwen (Redmer); R. de Vries (René); E. Dzoljic (Eleonora)

    1995-01-01

    textabstract7-Nitro indazole (25–100 mg/kg i.p.), an inhibitor of neuronal nitric oxide (NO) synthase, attenuated the severity of pilocarpine (300 mg/kg i.p.)-induced seizures in mice. This indicates that the decreased neuroexcitability of the central nervous system (CNS) following administration of

  7. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

    OpenAIRE

    Akram Pourbakht

    2013-01-01

    Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss.  Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure to verify the differences with those pretreated with celecoxib. Materials and Methods: Ten male albin...

  8. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    Directory of Open Access Journals (Sweden)

    Johan O. Westman

    2012-09-01

    Full Text Available The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.

  9. Dithiocarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglaucoma Action in Vivo

    OpenAIRE

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Masini, Emanuela; Supuran, Claudiu T.

    2012-01-01

    A series of dithiocarbamates was prepared by reaction of primary/secondary amines with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of 4 human (h) isoforms of the zinc enzyme carbonic anhydrase, CA (EC 4.2.1.1), hCA I, II, IX and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar inhibitors targeting these CAs were detected. X-ray crystal structure of hCA II adduct with morpholine dithiocarbamate ...

  10. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes.

    Directory of Open Access Journals (Sweden)

    Toshifumi Maruyama

    Full Text Available Carbonic anhydrase (CA IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2. While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α, both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.

  11. Life-threatening ACE inhibitor-induced angio-oedema successfully treated with icatibant

    DEFF Research Database (Denmark)

    Ostenfeld, Sarah; Bygum, Anette; Rasmussen, Eva Rye

    2015-01-01

    We present a case of a 75-year-old woman treated with an ACE inhibitor, who presented with angio-oedema of the tongue and had difficulty speaking. No symptoms of anaphylaxis or urticaria were present. The patient was treated intravenously with antihistamine and glucocorticoid in combination....... Although the angio-oedema was potentially life threatening, the patient avoided intubation and mechanical ventilation. ACE inhibitor-induced angio-oedema is most likely caused by an accumulation of bradykinin and substance P. Consequently, a bradykinin receptor antagonist is the rational treatment...

  12. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    Science.gov (United States)

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  13. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer.

    Science.gov (United States)

    Ping, Hao; Yang, Feiya; Wang, Mingshuai; Niu, Yinong; Xing, Nianzeng

    2016-09-01

    IκB kinase (IKK)/nuclear factor κB (NF-κB) pathway activation is a key event in the acquisition of invasive and metastatic capacities in prostate cancer. A potent small-molecule compound, BMS-345541, was identified as a highly selective IKKα and IKKβ inhibitor to inhibit kinase activity. This study explored the effect of IKK inhibitor on epithelial-mesenchymal transition (EMT), apoptosis and metastasis in prostate cancer. Here, we demonstrate the role of IKK inhibitor reducing proliferation and inducing apoptosis in PC-3 cells. Furthermore, BMS345541 inhibited IκBα phosphorylation and nuclear level of NF-κB/p65 in PC-3 cells. We also observed downregulation of the N-cadherin, Snail, Slug and Twist protein in a dose-dependent manner. BMS‑345541 induced upregulation of the epithelial marker E-cadherin and phosphorylated NDRG1 at protein level. Moreover, BMS‑345541 reduced invasion and metastasis of PC-3 cells in vitro. In conclusion, IKK has a key role in both EMT and apoptosis of prostate cancer. IKK inhibitor can reverse EMT and induce cell death in PCa cells. IKK was identified as a potential target structure for future therapeutic intervention in PCa. PMID:27432067

  14. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo.

    Science.gov (United States)

    Carta, Fabrizio; Akdemir, Atilla; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2013-06-13

    Dithiocarbamates (DTCs) were recently discovered as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. A series of xanthates and a trithiocarbonate, structurally related to the DTCs, were prepared by reaction of alcohols/thiols with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar xanthate/trithiocarbonate inhibitors targeting these CAs were detected. A docking study of some xanthates within the CA II active site showed that these compounds bind in a similar manner with the dithiocarbamates, coordinating monodentately to the Zn(II) ion from the enzyme active site. Several xanthates showed potent intraocular pressure lowering activity in two animal models of glaucoma via the topical administration. Xanthates and thioxanthates represent two novel, promising classes of CA inhibitors. PMID:23647428

  15. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor.

    Science.gov (United States)

    Zheng, Huirong; Lou, Benyong

    2016-05-01

    In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R)-4-ethyl-amino-2-(3-meth-oxy-prop-yl)-3,4-di-hydro-2H-thieno[3,2-e][1,2]thia-zine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding inter-actions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the meth-oxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N-H⋯O hydrogen bond involving a sulfonamide O atom as acceptor and the secondary amine H atom as donor, which gives rise to the formation of a unique bilayer structure. The absolute structure of the mol-ecule in the crystal was determined by resonant scattering [Flack parameter = 0.01 (4)]. PMID:27308020

  16. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor

    Directory of Open Access Journals (Sweden)

    Huirong Zheng

    2016-05-01

    Full Text Available In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R-4-ethylamino-2-(3-methoxypropyl-3,4-dihydro-2H-thieno[3,2-e][1,2]thiazine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding interactions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the methoxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N—H...O hydrogen bond involving a sulfonamide O atom as acceptor and the secondary amine H atom as donor, which gives rise to the formation of a unique bilayer structure. The absolute structure of the molecule in the crystal was determined by resonant scattering [Flack parameter = 0.01 (4].

  17. Crystal structure of Brinzolamide: a carbonic anhydrase inhibitor

    OpenAIRE

    Zheng, Huirong; Lou, Benyong

    2016-01-01

    In crystal structure of the title compound, C12H21N3O5S3 [systematic name: (R)-4-ethyl­amino-2-(3-meth­oxy­prop­yl)-3,4-di­hydro-2H-thieno[3,2-e][1,2]thia­zine-6-sulfonamide 1,1-dioxide], there exist three kinds of hydrogen-bonding inter­actions. The sulfonamide group is involved in hydrogen bonding with the secondary amine and the meth­oxy O atom, resulting in the formation of layers parallel to the bc plane. The layers are linked by an N—H⋯O hydrogen bond involving a sulfonamide O atom as a...

  18. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  19. Aromatase Inhibitor-Induced Erythrocytosis in a Patient Undergoing Hormonal Treatment for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sri Lakshmi Hyndavi Yeruva

    2015-01-01

    Full Text Available Aromatase inhibitors (AIs are most commonly used for breast cancer patients with hormone receptor positive disease. Although the side effect profile of aromatase inhibitors is well known, including common side effects like arthralgia, bone pain, arthritis, hot flashes, and more serious problems like osteoporosis, we present a case of an uncommon side effect of these medications. We report the case of a postmenopausal woman on adjuvant hormonal therapy with anastrozole after completing definitive therapy for stage IIIB estrogen receptor-positive breast cancer, who was referred to hematology service for evaluation of persistent erythrocytosis. Primary and known secondary causes of polycythemia were ruled out. On further evaluation, we found that her erythrocytosis began after initiation of anastrozole and resolved after it was discontinued. We discuss the pathophysiology of aromatase inhibitor-induced erythrocytosis and reference of similar cases reported in the literature.

  20. N-Nitrosulfonamides: A new chemotype for carbonic anhydrase inhibition.

    Science.gov (United States)

    Nocentini, Alessio; Vullo, Daniela; Bartolucci, Gianluca; Supuran, Claudiu T

    2016-08-15

    A series of N(1)-substituted aromatic sulfonamides was obtained by applying a selective sulfonamide nitration synthetic strategy leading to Ar-SO2NHNO2 derivatives which were investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Two human (h) hCA isoforms, the cytosolic hCA II and the transmembrane hCA IX, in addition to the fungal enzyme from Malassezia globosa, MgCA, were included in the study. Most of the new compounds reported selectively inhibited hCA IX over hCA II and at the same time showed effective MgCA inhibitory properties, with KIs ranging between 0.22 and 8.09μM. The N-nitro sulfonamides are a new chemotype with CA inhibitory effects. As hCA IX was recently validated as antitumor/antimetastatic drug target, its selective inhibition could be exploited for interesting biomedical applications. Moreover, due to the effective MgCAs inhibitory properties of the N-nitro sulfonamides, of considerable interest in the cosmetics field as potential anti-dandruff agents, the N-nitro sulfonamides may be considered as interesting leads for the design of more efficient compounds targeting fungal enzymes. PMID:27290692

  1. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    Science.gov (United States)

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

  2. Small-Molecule XIAP Inhibitors Enhance γ-Irradiation-Induced Apoptosis in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sri Hari Krishna Vellanki

    2009-08-01

    Full Text Available Because evasion of apoptosis can cause radioresistance of glioblastoma, there is a need to design rational strategies that counter apoptosis resistance. In the present study, we investigated the potential of targeting the antiapoptotic protein XIAP for the radiosensitization of glioblastoma. Here, we report that small-molecule XIAP inhibitors significantly enhance γ-irradiation-induced loss of viability and apoptosis and cooperate with γ-irradiation to suppress clonogenic survival of glioblastoma cells. Analysis of molecular mechanisms reveals that XIAP inhibitors act in concert with γ-irradiation to cause mitochondrial outer membrane permeabilization, caspase activation, and caspasedependent apoptosis. Importantly, XIAP inhibitors also sensitize primary cultured glioblastoma cells derived from surgical specimens as well as glioblastoma-initiating stemlike cancer stem cells for γ-irradiation. In contrast, they do not increase the toxicity of γ-irradiation on some nonmalignant cells of the central nervous system, including rat neurons or glial cells, pointing to some tumor selectivity. In conclusion, by demonstrating for the first time that smallmolecule XIAP inhibitors increase the radiosensitivity of glioblastoma cells while sparing normal cells of the central nervous system, our findings build the rationale for further (preclinical development of XIAP inhibitors in combination with γ-irradiation in glioblastoma.

  3. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Robert B. Shirley

    2005-12-01

    Full Text Available The proteasome inhibitor Velcade (bortezomib/PS-341 has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA and MG132 (Biomol International, Plymouth Meeting, PA may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis.

  4. Pathophysiology of visual disorders induced by phosphodiesterase inhibitors in the treatment of erectile dysfunction

    Science.gov (United States)

    Moschos, Marilita M; Nitoda, Eirini

    2016-01-01

    Aim The aim of this review was to summarize the ocular action of the most common phosphodiesterase (PDE) inhibitors used for the treatment of erectile dysfunction and the subsequent visual disorders. Method This is a literature review of several important articles focusing on the pathophysiology of visual disorders induced by PDE inhibitors. Results PDE inhibitors have been associated with ocular side effects, including changes in color vision and light perception, blurred vision, transient alterations in electroretinogram (ERG), conjunctival hyperemia, ocular pain, and photophobia. Sildenafil and tadalafil may induce reversible increase in intraocular pressure and be involved in the development of non-arteritic ischemic optic neuropathy. Reversible idiopathic serous macular detachment, central serous chorioretinopathy, and ERG disturbances have been related to the significant impact of sildenafil and tadalafil on retinal perfusion. Discussion So far, PDE inhibitors do not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors. However, physicians should write down any visual symptom observed during PDE treatment and refer the patients to ophthalmologists. PMID:27799745

  5. Dipeptidyl peptidase IV inhibitor MK-0626 attenuates pancreatic islet injury in tacrolimus-induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Long Jin

    Full Text Available Tacrolimus (TAC-induced pancreatic islet injury is one of the important causes of new-onset diabetes in transplant recipients. This study was performed to evaluate whether a dipeptidyl peptidase IV (DPP IV inhibitor is effective in improving TAC-induced diabetes mellitus by reducing pancreatic islet injury.Rats were treated with TAC (1.5 mg/kg, subcutaneously and the DPP IV inhibitor MK-0626 (10 or 20 mg/kg, oral gavage for 4 weeks. The effect of MK-0626 on TAC-induced diabetes was evaluated by assessing pancreatic islet function, histopathology. TAC-induced incretin dysfunction was also examined based on active glucagon-like peptide-1 (GLP-1 levels in the serum after glucose loading. The protective effect of MK-0626 was evaluated by measuring markers of oxidative stress, oxidative resistance, and apoptosis. To determine whether enhanced GLP-1 signaling is associated with these protective effects, we measured the expression of the GLP-1 receptor (GLP-1R and the effect of the GLP-1 analog exendin-4 on cell viability and oxidative stress in isolated islets.MK-0626 treatment attenuated TAC-induced pancreatic islet dysfunction and islet morphology. TAC treatment led to a defect in active GLP-1 secretion; however, MK-0626 reversed these effects. TAC treatment increased the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG, the number of apoptotic death, and the level of active caspase-3, and decreased the level of manganese superoxide dismutase and heme oxygenase-1; MK-0626 treatment reversed these changes. MK-0626 treatment restored the expression of GLP-1R, and direct administration of exendin-4 to isolated islets reduced TAC-induced cell death and 8-OHdG expression.The DPP IV inhibitor MK-0626 was an effective antidiabetic agent that exerted antioxidative and antiapoptotic effects via enhanced GLP-1 signaling in TAC-induced diabetics.

  6. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Science.gov (United States)

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  7. Effects of the inducible nitric oxide synthase inhibitor aminoguanidine in two different rat models of schizophrenia.

    Science.gov (United States)

    Lafioniatis, Anastasios; Orfanidou, Martha A; Papadopoulou, Evangelia S; Pitsikas, Nikolaos

    2016-08-01

    Several lines evidence indicate that the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including memory impairments and social withdrawal. Nitric oxide (NO) has been proposed to act as an intracellular messenger in the brain and its overproduction is associated with schizophrenia. The current study was designed to investigate the ability of the inducible NO synthase (iNOS) inhibitor aminoguanidine (AG) to counteract schizophrenia-like behavioural deficits produced by ketamine and apomorphine in rats. The efficacy of AG to antagonize extinction of recognition memory, ketamine and apomorphine-induced recognition memory impairments was tested utilizing the novel object recognition task (NORT). Further, the efficacy of AG to attenuate ketamine-induced social withdrawal was examined in the social interaction test. AG (25 and 50mg/kg) antagonized extinction of recognition memory and reversed ketamine (3mg/kg) and apomorphine (1mg/kg)-induced recognition memory deficits. In contrast, AG (50 and 100mg/kg) did not counteract the ketamine (8mg/kg)-induced social isolation. The present data show that the iNOS inhibitor AG counteracted extinction of recognition memory and reversed recognition memory deficits produced by dysfunction of the glutamatergic and the dopaminergic (DAergic) system in rats. Therefore, AG may be efficacious in attenuating memory impairments often observed in schizophrenia patients. PMID:27132765

  8. Influence of nitric oxide synthase inhibitor on gerbil behavior after hyperbaric oxygen-induced convulsion

    Institute of Scientific and Technical Information of China (English)

    Jianguang Zhou; Changyun Liu; Yiqun Fang; Yingqi Zhou; Erli Xu; Jingchang Liu

    2008-01-01

    BACKGROUND: Studies have reported that nitric oxide synthase (NOS) inhibitor can prolong the latency of hyperbaric oxygen-induced convulsion (HBOC). However, there are very few reports addressing the influence of NOS inhibitor on mental behavior.OBJECTIVE: To investigate behavioral changes after HBOC in gerbils, as well as the influence of NOS inhibitor.DESIGN, TIME AND SETTING: Randomized experiments were performed in the Laboratory of Hyperbaric Pressure and Diving Physiology, Naval Medical Research Institute of Chinese PLA (Shanghai,China) from March 2005 to June 2007.MATERIALS: Forty male gerbils were randomly divided into five groups: HBOC, saline control, NOS inhibitor, pressure control, and normal control. Each group contained eight animals.METHODS: In the HBOC group, once depression induction ended, animals were removed from the chamber five minutes after the first appearance of generalized convulsion induced by 0.5 MPa hyperbaric oxygen. Ten minutes before entering the chamber, saline control and NOS inhibitor animals were intraperitoneally injected with 1 mL saline and 20 mg/kg NG-nitro-L-arginine, respectively. The pressure control group was only exposed to 0.5 MPa. The remaining procedures in these three groups were identical to the HBOC group. The normal control group received no intervention.MAIN OUTCOME MEASURES: Open field test scores in gerbils prior to HBOC, as well as immediately,24 hours, and 72 hours after decompression ended.RESULTS: HBOC was not detected in either the normal control or the pressure control group, and there were no significant differences in opcn field test scores prior to and after HBOC (P > 0.05). HBOC occurred in the HBOC, saline control, and NOS inhibitor groups, with significant differences in open field test scores after decompression ended compared to normal control and pressure control groups (P < 0.05-0.01).Compared to the HBOC and saline control groups, the NOS inhibitor group exhibited a significantly lower score in

  9. A sycamore cell wall polysaccharide and a chemically related tomato leaf polysaccharide possess similar proteinase inhibitor-inducing activities.

    Science.gov (United States)

    Ryan, C A; Bishop, P; Pearce, G

    1981-09-01

    A large pectic polysaccharide, called rhamnogalacturonan I, that is solubilized by a fungal endo-alpha-1,4-polygalacturonase from the purified walls of suspension-cultured sycamore cells possesses proteinase inhibitor-inducing activity similar to that of the proteinase inhibitor-inducing factor, a pectic-like oligosaccharide fraction isolated from tomato leaves. This suggests that the proteinase inhibitor-inducing activity resides in particular polysaccharide fragments which can be released when plant cell walls are exposed to appropriate enzyme degradation as a result of either wounding or pest attack.

  10. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  11. Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats

    OpenAIRE

    Wan, Yun-Yan; Tian, Guang-Yan; Guo, Hai-Sheng; Kang, Yan-Meng; Yao, Zhou-Hong; Li, Xi-Li; Liu, Qing-Hua; Lin, Dian-Jie

    2013-01-01

    Background Recent evidence has demonstrated the role of angiogenesis in the pathogenesis of pulmonary fibrosis. Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis. The aim of our study was to assess whether endostatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in rats. Methods The rats were randomly divided into five experimental groups: (A) saline only, (B) BLM only, (C) BLM plus early endostatin treatment, (D) BLM plus late ...

  12. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors

    OpenAIRE

    Subramanian, Chitra; Opipari, Anthony W.; Bian, Xin; Castle, Valerie P; Kwok, Roland P S

    2005-01-01

    Histone deacetylase inhibitors (HDACIs) are therapeutic drugs that inhibit deacetylase activity, thereby increasing acetylation of many proteins, including histones. HDACIs have antineoplastic effects in preclinical and clinical trials and are being considered for cancers with unmet therapeutic need, including neuroblastoma (NB). Uncertainty of how HDACI-induced protein acetylation leads to cell death, however, makes it difficult to determine which tumors are likely to be responsive to these ...

  13. The calpain inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis promastigotes.

    Directory of Open Access Journals (Sweden)

    Fernanda A Marinho

    Full Text Available BACKGROUND: Human cutaneous leishmaniasis is caused by distinct species, including Leishmania amazonensis. Treatment of cutaneous leishmaniasis is far from satisfactory due to increases in drug resistance and relapses, and toxicity of compounds to the host. As a consequence for this situation, the development of new leishmanicidal drugs and the search of new targets in the parasite biology are important goals. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the mechanism of death pathway induced by the calpain inhibitor MDL28170 on Leishmania amazonensis promastigote forms. The combined use of different techniques was applied to contemplate this goal. MDL28170 treatment with IC50 (15 µM and two times the IC50 doses induced loss of parasite viability, as verified by resazurin assay, as well as depolarization of the mitochondrial membrane, which was quantified by JC-1 staining. Scanning and transmission electron microscopic images revealed drastic alterations on the parasite morphology, some of them resembling apoptotic-like death, including cell shrinking, surface membrane blebs and altered chromatin condensation pattern. The lipid rearrangement of the plasma membrane was detected by Annexin-V labeling. The inhibitor also induced a significant increase in the proportion of cells in the sub-G0/G1 phase, as quantified by propidium iodide staining, as well as genomic DNA fragmentation, detected by TUNEL assay. In cells treated with MDL28170 at two times the IC50 dose, it was also possible to observe an oligonucleossomal DNA fragmentation by agarose gel electrophoresis. CONCLUSIONS/SIGNIFICANCE: The data presented in the current study suggest that MDL28170 induces apoptotic marker expression in promastigotes of L. amazonensis. Altogether, the results described in the present work not only provide a rationale for further exploration of the mechanism of action of calpain inhibitors against trypanosomatids, but may also widen the

  14. Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms †

    OpenAIRE

    Minvielle, Marine J.; Bunders, Cynthia A.; Melander, Christian

    2013-01-01

    Herein is described a method of accessing indole/triazole and benzothiophene/triazole analogues that selectively promote or inhibit biofilm formation by Gram-positive and Gram-negative bacteria. Structure/function studies revealed that the addition of a bromine atom at the 2-position of the indole/triazole scaffold altered activity against both Gram-negative and Gram-positive bacteria and could transform a biofilm inhibitor into a biofilm inducer. Isosteric replacement of the indole core by a...

  15. Histone deacetylase inhibitor trichostatin A induced caspase-independent apoptosis in human gastric cancer cell

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-qun; ZHANG Rui; Connie Chao; ZHANG Ji-feng; ZHANG Yuan-qiang

    2007-01-01

    Background Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells.The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized.This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells.Methods The cells were treated with TSA and analyzed by cell proliferation assay,Western blot,TUNEL assay,flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining,immunofluorescence analysis,analysis of subcellular fractionation,gene chips and real time polymerase chain reaction (PCR).Results TSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes,such as Bcl-2,Bax and survivin.Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA,and we did not observe the cleavage of poly ADP ribose polymerase(PARP)after TSA treatment too.In addition,apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay.Conclusions The apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.

  16. Translation inhibitors induce formation of cholesterol ester-rich lipid droplets.

    Directory of Open Access Journals (Sweden)

    Michitaka Suzuki

    Full Text Available Lipid droplets (LDs in non-adipocytes contain triglycerides (TG and cholesterol esters (CE in variable ratios. TG-rich LDs are generated when unsaturated fatty acids are administered, but the conditions that induce CE-rich LD formation are less well characterized. In the present study, we found that protein translation inhibitors such as cycloheximide (CHX induced generation of CE-rich LDs and that TIP47 (perilipin 3 was recruited to the LDs, although the expression of this protein was reduced drastically. Electron microscopy revealed that LDs formed in CHX-treated cells possess a distinct electron-dense rim that is not found in TG-rich LDs, whose formation is induced by oleic acid. CHX treatment caused upregulation of mTORC1, but the CHX-induced increase in CE-rich LDs occurred even when rapamycin or Torin1 was given along with CHX. Moreover, the increase in CE was seen in both wild-type and autophagy-deficient Atg5-null mouse embryonic fibroblasts, indicating that mTORC1 activation and suppression of autophagy are not necessary to induce the observed phenomenon. The results showed that translation inhibitors cause a significant change in the lipid ester composition of LDs by a mechanism independent of mTORC1 signaling and autophagy.

  17. Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2013-01-01

    Full Text Available Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.

  18. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production.

    Science.gov (United States)

    Ye, Junli; Jiang, Zhongxin; Chen, Xuehong; Liu, Mengyang; Li, Jing; Liu, Na

    2016-01-15

    Reactive oxygen species (ROS) are believed to be mediators of excessive microglial activation, yet the resources and mechanism are not fully understood. Here we stimulated murine microglial BV-2 cells and primary microglial cells with different inhibitors of electron transport chain (ETC), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and NaN3 to induce mitochondrial ROS production and we observed the role of mitochondrial ROS in microglial activation. Our results showed that ETC inhibitors resulted in significant changes in cell viability, microglial morphology, cell cycle arrest and mitochondrial ROS production in a dose-dependent manner in both primary cultural microglia and BV-2 cell lines. Moreover, ETC inhibitors, especially rotenone and antimycin A stimulated secretion of interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) by microglia with marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB), which could be blocked by specific inhibitors of MAPK and NF-κB and mitochondrial antioxidants, Mito-TEMPO. Taken together, our results demonstrated that inhibition of mitochondrial respiratory chain in microglia led to production of mitochondrial ROS and therefore may activate MAPK/NF-кB dependent inflammatory cytokines release in microglia, which indicated that mitochondrial-derived ROS were contributed to microglial activation.

  19. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase

    Science.gov (United States)

    Kessl, Jacques J.; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  20. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; Ramachandran, Anup [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Breckenridge, David G.; Liles, John T. [Department of Biology, Gilead Sciences, Inc., Foster City, CA (United States); Lebofsky, Margitta [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  1. Carbonic Anhydrase and Metalloderivatives: A Bioinorganic Chemistry Study

    Science.gov (United States)

    McQuate, Robert S.

    1977-01-01

    Discusses selected bioinorganic aspects of carbonic anhydrase and describes experiments that will reinforce the students' understanding of the presence and essential role that metal ions have in some biological systems. (SL)

  2. Comparative study of proton pump inhibitors on dexamethasone plus pylorus ligation induced ulcer model in rats

    Directory of Open Access Journals (Sweden)

    Thippeswamy A. H. M.

    2010-01-01

    Full Text Available The present study was designed to compare ulcer protective effect of proton pump inhibitors viz. omeprazole, rabeprazole and lansoprazole against dexamethasone plus pylorus ligation induced ulcer model. Dexamethasone (5 mg/kg was used as an ulcerogen. Dexamethasone suspended in 1% CMC in water was given orally to all the rats 15 min after the pylorus ligation. Omeprazole (20 mg/kg, rabeprazole (20 mg/kg, and lansoprazole (20 mg/kg were administered by oral route 30 min prior to ligation was used for ulcer protective studies, gastric secretion and mucosal studies. Effects of proton pump inhibitors were determined by the evaluation of various biochemical parameters such as ulcer index, free and total acidity, gastric pH, mucin, pepsin and total proteins. Oral administration of proton pump inhibitors showed significant reduction in gastric acid secretion and ulcer protective activity against dexamethasone plus pylorus ligation induced ulcer model. The % protection of omeprazole, rabeprazole and lansoprazole was 84.04, 89.36 and 79.78, respectively. Rabeprazole significantly inhibited the acid-pepsin secretion and increased the gastric mucin secretion. The observations made in the present study suggest that rabeprazole is the most effective gastric antisecretory and ulcer healing agent as compared to omeprazole and lansoprazole.

  3. Tyrosine Kinase Inhibitors Induced Thyroid Dysfunction: A Review of Its Incidence, Pathophysiology, Clinical Relevance, and Treatment

    Directory of Open Access Journals (Sweden)

    Hala Ahmadieh

    2013-01-01

    Full Text Available Tyrosine kinase inhibitors (TKI belong to a new class of molecular multitargeted anticancer therapy which targets different growth factor receptors and hence attenuates cancer cell survival and growth. Since their introduction as adjunct treatment for renal cell carcinoma and gastrointestinal stromal tumors (GIST, a number of reports have demonstrated that TKI can induce thyroid dysfunction which was especially more common with sunitinib maleate. Many mechanisms with respect to this adverse effect of tyrosine kinase inhibitors have been proposed including their induction of thyroiditis, capillary regression in the thyroid gland, antithyroid peroxidase antibody production, and their ability to decrease iodine uptake by the thyroid gland. Of interest is the observation that TKI-induced thyroid dysfunction may actually be protective as it was shown to improve overall survival, and it was suggested that it may have a prognostic value. Followup on thyroid function tests while patients are maintained on tyrosine kinase inhibitor is strongly recommended. When thyroid dysfunction occurs, appropriate treatment should be individualized depending on patients symptoms and thyroid stimulating hormone level.

  4. Carbonic Anhydrases and Their Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Robert McKenna

    2013-08-01

    Full Text Available The carbonic anhydrases (CAs are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II has a catalytic efficiency of 108 M−1 s−1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.

  5. Low levels of Bax inhibitor-1 gene expression increase tunicamycin-induced apoptosis in human neuroblastoma SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Dan Wu; Peirong Wang; Shiyao Wang

    2012-01-01

    A human SH-SY5Y neuroblastoma cell line with a low level of Bax inhibitor-1 expression was established by lentivirus-mediated RNA interference and fluorescence-activated cell sorting. In control SH-SY5Y cells, tunicamycin treatment induced endoplasmic reticulum stress-mediated apoptosis; however, after Bax inhibitor-1 gene knockdown, cell survival rates were significantly decreased and the degree of apoptosis was significantly increased following tunicamycin treatment. In addition, chromatin condensation and apparent apoptotic phenomena, such as marginalization and cytoplasmic vesicles, were observed. Our findings indicate that Bax inhibitor-1 can delay apoptosis induced by endoplasmic reticulum stress.

  6. Drug-Induced Urinary Calculi

    Science.gov (United States)

    Matlaga, Brian R; Shah, Ojas D; Assimos, Dean G

    2003-01-01

    Urinary calculi may be induced by a number of medications used to treat a variety of conditions. These medications may lead to metabolic abnormalities that facilitate the formation of stones. Drugs that induce metabolic calculi include loop diuretics; carbonic anhydrase inhibitors; and laxatives, when abused. Correcting the metabolic abnormality may eliminate or dramatically attenuate stone activity. Urinary calculi can also be induced by medications when the drugs crystallize and become the primary component of the stones. In this case, urinary supersaturation of the agent may promote formation of the calculi. Drugs that induce calculi via this process include magnesium trisilicate; ciprofloxacin; sulfa medications; triamterene; indinavir; and ephedrine, alone or in combination with guaifenesin. When this situation occurs, discontinuation of the medication is usually necessary. PMID:16985842

  7. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  8. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334 ameliorates murine colitis

    Directory of Open Access Journals (Sweden)

    Gupta R

    2014-01-01

    Full Text Available Ram Gupta,1 Anita R Chaudhary,2 Binita N Shah,1 Avinash V Jadhav,3 Shitalkumar P Zambad,1 Ramesh Chandra Gupta,4 Shailesh Deshpande,4 Vijay Chauthaiwale,4 Chaitanya Dutt4 1Department of Pharmacology, 2Cellular and Molecular Biology, 3Preclinical Safety Evaluation, 4Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India Background and aim: Mucosal healing in inflammatory bowel disease (IBD can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods: The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn's disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results: TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion: Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor

  9. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  10. ACE inhibitors can induce circulating antibodies directed to antigens of the superficial epidermal cells.

    Science.gov (United States)

    Cozzani, Emanuele; Rosa, Gian Marco; Drosera, Massimo; Intra, Chiara; Barsotti, Antonio; Parodi, Aurora

    2011-07-01

    Drug-induced pemphigus has been reported in patients receiving angiotensin-converting enzyme inhibitors. The aim of this work was to study a group of hypertensive patients without skin diseases treated with angiotensin-converting enzyme (ACE) Inhibitors (I), to verify the presence of serum circulating anti-antibodies. The indirect immunofluorescence showed that 33 sera (52.38%) presented autoantibodies directed to an antigen of the cytoplasm of the superficial epidermal keratinocytes. Two of the 33 positive sera had antibodies to Dsg1 and/or 3 in ELISA. Immunoblot analyses were negative. All the 48 control sera were found to have no circulating antibodies using the three assays. Our results would confirm that ACEI drugs may trigger the production of circulating autoantibodies also in patients without clinical manifestations of pemphigus. PMID:20563876

  11. Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking

    Directory of Open Access Journals (Sweden)

    José L. Medina-Franco

    2014-02-01

    Full Text Available Inhibitors of human DNA methyltransferases (DNMT are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  12. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  13. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  14. Angiotensin II induces secretion of plasminogen activator inhibitor 1 and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes

    International Nuclear Information System (INIS)

    The present study investigates angiotensin (Ang) II effects on secretory protein synthesis in brain astrocytes cultured from neonatal and 21-day-old rats. Ang II-induced changes in the de novo synthesis of [35S]methionine-labeled secretory proteins were visualized using two-dimensional NaDodSO4/PAGE. Astrocytes from 21-day-old rat brain possess specific high-affinity receptors for Ang II. These cells express two Ang II-induced secretory proteins with Mr 55,000 (AISP-55K) and Mr 30,000 (AISP-30K), which were time- and dose-dependent (EC50, 1 nM). [Sar1, Ile8]Ang II (where Sar is sarcosine) inhibited Ang II-induced secretion of AISP-55K but not AISP-30K. N-terminal amino acid sequencing indicates that AISP-55K is identical to rat plasminogen activator inhibitor 1, whereas AISP-30K exhibits 72-81% identity to three closely related proteins: human tissue inhibitor of metalloproteases, a rat phorbol ester-induced protein, and the murine growth-responsive protein 16C8. Immunofluorescent staining with rat plasminogen activator inhibitor 1 antibody was induced in the majority of cells in culture after Ang II treatment of astrocytes from 21-day-old rat brains. Absence of this response to Ang II in astrocytes from neonatal rat brain provides evidence that this action of Ang II on astrocytes is developmentally regulated

  15. 15-lipoxygenase-1 mediates cyclooxygenase-2 inhibitor induced apoptosis in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It has been found that expression of 15-lipoxygenasc-1(15-LOX-1) and its main product,13-C-hydroxyoctadecadienoic acid (13-S-HODE),are decreased in human colorectal and esophageal cancers and that nonsteroidal anti-inflammatory drugs(NSAIDs) can therspeutically induce 15-LOC-1 expression to trigger apoptosis in those cancer cells independently COX-2.We found that a specific COX-2 inhibitor SC-236 similarly induce apoptosis in gastric cancer cells,although the mechanisms of these effects remain to be defined.In the present study,we tested whether SC-236 induced apoptosis through up-regulation of 15-LOX-1 in gastric cancer cells.We found that,(a) SC-236 inhibited growth of gastric cancer cells mainly by apoptosis induced;(b) SC-236 induced 15-LOX-1 expression and increased endogenous 13-S-HODE product,instead of 15-S-HETE during apoptosis in gastric cancer cells without 15-LOX-1 expression before treatment by SC-236;(c)sc-236 didn't effect expression of COX-1,COX-2,5-LOX and 12-LOX;and (d)15-LOX-1 inhibition suppressed SC-236 induced apoptosis.These findings demonstrated that SC-236 induced apoptosis in gastric cancer cells via up-regulation of 25-LOX-1.They also support the concept that the loss of the proapopotic role of 15-LOX-1 in epithelial cancers is not limited to human colorectal and esophageal cancers.

  16. Potential of a COX-2 inhibitor in lowering chemotherapy-induced neutropenia%Potential of a COX-2 inhibitor in lowering chemotherapy induced neutropenia

    Institute of Scientific and Technical Information of China (English)

    Louis Wing-Cheong Chow; Adrian Yun-San Yip; Eleanor Yuen-Yuen Ong; Chi-Kei Lam; Masakazu Toi

    2010-01-01

    Objective This study was initially designed to evaluate the effect of celecoxib on the regimen of 5 fluorouracil, epirubicin, and cyclophosphamide (FEC) combination, followed by docetaxel (T) in neoadjuvant setting. An unplanned preliminary review on safety was conducted after a halt of the study due to the concerned potential cardiovascular risk of using COX 2 inhibitors.Methods We studied 23 consecutive cases of operable breast cancer having received four cycles of FEC(500 mg/m2, 100 mg/m2, 500 mg/m2) followed by four cycles of T(100 mg/m2) with concurrent celecoxib (400 mg twice daily) (group A) or same chemotherapy regimen but without concurrent celecoxib (group B). These combined chemotherapies were administered every 3 weeks. The Chi square test or Fisher's exact test were used to assess the difference in incidence of limiting hematological toxicites between groups. Results 23 patients (group A: n=12; group B, n=11) received a total of 183 out of 184 planned treatment cycles; one (4%, 1/23) of them omitted the fourth cycle of FEC owing to repeated incidences of febrile neutropenia. Received dose intensity (RDI) for FEC in group A (90%±11%) was higher than that in group B (80%±8%) while RDI for T was similar between group A (93%±8%) and group B (96%±9%). Of the first 91 treatment cycles of FEC, limiting hematological toxicity, severe neutropenia including febrile neutropenia, was significantly different between group A and B [(10.4%, 5/48) vs.( 32.6%, 14/43), P=0.009]. Other toxicities commonly observed in chemotherapy receiving patients were manageable. Conclusions Neoadjuvant use of FEC followed by T with concurrent celecoxib appeared to be safe for treatment of operable invasive breast cancer. The observed lower incidence of chemotherapy induced neutropenia is possibly contributed by the administration of COX inhibitor. We believe that further investigation might provide more evidence on the use of COX 2 inhibitors in breast cancer.

  17. Inhibitors of nitric oxide synthetase prevent castor-oil-induced diarrhoea in the rat.

    OpenAIRE

    Mascolo, N; Izzo, A A; Barbato, F.; Capasso, F

    1993-01-01

    1. Castor oil (2 ml orally) produced copious diarrhoea in rats 3 h after its administration. 2. Pretreatment (intraperitoneal, i.p.) of rats with the NO synthesis inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 1-25 mg kg-1) and NG-monomethyl-L-arginine (L-NMMA, 2.5-100 mg kg-1) inhibited or prevented castor-oil-induced diarrhoea. L-Arginine (150-600 mg kg-1, i.p.) administered to rats pretreated with L-NAME 10 mg kg-1, drastically reduced the antidiarrhoeal activity of L-NAME in a dose-...

  18. Effects of lipoxygenase inhibitors in a model of lens-induced uveitis in dogs.

    Science.gov (United States)

    Dziezyc, J; Millichamp, N J; Rohde, B H; Baker, J S; Chiou, G C

    1989-11-01

    Uveitis was induced in dogs by intracameral injection of canine lens protein. The lipoxygenase inhibitors phenidone and norhydroguaiaretic acid, and dimethyl sulfoxide decreased fibrin production at 0.5 and 1 hour after induction of uveitis. Phenidone and norhydroguaiaretic acid also inhibited the initial increase in intraocular pressure early in the course of inflammation. Leukotriene B4 in the aqueous was measured by use of radioimmunoassay at 1 hour after inflammation. In control dogs, 230 to 1,700 pg of leukotriene B4/ml was measured; in dogs treated with phenidone, leukotriene B4 was not measured. PMID:2515781

  19. Role of plasminogen activator inhibitor type-1 in radiation-induced normal tissues injury

    International Nuclear Information System (INIS)

    Radiotherapy is an essential tool for cancer treatment, but there is a balance between benefits and risks related to the use of ionizing radiation: the objective is to deliver a maximum dose to the tumour to destroy or to sterilize it while protecting surrounding normal tissues. Radio-induced damages to normal tissues are therefore a limiting factor when increasing the dose delivered to the tumour. One of the objectives of this research thesis is to bring to the fore a relationship between the initiation of lesions and the development of late damages, more particularly in the intestine, and to identify the involved molecular actors and their inter-connectivity. After a first part presenting ionizing radiation, describing biological effects of ionizing radiation and their use in radiotherapy, presenting the intestine and the endothelium and discussing the intestine radio-sensitivity, discussing the radio-induced intestine damages and radiotherapy-induced complications, and presenting the plasminogen activator inhibitor (PAI-1) and its behaviour in presence of ionizing radiation, two articles are reproduced. The first one addresses the effect of a pharmacological inhibition and of genetic deficiency in PAI-1 on the evolution of radio-induced intestine lesions. The second one discusses the fact that radio-induced PAI-1-related death of endothelial cells determines the severity of early radio-induced intestine lesions

  20. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  1. Kinetics of Formation of Cobalt(II)- and Nickel(II) Carbonic Anhydrase.

    Science.gov (United States)

    McQuate, Robert S.; Reardon, John E.

    1978-01-01

    Discusses the kinetic behavior associated with the interaction of metal ions with apocarbonic anhydrase, focusing on the formation of two metallocarbonic anhydrase--the biochemically active Co(II) and the inactive Ni(II)derivatives. (GA)

  2. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.

    Science.gov (United States)

    Ban, Hyun Seung; Xu, Xuezhen; Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  3. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

    Directory of Open Access Journals (Sweden)

    Naz Humera

    2009-04-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2 isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{α-L-rhamnopyranosyl-(1→2-[α-L-rhamnopyranosyl-(1→6}-β-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50 was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. Results Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 ± 0.18 – 48.90 ± 0.40 μM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 ± 1.04 and 9.32 ± 0.082 μM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. Conclusion Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis

  4. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Wen-hai FAN; Yi HOU; Fan-kai MENG; Xiao-fei WANG; Yi-nan LUO; Peng-fei GE

    2011-01-01

    Aim: Proteasome inhibitors have been found to suppress gtioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells.Methods: C6 glioma cells were used. MTF assay was used to analyze cell proliferation. Proteasome activity was assayed using Succi-nyI-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluores-cence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis.Results: MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapop-totic proteins Bcl-2 and XlAP0 up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 pmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins.Conclusion: MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.

  5. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    OpenAIRE

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-01-01

    Background Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA I...

  6. Acetylation of FoxO1 Activates Bim Expression to Induce Apoptosis in Response to Histone Deacetylase Inhibitor Depsipeptide Treatment

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2009-04-01

    Full Text Available Histone deacetylase (HDAC inhibitors have been shown to induce cell cycle arrest and apoptosis in cancer cells. However, the mechanisms of HDAC inhibitor induced apoptosis are incompletely understood. In this study, depsipeptide, a novel HDAC inhibitor, was shown to be able to induce significant apoptotic cell death in human lung cancer cells. Further study showed that Bim, a BH3-only proapoptotic protein, was significantly upregulated by depsipeptide in cancer cells, and Bim's function in depsipeptide-induced apoptosis was confirmed by knockdown of Bim with RNAi. In addition, we found that depsipeptide-induced expression of Bim was directly dependent on acetylation of forkhead box class O1 (FoxO1 that is catalyzed by cyclic adenosine monophosphate-responsive element-binding protein-binding protein, and indirectly induced by a decreased four-and-a-half LIM-domain protein 2. Moreover, our results demonstrated that FoxO1 acetylation is required for the depsipeptide-induced activation of Bim and apoptosis, using transfection with a plasmid containing FoxO1 mutated at lysine sites and a luciferase reporter assay. These data show for the first time that an HDAC inhibitor induces apoptosis through the FoxO1 acetylation-Bim pathway.

  7. Caspase Inhibitors may Attenuate Opioid-induced Hyperalgesia and Tolerance via Inhibiting Microglial Activation and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Jiancheng Zhang

    2013-07-01

    Full Text Available Prolonged exposure to an opioid induces hyperalgesia and tolerance, which negatively affect pain management in turn and significantly hamper the application of opioids. A growing body of evidence has demonstrated that glial activation contributes to the development of these two side effects. Recent studies have demonstrated that morphine, binding to an accessory protein of Toll-like receptor 4 (TLR4, activates microglia and produces neuroinflammation in amanner parallel to lipopolysaccharide. Meanwhile, lipopolysaccharide activates microglia through TLR4/caspase signalling. Therefore, we hypothesise that morphine may activate microglia throughTLR4/caspase signalling and that caspase inhibitors may attenuate opioid-induced hyperalgesia and tolerance via inhibiting microglial activation and neuroinflammation

  8. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation.

    Science.gov (United States)

    Zhang, Ai-Hong; Rossi, Robert J; Yoon, Jeongheon; Wang, Hong; Scott, David W

    2016-03-01

    The immune response of hemophilia A patients to administered FVIII is a major complication that obviates this very therapy. We have recently described the use of synthetic, biodegradable nanoparticles carrying rapamycin and FVIII peptide antigens, to induce antigen-specific tolerance. Herein we test the tolerogenicity of nanoparticles that contains full length FVIII protein in hemophilia A mice, focusing on anti-FVIII humoral immune response. As expected, recipients of tolerogenic nanoparticles remained unresponsive to FVIII despite multiple challenges for up to 6 months. Furthermore, therapeutic treatments in FVIII-immunized mice with pre-existing anti-FVIII antibodies resulted in diminished antibody titers, albeit efficacy required longer therapy with the tolerogenic nanoparticles. Interestingly, durable FVIII-specific tolerance was also achieved in animals co-administered with FVIII admixed with nanoparticles encapsulating rapamycin alone. These results suggest that nanoparticles carrying rapamycin and FVIII can be employed to induce specific tolerance to prevent and even reverse inhibitor formation.

  9. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death.

    Science.gov (United States)

    Kim, Jung Soo; Heo, Rok Won; Kim, Hwajin; Yi, Chin-Ok; Shin, Hyun Joo; Han, Jong Woo; Roh, Gu Seob

    2014-10-01

    Kainic acid (KA)-induced neuronal death is closely linked to endoplasmic reticulum (ER) and mitochondrial dysfunction. Parkin is an ubiquitin E3 ligase that mediates the ubiquitination of the Bcl-2 family of proteins and its mutations are associated with neuronal apoptosis in neurodegenerative diseases. We investigated the effect of salubrinal, an ER stress inhibitor, on the regulation of ER stress and mitochondrial apoptosis induced by KA, in particular, by controlling parkin expression. We showed that salubrinal significantly reduced seizure activity and increased survival rates of mice with KA-induced seizures. We found that salubrinal protected neurons against apoptotic death by reducing expression of mitochondrial apoptotic factors and elF2α-ATF4-CHOP signaling proteins. Interestingly, we showed that salubrinal decreased the KA-induced parkin expression and inhibited parkin translocation to mitochondria, which suggests that parkin may regulate a cross-talk between ER and mitochondria. Collectively, inhibition of ER stress attenuates mitochondrial apoptotic and ER stress pathways and controls parkin-mediated neuronal death following KA-induced seizures. PMID:24728926

  10. Fasudil, a Rho-Kinase Inhibitor, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Zuojun Xu

    2012-07-01

    Full Text Available The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK, may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed to determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice. Our results showed that the Aschcroft score and hydroxyproline content of the bleomycin-treated mouse lung decreased in response to fasudil treatment. The number of infiltrated inflammatory cells in the bronchoalveolar lavage fluid (BALF was attenuated by fasudil. In addition, fasudil reduced the production of transforming growth factor-β1 (TGF-β1, connective tissue growth factor (CTGF, alpha-smooth muscle actin (α-SMA, and plasminogen activator inhibitor-1 (PAI-1 mRNA and protein expression in bleomycin-induced pulmonary fibrosis. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.

  11. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Energy Technology Data Exchange (ETDEWEB)

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  12. Selective cyclooxygenase-2 inhibitor ameliorates cholecystokinin-octapeptide-induced acute pancreatitis in rats

    Institute of Scientific and Technical Information of China (English)

    Sang-Wan Seo; Won-Seok Jung; Tai-Guang Piao; Seung-Heon Hong; Ki-Jung Yun; Rae-Kil Park; Min-Kyo Shin; Ho-Joon Song; Sung-Joo Park

    2007-01-01

    AIM: To investigate the effect of selective Cyclooxygenase-2 (COX-2) inhibitor 4-[5-(4-Chloro-phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide (SC-236), on the cholecystokinin (CCK)-octapeptideinduced acute pancreatitis (AP) in rats.METHODS: Wistar rat weighing 240 g to 260 g were divided into three groups. (1) Normal DNISO treated group, (2) SC-236 at 4 mg/kg treated group; SC-236 systemically administered via the intravenous (i.v.) catheter, followed by 75 μg/kg CCK octapeptide subcutaneously three times, after 1,3 and 5 h. This whole procedure was repeated for 5 d. (3) Dimethyl sulfoxide (DMSO) treated group: an identical protocol was used in this group as in the SC-236 cohort (see 2. above). Repeated CCK octapeptide treatment resulted in a typical experimentally induced pancreatitis in the Wistar rats.RESULTS: SC-236 improved the severity of CCK-octapeptide-induced AP as measured by laboratory criteria [the pancreatic weight/body weight (p.w/ b.w) ratio, the level of serum amylase and lipase]. The SC-236 treated group showed minimal histologic evidence of pancreatitis and a significant reduction in myeloperoxidase activity. SC-236 also increased heat shock protein (HSP)-60 and HSP72 compared with the DMSO-treated group in the CCK-octapeptide-induced AP and also reduced the pancreatic levels of COX-2. Furthermore, SC-236 reduced proinflammatory cytokine synthesis and inhibited NF-κB activation compared with the DMSO-treated group in the CCK-octapeptide-induced AP.CONCLUSION: Our results suggested that COX-2 plays pivotal role in the development of AP and COX-2 inhibitors may play a beneficial role in preventing AP.

  13. Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma.

    Science.gov (United States)

    Vullo, Daniela; Durante, Mariaconcetta; Di Leva, Francesco Saverio; Cosconati, Sandro; Masini, Emanuela; Scozzafava, Andrea; Novellino, Ettore; Supuran, Claudiu T; Carta, Fabrizio

    2016-06-23

    A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity. PMID:27253845

  14. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dan, E-mail: DZhou@syntapharma.com [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States); Huang, Qin [Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132 (United States); Bates, Richard C.; Sonderfan, Andrew J. [Synta Pharmaceuticals Corp., 45 Hartwell Avenue, Lexington, MA 02421 (United States)

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal

  15. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Olga N. Uchakina

    2013-10-01

    Full Text Available Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB, can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS. To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU on staphylococcal enterotoxin B (SEB induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  16. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    Science.gov (United States)

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  17. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides

    Science.gov (United States)

    Tomazett, Mariana Vieira; Zanoelo, Fabiana Fonseca; Bailão, Elisa Flávia Cardoso; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-01-01

    Abstract Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the present work, we characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3, and CA4). In the presence of CO2, there was not a significant increase in fungal ca1, ca2 and ca4 gene expression. The ca1 transcript was induced during the mycelium-to-yeast transition, while ca2 and ca4 gene expression was much higher in yeast cells, when compared to mycelium and mycelium-to-yeast transition. The ca1 transcript was induced in yeast cells recovered directly from liver and spleen of infected mice, while transcripts for ca2 and ca4 were down-regulated. Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were characterized regarding pH, temperature, ions and amino acids addition influence. Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes were dramatically inhibited by Hg+2 and activated by Zn+2, while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all in L configuration), arginine, lysine, tryptophan and histidine enhanced residual activity of rCA1 and rCA4. PMID:27560991

  18. B-Raf inhibitors induce epithelial differentiation in BRAF-mutant colorectal cancer cells.

    Science.gov (United States)

    Herr, Ricarda; Köhler, Martin; Andrlová, Hana; Weinberg, Florian; Möller, Yvonne; Halbach, Sebastian; Lutz, Lisa; Mastroianni, Justin; Klose, Martin; Bittermann, Nicola; Kowar, Silke; Zeiser, Robert; Olayioye, Monilola A; Lassmann, Silke; Busch, Hauke; Boerries, Melanie; Brummer, Tilman

    2015-01-01

    BRAF mutations are associated with aggressive, less-differentiated and therapy-resistant colorectal carcinoma. However, the underlying mechanisms for these correlations remain unknown. To understand how oncogenic B-Raf contributes to carcinogenesis, in particular to aspects other than cellular proliferation and survival, we generated three isogenic human colorectal carcinoma cell line models in which we can dynamically modulate the expression of the B-Raf(V600E) oncoprotein. Doxycyclin-inducible knockdown of endogenous B-Raf(V600E) decreases cellular motility and invasion in conventional and three-dimensional (3D) culture, whereas it promotes cell-cell contacts and induces various hallmarks of differentiated epithelia. Importantly, all these effects are recapitulated by B-Raf (PLX4720, vemurafenib, and dabrafenib) or MEK inhibitors (trametinib). Surprisingly, loss of B-Raf(V600E) in HT29 xenografts does not only stall tumor growth, but also induces glandular structures with marked expression of CDX2, a tumor-suppressor and master transcription factor of intestinal differentiation. By performing the first transcriptome profiles of PLX4720-treated 3D cultures of HT29 and Colo-205 cells, we identify several upregulated genes linked to epithelial differentiation and effector functions, such as claudin-1, a Cdx-2 target gene encoding a critical tight junction component. Thereby, we provide a mechanism for the clinically observed correlation between mutant BRAF and the loss of Cdx-2 and claudin-1. PLX4720 also suppressed several metastasis-associated transcripts that have not been implicated as targets, effectors or potential biomarkers of oncogenic B-Raf signaling so far. Together, we identify a novel facet of clinically applied B-Raf or MEK inhibitors by showing that they promote cellular adhesion and differentiation of colorectal carcinoma cells. PMID:25381152

  19. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    Directory of Open Access Journals (Sweden)

    Diansan Su

    Full Text Available Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2% for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE, choline acetylase (ChAT and α7 nicotinic receptor (α7-nAChR were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.

  20. Selective Cyclooxygenase-2 Inhibitor Prevents Cisplatin-induced Tumorigenesis in A/J Mice

    Directory of Open Access Journals (Sweden)

    Okada,Toshiaki

    2012-06-01

    Full Text Available Cisplatin is used to treat lung cancer;however, it is also a known carcinogen. Cyclooxygenase-2 (COX-2 inhibitors have been shown to prevent carcinogen-induced experimental tumors. We investigated the effect of a COX-2 inhibitor, celecoxib, on cisplatin-induced lung tumors. One hundred twenty 4-week-old A/J mice were divided into 6 groups:group 1, no treatment;group 2, low-dose celecoxib (150mg/kg;group 3, high-dose celecoxib (1,500mg/kg;group 4, cisplatin alone;group 5, cisplatin plus low-dose celecoxib;and group 6, cisplatin plus high-dose celecoxib. Mice in groups 4-6 were administered cisplatin (1.62mg/kg, i.p. once a week for 10 weeks between 7 and 16 weeks of age. All mice were sacrificed at week 30. Tumor incidence was 15.8% in group 1, 25% in group 2, 26.3% in group 3, 60% in group 4, 50% in group 5, and 50% in group 6. Tumor multiplicity was 0.2, 0.3, 0.3, 1.3, 1.0, and 0.6 in groups 1-6, respectively. Tumor multiplicity in the cisplatin-treated mice was reduced by celecoxib treatment in a dose-dependent manner (p<0.05, group 4 vs. group 6. Celecoxib significantly reduced COX-2 expression in cisplatin-induced tumors (p<0.01, group 4 vs. group 6.

  1. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-beta1 induced murine tissue inhibitor of metalloproteinases-1 gene expression.

    Science.gov (United States)

    Young, David A; Billingham, Olivia; Sampieri, Clara L; Edwards, Dylan R; Clark, Ian M

    2005-04-01

    Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.

  2. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; Fisher, Gillian M; Andrews, Katherine T; Poulsen, Sally-Ann; Capasso, Clemente; Supuran, Claudiu T

    2015-02-01

    The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors. PMID:25533402

  3. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    International Nuclear Information System (INIS)

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  4. Heavy metal ion inhibition studies of human, sheep and fish α-carbonic anhydrases.

    Science.gov (United States)

    Demirdağ, Ramazan; Yerlikaya, Emrah; Şentürk, Murat; Küfrevioğlu, Ö İrfan; Supuran, Claudiu T

    2013-04-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) were purified from sheep kidney (sCA IV), from the liver of the teleost fish Dicentrarchus labrax (dCA) and from human erythrocytes (hCA I and hCA II). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The kinetic parameters of these enzymes were determined for their esterase activity with 4-nitrophenyl acetate as substrate. The following metal ions, Pb(2+), Co(2+), Hg(2+), Cd(2+), Zn(2+), Se(2+), Cu(2+), Al(3+) and Mn(3+) showed inhibitory effects on these enzymes. The tested metal ions inhibited these CAs competitively in the low milimolar/submillimolar range. The susceptibility to various cations inhibitors differs significantly between these vertebrate α-CAs and is probably due to their binding to His64 or the histidine cluster. PMID:22145795

  5. Integrated Analysis of Drug-Induced Gene Expression Profiles Predicts Novel hERG Inhibitors

    Science.gov (United States)

    Babcock, Joseph J.; Du, Fang; Xu, Kaiping; Wheelan, Sarah J.; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays. PMID:23936032

  6. Integrated analysis of drug-induced gene expression profiles predicts novel hERG inhibitors.

    Directory of Open Access Journals (Sweden)

    Joseph J Babcock

    Full Text Available Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays.

  7. Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis.

    Science.gov (United States)

    Saad, Abeer E; Ashour, Dalia S; Abou Rayia, Dina M; Bedeer, Asmaa E

    2016-06-01

    Trichinellosis is a globally distributed helminthic infection. There is a considerable interest in developing new anti-helminthic drugs affecting all the developmental stages of Trichinella. Acetazolamide (carbonic anhydrase (CA) inhibitor) involves a novel mechanism of action by inhibiting such an essential enzyme for parasite metabolism. This work aimed to study the effect of acetazolamide against different stages of T. spiralis in experimental animals. Mice were divided into three groups: group I: infected and treated with acetazolamide on day 2 post infection (P.I.), group II: infected and treated with acetazolamide on day 12 P.I., and group III: infected non-treated. From each group, small intestine and muscles were removed for histopathological and immunohistochemical studies. Also, total adult and muscle larval count were estimated. We found that acetazolamide was effective in reduction of both adult and muscle larval counts. When given early, the effect was more pronounced on the adults (62.7 %). However, the efficacy of the drug against muscle larvae was increased when given late (63 %). Improvement of the intestinal histopathological changes was observed in all the treated groups. Degeneration of encysted larvae with minimal pathologic changes of infected skeletal muscle was observed in the treated groups. Expression of matrix metalloproteinase-9 showed a statistically significant decrease in the intestinal and muscle tissues in all treated groups as compared to the control group. In conclusion, the present study revealed that acetazolamide, carbonic anhydrase inhibitor, could be a promising drug against both adults and larvae of T. spiralis. PMID:26979731

  8. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms

    Science.gov (United States)

    William, Jeffrey H; Danziger, John

    2016-01-01

    Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect. PMID:26981439

  9. Serotonin Reuptake Inhibitor and Fluvoxamine-Induced Severe Hyponatremia in a 49-Year-Old Man

    Directory of Open Access Journals (Sweden)

    Adel Gabriel

    2009-01-01

    Full Text Available Objectives. To describe a case of fluvoxamine-induced severe hyponatremia, most likely due to abnormal antidiuretic hormone excretion (SIADH, and to discuss the implication for maintenance treatments for these patients. Clinical Observations. Although this syndrome had its incidence most commonly among the elderly, we report a case of severe hyponatremia (serum sodium <114 mmol/L, in a relatively young male. Treatment. Symptoms responded well to IV hyperosmolar sodium and to the discontinuation of fluvoxamine. This patient was maintained for treatment on an alternative Selective Serotonin Reuptake Inhibitor (SSRI, Citalopram, without developing recurrence of symptoms. Outcome and Conclusion. Protocols to monitor the maintenance treatments in high-risk patients may be needed to prevent recurrence of serious complications.

  10. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

    Science.gov (United States)

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-01-01

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  11. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2013-05-01

    Full Text Available Objective(s: Noise-induced hearing loss (NIHL is the major cause of acquired hearing loss.  Celecoxib, a cyclooxygenase-2 (COX-2 inhibitor, is a non- steroidal anti- inflammatory drug (NSAID with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS and cochlear damage caused by high level 4- kHz noise exposure to verify the differences with those pretreated with celecoxib. Materials and Methods: Ten male albino guinea pigs (300-350 g in weight were randomly allocated into two groups: the primal group was exposed to 4- kHz octave band noise at 102 dB SPL for 3 hrs (group 1, n=5;  the latter pretreated with 50 mg/ kg celecoxib for 3 days, then  exposed to noise (group 2, n=5.  Before exposure and one hr after noise exposure, threshold shifts were evaluated with auditory brainstem responses (ABR and finally the animals were euthanized for histological evaluation.  Results: Comparing the threshold shifts before/after noise exposure with those pretreated, we found out that TTS caused by noise exposure did not show significant mitigation by celecoxib.  By observing the organ of Corti at lower middle turn of cochlea in celecoxib pretreated group, considerable hair cell loss was discovered. Conclusion:The current study clearly confirmed that celecoxib had no attenuation against temporary noise-induced hearing loss.

  12. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kanduri, M; Tobin, G; Aleskog, A; Nilsson, K; Rosenquist, R

    2011-03-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8-48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo. PMID:22829125

  13. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model. PMID:27029427

  14. Renoprotective effect of the xanthine oxidoreductase inhibitor topiroxostat on adenine-induced renal injury.

    Science.gov (United States)

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Hibi, Chihiro; Nakamura, Takashi; Murase, Takayo; Oikawa, Tsuyoshi; Hoshino, Seiko; Hisamichi, Mikako; Hirata, Kazuaki; Kimura, Kenjiro; Shibagaki, Yugo

    2016-06-01

    The aim of the present study was to reveal the effect of a xanthine oxidoreductase (XOR) inhibitor, topiroxostat (Top), compared with another inhibitor, febuxostat (Feb), in an adenine-induced renal injury model. We used human liver-type fatty acid-binding protein (L-FABP) chromosomal transgenic mice, and urinary L-FABP, a biomarker of tubulointerstitial damage, was used to evaluate tubulointerstitial damage. Male transgenic mice (n = 24) were fed a 0.2% (wt/wt) adenine-containing diet. Two weeks after the start of this diet, renal dysfunction was confirmed, and the mice were divided into the following four groups: the adenine group was given only the diet containing adenine, and the Feb, high-dose Top (Top-H), and low-dose Top (Top-L) groups were given diets containing Feb (3 mg/kg), Top-H (3 mg/kg), and Top-L (1 mg/kg) in addition to adenine for another 2 wk. After withdrawal of the adenine diet, each medication was continued for 2 wk. Serum creatinine levels, the degree of macrophage infiltration, tubulointerstitial damage, renal fibrosis, urinary 15-F2t-isoprostane levels, and renal XOR activity were significantly attenuated in the kidneys of the Feb, Top-L, and Top-H groups compared with the adenine group. Serum creatinine levels in the Top-L and Top-H groups as well as renal XOR in the Top-H group were significantly lower than those in the Feb group. Urinary excretion of L-FABP in both the Top-H and Top-L groups was significantly lower than in the adenine and Feb groups. In conclusion, Top attenuated renal damage in an adenine-induced renal injury model.

  15. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio, E-mail: toshio_n@cc.tuat.ac.jp

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  16. Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhou Wei

    2011-11-01

    Full Text Available Abstract Background Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors. Methods Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry. Results We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN. Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose polymerase. Conclusions Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.

  17. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling [Department of Clinical Laboratory, Tongren Hospital, Shanghai (China); Shen, Jie, E-mail: tongrensj163@163.com [Department of Administrative, Tongren Hospital, No. 786 Yuyuan Road, Changning District, Shanghai (China)

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  18. MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation.

    Directory of Open Access Journals (Sweden)

    Gautam Borthakur

    Full Text Available MDM2 (mouse double minute 2 inhibitors that activate p53 and induce apoptosis in a non-genotoxic manner are in clinical development for treatment of leukemias. P53 can modulate other programmed cell death pathways including autophagy both transcriptionally and non-transcriptionally. We investigated autophagy induction in acute leukemia by Nutlin 3a, a first-in-class MDM2 inhibitor. Nutlin 3a induced autophagy in a p53 dependent manner and transcriptional activation of AMP kinase (AMPK is critical, as this effect is abrogated in AMPK -/- mouse embryonic fibroblasts. Nutlin 3a induced autophagy appears to be pro-apoptotic as pharmacological (bafilomycin or genetic inhibition (BECLIN1 knockdown of autophagy impairs apoptosis induced by Nutlin 3a.

  19. HDAC Inhibitor-Mediated Beta-Cell Protection Against Cytokine-Induced Toxicity Is STAT1 Tyr701 Phosphorylation Independent

    DEFF Research Database (Denmark)

    Dahllöf, Mattias Salling; Christensen, Dan P; Harving, Mette;

    2015-01-01

    regulates IFN-γ signaling at the level of STAT1 Tyr701 phosphorylation. Using different small molecule HDAC inhibitors with varying class selectivity, INS-1E wild type and stable HDAC1-3 knockdown pancreatic INS-1 cell lines, we show that IFN-γ-induced Cxcl9 and iNos expression as well as Cxcl9 and GAS...

  20. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough

    NARCIS (Netherlands)

    Mosley, J D; Shaffer, C M; Van Driest, S L; Weeke, P E; Wells, Q S; Karnes, J H; Velez Edwards, D R; Wei, W-Q; Teixeira, P L; Bastarache, L; Crawford, D C; Li, R; Manolio, T A; Bottinger, E P; McCarty, C A; Linneman, J G; Brilliant, M H; Pacheco, J A; Thompson, W; Chisholm, R L; Jarvik, G P; Crosslin, D R; Carrell, D S; Baldwin, E; Ralston, J; Larson, E B; Grafton, J; Scrol, A; Jouni, H; Kullo, I J; Tromp, G; Borthwick, K M; Kuivaniemi, H; Carey, D J; Ritchie, M D; Bradford, Y; Verma, S S; Chute, C G; Veluchamy, A; Siddiqui, M K; Palmer, C N A; Doney, A; Mahmoud Pour, Seyed Hamidreza; Maitland-van der Zee, A H; Morris, A D; Denny, J C; Roden, D M

    2015-01-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagn

  1. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough

    DEFF Research Database (Denmark)

    Mosley, J D; Shaffer, C M; Van Driest, S L;

    2016-01-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects di...

  2. A Sphingolipid Inhibitor Induces a Cytokinesis Arrest and Blocks Stage Differentiation in Giardia lamblia▿

    Science.gov (United States)

    Sonda, Sabrina; Štefanić, Saša; Hehl, Adrian B.

    2008-01-01

    Sphingolipid biosynthesis pathways have recently emerged as a promising target for therapeutic intervention against pathogens, including parasites. A key step in the synthesis of complex sphingolipids is the glucosylation of ceramide, mediated by glucosylceramide (GlcCer) synthase, whose activity can be inhibited by PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). In this study, we investigated whether PPMP inhibits the proliferation and differentiation of the pathogenic parasite Giardia lamblia, the major cause of parasite-induced diarrhea worldwide. PPMP was found to block in vitro parasite replication in a dose-dependent manner, with a 50% inhibitory concentration of 3.5 μM. The inhibition of parasite replication was irreversible at 10 μM PPMP, a concentration that did not affect mammalian cell metabolism. Importantly, PPMP inhibited the completion of cell division at a specific stage in late cytokinesis. Microscopic analysis of cells incubated with PPMP revealed the aberrant accumulation of cellular membranes belonging to the endoplasmic reticulum network in the caudal area of the parasites. Finally, PPMP induced a 90% reduction in G. lamblia differentiation into cysts, the parasite stage responsible for the transmission of the disease. These results show that PPMP is a powerful inhibitor of G. lamblia in vitro and that as-yet-uncharacterized sphingolipid biosynthetic pathways are potential targets for the development of anti-G. lamblia agents. PMID:18086854

  3. A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia.

    Science.gov (United States)

    Sonda, Sabrina; Stefanic, Sasa; Hehl, Adrian B

    2008-02-01

    Sphingolipid biosynthesis pathways have recently emerged as a promising target for therapeutic intervention against pathogens, including parasites. A key step in the synthesis of complex sphingolipids is the glucosylation of ceramide, mediated by glucosylceramide (GlcCer) synthase, whose activity can be inhibited by PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). In this study, we investigated whether PPMP inhibits the proliferation and differentiation of the pathogenic parasite Giardia lamblia, the major cause of parasite-induced diarrhea worldwide. PPMP was found to block in vitro parasite replication in a dose-dependent manner, with a 50% inhibitory concentration of 3.5 muM. The inhibition of parasite replication was irreversible at 10 muM PPMP, a concentration that did not affect mammalian cell metabolism. Importantly, PPMP inhibited the completion of cell division at a specific stage in late cytokinesis. Microscopic analysis of cells incubated with PPMP revealed the aberrant accumulation of cellular membranes belonging to the endoplasmic reticulum network in the caudal area of the parasites. Finally, PPMP induced a 90% reduction in G. lamblia differentiation into cysts, the parasite stage responsible for the transmission of the disease. These results show that PPMP is a powerful inhibitor of G. lamblia in vitro and that as-yet-uncharacterized sphingolipid biosynthetic pathways are potential targets for the development of anti-G. lamblia agents. PMID:18086854

  4. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes. PMID:26850377

  5. Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Dedeoglu, Nurcan; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. Here we report and anion inhibition study of the β-CA, VchCAβ with anions and other small molecules which inhibit metalloenzymes. The best VchCAβ anion inhibitors were sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 54-86μM. Diethyldithiocarbonate was also an effective VchCAβ inhibitor, with an inhibition constant of 0.73mM. The halides, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrate, nitrite, stannate, selenate, tellurate, divanadate, tetraborate, perrhenate, perruthenate, peroxydisulfate, selenocyanide, trithiocarbonate, and fluorosulfonate showed affinity in the low millimolar range, with KIs of 2.3-9.5mM. Identification of selective inhibitors of VchCAβ (over the human CA isoforms) may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzyme. PMID:26853167

  6. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes.

  7. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-02-15

    The Antarctic bacterium Colwellia psychrerythraea encodes for a γ-class carbonic anhydrase (CA, EC 4.2.1.1), which was cloned, purified and characterized. The enzyme (CpsCAγ) has a moderate catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a k(cat) 6.0×10(5) s(-1) and a k(cat)/K(m) of 4.7×10(6) M(-1) s(-1). A series of sulfonamides and a sulfamate were investigated as inhibitors of the new enzyme. The best inhibitor was metanilamide (K(I) of 83.5 nM) followed by indisulam, valdecoxib, celecoxib, sulthiame and hydrochlorothiazide (K(I)s ranging between 343 and 491 nM). Acetazolamide, methazolamide as well as other aromatic/heterocyclic derivatives showed inhibition constants between 502 and 7660 nM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here, by allowing the identification of inhibitors which may be useful as pharmacologic tools.

  8. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases.

    Science.gov (United States)

    Pinard, Melissa A; Boone, Christopher D; Rife, Brittany D; Supuran, Claudiu T; McKenna, Robert

    2013-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes that catalyze the reversible hydration of carbon dioxide and bicarbonate. Their pivotal role in metabolism, ubiquitous nature, and multiple isoforms (CA I-XIV) has made CAs an attractive drug target in clinical applications. The usefulness of CA inhibitors (CAIs) in the treatment of glaucoma and epilepsy are well documented. In addition several isoforms of CAs (namely, CA IX) also serve as biological markers for certain tumors, and therefore they have the potential for useful applications in the treatment of cancer. This is a structural study on the binding interactions of the widely used CA inhibitory drugs brinzolamide (marketed as Azopt®) and dorzolamide (marketed as Trusopt®) with CA II and a CA IX-mimic, which was created via site-directed mutagenesis of CA II cDNA such that the active site resembles that of CA IX. Also the inhibition of CA II and CA IX and molecular docking reveal brinzolamide to be a more potent inhibitor among the other catalytically active CA isoforms compared to dorzolamide. The structures show that the tail end of the sulfonamide inhibitor is critical in forming stabilizing interactions that influence tight binding; therefore, for future drug design it is the tail moiety that will ultimately determine isoform specificity. PMID:24090602

  9. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; Osman, Sameh M; De Luca, Viviana; Scozzafava, Andrea; Alothman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2014-01-01

    The δ-carbonic anhydrase (CA, EC 4.2.1.1) TweCA from the marine diatom Thalassiosira weissflogii has recently been cloned, purified and its activity/inhibition with anions investigated. Here we report the first sulfonamide/sulfamate inhibition study of a δ-class CA. Among the 40 such compounds investigated so far, 3-bromosulfanilamide, acetazolamide, ethoxzolamide, dorzolamide and brinzolamide were the most effective TweCA inhibitors detected, with KIs of 49.6-118nM. Many simple aromatic sulfonamides as well as dichlorophenamide, benzolamide, topiramate, zonisamide, indisulam and valdecoxib were medium potency inhibitors, (KIs of 375-897nM). Saccharin and hydrochlorothiazide were ineffective inhibitors of the δ-class enzyme, with KIs of 4.27-9.20μM. The inhibition profile of the δ-CA is very different from that of α-, β- and γ-CAs from different organisms. Although no X-ray crystal structure of this enzyme is available, we hypothesize that as for other CA classes, the sulfonamides inhibit the enzymatic activity by binding to the Zn(II) ion from the δ-CA active site. PMID:24314394

  10. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    Science.gov (United States)

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor.

  11. Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels

    Science.gov (United States)

    Akerman, S; Williamson, D J; Kaube, H; Goadsby, P J

    2002-01-01

    The detailed pathophysiology of migraine is beginning to be understood and is likely to involve activation of trigeminovascular afferents. Clinically effective anti-migraine compounds are believed to have actions that include peripheral inhibition of calcitonin gene-related peptide (CGRP) release from trigeminal neurones, or preventing dural vessel dilation, or both. CGRP antagonists can block both neurogenic and CGRP-induced dural vessel dilation. Nitric oxide (NO) can induce headache in migraine patients and often triggers a delayed migraine. The initial headache is thought to be caused via a direct action of the NO–cGMP pathway that causes vasodilation by vascular smooth muscle relaxation, while the delayed headache is likely to be a result of triggering trigeminovascular activation. Nitric oxide synthase (NOS) inhibitors are effective in the treatment of acute migraine. The present studies used intravital microscopy to examine the effects of specific NOS inhibitors on neurogenic dural vasodilation (NDV) and CGRP-induced dilation. The non-specific and neuronal NOS (nNOS) inhibitors were able to partially inhibit NDV, while the non-specific and endothelial NOS (eNOS) inhibitors were able to partially inhibit the CGRP induced dilation. There was no effect of the inducible NOS (iNOS) inhibitor. The data suggest that the delayed headache response triggered by NO donors in humans may be due, in part, to increased nNOS activity in the trigeminal system that causes CGRP release and dural vessel dilation. Further, eNOS activity in the endothelium causes NO production and smooth muscle relaxation by direct activation of the NO–cGMP pathway, and may be involved in the initial headache response. PMID:12183331

  12. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor

    Directory of Open Access Journals (Sweden)

    Rothstein Jay L

    2008-02-01

    Full Text Available Abstract Background Farnesyltransferase inhibitors (FTI are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusion oncoprotein expressed in the thyroid epithelium of patients afflicted with thyroid autoimmune disease and/or differentiated thyroid carcinoma. Previous studies have demonstrated that RET/PTC3 signals through Ras and can provoke nuclear translocation of NFκB and the downstream release of pro-inflammatory mediators from thyroid follicular cells in vitro and in vivo, making it an ideal target for studies using FTI. Methods For the studies described here, an in vitro assay was developed to measure FTI inhibition of RET/PTC3 pro-inflammatory effects. Rat thyrocytes transfected with RET/PTC3 or vector control cDNA were co-cultured with FTI and examined for inhibition of chemokine expression and secretion measured by RT-PCR and ELISA. Immunoblot analysis was used to confirm the level at which FTI acts on RET/PTC3-expressing cells, and Annexin V/PI staining of cells was used to assess cell death in RET/PTC3-expressing cells co-cultured with FTI. Results These analyses revealed significant mRNA and protein inhibition of chemokines Ccl2 and Cxcl1 with nanomolar doses of FTI. Neither RET/PTC3 protein expression nor apoptosis were affected at any dose of FTI investigated. Conclusion These data suggest that FTI may be applied as an effective inhibitor for RET/PTC3-oncogene induced pro-inflammatory mediators.

  13. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    Directory of Open Access Journals (Sweden)

    Chung-Hsi Hsing

    2015-01-01

    Full Text Available Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs modulate cytokine synthesis and release. Trichostatin A (TSA, an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS- induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p. injected with vehicle or TSA (0.3 mg/kg. One hour later, they were injected (i.p. with saline or Escherichia coli LPS (1 mg/kg. We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO, TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression.

  14. SLCO1B1 Variants and Angiotensin Converting Enzyme Inhibitor (Enalapril) -Induced Cough: a Pharmacogenetic Study

    Science.gov (United States)

    Luo, Jian-Quan; He, Fa-Zhong; Wang, Zhen-Min; Sun, Ning-Ling; Wang, Lu-Yan; Tang, Gen-Fu; Liu, Mou-Ze; Li, Qing; Chen, Xiao-Ping; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-01-01

    Clinical observations suggest that incidence of cough in Chinese taking angiotensin converting enzyme inhibitors is much higher than other racial groups. Cough is the most common adverse reaction of enalapril. We investigate whether SLCO1B1 genetic polymorphisms, previously reported to be important determinants of inter-individual variability in enalapril pharmacokinetics, are associated with the enalapril-induced cough. A cohort of 450 patients with essential hypertension taking 10 mg enalapril maleate were genotyped for the functional SLCO1B1 variants, 388A > G (Asn130Asp, rs2306283) and 521T > C (Val174Ala, rs4149056). The primary endpoint was cough, which was recorded when participants were bothered by cough and respiratory symptoms during enalapril treatment without an identifiable cause. SLCO1B1 521C allele conferred a 2-fold relative risk of enalapril-induced cough (95% confidence interval [CI] = 1.34–3.04, P = 6.2 × 10−4), and haplotype analysis suggested the relative risk of cough was 6.94-fold (95% CI = 1.30–37.07, P = 0.020) in SLCO1B1*15/*15 carriers. Furthermore, there was strong evidence for a gene-dose effect (percent with cough in those with 0, 1, or 2 copy of the 521C allele: 28.2%, 42.5%, and 71.4%, trend P = 6.6 × 10−4). Our study highlights, for the first time, SLCO1B1 variants are strongly associated with an increased risk of enalapril-induced cough. The findings will be useful to provide pharmacogenetic markers for enalapril treatment. PMID:26607661

  15. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Hansen, Gitte; Tang-Christensen, Mads;

    2010-01-01

    Tesofensine, a novel triple monoamine reuptake inhibitor, produces a significant weight loss in humans. The present study aimed at characterizing the weight-reducing effects of tesofensine in a rat model of diet-induced obesity. Sibutramine and rimonabant were used as reference comparators...

  16. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    Science.gov (United States)

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  17. Minimal and inducible regulation of tissue factor pathway inhibitor-2 in human gliomas.

    Science.gov (United States)

    Konduri, Santhi D; Osman, Francis Ali; Rao, Chilukuri N; Srinivas, Harish; Yanamandra, Niranjan; Tasiou, Anastasia; Dinh, Dzung H; Olivero, William C; Gujrati, Meena; Foster, Donald C; Kisiel, Walter; Kouraklis, Gregory; Rao, Jasti S

    2002-01-31

    Tissue factor pathway inhibitor-2 (TFPI-2), a serine protease inhibitor abundant in the extra cellular matrix, is highly expressed in non-invasive cells but undetectable levels in highly invasive human glioma cells. The mechanisms responsible for its transcriptional regulation are not well elucidated. In this study, we made several deletion constructs from a 3.6 kb genomic fragment from Hs683 cells containing the 5'-flanking region of the TFPI-2 gene, transiently transfected with these constructs into non-invasive (Hs683) and highly invasive (SNB19) human glioma cells, and assessed their expression by using a luciferase reporter gene. Three constructs showed high promoter activity (pTF5, -670 to +1; pTF6, -312 to +1; pTF2, -1511 to +1). Another construct, pTF8 (-81 to +1), showed no activity. PTF9, a variant of pTF5 in which a further 231 bp fragment (-312 to -81) was deleted, from the [-670 to +1] pTF5 region, also showed no promoter activity. Hence, (-312 to -81) this region is essential for the transcription of TFPI-2 in glioma cells. Sequencing of this promoter region revealed that it has a high G+C content, contains potential SP1 and AP1 binding motifs, and lacks canonical TATA and CAAT boxes immediately upstream of the major transcriptional initiation site, although CAAT boxes were found about -3000 bp upstream of the transcription start site. We also found a strong repressor in the region between -927 to -1181, upstream of the major transcriptional initiation site, followed by positive elements or enhancers between -1511 to -1181. These positive elements masked the silencer effect. Finally TFPI-2 was induced in Hs683 cells transfected with the pTF6 construct (-312 to +1) and stimulated with phorbol-12-myristate-13-acetate (PMA). We conclude that the -312 to +1 region is critical for the minimal and inducible regulation of TFPI-2 in non-invasive (Hs683) and highly invasive (SNB19) human glioma cell lines.

  18. The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-08-01

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) is the most effective CA known to date. Here we investigated the inhibition profile of this enzyme with a series of aromatic and heterocyclic sulfonamides, and one sulfamate. Many clinically used sulfonamides, such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulpiride were low nanomolar/subnanomolar SazCA inhibitors (KIs in the range of 0.9-10.8 nM) whereas simple aromatic derivatives were less effective as SazCA inhibitors. The inhibition profile of SazCA is slightly different from that of the related enzyme from S. yellostonense (SspCA), investigated earlier by our groups. PMID:23777827

  19. Nitric oxide synthase inhibitor improves de novo and long-term L-DOPA-induced dyskinesia in hemiparkinsonian rats

    Directory of Open Access Journals (Sweden)

    Fernando Eduardo Padovan-Neto

    2011-06-01

    Full Text Available Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (L-DOPA-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of L-DOPA-induced abnormal involuntary movements in 6-hydroxydopamine (6-OHDA-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-L-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated abnormal involuntary movements induced by chronic and acute L-DOPA. In contrast, rotational behavior was attenuated only after chronic L-DOPA. L-DOPA improved stepping test performance, and its chronic administration did not alter open field behavior. Our results indicated a correlation between apomorphine-induced rotation and the decrease in the number of adjusting steps performed with the contralateral forepaw in the 6-OHDA-lesioned rats.The 6-OHDA lesion and the L-DOPA treatment induced a bilateral increase (1.5 times in the nNOS protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic L-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under L-DOPA acute and chronic treatment. The L-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that L-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the L-DOPA structural modifications in the parkinsonian brain. Taken together, these data provided a rationale

  20. Calpain Inhibitor Reduces Cancer-induced Bone Pain Possibly Through Inhibition of Osteoclastogenesis in Rat Cancer-induced Bone Pain Model

    Institute of Scientific and Technical Information of China (English)

    Jia-Ying Xu; Yu Jiang; Wei Liu; Yu-Guang Huang

    2015-01-01

    Background:Calpain,a calcium-dependent cysteine protease,has been demonstrated to regulate osteoclastogenesis,which is considered one of the major reasons for cancer-induced bone pain (CIBP).In the present study,calpain inhibitor was applied in a rat CIBP model to determine whether it could reduce CIBP through regulation of osteoclastogenesis activity.Methods:A rat CIBP model was established with intratibial injection of Walker 256 cells.Then,the efficacy of intraperitoneal administered calpain inhibitor Ⅲ (MDL28170,1 mg/kg) on mechanical withdrawal threshold (MWT) of bilateral hind paws was examined on postoperative days (PODs) 2,5,8,11,and 14.On POD 14,the calpain inhibitor's effect on tumor bone tartrate-resistant acid phosphatase (TRAP) stain and radiology was also carefully investigated.Results:Pain behavioral tests in rats showed that the calpain inhibitor effectively attenuated MWTs of both the surgical side and contralateral side hind paws on POD 5,8,and 11 (P < 0.05).TRAP-positive cell count of the surgical side bone was significantly decreased in the calpain inhibitor group compared with the vehicle group (P < 0.05).However,bone resorption and destruction measured by radiographs showed no difference between the two groups.Conclusions:Calpain inhibitor can effectively reduce CIBP of both the surgical side and nonsurgical side after tumor injection in a rat CIBP model.It may be due to the inhibition of receptor activator of nuclear factor-kappa B ligand-induced osteoclastogenesis.Whether a calpain inhibitor could be a novel therapeutic target to treat CIBP needs further investigation.

  1. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibitors...... DMAT, TBB and resorufin differ in their selectivity against PI3K family members, since PI3K and DNA-PK are subject to inhibition by DMAT and TBB, however, not by resorufin. TBB and DMAT treatment together with cisplatin lead to an inhibition of cisplatin-induced stress signaling (as detected...... by phosphorylation of JNK and H2AX). In the case of resorufin no interference with the stress-signaling pathway is observed, supporting the notion that TBB and DMAT interfere with upstream molecules involved in genotoxic stress signaling. We have also tested the protein kinase CK2 inhibitors with respect to cell...

  2. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    Science.gov (United States)

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM). PMID:25697270

  3. Potential effects of PKC or protease inhibitors on acute pancreatitis-induced tissue injury in rats.

    OpenAIRE

    Shi, Changbin; Zhao, Xia; Wang, Xiangdong; Zhao, Liming; Andersson, Roland

    2007-01-01

    Background: Acute pancreatitis (AP) is still one of the severe diseases, that cause the development of multiple organ dysfunction with a high mortality. Effective therapies for AP are still limited, mainly due to unclear mechanisms by which A-P initiates both pancreatic and extrapancreatic organ injury. Methods: Protease inhibitors (aprotinin, pefabloc, trypsin inhibitor) and PKC inhibitors (polymyxin B, staurosporine) were administrated 30 min before 'induction of AP in rats. To investig...

  4. Recombinant human C1-inhibitor inhibits cytotoxicity induced by allo- and xenoantibodies.

    Science.gov (United States)

    Poirier, N; Blancho, G

    2008-03-01

    Antibody-mediated rejection (AMR) is usually poorly controlled, especially in the context of pretransplant immunization, and remains an unsolved issue in xenotransplantation. In order to study prevention and/or treatment of AMR through an early blockade of the complement classical pathway, we designed two strategies to test the effect of a new recombinant human C1-inhibitor that inhibits C1 esterase (rhC1-INH; Pharming, The Netherlands), in a complement-dependent cytotoxicity assay, in the contexts of pretransplant anti-donor alloimmunization and pig-to-primate combinations in order to compare the situations. RhC1-INH appeared to be efficient, in allo- and xenotransplantation settings to block cytotoxicity when given at the initiation of (preventive strategy) or during (curative strategy) the cytotoxicity assay. Importantly, we showed that a small amount of exogenous rhC1-INH was sufficient to prevent cytotoxicity induced by anti-donor alloantibody, thus possibly helping to prevent or treat AMR in preimmunized patients. These in vitro data lead to future in vivo studies in models of AMR in pigs and baboons in allotransplantation and xenotransplantation, in which cytotoxicity due to Gal and non-Gal antibodies is so detrimental. PMID:18374134

  5. Recombinant human C1-inhibitor inhibits cytotoxicity induced by allo- and xenoantibodies.

    Science.gov (United States)

    Poirier, N; Blancho, G

    2008-03-01

    Antibody-mediated rejection (AMR) is usually poorly controlled, especially in the context of pretransplant immunization, and remains an unsolved issue in xenotransplantation. In order to study prevention and/or treatment of AMR through an early blockade of the complement classical pathway, we designed two strategies to test the effect of a new recombinant human C1-inhibitor that inhibits C1 esterase (rhC1-INH; Pharming, The Netherlands), in a complement-dependent cytotoxicity assay, in the contexts of pretransplant anti-donor alloimmunization and pig-to-primate combinations in order to compare the situations. RhC1-INH appeared to be efficient, in allo- and xenotransplantation settings to block cytotoxicity when given at the initiation of (preventive strategy) or during (curative strategy) the cytotoxicity assay. Importantly, we showed that a small amount of exogenous rhC1-INH was sufficient to prevent cytotoxicity induced by anti-donor alloantibody, thus possibly helping to prevent or treat AMR in preimmunized patients. These in vitro data lead to future in vivo studies in models of AMR in pigs and baboons in allotransplantation and xenotransplantation, in which cytotoxicity due to Gal and non-Gal antibodies is so detrimental.

  6. Aromatase inhibitors induced autoimmune disorders in patients with breast cancer: A review

    Directory of Open Access Journals (Sweden)

    George Zarkavelis

    2016-09-01

    Full Text Available Subacute cutaneous lupus erythematosus (SCLE is characterized by particular cutaneous manifestations such as non-scaring plaques mainly in sunlight exposed parts of the body along with specific serum autoantibodies (i.e. antinuclear antibodies (ANA, Ro/SSa, La/SSb. It is considered either idiopathic or drug induced. The role of chemotherapeutic agents in causing SCLE has been investigated with the taxanes being the most common anticancer agents. However, recent data emerging point toward antiestrogen therapies as a causative factor not only for SCLE but also for a variety of autoimmune disorders. This is a report of a case of a 42 year old woman who developed clinical manifestations of SCLE after letrozole treatment in whom remission of the cutaneous manifestations was noticed upon discontinuation of the drug. In addition, an extensive review of the English literature has been performed regarding the association of antiestrogen therapy with autoimmune disorders. In conclusion, Oncologists should be aware of the potential development of autoimmune reactions in breast cancer patients treated with aromatase inhibitors.

  7. Phosphodiesterase-3 inhibitor (cilostazol) attenuates oxidative stress-induced mitochondrial dysfunction in the heart

    Institute of Scientific and Technical Information of China (English)

    Siriporn C.Chattipakorn; Savitree Thummasorn; Jantira Sanit; Nipon Chattipakorn

    2014-01-01

    Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mito-chondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arr-hythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress. Methods Mitochondria were isolated from rat hearts and treated with H2O2 to induce oxidative stress. Cilostazol, at various concentrations, was used to study its protective effects. Pharmacological interventions, including a mitochondrial permeability transition pore (mPTP) blocker, cyclosporine A (CsA), and an inner membrane anion channel (IMAC) blocker, 4’-chlorodiazepam (CDP), were used to investigate the mechanistic role of cilostazol on cardiac mitochondria. Cardiac mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential change and mi-tochondrial swelling were determined as indicators of cardiac mitochondrial function. Results Cilostazol preserved cardiac mitochondrial function when exposed to oxidative stress by preventing mitochondrial depolarization, mitochondrial swelling, and decreasing ROS produc-tion. Conclusions Our findings suggest that cardioprotective effects of cilostazol reported previously could be due to its prevention of car-diac mitochondrial dysfunction caused by severe oxidative stress.

  8. Prevention of radiation-induced salivary gland dysfunction utilizing a CDK inhibitor in a mouse model.

    Directory of Open Access Journals (Sweden)

    Katie L Martin

    Full Text Available BACKGROUND: Treatment of head and neck cancer with radiation often results in damage to surrounding normal tissues such as salivary glands. Permanent loss of function in the salivary glands often leads patients to discontinue treatment due to incapacitating side effects. It has previously been shown that IGF-1 suppresses radiation-induced apoptosis and enhances G2/M arrest leading to preservation of salivary gland function. In an effort to recapitulate the effects of IGF-1, as well as increase the likelihood of translating these findings to the clinic, the small molecule therapeutic Roscovitine, is being tested. Roscovitine is a cyclin-dependent kinase inhibitor that acts to transiently inhibit cell cycle progression and allow for DNA repair in damaged tissues. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with Roscovitine prior to irradiation induced a significant increase in the percentage of cells in the G(2/M phase, as demonstrated by flow cytometry. In contrast, mice treated with radiation exhibit no differences in the percentage of cells in G(2/M when compared to unirradiated controls. Similar to previous studies utilizing IGF-1, pretreatment with Roscovitine leads to a significant up-regulation of p21 expression and a significant decrease in the number of PCNA positive cells. Radiation treatment leads to a significant increase in activated caspase-3 positive salivary acinar cells, which is suppressed by pretreatment with Roscovitine. Administration of Roscovitine prior to targeted head and neck irradiation preserves normal tissue function in mouse parotid salivary glands, both acutely and chronically, as measured by salivary output. CONCLUSIONS/SIGNIFICANCE: These studies suggest that induction of transient G(2/M cell cycle arrest by Roscovitine allows for suppression of apoptosis, thus preserving normal salivary function following targeted head and neck irradiation. This could have an important clinical impact by preventing the negative side

  9. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    International Nuclear Information System (INIS)

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  10. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  11. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    Science.gov (United States)

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced

  12. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens.

    Science.gov (United States)

    Zhao, Rui; Chen, Jiaojiao; Ren, Zhaoxiang; Shen, Hui; Zhen, Xuechu

    2016-11-01

    Nucleus accumbens receives glutamatergic projection from the prefrontal cortex (PFC) and dopaminergic input from the Ventral tegmental area (VTA). Recent studies have suggested a critical role for serine/threonine kinase glycogen synthase kinase 3β (GSK3β) in cocaine-induced hyperactivity; however, the effect of GSK3β on the modulation of glutamatergic and dopaminergic afferents is unclear. In this study, we found that the GSK3 inhibitors, LiCl (100 mg/kg, i.p.) or SB216763 (2.5 mg/kg, i.p.), blocked the cocaine-induced hyperlocomotor activity in rats. By employing single-unit recordings in vivo, we found that pretreatment with either SB216763 or LiCl for 15 min reversed the cocaine-inhibited firing frequency of medium spiny neuron (MSN) in the nucleus accumbens (NAc). Preperfusion of SB216763 (5 μM) ameliorated the inhibitory effect of cocaine on both the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (up to 99 ± 6.8% inhibition) and N-methyl-D-aspartic acid receptor (NMDAR)-mediate EPSC (up to 73 ± 9.7% inhibition) in the NAc in brain slices. The effect of cocaine on AMPA and NMDA receptor-mediate excitatory postsynaptic current (EPSC) were mimicked by the D1 -like receptor agonist SKF 38393 and blocked by the D1 -like receptor antagonist SCH 23390, whereas D2 -like receptor agonist or antagonist failed to mimic or to block the action of cocaine. Preperfusion of SB216763 for 5 min also ameliorated the inhibitory effect of SKF38393 on both AMPA and NMDA receptor-mediated components of EPSC, indicate the effect of SB216763 on cocaine was via the D1 -like receptor. Moreover, cocaine inhibited the presynaptic release of glutamate in the NAc, and SB216763 reversed this effect. In conclusion, D1 receptor-GSK3β pathway, which mediates glutamatergic transmission in the NAc core through a presynaptic mechanism, plays an important role in acute cocaine-induced hyperlocomotion. PMID:27377051

  13. The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Directory of Open Access Journals (Sweden)

    Anak A. S. S. K. Dharmapatni

    2015-01-01

    Full Text Available Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP, on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA in mice. Methods. Four groups of mice (n=6 per group were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day, CAIA treated with low dose Embelin (30 mg/kg/day, and CAIA treated with high dose Embelin (50 mg/kg/day. Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP staining, and serum carboxy-terminal collagen crosslinks (CTX-1 ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores (P<0.05 and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 (P<0.05 and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss.

  14. Long-term therapy of interferon-alpha induced pulmonary arterial hypertension with different PDE-5 inhibitors: a case report

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2005-09-01

    Full Text Available Abstract background Interferon alpha2 is widely used in hepatitis and high-risk melanoma. Interferon-induced pulmonary arterial hypertension as a side effect is rare. Case presentation We describe a melanoma patient who developed severe pulmonary arterial hypertension 30 months after initiation of adjuvant interferon alpha2b therapy. Discontinuation of interferon did not improve pulmonary arterial hypertension. This patient could be treated successfully with phosphodiesterase-5 inhibitor therapy. Conclusion This is only the 5th case of interferon-induced pulmonary arterial hypertension and the first documented case where pulmonary arterial hypertension was not reversible after termination of interferon alpha2 therapy. If interferon alpha2 treated patients develop respiratory symptoms, pulmonary arterial hypertension should be considered in the differential diagnosis. For these patients phosphodiesterase-5 inhibitors, e.g. sildenafil or vardenafil, could be an effective therapeutic approach.

  15. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    International Nuclear Information System (INIS)

    Highlights: → We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. → Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. → Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. → Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  16. Dithiocarbamates with potent inhibitory activity against the Saccharomyces cerevisiae β-carbonic anhydrase.

    Science.gov (United States)

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Isik, Semra; AlOthman, Zeid; Osman, Sameh M; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (K(I)s of 66.5-910 nM), were more effective as hCA II inhibitors (K(I)s of 8.9-107 nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259 nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms. PMID:25669351

  17. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. PMID:25773015

  18. Carbonic Anhydrase II Deficiency in a Saudi Woman

    OpenAIRE

    Alhuzaim, Omar N; Almohareb, Ohoud M; Safiya M. Sherbeeni

    2015-01-01

    OBJECTIVE Carbonic anhydrase (CA) II deficiency is a rare autosomal recessive disorder caused by mutation in the CA II gene that leads to osteopetrosis, renal tubular acidosis (RTA), and cerebral calcification. Our aim is to present a patient with the classic triad of CA II deficiency syndrome to enhance the awareness about this rare syndrome. METHODS We describe the clinical and radiological findings of a Saudi woman patient with CA II deficiency syndrome. RESULTS A Saudi woman in her 20s pr...

  19. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells

    OpenAIRE

    Zhang, Qianwen; Zhang, Yuanyuan; Zhang, Pei; Chao, Zhenhua; Xia, Fei; Jiang, Chenchen; Zhang, Xudong; JIANG, ZHIWEN; Liu, Hao

    2014-01-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy in mammalian systems occurs under basal conditions and can be stimulated by stresses, including starvation, oxidative stress. Therefore, we hypothesized that 3-BrPA could induce autophagy. In the ...

  20. The effect of selective 5-hydroxytryptamine uptake inhibitors on 5-methoxy-N,N-dimethyltryptamine-induced ejaculation in the rat.

    OpenAIRE

    Rényi, L.

    1986-01-01

    The ejaculatory response and the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1 i.p.) were studied following acute and repeated treatment of rats with the selective uptake inhibitors of 5-HT, fluoxetine, zimeldine, alaproclate, and citalopram. The oral doses used were based on the respective ED50 values for uptake inhibition. Acute doses of fluoxetine and zimeldine significantly reduced the ejaculatory response when given 48 h...

  1. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    Science.gov (United States)

    Björklund, H V; Johansson, T R; Rinne, A

    1997-07-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  2. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    OpenAIRE

    Björklund, H V; Johansson, T R; Rinne, A

    1997-01-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor.

  3. Salubrinal Acts as a Dusp2 Inhibitor and Suppresses Inflammation in Anti-Collagen Antibody-Induced Arthritis

    OpenAIRE

    Hamamura, Kazunori; Nishimura, Akinobu; Chen,Andy; Takigawa, Shinya; Sudo, Akihiro; Yokota, Hiroki

    2015-01-01

    Dual-specificity phosphatase 2 (Dusp2; also called phosphatase of activated cells 1, PAC1) is highly expressed in activated immune cells. We examined whether a potential inhibitor of Dusp2, salubrinal, prevents inflammatory cytokine expression in immune cells and arthritic responses in a mouse model of anti-collagen antibody-induced arthritis (CAIA). Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, ...

  4. Inhibitors of the cytochrome P-450 enzymes block the secretagogue-induced release of corticotropin in mouse pituitary tumor cells.

    OpenAIRE

    Luini, A G; Axelrod, J

    1985-01-01

    A mouse pituitary tumor cell line (AtT-20) releases corticotropin (ACTH) in response to a number of secretagogues, including corticotropin-releasing factor (CRF), beta-adrenergic agents, N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2 cAMP), and potassium. The stimulation of ACTH secretion induced by the secretagogues can be blocked by inhibitors of the enzymes that generate (phospholipase A2) and metabolize (lipoxygenase and epoxygenase) arachidonic acid. The phospholipase A2 block...

  5. Differential Expression of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Thioacetamide-Induced Chronic Liver Injury

    OpenAIRE

    Park, Soo Young; Shin, Hye Won; Lee, Kyoung Bun; Lee, Min-Jae; Jang, Ja-June

    2010-01-01

    Hepatic fibrogenesis, a complex process that involves a marked accumulation of extracellular matrix components, activation of cells capable of producing matrix materials, cytokine release, and tissue remodeling, is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The MMP-TIMP balance can regulate liver fibrogenesis. The aim of this study was to evaluate the expression patterns of MMPs and TIMPs during thioacetamide (TAA)-induced liver fibrogen...

  6. Stationary spots and stationary arcs induced by advection in a one-activator, two-inhibitor reactive system.

    Science.gov (United States)

    Berenstein, Igal; Bullara, Domenico; De Decker, Yannick

    2014-09-01

    This paper studies the spatiotemporal dynamics of a reaction-diffusion-advection system corresponding to an extension of the Oregonator model, which includes two inhibitors instead of one. We show that when the reaction-diffusion, two-dimensional problem displays stationary patterns the addition of a plug flow can induce the emergence of new types of stationary structures. These patterns take the form of spots or arcs, the size and the spacing of which can be controlled by the flow.

  7. The MAO-B inhibitor deprenyl reduces the oral tremor and the dopamine depletion induced by the VMAT-2 inhibitor tetrabenazine.

    Science.gov (United States)

    Podurgiel, Samantha J; Yohn, Samantha E; Dortche, Kristina; Correa, Merce; Salamone, John D

    2016-02-01

    Tetrabenazine (TBZ) is prescribed for the treatment of chorea associated with Huntington's disease. Via inhibition of the vesicular monoamine transporter (VMAT-2), TBZ blocks dopamine (DA) storage and depletes striatal DA; this drug also has been shown to induce Parkinsonian motor side effects in patients. Recently, TBZ was shown to induce tremulous jaw movements (TJMs) in rats and mice. TJMs are an oral tremor that has many of the characteristics of Parkinsonian tremor in humans. The present study focused upon the ability of the well-established antiparkinsonian agent deprenyl to attenuate the behavioral and neurochemical effects of 2.0mg/kg TBZ. Deprenyl is a selective and irreversible inhibitor of monoamine oxidase-B, and administration of deprenyl produced a dose-related suppression of TBZ-induced TJMs. A second experiment employed in vivo microdialysis to examine extracellular DA levels in the ventrolateral striatum, the neostriatal region most closely associated with the production of TJMs, after administration of TBZ and deprenyl. Consistent with the behavioral data, TBZ alone produced a biphasic effect on extracellular DA, with an initial increases followed by a prolonged decrease during the period in which TJMs are displayed. Co-administration of deprenyl with TBZ increased DA levels compared to rats treated with TBZ alone. These results provide support for use of TBZ as a rodent model of Parkinsonism, and future studies should utilize this model to evaluate putative anti-Parkinsonian agents. PMID:26590367

  8. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro

    Institute of Scientific and Technical Information of China (English)

    姚克; 王凯军; 徐雯; 孙朝晖; 申屠形超; 邱培瑾

    2003-01-01

    Objective To investigate the role of caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen peroxide (H2O2) in vitro.Methods Rat lenses were incubated in modified Eagle' s medium containing 2 mmol/L H2O2 to induce apoptosis in vitro. Apoptosis in lens epithelial cells was assessed by transmission electron microscopy and annexin V-propidium iodide (PI) double staining flow cytometry after 12, 24 and 48 h of incubation. The activity of caspase-3 was analyzed by western blotting.Results Observations under transmission electron microscopy revealed that 2 mmol/L H2O2 could effectively induce lens epithelial cell apoptosis in vitro. Caspase-3 activity increased during cell apoptosis and the peak measurement occurred at 24 h after treatment with H2O2. Cell apoptosis was blocked by caspase-3 inhibitor Ac-DEVD-CHO.Conclusions The activation of caspase-3 plays an important role in executing apoptosis in H2O2-treated lens epithelial cells and in the formation of cataract. The caspase-3 inhibitor Ac-DEVD-CHO may effectively prevent lens epithelial cell apoptosis caused by oxidative injury.

  9. Hypomagnesemia Induced by Long-Term Treatment with Proton-Pump Inhibitors

    Directory of Open Access Journals (Sweden)

    Simone Janett

    2015-01-01

    Full Text Available In 2006, hypomagnesemia was first described as a complication of proton-pump inhibitors. To address this issue, we systematically reviewed the literature. Hypomagnesemia, mostly associated with hypocalcemic hypoparathyroidism and hypokalemia, was reported in 64 individuals on long-term proton-pump inhibitors. Hypomagnesemia recurred following replacement of one proton-pump inhibitor with another but not with a histamine type-2 receptor antagonist. The association between proton-pump inhibitors and magnesium metabolism was addressed in 14 case-control, cross-sectional studies. An association was found in 11 of them: 6 reports found that the use of proton-pump inhibitors is associated per se with a tendency towards hypomagnesemia, 2 found that this tendency is more pronounced in patients concurrently treated with diuretics, carboplatin, or cisplatin, and 2 found a relevant tendency to hypomagnesemia in patients with poor renal function. Finally, findings likely reflecting decreased intestinal magnesium uptake were observed on treatment with proton-pump inhibitors. Three studies did not disclose any relationship between magnesium metabolism and treatment with histamine type-2 receptor antagonists. In conclusion, proton-pump inhibitors may cause hypomagnesemia. In these cases, switching to a histamine type-2 receptor antagonist is advised.

  10. Knockdown of the cell cycle inhibitor p21 enhances cartilage formation by induced pluripotent stem cells.

    Science.gov (United States)

    Diekman, Brian O; Thakore, Pratiksha I; O'Connor, Shannon K; Willard, Vincent P; Brunger, Jonathan M; Christoforou, Nicolas; Leong, Kam W; Gersbach, Charles A; Guilak, Farshid

    2015-04-01

    The limited regenerative capacity of articular cartilage contributes to progressive joint dysfunction associated with cartilage injury or osteoarthritis. Cartilage tissue engineering seeks to provide a biological substitute for repairing damaged or diseased cartilage, but requires a cell source with the capacity for extensive expansion without loss of chondrogenic potential. In this study, we hypothesized that decreased expression of the cell cycle inhibitor p21 would enhance the proliferative and chondrogenic potential of differentiated induced pluripotent stem cells (iPSCs). Murine iPSCs were directed to differentiate toward the chondrogenic lineage with an established protocol and then engineered to express a short hairpin RNA (shRNA) to reduce the expression of p21. Cells expressing the p21 shRNA demonstrated higher proliferative potential during monolayer expansion and increased synthesis of glycosaminoglycans (GAGs) in pellet cultures. Furthermore, these cells could be expanded ∼150-fold over three additional passages without a reduction in the subsequent production of GAGs, while control cells showed reduced potential for GAG synthesis with three additional passages. In pellets from extensively passaged cells, knockdown of p21 attenuated the sharp decrease in cell number that occurred in control cells, and immunohistochemical analysis showed that p21 knockdown limited the production of type I and type X collagen while maintaining synthesis of cartilage-specific type II collagen. These findings suggest that manipulating the cell cycle can augment the monolayer expansion and preserve the chondrogenic capacity of differentiated iPSCs, providing a strategy for enhancing iPSC-based cartilage tissue engineering.

  11. Bentamapimod (JNK Inhibitor AS602801) Induces Regression of Endometriotic Lesions in Animal Models.

    Science.gov (United States)

    Palmer, Stephen S; Altan, Melis; Denis, Deborah; Tos, Enrico Gillio; Gotteland, Jean-Pierre; Osteen, Kevin G; Bruner-Tran, Kaylon L; Nataraja, Selvaraj G

    2016-01-01

    Endometriosis is an estrogen (ER)-dependent gynecological disease caused by the growth of endometrial tissue at extrauterine sites. Current endocrine therapies address the estrogenic aspect of disease and offer some relief from pain but are associated with significant side effects. Immune dysfunction is also widely believed to be an underlying contributor to the pathogenesis of this disease. This study evaluated an inhibitor of c-Jun N-terminal kinase, bentamapimod (AS602801), which interrupts immune pathways, in 2 rodent endometriosis models. Treatment of nude mice bearing xenografts biopsied from women with endometriosis (BWE) with 30 mg/kg AS602801 caused 29% regression of lesion. Medroxyprogesterone acetate (MPA) or progesterone (PR) alone did not cause regression of BWE lesions, but combining 10 mg/kg AS602801 with MPA caused 38% lesion regression. In human endometrial organ cultures (from healthy women), treatment with AS602801 or MPA reduced matrix metalloproteinase-3 (MMP-3) release into culture medium. In organ cultures established with BWE, PR or MPA failed to inhibit MMP-3 secretion, whereas AS602801 alone or MPA + AS602801 suppressed MMP-3 production. In an autologous rat endometriosis model, AS602801 caused 48% regression of lesions compared to GnRH antagonist Antide (84%). AS602801 reduced inflammatory cytokines in endometriotic lesions, while levels of cytokines in ipsilateral horns were unaffected. Furthermore, AS602801 enhanced natural killer cell activity, without apparent negative effects on uterus. These results indicate that bentamapimod induced regression of endometriotic lesions in endometriosis rodent animal models without suppressing ER action. c-Jun N-terminal kinase inhibition mediated a comprehensive reduction in cytokine secretion and moreover was able to overcome PR resistance. PMID:26335175

  12. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  13. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    Directory of Open Access Journals (Sweden)

    Tao Yan-Fang

    2012-12-01

    Full Text Available Abstract Background Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. Methods SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3 compared to DMSO group (DMSO: 3.70 ± 2.4 cm3 or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P Conclusions The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.

  14. HAT inhibitor, garcinol, exacerbates lipopolysaccharide‑induced inflammation in vitro and in vivo.

    Science.gov (United States)

    Wang, Bin; Lin, Ling; Ai, Qing; Zeng, Tao; Ge, Pu; Zhang, Li

    2016-06-01

    Acetylation modification catalyzed by histone acetyl transferases (HATs) is important for transcriptional regulation. The present study investigated the effects of the HAT inhibitor garcinol on the expression of inflammation‑associated genes in lipopolysaccharide (LPS)‑stimulated RAW264.7 murine macrophages and LPS‑challenged mice. The levels of pro‑inflammatory cytokines were determined by reverse transcription‑quantitative polymerase chain reaction and enzyme‑linked immunosorbent assay. The degree of multi‑organ injury was evaluated by histopathological examination of the lung, determination of the alanine aminotransferase and blood urea nitrogen in plasma samples and by monitoring the survival rate of the experimental animals. The results of the current study demonstrated that garcinol promoted LPS‑induced expression of tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) in RAW264.7 cells. These effects were associated with reduced acetylation of nuclear factor‑κB p65. Additionally, treatment with garcinol enhanced LPS‑induced expression of TNF‑α and IL‑6, exacerbated LPS‑induced lung injury, increased LPS‑induced elevation of plasma alanine aminotransferase and blood urea nitrogen, and reduced the survival rate of LPS‑challenged mice. These data indicated that the HAT inhibitor, garcinol, enhances LPS‑induced inflammation in vitro and in vivo, suggesting that acetylation modification has an important regulatory function during inflammation. PMID:27122221

  15. Catalysis by cobalt(II)-substituted carbonic anhydrase II of the exchange of oxygen-18 between CO2 and H2O.

    Science.gov (United States)

    Tu, C K; Silverman, D N

    1985-10-01

    We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme. PMID:3936538

  16. Chaperone proteins identified from synthetic proteasome inhibitor-induced inclusions in PC12 cells by proteomic analysis

    Institute of Scientific and Technical Information of China (English)

    Xing'an Li; Yinjiu Zhang; Yihong Hu; Ming Chang; Tao Liu; Danping Wang; Yu Zhang; Lei Zhang; Linsen Hu

    2008-01-01

    Chaperone proteins are significant in Lewy bodies, but the profile of chaperone proteins is incompletely unraveled.Protcomic analysis is used to determine protein candidates for further study. Here, to identify potential chaperone proteins from agent-induced inclusions, we carried out proteomic analysis of artificially synthetic proteasome inhibitor (PSI)-induced inclusions formed in PC12 cells exposed to 10 μM PSI for 48 h. Using biochemical fractionation, 2-D electrophoresis, and identification through peptide mass fingerprints searched against multiple protein databases, we repeatedly identified eight reproducible chaperone proteins from the PSI-induced inclusions. Of these, 58 kDa glucose regulated protein, 75 kDa glucose regulated protein, and caldum-binding protein I were newly identified. The other five had been reported to be consistent components of Lewy bodies. These findings suggested that the three potential chaperone proteins might be recruited to PSI-induced inclusions in PC12 cells under proteasome inhibition.

  17. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice.

    Science.gov (United States)

    Liddie, Shervin; Anderson, Karen L; Paz, Andres; Itzhak, Yossef

    2012-10-01

    Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning. PMID:22596207

  18. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells.

    Science.gov (United States)

    Yamazaki, Ryuta; Kusunoki, Natsuko; Matsuzaki, Takeshi; Hashimoto, Shusuke; Kawai, Shinichi

    2002-11-01

    Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells. PMID:12417326

  19. Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate Induces Canine Mammary Cancer Cell Aggressiveness

    OpenAIRE

    Joana T de Oliveira; Santos, Ana L.; Catarina Gomes; Rita Barros; Cláudia Ribeiro; Nuno Mendes; de Matos, Augusto J.; M. Helena Vasconcelos; Maria José Oliveira; Celso A Reis; Fátima Gärtner

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA0...

  20. Performance of organic and inorganic substances as inhibitors for chloride-induced corrosion in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Oezlem [Gedik University Vocational High School, Istanbul (Turkey); Cizmeciglu, Zeki [Istanbul Commerce University, Istanbul (Turkey)

    2015-02-01

    Studies have been carried out to investigate the concrete corrosion inhibitor performance of silica fume admixture and an admixture of amino alcohols containing organic and inorganic substances. The concrete specimens with and without admixtures were subjected to accelerated corrosion tests to determine the time to corrosion initiation. The results showed that the specimens admixtured with nitrogen containing organic and inorganic inhibitors performed slightly better than concrete specimens with silica fume admixture.

  1. Calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis: a rapid method to evaluate inhibitors of arachidonic acid metabolism in vivo

    Directory of Open Access Journals (Sweden)

    T. S. Rao

    1993-01-01

    Full Text Available The present investigation characterizes calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis in the rat. Intraperitoneal injection of A-23187 (20 μg/rat stimulated marked biosynthesis of 6-keto-PGF1α (6-KPA, TxB2, LTC4 and LTB4, with no detectable changes on levels of PGE2. Levels of all eicosanoids decreased rapidly after a peak which was seen as early as 5 min. Enzyme markers of cellular contents of neutrophils and mononuclear cells, MPO and NAG respectively, decreased rapidly after ionophore injection; this was followed by increases after 60 min. Indomethacin, a selective cyclooxygenase inhibitor, and zileuton and ICI D-2138, two selective 5-lipoxygenase inhibitors attenuated prostaglandin and leukotriene pathways respectively. Oral administration of zileuton (20 mg/kg, p.o. inhibited LTB4 biosynthesis for up to 6 h suggesting a long duration of pharmacological activity in the rats consistent with its longer half-life. The rapid onset and the magnitude of increases in levels of eicosanoids render the ionophore induced peritoneal eicosanoid biosynthesis a useful model to evaluate pharmacological profiles of inhibitors of eicosanoid pathways in vivo.

  2. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    International Nuclear Information System (INIS)

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming

  3. Role of oxidative stress and intracellular glutathione in the sensitivity to apoptosis induced by proteasome inhibitor in thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Guan Yifu

    2009-02-01

    Full Text Available Abstract Background The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM and some solid cancers. Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. Methods Proteasome activity, intracellular glutathione (GSH and ROS levels, as well as activities of GSH synthesis enzymes were measured using spectrophotometric methods. Cell death was analyzed using flow cytometry and caspase activity assay. The expression level of GSH synthesis enzymes were measured using real-time RT-PCR. Results At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in FRO cells, but not in ARO cells. Bortezomib elevated the amount of glutathione (GSH and the treatment with bortezomib increased the level of mRNA for GCL, a rate-limiting enzyme in glutathione synthesis. Furthermore, depletion of GSH increases apoptosis induced by bortezomib, in contrast, repletion of GSH decreases bortezomib-mediated cell death. Conclusion GSH protects cells from proteasome inhibition-induced oxidative stress and glutathione-dependent redox system might play an important role in the sensitivity to proteasome inhibition-induced apoptosis.

  4. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  5. Effect of cholinesterase inhibitor galanthamine on circulating tumor necrosis factor alpha in rats with lipopolysaccharide induced peritonitis

    Institute of Scientific and Technical Information of China (English)

    LIU Zhi-hai; MA Yue-feng; WU Jun-song; GAN Jian-xin; XU Shao-wen; JIANG Guan-yu

    2010-01-01

    Background The nervous system, through the vagus nerve and its neurotransmitter acetylcholine, can down-regulate the systemic inflammation in vivo, and recently, a role of brain cholinergic mechanisms in activating this cholinergic anti-inflammatory pathway has been indicated. Galanthamine is a cholinesterase inhibitor and one of the centrally acting cholinergic agents available in clinic. This study aimed to evaluate the effect of galanthamine on circulating tumor necrosis factor alpha (TNF-α) in rats with lipopolysaccharide-induced peritonitis and the possible role of the vagus nerve in the action of galanthamine.Methods Rat models of lipopolysaccharide-induced peritonitis and bilateral cervical vagotomy were produced. In the experiment 1, the rats were randomly divided into control group, peritonitis group, and peritonitis groups treated with three dosages of galanthamine. In the experiment 2, the rats were randomly divided into sham group, sham plus peritonitis group, sham plus peritonitis group treated with galanthamine, vagotomy plus peritonitis group, and vagotomy plus peritonitis group treated with galanthamine. The levels of plasma TNF-α were determined in every group. Results The level of circulating TNF-α was significantly increased in rats after intraperitoneal injection of endotoxin. Galanthamine treatment decreased the level of circulating TNF-α in rats with lipopolysaccharide-induced peritonitis, and there was significant difference compared with rats with lipopolysaccharide-induced peritonitis without treatment. The 3 mg/kg dosage of galanthamine had the most significant inhibition on circulating TNF-α level at all the three tested doses. Galanthamine obviously decreased the TNF-α level in rats with lipopolysaccharide-induced peritonitis with sham operation, but could not decrease the TNF-α level in rats with lipopolysaccharide-induced peritonitis with vagotomy. Conclusion Cholinesterase inhibitor galanthamine has an inhibitory effect on TNF

  6. JAK Inhibitors AG-490 and WHI-P154 Decrease IFN-γ-Induced iNOS Expression and NO Production in Macrophages

    OpenAIRE

    Eeva Moilanen; Hannu Kankaanranta; Riina Nieminen; Outi Kärpänniemi; Riku Korhonen; Outi Sareila

    2006-01-01

    In inflammation, inducible nitric oxide synthase (iNOS) produces nitric oxide (NO), which modulates inflammatory processes. We investigated the effects of Janus kinase (JAK) inhibitors, AG-490 and WHI-P154, on iNOS expression and NO production in J774 murine macrophages stimulated with interferon-γ (IFN-γ). JAK inhibitors AG-490 and WHI-P154 decreased IFN-γ-induced nuclear levels of signal transducer and activator of transcription 1α (STAT1α). JAK inhibitors AG-490 and WHI-P154 decreased also...

  7. mTOR inhibitor-induced interstitial lung disease in cancer patients: Comprehensive review and a practical management algorithm.

    Science.gov (United States)

    Willemsen, Annelieke E C A B; Grutters, Jan C; Gerritsen, Winald R; van Erp, Nielka P; van Herpen, Carla M L; Tol, Jolien

    2016-05-15

    Mammalian target of rapamycin inhibitors (mTORi) have clinically significant activity against various malignancies, such as renal cell carcinoma and breast cancer, but their use can be complicated by several toxicities. Interstitial lung disease (ILD) is an adverse event of particular importance. Mostly, mTORi-induced ILD remains asymptomatic or mildly symptomatic, but it can also lead to severe morbidity and even mortality. Therefore, careful diagnosis and management of ILD is warranted. The reported incidence of mTORi-induced ILD varies widely because of a lack of uniform diagnostic criteria and active surveillance. Because of the nonspecific clinical features, a broad differential diagnosis that includes (opportunistic) infections should be considered in case of suspicion of mTORi-induced ILD. The exact mechanism or interplay of mechanisms leading to the development of ILD remains to be defined. Suggested mechanisms are either a direct toxic effect or immune-mediated mechanisms, considering mTOR inhibitors have several effects on the immune system. The clinical course of ILD varies widely and is difficult to predict. Consequently, the discrimination between when mTOR inhibitors can be continued safely and when discontinuation is indicated is challenging. In this review, we give a comprehensive review of the incidence, clinical presentation and pathophysiology of mTORi-induced ILD in cancer patients. We present newly developed diagnostic criteria for ILD, which include clinical symptoms as well as basic pulmonary function tests and radiological abnormalities. In conjunction with these diagnostic criteria, we provide a detailed and easily applicable clinical management algorithm.

  8. mTOR inhibitor-induced interstitial lung disease in cancer patients: Comprehensive review and a practical management algorithm.

    Science.gov (United States)

    Willemsen, Annelieke E C A B; Grutters, Jan C; Gerritsen, Winald R; van Erp, Nielka P; van Herpen, Carla M L; Tol, Jolien

    2016-05-15

    Mammalian target of rapamycin inhibitors (mTORi) have clinically significant activity against various malignancies, such as renal cell carcinoma and breast cancer, but their use can be complicated by several toxicities. Interstitial lung disease (ILD) is an adverse event of particular importance. Mostly, mTORi-induced ILD remains asymptomatic or mildly symptomatic, but it can also lead to severe morbidity and even mortality. Therefore, careful diagnosis and management of ILD is warranted. The reported incidence of mTORi-induced ILD varies widely because of a lack of uniform diagnostic criteria and active surveillance. Because of the nonspecific clinical features, a broad differential diagnosis that includes (opportunistic) infections should be considered in case of suspicion of mTORi-induced ILD. The exact mechanism or interplay of mechanisms leading to the development of ILD remains to be defined. Suggested mechanisms are either a direct toxic effect or immune-mediated mechanisms, considering mTOR inhibitors have several effects on the immune system. The clinical course of ILD varies widely and is difficult to predict. Consequently, the discrimination between when mTOR inhibitors can be continued safely and when discontinuation is indicated is challenging. In this review, we give a comprehensive review of the incidence, clinical presentation and pathophysiology of mTORi-induced ILD in cancer patients. We present newly developed diagnostic criteria for ILD, which include clinical symptoms as well as basic pulmonary function tests and radiological abnormalities. In conjunction with these diagnostic criteria, we provide a detailed and easily applicable clinical management algorithm. PMID:26452336

  9. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  10. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  11. Generation of Reactive Oxygen Species during Apoptosis Induced by DNA-Damaging Agents and/or Histone Deacetylase Inhibitors

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2011-01-01

    Full Text Available Reactive oxygen species play an important role in the process of apoptosis in many cell types. In this paper, we analyzed the role of ROS in DNA-damaging agents (actinomycin D or decitabine, which induced apoptosis of leukemia cell line CML-T1 and normal peripheral blood lymphocytes (PBL. The possibility of synergism with histone deacetylase inhibitors butyrate or SAHA is also reported. We found that in cancer cell line, ROS production significantly contributed to apoptosis triggering, while in normal lymphocytes treated by cytostatic or cytotoxic drugs, necrosis as well as apoptosis occurred and large heterogeneity of ROS production was measured. Combined treatment with histone deacetylase inhibitor did not potentiate actinomycin D action, whereas combination of decitabine and SAHA brought synergistic ROS generation and apoptotic features in CML cell line. Appropriate decrease of cell viability indicated promising therapeutic potential of this combination in CML, but side effects on normal PBL should be taken into attention.

  12. Chromosome damage induced by DNA topoisomerase II inhibitors combined with g-radiation in vitro

    Directory of Open Access Journals (Sweden)

    Maria Cristina P. Araújo

    1998-09-01

    Full Text Available Combined radiation and antineoplastic drug treatment have important applications in cancer therapy. In the present work, an evaluation was made of two known topoisomerase II inhibitors, doxorubicin (DXR and mitoxantrone (MXN, with g-radiation. The effects of DXR or MXN on g-radiation-induced chromosome aberrations in Chinese hamster ovary (CHO cells were analyzed. Two concentrations of each drug, 0.5 and 1.0 µg/ml DXR, and 0.02 and 0.04 µg/ml MXN, were applied in combination with two doses of g-radiation (20 and 40 cGy. A significant potentiating effect on chromosomal aberrations was observed in CHO cells exposed to 1.0 µg/ml DXR plus 40 cGy. In the other tests, the combination of g-radiation with DXR or MXN gave approximately additive effects. Reduced mitotic indices reflected higher toxicity of the drugs when combined with radiation.A associação de radiação ionizante com drogas antineoplásicas tem importante aplicação na terapia do câncer. No presente trabalho, foram avaliados os efeitos de dois inibidores de topoisomerase II, doxorubicina (DXR e mitoxantrona (MXN, sobre as aberrações cromossômicas induzidas pelas radiações-g em células do ovário de hamster chinês (CHO. Foram usadas as concentrações 0,5 e 1,0 mg/ml de DXR e 0,02 e 0,04 mg/ml de MXN, combinadas com duas doses de radiações gama (20 e 40 cGy. Um significativo efeito potenciador das aberrações cromossômicas foi observado em células CHO tratadas com 1,0 mg/ml de DXR e expostas a 40 cGy de radiação. Nos outros testes, a combinação da radiação-g com a DXR ou MXN apresentou um efeito próximo ao aditivo. A redução dos índices mitóticos refletiu a alta citotoxicidade das drogas quando combinadas às radiações-g.

  13. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  14. DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Isik, Semra; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Scozzafava, Andrea; Supuran, Claudiu T; Capasso, Clemente

    2012-12-13

    We have cloned, purified, and characterized an α-carbonic anhydrase (CA, EC 4.2.1.1) from the human pathogenic bacterium Vibrio cholerae, VchCA. The new enzyme has significant catalytic activity, and an inhibition study with sulfonamides and sulfamates led to the detection of a large number of low nanomolar inhibitors, among which are methazolamide, acetazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, and indisulam (KI values in the range 0.69-8.1 nM). As bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit the in vivo virulence, we propose that VchCA may be a target for antibiotic development, exploiting a mechanism of action rarely considered until now. PMID:23181552

  15. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: Enhanced survival and mutagenesis

    International Nuclear Information System (INIS)

    Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na2CrO4), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints

  16. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis

    OpenAIRE

    Khanna Ashwani K

    2009-01-01

    Abstract Cyclin kinase inhibitor p21 is one of the most potent inhibitors of aortic smooth muscle cell proliferation, a key mediator of atherosclerosis. This study tests if p2l deficiency will result in severe atherosclerosis in a mouse model. p21-/- and strain matched wild type mice were fed with high fat diet for 21 weeks. Analysis for biochemical parameters (cholesterol, triglycerides) in serum and mRNA expression of CD36, HO-1, TGF-β, IFN-γ, TNF-α, PPAR-γ and NADPH oxidase components (p22...

  17. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine. PMID:27137651

  18. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine.

  19. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: ► Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. ► Chromatin condensation and nuclear fragmentation were induced. ► Zebularine promoted apoptosis via mitochondrial pathways. ► Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 μM accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  20. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    Science.gov (United States)

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  1. The proteasome inhibitor bortezomib induces an inhibitory chromatin environment at a distal enhancer of the estrogen receptor-α gene.

    Directory of Open Access Journals (Sweden)

    Ginny L Powers

    Full Text Available Expression of the estrogen receptor-α (ERα gene, ESR1, is a clinical biomarker used to predict therapeutic outcome of breast cancer. Hence, there is significant interest in understanding the mechanisms regulating ESR1 gene expression. Proteasome activity is increased in cancer and we previously showed that proteasome inhibition leads to loss of ESR1 gene expression in breast cancer cells. Expression of ESR1 mRNA in breast cancer cells is controlled predominantly through a proximal promoter within ∼400 base pair (bp of the transcription start site (TSS. Here, we show that loss of ESR1 gene expression induced by the proteasome inhibitor bortezomib is associated with inactivation of a distal enhancer located 150 kilobases (kb from the TSS. Chromatin immunoprecipitation assays reveal several bortezomib-induced changes at the distal site including decreased occupancy of three critical transcription factors, GATA3, FOXA1, and AP2γ. Bortezomib treatment also resulted in decreased histone H3 and H4 acetylation and decreased occupancy of histone acetyltransferase, p300. These data suggest a mechanism to explain proteasome inhibitor-induced loss of ESR1 mRNA expression that highlights the importance of the chromatin environment at the -150 kb distal enhancer in regulation of basal expression of ESR1 in breast cancer cells.

  2. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wei, E-mail: polo5352877@163.com [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China); Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei [Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan (China)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  3. Targeting of Carbon Ion-Induced G2 Checkpoint Activation in Lung Cancer Cells Using Wee-1 Inhibitor MK-1775.

    Science.gov (United States)

    Ma, Hongyu; Takahashi, Akihisa; Sejimo, Yukihiko; Adachi, Akiko; Kubo, Nobuteru; Isono, Mayu; Yoshida, Yukari; Kanai, Tatsuaki; Ohno, Tatsuya; Nakano, Takashi

    2015-12-01

    The potent inhibitor of the cell cycle checkpoint regulatory factor Wee-1, MK-1775, has been reported to enhance non-small cell lung cancer (NSCLC) cell sensitivity to photon radiation by abrogating radiation-induced G2 arrest. However, little is known about the effects of this sensitizer after exposure to carbon (C)-ion radiation. The purpose of this study was therefore to investigate the effects of C ions in combination with MK-1775 on the killing of NSCLC cells. Human NSCLC H1299 cells were exposed to X rays or C ions (290 MeV/n, 50 keV/μm at the center of a 6 cm spread-out Bragg peak) in the presence of MK-1775. The cell cycle was analyzed using flow cytometry and Western blotting. Radiosensitivity was determined using clonogenic survival assays. The mechanisms underlying MK-1775 radiosensitization were studied by observing H2AX phosphorylation and mitotic catastrophe. G2 checkpoint arrest was enhanced 2.3-fold by C-ion exposure compared with X-ray exposure. Radiation-induced G2 checkpoint arrest was abrogated by MK-1775. Exposure to radiation resulted in a significant reduction in the mitotic ratio and increased phosphorylation of cyclin-dependent kinase 1 (Cdk1), the primary downstream mediator of Wee-1-induced G2 arrest. The Wee-1 inhibitor, MK-1775 restored the mitotic ratio and suppressed Cdk1 phosphorylation. In addition, MK-1775 increased H1299 cell sensitivity to C ions and X rays independent of TP53 status. MK-1775 also significantly increased H2AX phosphorylation and mitotic catastrophe in irradiated cells. These results suggest that the G2 checkpoint inhibitor MK-1775 can enhance the sensitivity of human NSCLC cells to C ions as well as X rays. PMID:26645158

  4. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    Yan-Ting Jian; Guo-Feng Mai; Ji-De Wang; Ya-Li Zhang; Rong-Cheng Luo; Yong-Xin Fang

    2005-01-01

    AIM: To ascertain the molecule mechanism of nuclear factor-κB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats' colitis induced by trinitrobenzene sulfonic acid (TNBS).METHODS: Sixty rats with TNBS-induced colitis weretreated with 2.0% curcumin in the diet. Thirty positive control rats were treated with 0.5% sulfasalazine (SASP).Thirty negative control rats and thirty model rats were treated with general diet. Changes of body weight together with histological scores were evaluated. Survival rates were also evaluated. Cell nuclear NF-κB activity in colonic mucosa was evaluated by using electrophoretic mobility shift assay. Cytoplasmic IκB protein in colonic mucosa was detected by using Western Blot analysis.Cytokine messenger expression in colonic tissue was assessed by using semiquantitative reverse-transcription polymerase chain reaction.RESULTS: Treatment with curcumin could prevent and treat both wasting and histopathologic signs of rats with TNBS-induced intestinal inflammation. In accordance with these findings, NF-κB activation in colonic mucosa was suppressed in the curcumin-treated groups. Degradations of cytoplasmic IκB protein in colonic mucosa were blocked by curcumin treatment. Proinfiammatory cytokine messenger RNA expression in colonic mucosa was also suppressed.CONCLUSION: This study shows that NF-κB inhibitor curcumin could prevent and improve experimental colitis in murine model with inflammatory bowel disease (IBD).The findings suggest that NF-κB inhibitor curcumin could be a potential target for the patients with IBD.

  5. The cathepsin B inhibitor, z-FA-CMK is toxic and readily induced cell death in human T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liow, K.Y.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2013-11-01

    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose–response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. - Highlights: • z-FA-CMK is toxic and induce cell death in the human T cells. • z-FA-CMK toxicity requires the CMK group, alanine and the benzyloxycarbonyl group. • z-FA-CMK induced apoptosis at low concentration and necrosis at high concentration.

  6. Density functional theory study of proton transfer in carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lidong; XIE Daiqian

    2005-01-01

    Proton transfer in carbonic anhydrase II has been studied at the B3LYP/6-31G(D) level. The active site model consists of the zinc ion, four histidine residues, two threonine residues, and three water molecules. Our calculations showed that the proton of the zinc-bound water molecule could be transferred to the nearest water molecule and an intermediate containing H3O+ is then formed. The intermediate is only 1.3 kJ·mol-1 above the reactant complex, whereas the barrier height for the proton transfer is about 8.1 kJ·mol-1.

  7. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    OpenAIRE

    Supuran, Claudiu T.

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM ...

  8. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    OpenAIRE

    Adebiyi, Oluwafeyisetan O.; Olubunmi A. Adebiyi; Owira, Peter M. O.

    2015-01-01

    Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) an...

  9. Pharmacogenetics of ACE inhibitor-induced angioedema and cough : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Mahmoudpour, Seyed Hamidreza; Leusink, Maarten; van der Putten, Lisa; Terreehorst, Ingrid; Asselbergs, Folkert W.; de Boer, Anthonius; Maitland-van der Zee, Anke H.

    2013-01-01

    Aim: Angioedema and cough are the two most important adverse effects of ACE inhibitors (ACEIs). Evidence exists that ACEI-related angioedema/cough is partly genetically determined and several genes have been identified to play a role in the development of ACEI-related adverse effects. Materials & me

  10. Misdiagnosis and mistreatment of ace-inhibitor induced cough decreases therapy compliance

    NARCIS (Netherlands)

    Vegter, S.; de Boer, P.; van Dijk, K. W.; Visser, S. T.; de Jong-van den Berg, L. T.

    2012-01-01

    OBJECTIVES: A common adverse effect of angiotensin-converting enzyme inhibitors (ACEi) is a persistent dry cough. Physicians and pharmacists who fail to recognise dry cough to be ACEi related may prescribe cough suppressants (antitussives), instead of recommended ACEi substitution. The aim of this s

  11. Effects of the NADPH oxidase inhibitor apocynin on the left ventricular dysfunction induced by cocaine administration

    Institute of Scientific and Technical Information of China (English)

    MarcISABELLE; ChristelleMONTEIL; ChristianTHUILLEZ

    2004-01-01

    AIM: In a previous study, we have shown the role of alphaladrenoceptor in the left ventricular (LV) dysfunction after chronic cocaine administration via the induction of NADPH oxidase. In this study we used the NADPH oxidase inhibitor apocynin, to further investigate the real involvement of this prooxidant system in this LV dysfunction. METHODS: Wistar rats were treated

  12. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells.

    LENUS (Irish Health Repository)

    Duncan, Henry F

    2012-03-01

    Histone deacetylase inhibitors (HDACis) alter the homeostatic balance between 2 groups of cellular enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs), increasing transcription and influencing cell behavior. This study investigated the potential of 2 HDACis, valproic acid (VPA) and trichostatin A (TSA), to promote reparative processes in pulp cells as assayed by viability, cell cycle, and mineralization analyses.

  13. The effect of marimastat, a metalloprotease inhibitor, on allergen-induced asthmatic hyper-reactivity

    International Nuclear Information System (INIS)

    This pilot study was designed to assess whether a synthetic matrix metalloproteinase (MMP) inhibitor has anti-inflammatory properties in mild asthma. Tumor necrosis factor alpha (TNFα) has been shown to be an important cytokine in the pathogenesis of allergic airway inflammatory responses, and its release can be inhibited by MMP inhibitors. Twelve atopic asthmatic subjects received the MMP inhibitor marimastat (5 mg) or placebo, twice daily for 3 weeks, separated by a 6-week washout period in a randomized, double-blind, cross-over manner. All subjects underwent an allergen inhalation provocation test to Dermatophagoides pteronyssinus before and after each study phase. Spirometry, exhaled NO (eNO) levels, differential sputum cell counts, an asthma symptom questionnaire, peak flow, and β2-agonist usage were measured. Nine subjects completed the study, and, when compared with placebo, marimastat reduced bronchial hyper-responsiveness to inhaled allergen in these subjects from an allergen PC20 of 22.2 AU/ml (95%CI 11.7-32.6) to 17.0 AU/ml (95%CI 7.6-26.4, P = 0.02). The marimastat phase showed a nonsignificant fall in sputum inflammatory cells. Marimastat did not modify eNO, FEV1, asthma symptoms, or albuterol usage. In conclusion, airway responsiveness to allergen may be modified by a MMP inhibitor, perhaps via TNFα playing a role in airway inflammation and remodeling

  14. Weight loss induced by tyrosine kinase inhibitors of the vascular endothelial growth factor pathway.

    NARCIS (Netherlands)

    Desar, I.M.E.; Thijs, A.M.J.; Mulder, S.F.; Tack, C.J.J.; Herpen, C.M.L. van; Graaf, W.T.A. van der

    2012-01-01

    Weight loss, cachexia and sarcopenia are profound problems in the frail oncologic patients. With the development and increasing use of angiogenesis inhibitors in metastatic cancer patients, the question arises as to their influence on body weight and composition. Angiogenesis is not only important f

  15. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Epigenetic modifying enzymes have a crucial role in the pathogenesis of acute myeloid leukemia (AML). Methylation of lysine 9 on histone H3 by the methyltransferase G9a and SUV39H1 is associated with inhibition of tumor suppressor genes. We studied the effect of G9a and SUV39H1 inhibitors on viability and differentiation of AML cells and tested the cytotoxicity induced by combination of G9a and SUV39H1 inhibitors and various epigenetic drugs. The SUV39H1 inhibitor (chaetocin) and the G9a inhibitor (UNC0638) caused cell death in AML cells at high concentrations. However, only chaetocin-induced CD11b expression and differentiation of AML cells at non-cytotoxic concentration. HL-60 and KG-1a cells were more sensitive to chaetocin than U937 cells. Long-term incubation of chaetocin led to downregulation of SUV39H1 and reduction of H3K9 tri-methylation in HL-60 and KG-1a cells. Combination of chaetocin with suberoylanilide hydroxamic acid (SAHA, a histone deacetylase inhibitor) or JQ (a BET (bromodomain extra terminal) bromodomain inhibitor) showed synergistic cytotoxicity. Conversely, no synergism was found by combining chaetocin and UNC0638. More importantly, chaetocin-induced differentiation and combined cytotoxicity were also found in the primary cells of AML patients. Collectively, the SUV39H1 inhibitor chaetocin alone or in combination with other epigenetic drugs may be effective for the treatment of AML

  16. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  17. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    Science.gov (United States)

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  18. Metalloprotein Inhibitors for the Treatment of Human Diseases.

    Science.gov (United States)

    Yang, Yang; Hu, Xue-Qin; Li, Qing-Shan; Zhang, Xing-Xing; Ruan, Ban-Feng; Xu, Jun; Liao, Chenzhong

    2016-01-01

    Metalloproteins have attracted momentous attentions for the treatment of many human diseases, including cancer, HIV, hypertension, etc. This article reviews the progresses that have been made in the field of drug development of metalloprotein inhibitors, putting emphasis on the targets of carbonic anhydrase, histone deacetylase, angiotensin converting enzyme, and HIV-1 integrase. Many other important metalloproteins are also briefly discussed. The binding and coordination modes of different marketed metalloprotein inhibitors are stated, providing insights to design novel metal binding groups and further novel inhibitors for metalloproteins.

  19. 呋塞米对碳酸酐酶的抑制效应再研究%Inhibitory effect of furosemide on carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    袁美华; 蒋彦; 杨毅

    2013-01-01

    The inhibitory effect of a high efficient diuretic ,furosemide ,on carbonic anhydrase was investigated in this study .Compared with acetazolamide ,furosemide can quickly make BCAⅡ inactive when its concentration is close to the enzyme concentration . The results show that furosemide is a non-competitive inhibitor of carbonic anhydrase ,the vaules of its IC50 and KI are 0 .759 μM ,0 .51 μM . Acetazolamide is a competitive inhibitor of carbonic anhydrase ,the vaules of its IC5 0 and KI are 0.199μM ,0 .099 μM .%呋塞米是一种高效利尿剂,本实验主要探究其对碳酸酐酶的抑制效应.相比较乙酰唑胺而言,呋塞米在其浓度接近碳酸酐酶浓度时能使该酶基本失活.研究发现,呋塞米对碳酸酐酶的抑制效应表现为非竞争性抑制,其 IC50为0.759μM ,KI 为0.61μM ,乙酰唑胺的 IC50为0.199μM , KI 为0.099μM ,表现为竞争性抑制.

  20. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates

    Directory of Open Access Journals (Sweden)

    Niederhauser Barbara

    2010-07-01

    Full Text Available Abstract Background The β-carbonic anhydrase (CA, EC 4.2.1.1 enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. Results The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM and more potently by sulfamide (KI of 0.15 mM. Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM. Conclusions The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.

  1. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S. Z., E-mail: zfisher@lanl.gov; Kovalevsky, A. Y. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Domsic, J. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Mustyakimov, M. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Silverman, D. N. [Department of Pharmacology and Therapeutics, PO Box 100267, University of Florida, Gainesville, FL 32610 (United States); McKenna, R. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Langan, P. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  2. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  3. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  4. Reduced estradiol synthesis by letrozole, an aromatase inhibitor, is protective against development of pentylenetetrazole-induced kindling in mice.

    Science.gov (United States)

    Rashid, Davood; Panda, B P; Vohora, Divya

    2015-11-01

    Neurosteroids, such as testosterone and their metabolites, are known to modulate neuronal excitability. The enzymes regulating the metabolism of these neurosteroids, thus, may be targeted as a noval strategy for the development of new antiepileptic drugs. The present work targeted two such enzymes i,e aromatase and 5α-reductase in order to explore the potential of letrozole (an aromatase inhibitor) on pentylenetetrazole (PTZ)-induced kindling in mice and the ability of finasteride (a 5α-reductase inhibitor) to modulate any such effects. PTZ (30 mg/kg, i.p.), when administered once every two days (for a total of 24 doses) induced kindling in Swiss albino mice. Letrozole (1 mg/kg, p.o.), administered prior to PTZ, significantly reduced the % incidence of kindling, delayed mean onset time of seizures and reduced seizure severity score. Letrozole reduced the levels of plasma 17β-estradiol after induction of kindling. The concurrent administration of finasteride and letrozole produced effects similar to letrozole on PTZ-kindling and on estradiol levels. This implies that the ability of letrozole to redirect the synthesis of dihydrotestosterone (DHT) and 5α-androstanediol from testosterone doesn't appear to play a significant role in the protective effects of letrozole against PTZ kindling. Letrozole, however, increased the levels of 5α-DHT in mice plasma. The aromatase inhibitors, thus, may be exploited for inhibiting the synthesis of proconvulsant (17β-estradiol) and/or redirecting the synthesis of anticonvulsant (DHT and 5α-androstanediol) neurosteroids.

  5. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice.

    Science.gov (United States)

    Liu, Limei; Liu, Jian; Yu, Xiaoxing

    2016-02-12

    Autophagy is cellular machinery for maintenance of β-cell function and mass. The current study aimed to investigate the regulatory effects of MK-626, a dipeptidyl peptidase-4 inhibitor, on insulin secretion through the activation of autophagy in high fat diet-induced obese mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity and then were received either vehicle or MK-626 (3 mg/kg/day) orally during the final 4 weeks. Mouse islets were isolated. Phosphorylation of serine/threonine-protein kinase mTOR and levels of light chain 3B I (LC3B I), LC3B II, sequestosome-1 (SQSTM1/p62) and autophagy-related protein-7 (Atg7) were examined by Western blotting. Glucagon like-peptide-1 (GLP-1) level and insulin secretion were measured by ELISA. GLP-1 level in plasma was decreased in obese mice, which was elevated by dipeptidyl peptidase-4 inhibitor MK-626. In the islets of obese mice, phosphorylation of mTOR, ratio of LC3B I and LC3B II, and level of p62 were elevated and the expression of Atg7 and insulin secretion were reduced compared to those of C57BL/6 mice. However, such effects were reversed by MK-626. Autophagy activator rapamycin stimulated insulin secretion in obese mice but autophagy inhibitor chloroquine treatment inhibited insulin secretion in obese mice administrated by MK-626. Furthermore, the beneficial effects of MK-626 were inhibited by GLP-1 receptor antagonist exendin 9-39. The present study reveals the activation of autophagy to mediate the anti-diabetic effect of GLP-1.

  6. Inhibition of oncogene-induced inflammatory chemokines using a farnesyltransferase inhibitor

    OpenAIRE

    Rothstein Jay L; Testa James S; DeGeorge Brent R; DeGeorge Katharine C

    2008-01-01

    Abstract Background Farnesyltransferase inhibitors (FTI) are small molecule agents originally formulated to inhibit the oncogenic functions of Ras. Although subsequent analysis of FTI activity revealed wider effects on other pathways, the drug has been demonstrated to reduce Ras signaling by direct measurements. The purpose of the current study was to determine if FTI could be used to inhibit the inflammatory activities of a known Ras-activating human oncoprotein, RET/PTC3. RET/PTC3 is a fusi...

  7. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  8. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion

    Directory of Open Access Journals (Sweden)

    Li Hailing

    2012-06-01

    Full Text Available Abstract Background Previous studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1 and monocyte chemoattractant protein-1 (MCP-1. Methods HUVECs were stimulated with high glucose (HG or HG + fasudil in different concentration or different time. Monocyte-endothelial cell adhesion was determined using fluorescence-labeled monocytes. The mRNA and protein expression of VCAM-1 and MCP-1 were measured using real-time PCR and western blot. The protein levels of RhoA, ROCKI and p-MYPT were determined using western blot analysis. ELISA was employed to measure the expression of soluble VCAM-1 and MCP-1 in cell supernatants and human serum samples. Results Fasudil significantly suppressed HG-induced adhesion of THP-1 to HUVECs. Fasudil reduced Rho/ROCK activity (as indicated by lower p-MYPT/MYPT ratio, and prevented HG induced increases in VCAM-1 and MCP-1 mRNA and protein levels. Fasudil also decreased MCP-1 concentration in HUVEC supernatants, but increased sVCAM-1 shedding into the media. In human diabetic subjects, 2 weeks of fasudil treatment significantly decreased serum MCP-1 level from 27.9 ± 10.6 pg/ml to 13.8 ± 7.0 pg/ml (P P  Conclusions Treatment with the Rho/ROCK pathway inhibitor fasudil attenuated HG-induced monocyte-endothelial cell adhesion, possibly by reducing endothelial expression of VCAM-1 and MCP-1. These results suggest inhibition of Rho/ROCK signaling may have therapeutic potential in preventing diabetes associated vascular inflammation and atherogenesis.

  9. The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Wnt/β-catenin is a major regulator of stem cell self-renewal and differentiation and this signaling pathway is aberrantly activated in a several cancers, including osteosarcoma (OS). Attenuation of Wnt/β-catenin activity by tankyrase inhibitors is an appealing strategy in treatment of OS. The efficacy of the tankyrase inhibitor JW74 was evaluated in three OS cell lines (KPD, U2OS, and SaOS-2) both at the molecular and functional level. At the molecular level, JW74 induces stabilization of AXIN2, a key component of the β-catenin destruction complex, resulting in reduced levels of nuclear β-catenin. At the functional level, JW74 induces reduced cell growth in all three tested cell lines, in part due to a delay in cell cycle progression and in part due to an induction of caspase-3-mediated apoptosis. Furthermore, JW74 induces differentiation in U2OS cells, which under standard conditions are resistant to osteogenic differentiation. JW74 also enhances differentiation of OS cell lines, which do not harbor a differentiation block. Interestingly, microRNAs (miRNAs) of the let-7 family, which are known tumor suppressors and inducers of differentiation, are significantly upregulated following treatment with JW74. We demonstrate for the first time that tankyrase inhibition triggers reduced cell growth and differentiation of OS cells. This may in part be due to an induction of let-7 miRNA. The presented data open for novel therapeutic strategies in the treatment of malignant OS

  10. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-15

    We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4×10(5)s(-1) and kcat/Km of 5.4×10(6)M(-1)×s(-1). PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9-68μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53-0.97mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action. PMID:27480028

  11. Proton pump inhibitor-induced Sweet’s syndrome: report of acute febrile neutrophilic dermatosis in a woman with recurrent breast cancer

    OpenAIRE

    Cohen, Philip R.

    2015-01-01

    Background: Sweet’s syndrome, also referred to as acute febrile neutrophilic dermatosis, can either occur as an idiopathic disorder or associated with another condition, including cancer, or induced by exposure to a drug. Proton pump inhibitors selectively inhibit gastric parietal cell H+-K+-adenosine triphosphatase and are most commonly used for the treatment of gastroesophageal reflux disease. Purpose: Proton pump inhibitor-associated Sweet’s syndrome is described in a woman with recurrent ...

  12. Mammalian Target of Rapamycin Inhibitor Induced Complete Remission of a Recurrent Subependymal Giant Cell Astrocytoma in a Patient Without Features of Tuberous Sclerosis Complex.

    Science.gov (United States)

    Appalla, Deepika; Depalma, Andres; Calderwood, Stanley

    2016-07-01

    The majority of patients with subependymal giant cell astrocytoma (SEGA) have tuberous sclerosis complex (TSC). In such patients, the mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to induce responses. Isolated SEGA have been reported in patients without clinical or genetic features of TSC. The treatment of these patients with everolimus has not previously been reported. We treated a patient with a recurrent isolated SEGA with an mTOR inhibitor. The patient tolerated therapy well and had a sustained complete remission. MTOR inhibitors may be useful for the treatment of isolated SEGA. Further study is warranted. PMID:26929034

  13. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    Science.gov (United States)

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response. PMID:16819161

  14. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    De Luca, Viviana; Vullo, Daniela; Del Prete, Sonia; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-02-15

    We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here. PMID:26778292

  15. Anion and sulfonamide inhibition studies of an α-carbonic anhydrase from the Antarctic hemoglobinless fish Chionodraco hamatus.

    Science.gov (United States)

    Cincinelli, Alessandra; Martellini, Tania; Vullo, Daniela; Supuran, Claudiu T

    2015-12-01

    An α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from the Antarctic hemoglobinless fish Chionodraco hamatus (icefish). The new enzyme, denominated ChaCA, has a good catalytic activity for the physiologic CO2 hydration to bicarbonate reaction, similar to that of the low activity human isoform hCA I, with a kcat of 5.3×10(5) s(-1), and a kcat/Km of 3.7×10(7) M(-1) s(-1). The enzyme was inhibited in the submillimolar range by most inorganic anions (cyanate, thiocyanate, cyanide, bicarbonate, halides), whereas sulfamide, sulfamate, phenylboronic/phenylarsonic acids were micromolar inhibitors, with KIs in the range of 9-77 μM. Many clinically used drugs, such as acetazolamide, methazolamide, dorzolamide, brinzolamide, topiramate and benzolamide were low nanomolar inhibitors, with KIs in the range of 39.1-77.6 nM. As the physiology of CO2/bicarbonate transport or the Root effect in this Antarctic fish are poorly understood at this moment, such inhibition data may give a more detailed insight in the role that CAs play in these phenomena, by the use of inhibitors described here as physiologic tools. PMID:26525863

  16. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    De Luca, Viviana; Vullo, Daniela; Del Prete, Sonia; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-02-15

    We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.

  17. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    Science.gov (United States)

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  18. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    Directory of Open Access Journals (Sweden)

    Tomishima Yoshiro

    2013-01-01

    Full Text Available Abstract Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2 synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg. The effects of ozagrel (200 mg/kg treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL on cytochrome P450 2E1 (CYP2E1 activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI, a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos and C/EBP homologous protein (chop, but did not suppress B-cell lymphoma 2-like protein11 (bim expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest

  19. Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption.

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Ren

    Full Text Available The cysteine protease cathepsin K (CatK, abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs to test their effects on osteoblasts and osteoclasts.Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices.Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10-100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed

  20. EFFECT OF OZONE ON DRUG-INDUCED SLEEPING TIME IN MICE PRETREATED WITH MIXED-FUNCTION OXIDASE INDUCERS AND INHIBITORS

    Science.gov (United States)

    Studies were conducted to investigate the effect of ozone in prolonging pentobarbital (PEN)-induced sleeping time (S.T.). Since ozone is a common air pollutant, an ozone-induced alteration of mechanisms of drug action could have public health implications. It was shown that a 5-h...

  1. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Hosaka E.M.

    2004-01-01

    Full Text Available The frequent use of nonsteroidal anti-inflammatory drugs (NSAID in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1 is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g were treated with gentamicin (100 mg/kg body weight, ip, N = 7, indomethacin (5 mg/kg, orally, N = 7, rofecoxib (1.4 mg/kg, orally, N = 7, gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8 for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 ± 0.019 ml/min, as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 ± 0.011 ml/min. These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  2. Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Williams Alun

    2007-01-01

    Full Text Available Abstract Background Platelet-activating factor (PAF is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD. Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. Methods Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. Results PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. Conclusion Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF.

  3. Effect of inducers and inhibitors of glucuronidation on the biliary excretion and choleretic action of valproic acid in the rat.

    Science.gov (United States)

    Watkins, J B; Klaassen, C D

    1982-02-01

    Valproic acid (VPA) induces an immediate choleresis in the rat which may be attributable to the osmotic properties of VPA-glucuronic acid conjugates in bile. The influence of inducers and inhibitors of glucuronidation of VPA on the biliary excretion and choleretic effect of VPA was studied. Hepatic UDP-glucuronyltransferase activity toward VPA was determined in vitro. Pretreatment with phenobarbital (75 mg/kg/day for 4 days) enhanced VPA glucuronidation; borneol (750 mg/kg) decreased VPA conjugation; 3-methylcholanthrene (20 mg/kg/day for 4 days) and galactosamine (600 mg/kg) had no effect on glucuronidation of VPA in vitro. Hepatic UDP-glucuronic acid content was decreased by borneol and galactosamine administration and was enhanced by phenobarbital and 3-methylcholanthrene pretreatment. The enzyme inducers increased the plasma disappearance of VPA in vivo but did not augment its biliary excretion or choleretic effect. Borneol and galactosamine, which inhibited the conjugation and plasma disappearance of VPA, decreased its biliary excretion and inhibited the VPA-induced increase in bile flow. Thus, the bile flow rate after VPA administration is closely related to the excretion of VPA-glucuronic acid. These data support the conclusion that the choleretic effect of VPA is due to the osmotic activity of VPA conjugates in bile.

  4. Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response plays an important role in HIV PI-associated dyslipidemia and cardiovascular complications. This study examined the effect of berberine, a traditional herb medicine, on HIV PI-induced inflammatory response and further investigated the underlying cellular/molecular mechanisms in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse J774A.1 macrophages and primary mouse macrophages were used in this study. The expression of TNF-alpha and IL-6 were detected by real-time RT-PCR and ELISA. Activations of ER stress and ERK signaling pathways were determined by Western blot analysis. Immunofluorescent staining was used to determine the intracellular localization of RNA binding protein HuR. RNA-pull down assay was used to determine the association of HuR with endogenous TNF-alpha and IL-6. Berberine significantly inhibited HIV PI-induced TNF-alpha and IL-6 expression by modulating ER stress signaling pathways and subsequent ERK activation, in turn preventing the accumulation of the RNA binding protein HuR in cytosol and inhibiting the binding of HuR to the 3'-UTRs of TNF-alpha and IL-6 in macrophages. CONCLUSIONS AND SIGNIFICANCE: Inhibition of ER stress represents a key mechanism by which berberine prevents HIV PI-induced inflammatory response. Our findings provide a new insight into the molecular mechanisms of berberine and show the potential application of berberine as a complimentary therapeutic agent for HIV infection.

  5. Exposure to histone deacetylase inhibitors during Pavlovian conditioning enhances subsequent cue-induced reinstatement of operant behavior.

    Science.gov (United States)

    Ploense, Kyle L; Kerstetter, Kerry A; Wade, Matthew A; Woodward, Nicholas C; Maliniak, Dan; Reyes, Michael; Uchizono, Russell S; Bredy, Timothy W; Kippin, Tod E

    2013-06-01

    Histone deacetylase inhibitors (HDACIs) strengthen memory following fear conditioning and cocaine-induced conditioned place preference. Here, we examined the effects of two nonspecific HDACIs, valproic acid (VPA) and sodium butyrate (NaB), on appetitive learning measured by conditioned stimulus (CS)-induced reinstatement of operant responding. Rats were trained to lever press for food reinforcement and then injected with VPA (50-200 mg/kg, i.p.), NaB (250-1000 mg/kg, i.p.), or saline vehicle (1.0 ml/kg), 2 h before receiving pairings of noncontingent presentation of food pellets preceded by a tone+light cue CS. Rats next underwent extinction of operant responding followed by response-contingent re-exposure to the CS. Rats receiving VPA (100 mg/kg) or NaB (1000 mg/kg) before conditioning displayed significantly higher cue-induced reinstatement than did saline controls. Rats that received either vehicle or VPA (100 mg/kg) before a conditioning session with a randomized relation between presentation of food pellets and the CS failed to show subsequent cue-induced reinstatement with no difference between the two groups. These findings indicate that, under certain contexts, HDACIs strengthen memory formation by specifically increasing the associative strength of the CS, not through an increasing motivation to seek reinforcement.

  6. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain

    Directory of Open Access Journals (Sweden)

    Bloom Aaron P

    2010-12-01

    Full Text Available Abstract Pain often accompanies cancer and most current therapies for treating cancer pain have significant unwanted side effects. Targeting nerve growth factor (NGF or its cognate receptor tropomyosin receptor kinase A (TrkA has become an attractive target for attenuating chronic pain. In the present report, we use a mouse model of bone cancer pain and examine whether oral administration of a selective small molecule Trk inhibitor (ARRY-470, which blocks TrkA, TrkB and TrkC kinase activity at low nm concentrations has a significant effect on cancer-induced pain behaviors, tumor-induced remodeling of sensory nerve fibers, tumor growth and tumor-induced bone remodeling. Early/sustained (initiated day 6 post cancer cell injection, but not late/acute (initiated day 18 post cancer cell injection administration of ARRY-470 markedly attenuated bone cancer pain and significantly blocked the ectopic sprouting of sensory nerve fibers and the formation of neuroma-like structures in the tumor bearing bone, but did not have a significant effect on tumor growth or bone remodeling. These data suggest that, like therapies that target the cancer itself, the earlier that the blockade of TrkA occurs, the more effective the control of cancer pain and the tumor-induced remodeling of sensory nerve fibers. Developing targeted therapies that relieve cancer pain without the side effects of current analgesics has the potential to significantly improve the quality of life and functional status of cancer patients.

  7. Protective effects of rilmenidine and AGN 192403 on oxidative cytotoxicity and mitochondrial inhibitor-induced cytotoxicity in astrocytes.

    Science.gov (United States)

    Choi, Dong-Hee; Kim, Dong-Hoon; Park, Yun-Gyu; Chun, Boe-Gwun; Choi, Sang-Hyun

    2002-11-15

    Oxidative stress and mitochondrial dysfunction are important aspects of pathogenesis, particularly in the brain, which is highly dependent on oxygen, and the protection of astrocytes is essential for neuroprotection. In this context, imidazoline drugs have been reported to be neuroprotective. Our recent study showed that imidazoline drugs, including guanabenz, inhibit the naphthazarin-induced oxidative cytotoxicity associated with lysosomal destabilization. We now report on a study into the protective effects of rilmenidine and AGN 192403, which have affinity for imidazoline-1 receptors, on the cytotoxicity induced by naphthazarin and inhibitors of mitochondrial respiration in astrocytes. Cytotoxicity was measured grossly by LDH release and by measuring changes in lysosomal membrane stability and features of mitochondrial membrane permeabilization. Naphthazarin-induced cytotoxicity was evidenced by the ordered development of lysosomal acridine orange relocation, decrease in mitochondrial potential, cytochrome c release, and caspase-9 activation, and was inhibited by guanabenz, rilmenidine, and AGN 192403. Antimycin A and rotenone induced mitochondrial dysfunction primarily, and their cytotoxicities were inhibited only by AGN 192403. Rilmenidine and guanabenz may have a lysosomal stabilizing effect, which underlies their protective effects. AGN 192403 might affect the mitochondrial cell death cascades, and had a novel protective effect on the cytotoxicity associated with mitochondrial dysfunction.

  8. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    OpenAIRE

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2013-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via...

  9. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells

    OpenAIRE

    Lui, Asona; New, Jacob; Ogony, Joshua; Thomas, Sufi; Lewis-Wambi, Joan

    2016-01-01

    Background mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. Methods In this study we utilized two AI-resistant breast cancer cell lines...

  10. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct.

    Science.gov (United States)

    Lee, Bo Kyung; Lee, Dong Ha; Park, Sok; Park, Sung Lyea; Yoon, Jae-Seok; Lee, Min Goo; Lee, Sunkyung; Yi, Kyu Yang; Yoo, Sung Eun; Lee, Kyung Hee; Kim, You-Sun; Lee, Soo Hwan; Baik, Eun Joo; Moon, Chang-Hyun; Jung, Yi-Sook

    2009-01-12

    We investigated the effects of a novel Na(+)/H(+) exchanger-1 (NHE-1) inhibitor KR-33028 on glutamate excitotoxicity in cultured neuron cells in vitro and cerebral infarct in vivo by comparing its potency with that of zoniporide, a well-known, highly potent NHE-1 inhibitor. KR-33028 inhibited NHE-1 activation in a concentration-dependent manner (IC(50)=2.2 nM), with 18-fold greater potency than that of zoniporide (IC(50)=40.7 nM). KR-33028 significantly attenuated glutamate-induced LDH release with approximately 100 times lower EC(25) than that of zoniporide in cortical neurons in vitro (EC(25) of 0.007 and 0.81 microM, respectively), suggesting its 100-fold greater potency than zoniporide in producing anti-necrotic effect. In addition, the EC(50) of KR-33028 for anti-apoptotic effect was 100 times lower than that of zoniporide shown by TUNEL positivity (0.005 and 0.62 microM, respectively) and caspase-3 activity (0.01 and 2.64 microM, respectively). Furthermore, the EC(50) value of KR-33028 against glutamate-induced intracellular Ca(2+) overload was also 100 times lower than that of zoniporide (EC(50) of 0.004 and 0.65 microM, respectively). In the in vivo cerebral infarct model (60 min middle cerebral artery occlusion followed by 24 h reperfusion), KR-33028 reduced infarct size in a dose-dependent manner. Its ED(25) value, however, was quite similar to that of zoniporide (ED(25) of 0.072 and 0.097 mg/kg, respectively). Hence these results suggest that the novel NHE-1 inhibitor, KR-33028, could be an efficient therapeutic tool to protect neuronal cells against ischemic injury.

  11. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism.

    Science.gov (United States)

    Lakatos, Petra; Hegedűs, Csaba; Salazar Ayestarán, Nerea; Juarranz, Ángeles; Kövér, Katalin E; Szabó, Éva; Virág, László

    2016-08-01

    A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition. PMID:27427773

  12. Four-Week Studies of Oral Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor GSK1278863 for Treatment of Anemia.

    Science.gov (United States)

    Holdstock, Louis; Meadowcroft, Amy M; Maier, Rayma; Johnson, Brendan M; Jones, Delyth; Rastogi, Anjay; Zeig, Steven; Lepore, John J; Cobitz, Alexander R

    2016-04-01

    Hypoxia-inducible factor prolyl hydroxylase inhibitors stabilize levels of hypoxia-inducible factor that upregulate transcription of multiple genes associated with the response to hypoxia, including production of erythropoietin. We conducted two phase 2a studies to explore the relationship between the dose of the hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 and hemoglobin response in patients with anemia of CKD (baseline hemoglobin 8.5-11.0 g/dl) not undergoing dialysis and not receiving recombinant human erythropoietin (nondialysis study) and in patients with anemia of CKD (baseline hemoglobin 9.5-12.0 g/dl) on hemodialysis and being treated with stable doses of recombinant human erythropoietin (hemodialysis study). Participants were randomized 1:1:1:1 to a once-daily oral dose of GSK1278863 (0.5 mg, 2 mg, or 5 mg) or control (placebo for the nondialysis study; continuing on recombinant human erythropoietin for the hemodialysis study) for 4 weeks, with a 2-week follow-up. In the nondialysis study, GSK1278863 produced dose-dependent effects on hemoglobin, with the highest dose resulting in a mean increase of 1 g/dl at week 4. In the hemodialysis study, treatment with GSK1278863 in the 5-mg arm maintained mean hemoglobin concentrations after the switch from recombinant human erythropoietin, whereas mean hemoglobin decreased in the lower-dose arms. In both studies, the effects on hemoglobin occurred with elevations in endogenous erythropoietin within the range usually observed in the respective populations and markedly lower than those in the recombinant human erythropoietin control arm in the hemodialysis study, and without clinically significant elevations in plasma vascular endothelial growth factor concentrations. GSK1278863 was generally safe and well tolerated at the doses and duration studied. GSK1278863 may prove an effective alternative for managing anemia of CKD. PMID:26494831

  13. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase

    Science.gov (United States)

    Nasir, Irem; Lundqvist, Martin; Cabaleiro-Lago, Celia

    2015-10-01

    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being ``hard'' or ``soft''. However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino

  14. Anti-influenza neuraminidase inhibitor oseltamivir phosphate induces canine mammary cancer cell aggressiveness.

    Science.gov (United States)

    de Oliveira, Joana T; Santos, Ana L; Gomes, Catarina; Barros, Rita; Ribeiro, Cláudia; Mendes, Nuno; de Matos, Augusto J; Vasconcelos, M Helena; Oliveira, Maria José; Reis, Celso A; Gärtner, Fátima

    2015-01-01

    Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor) in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x) expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness. PMID:25850034

  15. Anti-influenza neuraminidase inhibitor oseltamivir phosphate induces canine mammary cancer cell aggressiveness.

    Directory of Open Access Journals (Sweden)

    Joana T de Oliveira

    Full Text Available Oseltamivir phosphate is a widely used anti-influenza sialidase inhibitor. Sialylation, governed by sialyltransferases and sialidases, is strongly implicated in the oncogenesis and progression of breast cancer. In this study we evaluated the biological behavior of canine mammary tumor cells upon oseltamivir phosphate treatment (a sialidase inhibitor in vitro and in vivo. Our in vitro results showed that oseltamivir phosphate impairs sialidase activity leading to increased sialylation in CMA07 and CMT-U27 canine mammary cancer cells. Surprisingly, oseltamivir phosphate stimulated, CMT-U27 cell migration and invasion capacity in vitro, in a dose-dependent manner. CMT-U27 tumors xenograft of oseltamivir phosphate-treated nude mice showed increased sialylation, namely α2,6 terminal structures and SLe(x expression. Remarkably, a trend towards increased lung metastases was observed in oseltamivir phosphate-treated nude mice. Taken together, our findings revealed that oseltamivir impairs canine mammary cancer cell sialidase activity, altering the sialylation pattern of canine mammary tumors, and leading, surprisingly, to in vitro and in vivo increased mammary tumor aggressiveness.

  16. Brunner's gland lesions in rats induced by a vascular endothelial growth factor receptor inhibitor.

    Science.gov (United States)

    Inomata, Akira; Nakano-Ito, Kyoko; Fujikawa, Yasuhiro; Sonoda, Jiro; Hayakawa, Kazuhiro; Ohta, Etsuko; Taketa, Yoshikazu; Van Gessel, Yvonne; Akare, Sandeep; Hutto, David; Hosokawa, Satoru; Tsukidate, Kazuo

    2014-12-01

    Vascular endothelial growth factor (VEGF) receptor tyrosine kinase (RTK) inhibitors are reported to cause reversible mucosal hyperplasia (adenosis) in the duodenum of rats; however, the pathogenesis is not fully elucidated. Using lenvatinib, a VEGF RTK inhibitor, we characterized the histologic time course of this duodenal change in rats. At 4 weeks, there was degeneration and necrosis of Brunner's gland epithelium accompanied by neutrophil infiltration around the affected glands. At 13 weeks, the inflammation was more extensive, and Brunner's gland epithelium was attenuated and flattened and was accompanied by reactive hyperplasia of duodenal epithelium. At 26 weeks, the changes became more severe and chronic and characterized by marked cystic dilation, which extended to the external muscular layer. These dilated glands exhibited morphological characteristics of duodenal crypt epithelium, suggestive of replacement of disappeared Brunner's glands by regenerative duodenal crypt epithelial cells. Similar changes were not present in similar time course studies in dog and monkey studies, suggesting that this is a rodent- or species-specific change. Based on the temporal progression of Brunner's gland lesion, we identify degeneration and necrosis of the Brunner's glands as the primary change leading to inflammation, cystic dilatation, and regeneration with cells that are morphologically suggestive of duodenal crypt epithelium.

  17. /sup 35/Cl and /sup 81/Br nuclear magnetic resonance studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L.

    1979-02-01

    /sup 35/Cl NMR studies substantiated the binding of Cl/sup -/ to the Zn(II) of carbonic anhydrase. Zinc-free carbonic anhydrase was prepared and it exhibited essentially no effect on the Cl/sup -/ line width. The net Cl/sup -/ line width increased with temperature. /sup 81/Br NMR was quite similar to /sup 35/Cl in that its relaxation is dominated by quadrupolar interactions.

  18. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications

    OpenAIRE

    Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V; Wagner, W. R.; Federspiel, W. J.

    2013-01-01

    Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional gr...

  19. Acetylation of p53 at Lysine 373/382 by the Histone Deacetylase Inhibitor Depsipeptide Induces Expression of p21Waf1/Cip1

    OpenAIRE

    Zhao, Ying; Lu, Shaoli; Wu, Lipeng; Chai, Guolin; Wang, Haiying; Chen, Yingqi; Sun, Jia; Yu, Yu; Zhou, Wen; Zheng, Quanhui; Wu, Mian; Otterson, Gregory A.; Zhu, Wei-Guo

    2006-01-01

    Generally, histone deacetylase (HDAC) inhibitor-induced p21Waf1/Cip1 expression is thought to be p53 independent. Here we found that an inhibitor of HDAC, depsipeptide (FR901228), but not trichostatin A (TSA), induces p21Waf1/Cip1 expression through both p53 and Sp1/Sp3 pathways in A549 cells (which retain wild-type p53). This is demonstrated by measuring relative luciferase activities of p21 promoter constructs with p53 or Sp1 binding site mutagenesis and was further confirmed by transfectio...

  20. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone;

    2004-01-01

    Caspases, members of the cysteine protease family, execute UVB-induced apoptosis in several cell lines and keratinocytes. Several researchers investigating UVB-induced apoptosis have demonstrated a dose-dependent protective effect of the synthetic peptide caspase inhibitor zVAD-fmk. However, z......VAD-fmk displays a dose-dependent protective effect against UVB-induced apoptosis, even at doses higher than those required to block all known proapoptotic caspases. In addition, it is known that zVAD-fmk also inhibits other cysteine proteases including cathepsins and calpains, and these proteases have recently...... been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes...

  1. The Hypoxia-Inducible Factor Pathway, Prolyl Hydroxylase Domain Protein Inhibitors, and Their Roles in Bone Repair and Regeneration

    Directory of Open Access Journals (Sweden)

    Lihong Fan

    2014-01-01

    Full Text Available Hypoxia-inducible factors (HIFs are oxygen-dependent transcriptional activators that play crucial roles in angiogenesis, erythropoiesis, energy metabolism, and cell fate decisions. The group of enzymes that can catalyse the hydroxylation reaction of HIF-1 is prolyl hydroxylase domain proteins (PHDs. PHD inhibitors (PHIs activate the HIF pathway by preventing degradation of HIF-α via inhibiting PHDs. Osteogenesis and angiogenesis are tightly coupled during bone repair and regeneration. Numerous studies suggest that HIFs and their target gene, vascular endothelial growth factor (VEGF, are critical regulators of angiogenic-osteogenic coupling. In this brief perspective, we review current studies about the HIF pathway and its role in bone repair and regeneration, as well as the cellular and molecular mechanisms involved. Additionally, we briefly discuss the therapeutic manipulation of HIFs and VEGF in bone repair and bone tumours. This review will expand our knowledge of biology of HIFs, PHDs, PHD inhibitors, and bone regeneration, and it may also aid the design of novel therapies for accelerating bone repair and regeneration or inhibiting bone tumours.

  2. Adalimumab (TNFα Inhibitor Therapy Exacerbates IgA Glomerulonephritis Acute Renal Injury and Induces Lupus Autoantibodies in a Psoriasis Patient

    Directory of Open Access Journals (Sweden)

    S. S. Wei

    2013-01-01

    Full Text Available Adalimumab (Humira is a tumour necrosis factor α (TNFα inhibitor that is approved for the treatment of rheumatoid arthritis, psoriasis, psoriatic arthritis, Crohn's disease, ankylosing spondylitis, and juvenile idiopathic arthritis (Sullivan and Preda (2009, Klinkhoff (2004, and Medicare Australia. Use of TNFα inhibitors is associated with the induction of autoimmunity (systemic lupus erythematosus, vasculitis, and sarcoidosis or sarcoid-like granulomas (Ramos-Casals et al. (2010. We report a patient with extensive psoriasis presenting with renal failure and seropositive lupus markers without classical lupus nephritis after 18 months treatment with adalimumab. He has renal biopsy proven IgA nephritis instead. Renal biopsy is the key diagnostic tool in patients presenting with adalimumab induced nephritis and renal failure. He made a remarkable recovery after adalimumab cessation and steroid treatment. To our knowledge, this is a unique case of a psoriasis patient presenting with seropositive lupus markers without classical lupus nephritis renal failure and had renal biopsy proven IgA glomerulonephritis after receiving adalimumab.

  3. Inducible expression pattern of rice Bowman-Birk inhibitor gene Os WIP1-2 and its protease inhibitory activity

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; LIU Jing; GUO Lei; QU Lijia; CHEN Zhangliang; GU Hongya

    2004-01-01

    The WIP1-2 gene was cloned from rice. It belongs to the Bowman-Birk inhibitor gene family. Northern blot showed that expression of this gene was induced by wounding and jasmonic acid (JA). It indicates that the OsWIP1 gene plays an important role in the rice defense system. The OsWIP1-2 was cloned into pET28a and expressed in E. Coli. Its expressed product was purified in the form of fusion protein and tested for the inhibitory activities against trypsin and chymotrypsin. It was found that the fusion protein could inhibit chymotrypsin, but not trypsin. It was also found that the His tag at its C-terminal affected its inhibitory activity significantly. The fusion protein with a natural C-terminal had the inhibitory activity, while no inhibitory activity was detected in the fusion protein with a (His)6-tag at its C-terminal. This implies that extra amino acid residues at the C-terminal of OsWIP1-2 may interfere with its correct folding. The inhibitory assay indicated that the members of rice Bowman-Birk inhibitor gene family probably differentiated both in their structure and function.

  4. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Directory of Open Access Journals (Sweden)

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  5. Evolution of carbonic anhydrase in C4 plants.

    Science.gov (United States)

    Ludwig, Martha

    2016-06-01

    During the evolution of C4 photosynthesis, the intracellular location with most carbonic anhydrase (CA) activity has changed. In Flaveria, the loss of the sequence encoding a chloroplast transit peptide from an ancestral C3 CA ortholog confined the C4 isoform to the mesophyll cell cytosol. Recent studies indicate that sequence elements and histone modifications controlling the expression of C4-associated CAs were likely present in the C3 ancestral chromatin, enabling the evolution of the C4 pathway. Almost complete abolishment of maize CA activity yields no obvious phenotype at ambient CO2 levels. This contrasts with results for Flaveria CA mutants, and has opened discussion on the role of CA in the C4 carbon concentrating mechanism.

  6. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance.

    Science.gov (United States)

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J; Butler, Mark S; Edwards, David J; Fry, Scott R; Bermingham, Imogen M; Cooper, Matthew A; Young, Paul R

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  7. Multikinase Inhibitor-Induced Hand-Foot Skin Reaction: A Review of Clinical Presentation, Pathogenesis, and Management.

    Science.gov (United States)

    Chanprapaph, Kumutnart; Rutnin, Suthinee; Vachiramon, Vasanop

    2016-08-01

    Multikinase inhibitors (MKIs) are targeted cancer therapies designed to inhibit multiple tyrosine kinase pathways responsible for tumor proliferation, growth, and survival. These agents are more able to target cancer cells and possess better safety profiles than conventional chemotherapies. However, MKIs can produce significant cutaneous adverse events, hand-foot skin reaction (HFSR) being the most clinically significant. Although not life threatening, HFSR can lead to MKI dose modification, interruption, or termination, potentially limiting the anti-tumor effect. This article summarizes the current knowledge concerning the epidemiology, clinical presentation, pathogenesis, histopathology, prognostic implication, and current evidence-based prophylactic and reactive treatment options for MKI-induced HFSR. Its high incidence and significant impact on the quality of life emphasizes the great need to understand the pathogenesis and improve management of this condition. PMID:27221667

  8. INVESTIGATION OF THROMBOMODULIN AND PLASMINOGEN ACTIVATOR INHIBITOR TYPE-I IN PREGNANCY INDUCED HYPERTENSION AND ITS CLINICAL SIGNIFICANCE

    Institute of Scientific and Technical Information of China (English)

    马水清; 白春梅; 边旭明

    2001-01-01

    Objective. To measure the circulating levels of thrombomodulin (TM) and plasminogen activator inhibitor type-I (PAI-I) inwomen with pregnancy induced hypertension (PIH). Methods. Blood samples were drawn from 97 pregnant women in their third trimester, grouped as 25 mild PIH, 26 moderate PIH, 22 severe PIH and 24 normotensive healthy pregnant women for determining levels of TM by ELISA, PAI-I by colorimetric assay methods, and creatinine (Cr) in serum by biochemical method. Results. Circulating levels of TM, PAI-I and TM/Cr ratio increased with increasing severity of PIH. There were no significant differences between mild and normotensive pregnant women. The parameters were significantly changed in the moderate and severe PIH groups. Conclusion. TM and PAI-I may serve as meaningful clinical markers for the assessment of the endothelial damage in PIH,which is very important in evaluating and following the development of PIH.

  9. INVESTIGATION OF THROMBOMODULIN AND PLASMINOGEN ACTIVATOR INHIBITOR TYPE-I IN PREGNANCY INDUCED HYPERTENSION AND ITS CLINICAL SIGNIFICANCE

    Institute of Scientific and Technical Information of China (English)

    马水清; 白春梅; 边旭明

    2001-01-01

    Objective. To measure tbe circulating levels of thrombomodulin (TM) and plasminogen activator inhibitor type-Ⅰ(PAI-I) in women with pregnancy induced hypertension (PIH).``Methods. Blood samples were drawn from 97 pregnant women in their third trimester, grouped as 25 mild PIH, 26 moderate PIH, 22 severe PIH and 24 normotensive healthy pregnant women for determining levels of TM by ELISA, PAI-I by colorimetric assay methods, and creatinine (Cr) in serum by biochemical method.``Results. Circulating levels of TM, PAId and TM/Cr ratio increased with increasing severity of PIH. There were no significant differences between mild and normotensive pregnant women. The parameters were significantly changed in the moderate and severe PIH groups.``Conclv, sion. TM and PAI-Ⅰ may serve as meaningful clinical markers for the assessment of the endothelial damage in PIH,which is very important in evaluating and following the development of PIH.

  10. Aspirin protected against endothelial damage induced by LDL:role of endogenous NO synthase inhibitors in rats

    Institute of Scientific and Technical Information of China (English)

    Sheng DENG; Pan-yue DENG; Jun-lin JIANG; Feng YE; Jing YU; Tian-lun YANG; Han-wu DENG; Yuan-jian LI

    2004-01-01

    AIM: To study the protective effect of aspirin on damages of the endothelium induced by low-density lipoprotein (LDL), and whether the protective effect of aspirin is related to reduction of nitric oxide synthase inhibitor level.METHODS: Vascular endothelial injury was induced by a single injection of native LDL (4 mg/kg) in rats. Vasodilator responses to acetylcholine (Ach) in the isolated aortic rings were determined, and serum concentrations of asymmetric dimethylarginine (ADMA), malondialdehyde (MDA), tumour necrosis factor-α(TNF-α), and the activity of dimethylaminohydrolase (DDAH) were measured. RESULTS: A single injection of LDL (4 mg/kg)significantly decreased vasodilator responses to Ach, increased the serum level of ADMA, MDA, and TNF-α, and decreased DDAH activity. Aspirin (30 or 100 mg/kg) markedly reduced the inhibition of vasodilator responses to Ach by LDL, and the protective effect of aspirin at the lower dose was greater compared with high-dose aspirin group. Aspirin inhibited the increased level of MDA and TNF-α induced by LDL. Aspirin at the dose of 30 mg/kg,but not at higher dose (100 mg/kg), significantly reduced the concentration of ADMA and increased the activity of DDAH. CONCLUSION: Aspirin at the lower dose (30 mg/kg) protects the endothelium against damages elicited by LDL in vivo, and the protective effect of aspirin on endothelium is related to reduction of ADMA concentration by increasing DDAH activity.

  11. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  12. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation.

    Directory of Open Access Journals (Sweden)

    Nabil G Seidah

    Full Text Available Proprotein convertase subtilisin/kexin-9 (PCSK9 enhances the degradation of hepatic low-density lipoprotein receptor (LDLR. Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2 as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/- mice revealed: i a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/- tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.

  13. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells

    Science.gov (United States)

    Ito, Shuhei; Murphy, Conleth G.; Doubrovina, Ekaterina; Jasin, Maria; Moynahan, Mary Ellen

    2016-01-01

    Poly(ADP-ribose) polymerases (PARPs) are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR), a DNA double-strand break (DSB) repair pathway, are hypersensitive to PARP inhibitors (PARPi). Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE) assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR), and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold) and chromatid aberrations (2-6-fold). Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications. PMID:27428646

  14. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  15. A Targeted Inhibitor of the Alternative Complement Pathway Accelerates Recovery From Smoke-Induced Ocular Injury

    Science.gov (United States)

    Woodell, Alex; Jones, Bryan W.; Williamson, Tucker; Schnabolk, Gloriane; Tomlinson, Stephen; Atkinson, Carl; Rohrer, Bärbel

    2016-01-01

    Purpose Morphologic and genetic evidence exists that an overactive complement system driven by the complement alternative pathway (AP) is involved in pathogenesis of age-related macular degeneration (AMD). Smoking is the only modifiable risk factor for AMD. As we have shown that smoke-related ocular pathology can be prevented in mice that lack an essential activator of AP, we ask here whether this pathology can be reversed by increasing inhibition in AP. Methods Mice were exposed to either cigarette smoke (CS) or filtered air (6 hours/day, 5 days/week, 6 months). Smoke-exposed animals were then treated with the AP inhibitor (CR2-fH) or vehicle control (PBS) for the following 3 months. Spatial frequency and contrast sensitivity were assessed by optokinetic response paradigms at 6 and 9 months; additional readouts included assessment of retinal morphology by electron microscopy (EM) and gene expression analysis by quantitative RT-PCR. Results The CS mice treated with CR2-fH showed significant improvement in contrast threshold compared to PBS-treated mice, whereas spatial frequency was unaffected by CS or pharmacologic intervention. Treatment with CR2-fH in CS animals reversed thinning of the retina observed in PBS-treated mice as analyzed by spectral-domain optical coherence tomography, and reversed most morphologic changes in RPE and Bruch's membrane seen in CS animals by EM. Conclusions Taken together, these findings suggest that AP inhibitors not only prevent, but have the potential to accelerate the clearance of complement-mediated ocular injury. Improving our understanding of the regulation of the AP is paramount to developing novel treatment approaches for AMD. PMID:27064393

  16. Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Khanna Ashwani K

    2009-07-01

    Full Text Available Abstract Cyclin kinase inhibitor p21 is one of the most potent inhibitors of aortic smooth muscle cell proliferation, a key mediator of atherosclerosis. This study tests if p2l deficiency will result in severe atherosclerosis in a mouse model. p21-/- and strain matched wild type mice were fed with high fat diet for 21 weeks. Analysis for biochemical parameters (cholesterol, triglycerides in serum and mRNA expression of CD36, HO-1, TGF-β, IFN-γ, TNF-α, PPAR-γ and NADPH oxidase components (p22phox, NOX-1 and Rac-1 was performed in aortic tissues by Real Time PCR. p21-/- mice gained significantly (p -/- compared to wild type mice fed with high fat diet. High fat diet resulted in significantly decreased TGF-β (p -/- mice compared to animal fed with regular diet. IFN-γ mRNA expression (235 ± 11 folds increased significantly in high fat diet fed p21-/- mice and a multifold modulation of PPAR-γ(136 ± 7, p22phox, NOX-1 and Rac-1 (15–35-folds mRNA in aortic tissues from p21-/- mice compared to the wild type mice. Severity of atherosclerotic lesions was significantly higher in p21-/- compared to wild type mice. The results demonstrate that the deficiency of p21 leads to altered expression of pro-atherogenic genes, and severe atherosclerosis in mice fed with high fat diet. This opens the possibility of p21 protein as a therapeutic tool to control progression of atherosclerosis.

  17. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells.

    Science.gov (United States)

    Zhang, Qianwen; Zhang, Yuanyuan; Zhang, Pei; Chao, Zhenhua; Xia, Fei; Jiang, Chenchen; Zhang, Xudong; Jiang, Zhiwen; Liu, Hao

    2014-03-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy in mammalian systems occurs under basal conditions and can be stimulated by stresses, including starvation, oxidative stress. Therefore, we hypothesized that 3-BrPA could induce autophagy. In the present study, we explored the mechanism of 3-BrPA and its combined action with chloroquine. Our results demonstrate that in MDA-MB-435 and in MDA-MB-231 cells, 3-BrPA induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment triggered apoptosis in MDA-MB-435 cells, while it induced necroptosis in MDA-MB-231 cells. ROS mediated cell death when 3-BrPA and CQ were co-administered. Finally, CQ enhanced the anticancer efficacy of 3-BrPA in vivo. Collectively, our results show that 3-BrPA triggers autophagy, increasing breast cancer cell resistance to 3-BrPA treatment and that CQ enhanced 3-BrPA-induced cell death in breast cancer cells by stimulating ROS formation. Thus, inhibition of autophagy may be an innovative strategy for adjuvant chemotherapy of breast cancer.human skeletal muscle. Efficient Mirk depletion in SU86.86 pancreatic cancer cells by an inducible shRNA decreased expression of eight antioxidant genes. Thus both cancer cells and differentiated myotubes utilize Mirk kinase to relieve oxidative stress. PMID:25053988

  18. The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning

    Institute of Scientific and Technical Information of China (English)

    Bo GAO; Xiang-yang ZHANG; Rong HAN; Tong-tong ZHANG; Cheng CHEN; Zheng-hong QIN; Rui SHENG

    2013-01-01

    Aim:To investigate whether endoplasmic reticulum (ER) stress participates in the neuroprotective effects of ischemic preconditioning (IPC)-induced neuroprotection and autophagy activation in rat brains.Methods:The right middle cerebral artery in SD rats was occluded for 10 min to induce focal cerebral IPC,and was occluded permanently 24 h later to induce permanent focal ischemia (PFI).ER stress inhibitor salubrinal (SAL) was injected via intracerebral ventricle infusion 10 min before the onset of IPC.Infarct volume and motor behavior deficits were examined after the ischemic insult.The protein levels of LC3,p62,HSP70,glucose-regulated protein 78 (GRP 78),p-elF2α and caspase-12 in the ipsilateral cortex were analyzed using immunoblotting.LC3 expression pattern in the sections of ipsilateral cortex was observed with immunofluorescence.Results:Pretreatment with SAL (150 pmol) abolished the neuroprotective effects of IPC,as evidenced by the significant increases in mortality,infarct volume and motor deficits after PFI.At the molecular levels,pretreatment with SAL (150 pmol) significantly increased p-elF2α level,and decreased GRP78 level after PFI,suggesting that SAL effectively inhibited ER stress in the cortex.Furthermore,the pretreatment with SAL blocked the IPC-induced upregulation of LC3-Ⅱ and downregulation of p62 in the cortex,thus inhibiting the activation of autophagy.Moreover,SAL blocked the upregulation of HSP70,but significantly increased the cleaved caspase-12 level,thus promoting ER stress-dependent apoptotic signaling in the cortex.Conclusion:ER stress-induced autophagy might contribute to the neuroprotective effect of brain ischemic preconditioning.

  19. The IκB kinase inhibitor ACHP strongly attenuates TGFβ1-induced myofibroblast formation and collagen synthesis.

    Science.gov (United States)

    Mia, Masum M; Bank, Ruud A

    2015-12-01

    Excessive accumulation of a collagen-rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGFβ1) is a strong inducer of myofibroblast formation and subsequent collagen production. Currently, there are no remedies for the treatment of fibrosis. Activation of the nuclear factor kappa B (NF-κB) pathway by phosphorylating IκB with the enzyme IκB kinase (IKK) plays a major role in the induction of fibrosis. ACHP {2-Amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3 pyridinecarbonitrile}, a selective inhibitor of IKK, prohibits the activation of the NF-κB pathway. It is not known whether ACHP has potential anti-fibrotic properties. Using adult human dermal and lung fibroblasts we have investigated whether ACHP has the ability to inhibit the TGFβ1-induced transition of fibroblasts into myofibroblasts and its excessive synthesis of ECM. The presence of ACHP strongly suppressed the induction of the myofibroblast markers alpha-smooth muscle actin (αSMA) and SM22α, as well as the deposition of the ECM components collagen type I and fibronectin. Furthermore, post-treatment with ACHP partly reversed the expression of αSMA and collagen type I production. Finally, ACHP suppressed the expression of the three collagen-modifying enzymes lysyl hydroxylase (PLOD1, PLOD2 and PLOD3) in dermal fibroblasts, but did not do so in lung fibroblasts. We conclude that the IKK inhibitor ACHP has potent antifibrotic properties, and that the NF-κB pathway plays an important role in myofibroblast biology. PMID:26337045

  20. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  1. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  2. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, G H; Meier, E;

    1990-01-01

    differentiation and GABA receptor expression was investigated in cultured cerebellar granule cells. After 4 days in culture the neurons were exposed to the inhibitors for 6 h in the simultaneous presence of THIP. Subsequently, cultures were either fixed for electron microscopic examination or used for preparation...... of membranes for [3H]GABA binding assays. In some experiments the functional activity of the newly induced low-affinity GABA receptors was assessed by investigation of the ability of GABA to inhibit neurotransmitter release from the neurons. These experiments were performed to differentiate between...... an intracellular and a plasma membrane localization of the receptors. In all experiments cultures treated with THIP alone served as controls. The inhibitors of protein synthesis totally abolished the ability of THIP to induce low-affinity GABA receptors. In contrast, the inhibitors of intracellular transport...

  3. Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase

    DEFF Research Database (Denmark)

    Guo, Song; Olesen, Jes; Ashina, Messoud

    2014-01-01

    The initiating mechanisms of migraine attacks are very complex but may involve the cyclic AMP signalling pathway. It is unknown whether intracellular cyclic AMP accumulation induces migraine attacks. We investigated whether administration of cilostazol, which causes cyclic AMP accumulation, may i...

  4. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni;

    2003-01-01

    . As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly...

  5. Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes

    NARCIS (Netherlands)

    Hara, N.; Alkanani, A.K.; Dinarello, C.A.; Zipris, D.

    2014-01-01

    Microbial infections are hypothesized to play a key role in the mechanism leading to type 1 diabetes (T1D). We used the LEW1.WR1 rat model of Kilham rat virus (KRV)-induced islet destruction to better understand how virus infection triggers T1D. Inoculation of the LEW1.WR1 rat with KRV results in sy

  6. PARP-1 inhibitor, DPQ, attenuates LPS-induced acute lung injury through inhibiting NF-κB-mediated inflammatory response.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Poly (ADP-ribose polymerase-1 has been demonstrated to be involved in tissue inflammation and one of its inhibitors, 3, 4-Dihydro-5[4-(1-piperindinylbutoxy]-1(2H-isoquinoline (DPQ, exerts anti-inflammatory effect. However, it is still unclear whether the DPQ possesses the protective effect on ALI and what mechanisms are involved. In this study, we tested the effect of DPQ on the lung inflammation induced by lipopolysaccharide (LPS challenge in mice. We found that 6 h-LPS challenge induced significant lung inflammation and vascular leakage in mice. Treatment with DPQ at the dose of 10 μg/kg markedly reduced the neutrophil infiltration, myeloperoxidase activity and up-regulation of pro-inflammatory mediators and cytokines. LPS-elevated vascular permeability was decreased by DPQ treatment, accompanied by the inhibition of apoptotic cell death in mice lungs. In addition, we isolated mice peritoneal macrophages and showed pretreatment with DPQ at 10 μM inhibited the production of cytokines in the macrophages following LPS stimulation. DPQ treatment also inhibited the phosphorylation and degradation of IκB-α, subsequently blocked the activation of nuclear factor (NF-κB induced by LPS in vivo and in vitro. Taken together, our results show that DPQ treatment inhibits NF-κB signaling in macrophages and protects mice against ALI induced by LPS, suggesting inhibition of Poly (ADP-ribose polymerase-1 may be a potential and effective approach to resolve inflammation for the treatment of ALI.

  7. Proton pump inhibitors induce a caspase-independent antitumor effect against human multiple myeloma.

    Science.gov (United States)

    Canitano, Andrea; Iessi, Elisabetta; Spugnini, Enrico Pierluigi; Federici, Cristina; Fais, Stefano

    2016-07-01

    Multiple Myeloma (MM) is the second most common hematological malignancy and is responsive to a limited number of drugs. Unfortunately, to date, despite the introduction of novel drugs, no relevant increase in survival rates has been obtained. Proton pump inhibitors (PPIs) have been shown to have significant antitumor action as single agents as well as in combination with chemotherapy. This study investigates the potential anti-tumor effectiveness of two PPIs, Lansoprazole and Omeprazole, against human MM cells. We found that Lansoprazole exerts straightforward efficacy against myeloma cells, even at suboptimal concentrations (50 µM), while Omeprazole has limited cytotoxic action. The Lansoprazole anti-MM effect was mostly mediated by a caspase-independent apoptotic-like cytotoxicity, with only a secondary anti-proliferative action. This study provides clear evidence supporting the use of Lansoprazole in the strive against MM with an efficacy proven much higher than current therapeutical approaches and without reported side effects. It is however conceivable that, consistent with the results obtained in other human tumors, Lansoprazole may well be combined with existing anti-myeloma therapies with the aim to improve the low level of efficacy of the current strategies. PMID:27084522

  8. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy.

    Science.gov (United States)

    Stankov, M V; El Khatib, M; Kumar Thakur, B; Heitmann, K; Panayotova-Dimitrova, D; Schoening, J; Bourquin, J P; Schweitzer, N; Leverkus, M; Welte, K; Reinhardt, D; Li, Z; Orkin, S H; Behrens, G M N; Klusmann, J H

    2014-03-01

    Histone deacetylase (HDAC) inhibitors (HDACis) are well-characterized anti-cancer agents with promising results in clinical trials. However, mechanistically little is known regarding their selectivity in killing malignant cells while sparing normal cells. Gene expression-based chemical genomics identified HDACis as being particularly potent against Down syndrome-associated myeloid leukemia (DS-AMKL) blasts. Investigating the antileukemic function of HDACis revealed their transcriptional and post-translational regulation of key autophagic proteins, including ATG7. This leads to suppression of autophagy, a lysosomal degradation process that can protect cells against damaged or unnecessary organelles and protein aggregates. DS-AMKL cells exhibit low baseline autophagy due to mammalian target of rapamycin (mTOR) activation. Consequently, HDAC inhibition repressed autophagy below a critical threshold, which resulted in accumulation of mitochondria, production of reactive oxygen species, DNA damage and apoptosis. Those HDACi-mediated effects could be reverted upon autophagy activation or aggravated upon further pharmacological or genetic inhibition. Our findings were further extended to other major acute myeloid leukemia subgroups with low basal level autophagy. The constitutive suppression of autophagy due to mTOR activation represents an inherent difference between cancer and normal cells. Thus, via autophagy suppression, HDACis deprive cells of an essential pro-survival mechanism, which translates into an attractive strategy to specifically target cancer cells. PMID:24080946

  9. Pattern of angiotensin-converting enzyme inhibitors induced adverse drug reactions in South Indian teaching hospital

    Directory of Open Access Journals (Sweden)

    Uday Venkat Mateti

    2012-01-01

    Full Text Available Background: Adverse drug reactions (ADRs occur frequently with cardiovascular drugs leading to change in therapy, increasing morbidity, and mortality. Aim: The study was conducted to evaluate the incidence of ADRs due to angiotensin-converting enzyme Inhibitors in cardiology department. Materials and Methods: A cross-sectional observational study was carried out for a period of 6 months. The data were assessed for the pattern of the ADRs with respect to patient demographics, nature of the reaction, outcome of the reactions, causality, severity, and preventability. Results: Among 692 patients, 51 (7.36% had developed 60 ADRs, and majority of cases (56.66% were in the age group of >61 years and most of them were developed in female (80%. The common ADRs observed were cough, hypotension, hyperkalemia, and acute renal failure. In 21.66% cases the dose of the suspected drug was altered and in 78.33% cases the drug was withdrawn. Considering the outcome, 93.33% of cases recovered from ADRs, whereas in 6.66% cases were continuing. Causality assessment showed that majority of ADRs was probable and were found to be moderately severe. Conclusion: Our study concludes geriatrics and female patients have higher incidence of ADRs. So early identification and management of ADRs are essential for this population.

  10. Effect of c-Met Inhibitor on HGF-induced Ovarian Carcinoma Cell Migration

    Science.gov (United States)

    Lo, Chun-Min; Lo, Jun-Chih; Yip, Kay-Pong

    2010-03-01

    The dysregulation of hepatocyte growth factor (HGF) and its receptor, c-Met, in cell migration contributes to tumor invasion and metastasis in numerous cancers including ovarian cancer. Specific inhibitors against HGF/c-Met signaling like SU11274, therefore, may have important therapeutic potential for the treatment of cancers. Here, we applied electric cell-substrate impedance sensing (ECIS) and traction force microscopy to evaluate the effect of SU11274 on HGF-treated SKOV-3 ovarian cancer cells. Our results showed that, compared with control cells, HGF-treated cell monolayer displayed lower junctional resistance between cells, larger cell-substrate separation, and higher cell micromotion. In addition, individual HGF-treated SKOV-3 cells demonstrated weaker traction forces on the collagen-coated polyacrylamide substrate than did control cells. These changes lead to faster directional movement of HGF-treated cells, as demonstrated with wound healing assay. Treatment of SKOV-3 cells with SU11274 indicated significant inhibition of HGF stimulation on all assays tested.

  11. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-01

    We report the cloning, purification and characterization of the full domain of carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, which incorporates 358 amino acid residues (from 181 to 538, in the sequence of this 600 amino acid long protein), called PfCAdom. The enzyme, which belongs to the η-CA class showed the following kinetic parameters: kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), being 13.3 times more effective as a catalyst compared to the truncated form PfCA. PfCAdom is more effective than the human (h) isoform hCA I, being around 50% less effective compared to hCA II, one of the most catalytically efficient enzymes known so far. Intriguingly, the sulfonamides CA inhibitors generally showed much weaker inhibitory activity against PfCAdom compared to PfCA, prompting us to hypothesize that the 69 amino acid residues insertion present in the active site of this η-CA is crucial for the active site architecture. The best sulfonamide inhibitors for PfCAdom were acetazolamide, methazolamide, metanilamide and sulfanilamide, with KIs in the range of 366-808nM. PMID:27485387

  12. Sulfonamide inhibition studies of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2, TcruCA.

    Science.gov (United States)

    Vullo, Daniela; Bhatt, Avni; Mahon, Brian P; McKenna, Robert; Supuran, Claudiu T

    2016-01-15

    We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena. PMID:26691758

  13. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action.

    Science.gov (United States)

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Akdemir, Atilla; Isik, Semra; Lanzi, Cecilia; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2015-05-15

    A new series of dithiocarbamates (DTCs) was prepared from primary/secondary amines incorporating amino/hydroxyl-alkyl, mono- and bicyclic aliphatic ring systems based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, and carbon disulfide. The compounds were investigated for the inhibition of four mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, that is, the human (h) hCA I, II, IX and XII, drug targets for antiglaucoma (hCA II and XII) or antitumor (hCA IX/XII) agents. The compounds were moderate or inefficient hCA I inhibitors (off-target isoform for both applications), efficiently inhibited hCA II, whereas some of them were low nanomolar/subnanomolar hCA IX/XII inhibitors. One DTC showed excellent intraocular pressure (IOP) lowering properties in an animal model of glaucoma, with a two times better efficiency compared to the clinically used sulfonamide dorzolamide. PMID:25846066

  14. Concentrations of Nitric Oxide in Rat Brain Tissues after Diffuse Brain Injury and Neuroprotection by the Selective Inducible Nitric Oxide Synthase Inhibitor Aminoguanidine

    Institute of Scientific and Technical Information of China (English)

    Yi-bao Wang; Shao-wu Ou; Guang-yu Li; Yun-hui Liu

    2005-01-01

    @@ To investigate the effects of nitric oxide (NO) and the selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) on trauma, we explored the concentrations of nitric oxide in rat brain tissues at different time stamps after diffuse brain injury (DBI) with or without AG treatment.

  15. Antinociceptive Effects of the Serotonin and Noradrenaline Reuptake Inhibitors Milnacipran and Duloxetine on Vincristine-Induced Neuropathic Pain Model in Mice

    OpenAIRE

    Katsuyama, Soh; Aso, Hiromu; Otowa, Akira; Yagi, Tomomi; Kishikawa, Yukinaga; Komatsu, Takaaki; Sakurada, Tsukasa; NAKAMURA, Hitoshi

    2014-01-01

    Vincristine is an anticancer drug used to treat a variety of cancer types, but it frequently causes peripheral neuropathy. Neuropathic pain is often associated with the appearance of abnormal sensory signs, such as allodynia. Milnacipran and duloxetine, serotonin/noradrenaline reuptake inhibitors, have shown efficacy against several chronic pain syndromes. In this study, we investigated the attenuation of vincristine-induced mechanical allodynia in mice by milnacipran and duloxetine. To induc...

  16. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells

    OpenAIRE

    Cui, Jing; Sun, Wendong; Hao, Xuexi; Wei, Minli; Su, Xiaonan; Zhang, Yajing; Su, Ling; Liu, Xiangguo

    2015-01-01

    BIX-01294, an euchromatic histone-lysine N-methyltransferase 2 (EHMT2) inhibitor, has been reported to induce apoptosis in human neuroblastoma cells and inhibit the proliferation of bladder cancer cells. However, the definite mechanism of the apoptosis mediated by BIX-01294 in bladder cancer cells remains unclear. In the present study, we found that BIX-01294 induced caspase-dependent apoptosis in human bladder cancer cells. Moreover, our data show BIX-01294 stimulates endoplasmic reticulum s...

  17. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Amaya Blanco-Rivero

    Full Text Available BACKGROUND: Cah3 is the only carbonic anhydrase (CA isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO(2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO(2 conditions. RESULTS/CONCLUSIONS: In the present work we demonstrate that after transfer to low CO(2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO(2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO(2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO(2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO(2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. SIGNIFICANCE: This is the first report of a CA being post

  18. Floral extract ofTecoma stans:A potent inhibitor of gentamicin-induced nephrotoxicityin vivo

    Institute of Scientific and Technical Information of China (English)

    Raju S; Kavimani S; Uma Maheshwara rao V; Sreeramulu Reddy K; Vasanth Kumar G

    2011-01-01

    Objective:To highlight the nephroprotective activity of ethyl acetate extract of dried flowers ofTecoma stans for its protective effects on gentamicin-induced nephrotoxicity in albino rats. Methods:For studying acute toxicity study, single oral dose of5 000 mg ethyl acetate floral extract/kg body weight was administered to albino rats (five females, five males). Nephrotoxicity was induced in albino rats by intraperitoneal administration of gentamicin80 mg/kg/day for eight days. Effect of concurrent administration of ethyl acetate floral extract of Tecoma stans at a dose of 100, 200 and 300 mg/kg/day given by oral route was determined using serumcreatinine, serum uric acid, blood urea nitrogen and serum urea as indicators of kidney damage. The study groups contained six rats in each group. As nephrotoxicity of gentamicin is known to involve induction of oxidative stress,in vitro antioxidant activity and free radical-scavenging activity of this extract was also evaluated.Results:For acute toxicity testing both female and male rats administered with the extract at a dose of5 000mg/kg. The results showed no toxicity in terms of general behavior change, mortality, or change in gross appearance of internal organs (LD50 > 5 000 mg/kg). It was observed that the ethyl acetate floral extract ofTecoma stans significantly protected rat kidneys from gentamicin-induced histopathological changes. Gentamicin-induced glomerular congestion, peritubular and blood vessel congestion, epithelial desquamation, accumulation of inflammatory cells and necrosis of the kidney cells were found to be reduced in the groups receiving the ethyl acetate floral extract ofTecoma stans along with gentamicin in a dose dependent manner. The floral extract also reduced the gentamicin-induced increase in serum creatinine, serum uric acid, blood urea nitrogen and serum urea levels (P>0.01).Conclusions:The present study indicates a very important role of reactive oxygen species (ROS)and the relation to

  19. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications

    Directory of Open Access Journals (Sweden)

    Oluwafeyisetan O. Adebiyi

    2015-12-01

    Full Text Available Nucleoside Reverse Transcriptase Inhibitors (NRTIs have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7 were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT (groups I, II III, 50 mg/kg stavudine (d4T (groups IV, V, VI and 3 mL/kg of distilled water (group VII. Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy.

  20. The gender difference of selective serotonin reuptake inhibitor, fluoxetine in adult rats with stress-induced gastric ulcer.

    Science.gov (United States)

    Abdel-Sater, Khaled A; Abdel-Daiem, Wafaa M; Sayyed Bakheet, Mohamad

    2012-08-01

    We investigated the gender difference of selective serotonin reuptake inhibitor, fluoxetine in adult rats with stress-induced gastric ulcer. The rats were randomly divided into six groups: Group I, control males and group II, control females; group III, acute cold restraint stressed males and group IV, acute cold restraint stressed females; group V, fluoxetine-treated stressed males and group VI, fluoxetine-treated stressed females. Acute cold restraint stress was established by fixing the four limbs of the rat and placing it in a refrigerator at 4°C for 3h. Fluoxetine was given intraperitoneal in a single dose of 10mg/kg/day. After 2 weeks, stomach and brain tissues were collected for the assay of gastric malonaldehyde (MDA), catalase, nitric oxide (NO) and cortical gamma aminobutyric acid (GABA). Stressed animals exhibited increased total acidity in association with decreased gastric secretion volume. Gastric MDA was increased while gastric catalase, NO, and cortical GABA were decreased in stressed male rats when compared to stressed females. However, fluoxetine administration attenuated these stress-induced changes especially in stressed male animals. Stressed male rats were more responsive to the antiulcer effect of fluoxetine more than stressed females. However, fluoxetine might be considered to be the first-choice drug in depressive patients with gastric ulcers in the future.

  1. Overexpression of α1-protease Inhibitor and Galectin-1 in Radiation-induced Early Phase of Pulmonary Fibrosis

    Science.gov (United States)

    Im, Hee-Soon; Kim, Hyung-Doo; Song, Jie-Young; Han, Youngsoo; Lee, Do-Youn; Kim, Chan-Wha

    2006-01-01

    Purpose Radiation-induced pulmonary fibrosis (RIF) is a significant complication of radiotherapy for lung cancer. Despite the large number of studies, the molecular mechanisms of RIF are poorly understood. Therefore, the complex protein expression pattern in RIF was characterized by identifying the proteins with an altered expression level after thorax irradiation using two-dimensional electrophoresis (2-DE) and mass spectrometry. Materials and Methods A mouse model of RIF was used to examine the alteration of the lung proteome because of availability of murine data related to human cases and the abundance of murine fibrotic lung samples. A mouse model of RIF was induced in radiosensitive C57BL/6 mice. Twenty-one weeks after 25 Gy irradiation, hematoxylin-eosin staining and hydroxyproline assay confirmed the early-phase pulmonary fibrosis. Results Lung samples from the irradiated and age-matched control mice were used to generate 16 high quality 2-DE gels containing approximately 1,000 spots. Of the 31 significantly up- or down-regulated protein spots, 17 were identified by MALDI-TOF/MS. Conclusions Two important upregulated proteins were found, the α1-protease inhibitor and galectin-1, which might be used as potential markers for the early phase of RIF. PMID:19771266

  2. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    Directory of Open Access Journals (Sweden)

    Talha Jawaid

    2015-01-01

    Full Text Available The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.], perindopril (0.1 mg/kg b.w., [i.p.], enalapril (0.1 mg/kg b.w., [i.p.], and ramipril (0.1 mg/kg b.w., [i.p.] were administered in different group of animals for 5 days. On 5 th day, scopolamine (1 mg/kg b.w., i.p. was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM test and pole climbing test (PCT. Biochemical estimations like glutathione (GSH, malondialdehyde (MDA, and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril.

  3. Comparison and Analysis of Delirium Induced by Histamine H2 Receptor Antagonists and Proton Pump Inhibitors in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Shiro Fujii

    2012-07-01

    Full Text Available Objective: H2 blockers have been reported to be responsible for drug-induced delirium. We compared the incidence of delirium between two groups of patients who were treated with H2 blockers (H2 group or proton pump inhibitors (PPI group for anastomotic ulcer prevention following surgical treatment of esophageal cancer. Method: The incidence and severity of delirium were retrospectively compared in patients of the H2 group (30 cases; age, 65.2 ± 8.1 years and the PPI group (30 cases; 65.2 ± 6.5 years. The diagnosis of delirium was based on the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision. Delirium severity was rated on the Delirium Rating Scale (DRS. Results: The incidence of delirium was significantly lower in the PPI group than in the H2 group (p = 0.047. In the 11 patients from the H2 group who developed delirium, discontinuation of H2 blockers resulted in a significant reduction in the DRS score (p = 0.009. In three patients for whom H2 blockers were discontinued, DRS scores decreased by 50% or more three days after discontinuation compared to the prediscontinuation score. Conclusions: These results suggested that switching antiulcer drugs from H2 blockers to PPIs reduced delirium and thus provided an appropriate coping method for drug-induced delirium from antiulcer drugs.

  4. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  5. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats.

    Science.gov (United States)

    Jawaid, Talha; Jahan, Shah; Kamal, Mehnaz

    2015-01-01

    The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.]), perindopril (0.1 mg/kg b.w., [i.p.]), enalapril (0.1 mg/kg b.w., [i.p.]), and ramipril (0.1 mg/kg b.w., [i.p.]) were administered in different group of animals for 5 days. On 5(th) day, scopolamine (1 mg/kg b.w., i.p.) was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM) test and pole climbing test (PCT). Biochemical estimations like glutathione (GSH), malondialdehyde (MDA), and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril. PMID:26317078

  6. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    Science.gov (United States)

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment.

  7. Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications.

    Science.gov (United States)

    Adebiyi, Oluwafeyisetan O; Adebiyi, Olubunmi A; Owira, Peter M O

    2015-12-01

    Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin's effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy. PMID:26690471

  8. The Raf-1 inhibitor GW5074 and dexamethasone suppress sidestream smoke-induced airway hyperresponsiveness in mice

    Directory of Open Access Journals (Sweden)

    Xu Cang-Bao

    2008-11-01

    Full Text Available Abstract Background Sidestream smoke is closely associated with airway inflammation and hyperreactivity. The present study was designed to investigate if the Raf-1 inhibitor GW5074 and the anti-inflammatory drug dexamethasone suppress airway hyperreactivity in a mouse model of sidestream smoke exposure. Methods Mice were repeatedly exposed to smoke from four cigarettes each day for four weeks. After the first week of the smoke exposure, the mice received either dexamethasone intraperitoneally every other day or GW5074 intraperitoneally every day for three weeks. The tone of the tracheal ring segments was recorded with a myograph system and concentration-response curves were obtained by cumulative administration of agonists. Histopathology was examined by light microscopy. Results Four weeks of exposure to cigarette smoke significantly increased the mouse airway contractile response to carbachol, endothelin-1 and potassium. Intraperitoneal administration of GW5074 or dexamethasone significantly suppressed the enhanced airway contractile responses, while airway epithelium-dependent relaxation was not affected. In addition, the smoke-induced infiltration of inflammatory cells and mucous gland hypertrophy were attenuated by the administration of GW5074 or dexamethasone. Conclusion Sidestream smoke induces airway contractile hyperresponsiveness. Inhibition of Raf-1 activity and airway inflammation suppresses smoking-associated airway hyperresponsiveness.

  9. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  10. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  11. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis

    OpenAIRE

    Jaeger, Hanna M.; Pehlke, Jens R.; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M; Doeppner, Thorsten R

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to str...

  12. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  13. The effect of selective 5-hydroxytryptamine uptake inhibitors on 5-methoxy-N,N-dimethyltryptamine-induced ejaculation in the rat.

    Science.gov (United States)

    Rényi, L

    1986-04-01

    The ejaculatory response and the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1 i.p.) were studied following acute and repeated treatment of rats with the selective uptake inhibitors of 5-HT, fluoxetine, zimeldine, alaproclate, and citalopram. The oral doses used were based on the respective ED50 values for uptake inhibition. Acute doses of fluoxetine and zimeldine significantly reduced the ejaculatory response when given 48 h before 5-MeODMT. This blockade was prevented by treatment of the rats with the postsynaptic 5-HT receptor antagonist methergoline. An acute dose of fluoxetine given 7 and 14 days before 5-MeODMT significantly enhanced the ejaculatory response. On day 24, the response returned to the control level. Repeated treatment every second day (5 times over 9 days and 10 times over 19 days) with fluoxetine caused a longer blockade of the ejaculatory response and the sensitization of the response came later than after an acute dose. Parallel with the ejaculatory response three other components of the 5-HT behavioural syndrome also decreased significantly. Acute doses of alaproclate and citalopram significantly blocked the ejaculatory response at 1 h, but they failed to affect the response at any other time point after either acute or repeated treatment. Neither did these drugs attentuate the 5-HT syndrome. It is concluded that acute and repeated treatment of rats with different selective 5-HT uptake inhibitors does not produce a common alteration in 5-HT2-receptor functions. PMID:2939912

  14. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Directory of Open Access Journals (Sweden)

    Mini Balakrishnan

    Full Text Available HIV-1 integrase (IN is the target for two classes of antiretrovirals: i the integrase strand-transfer inhibitors (INSTIs and ii the non-catalytic site integrase inhibitors (NCINIs. NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly.

  15. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Science.gov (United States)

    Balakrishnan, Mini; Yant, Stephen R; Tsai, Luong; O'Sullivan, Christopher; Bam, Rujuta A; Tsai, Angela; Niedziela-Majka, Anita; Stray, Kirsten M; Sakowicz, Roman; Cihlar, Tomas

    2013-01-01

    HIV-1 integrase (IN) is the target for two classes of antiretrovirals: i) the integrase strand-transfer inhibitors (INSTIs) and ii) the non-catalytic site integrase inhibitors (NCINIs). NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA) integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly. PMID:24040198

  16. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti Nath; Tripathi, Anil K

    2009-10-01

    Carbonic anhydrase (CA; [EC 4.2.1.1]) is a ubiquitous enzyme catalysing the reversible hydration of CO(2) to bicarbonate, a reaction that supports various biochemical and physiological functions. Genome analysis of Azospirillum brasilense, a nonphotosynthetic, nitrogen-fixing, rhizobacterium, revealed an ORF with homology to beta-class carbonic anhydrases (CAs). Biochemical characteristics of the beta-class CA of A. brasilense, analysed after cloning the gene (designated as bca), overexpressing in Escherichia coli and purifying the protein by affinity purification, revealed that the native recombinant enzyme is a homotetramer, inhibited by the known CA inhibitors. CA activity in A. brasilense cell extracts, reverse transcriptase (RT)-PCR and Western blot analyses showed that bca was constitutively expressed under aerobic conditions. Lower beta-galactosidase activity in A. brasilense cells harbouring bca promoter: lacZ fusion during the stationary phase or during growth on 3% CO(2) enriched air or at acidic pH indicated that the transcription of bca was downregulated by the stationary phase, elevated CO(2) levels and acidic pH conditions. These observations were also supported by RT-PCR analysis. Thus, beta-CA in A. brasilense seems to be required for scavenging CO(2) from the ambient air and the requirement of CO(2) hydration seems to be higher for the cultures growing exponentially at neutral to alkaline pH.

  17. Identification of novel compounds inhibiting chikungunya virus-induced cell death by high throughput screening of a kinase inhibitor library.

    Directory of Open Access Journals (Sweden)

    Deu John M Cruz

    Full Text Available Chikungunya virus (CHIKV is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415, one pyrrolopyridine (CND0545 and one thiazol-carboxamide (CND3514 inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against

  18. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  19. Minocycline, a microglial inhibitor, blocks spinal CCL2-induced heat hyperalgesia and augmentation of glutamatergic transmission in substantia gelatinosa neurons

    Science.gov (United States)

    2014-01-01

    Background Several lines of evidence suggest that CCL2 could initiate the hyperalgesia of neuropathic pain by causing central sensitization of spinal dorsal horn neurons and facilitating nociceptive transmission in the spinal dorsal horn. The cellular and molecular mechanisms by which CCL2 enhances spinal pain transmission and causes hyperalgesia remain unknown. The substantia gelatinosa (lamina II) of the spinal dorsal horn plays a critical role in nociceptive transmission. An activated spinal microglia, which is believed to release pro-inflammatory cytokines including TNF-α, plays an important role in the development of neuropathic pain, and CCL2 is a key mediator for spinal microglia activation. In the present study, we tested the hypothesis that spinal CCL2 causes the central sensitization of substantia gelatinosa neurons and enhances spinal nociceptive transmission by activating the spinal microglia and augmenting glutamatergic transmission in lamina II neurons. Methods CCL2 was intrathecally administered to 2-month-old male rats. An intrathecal injection of CCL2 induced heat hyperalgesia, which was assessed using the hot plate test. Whole-cell voltage-clamp recordings substantia gelatinosa neurons in spinal cord slices were performed to record glutamatergic excitatory postsynaptic currents (EPSCs) and GABAergic inhibitory postsynaptic currents (IPSCs). Results The hot plate test showed that 1 day after the intrathecal injection of CCL2 (1 μg), the latency of hind-paw withdrawal caused by a heat stimulus was significantly reduced in rats. One day after the intrathecal administration of CCL2, the amplitude of the evoked glutamatergic EPSCs and the frequency of spontaneous glutamatergic miniature EPSCs (mEPSCs) were significantly increased in outer lamina II neurons. Intrathecal co-injection of minocycline, a specific inhibitor of microglial activation, and CCL2 blocked the CCL2-induced reduction in the latency of hind-paw withdrawal and thermal hyperalgesia

  20. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation.

    Science.gov (United States)

    Liu, Wen; Guo, Wenjie; Hang, Nan; Yang, Yuanyuan; Wu, Xuefeng; Shen, Yan; Cao, Jingsong; Sun, Yang; Xu, Qiang

    2016-05-24

    Mucosa-associated-lymphoid-tissue lymphoma-translocation gene 1 (MALT1), a paracaspase and essential regulator for nuclear factor kB (NF-κB) activation, plays an important role in innate and adaptive immunity. Suppression of MALT1 protease activity with small molecule inhibitors showed promising efficacies in subtypes of B cell lymphoma and improvement in experimental autoimmune encephalomyelitis model. However, whether MALT1 inhibitors could ameliorate colitis remains unclear. In the present study, we examined the pharmacological effect of two specific MALT1 inhibitors MI-2 and mepazine on the dextran sulfate sodium (DSS)-induced experimental colitis in mice, followed by mechanistic analysis on NF-κB and NLRP3 inflammasome activation. Treatment with MI-2 and mepazine dose-dependently attenuated symptoms of colitis in mice, evidenced by reduction in the elevated disease activity index, the shortening of colon length as well as the histopathologic improvement. Moreover, protein and mRNA levels of DSS-induced proinflammatory cytokines in colon, including TNF, IL-1β, IL-6, IL-18, IL-17A and IFN-γ, were markedly suppressed by MALT1 inhibitors. The underlying mechanisms for the protective effect of MALT1 inhibitors in DSS-induced colitis may be attributed to its inhibition on NF-κB and NLRP3 inflammasome activation in macrophages. The in vitro study showed that MALT1 inhibitors decreased production of IL-1β/IL-18 in phorbol myristate acetate-differentiated THP-1 cells and bone marrow derived macrophage via suppressing the activation of NF-κB and NLRP3 inflammasome. Taken together, our results demonstrated that inhibition of the protease activity of MALT1 might be a viable strategy to treat inflammatory bowel disease and the NLRP3 inflammasome and NF-κB activation are critical components in MALT1 signaling cascades in this disease model.

  1. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.;

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases......-dose TBI, both Serpina1 mRNA and protein concentrations were increased in BM extracts, compared with extracts that were obtained from controls. The inhibitory activity in BM extracts of irradiated mice was reversed by addition of an Ab directed against Serpina1. To further study a possible in vivo role...

  2. Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yan-jun Mi

    Full Text Available Despite recent advances in the therapy of non-small cell lung cancer (NSCLC, the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR, and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.

  3. Effect of Caspase Inhibitor Ac-DEVD-CHO on Apoptosis of Vascular Smooth Muscle Cells Induced by Artesunate

    Directory of Open Access Journals (Sweden)

    Jingwen Zhang

    2014-05-01

    Full Text Available Numerous studies have shown that the proliferation and apoptosis of vascular smooth muscle cells play a key role in restenosis. Artesunate is a triterpenoid with a peroxide structure and its antimalarial, antitumor, and antiangiogenetic activities can inhibit the proliferation and apoptosis of multifarious cells. Apoptosis is caused by the activation of a series of intracellular proteolytic enzymes, among which caspase-dependent apoptosis was the earliest to be recognized. The purpose of this article is to study the effects of caspase-3 inhibitor Ac-DEVD-CHO on proliferation and apoptosis of vascular smooth muscle cells induced by Artesunate and to explore the mechanism of Artesunate-induced apoptosis of vascular smooth muscle cells. By using the method based on methyl thiazolyl tetrazolium to observe the effects of Artesunate on the growth and proliferation of vascular smooth muscle cells; observing the change in cell shape before and after Artesunate administration by transmission electron microscopy; detecting the changes in cell cycle and apoptosis rates before and after drug administration by flow cytometry; detecting the activity of caspase-3 in the caspase apoptosis pathway by the Western Blot method, we found that Artesunate inhibits the growth and proliferation of vascular smooth muscle cells in a dose- and time-dependent manner within the concentration range of 7.5–120 μg/mL, and the inhibition rate of Artesunate can be as high as 89.49 % at a concentration of 120 μg/mL after acting for 72 hours; vascular smooth muscle cells show a typical apoptosis peak due to the effects of higher concentration of Artesunate. Compared with the control group, the higher-concentration group shows major variability, Ac-DEVD-CHO, however, can significantly decrease this induction; it has been detected by Western Blot that Artesunate can induce caspase-3 activity dramatically in vascular smooth muscle cells, but this activation may be remarkably

  4. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough

    Science.gov (United States)

    Mosley, J D; Shaffer, C M; Van Driest, S L; Weeke, P E; Wells, Q S; Karnes, J H; Velez Edwards, D R; Wei, W-Q; Teixeira, P L; Bastarache, L; Crawford, D C; Li, R; Manolio, T A; Bottinger, E P; McCarty, C A; Linneman, J G; Brilliant, M H; Pacheco, J A; Thompson, W; Chisholm, R L; Jarvik, G P; Crosslin, D R; Carrell, D S; Baldwin, E; Ralston, J; Larson, E B; Grafton, J; Scrol, A; Jouni, H; Kullo, I J; Tromp, G; Borthwick, K M; Kuivaniemi, H; Carey, D J; Ritchie, M D; Bradford, Y; Verma, S S; Chute, C G; Veluchamy, A; Siddiqui, M K; Palmer, C N A; Doney, A; MahmoudPour, S H; Maitland-van der Zee, A H; Morris, A D; Denny, J C; Roden, D M

    2016-01-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (minor allele frequency=0.33, odds ratio (OR)=1.3 (95% confidence interval (CI): 1.2–1.4), P=1.0 × 10−8). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second eMERGE population (n=926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n=4309). Replication was observed at rs7675300 (OR=1.32 (1.01–1.70), P=0.04) in eMERGE and at rs16870989 and rs1495509 (OR=1.15 (1.01–1.30), P=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 (1.15–1.32), P=1.9 × 10−9). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk. PMID:26169577

  5. Immunomodulatory drugs act as inhibitors of DNA methyltransferases and induce PU.1 up-regulation in myeloma cells.

    Science.gov (United States)

    Endo, Shinya; Amano, Masayuki; Nishimura, Nao; Ueno, Niina; Ueno, Shikiko; Yuki, Hiromichi; Fujiwara, Shiho; Wada, Naoko; Hirata, Shinya; Hata, Hiroyuki; Mitsuya, Hiroaki; Okuno, Yutaka

    2016-01-01

    Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide, and pomalidomide are efficacious in the treatment of multiple myeloma and significantly prolong their survival. However, the mechanisms of such effects of IMiDs have not been fully elucidated. Recently, cereblon has been identified as a target binding protein of thalidomide. Lenalidomide-resistant myeloma cell lines often lose the expression of cereblon, suggesting that IMiDs act as an anti-myeloma agent through interacting with cereblon. Cereblon binds to damaged DNA-binding protein and functions as a ubiquitin ligase, inducing degradation of IKZF1 and IKZF3 that are essential transcription factors for B and T cell development. Degradation of both IKZF1 and IKZF3 reportedly suppresses myeloma cell growth. Here, we found that IMiDs act as inhibitors of DNA methyltransferases (DMNTs). We previously reported that PU.1, which is an ETS family transcription factor and essential for myeloid and lymphoid development, functions as a tumor suppressor in myeloma cells. PU.1 induces growth arrest and apoptosis of myeloma cell lines. In this study, we found that low-dose lenalidomide and pomalidomide up-regulate PU.1 expression through inducing demethylation of the PU.1 promoter. In addition, IMiDs inhibited DNMT1, DNMT3a, and DNMT3b activities in vitro. Furthermore, lenalidomide and pomalidomide decreased the methylation status of the whole genome in myeloma cells. Collectively, IMiDs exert demethylation activity through inhibiting DNMT1, 3a, and 3b, and up-regulating PU.1 expression, which may be one of the mechanisms of the anti-myeloma activity of IMiDs.

  6. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis.

    Science.gov (United States)

    Jaeger, Hanna M; Pehlke, Jens R; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M; Doeppner, Thorsten R

    2015-06-10

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling.Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84.Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished.In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  7. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  8. EFFECTS OF NOVEL PHOSPHODIESTERASE 4 INHIBITORS,ARIFLO AND SB242126A, ON ENDOTHELIN-1-INDUCED CONTRACTILITY OF ISOLATED HUMAN MYOMETRIUM

    Institute of Scientific and Technical Information of China (English)

    QI Hong(祁红); ZHANG Yong(张勇); CHEN Hong-zhuan(陈红专); Marie Jo LEROY; Charles ADVENIER

    2005-01-01

    Objective To investigate the effects of novel selective phosphodiesterase4 ( PDE4) inhibitors,Ariflo and SB242126A, on the endothelin-1 ( ET-1 ) - induced contractility occurring in nonpregnant human myometrium specimens. Methods Contractile responses to Ariflo and SB242126A were recorded cumulatively on isolated human longitudinal myometrium specimens obtained through surgical operations. Results Ariflo and SB242126A could inhibit both the frequency and amplitude of spontaneous contractions of myometrium (pD2 =8.6and 7. 6,n =4) and ET-1-induced contractions in a concentration-dependent manner (pD2 =7. 7 and 8. 1 ,n =5),with a potency similar to that of Rolipram. Conclusion Ariflo and SB242126A have an obvious inhibitory effect on endothelin-1-induced contractility of isolated human myometrium. The finding suggested that PDE4 inhibitors might have clinical potential in treating preterm labour and dysmenorrhoea.

  9. Effects of inhibitors of protein synthesis and intracellular transport on the gamma-aminobutyric acid agonist-induced functional differentiation of cultured cerebellar granule cells

    DEFF Research Database (Denmark)

    Belhage, B; Hansen, Gert Helge; Meier, E;

    1990-01-01

    The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological differenti......The effect of inhibitors of protein synthesis (actinomycin D, cycloheximide), proteases (leupeptin), and intracellular transport (colchicine, monensin) on the gamma-aminobutyric acid (GABA) agonist [4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP)]-induced changes in morphological...... of membranes for [3H]GABA binding assays. In some experiments the functional activity of the newly induced low-affinity GABA receptors was assessed by investigation of the ability of GABA to inhibit neurotransmitter release from the neurons. These experiments were performed to differentiate between...

  10. Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9

    International Nuclear Information System (INIS)

    The extracellular signal-regulated kinase-1 and 2 (ERK1/2) proteins play an important role in cancer cell proliferation and survival. ERK1/2 proteins also are important for normal cell functions. Thus, anti-cancer therapies that block all ERK1/2 signaling may result in undesirable toxicity to normal cells. As an alternative, we have used computational and biological approaches to identify low-molecular weight compounds that have the potential to interact with unique ERK1/2 docking sites and selectively inhibit interactions with substrates involved in promoting cell proliferation. Colony formation and water soluble tetrazolium salt (WST) assays were used to determine the effects of test compounds on cell proliferation. Changes in phosphorylation and protein expression in response to test compound treatment were examined by immunoblotting and in vitro kinase assays. Apoptosis was determined with immunoblotting and caspase activity assays. In silico modeling was used to identify compounds that were structurally similar to a previously identified parent compound, called 76. From this screen, several compounds, termed 76.2, 76.3, and 76.4 sharing a common thiazolidinedione core with an aminoethyl side group, inhibited proliferation and induced apoptosis of HeLa cells. However, the active compounds were less effective in inhibiting proliferation or inducing apoptosis in non-transformed epithelial cells. Induction of HeLa cell apoptosis appeared to be through intrinsic mechanisms involving caspase-9 activation and decreased phosphorylation of the pro-apoptotic Bad protein. Cell-based and in vitro kinase assays indicated that compounds 76.3 and 76.4 directly inhibited ERK-mediated phosphorylation of caspase-9 and the p90Rsk-1 kinase, which phosphorylates and inhibits Bad, more effectively than the parent compound 76. Further examination of the test compound's mechanism of action showed little effects on related MAP kinases or other cell survival proteins. These

  11. IgM natural autoantibodies against bromelain-treated mouse red blood cells recognise carbonic anhydrase.

    Science.gov (United States)

    Jonusys, A M; Cox, K O; Steele, E J

    1991-01-01

    Carbonic anhydrase (CA) from mouse erythrocyte membranes is recognised as an autoantigen in Western blotting experiments with FUB 1, a murine IgM monoclonal antibody that binds both phosphatidylcholine and bromelain-treated mouse red blood cells (BrMRBC). Serum from mice stimulated with lipopolysaccharide (LPS-serum) also recognises CA. From SDS-PAGE, and blotting experiments with whole mouse erythrocytes, we found two closely spaced glycoprotein bands in the 30 kD region that reacted with both FUB 1 and LPS-serum. One of the molecular weight markers, bovine carbonic anhydrase which is of a molecular weight of about 30 kD, electrophoresed in the same 30 kD region also reacted with these antibodies. Carbonic anhydrases from a range of mammalian species were found to be crossreactive with FUB 1 and LPS-serum by Western blotting, whereas human glycophorin A and human asialoglycophorin were not recognised by the antibodies. FUB 1 specifically recognises both native and denatured bovine carbonic anhydrase in ELISA assays. The serological identity of the determinants of CA and BrMRBC was confirmed by specific absorption of both FUB 1 and LPS-serum with BrMRBC and normal mouse erythrocytes. We propose that a native autoantigenic epitope on erythrocytes may be revealed by the proteolytic action of bromelain and that this determinant is associated, at least in part, with carbonic anhydrase.

  12. Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis.

    Science.gov (United States)

    Ohmi, Yuhsuke; Ise, Wataru; Harazono, Akira; Takakura, Daisuke; Fukuyama, Hidehiro; Baba, Yoshihiro; Narazaki, Masashi; Shoda, Hirofumi; Takahashi, Nobunori; Ohkawa, Yuki; Ji, Shuting; Sugiyama, Fumihiro; Fujio, Keishi; Kumanogoh, Atsushi; Yamamoto, Kazuhiko; Kawasaki, Nana; Kurosaki, Tomohiro; Takahashi, Yoshimasa; Furukawa, Koichi

    2016-01-01

    Rheumatoid arthritis (RA)-associated IgG antibodies such as anti-citrullinated protein antibodies (ACPAs) have diverse glycosylation variants; however, key sugar chains modulating the arthritogenic activity of IgG remain to be clarified. Here, we show that reduced sialylation is a common feature of RA-associated IgG in humans and in mouse models of arthritis. Genetically blocking sialylation in activated B cells results in exacerbation of joint inflammation in a collagen-induced arthritis (CIA) model. On the other hand, artificial sialylation of anti-type II collagen antibodies, including ACPAs, not only attenuates arthritogenic activity, but also suppresses the development of CIA in the antibody-infused mice, whereas sialylation of other IgG does not prevent CIA. Thus, our data demonstrate that sialylation levels control the arthritogenicity of RA-associated IgG, presenting a potential target for antigen-specific immunotherapy. PMID:27046227

  13. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation.

    Science.gov (United States)

    Oliveri, Valentina; Attanasio, Francesco; Puglisi, Antonino; Spencer, John; Sgarlata, Carmelo; Vecchio, Graziella

    2014-07-14

    Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.

  14. Inhibitors from Carob (Ceratonia siliqua L.): II. Effect on Growth Induced by Indoleacetic Acid or Gibberellins A(1), A(4), A(5), and A(7).

    Science.gov (United States)

    Corcoran, M R

    1970-10-01

    Two inhibitory fractions (B(1) and C) from extracts of immature fruit of carob were tested for their ability to inhibit the action of indoleacetic acid (IAA) in three bioassays. There was no reduction of IAA-induced reactions in the Avena curvature test, abscission of debladed coleus petioles, or growth of cucumber hypocotyls. The highest ratio of inhibitor to IAA was 10,000 times greater than the ratio necessary to inhibit by 50% the growth caused by an equivalent amount of gibberellin A(3) in pea seedlings. At the highest concentration used, fraction C alone caused curvature of Avena coleoptiles. The inhibitory fractions appeared to enhance the effect of IAA in the cucumber test.Concentrated whole extract and fractions B(1) and C were tested for reduction of growth caused by gibberellins A(1), A(4), A(5), A(7), and a neutral gibberellin-like substance from beans in the dwarf-5 maize bioassay. Each gibberellin was inhibited and required the same amount of inhibitor for a 50% reduction of the induced growth. The inhibiting effect could be completely overcome by increasing the amount of gibberellin while maintaining the same concentration of inhibitor. Fractions B(1) and C were also tested with gibberellins A(2) and A(4) in the cucumber hypocotyl test. Both inhibitory fractions reduced growth but were more effective against gibberellin A(3) than gibberellin A(4) in the assay. The ability to reduce gibberellin-induced growth and not reduce IAA-induced growth indicates that the inhibitors from carob have a greater specificity of action than that previously reported for any inhibitor.

  15. In vivo examination of hydroxyurea and the novel ribonucleotide reductase inhibitors trimidox and didox in combination with the reverse transcriptase inhibitor abacavir: suppression of retrovirus-induced immunodeficiency disease.

    Science.gov (United States)

    Sumpter, L Ryan; Inayat, Mohammed S; Yost, Erin E; Duvall, William; Hagan, Espen; Mayhew, Christopher N; Elford, Howard L; Gallicchio, Vincent S

    2004-06-01

    Inhibition of ribonucleotide reductase (RR) has gained attention as a potential strategy for HIV-1 therapy through the success of hydroxyurea (HU) to potentiate the activity of the nucleoside reverse transcriptase inhibitor (NRTI) didanosine (ddI) in clinical trials. However, the use of HU has been limited by its development of hematopoietic toxicity. In this study, the novel RR inhibitors didox (DX; 3,4-dihydroxybenzohydroxamic acid), and trimidox (TX; 3,4,5-trihydroxybenzamidoxime) were evaluated along with HU for anti-retroviral efficacy in LPBM5-induced retro-viral disease (MAIDS) both as monotherapeutic regimens and in combination with the guanine containing NRTI abacavir (ABC). Anti-retroviral drug efficacy was determined by measuring inhibition of splenomegaly, hypergammaglobulinemia, and splenic levels of proviral DNA. In this study, all RRIs tested showed the ability to improve the efficacy of ABC in the MAIDS model by reducing splenomegaly, hypergammaglobulinemia, and splenic proviral DNA levels. PMID:15130534

  16. Complexes With Biologically Active Ligands. Part 111. Synthesis and Carbonic Anhydrase Inhibitory Activity of Metal Complexes of 4,5-Disubstituted-3-Mercapto-1,2,4-Triazole Derivatives

    Science.gov (United States)

    Scozzafava, Andrea; Cavazza, Christine; Saramet, Ioana; Briganti, Fabrizio; Banciu, Mircea D.

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma. PMID:18475819

  17. Complexes with biologically active ligands. Part 11. Synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercapto-1,2,4-triazole derivatives.

    Science.gov (United States)

    Scozzafava, A; Cavazza, C; Supuran, C T; Saramet, I; Briganti, F; Banciu, M D

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma.

  18. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization.

    Science.gov (United States)

    Ozensoy Guler, Ozen; Capasso, Clemente; Supuran, Claudiu T

    2016-10-01

    In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caused by pathogenic agents such as bacteria, fungi and protozoa. Inhibition studies of CAs identified in the genome of the aforementioned organisms might lead to the discovery of innovative drugs with a novel mechanism of action. PMID:26118417

  19. Carbonic anhydrase isozymes Ⅸ and Ⅻ in gastric tumors

    Institute of Scientific and Technical Information of China (English)

    Mari Leppilampi; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivel(a); Silvia Pastorekov(a); Jaromir Pastorek; Abdul Waheed; William S. Sly; Seppo Parkkila

    2003-01-01

    AIM: To systematically study the expression of carbonic anhydrase (CA) isowmes Ⅸ and Ⅻ in gastric tumors.METHODS: We analyzed a representative series of specimens from non-neoplastic gastric mucosa and from various dysplastic and neoplastic gastric lesions for the expression of CA IX and XII. Immunohistochemical staining was performed using isozyme-specific antibodies and biotinstreptavidin complex method.RESULTS: CA IX was highly expressed in the normal gastric mucosa and remained positive in many gastric tumors. In adenomas, CA IX expression significantly decreased towards the high grade dysplasia. However, the expression resumed back to the normal level in well differentiated adenocarcinomas,while it again declined in carcinomas with less differentiation.In comparison, CA Ⅻ showed no or weak immunoreaction in the normal gastric mucosa and was slightly increased in tumors.CONCLUSION: These results demonstrate that CA Ⅸexpression is sustained in several types of gastric tumors.The variations observed in the CA Ⅸ levels support the concept that gastric adenomas and carcinomas are distinct entities and do not represent progressive steps of a single pathway.

  20. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    Science.gov (United States)

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent. PMID:24856780

  1. Role of phosphodiesterase inhibitor Ibudilast in morphine-induced hippocampal injury

    Directory of Open Access Journals (Sweden)

    Mohsen Zhaleh

    2014-07-01

    Full Text Available Abstract: Background: Opioid drugs are used in the treatment of acute post-surgical pain and chronic pain, such as those associated with cancer. Opioid used is associated with complications such as analgesic tolerance, dependence and opioid abuse. The molecular mechanisms of unwanted opioid responses are varied but recent advances have highlighted elevations in pro-inflammatory cytokines and pro-inflammatory glial following chronic administration of morphine. In this study we investigated the neurodegenerative effects of morphine through its effects on Toll-Like Receptor 4 (TLR4 in the male rat hippocampus and evaluated the level of Interleukin-1 beta (IL-1β. Then we compared the difference between inhibitory effects on mu opioid receptors (by β-Funaltrexamine, β-FNA and TLR4 (by Ibudilast. Subsequently, we assessed the amount of IL-1β and the number of granular cells in male rat hippocampus. Methods: Adult male rats (n=24 were treated with sucrose, morphine, Ibudilast (7.5 mg/kg and β-FNA (20 mg/kg for 30 days. Their brains were isolated and hemisected with one hippocampus for granular cell and the other used for IL-1 β immunoblotting. Results: Data showed that Ibudilast suppresses IL-1 β expression significantly more than β-FNA. The granular cell count displayed significant differences. Conclusions: Our results suggested that Ibudilast can be used for controlling and treatment of morphine-induced CNS inflammations or traumatic conditions.

  2. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice.

    Science.gov (United States)

    de Boer, Johannes D; Berkhout, Lea C; de Stoppelaar, Sacha F; Yang, Jack; Ottenhoff, Roelof; Meijers, Joost C M; Roelofs, Joris J T H; van't Veer, Cornelis; van der Poll, Tom

    2015-10-15

    Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.

  3. Salubrinal acts as a Dusp2 inhibitor and suppresses inflammation in anti-collagen antibody-induced arthritis.

    Science.gov (United States)

    Hamamura, Kazunori; Nishimura, Akinobu; Chen, Andy; Takigawa, Shinya; Sudo, Akihiro; Yokota, Hiroki

    2015-04-01

    Dual-specificity phosphatase 2 (Dusp2; also called phosphatase of activated cells 1, PAC1) is highly expressed in activated immune cells. We examined whether a potential inhibitor of Dusp2, salubrinal, prevents inflammatory cytokine expression in immune cells and arthritic responses in a mouse model of anti-collagen antibody-induced arthritis (CAIA). Salubrinal is a synthetic chemical that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). In this study, we examined the effects of salubrinal on expression of inflammation linked genes as well as a family of DUSP genes using genome-wide microarrays, qPCR, and RNA interference. We also evaluated the effects of salubrinal on arthritic responses in CAIA mice using clinical and histological scores. The results revealed that salubrinal decreased inflammatory gene expression in macrophages, T lymphocytes, and mast cells. Dusp2 was suppressed by salubrinal in LPS-activated macrophages as well as PMA/ionomycin-activated T lymphocytes and mast cells. Furthermore, a partial silencing of Dusp2 downregulated IL1β and Cox2, and the inflammatory signs of CAIA mice were significantly suppressed by salubrinal. Collectively, this study presents a novel therapeutic possibility of salubrinal for inflammatory arthritis such as RA through inhibition of Dusp2. PMID:25619567

  4. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

    Science.gov (United States)

    Aragoneses-Fenoll, L; Montes-Casado, M; Ojeda, G; Acosta, Y Y; Herranz, J; Martínez, S; Blanco-Aparicio, C; Criado, G; Pastor, J; Dianzani, U; Portolés, P; Rojo, J M

    2016-04-15

    Class IA phosphoinositide 3-kinases (PI3Ks) are essential to function of normal and tumor cells, and to modulate immune responses. T lymphocytes express high levels of p110α and p110δ class IA PI3K. Whereas the functioning of PI3K p110δ in immune and autoimmune reactions is well established, the role of p110α is less well understood. Here, a novel dual p110α/δ inhibitor (ETP-46321) and highly specific p110α (A66) or p110δ (IC87114) inhibitors have been compared concerning T cell activation in vitro, as well as the effect on responses to protein antigen and collagen-induced arthritis in vivo. In vitro activation of naive CD4(+) T lymphocytes by anti-CD3 and anti-CD28 was inhibited more effectively by the p110δ inhibitor than by the p110α inhibitor as measured by cytokine secretion (IL-2, IL-10, and IFN-γ), T-bet expression and NFAT activation. In activated CD4(+) T cells re-stimulated through CD3 and ICOS, IC87114 inhibited Akt and Erk activation, and the secretion of IL-2, IL-4, IL-17A, and IFN-γ better than A66. The p110α/δ inhibitor ETP-46321, or p110α plus p110δ inhibitors also inhibited IL-21 secretion by differentiated CD4(+) T follicular (Tfh) or IL-17-producing (Th17) helper cells. In vivo, therapeutic administration of ETP-46321 significantly inhibited responses to protein antigen as well as collagen-induced arthritis, as measured by antigen-specific antibody responses, secretion of IL-10, IL-17A or IFN-γ, or clinical symptoms. Hence, p110α as well as p110δ Class IA PI3Ks are important to immune regulation; inhibition of both subunits may be an effective therapeutic approach in inflammatory autoimmune diseases like rheumatoid arthritis.

  5. The tyrosine kinase inhibitor, sunitinib malate, induces cognitive impairment in vivo via dysregulating VEGFR signaling, apoptotic and autophagic machineries.

    Science.gov (United States)

    Abdel-Aziz, Amal Kamal; Mantawy, Eman M; Said, Riham Soliman; Helwa, Reham

    2016-09-01

    Chemobrain refers to a cluster of cognitive deficits which affects almost 4-75% of chemotherapy-treated cancer patients. Sunitinib, an FDA-approved multityrosine kinase inhibitor, is currently used in treating different types of tumors. Despite being regarded as targeted therapy which blunts sustained angiogenesis in cancer milieu through inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling, the latter has a cardinal role in cognition. Recent clinical reports warned that sunitinib adversely affected memory processing in cancer patients. Nevertheless, the underlying mechanisms have not been investigated yet. Hence, we explored the impact of a clinically relevant dose of sunitinib on memory processing in vivo and questioned the implication of VEGFR2 signaling, autophagy and apoptosis. Strikingly, sunitinib preferentially impaired spatial cognition as evidenced in Morris water maze, T-maze and passive avoidance task. Consistently, sunitinib degenerated cortical and hippocampal neurons as assessed by histopathological examination and toluidine blue staining. Ultrastructural examination also depicted chromatin condensation, mitochondrial damage and accumulated autophagosomes. Digging deeper, central VEGF/VEGFR2/mTOR signaling was robustly suppressed. Besides, sunitinib boosted cortical and hippocampal p53 and executioner caspase-3 and decreased nuclear factor kappa B and Bcl-2 levels promoting apoptotic cell death. It also profoundly impeded neuronal autophagic flux as shown by decreased beclin-1 and Atg5 and increased p62/SQTSM1 levels. To our knowledge, this is the first study to provide molecular insights into sunitinib-induced chemofog where impeded VEGFR2 signaling and autophagic and hyperactivated apoptotic machineries act in neurodegenerative concert. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the management of sunitinib-induced chemobrain. PMID:27288242

  6. The effects of monoamine oxidase inhibitors on the ejaculatory response induced by 5-methoxy-N,N-dimethyltryptamine in the rat.

    Science.gov (United States)

    Rényi, L

    1986-08-01

    The ejaculatory response and other components of the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (3 mg kg-1, i.p.) were studied following single and repeated treatment of rats with eight different monoamine oxidase (MAO) inhibitors. Single and repeated treatment with the 5-HT agonist 5-MeODMT, and with low doses of the potent releaser of 5-HT, p-chloroamphetamine (PCA) were also included in the study. Repeated but not single treatment with 5-MeODMT reduced strongly but reversibly the ejaculatory response and the behavioural responses. Repeated but not single treatment with the nonselective and irreversible MAO inhibitors nialamide and pargyline reduced markedly the ejaculatory response but only slightly the 5-HT behavioural responses. Repeated treatment with the irreversible MAO-B inhibitor (-)-deprenyl, with the irreversible MAO-A inhibitor, clorgyline, with the reversible MAO-A inhibitor moclobemide, and with low doses of PCA did not affect either of the responses. Repeated but not single combined treatment with clorgyline plus PCA caused an almost complete blockade of all the four responses. The selective and reversible MAO-A inhibitors (as well as 5-HT releasers) amiflamine, alpha-ethyltryptamine, and alpha-methyltryptamine reduced markedly the ejaculatory response after both single and repeated treatments. The behavioural responses were blocked only after repeated treatment. It is concluded that single and repeated treatments of rats with different MAO inhibitors do not produce a common alteration in 5-HT2 receptor functions. Repeated treatment with 5-MeODMT caused a blockade of 75-95% of the ejaculatory response and 5-HT behavioural responses. A similar strong blockade was only produced by the combined effect of MAO-A inhibition and 5-HT release. PMID:3091132

  7. Andrographolide, a Novel NF-κB Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2013-01-01

    Full Text Available Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH oxidase (Nox inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.

  8. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340).

    Science.gov (United States)

    Foda, H D; Rollo, E E; Drews, M; Conner, C; Appelt, K; Shalinsky, D R; Zucker, S

    2001-12-01

    Mechanical ventilation has become an indispensable therapeutic modality for patients with respiratory failure. However, a serious potential complication of MV is the newly recognized ventilator-induced acute lung injury. There is strong evidence suggesting that matrix metalloproteinases (MMPs) play an important role in the development of acute lung injury. Another factor to be considered is extracellular matrix metalloproteinase inducer (EMMPRIN). EMMPRIN is responsible for inducing fibroblasts to produce/secrete MMPs. In this report we sought to determine: (1) the role played by MMPs and EMMPRIN in the development of ventilator-induced lung injury (VILI) in an in vivo rat model of high volume ventilation; and (2) whether the synthetic MMP inhibitor Prinomastat (AG3340) could prevent this type of lung injury. We have demonstrated that high volume ventilation caused acute lung injury. This was accompanied by an upregulation of gelatinase A, gelatinase B, MT1-MMP, and EMMPRIN mRNA demonstrated by in situ hybridization. Pretreatment with the MMP inhibitor Prinomastat attenuated the lung injury caused by high volume ventilation. Our results suggest that MMPs play an important role in the development of VILI in rat lungs and that the MMP-inhibitor Prinomastat is effective in attenuating this type of lung injury. PMID:11726397

  9. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  10. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  11. JAK Inhibitors AG-490 and WHI-P154 Decrease IFN- γ -Induced iNOS Expression and NO Production in Macrophages

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In inflammation, inducible nitric oxide synthase (iNOS produces nitric oxide (NO, which modulates inflammatory processes. We investigated the effects of Janus kinase (JAK inhibitors, AG-490 and WHI-P154, on iNOS expression and NO production in J774 murine macrophages stimulated with interferon- γ (IFN- γ . JAK inhibitors AG-490 and WHI-P154 decreased IFN- γ -induced nuclear levels of signal transducer and activator of transcription 1 α (STAT1 α . JAK inhibitors AG-490 and WHI-P154 decreased also iNOS protein and mRNA expression and NO production in a concentration-dependent manner. Neither of the JAK inhibitors affected the decay of iNOS mRNA when determined by actinomycin D assay. Our results suggest that the inhibition of JAK-STAT1-pathway by AG-490 or WHI-P154 leads to the attenuation of iNOS expression and NO production in IFN- γ -stimulated macrophages.

  12. alpha-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes.

    Science.gov (United States)

    Burtin, D; Martin-Tanguy, J; Tepfer, D

    1991-02-01

    alpha-dl-Difluoromethylarginine (DFMA) and alpha-dl-difluoromethylornithine (DFMO), specific irreversible inhibitors of putrescine biosynthesis were applied to Nicotiana tabacum var. Xanthi nc during floral induction. DFMO, but not DFMA, induced a phenotype in tobacco that resembles the transformed phenotype attributed to the root-inducing, left-hand, transferred DNA of Agrobacterium rhizogenes, including wrinkled leaves, shortened internodes, reduced apical dominance, and retarded flowering. Similar treatment of transformed plants (T phenotype) accentuated their phenotypic abnormalities. Cyclohexylammonium and methylglyoxal bis (guanylhydrazone), inhibitors of spermidine and spermine biosynthesis, produced reproductive abnormalities, but did not clearly mimic the transformed phenotype. This work strengthens the previously reported correlation between the degree of expression of the transformed phenotype due to the root-inducing, left-hand, transferred DNA and inhibition of polyamine accumulation, strongly suggesting that genes carried by the root-inducing, transferred DNA may act through interference with polyamine production via the ornithine pathway.

  13. α-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes

    Science.gov (United States)

    Burtin, D.; Martin-Tanguy, J.; Tepfer, D.

    1991-01-01

    α-dl-Difluoromethylarginine (DFMA) and α-dl-difluoromethylornithine (DFMO), specific irreversible inhibitors of putrescine biosynthesis were applied to Nicotiana tabacum var. Xanthi nc during floral induction. DFMO, but not DFMA, induced a phenotype in tobacco that resembles the transformed phenotype attributed to the root-inducing, left-hand, transferred DNA of Agrobacterium rhizogenes, including wrinkled leaves, shortened internodes, reduced apical dominance, and retarded flowering. Similar treatment of transformed plants (T phenotype) accentuated their phenotypic abnormalities. Cyclohexylammonium and methylglyoxal bis (guanylhydrazone), inhibitors of spermidine and spermine biosynthesis, produced reproductive abnormalities, but did not clearly mimic the transformed phenotype. This work strengthens the previously reported correlation between the degree of expression of the transformed phenotype due to the root-inducing, left-hand, transferred DNA and inhibition of polyamine accumulation, strongly suggesting that genes carried by the root-inducing, transferred DNA may act through interference with polyamine production via the ornithine pathway. Images Figure 1 PMID:16668006

  14. Synthesis 4-[2-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-ethyl]-benzenesulfonamides with subnanomolar carbonic anhydrase II and XII inhibitory properties.

    Science.gov (United States)

    Bozdag, Murat; Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Alasmary, Fatmah A S; Supuran, Claudiu T

    2016-09-15

    Condensation of substituted anthranilic acids with 4-isothiocyanatoethyl-benzenesulfonamide led to series of heterocyclic benzenesulfonamides incorporating 2-mercapto-quinazolin-4-one tails. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA XII (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides acted as medium potency inhibitors of hCA I (KIs of 28.5-2954nM), being highly effective as hCA II (KIs in the range of 0.62-12.4nM) and XII (KIs of 0.54-7.11nM) inhibitors. All substitution patterns present in these compounds (e.g., halogens, methyl and methoxy moieties, in positions 6, 7 and/or 8 of the 2-mercapto-quinazolin-4-one ring) led to highly effective hCA II/XII inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of isoforms CA II and XII is dysregulated. PMID:27396930

  15. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Directory of Open Access Journals (Sweden)

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  16. Dynamic changes in the expression of matrix metalloproteinases and their inhibitors, TIMPs, during hepatic fibrosis induced by alcohol in rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Fu Xu; Peng-Tao Li; Xin-Yue Wang; Xu Jia; De-Lu Tian; Liang-Duo Jiang; Jin-Xiang Yang

    2004-01-01

    AIM: To determine the dynamic changes in the expression of matrix metalloproteinases (MMPs) and the endogenous tissue inhibitors of MMPs inhibitors (TIMPs) during hepatic fibrosis induced by alcohol.METHODS: Male Sprague-Dawley rats were randomly divided into normal, 4 d, 2 wk, 4 wk, 9 wkand 11 wk groups, and the model rats were fed with a mixture of alcohol by gastric infusion at the designed time, respectively, then decollated and their livers were harvested for the examination of MMP2, MMP-3, MMP-9, MMP-13, TIMP-1 and TIMP-2 by immunohistochemistry, zymograghy and Westem blotting, respectively.RESULTS: Normal rats had moderate expression of MMP-2,which was decreased in the model rats except in the 11 wk group, where MMP-2 expression slightly increased. MMP-3had the similar changing pattern to MMP-2 despite weaker expression. MMP-9 expression decreased in the 4 d and 2 wk groups, rose in the 4 wk group, decreased again in the 9 wk group and returned to normal levels in the 11 wk group.MMP-13 expression decreased in the 4 d and 2 wk groups,and returned to normal levels in the 4 wk, 9 wk and 11 wk groups. TIMP-1 expression decreased in the 4 d and 2 wk groups, but sharply increased in the 4 wk group and sustained at a high level even after modeling was stopped for 2 wk. In normal rats TIMP-2 expression was strong. However, it decreased as soon as modeling began, and then gradually rose, but remained to a level lower than that in normal rats even after modeling was stopped for 2 wk.CONCLUSION: MMP-2 may not always expresses at a high level during hepatic fibrosis. MMP-13 and MMP-3 are acutely affected by TIMP-1. In this model TIMP-1 is the most powerful factor imposed on capillarization and peri-sinusoidal fibrosis. TIMP-2 is the most effective regulator on the metabolism of type IV collagen located in the basement of sinus.

  17. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    Science.gov (United States)

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression

  18. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  19. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    Science.gov (United States)

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression

  20. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rooswinkel Rogier

    2009-10-01

    Full Text Available Abstract Background Gossypol, a naturally occurring polyphenolic compound has been identified as a small molecule inhibitor of anti-apoptotic Bcl-2 family proteins. It induces apoptosis in a wide range of tumor cell lines and enhances chemotherapy- and radiation-induced cytotoxicity both in vitro and in vivo. Bcl-2 and related proteins are important inhibitors of apoptosis and frequently overexpressed in human tumors. Increased levels of these proteins confer radio- and chemoresistance and may be associated with poor prognosis. Consequently, inhibition of the anti-apoptotic functions of Bcl-2 family members represents a promising strategy to overcome resistance to anticancer therapies. Methods We tested the effect of (--gossypol, also denominated as AT-101, radiation and the combination of both on apoptosis induction in human leukemic cells, Jurkat T and U937. Because activation of the SAPK/JNK pathway is important for apoptosis induction by many different stress stimuli, and Bcl-XL is known to inhibit activation of SAPK/JNK, we also investigated the role of this signaling cascade in AT-101-induced apoptosis using a pharmacologic and genetic approach. Results AT-101 induced apoptosis in a time- and dose-dependent fashion, with ED50 values of 1.9 and 2.4 μM in Jurkat T and U937 cells, respectively. Isobolographic analysis revealed a synergistic interaction between AT-101 and radiation, which also appeared to be sequence-dependent. Like radiation, AT-101 activated SAPK/JNK which was blocked by the kinase inhibitor SP600125. In cells overexpressing a dominant-negative mutant of c-Jun, AT-101-induced apoptosis was significantly reduced. Conclusion Our data show that AT-101 strongly enhances radiation-induced apoptosis in human leukemic cells and indicate a requirement for the SAPK/JNK pathway in AT-101-induced apoptosis. This type of apoptosis modulation may overcome treatment resistance and lead to the development of new effective combination

  1. AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Gossypol, a naturally occurring polyphenolic compound has been identified as a small molecule inhibitor of anti-apoptotic Bcl-2 family proteins. It induces apoptosis in a wide range of tumor cell lines and enhances chemotherapy- and radiation-induced cytotoxicity both in vitro and in vivo. Bcl-2 and related proteins are important inhibitors of apoptosis and frequently overexpressed in human tumors. Increased levels of these proteins confer radio- and chemoresistance and may be associated with poor prognosis. Consequently, inhibition of the anti-apoptotic functions of Bcl-2 family members represents a promising strategy to overcome resistance to anticancer therapies. We tested the effect of (-)-gossypol, also denominated as AT-101, radiation and the combination of both on apoptosis induction in human leukemic cells, Jurkat T and U937. Because activation of the SAPK/JNK pathway is important for apoptosis induction by many different stress stimuli, and Bcl-XL is known to inhibit activation of SAPK/JNK, we also investigated the role of this signaling cascade in AT-101-induced apoptosis using a pharmacologic and genetic approach. AT-101 induced apoptosis in a time- and dose-dependent fashion, with ED50 values of 1.9 and 2.4 μM in Jurkat T and U937 cells, respectively. Isobolographic analysis revealed a synergistic interaction between AT-101 and radiation, which also appeared to be sequence-dependent. Like radiation, AT-101 activated SAPK/JNK which was blocked by the kinase inhibitor SP600125. In cells overexpressing a dominant-negative mutant of c-Jun, AT-101-induced apoptosis was significantly reduced. Our data show that AT-101 strongly enhances radiation-induced apoptosis in human leukemic cells and indicate a requirement for the SAPK/JNK pathway in AT-101-induced apoptosis. This type of apoptosis modulation may overcome treatment resistance and lead to the development of new effective combination therapies

  2. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  3. Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1

    OpenAIRE

    Polier, G; Ding, J.; Konkimalla, B V; Eick, D; Ribeiro, N.; Köhler, R.; Giaisi, M; Efferth, T.; Desaubry, L; Krammer, P.H.; Li-Weber, M

    2011-01-01

    The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent ...

  4. Can selective inhibitors of cyclic guanosine monophosphate (cGMP)-specific phosphadiesterase type 5 (PDE 5) offer protection against contrast induced nephropathy?

    OpenAIRE

    Morcos, Sameh K.

    2014-01-01

    Parenchymal hypoxia within the renal outer medulla plays an important role in the pathogenesis of contrast induced nephropathy (CIN). Nitric oxide (NO) is crucial for medullary oxygenation by enhancing regional blood flow. Augmenting the effect of NO in the renal medulla by the use of selective inhibitors of cyclic guanosine monophosphate (cGMP)-specific phosphadiesterase type 5 (PDE 5) such as sildenafil (Viagra™), vardenafil (Levitra™) or tadalafil (Cialis™) could reduce the severity of the...

  5. The use of aminoguanidine, a selective inducible nitric oxide synthase inhibitor, to evaluate the role of nitric oxide on periapical healing

    OpenAIRE

    Ali Reza Farhad; Seyed Mohammad Razavi; Parnian Alavi Nejad

    2011-01-01

    Background: Nitric oxide (NO) is one of the many chemical mediators involved in inflammatory processes. In addition to periapical inflammation, NO can have a role in periapical healing. The purpose of this study was to evaluate the effect of aminoguanidine (AG) as a selective inhibitor of inducible nitric oxide synthase (iNOS) on the degree of healing response of periapical lesions of the canine teeth of cats. Methods: In this interventional experimental study, the root canals of 48 cat c...

  6. Effect of Synthetic Matrix Metalloproteinase Inhibitors on Lipopolysaccharide-Induced Blood-Brain Barrier Opening in Rodents: Differences in Response Based on Strains and Solvents

    OpenAIRE

    Rosenberg, Gary A; Estrada, Eduardo Y.; Mobashery, Shahriar

    2006-01-01

    Matrix metalloproteinase inhibitors (MMPIs) reduce blood-brain barrier (BBB) disruption and prevent cell death. Animal models of multiple sclerosis, cerebral ischemia and hemorrhage, and bacterial meningitis respond to treatment with MMPIs. We have used the intracerebral injection of lipopolysaccharide (LPS) in rat, which induces MMP production and results in a delayed opening of the BBB, to screen MMPIs to identify therapeutic agents. We hypothesized that the mouse would respond similarly to...

  7. Inhibition of Heat-Stable Toxin-Induced Intestinal Salt and Water Secretion by a Novel Class of Guanylyl Cyclase C Inhibitors

    OpenAIRE

    Bijvelds, Marcel J. C.; Loos, Michaela; Bronsveld, Inez; Hellemans, Ann; Bongartz, Jean-Pierre; Ver Donck, Luc; Cox, Eric; de Jonge, Hugo R; Schuurkes, Jan A J; De Maeyer, Joris H

    2015-01-01

    BACKGROUND: Many enterotoxigenic Escherichia coli strains produce the heat-stable toxin, STa, which, by activation of the intestinal receptor-enzyme guanylyl cyclase (GC) C, triggers an acute, watery diarrhea. We set out to identify GCC inhibitors that may be of benefit for the treatment of infectious diarrheal disease. METHODS: Compounds that inhibit STa-induced cyclic guanosine 3',5'-monophosphate (cGMP) production were selected by performing cyclase assays on cells and membranes containing...

  8. Saturated- and n-6 Polyunsaturated-Fat Diets Each Induce Ceramide Accumulation in Mouse Skeletal Muscle: Reversal and Improvement of Glucose Tolerance by Lipid Metabolism Inhibitors

    OpenAIRE

    Frangioudakis, G.; J. Garrard; Raddatz, K.; Nadler, J L; Mitchell, T. W.; Schmitz-Peiffer, C.

    2010-01-01

    Lipid-induced insulin resistance is associated with intracellular accumulation of inhibitory intermediates depending on the prevalent fatty acid (FA) species. In cultured myotubes, ceramide and phosphatidic acid (PA) mediate the effects of the saturated FA palmitate and the unsaturated FA linoleate, respectively. We hypothesized that myriocin (MYR), an inhibitor of de novo ceramide synthesis, would protect against glucose intolerance in saturated fat-fed mice, while lisofylline (LSF), a funct...

  9. Phorbol ester induces the biosynthesis of glycosylated and nonglycosylated plasminogen activator inhibitor 2 in high excess over urokinase-type plasminogen activator in human U-937 lymphoma cells

    OpenAIRE

    1987-01-01

    The tumor-promoting phorbol ester PMA induces changes in the histiocytic human lymphoma cell line U-937 akin to cellular differentiation (Ralph, P., N. Williams, M. A. S. Moore, and P. B. Litcofsky, 1982, Cell. Immunol., 71:215-223) and concomitantly stimulates the biosynthesis of plasminogen activator inhibitor 2 (PAI 2) and of urokinase-type plasminogen activator (u-PA). PAI 2 is found in a nonglycosylated intracellular and a glycosylated secreted form. The former appears to be identical to...

  10. Carbonic Anhydrase II Deficiency in a Saudi Woman

    Science.gov (United States)

    Alhuzaim, Omar N; Almohareb, Ohoud M; Sherbeeni, Safiya M

    2015-01-01

    OBJECTIVE Carbonic anhydrase (CA) II deficiency is a rare autosomal recessive disorder caused by mutation in the CA II gene that leads to osteopetrosis, renal tubular acidosis (RTA), and cerebral calcification. Our aim is to present a patient with the classic triad of CA II deficiency syndrome to enhance the awareness about this rare syndrome. METHODS We describe the clinical and radiological findings of a Saudi woman patient with CA II deficiency syndrome. RESULTS A Saudi woman in her 20s presented to our hospital for evaluation of increased bone density. She was known to have delayed developmental milestone with growth retardation and poor scholastic performance. She had multiple fragile fractures started at the age of 15 involving the lower extremities. A physical examination revealed dysmorphic features and intellectual disability with intelligence quotient (IQ) of 36. The initial blood workup showed a picture of distal RTA with hypokalemia, and the radiological imaging confirmed the presence of osteopetrosis and multiple kidney stones. The combination of osteopetrosis with RTA raised the possibility of CA II deficiency. Therefore, computed tomography (CT) of the brain was done and showed intracranial calcification involving the basal ganglia. She was started on potassium chloride and sodium bicarbonate. In addition, she underwent right-sided percutaneous nephrolithotripsy. Her DNA analysis came to show a sequence variant c.232+1G>A, which was detected in both of the CA II genes (homozygous). CONCLUSION Early recognition of the disease is a key, as an early appropriate treatment institution is essential in order to prevent further complications. PMID:25674028

  11. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells.

    Science.gov (United States)

    Yang, Liyan; Liang, Qiannan; Shen, Ke; Ma, Li; An, Na; Deng, Weiping; Fei, Zhewei; Liu, Jianwen

    2015-04-01

    Epigenetic mutations are closely associated with human diseases, especially cancers. Among them, dysregulations of histone deacetylases (HDACs) are commonly observed in human cancers. Recent years, HDAC inhibitors have been identified as promising anticancer agents; several HDAC inhibitors have been applied in clinical practice. In this study, we synthesized a novel N-hydroxyacrylamide-derived HDAC inhibitor, I-7ab, and examined its antitumor activity. Our investigations demonstrated that I-7ab exerted cytotoxicity toward and inhibited the growth of human cancer cell lines at micromolar concentrations. Among tested cells, HCT116 was the most sensitive one to the treatment of I-7ab. However, I-7ab displayed far less cytotoxicity in human normal cells. In HCT116 cells, I-7ab inhibited the expression of class I HDACs, especially that of HDAC3, and suppressed EGFR signaling pathway. With respect to the cytotoxic effect of I-7ab, it induced apoptosis via increasing the Bax/Bcl-2 ratio and suppressing the translocation of NF-κB. Other than inducing apoptosis, I-7ab inhibited the expression of cyclin B1 and thereby arrests cell cycle progression at G2/M phase. Further analyses revealed potential role of p53 and p21 in I-7ab-induced apoptosis and cell cycle arrest. According to our findings, I-7ab may serve as a lead compound for potential antitumor drugs.

  12. β-Secretase inhibitor increases amyloid-β precursor protein level in rat brain cortical primary neurons induced by okadaic acid

    Institute of Scientific and Technical Information of China (English)

    YU Chun-Jiang; WANG Wei-zhi; LIU Wei

    2008-01-01

    Background Senile plaques and neurofibrillary tangles (NFTs) represent two of the major histopathological hallmarks of Alzheimer's disease (AD). The plaques are primarily composed of aggregated amyloid β (Aβ) peptides. The processing of amyloid-β precursor protein (AβPP) in okadaic acid (OA)-induced tau phosphorylation primary neurons was studied.Methods Primary cultures of rat brain cortical neurons were treated with OA and β-secretase inhibitor. Neurons' viability was measured. AβPP processing was examined by immunocytochemistry and Western blotting with specific antibodies against the AβPP-N-terminus (NT) and AβPP-C-terminus (CT).Results Ten nrnol/L OA had a time-dependent suppression effect on primary neurons' viability. The suppression effect was alleviated markedly by pretreatment with β-secretase inhibitor. After OA treatment, both AβPP and β-C-terminal fragment (βCTF) were significantly increased in neurons. AβPP level was increased further in neurons pretreated with β-secretase inhibitor.Conclusions In OA-induced tau phosphorylation cell model, inhibition of β-secretase may protect neurons from death induced by OA. Because of increased accumulation of AβPP in neurons after OA treatment, more AβPP turns to be cleaved by β-secretase, producing neurotoxic βCTF. As a potential effective therapeutic target, β-secretase is worth investigating further.

  13. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  14. p53 mediates cigarette smoke-induced apoptosis of pulmonary endothelial cells: inhibitory effects of macrophage migration inhibitor factor.

    Science.gov (United States)

    Damico, Rachel; Simms, Tiffany; Kim, Bo S; Tekeste, Zenar; Amankwan, Henry; Damarla, Mahendra; Hassoun, Paul M

    2011-03-01

    Exposure to cigarette smoke (CS) is the most common cause of emphysema, a debilitating pulmonary disease histopathologically characterized by the irreversible destruction of lung architecture. Mounting evidence links enhanced endothelial apoptosis causally to the development of emphysema. However, the molecular determinants of human endothelial cell apoptosis and survival in response to CS are not fully defined. Such determinants could represent clinically relevant targets for intervention. We show here that CS extract (CSE) triggers the death of human pulmonary macrovascular endothelial cells (HPAECs) through a caspase 9-dependent apoptotic pathway. Exposure to CSE results in the increased expression of p53 in HPAECs. Using the p53 inhibitor, pifithrin-α (PFT-α), and RNA interference (RNAi) directed at p53, we demonstrate that p53 function and expression are required for CSE-mediated apoptosis. The expression of macrophage migration inhibitory factor (MIF), an antiapoptotic cytokine produced by HPAECs, also increases in response to CSE exposure. The addition of recombinant human MIF prevents cell death from exposure to CSE. Further, the suppression of MIF or its receptor/binding partner, Jun activation domain-binding protein 1 (Jab-1), with RNAi enhances the sensitivity of human pulmonary endothelial cells to CSE via a p53-dependent (PFT-α-inhibitable) pathway. Finally, we demonstrate that MIF is a negative regulator of p53 expression in response to CSE, placing MIF upstream of p53 as an antagonist of CSE-induced apoptosis. We conclude that MIF can protect human vascular endothelium from the toxic effects of CSE via the antagonism of p53-mediated apoptosis. PMID:20448056

  15. The MAO-A inhibitor clorgyline reduces ethanol-induced locomotion and its volitional intake in mice.

    Science.gov (United States)

    Ledesma, Juan Carlos; Escrig, Miguel Angel; Pastor, Raúl; Aragon, Carlos M G

    2014-01-01

    Hydrogen peroxide is the co-substrate used by the enzyme catalase to form Compound I (the catalase-H2O2 system), which is the major pathway for the conversion of ethanol (EtOH) into acetaldehyde in the brain. This acetaldehyde has been involved in many of the effects of EtOH. Previous research demonstrated that treatments that change the levels of cerebral H2O2 available to catalase modulate the locomotor-stimulating effects of EtOH and its volitional intake in rodents. However, the source of H2O2 which is used by catalase to form Compound I and mediates the psychoactive actions of EtOH is unknown. One cause of the generation of H2O2 in the brain comes from the deamination of biogenic amines by the activity of MAO-A. Here we explore the consequences of the administration of the MAO-A inhibitor clorgyline on EtOH-induced locomotion and voluntary EtOH drinking. For the locomotor activity tests, we injected Swiss (RjOrl) mice intraperitoneally (IP) with clorgyline (0-10mg/kg) and later (0.5-8h) with EtOH (0-3.75 g/kg; IP). Following these treatments, mice were placed in locomotor activity chambers to measure their locomotion. For the drinking experiments, mice of the C57BL/6J strain were injected IP with clorgyline prior to offering them an EtOH (20%) solution following a drinking-in-the-dark procedure. Additional experiments were performed to assess the selectivity of this compound in altering EtOH-stimulated locomotion and EtOH intake. Moreover, we indirectly tested the ability of clorgyline to reduce brain H2O2 levels. We showed that this treatment selectively reduced EtOH-induced locomotion and its self-administration. Moreover, this compound decreased central H2O2 levels available to catalase. We suggest that H2O2 derived from the deamination of biogenic amines by the activity of MAO-A could determine the formation of brain EtOH-derived acetaldehyde. This centrally-formed acetaldehyde within the neurons of the aminergic system could play a role in the

  16. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation

    Directory of Open Access Journals (Sweden)

    Belarbi Karim

    2012-01-01

    Full Text Available Abstract Background Chronic neuroinflammation is a hallmark of several neurological disorders associated with cognitive loss. Activated microglia and secreted factors such as tumor necrosis factor (TNF-α are key mediators of neuroinflammation and may contribute to neuronal dysfunction. Our study was aimed to evaluate the therapeutic potential of a novel analog of thalidomide, 3,6'-dithiothalidomide (DT, an agent with anti-TNF-α activity, in a model of chronic neuroinflammation. Methods Lipopolysaccharide or artificial cerebrospinal fluid was infused into the fourth ventricle of three-month-old rats for 28 days. Starting on day 29, animals received daily intraperitoneal injections of DT (56 mg/kg/day or vehicle for 14 days. Thereafter, cognitive function was assessed by novel object recognition, novel place recognition and Morris water maze, and animals were euthanized 25 min following water maze probe test evaluation. Results Chronic LPS-infusion was characterized by increased gene expression of the proinflammatory cytokines TNF-α and IL-1β in the hippocampus. Treatment with DT normalized TNF-α levels back to control levels but not IL-1β. Treatment with DT attenuated the expression of TLR2, TLR4, IRAK1 and Hmgb1, all genes involved in the TLR-mediated signaling pathway associated with classical microglia activation. However DT did not impact the numbers of MHC Class II immunoreactive cells. Chronic neuroinflammation impaired novel place recognition, spatial learning and memory function; but it did not impact novel object recognition. Importantly, treatment with DT restored cognitive function in LPS-infused animals and normalized the fraction of hippocampal neurons expressing the plasticity-related immediate-early gene Arc. Conclusion Our data demonstrate that the TNF-α synthesis inhibitor DT can significantly reverse hippocampus-dependent cognitive deficits induced by chronic neuroinflammation. These results suggest that TNF-α is a

  17. A Bowman-Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition.

    Science.gov (United States)

    Mehdad, A; Brumana, G; Souza, A A; Barbosa, Jarg; Ventura, M M; de Freitas, S M

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman-Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  18. A Bowman–Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition

    Science.gov (United States)

    Mehdad, A; Brumana, G; Souza, AA; Barbosa, JARG; Ventura, MM; de Freitas, SM

    2016-01-01

    Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman–Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment. PMID:27551492

  19. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers.

    Science.gov (United States)

    McKenzie, Marian J; Chen, Ronan K Y; Harris, John C; Ashworth, Matthew J; Brummell, David A

    2013-01-01

    Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS. PMID:22734927

  20. Carbonic anhydrase IX in early-stage non-small cell lung cancer.

    NARCIS (Netherlands)

    Kim, S.; Rabbani, Z.N.; Vollmer, R.T.; Schreiber, E.G.; Oosterwijk, E.; Dewhirst, M.W.; Vujaskovic, Z.; Kelley, M.J.

    2004-01-01

    PURPOSE: Tumor hypoxia is associated with poor prognosis and increased tumor aggressiveness. Carbonic anhydrase (CA) IX, an endogenous marker for tumor hypoxia, catalyzes the hydration of carbon dioxide into carbonic acid and contributes to the pH regulation of tumor cells. Therefore, CA IX might al

  1. Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor.

    Science.gov (United States)

    Monnard, Fabien W; Heinisch, Tillmann; Nogueira, Elisa S; Schirmer, Tilman; Ward, Thomas R

    2011-08-01

    d(6)-piano-stool complexes bearing an arylsulfonamide anchor display sub-micromolar affinity towards human Carbonic Anhydrase II (hCA II). The 1.3 Å resolution X-ray crystal structure of [(η(6)-C(6)Me(6))Ru(bispy 3)Cl](+)⊂ hCA II highlights the nature of the host-guest interactions. PMID:21706094

  2. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  3. Adalimumab (TNFα Inhibitor) Therapy Exacerbates IgA Glomerulonephritis Acute Renal Injury and Induces Lupus Autoantibodies in a Psoriasis Patient

    OpenAIRE

    Wei, S. S.; Sinniah, R.

    2013-01-01

    Adalimumab (Humira) is a tumour necrosis factor α (TNF α ) inhibitor that is approved for the treatment of rheumatoid arthritis, psoriasis, psoriatic arthritis, Crohn's disease, ankylosing spondylitis, and juvenile idiopathic arthritis (Sullivan and Preda (2009), Klinkhoff (2004), and Medicare Australia). Use of TNF α inhibitors is associated with the induction of autoimmunity (systemic lupus erythematosus, vasculitis, and sarcoidosis or sarcoid-like granulomas) (Ramos-Casals et al. (2010)). ...

  4. Expression and Activity of Carbonic Anhydrase IX Is Associated With Metabolic Dysfunction in MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Ying LI; Wang, Hai; Oosterwijk, Egbert; Tu, Chingkuang; Shiverick, Kathleen T.; Silverman, David N.; Frost, Susan C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a “triple-negative,” basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydrase XII (CAXII). CAIX expression in the basal B cells is both density-and hypoxia-dependent and is correlated with carbonic anhydrase activity. Evidence is provided that CAIX contributes to extracel...

  5. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  6. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae. PMID:26960545

  7. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  8. Anion inhibition studies of the α-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease.

    Science.gov (United States)

    Pan, Peiwen; Vermelho, Alane Beatriz; Scozzafava, Andrea; Parkkila, Seppo; Capasso, Clemente; Supuran, Claudiu T

    2013-08-01

    The protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease, encodes an α-class carbonic anhydrase (CA, EC 4.2.1.1), TcCA, which was recently shown to be crucial for its life cycle. Thiols, a class of strong TcCA inhibitors, were also shown to block the growth of the pathogen in vitro. Here we report the inhibition of TcCA by inorganic and complex anions and other molecules interacting with zinc proteins, such as sulfamide, sulfamic acid, phenylboronic/arsonic acids. TcCA was inhibited in the low micromolar range by iodide, cyanate, thiocyanate, hydrogensulfide and trithiocarbonate (KIs in the range of 44-93 μM), but the best inhibitor was diethyldithiocarbamate (KI=5 μM). Sulfamide showed an inhibition constant of 120 μM, but sulfamic acid was much less effective (KI of 10.6 mM). The discovery of diethyldithiocarbamate as a low micromolar TcCA inhibitor may be useful to detect leads for developing anti-Trypanosoma agents with a diverse mechanism of action compared to clinically used drugs (benznidazole, nifurtimox) for which significant resistance emerged. PMID:23790722

  9. The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides.

    Science.gov (United States)

    Vullo, Daniela; Luca, Viviana De; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-03-15

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 (SspCA) was investigated for its inhibition with a large series of sulfonamides and a sulfamate, the classical inhibitors of these zinc enzymes. SspCA showed an inhibition profile with these compounds very similar to that of the predominant human cytosolic isoform hCA II, and not to that of the bacterial α-CA from Helicobacter pylori. Some clinically used drugs such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulthiame were low nanomolar SspCA/hCA II inhibitors (KIs in the range of 4.5-12.3nM) whereas simple aromatic/heterocyclic sulfonamides were less effective, micromolar inhibitors. As this highly catalytically active and thermostable enzyme may show biotechnological applications, its inhibition studies may be relevant for designing on/off systems to control its activity. PMID:22883029

  10. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    Science.gov (United States)

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission. PMID:27376896

  11. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression

    Directory of Open Access Journals (Sweden)

    Braithwaite Antony W

    2011-06-01

    Full Text Available Abstract Background The aim of both classical (e.g. taxol and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs, which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.

  12. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma.

    Science.gov (United States)

    Chua, Kian Ngiap; Kong, Li Ren; Sim, Wen Jing; Ng, Hsien Chun; Ong, Weijie Richard; Thiery, Jean Paul; Huynh, Hung; Goh, Boon Cher

    2015-10-01

    Oncogenesis in non-small cell lung cancer (NSCLC) is regulated by a complex signal transduction network. Single-agent targeted therapy fails frequently due to treatment insensitivity and acquired resistance. In this study, we demonstrate that co-inhibition of the MAPK and SRC pathways using a PD0325901 and Saracatinib kinase inhibitor combination can abrogate tumor growth in NSCLC. PD0325901/Saracatinib at 0.25:1 combination was screened against a panel of 28 NSCLC cell lines and 68% of cell lines were found to be sensitive (IC50 cell migration and matrigel invasion. The co-inhibition of MAPK and SRC induced strong G1/G0 cell cycle arrest in the NSCLC lines, inhibited anchorage independent growth and delayed tumor growth in H460 and H358 mouse xenografts. These data provide rationale for further investigating the combination of MAPK and SRC pathway inhibitors in advanced stage NSCLC.

  13. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isof