WorldWideScience

Sample records for anhydrase ii deficiency

  1. Carbonic Anhydrase II Deficiency in a Saudi Woman

    OpenAIRE

    Alhuzaim, Omar N; Almohareb, Ohoud M; Safiya M. Sherbeeni

    2015-01-01

    OBJECTIVE Carbonic anhydrase (CA) II deficiency is a rare autosomal recessive disorder caused by mutation in the CA II gene that leads to osteopetrosis, renal tubular acidosis (RTA), and cerebral calcification. Our aim is to present a patient with the classic triad of CA II deficiency syndrome to enhance the awareness about this rare syndrome. METHODS We describe the clinical and radiological findings of a Saudi woman patient with CA II deficiency syndrome. RESULTS A Saudi woman in her 20s pr...

  2. Carbonic Anhydrase II Deficiency in a Saudi Woman

    Science.gov (United States)

    Alhuzaim, Omar N; Almohareb, Ohoud M; Sherbeeni, Safiya M

    2015-01-01

    OBJECTIVE Carbonic anhydrase (CA) II deficiency is a rare autosomal recessive disorder caused by mutation in the CA II gene that leads to osteopetrosis, renal tubular acidosis (RTA), and cerebral calcification. Our aim is to present a patient with the classic triad of CA II deficiency syndrome to enhance the awareness about this rare syndrome. METHODS We describe the clinical and radiological findings of a Saudi woman patient with CA II deficiency syndrome. RESULTS A Saudi woman in her 20s presented to our hospital for evaluation of increased bone density. She was known to have delayed developmental milestone with growth retardation and poor scholastic performance. She had multiple fragile fractures started at the age of 15 involving the lower extremities. A physical examination revealed dysmorphic features and intellectual disability with intelligence quotient (IQ) of 36. The initial blood workup showed a picture of distal RTA with hypokalemia, and the radiological imaging confirmed the presence of osteopetrosis and multiple kidney stones. The combination of osteopetrosis with RTA raised the possibility of CA II deficiency. Therefore, computed tomography (CT) of the brain was done and showed intracranial calcification involving the basal ganglia. She was started on potassium chloride and sodium bicarbonate. In addition, she underwent right-sided percutaneous nephrolithotripsy. Her DNA analysis came to show a sequence variant c.232+1G>A, which was detected in both of the CA II genes (homozygous). CONCLUSION Early recognition of the disease is a key, as an early appropriate treatment institution is essential in order to prevent further complications. PMID:25674028

  3. Carbonic anhydrase II deficiency: Single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P.Y.; Ernst, A.R.; Sly, W.S. (St. Louis Univ. School of Medicine, MO (United States)); Venta, P.J. (Michigan State Univ., East Lansing, MI (United States)); Skaggs, L.A.; Tashian, R.E. (Univ. of Michigan Medical School, Ann Arbor, MI (United States))

    1994-04-01

    To date, three different structural gene mutations have been identified in patients with carbonic anhydrase II deficiency (osteopetrosis with renal tubular acidosis and cerebral calcification). These include a missense mutation (H107Y) in two families, a splice junction mutation in intron 5 in one of these families, and a splice junction mutation in intron 2 for which many Arabic patients are homozygous. The authors report here a novel mutation for which carbonic anhydrase II-deficient patients from seven unrelated Hispanic families were found to be homozygous. The proband was a 2 1/2-year-old Hispanic girl of Puerto Rican ancestry who was unique clinically, in that she had no evidence of renal tubular acidosis, even though she did have osteopetrosis, developmental delay, and cerebral calcification. She proved to be homozygous for a single-base deletion in the coding region of exon 7 that produces a frameshift that changes the next 12 amino acids before leading to chain termination and that also introduces a new MaeIII restriction site. The 27-kD truncated enzyme produced when the mutant cDNA was expressed in COS cells was enzymatically inactive, present mainly in insoluble aggregates, and detectable immunologically at only 5% the level of the 29-kD normal carbonic anhydrase II expressed from the wild-type cDNA. Metabolic labeling revealed that this 27-kD mutant protein has an accelerated rate of degradation. Six subsequent Hispanic patients of Caribbean ancestry, all of whom had osteopetrosis and renal tubular acidosis but who varied widely in clinical severity, were found to be homozygous for the same mutation. These findings identify a novel mutation common to Hispanic patients from the Caribbean islands and provide a ready means for PCR-based diagnosis of the [open quotes]Hispanic mutation.[close quotes] The basis for their phenotypic variability is not yet clear. 15 refs., 5 figs., 1 tab.

  4. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: An animal model for human carbonic anhydrase II deficiency syndrome

    International Nuclear Information System (INIS)

    Electrophoretic screening of (C57BL/6J x DBA/2J)F1 progeny of male mice treated with N-ethyl-N-nitrosourea revealed a mouse that lacked the paternal carbonic anhydrase II (Ca II). Breeding tests showed that this trait was heritable and due to a null mutation at the Car-2 locus on chromosome 3. Like humans with the same inherited enzyme defect, animals homozygous for the new null allele are runted and have renal tubular acidosis. However, the prominent osteopetrosis found in humans with CA II deficiency could be detected even in very old homozygous null mice. A molecular analysis of the deficient mice shows that the mutant gene is not deleted and is transcribed. The CA II protein, which is normally expressed in most tissues, could not be detected by immunodiffusion analysis in any tissues of the CA II-deficient mice, suggesting a nonsense or a missense mutation at the Car-2 locus

  5. Kinetics of Formation of Cobalt(II)- and Nickel(II) Carbonic Anhydrase.

    Science.gov (United States)

    McQuate, Robert S.; Reardon, John E.

    1978-01-01

    Discusses the kinetic behavior associated with the interaction of metal ions with apocarbonic anhydrase, focusing on the formation of two metallocarbonic anhydrase--the biochemically active Co(II) and the inactive Ni(II)derivatives. (GA)

  6. Structural analysis of inhibitor binding to human carbonic anhydrase II.

    OpenAIRE

    Boriack-Sjodin, P. A.; Zeitlin, S; Chen, H H; Crenshaw, L.; Gross, S.; Dantanarayana, A.; P. Delgado; May, J. A.; Dean, T.; Christianson, D. W.

    1998-01-01

    X-ray crystal structures of carbonic anhydrase II (CAII) complexed with sulfonamide inhibitors illuminate the structural determinants of high affinity binding in the nanomolar regime. The primary binding interaction is the coordination of a primary sulfonamide group to the active site zinc ion. Secondary interactions fine-tune tight binding in regions of the active site cavity >5 A away from zinc, and this work highlights three such features: (1) advantageous conformational restraints of a bi...

  7. Human carbonic anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor.

    Science.gov (United States)

    Monnard, Fabien W; Heinisch, Tillmann; Nogueira, Elisa S; Schirmer, Tilman; Ward, Thomas R

    2011-08-01

    d(6)-piano-stool complexes bearing an arylsulfonamide anchor display sub-micromolar affinity towards human Carbonic Anhydrase II (hCA II). The 1.3 Å resolution X-ray crystal structure of [(η(6)-C(6)Me(6))Ru(bispy 3)Cl](+)⊂ hCA II highlights the nature of the host-guest interactions. PMID:21706094

  8. Fluorescence Lifetime Imaging of Physiological Free Cu(II) Levels in Live Cells with a Cu(II)-Selective Carbonic Anhydrase-Based Biosensor

    Science.gov (United States)

    McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.

    2014-01-01

    Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220

  9. Diminished Cellular Immune Response to Carbonic Anhydrase II in Patients with Sjogren's Syndrome and Idiopathic Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Onishi S

    2004-07-01

    Full Text Available CONTEXT: A serum antibody to carbonic anhydrase II has been reported in patients with Sjögren’s syndrome and idiopathic chronic pancreatitis. OBJECTIVE: To evaluate cellular immune response to carbonic anhydrase II in patients with Sjögren’s syndrome and idiopathic chronic pancreatitis. PATIENTS: Idiopathic chronic pancreatitis (n=23, Sjögren’s syndrome (n=12, alcoholic chronic pancreatitis (n=3 and normal controls (n=13. MAIN OUTCOME MEASURES: Proliferation assay of peripheral blood mononuclear cells. RESULTS: Notable increased proliferation of the mononuclear cells upon stimulation with carbonic anhydrase II was observed in 2 patients with idiopathic chronic pancreatitis (9% and 2 patients with Sjögren’s syndrome (17% but not in patients with alcoholic chronic pancreatitis nor in normal controls. Among the four study groups, there was no significant difference in the prevalence rate of the positive proliferative responses (P=0.444. CONCLUSION: Carbonic anhydrase II may not be a major target antigen for the immunological process in the pathogenesis of Sjögren’s syndrome and idiopathic chronic pancreatitis. Serum antibody to carbonic anhydrase II may be detected in these patients as a consequence of the immune reaction against other antigens which mimic carbonic anhydrase II.

  10. Increased levels of carbonic anhydrase II in the developing Down syndrome brain.

    Science.gov (United States)

    Palminiello, Sonia; Kida, Elizabeth; Kaur, Kulbir; Walus, Marius; Wisniewski, Krystyna E; Wierzba-Bobrowicz, Teresa; Rabe, Ausma; Albertini, Giorgio; Golabek, Adam A

    2008-01-23

    By using a proteomic approach, we found increased levels of carbonic anhydrase II (CA II) in the brain of Ts65Dn mice, a mouse model for Down syndrome (DS). Further immunoblot analyses showed that the levels of CA II are increased not only in the brain of adult Ts65Dn mice but also in the brain of infants and young children with DS. Cellular localization of the enzyme in human brain, predominantly in the oligodendroglia and primitive vessels in fetal brain and in the oligodendroglia and some GABAergic neurons postnatally, was similar in DS subjects and controls. Given the role of CA II in regulation of electrolyte and water balance and pH homeostasis, up-regulation of CA II may reflect a compensatory mechanism mobilized in response to structural/functional abnormalities in the developing DS brain. However, this up-regulation may also have an unfavorable effect by increasing susceptibility to seizures of children with DS.

  11. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  12. Influence of pesticide exposure on carbonic anhydrase II from sheep stomach.

    Science.gov (United States)

    Kılınç, Namık; İşgör, Mehmet Mustafa; Şengül, Bülent; Beydemir, Şükrü

    2015-09-01

    Carbonic anhydrase (CA) is a widely distributed enzyme and has a crucial role in the cells, tissues and organs of living organisms. It is found that CA-II is one of the most abundant CA isoenzymes in the gastrointestinal system. It plays an important role in the gastric acid secretion in stomach. In this study, we purified CA-II isoenzyme from sheep stomach with a 615.2 purification fold, 78% purification yield and 5562.02 specific activity. Moreover, the in vitro effects of some commonly used pesticides including chlorpyrifos, cypermethrin, dichlorvos, glyphosate isopropylamine and lambda cyhalomethrin on the enzyme activity were investigated. Of these compounds, glyphosate isopropylamine and dichlorvos showed an inhibition on CA-II esterase activity. They have IC50 values of 0.155 µM and 2.690 µM and Ki values of 0.329 µM and 3.654 µM, respectively. Both glyphosate isopropylamine and dichlorvos inhibited CA-II isoenzyme in a noncompetitive manner.

  13. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    Science.gov (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  14. Characterization of carbonic anhydrase II from Chlorella vulgaris in bio-CO2 capture.

    Science.gov (United States)

    Li, Li; Fu, Ming-Lai; Zhao, Yong-Hao; Zhu, Yun-Tian

    2012-11-01

    Carbonic anhydrase II (CA II) can catalyze the reversible hydration reaction of CO(2) at a maximum of 1.4 × 10(6) molecules of CO(2) per second. The crude intracellular enzyme extract containing CA II was derived from Chlorella vulgaris. A successful CO(2) capture experiment with the presence of calcium had been conducted on the premise that the temperature was conditioned at a scope of 30-40 °C, that the biocatalyst-nurtured algal growth period lasted 3 days, and that pH ranged from7.5 to 8.5. Ions of K(+), Na(+), Ca(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Mn(2+), and Zn(2+) at 0.01, 0.1, and 0.5 M were found to exhibit no more than 30 % inhibition on the residual activity of the biocatalyst. It is reasonable to expect that calcification catalyzed by microalgae presents an alternative to geological carbon capture and sequestration through a chain of fundamental researches carried on under the guidance of sequestration technology. PMID:22821342

  15. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    Science.gov (United States)

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM). PMID:25697270

  16. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2014-03-01

    Full Text Available Human carbonic anhydrases (CAs are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3−, respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH−/H2O in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type of a variant of CA II in which His64 is replaced with Ala (H64A CA II can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1-methylimidazole, 2-methylimidazole and 4-methylimidazole have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the `in' and `out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations the activity of H64A CA II.

  17. Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II.

    Science.gov (United States)

    Taraphder, Srabani; Maupin, C Mark; Swanson, Jessica M J; Voth, Gregory A

    2016-08-25

    The role of protein dynamics in enzyme catalysis is one of the most highly debated topics in enzymology. The main controversy centers around what may be defined as functionally significant conformational fluctuations and how, if at all, these fluctuations couple to enzyme catalyzed events. To shed light on this debate, the conformational dynamics along the transition path surmounting the highest free energy barrier have been herein investigated for the rate limiting proton transport event in human carbonic anhydrase (HCA) II. Special attention has been placed on whether the motion of an excess proton is correlated with fluctuations in the surrounding protein and solvent matrix, which may be rare on the picosecond and subpicosecond time scales of molecular motions. It is found that several active site residues, which do not directly participate in the proton transport event, have a significant impact on the dynamics of the excess proton. These secondary participants are shown to strongly influence the active site environment, resulting in the creation of water clusters that are conducive to fast, moderately slow, or slow proton transport events. The identification and characterization of these secondary participants illuminates the role of protein dynamics in the catalytic efficiency of HCA II. PMID:27063577

  18. Biochemical and developmental characterization of carbonic anhydrase II from chicken erythrocytes

    Directory of Open Access Journals (Sweden)

    Orito Kensuke

    2011-03-01

    Full Text Available Abstract Background Carbonic anhydrase (CA of the chicken has attracted attention for a long time because it has an important role in the eggshell formation. The developmental profile of CA-II isozyme levels in chicken erythrocytes has not been determined or reported. Furthermore, the relations with CA-II in erythrocyte and egg production are not discussed. In the present study, we isolated CA-II from erythrocytes of chickens and determined age-related changes of CA-II levels in erythrocytes. Methods Chicken CA-II was purified by a combination of column chromatography. The levels of CA-II in the hemolysate of the chicken were determined using the ELISA system in blood samples from 279 female chickens, ages 1 to 93 weeks, 69 male chickens, ages 3 to 59 weeks and 52 weeks female Araucana-chickens. Results The mean concentration of CA-II in hemolysate from 1-week-old female was 50.8 ± 11.9 mg/g of Hb. The mean levels of CA-II in 25-week-old (188.1 ± 82.6 mg/g of Hb, 31-week-old (193.6 ± 69.7 mg/g of Hb and 49-week-old (203.8 ± 123.5 mg/g of Hb female-chickens showed the highest level of CA-II. The levels of CA-II in female WL-chickens significantly decreased at 63 week (139.0 ± 19.3 mg/g of Hb. The levels of CA-II in female WL-chicken did not change from week 63 until week 93.The mean level of CA-II in hemolysate of 3-week-old male WL-chickens was 78.3 ± 20.7 mg/g of Hb. The levels of CA-II in male WL-chickens did not show changes in the week 3 to week 59 timeframe. The mean level of CA-II in 53-week-old female Araucana-chickens was 23.4 ± 1.78 mg/g of Hb. These levels of CA-II were about 11% of those of 49-week-old female WL-chickens. Simple linear regression analysis showed significant associations between the level of CA-II and egg laying rate from 16 week-old at 63 week-old WL-chicken (p Conclusions Developmental changes and sexual differences of CA-II concentration in WL-chicken erythrocytes were observed. The concentration of CA-II in

  19. Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Christopher D. [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States); Tu, Chingkuang [University of Florida, PO Box 100245, Gainesville, FL 32610 (United States); McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, PO Box 100267, Gainesville, FL 32610 (United States)

    2014-06-01

    The structure of human carbonic anhydrase II in complex with cholate has been determined to 1.54 Å resolution. Elucidation of the novel inhibition mechanism of cholate will aid in the development of a nonsulfur-containing, isoform-specific therapeutic agent. The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration/dehydration of CO{sub 2} into bicarbonate and a proton. Human isoform CA II (HCA II) is abundant in the surface epithelial cells of the gastric mucosa, where it serves an important role in cytoprotection through bicarbonate secretion. Physiological inhibition of HCA II via the bile acids contributes to mucosal injury in ulcerogenic conditions. This study details the weak biophysical interactions associated with the binding of a primary bile acid, cholate, to HCA II. The X-ray crystallographic structure determined to 1.54 Å resolution revealed that cholate does not make any direct hydrogen-bond interactions with HCA II, but instead reconfigures the well ordered water network within the active site to promote indirect binding to the enzyme. Structural knowledge of the binding interactions of this nonsulfur-containing inhibitor with HCA II could provide the template design for high-affinity, isoform-specific therapeutic agents for a variety of diseases/pathological states, including cancer, glaucoma, epilepsy and osteoporosis.

  20. Catalysis by cobalt(II)-substituted carbonic anhydrase II of the exchange of oxygen-18 between CO2 and H2O.

    Science.gov (United States)

    Tu, C K; Silverman, D N

    1985-10-01

    We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme. PMID:3936538

  1. Structures of murine carbonic anhydrase IV and human carbonic anhydrase II complexed with brinzolamide: molecular basis of isozyme-drug discrimination.

    OpenAIRE

    Stams, T.; Y. Chen; Boriack-Sjodin, P. A.; Hurt, J. D.; Liao, J; May, J. A.; Dean, T.; Laipis, P; Silverman, D. N.; Christianson, D. W.

    1998-01-01

    Carbonic anhydrase IV (CAIV) is a membrane-associated enzyme anchored to plasma membrane surfaces by a phosphatidylinositol glycan linkage. We have determined the 2.8-angstroms resolution crystal structure of a truncated, soluble form of recombinant murine CAIV. We have also determined the structure of its complex with a drug used for glaucoma therapy, the sulfonamide inhibitor brinzolamide (Azopt). The overall structure of murine CAIV is generally similar to that of human CAIV; however, some...

  2. Estrogen and progesterone differentially regulate carbonic anhydrase II, III, IX, XII, and XIII in ovariectomized rat uteri.

    Science.gov (United States)

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-01-01

    Changes in the uterus expression of carbonic anhydrase (CA) II, III, IX, XII, and XIII were investigated under the influence of sex-steroids in order to elucidate mechanisms underlying differential effects of these hormones on uterine pH. Uteri of ovariectomised rats receiving over three days either vehicle, estrogen, or progesterone or three days estrogen followed by three days either vehicle or progesterone were harvested. Messenger RNA (mRNA) and protein levels were quantified by real-time PCR and Western blotting, respectively. The distribution of CA isoenzymes proteins were examined by immunohistochemistry. The levels of CAII, III, XII, and XIII mRNAs and proteins were elevated while levels of CAIX mRNA and protein were reduced following progesterone-only and estrogen plus progesterone treatment, compared to the control and estrogen plus vehicle, respectively. Following estrogen treatment, expression of CAII, IX, XII, and CAXIII mRNAs and proteins were reduced, but remained at a level higher than control, except for CAIX, where its level was higher than the control and following progesterone treatment. Under progesterone-only and estrogen plus progesterone influences, high levels of CAII, III, XII, and XIII were observed in uterine lumenal and glandular epithelia and myometrium. However, a high level of CAIX was observed only under the influence of estrogen at the similar locations. In conclusion, high expression of CAII, III, XII, and XIII under the influence of progesterone and estrogen plus progesterone could result in the reduction of uterine tissue and fluid pH; however, the significance of high levels of CAIX expression under the influence of estrogen remains unclear. PMID:26709452

  3. Effect of electrostatic interactions on the formation of proton transfer pathways in human carbonic anhydrase II

    Indian Academy of Sciences (India)

    Arijit Roy; Srabani Taraphder

    2007-09-01

    We report here a theoretical study on the effect of electrostatic interactions on the formation of dynamical, proton-conducting hydrogen-bonded networks in the protein HCA II. The conformational fluctuations of His-64 is found to contribute crucially to the mechanism of such path formation irrespective of the way electrostatic interactions are modelled.

  4. Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Ferraroni, Marta; Del Prete, Sonia; Vullo, Daniela; Capasso, Clemente; Supuran, Claudiu T

    2015-12-01

    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate (hydrogen carbonate) and a proton. CAs have been extensively investigated owing to their involvement in numerous physiological and pathological processes. Currently, CA inhibitors are widely used as antiglaucoma, anticancer and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi and bacteria has emerged as a new research direction. In this article, the cloning and kinetic characterization of the β-CA from Vibrio cholerae (VchCAβ) are reported. The X-ray crystal structure of this new enzyme was solved at 1.9 Å resolution from a crystal that was perfectly merohedrally twinned, revealing a tetrameric type II β-CA with a closed active site in which the zinc is tetrahedrally coordinated to Cys42, Asp44, His98 and Cys101. The substrate bicarbonate was found bound in a noncatalytic binding pocket close to the zinc ion, as reported for a few other β-CAs, such as those from Escherichia coli and Haemophilus influenzae. At pH 8.3, the enzyme showed a significant catalytic activity for the physiological reaction of the hydration of CO2 to bicarbonate and protons, with the following kinetic parameters: a kcat of 3.34 × 10(5) s(-1) and a kcat/Km of 4.1 × 10(7) M(-1) s(-1). The new enzyme, on the other hand, was poorly inhibited by acetazolamide (Ki of 4.5 µM). As this bacterial pathogen encodes at least three CAs, an α-CA, a β-CA and a γ-CA, these enzymes probably play an important role in the life cycle and pathogenicity of Vibrio, and it cannot be excluded that interference with their activity may be exploited therapeutically to obtain antibiotics with a different mechanism of action.

  5. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines.

    Science.gov (United States)

    Abdel Gawad, Nagwa M; Amin, Noha H; Elsaadi, Mohammed T; Mohamed, Fatma M M; Angeli, Andrea; De Luca, Viviana; Capasso, Clemente; Supuran, Claudiu T

    2016-07-01

    A series of 4-(thiazol-2-ylamino)-benzenesulfonamides was synthesized and screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory and cytotoxic activity on human breast cancer cell line MCF-7. Human (h) CA isoforms I, II and IX were included in the study. The new sulfonamides showed excellent inhibition of all three isoforms, with KIs in the range of 0.84-702nM against hCA I, of 0.41-288nM against hCA II and of 5.6-29.2 against the tumor-associated hCA IX, a validated anti-tumor target, with a sulfonamide (SLC-0111) in Phase I clinical trials for the treatment of hypoxic, metastatic solid tumors overexpressing CA IX. The new compounds showed micromolar inhibition of growth efficacy against breast cancer MCF-7 cell lines. PMID:27234893

  6. Metalloprotein-inhibitor binding: human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site.

    Science.gov (United States)

    Martin, David P; Hann, Zachary S; Cohen, Seth M

    2013-11-01

    An ever-increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, zinc(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design of new therapeutics targeting metalloproteins.

  7. Synthesis and In Vitro Inhibition Effect of New Pyrido[2,3-d]pyrimidine Derivatives on Erythrocyte Carbonic Anhydrase I and II

    Directory of Open Access Journals (Sweden)

    Hilal Kuday

    2014-01-01

    Full Text Available In vitro inhibition effects of indolylchalcones and new pyrido[2,3-d]pyrimidine derivatives on purified human carbonic anhydrase I and II (hCA I and II were investigated by using CO2 as a substrate. The results showed that all compounds inhibited the hCA I and hCA II enzyme activities. Among all the synthesized compounds, 7e (IC50=6.79 µM was found to be the most active compound for hCA I inhibitory activity and 5g (IC50=7.22 µM showed the highest hCA II inhibitory activity. Structure-activity relationships study showed that indolylchalcone derivatives have higher inhibitory activities than pyrido[2,3-d]pyrimidine derivatives on hCA I and hCA II. Additionally, methyl group bonded to uracil ring increases inhibitory activities on both hCA I and hCA II.

  8. Mutation and biochemical analysis in carnitine palmitoyltransferase type II (CPT II) deficiency

    DEFF Research Database (Denmark)

    Olpin, S E; Afifi, A; Clark, S;

    2003-01-01

    Carnitine palmitoyltransferase type II (CPT II) deficiency has three basic phenotypes, late-onset muscular (mild), infantile/juvenile hepatic (intermediate) and severe neonatal. We have measured fatty acid oxidation and CPT II activity and performed mutation studies in 24 symptomatic patients rep...

  9. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase II inhibitor-induced hepatocellular carcinoma cell apoptosis

    OpenAIRE

    Yu, Su-jong; Yoon, Jung-Hwan; Lee, Jeong-Hoon; Myung, Sun-jung; Jang, Eun-sun; Kwak, Min-Sun; Cho, Eun-Ju; Jang, Ja-June; Kim, Yoon-jun; Lee, Hyo-Suk

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-IX (CA-IX) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-IX in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients. Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth wa...

  10. Synthesis 4-[2-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-ethyl]-benzenesulfonamides with subnanomolar carbonic anhydrase II and XII inhibitory properties.

    Science.gov (United States)

    Bozdag, Murat; Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Alasmary, Fatmah A S; Supuran, Claudiu T

    2016-09-15

    Condensation of substituted anthranilic acids with 4-isothiocyanatoethyl-benzenesulfonamide led to series of heterocyclic benzenesulfonamides incorporating 2-mercapto-quinazolin-4-one tails. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA XII (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides acted as medium potency inhibitors of hCA I (KIs of 28.5-2954nM), being highly effective as hCA II (KIs in the range of 0.62-12.4nM) and XII (KIs of 0.54-7.11nM) inhibitors. All substitution patterns present in these compounds (e.g., halogens, methyl and methoxy moieties, in positions 6, 7 and/or 8 of the 2-mercapto-quinazolin-4-one ring) led to highly effective hCA II/XII inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of isoforms CA II and XII is dysregulated. PMID:27396930

  11. High kinetic stability of Zn(II) coordinated by the tris(histidine) unit of carbonic anhydrase towards solvolytic dissociation studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2016-08-01

    Solvolytic dissociation rate constants (kd) of bovine carbonic anhydrase II (CA) and its metallovariants (M-CAs, M=Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were estimated by a ligand substitution reaction, which was monitored by affinity capillary electrophoresis to selectively detect the undissociated CAs in the reaction mixture. Using EDTA as the competing ligand for Zn-CA, the dissociation followed the unimolecular nucleophilic substitution (SN1) mechanism with kd=1.0×10(-7)s(-1) (pH7.4, 25°C). The corresponding solvolysis half-life (t1/2) was 80days, showing the exceptionally high kinetic stability of t Zn-CA, in contrast to the highly labile [Zn(II)(H2O)6](2+), where the water exchange rate (kex) is high. This behavior is attributed to the tetrahedral coordination geometry supported by the tris(histidine) unit (His3) of CA. In the case of Co-CA, it showed a somewhat larger kd value (5.7×10(-7)s(-1), pH7.4, 25°C) even though it shares the same tetrahedral coordination environment with Zn-CA, suggesting that the d(7) electronic configuration of Co(II) in the transition state of the dissociation is stabilized by the ligand field. Among M-CAs, only Ni-CA showed a bimolecular nucleophilic substitution (SN2) reaction path in its reaction with EDTA, implying that the large coordination number (6) of Ni(II) in Ni-CA allows EDTA to form an EDTA-Ni-CA intermediate. Overall, kd values roughly correlated with kex values among M-CAs, with the kd value of Zn-CA deviating strongly from the trend and highlighting the exceptionally high kinetic stabilization of Zn-CA by the His3 unit. PMID:27235274

  12. Microwave assisted synthesis of novel acridine-acetazolamide conjugates and investigation of their inhibition effects on human carbonic anhydrase isoforms hCA I, II, IV and VII.

    Science.gov (United States)

    Ulus, Ramazan; Aday, Burak; Tanç, Muhammet; Supuran, Claudiu T; Kaya, Muharrem

    2016-08-15

    4-Amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide was condensed with cyclic-1,3-diketones (dimedone and cyclohexane-1,3-dione) and aromatic aldehydes under microwave irradiation, leading to a series of acridine-acetazolamide conjugates. The new compounds were investigated as inhibitors of carbonic anhydrases (CA, EC 4.2.1.1), and more precisely cytosolic isoforms hCA I, II, VII and membrane-bound one hCA IV. All investigated isoforms were inhibited in low micromolar and nanomolar range by the new compounds. hCA IV and VII were inhibited with KIs in the range of 29.7-708.8nM (hCA IV), and of 1.3-90.7nM (hCA VII). For hCA I and II the KIs were in the range of 6.7-335.2nM (hCA I) and of 0.5-55.4nM (hCA II). The structure-activity relationships (SAR) for the inhibition of these isoforms with the acridine-acetazolamide conjugates reported here were delineated. PMID:27298005

  13. A Molecular Basis for Variation in Clinical Severity of Isolated Growth Hormone Deficiency Type II

    OpenAIRE

    Hamid, Rizwan; Phillips, John A.; Holladay, Cindy; Cogan, Joy D.; Eric D Austin; Backeljauw, Philippe F.; Travers, Sharon H.; James G Patton

    2009-01-01

    Context: Dominant-negative GH1 mutations cause familial isolated growth hormone deficiency type II (IGHD II), which is characterized by GH deficiency, occasional multiple anterior pituitary hormone deficiencies, and anterior pituitary hypoplasia. The basis of the variable expression and progression of IGHD II among relatives who share the same GH1 mutation is poorly understood.

  14. Hyperkalaemia induced by carbonic anhydrase inhibitor.

    OpenAIRE

    Wakabayashi, Y.

    1991-01-01

    An 81-year-old man developed hyperkalaemic and hyperchloraemic metabolic acidosis following treatment with a carbonic anhydrase inhibitor for his glaucoma. He had mild renal failure and selective aldosterone deficiency was confirmed. In this case the treatment did not lead to hypokalaemia because of the limited potassium secretory capacity in the renal tubules from selective aldosterone deficiency; rather, it may have led to hyperkalaemia because metabolic acidosis induced by the carbonic anh...

  15. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111.

    Science.gov (United States)

    Lomelino, Carrie L; Mahon, Brian P; McKenna, Robert; Carta, Fabrizio; Supuran, Claudiu T

    2016-03-01

    SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs. PMID:26810836

  16. Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2016-09-01

    Full Text Available Carbonic anhydrases (CAs; EC 4.2.1.1 catalyze the interconversion of CO2 and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM and methazolamide (MZM, a methyl derivative of AZM are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II has been determined to a resolution of 2.2 Å with an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki for both of the drugs against hCA II is similar (∼10 nM. The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.

  17. The impact of hydroquinone on acetylcholine esterase and certain human carbonic anhydrase isoenzymes (hCA I, II, IX, and XII).

    Science.gov (United States)

    Scozzafava, Andrea; Kalın, Pınar; Supuran, Claudiu T; Gülçin, İlhami; Alwasel, Saleh H

    2015-12-01

    Carbonic anhydrases (CAs) are widespread and the most studied members of a great family of metalloenzymes in higher vertebrates including humans. CAs were investigated for their inhibition of all of the catalytically active mammalian isozymes of the Zn(2+)-containing CA, (CA, EC 4.2.1.1). On the other hand, acetylcholinesterase (AChE. EC 3.1.1.7), a serine protease, is responsible for ACh hydrolysis and plays a fundamental role in impulse transmission by terminating the action of the neurotransmitter ACh at the cholinergic synapses and neuromuscular junction. In the present study, the inhibition effect of the hydroquinone (benzene-1,4-diol) on AChE activity was evaluated and effectively inhibited AChE with Ki of 1.22 nM. Also, hydroquinone strongly inhibited some human cytosolic CA isoenzymes (hCA I and II) and tumour-associated transmembrane isoforms (hCA IX, and XII), with Kis in the range between micromolar (415.81 μM) and nanomolar (706.79 nM). The best inhibition was observed in cytosolic CA II. PMID:25586344

  18. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M;

    2003-01-01

    , oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  19. Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators.

    Science.gov (United States)

    Temperini, Claudia; Scozzafava, Andrea; Puccetti, Luca; Supuran, Claudiu T

    2005-12-01

    Activation of the carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, II, and IV with l-histidine and some of its derivatives has been investigated by kinetic and X-ray crystallographic methods. l-His was a potent activator of isozymes I and IV (activation constants in the range of 4-33microM), and a moderate hCA II activator (activation constant of 113microM). Both carboxy- as well as amino-substituted l-His derivatives, such as the methyl ester or the dipeptide carnosine (beta-Ala-His), acted as more efficient activators as compared to l-His. The X-ray crystallographic structure of the hCA II-l-His adduct showed the activator to be anchored at the entrance of the active site cavity, participating in an extended network of hydrogen bonds with the amino acid residues His64, Asn67, and Gln92 and, with three water molecules connecting it to the zinc-bound water. Although the binding site of l-His is similar to that of histamine, the first CA activator for which the X-ray crystal structure has been reported in complex with hCA II (Briganti, F.; Mangani, S.; Orioli, P.; Scozzafava, A.; Vernaglione, G.; Supuran, C. T. Biochemistry1997, 36, 10384) there are important differences of binding between the two structurally related activators, since histamine interacts among others with Asn67 and Gln92 (similarly to l-His), but also with Asn62 and not His64, whereas the number of water molecules connecting them to the zinc-bound water is different (two for histamine, three for l-His). Furthermore, the imidazole moieties of the two activators adopt different conformations when bound to the enzyme active site. Since neither the amino- nor carboxy moieties of l-His participate in interactions with amino acid moieties of the active site, they can be derivatized for obtaining more potent activators, with pharmacological applications for the enhancement of synaptic efficacy. This may constitute a novel approach for the treatment of Alzheimer's disease, aging, and other conditions in

  20. Molecular basis of human transcobalamin II deficiency in an affected family

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Seetharam, S.; Seetharam, B. [Medical College of Wisconsin, Milwaukee, WI (United States)] [and others

    1994-09-01

    Transcobalamin II (TC II) deficiency is an autosomal recessive disease leading to cobalamin (Cbl, Vitamin B{sub 12}) deficiency. Patients with this disorder fail to absorb and transport Cbl across cellular membranes and develop Cbl deficiency, symptoms of which include failure to thrive, megaloblastic anemia, impaired immunodefence and neurological disorders. The molecular basis for this disease is not known. By means of Southern blotting and sequence analysis of TC II, cDNA amplified from fibroblasts of an affected child and his parents, we have identified two mutant TC II alleles. The maternally derived allele had a gross deletion, while the paternally derived allele had a 4-nucleotide ({sup 1023}TCTG) deletion which caused a reading frame shift and generation of a premature termination codon, 146 nucleotides downstream from the deletion. Both these deletions caused markedly reduced levels of TC II mRNA and protein. In addition, these two deletions were unique to this family and were not detected in four other unrelated TC II deficient patients who also exhibited the same (TC II protein/mRNA deficiency) phenotypes. Based on this study we suggest, (1) that the molecular defect in the most common form of human TC II deficiency (lack of immunoprecipitable plasma TC II) is heterogeneous and (2) these mutations cause TC II mRNA and protein deficiency leading to defective plasma transport of Cbl and the development of Cbl deficiency.

  1. The Cellular Physiology of Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Breton S

    2001-07-01

    Full Text Available Carbonic anhydrases are zinc metalloenzymes that catalyze the reversible hydration of CO(2 to form HCO(3(- and protons according to the following reaction: CO(2 + H(2O = H(2CO(3 = HCO(3(- + H(+. The first reaction is catalyzed by carbonic anhydrase and the second reaction occurs instantaneously. The carbonic anhydrase (CA gene family includes ten enzymatically active members, which are major players in many physiological processes, including renal and male reproductive tract acidification, bone resorption, respiration, gluconeogenesis, signal transduction, and formation of gastric acid. The newly identified CA IX (previously called MN and CA XII are related to cell proliferation and oncogenesis. Carbonic anhydrase isozymes have different kinetic properties and they are present in various tissues and in various cell compartments. CA I, II, III and VII are cytoplasmic, CA V is mitochondrial, and CA VI is present in salivary secretions. CA IV, IX, XII and XIV are membrane proteins: CA IV is a glycosyl-phosphatidylinositol-anchored protein, and CA IX, XII and XIV are transmembrane proteins. The present work will focus on the roles of CA II and CA IV in transepithelial proton secretion and bicarbonate reabsorption processes. The localization of these isoforms in selected epithelia that are involved in net acid/base transport, such as kidney proximal tubules and collecting ducts, and tubules from the male reproductive tract will be reviewed.

  2. Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII.

    Science.gov (United States)

    Barresi, Elisabetta; Salerno, Silvia; Marini, Anna Maria; Taliani, Sabrina; La Motta, Concettina; Simorini, Francesca; Da Settimo, Federico; Vullo, Daniela; Supuran, Claudiu T

    2016-02-15

    Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications. PMID:26796953

  3. First Japanese Case of Carnitine Palmitoyltransferase II Deficiency with the Homozygous Point Mutation S113L.

    Science.gov (United States)

    Shima, Atsushi; Yasuno, Tetsuhiko; Yamada, Kenji; Yamaguchi, Miyoko; Kohno, Ryuichi; Yamaguchi, Seiji; Kido, Hiroshi; Fukuda, Hidetoshi

    2016-01-01

    Carnitine palmitoyltransferase II (CPT II) deficiency is a rare inherited disorder related to recurrent episodes of rhabdomyolysis. The adult myopathic form of CPT II deficiency is relatively benign and difficult to diagnose. The point mutation S113L in CPT2 is very common in Caucasian patients, whereas F383Y is the most common mutation among Japanese patients. We herein present a case of CPT II deficiency in a Japanese patient homozygous for the missense mutation S113L. The patient showed a decreased frequency of rhabdomyolysis recurrence after the administration of a diet containing medium-chain triglyceride oil and supplementation with carnitine and bezafibrate. PMID:27629963

  4. MAN1B1 deficiency: an unexpected CDG-II.

    Directory of Open Access Journals (Sweden)

    Daisy Rymen

    Full Text Available Congenital disorders of glycosylation (CDG are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. In the present study, exome sequencing was used to identify MAN1B1 as the culprit gene in an unsolved CDG-II patient. Subsequently, 6 additional cases with MAN1B1-CDG were found. All individuals presented slight facial dysmorphism, psychomotor retardation and truncal obesity. Generally, MAN1B1 is believed to be an ER resident alpha-1,2-mannosidase acting as a key factor in glycoprotein quality control by targeting misfolded proteins for ER-associated degradation (ERAD. However, recent studies indicated a Golgi localization of the endogenous MAN1B1, suggesting a more complex role for MAN1B1 in quality control. We were able to confirm that MAN1B1 is indeed localized to the Golgi complex instead of the ER. Furthermore, we observed an altered Golgi morphology in all patients' cells, with marked dilatation and fragmentation. We hypothesize that part of the phenotype is associated to this Golgi disruption. In conclusion, we linked mutations in MAN1B1 to a Golgi glycosylation disorder. Additionally, our results support the recent findings on MAN1B1 localization. However, more work is needed to pinpoint the exact function of MAN1B1 in glycoprotein quality control, and to understand the pathophysiology of its deficiency.

  5. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants.

    Science.gov (United States)

    Andersson, D; Freskgård, P O; Jonsson, B H; Carlsson, U

    1997-04-15

    In the present study, near-UV CD kinetic measurements on mutants, in which one Trp residue had been replaced, were performed to probe the development of asymmetric environments around specific Trp residues during the refolding of human carbonic anhydrase II (HCAII). In addition, the formation of the active site was probed by the binding of a fluorescent sulfonamide inhibitor. The development of the individual Trp CD spectra during refolding was obtained by subtracting the CD spectrum of the mutant lacking one Trp from that of HCAII at different time points. The same method was used for the particular Trp residues to obtain the kinetic CD traces monitored at a specific wavelength (270 nm). Trp residues 16, 97, and 245 were analyzed. Trp16 probes the N-terminal domain (amino acid residues 1-25), and this part is forming its tertiary structure slower than the major domain (amino acid residues 26-260) of the protein molecule, which contains the active site and a dominating beta-sheet. An essentially native structure of the major domain seems to act as a template for the correct folding of the N terminus. Trp97 is located in a hydrophobic cluster comprising beta-strands 3-5 in the protein core. Previously, we have shown that this region is remarkably stable and compact, and stopped-flow fluorescence data indicate that Trp97 is buried in an apolar compact cluster within a few milliseconds [Svensson, M., Jonasson, P., Freskgård, P.-O., Jonsson, B.-H., Lindgren, M., Martensson, L.-G., Gentile, M., Bóren, K., & Carlsson, U. (1995) Biochemistry 34, 8606-8620; Jonasson, P., Aronsson, G., Carlsson, U., & Jonsson, B.-H. (1997) Biochemistry 36 (in press)]. Here it is shown that the development of the native tertiary structure at Trp97 occurs in the minute time domain. Trp245 is located in a long loop between the N-terminal domain and the core structure. Although this Trp has attained native-like fluorescence properties within the dead time of the CD experiment, it assumes a

  6. Liver and plasma levels of descarboxyprothrombin (PIVKA II) in vitamin K deficiency in rats.

    Science.gov (United States)

    Harauchi, T; Takano, K; Matsuura, M; Yoshizaki, T

    1986-04-01

    Descarboxyprothrombin (PIVKA II) is a precursor of prothrombin without biological activity, and it increases with vitamin K deficiency. We studied the time course changes in liver and plasma levels of PIVKA II during the progress of vitamin K deficiency in rats. Good correlation was observed between liver PIVKA II and plasma PIVKA II and between liver or plasma PIVKA II and plasma prothrombin in experiments in which rats were fed a vitamin K-deficient diet. Feeding of a vitamin K-deficient diet or fasting caused marked increases in liver and plasma PIVKA II in male rats and a weaker response in female rats. Warfarin, a vitamin K antagonist, caused an abrupt increase in liver PIVKA II, but the increase in plasma PIVKA II was delayed about 3 hr. Plasma prothrombin decreased from about 30 min later. Factor VII decreased similarly to prothrombin, and changes in the prothrombin time and activated partial thromboplastin time were slower than the changes in these substances. Sex differences were not seen in these warfarin actions. These observations indicate that liver and plasma PIVKA II are sensitive markers of vitamin K deficiency in rats, and assay of PIVKA II can be useful for analyzing the action mechanism of drugs which influence blood coagulation.

  7. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones: Synthesis and Investigation of Their Effects on Carbonic Anhydrase Isozymes I, II, IX, and XII.

    Science.gov (United States)

    Göksu, Haydar; Topal, Meryem; Keskin, Ali; Gültekin, Mehmet S; Çelik, Murat; Gülçin, İlhami; Tanc, Muhammet; Supuran, Claudiu T

    2016-06-01

    N-substituted maleimides were synthesized from maleic anhydride and primary amines. 1,4-Dibromo-dibenzo[e,h]bicyclo-[2,2,2]octane-2,3-dicarboximide derivatives (4a-f) were prepared by the [4+2] cycloaddition reaction of dibromoanthracenes with the N-substituted maleimide derivatives. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the new derivatives were assayed against the human (h) isozymes hCA I, II, IX, and XII. All tested bicyclo dicarboximide derivatives exhibited excellent inhibitory effects in the nanomolar range, with Ki values in the range of 117.73-232.87 nM against hCA I and of 69.74-111.51 nM against hCA II, whereas they were low micromolar inhibitors against hCA IX and XII. PMID:27174792

  8. Quantitative Characterization of the Interaction Space of the Mammalian Carbonic Anhydrase Isoforms I, II, VII, IX, XII, and XIV and their Inhibitors, Using the Proteochemometric Approach.

    Science.gov (United States)

    Rasti, Behnam; Karimi-Jafari, Mohammad H; Ghasemi, Jahan B

    2016-09-01

    The critical role of carbonic anhydrases in different physiological processes has put this protein family at the center of attention, challenging major diseases like glaucoma, neurological disorders such as epilepsy and Alzheimer's disease, obesity, and cancers. Many QSAR/QSPR (quantitative structure-activity/property relationship) researches have been carried out to design potent carbonic anhydrase inhibitors (CAIs); however, using inhibitors with no selectivity for different isoforms can lead to major side-effects. Given that QSAR/QSPR methods are not capable of covering multiple targets in a unified model, we have applied the proteochemometric approach to model the interaction space that governs selective inhibition of different CA isoforms by some mono-/dihydroxybenzoic acid esters. Internal and external validation methods showed that all models were reliable in terms of both validity and predictivity, whereas Y-scrambling assessed the robustness of the models. To prove the applicability of our models, we showed how structural changes of a ligand can affect the selectivity. Our models provided interesting information that can be useful for designing inhibitors with selective behavior toward isoforms of carbonic anhydrases, aiding in their selective inhibition. PMID:26990115

  9. Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency

    OpenAIRE

    Alston, Charlotte L; Davison, James E; Meloni, Francesca; van der Westhuizen, Francois H.; Langping, He

    2012-01-01

    Background Isolated complex II deficiency is a rare form of mitochondrial disease, accounting for approximately 2% of all respiratory chain deficiency diagnoses. The succinate dehydrogenase (SDH) genes (SDHA, SDHB, SDHC and SDHD) are autosomally-encoded and transcribe the conjugated heterotetramers of complex II via the action of two known assembly factors (SDHAF1 and SDHAF2). Only a handful of reports describe inherited SDH gene defects as a cause of paediatric mitochondrial disease, involvi...

  10. Effect of ADH II Deficiency on the Intracellular Redox Homeostasis in Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Nina Galinina

    2012-01-01

    Full Text Available Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II, showed impaired homeostasis of the intracellular NAD(PH during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  11. Effect of ADH II deficiency on the intracellular redox homeostasis in Zymomonas mobilis.

    Science.gov (United States)

    Galinina, Nina; Lasa, Zane; Strazdina, Inese; Rutkis, Reinis; Kalnenieks, Uldis

    2012-01-01

    Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.

  12. Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  13. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  14. Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII.

    Directory of Open Access Journals (Sweden)

    Miglė Kišonaitė

    Full Text Available The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthioacetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.

  15. Carbonic Anhydrases and Their Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Robert McKenna

    2013-08-01

    Full Text Available The carbonic anhydrases (CAs are mostly zinc-containing metalloenzymes which catalyze the reversible hydration/dehydration of carbon dioxide/bicarbonate. The CAs have been extensively studied because of their broad physiological importance in all kingdoms of life and clinical relevance as drug targets. In particular, human CA isoform II (HCA II has a catalytic efficiency of 108 M−1 s−1, approaching the diffusion limit. The high catalytic rate, relatively simple procedure of expression and purification, relative stability and extensive biophysical studies of HCA II has made it an exciting candidate to be incorporated into various biomedical applications such as artificial lungs, biosensors and CO2 sequestration systems, among others. This review highlights the current state of these applications, lists their advantages and limitations, and discusses their future development.

  16. No severe bottleneck during human evolution: evidence from two apolipoprotein C-II deficiency alleles.

    OpenAIRE

    Xiong, W J; Li, W. H.; Posner, I; Yamamura, T.; Yamamoto, A.; Gotto, A M; Chan, L

    1991-01-01

    The DNA sequences of a Japanese and a Venezuelan apolipoprotein (apo) C-II deficiency allele, of a normal Japanese apo C-II gene, and of a chimpanzee apo C-II gene were amplified by PCR, and their nucleotide sequences were determined on multiple clones of the PCR products. The normal Japanese sequence is identical to--and the chimpanzee sequence differs by only three nucleotides from--a previously published normal Caucasian sequence. In contrast, the two human mutant sequences each differ fro...

  17. Oral HPV infection and MHC class II deficiency (A study of two cases with atypical outcome

    Directory of Open Access Journals (Sweden)

    Guirat-Dhouib Naouel

    2012-04-01

    Full Text Available Abstract Background Major histocompatibility complex class II deficiency, also referred to as bare lymphocyte syndrome is a rare primary Immunodeficiency disorder characterized by a profondly deficient human leukocyte antigen class II expression and a lack of cellular and humoral immune responses to foreign antigens. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections. The infections begin in the first year of life and involve usually the respiratory system and the gastrointestinal tract. Severe malabsorption with failure to thrive ensues, often leading to death in early childhood. Bone marrow transplantation is the curative treatment. Case reports Here we report two cases with a late outcome MHC class II deficiency. They had a long term history of recurrent bronchopulmonary and gastrointestinal infections. Bone marrow transplantation could not be performed because no compatible donor had been identified. At the age of 12 years, they developed oral papillomatous lesions related to HPV (human papillomavirus. The diagnosis of HPV infection was done by histological examination. HPV typing performed on the tissue obtained at biopsy showed HPV type 6. The lesions were partially removed after two months of laser treatment. Conclusions Viral infections are common in patients with MHC class II and remain the main cause of death. Besides warts caused by HPV infection do not exhibit a propensity for malignant transformation; they can cause great psychosocial morbidity.

  18. /sup 35/Cl and /sup 81/Br nuclear magnetic resonance studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.L.

    1979-02-01

    /sup 35/Cl NMR studies substantiated the binding of Cl/sup -/ to the Zn(II) of carbonic anhydrase. Zinc-free carbonic anhydrase was prepared and it exhibited essentially no effect on the Cl/sup -/ line width. The net Cl/sup -/ line width increased with temperature. /sup 81/Br NMR was quite similar to /sup 35/Cl in that its relaxation is dominated by quadrupolar interactions.

  19. 苯磺酰胺从碳酸酐酶II中脱离过程的分子动力学模拟%Molecular Dynamics Simulations of the Unbinding of Phenylsulfonamide from Carbonic Anhydrase II

    Institute of Scientific and Technical Information of China (English)

    孙维琦; 张继龙; 郑清川; 孙志伟; 张红星

    2013-01-01

      综合运用分子动力学模拟和自由能计算方法研究了苯磺酰胺分子从碳酸酐酶II (CA II)的活性位点脱离过程中底物与酶之间的动态相互作用。脱离过程的平均力势(PMF)显示,底物脱离时存在一个特殊的结合状态。其中,静电相互作用占据了主导地位。轨迹分析显示,除了金属离子的配位作用之外,底物脱离路径上的关键残基Leu198、Thr199和Thr200通过与底物磺胺基的氢键作用阻碍了底物从酶中的脱离。当前的研究对于深入认识磺胺类药物与CA II的详细结合过程和相关的药物改良与设计具有重要的指导意义。%Molecular dynamics (MD) simulations and free energy calculations were integrated to investigate substrate-enzyme dynamic interactions during the unbinding of phenylsulfonamide from carbonic anhydrase II (CA II). The potential of mean force (PMF) along the unbinding pathway shows that a special ligand-binding state exists, and the electrostatic interaction dominates the ligandʹs binding with CA II. The analysis of trajectories reveals that, apart from the zinc ion, the key residues in the unbinding pathway, Leu198, Thr199, and Thr200, prevent the substrateʹs unbinding from the enzyme by hydrogen bonding with the sulfanilamide group of the substrate. The present results are of direct significance for the in-depth understanding of the sulfonamide-CA II binding process and related drug design.

  20. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...

  1. Complex II deficiency--a case report and review of the literature.

    Science.gov (United States)

    Jain-Ghai, Shailly; Cameron, Jessie M; Al Maawali, Almundher; Blaser, Susan; MacKay, Nevena; Robinson, Brian; Raiman, Julian

    2013-02-01

    Complex II deficiency is a rare cause of mitochondrial respiratory chain defects with a prevalence of 2-23%. It is exclusively nuclear encoded and functions in the citric acid cycle by oxidizing succinate to fumarate and in the mitochondrial electron transport chain (ETC) by transferring electrons to ubiquinone. Of the four subunits, SDHA and SDHB are catalytic and SDHC and SDHD are anchoring. Mutations in SDHA and SDHAF1 (assembly factor) have been found in patients with CII deficiency and a mitochondrial phenotype. We present a patient with CII deficiency with a previously undescribed phenotype of dilated cardiomyopathy, left ventricular noncompaction, failure to thrive, hypotonia, and developmental delay. Also, a comprehensive review of 36 cases published in the literature was undertaken. The results show that CII deficiency has a variable phenotype with no correlation with residual complex activity in muscle although the phenotype and enzyme activities are comparable within a family. For some, the condition was fatal in infancy, others had multisystem involvement and some had onset in adulthood with mild symptoms and normal cognition. Neurological involvement is most commonly observed and brain imaging commonly shows leukoencephalopathy, Leigh syndrome, or cerebellar atrophy. Mutations in SDHAF1 are associated with leukoencephalopathy. Other organ systems like heart, muscle, and eyes are only involved in about 50% of the cases but cardiomyopathy is associated with high mortality and morbidity. In some patients, riboflavin has provided clinical improvement.

  2. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice.

    Science.gov (United States)

    Marshall, Sarah A; Leo, Chen Huei; Senadheera, Sevvandi N; Girling, Jane E; Tare, Marianne; Parry, Laura J

    2016-05-01

    Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient (Rln(-/-)) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant (day 17.5) wild-type (Rln(+/+)) and Rln(-/-) mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln(+/+) mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln(-/-) mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 (Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln(+/+) mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids. PMID:26936785

  3. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms.

    Science.gov (United States)

    Saada, Mohamed-Chiheb; Montero, Jean-Louis; Vullo, Daniela; Scozzafava, Andrea; Winum, Jean-Yves; Supuran, Claudiu T

    2011-03-10

    Lipoic acid moieties were attached to amine or amino acids showing activating properties against the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The obtained lipoic acid conjugates of histamine, L-histidine methyl ester, and L-carnosine methyl ester were attached to gold nanoparticles (NPs) by reaction with Au(III) salts in reducing conditions. The CA activators (CAAs)-coated NPs showed low nanomolar activation (K(A)s of 1-9 nM) of relevant cytosolic, membrane-bound, mitochondrial, and transmembrane CA isoforms, such as CA I, II, IV, VA, VII, and XIV. These NPs also effectively activated CAs ex vivo, in whole blood experiments, with an increase of 200-280% of the CA activity. This is the first example of enzyme activation with nanoparticles and may lead to biomedical applications for conditions in which the CA activity is diminished, such as aging, Alzheimer's disease, or CA deficiency syndrome. PMID:21291238

  4. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and antigen I/II deficient mutant to laminin films

    NARCIS (Netherlands)

    Busscher, H.J.; Belt-Gritter, van de B.; Dijkstra, R.J.B.; Norde, W.; Mei, van der H.C.

    2007-01-01

    The antigen I/II family of surface proteins is expressed by most oral streptococci, including Streptococcus mutans, and mediates specific adhesion to, among other things, salivary films and extracellular matrix proteins. In this study we showed that antigen I/II-deficient S. mutans isogenic mutant I

  5. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J;

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  6. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice

    DEFF Research Database (Denmark)

    Carrasco, J; Penkowa, M; Hadberg, H;

    2000-01-01

    Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA)...

  7. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    Directory of Open Access Journals (Sweden)

    S.Petchimuthu

    2013-09-01

    Full Text Available Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ has a poor solubility and penetration power (BCS Class IV, various studies mentioned in the review indicate that it is possible to successfully formulate topically effective ACZ by using:(i High concentration of the drug, (ii Surfactant gel preparations of ACZ, (iii ACZ loaded into liposomes, (iv Cyclodextrins to increase the solubility and hence bioavailability of ACZ, and Viscolyzers and other polymers either alone or in combination with cyclodextrins. With the advent of newer topical carbonic anhydrase inhibitors (CAIs like dorzolamide and brinzolamide, a localized effect with fewer side effects is expected.But whenever absorbed systemically, a similar range of adverse effects (attributable to sulphonamides may occur upon use. Furthermore, oral ACZ is reported to be more physiologically effective than 2% dorzolamide hydrochloridead ministered topically, even though in isolated tissues dorzolamide appears to be the most active as it shows the lowest IC50 values for CA-II and CA-IV. Hence, there exists considerable scope for the development of more/equally effective and inexpensive topically effective formulations of ACZ. The use of various formulation technologies discussed in this review can provide a fresh impetus to research in this area.

  8. Impaired inflammatory response to glial cell death in genetically metallothionein-I- and -II-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Moos, T;

    1999-01-01

    Metallothionein I+II (MT-I+II) are acute-phase proteins which are upregulated during pathological conditions in the brain. To elucidate the neuropathological importance of MT-I+II, we have examined MT-I+II-deficient mice following ip injection with 6-aminonicotinamide (6-AN). 6-AN is antimetaboli...... in the brain is severely attenuated, at least in part because of 6-AN-induced bone marrow affectation, involving MT-I+II for the first time as major factors during CNS tissue damage....

  9. Association of Transcobalamin II (TCN2) and Transcobalamin II-Receptor (TCblR) Genetic Variations With Cobalamin Deficiency Parameters in Elderly Women.

    Science.gov (United States)

    Kurnat-Thoma, Emma L; Pangilinan, Faith; Matteini, Amy M; Wong, Bob; Pepper, Ginette A; Stabler, Sally P; Guralnik, Jack M; Brody, Lawrence C

    2015-07-01

    Cobalamin (vitamin B12) deficiency is a subtle progressive clinical disorder, affecting nearly 1 in 5 individuals > 60 years old. This deficiency is produced by age-related decreases in nutrient absorption, medications that interfere with vitamin B12 absorption, and other comorbidities. Clinical heterogeneity confounds symptom detection for elderly adults, as deficiency sequelae range from mild fatigue and weakness to debilitating megaloblastic anemia and permanent neuropathic injury. A better understanding of genetic factors that contribute to cobalamin deficiency in the elderly would allow for targeted nursing care and preventive interventions. We tested for associations of common variants in genes involved in cobalamin transport and homeostasis with metabolic indicators of cobalamin deficiency (homocysteine and methylmalonic acid) as well as hematologic, neurologic, and functional performance features of cobalamin deficiency in 789 participants of the Women's Health and Aging Studies. Although not significant when corrected for multiple testing, eight single nucleotide polymorphisms (SNPs) in two genes, transcobalamin II (TCN2) and the transcobalamin II-receptor (TCblR), were found to influence several clinical traits of cobalamin deficiency. The three most significant findings were the identified associations involving missense coding SNPs, namely, TCblR G220R (rs2336573) with serum cobalamin, TCN2 S348F (rs9621049) with homocysteine, and TCN2 P259R (rs1801198) with red blood cell mean corpuscular volume. These SNPs may modify the phenotype in older adults who are more likely to develop symptoms of vitamin B12 malabsorption. PMID:25657319

  10. Association of Transcobalamin II (TCN2) and Transcobalamin II-Receptor (TCblR) Genetic Variations With Cobalamin Deficiency Parameters in Elderly Women.

    Science.gov (United States)

    Kurnat-Thoma, Emma L; Pangilinan, Faith; Matteini, Amy M; Wong, Bob; Pepper, Ginette A; Stabler, Sally P; Guralnik, Jack M; Brody, Lawrence C

    2015-07-01

    Cobalamin (vitamin B12) deficiency is a subtle progressive clinical disorder, affecting nearly 1 in 5 individuals > 60 years old. This deficiency is produced by age-related decreases in nutrient absorption, medications that interfere with vitamin B12 absorption, and other comorbidities. Clinical heterogeneity confounds symptom detection for elderly adults, as deficiency sequelae range from mild fatigue and weakness to debilitating megaloblastic anemia and permanent neuropathic injury. A better understanding of genetic factors that contribute to cobalamin deficiency in the elderly would allow for targeted nursing care and preventive interventions. We tested for associations of common variants in genes involved in cobalamin transport and homeostasis with metabolic indicators of cobalamin deficiency (homocysteine and methylmalonic acid) as well as hematologic, neurologic, and functional performance features of cobalamin deficiency in 789 participants of the Women's Health and Aging Studies. Although not significant when corrected for multiple testing, eight single nucleotide polymorphisms (SNPs) in two genes, transcobalamin II (TCN2) and the transcobalamin II-receptor (TCblR), were found to influence several clinical traits of cobalamin deficiency. The three most significant findings were the identified associations involving missense coding SNPs, namely, TCblR G220R (rs2336573) with serum cobalamin, TCN2 S348F (rs9621049) with homocysteine, and TCN2 P259R (rs1801198) with red blood cell mean corpuscular volume. These SNPs may modify the phenotype in older adults who are more likely to develop symptoms of vitamin B12 malabsorption.

  11. A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency

    OpenAIRE

    Alston, Charlotte L; Ceccatelli Berti, Camilla; Blakely, Emma L; Oláhová, Monika; He, Langping; McMahon, Colin J.; Olpin, Simon E.; Hargreaves, Iain P.; Nolli, Cecilia; McFarland, Robert; Goffrini, Paola; O’Sullivan, Maureen J.; Taylor, Robert W.

    2015-01-01

    Succinate dehydrogenase (SDH) is a crucial metabolic enzyme complex that is involved in ATP production, playing roles in both the tricarboxylic cycle and the mitochondrial respiratory chain (complex II). Isolated complex II deficiency is one of the rarest oxidative phosphorylation disorders with mutations described in three structural subunits and one of the assembly factors; just one case is attributed to recessively inherited SDHD mutations. We report the pathological, biochemical, histoche...

  12. The effects of some bromophenols on human carbonic anhydrase isoenzymes.

    Science.gov (United States)

    Taslimi, Parham; Gülçin, İlhami; Öztaşkın, Necla; Çetinkaya, Yasin; Göksu, Süleyman; Alwasel, Saleh H; Supuran, Claudiu T

    2016-08-01

    Carbonic anhydrases (CAs, EC 4.2.1.1), which are involved in a variety of physiological and pathological processes, are ubiquitous metalloenzymes mainly catalyzing the reversible hydration of carbon dioxide (CO2) to bicarbonate ([Formula: see text]) and proton (H(+)). In this study, a dozen of bromophenol derivatives (1-12) were evaluated as metalloenzyme CA (EC 4.2.1.1) inhibitors against the human carbonic anhydrase isoenzymes I and II (hCA I and II). Cytosolic hCA I and II isoenzymes were effectively inhibited by bromophenol derivatives (1-12) with Kis in the low nanomolar range of 1.85 ± 0.58 to 5.04 ± 1.46 nM against hCA I and in the range of 2.01 ± 0.52 to 2.94 ± 1.31 nM against hCA II, respectively. PMID:26133541

  13. Catecholamine-induced vasoconstriction is sensitive to carbonic anhydrase I activation

    Directory of Open Access Journals (Sweden)

    Puscas I.

    2001-01-01

    Full Text Available We studied the relationship between alpha- and beta-adrenergic agonists and the activity of carbonic anhydrase I and II in erythrocyte, clinical and vessel studies. Kinetic studies were performed. Adrenergic agonists increased erythrocyte carbonic anhydrase as follows: adrenaline by 75%, noradrenaline by 68%, isoprenaline by 55%, and orciprenaline by 62%. The kinetic data indicated a non-competitive mechanism of action. In clinical studies carbonic anhydrase I from erythrocytes increased by 87% after noradrenaline administration, by 71% after orciprenaline and by 82% after isoprenaline. The increase in carbonic anhydrase I paralleled the increase in blood pressure. Similar results were obtained in vessel studies on piglet vascular smooth muscle. We believe that adrenergic agonists may have a dual mechanism of action: the first one consists of a catecholamine action on its receptor with the formation of a stimulus-receptor complex. The second mechanism proposed completes the first one. By this second component of the mechanism, the same stimulus directly acts on the carbonic anhydrase I isozyme (that might be functionally coupled with adrenergic receptors, so that its activation ensures an adequate pH for stimulus-receptor coupling for signal transduction into the cell, resulting in vasoconstriction.

  14. Density functional theory study of proton transfer in carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lidong; XIE Daiqian

    2005-01-01

    Proton transfer in carbonic anhydrase II has been studied at the B3LYP/6-31G(D) level. The active site model consists of the zinc ion, four histidine residues, two threonine residues, and three water molecules. Our calculations showed that the proton of the zinc-bound water molecule could be transferred to the nearest water molecule and an intermediate containing H3O+ is then formed. The intermediate is only 1.3 kJ·mol-1 above the reactant complex, whereas the barrier height for the proton transfer is about 8.1 kJ·mol-1.

  15. Natural products that inhibit carbonic anhydrase.

    Science.gov (United States)

    Poulsen, Sally-Ann; Davis, Rohan A

    2014-01-01

    The chemical diversity, binding specificity and propensity to interact with biological targets has inspired many researchers to utilize natural products as molecular probes. Almost all reported carbonic anhydrase inhibitors comprise a zinc binding group in their structure of which the primary sulfonamide moiety (-SO2NH2) is the foremost example and to a lesser extent the primary sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products that comprise these zinc binding groups in their structure are however rare and relatively few natural products have been explored as a source for novel carbonic anhydrase inhibitors. This chapter will highlight the recent and growing interest in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural product chemical space presents a rich source of potential alternate chemotypes for the discovery of novel drug-like carbonic anhydrase inhibitors. PMID:24146386

  16. [Targeting of type IV carbonic anhydrases in Capan-1 human pancreatic duct cells is concomitant of the polarization].

    Science.gov (United States)

    Mairal, A; Fanjul, M; Hollande, E

    1996-01-01

    Carbonic anhydrases II and IV play an essential role in the synthesis and secretion of HCO3- ions in pancreatic duct cells. Secretion of these ions is regulated by the CFTR (cystic fibrosis transmembrane conductance regulator) chloride channel. In the present study, the expression of carbonic anhydrases IV and their targeting to plasma membranes were examined during the growth of human pancreatic duct cells in vitro. Human cancerous pancreatic duct cells of Capan-1 cell line which polarize during their growth were used. We show that: a) these cells express carbonic anhydrases IV continuously during growth in culture, and the expression depends on the stage of growth and the conformation of the cells; b) carbonic anhydrases IV are seen in the cytoplasm in non-polarized cells, but become progressively anchored to plasma membranes as the cells polarize, being targeted to the apical membranes of polarized cells; c) the subcellular distribution of carbonic anhydrases IV indicates that these enzymes are synthetized in rough endoplasmic reticulum and then transported towards the plasma membrane using the classical secretory pathway through the Golgi apparatus. The results indicated that targeting of carbonic anhydrases IV in Capan-1 cells is linked to cellular polarization. PMID:8881572

  17. How many carbonic anhydrase inhibition mechanisms exist?

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Six genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described to date. Inhibition of CAs has pharmacologic applications in the field of antiglaucoma, anticonvulsant, anticancer, and anti-infective agents. New classes of CA inhibitors (CAIs) were described in the last decade with enzyme inhibition mechanisms differing considerably from the classical inhibitors of the sulfonamide or anion type. Five different CA inhibition mechanisms are known: (i) the zinc binders coordinate to the catalytically crucial Zn(II) ion from the enzyme active site, with the metal in tetrahedral or trigonal bipyramidal geometries. Sulfonamides and their isosters, most anions, dithiocarbamates and their isosters, carboxylates, and hydroxamates bind in this way; (ii) inhibitors that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols, carboxylates, polyamines, 2-thioxocoumarins, sulfocoumarins); (iii) inhibitors which occlude the entrance to the active site cavity (coumarins and their isosters), this binding site coinciding with that where CA activators bind; (iv) compounds which bind out of the active site cavity (a carboxylic acid derivative was seen to inhibit CA in this manner), and (v) compounds for which the inhibition mechanism is not known, among which the secondary/tertiary sulfonamides as well as imatinib/nilotinib are the most investigated examples. As CAIs are used clinically in many pathologies, with a sulfonamide inhibitor (SLC-0111) in Phase I clinical trials for the management of metastatic solid tumors, this review updates the recent findings in the field which may be useful for a structure-based drug design approach of more selective/potent modulators of the activity of these enzymes. PMID:26619898

  18. A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency.

    Science.gov (United States)

    Alston, Charlotte L; Ceccatelli Berti, Camilla; Blakely, Emma L; Oláhová, Monika; He, Langping; McMahon, Colin J; Olpin, Simon E; Hargreaves, Iain P; Nolli, Cecilia; McFarland, Robert; Goffrini, Paola; O'Sullivan, Maureen J; Taylor, Robert W

    2015-08-01

    Succinate dehydrogenase (SDH) is a crucial metabolic enzyme complex that is involved in ATP production, playing roles in both the tricarboxylic cycle and the mitochondrial respiratory chain (complex II). Isolated complex II deficiency is one of the rarest oxidative phosphorylation disorders with mutations described in three structural subunits and one of the assembly factors; just one case is attributed to recessively inherited SDHD mutations. We report the pathological, biochemical, histochemical and molecular genetic investigations of a male neonate who had left ventricular hypertrophy detected on antenatal scan and died on day one of life. Subsequent postmortem examination confirmed hypertrophic cardiomyopathy with left ventricular non-compaction. Biochemical analysis of his skeletal muscle biopsy revealed evidence of a severe isolated complex II deficiency and candidate gene sequencing revealed a novel homozygous c.275A>G, p.(Asp92Gly) SDHD mutation which was shown to be recessively inherited through segregation studies. The affected amino acid has been reported as a Dutch founder mutation p.(Asp92Tyr) in families with hereditary head and neck paraganglioma. By introducing both mutations into Saccharomyces cerevisiae, we were able to confirm that the p.(Asp92Gly) mutation causes a more severe oxidative growth phenotype than the p.(Asp92Tyr) mutant, and provides functional evidence to support the pathogenicity of the patient's SDHD mutation. This is only the second case of mitochondrial complex II deficiency due to inherited SDHD mutations and highlights the importance of sequencing all SDH genes in patients with biochemical and histochemical evidence of isolated mitochondrial complex II deficiency. PMID:26008905

  19. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S. Z., E-mail: zfisher@lanl.gov; Kovalevsky, A. Y. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Domsic, J. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Mustyakimov, M. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Silverman, D. N. [Department of Pharmacology and Therapeutics, PO Box 100267, University of Florida, Gainesville, FL 32610 (United States); McKenna, R. [Department of Biochemistry and Molecular Biology, PO Box 100245, University of Florida, Gainesville, FL 32610 (United States); Langan, P. [Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  20. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  1. The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II.

    Science.gov (United States)

    Sivaraman, Sharada; Kirsch, Jack F

    2006-05-01

    Human tyrosine aminotransferase (hTATase) is the pyridoxal phosphate-dependent enzyme that catalyzes the reversible transamination of tyrosine to p-hydrophenylpyruvate, an important step in tyrosine metabolism. hTATase deficiency is implicated in the rare metabolic disorder, tyrosinemia type II. This enzyme is a member of the poorly characterized Igamma subfamily of the family I aminotransferases. The full length and truncated forms of recombinant hTATase were expressed in Escherichia coli, and purified to homogeneity. The pH-dependent titration of wild-type reveals a spectrum characteristic of family I aminotransferases with an aldimine pK(a) of 7.22. I249A mutant hTATase exhibits an unusual spectrum with a similar aldimine pK(a) (6.85). hTATase has very narrow substrate specificity with the highest enzymatic activity for the Tyr/alpha-ketoglutarate substrate pair, which gives a steady state k(cat) value of 83 s(-1). In contrast there is no detectable transamination of aspartate or other cosubstrates. The present findings show that hTATase is the only known aminotransferase that discriminates significantly between Tyr and Phe: the k(cat)/K(m) value for Tyr is about four orders of magnitude greater than that for Phe. A comparison of substrate specificities of representative Ialpha and Igamma aminotransferases is described along with the physiological significance of the discrimination between Tyr and Phe by hTATase as applied to the understanding of the molecular basis of phenylketonuria.

  2. Carbonic anhydrase inhibitors drug design.

    Science.gov (United States)

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  3. Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition.

    Science.gov (United States)

    Esmaeili, Sajjad; Ashrafi-Kooshk, Mohammad Reza; Khaledian, Koestan; Adibi, Hadi; Rouhani, Shohre; Khodarahmi, Reza

    2016-12-15

    Allura red is a widely used food colorant, but there is debate on its potential security risk. In the present study, we found that degradation products of the dye were more potent agents with higher carbonic anhydrase inhibitory action than the parent dye. The mechanism by which the compounds inhibit the enzyme activity has been determined as competitive mode. In addition, the enzyme binding properties of the compounds were investigated employing different spectroscopic techniques and molecular docking. The analyses of fluorescence quenching data revealed the existence of the same binding site for the compounds on the enzyme molecule. The thermodynamic parameters of ligand binding were not similar, which indicates that different interactions are responsible in binding of the parent dye and degradation products to the enzyme. It appears that enzyme inhibition should be considered, more seriously, as a new opened dimension in food safety. PMID:27451209

  4. Heterocyclic compounds as carbonic anhydrase inhibitor.

    Science.gov (United States)

    Husain, Asif; Madhesia, Diwakar

    2012-12-01

    The carbonic anhydrases (CAs, EC 4.2.1.1) constitute interesting targets for the design of pharmacological agents useful in the treatment or prevention of a variety of disorders such as, glaucoma, acid-base disequilibria, epilepsy, and other neuromuscular diseases, altitude sickness, edema, and obesity. A quite new and unexpected application of the CA inhibitors (CAIs) is with regard to their potential use in the management (imaging and treatment) of hypoxic tumors. A series of sulfonamides, including some clinically used derivatives like acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and sulpiride, or indisulam, a compound in clinical development as antitumor drug, as well as the sulfamate antiepileptic drug topiramate have been reported to inhibit various human carbonic anhydrase isozyme. Various heterocyclic sulfonamides have been reported in this review with their potency to inhibit different carbonic anhydrases isozymes. PMID:21981003

  5. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  6. Carbonic anhydrases as targets for medicinal chemistry.

    Science.gov (United States)

    Supuran, Claudiu T; Scozzafava, Andrea

    2007-07-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc enzymes acting as efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate. 16 different alpha-CA isoforms were isolated in mammals, where they play crucial physiological roles. Some of them are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA XV), CA VA and CA VB are mitochondrial, and CA VI is secreted in saliva and milk. Three acatalytic forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP XI. Representatives of the beta-delta-CA family are highly abundant in plants, diatoms, eubacteria and archaea. The catalytic mechanism of the alpha-CAs is understood in detail: the active site consists of a Zn(II) ion co-ordinated by three histidine residues and a water molecule/hydroxide ion. The latter is the active species, acting as a potent nucleophile. For beta- and gamma-CAs, the zinc hydroxide mechanism is valid too, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. CAs are inhibited primarily by two classes of compounds: the metal complexing anions and the sulfonamides/sulfamates/sulfamides possessing the general formula RXSO(2)NH(2) (R=aryl; hetaryl; perhaloalkyl; X=nothing, O or NH). Several important physiological and physio-pathological functions are played by CAs present in organisms all over the phylogenetic tree, related to respiration and transport of CO(2)/bicarbonate between metabolizing tissues and the lungs, pH and CO(2) homeostasis, electrolyte secretion in a variety of tissues/organs, biosynthetic reactions, such as the gluconeogenesis and ureagenesis among others (in animals), CO(2) fixation (in plants and algae), etc. The presence of these ubiquitous enzymes in so many tissues and in so different isoforms represents an attractive goal for the design of inhibitors with biomedical applications. Indeed, CA inhibitors are clinically used as

  7. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T.; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  8. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  9. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  10. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-01-01

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity. PMID:27271641

  11. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Carrasco, J; Giralt, M;

    1999-01-01

    To characterize the physiological role of metallothioneins I and II (MT-I+II) in the brain, we have examined the chronological effects of a freeze injury to the cortex in normal and MT-I+II null mice. In normal mice, microglia/macrophage activation and astrocytosis were observed in the areas...... to that of unlesioned mice. In situ hybridization analysis indicates that MT-I+II immunoreactivity reflects changes in the messenger levels. In MT-I+II null mice, microglia/macrophages infiltrated the lesion heavily, and at 20 dpl they were still present. Reactive astrocytosis was delayed and persisted at 20 dpl...

  12. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  13. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films

    NARCIS (Netherlands)

    Busscher, Henk J.; van de Belt-Gritter, Betsy; Dijkstra, Rene J. B.; Norde, Willem; Petersen, Fernanda C.; Scheie, Anne A.; van der Mei, Henny C.

    2007-01-01

    The antigen I/II family of surface proteins is expressed by most oral streptococci, including Streptococcus mutans, and mediates specific adhesion to, among other things, salivary films and extracellular matrix proteins. In this study we showed that antigen I/II-deficient S. mutans isogenic mutant I

  14. Pd(II)-catalyzed cascade Wacker-Heck reaction: chemoselective coupling of two electron-deficient reactants.

    Science.gov (United States)

    Silva, Franck; Reiter, Maud; Mills-Webb, Rebecca; Sawicki, Marcin; Klär, Daniel; Bensel, Nicolas; Wagner, Alain; Gouverneur, Véronique

    2006-10-27

    A novel palladium(II)-catalyzed oxy-carbopalladation process was developed allowing for the orchestrated union of hydroxy ynones with ethyl acrylate, two electron-deficient reactants. With beta-hydroxy ynones, this cascade Wacker-Heck process gave access to highly functionalized tri- or tetrasubstituted dihydropyranones featuring an unusual dienic system. For diastereomerically pure and for enantioenriched beta-hydroxyynones, these reactions proceed without affecting the stereochemical integrity of the existing stereocenters. In addition, tetrasubstituted furanones can be prepared when alpha-hydroxyynones and ethyl acrylate are used as starting materials. The dihydropyranones and furanones obtained upon cyclization are novel compounds, but structurally related carbohydrate derivatives featuring a similar dienic system have been used as starting materials for the construction of polyannulated products, suggesting that these cascade Pd(II)-mediated oxidative heterocyclizations are of value for various synthetic applications.

  15. Hypertension and Angiotensin II Hypersensitivity in Aminopeptidase A–deficient Mice

    OpenAIRE

    MITSUI, Takashi; NOMURA, Seiji; Okada, Mayumi; Ohno, Yasumasa; Kobayashi, Honami; Nakashima,Yutaka; Murata, Yasutaka; Takeuchi, Mikihito; Kuno, Naohiko; Nagasaka, Tetsuo; O-Wang, Jiyang; Cooper, Max D.; Mizutani, Shigehiko

    2003-01-01

    Local concentrations of the vasopressor peptide, angiotensin II (AngII), depend upon the balance between synthesis and degradation. Previous studies of blood pressure (BP) regulation have focused primarily on the generation of AngII and its receptors, and less attention has been devoted to angiotensin degradation. Aminopeptidase A (APA, EC 3.4.11.7) is responsible for the N-terminal cleavage of AngII, a hydrolytic event that serves as a rate-limiting step in angiotensin degradation. To evalua...

  16. Dithiocarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglaucoma Action in Vivo

    OpenAIRE

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Masini, Emanuela; Supuran, Claudiu T.

    2012-01-01

    A series of dithiocarbamates was prepared by reaction of primary/secondary amines with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of 4 human (h) isoforms of the zinc enzyme carbonic anhydrase, CA (EC 4.2.1.1), hCA I, II, IX and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar inhibitors targeting these CAs were detected. X-ray crystal structure of hCA II adduct with morpholine dithiocarbamate ...

  17. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency

    Directory of Open Access Journals (Sweden)

    Djidjik Réda

    2012-08-01

    Full Text Available Abstract Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26. Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  18. Complexes With Biologically Active Ligands. Part 4. Coordination Compounds of Chlorothiazide With Transition Metal Ions Behave as Strong Carbonic Anhydrase Inhibitors

    OpenAIRE

    Supuran, Claudiu T.

    1996-01-01

    Complexes of the diuretic benzothiadiazine derivative chlorothiazide (6-chloro-7-sulfamoyl- 1,2,4-benzothiadiazine-1,1-dioxide) with V(IV); Fe(II); Co(II); Ni(II); Cu(II), Ag(I) and U(VI) were prepared and characterized by elemental analysis, spectroscopic, thermogravimetric, magnetic and conductimetric measurements. The complexes behave as effective inhibitors for two isozymes (I and II) of carbonic anhydrase (CA).

  19. Capsaicin: A Potent Inhibitor of Carbonic Anhydrase Isoenzymes

    Directory of Open Access Journals (Sweden)

    Betul Arabaci

    2014-07-01

    Full Text Available Carbonic anhydrase (CA, EC 4.2.1.1 is a zinc containing metalloenzyme that catalyzes the rapid and reversible conversion of carbon dioxide (CO2 and water (H2O into a proton (H+ and bicarbonate (HCO3– ion. On the other hand, capsaicin is the main component in hot chili peppers and is used extensively used in spices, food additives and drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II are ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, and of 208.37 µM against hCA II.

  20. Inhibitory Effect of Furosemide on Carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    CUI Jianli; ZHAO Tongjin; JIANG Yan; ZHOU Haimeng

    2006-01-01

    This study investigated the inhibitory effect of a high efficiency diuretic, furosemide, on carbonic anhydrase (CA). First, comparing the inhibitory effect of acetazolamide, a low efficiency diuretic, on CA, shows that furosemide or acetazolamide can quickly make CA inactive when its concentration is close to the enzyme concentration, different from the usual inhibitory kinetics in which the concentration of the inhibitor is far higher than the enzyme concentration. Secondly, the reaction of the enzyme indicates that the inhibitory effect of furosemide or acetazolamide on carbonic anhydrase is quickly reversible. Finally, the degree of the inhibitory effect of furosemide and of acetazolamide on CA are compared. The results show that furosemide inhibits CA less than acetazolamide.

  1. Non-Classical Inhibition of Carbonic Anhydrase

    Science.gov (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  2. Thermostable Carbonic Anhydrases in Biotechnological Applications

    OpenAIRE

    Anna Di Fiore; Vincenzo Alterio; Simona M. Monti; Giuseppina De Simone; Katia D'Ambrosio

    2015-01-01

    Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques,...

  3. Carbon-13 nuclear magnetic resonance as a probe of side chain orientation and mobility in carboxymethylated human carbonic anhydrase B

    NARCIS (Netherlands)

    Schoot Uiterkamp, Antonius J.M.; Armitage, Ian M.; Prestegard, James H.; Slomski, John; Coleman, Joseph E.

    1978-01-01

    13C NMR spectra of [1-13C]- and [2-13C]carboxymethyl His-200 human carbonic anhydrase B have been obtained as a function of pH and in the presence and absence of the active site Zn(II) or Cd(II) ion. Chemical shifts of the 1-13C show that the carboxyl is sensitive to two ionization processes, with a

  4. Carbonic Anhydrase: In the Driver's Seat for Bicarbonate Transport

    Directory of Open Access Journals (Sweden)

    Sterling D

    2001-07-01

    Full Text Available Carbonic anhydrases are a widely expressed family of enzymes that catalyze the reversible reaction: CO(2 + H(2O = HCO(3(- + H(+. These enzymes therefore both produce HCO(3(- for transport across membranes and consume HCO(3(- that has been transported across membranes. Thus these enzymes could be expected to have a key role in driving the transport of HCO(3(- across cells and epithelial layers. Plasma membrane anion exchange proteins (AE transport chloride and bicarbonate across most mammalian membranes in a one-for-one exchange reaction and act as a model for our understanding of HCO(3(- transport processes. Recently it was shown that AE1, found in erythrocytes and kidney, binds carbonic anhydrase II (CAII via the cytosolic C-terminal tail of AE1. To examine the physiological consequences of the interaction between CAII and AE1, we characterized Cl(-/HCO(3(- exchange activity in transfected HEK293 cells. Treatment of AE1-transfected cells with acetazolamide, a CAII inhibitor, almost fully inhibited anion exchange activity, indicating that endogenous CAII activity is essential for transport. Further experiments to examine the role of the AE1/CAII interaction will include measurements of the transport activity of AE1 following mutation of the CAII binding site. In a second approach a functionally inactive CA mutant, V143Y, will be co-expressed with AE1 in HEK293 cells. Since over expression of V143Y CAII would displace endogenous wild-type CAII from AE1, a loss of transport activity would be observed if binding to the AE1 C-terminus is required for transport.

  5. Angiotensin II-Induced Hypertension in Apolipoprotein E-Deficient Rats

    OpenAIRE

    Gorman, Sydney N; Goergen, Craig J.; Blaize, A Nicole

    2015-01-01

    Abdominal aortic aneurysms (AAAs) are characterized by a weakened vessel wall and a diameter 50% greater than normal. AAA are usually asymptomatic until they are near rupturing, which can be fatal if not treated immediately. Apolipoprotein E-deficient (ApoE) mice are commonly used as a model to study aneurysm growth. Our lab has created a similar model using rats, which are more similar to humans. This study focuses on the analysis of blood pressures collected from ApoE rats for comparison wi...

  6. Circadian variation in serum free and total insulin-like growth factor (IGF)-I and IGF-II in untreated and treated acromegaly and growth hormone deficiency

    DEFF Research Database (Denmark)

    Skjaerbaek, Christian; Frystyk, Jan; Kaal, Andreas;

    2000-01-01

    to the nocturnal increase in IGF binding protein-1. In this study we have investigated the circadian variation in circulating free IGF-I and IGF-II in patients with acromegaly and patients with adult onset growth hormone deficiency. PATIENTS: Seven acromegalic patients were studied with and without treatment...... no significant circadian variations in free IGF-I or free IGF-II in either of the two occasions. In contrast, there was a significant circadian variation of total IGF-I after adjustment for changes in plasma volume in both treated and untreated acromegaly and GH deficiency in all cases with a peak between 0300 h...

  7. Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water.

    Science.gov (United States)

    Hikawa, Hidemasa; Machino, Yumo; Toyomoto, Mariko; Kikkawa, Shoko; Azumaya, Isao

    2016-08-01

    An efficient direct nucleophilic substitution of benzhydryl alcohols with electron-deficient benzenethiols using cationic Pd(ii) catalysts as Lewis acids in water is reported. Atom economical and environmentally benign protocols afford S-benzylated products in moderate to excellent yields. Commercially available Pd(MeCN)4(OTf)2, PdCl2(MeCN)2, and Na2PdCl4 are highly efficient catalysts. Notably, this simple protocol can be achieved without any other additives such as acids, bases, or external ligands. A Hammett study on the rate constants of S-benzylation by using various substituted benzhydryl alcohols yielded negative ρ values, suggesting that there is a build-up of positive charge in the transition state. PMID:27363665

  8. A novel splice site mutation in neonatal carnitine palmitoyl transferase II deficiency.

    NARCIS (Netherlands)

    Smeets, R.J.P.; Smeitink, J.A.M.; Semmekrot, B.A.; Scholte, H.R.; Wanders, R.J.; Heuvel, L.P.W.J. van den

    2003-01-01

    Mitochondrial beta-oxidation of long-chain fatty acids requires the concerted action of three tightly integrated membrane-bound enzymes (carnitine palmitoyltransferase I and II and carnitine/acylcarnitine translocase) that transport them into mitochondria. Neonatal onset of carnitine palmitoyltransf

  9. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency.

    Science.gov (United States)

    Allen, Michael D; Kropat, Janette; Tottey, Stephen; Del Campo, José A; Merchant, Sabeeha S

    2007-01-01

    For photoheterotrophic growth, a Chlamydomonas reinhardtii cell requires at least 1.7 x 10(7) manganese ions in the medium. At lower manganese ion concentrations (typically OEE proteins from the membrane. Assay of Mn superoxide dismutase (MnSOD) indicates loss of activity of two isozymes in proportion to the Mn deficiency. The expression of MSD3 through MSD5, encoding various isoforms of the MnSODs, is up-regulated severalfold in Mn-deficient cells, but neither expression nor activity of the plastid Fe-containing superoxide dismutase is changed, which contrasts with the dramatically increased MSD3 expression and plastid MnSOD activity in Fe-deficient cells. Mn-deficient cells are selectively sensitive to peroxide but not methyl viologen or Rose Bengal, and GPXs, APX, and MSRA2 genes (encoding glutathione peroxidase, ascorbate peroxidase, and methionine sulfoxide reductase 2) are slightly up-regulated. Elemental analysis indicates that the Mn, Fe, and P contents of cells in the Mn-deficient cultures were reduced in proportion to the deficiency. A natural resistance-associated macrophage protein homolog and one of five metal tolerance proteins were induced in Mn-deficient cells but not in Fe-deficient cells, suggesting that the corresponding gene products may be components of a Mn(2+)-selective assimilation pathway. PMID:17085511

  10. Expression of proteins encoded by the Escherichia coli cyn operon: carbon dioxide-enhanced degradation of carbonic anhydrase.

    Science.gov (United States)

    Kozliak, E I; Guilloton, M B; Gerami-Nejad, M; Fuchs, J A; Anderson, P M

    1994-09-01

    Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.

  11. Structural Basis for the Inhibition of Helicobacter pylori α-Carbonic Anhydrase by Sulfonamides.

    Directory of Open Access Journals (Sweden)

    Joyanta K Modak

    Full Text Available Periplasmic α-carbonic anhydrase of Helicobacter pylori (HpαCA, an oncogenic bacterium in the human stomach, is essential for its acclimation to low pH. It catalyses the conversion of carbon dioxide to bicarbonate using Zn(II as the cofactor. In H. pylori, Neisseria spp., Brucella suis and Streptococcus pneumoniae this enzyme is the target for sulfonamide antibacterial agents. We present structural analysis correlated with inhibition data, on the complexes of HpαCA with two pharmacological inhibitors of human carbonic anhydrases, acetazolamide and methazolamide. This analysis reveals that two sulfonamide oxygen atoms of the inhibitors are positioned proximal to the putative location of the oxygens of the CO2 substrate in the Michaelis complex, whilst the zinc-coordinating sulfonamide nitrogen occupies the position of the catalytic water molecule. The structures are consistent with acetazolamide acting as site-directed, nanomolar inhibitors of the enzyme by mimicking its reaction transition state. Additionally, inhibitor binding provides insights into the channel for substrate entry and product exit. This analysis has implications for the structure-based design of inhibitors of bacterial carbonic anhydrases.

  12. IL-6 deficiency leads to reduced metallothionein-I+II expression and increased oxidative stress in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2000-01-01

    -AN-injected IL-6KO mice reactive astrocytosis and recruitment of macrophages and T-lymphocytes were clearly reduced, as were BM leukopoiesis and spleen immune reaction. Expression of MT-I+II was significantly reduced while MT-III was increased. Oxidative stress, as determined by measuring nitrated...... that inflammation in CNS is clearly reduced during IL-6 deficiency and this effect is likely due to significant inhibition of BM leukopoiesis. We also show that IL-6 deficiency reduces the levels of neuroprotective antioxidants MT-I+II followed by an increased oxidative stress during CNS inflammation.......We examined the effects of interleukin-6 (IL-6) deficiency on brain inflammation and the accompanying bone marrow (BM) leukopoiesis and spleen immune reaction after systemic administration of a niacin antagonist, 6-aminonicotinamide (6-AN), which causes both astroglial degeneration/cell death...

  13. Plasminogen activator inhibitor-1 deficient mice are protected from angiotensin II-induced fibrosis

    OpenAIRE

    Beier, Juliane I.; Kaiser, J. Phillip; Guo, Luping; Martínez-Maldonado, Manuel; Arteel, Gavin E.

    2011-01-01

    PAI-1 has been shown to be both profibrotic and antifibrotic in animal models of hepatic fibrosis. Although these models have similarities to human fibrotic liver disease, no rodent model completely recapitulates the clinical situation; indeed, transaminase values in most models of hepatic fibrosis are much higher than in chronic liver diseases in humans. Here, wild-type and PAI-1−/− mice were administered AngII (500 ng/kg/min) for 4 weeks. ECM accumulation was evaluated by Sirius red stainin...

  14. N-Nitrosulfonamides: A new chemotype for carbonic anhydrase inhibition.

    Science.gov (United States)

    Nocentini, Alessio; Vullo, Daniela; Bartolucci, Gianluca; Supuran, Claudiu T

    2016-08-15

    A series of N(1)-substituted aromatic sulfonamides was obtained by applying a selective sulfonamide nitration synthetic strategy leading to Ar-SO2NHNO2 derivatives which were investigated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Two human (h) hCA isoforms, the cytosolic hCA II and the transmembrane hCA IX, in addition to the fungal enzyme from Malassezia globosa, MgCA, were included in the study. Most of the new compounds reported selectively inhibited hCA IX over hCA II and at the same time showed effective MgCA inhibitory properties, with KIs ranging between 0.22 and 8.09μM. The N-nitro sulfonamides are a new chemotype with CA inhibitory effects. As hCA IX was recently validated as antitumor/antimetastatic drug target, its selective inhibition could be exploited for interesting biomedical applications. Moreover, due to the effective MgCAs inhibitory properties of the N-nitro sulfonamides, of considerable interest in the cosmetics field as potential anti-dandruff agents, the N-nitro sulfonamides may be considered as interesting leads for the design of more efficient compounds targeting fungal enzymes. PMID:27290692

  15. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    Science.gov (United States)

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  16. ApoA-I deficiency in mice is associated with redistribution of apoA-II and aggravated AApoAII amyloidosis[S

    OpenAIRE

    Wang王耀勇, Yaoyong,; Sawashita澤下仁子, Jinko,; Qian钱金泽, Jinze,; Zhang张蓓茹, Beiru,; Fu付笑影, Xiaoying,; Tian田耕, Geng,; Chen陈磊, Lei,; Mori森 政之, Masayuki,; Higuchi樋口京一, Keiichi,

    2011-01-01

    Apolipoprotein A-II (apoA-II) is the second major apolipoprotein following apolipoprotein A-I (apoA-I) in HDL. ApoA-II has multiple physiological functions and can form senile amyloid fibrils (AApoAII) in mice. Most circulating apoA-II is present in lipoprotein A-I/A-II. To study the influence of apoA-I on apoA-II and AApoAII amyloidosis, apoA-I-deficient (C57BL/6J.Apoa1−/−) mice were used. Apoa1−/− mice showed the expected significant reduction in total cholesterol (TC), HDL cholesterol (HDL...

  17. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Science.gov (United States)

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  18. Cartografia e deficiência visual: experiências no Colégio Pedro II

    Directory of Open Access Journals (Sweden)

    Rafael Medeiros de Andrade

    2014-01-01

    Full Text Available O processo de construção de uma escola inclusiva perpassa um conjunto de esforços cognitivos e técnicos por parte da comunidade escolar que são necessários para a adequada educação e desenvolvimento do aluno. No que diz respeito ao ensino de Geografia para alunos deficientes visuais, fazem parte deste conjunto de medidas o domínio do sistema Braille, a confecção de materiais e mapas táteis, a gravação de textos em áudio e, entre outras, a realização de trabalhos de campo. O presente relato de experiência refere-se à um projeto de dedicação exclusiva, implementado no Colégio Pedro II de 2008 a 2010, cujo objetivo foi aprimorar o ensino de Geografia para os alunos deficientes visuais. Conclui-se que a adoção dessas medidas representa o início de um longo trabalho de toda comunidade escolar que não pode ser resumido à existência de alguns materiais táteis. Deve, por outro lado, envolver um processo de construção e adequação instrumental, acompanhado da capacitação profissional e da sensibilização da comunidade escolar.

  19. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo.

    Science.gov (United States)

    Carta, Fabrizio; Akdemir, Atilla; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2013-06-13

    Dithiocarbamates (DTCs) were recently discovered as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. A series of xanthates and a trithiocarbonate, structurally related to the DTCs, were prepared by reaction of alcohols/thiols with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of four human (h) isoforms, hCA I, II, IX, and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar xanthate/trithiocarbonate inhibitors targeting these CAs were detected. A docking study of some xanthates within the CA II active site showed that these compounds bind in a similar manner with the dithiocarbamates, coordinating monodentately to the Zn(II) ion from the enzyme active site. Several xanthates showed potent intraocular pressure lowering activity in two animal models of glaucoma via the topical administration. Xanthates and thioxanthates represent two novel, promising classes of CA inhibitors. PMID:23647428

  20. Carbonic Anhydrase and Metalloderivatives: A Bioinorganic Chemistry Study

    Science.gov (United States)

    McQuate, Robert S.

    1977-01-01

    Discusses selected bioinorganic aspects of carbonic anhydrase and describes experiments that will reinforce the students' understanding of the presence and essential role that metal ions have in some biological systems. (SL)

  1. Glaucoma and the applications of carbonic anhydrase inhibitors.

    Science.gov (United States)

    Scozzafava, Andrea; Supuran, Claudiu T

    2014-01-01

    Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the treatment of glaucoma, a disease affecting a large number of people and characterized by an elevated intraocular pressure (IOP). At least three isoforms, CA II, IV and XII are targeted by the sulfonamide inhibitors, some of which are clinically used drugs. Acetazolamide, methazolamide and dichlorophenamide are first generation CA inhibitors (CAIs) still used as systemic drugs for the management of this disease. Dorzolamide and brinzolamide represent the second generation inhibitors, being used topically, as eye drops, with less side effects compared to the first generation drugs. Third generation inhibitors have been developed by using the tail approach, but they did not reach the clinics yet. The most promising such derivatives are the sulfonamides incorporating either tails with nitric oxide releasing moieties or hybrid drugs possessing prostaglandin (PG) F agonist moieties in their molecules. Recently, the dithiocarbamates have also been described as CAIs possessing IOP lowering effects in animal models of glaucoma. CAIs are used alone or in combination with other drugs such as adrenergic agonist/antagonists, or PG analogs, being an important component of the antiglaucoma drugs armamentarium. PMID:24146387

  2. Future Perspective in Carbonic Anhydrase Inhibitors and its Drugs

    OpenAIRE

    S.Petchimuthu; Dr. N. Narayanan

    2013-01-01

    Through this review it is contemplated that carbonic anhydrase inhibitors, were a traditional drugs of choice for the treatment of glaucoma with a myriad of side effects and inadequate topical effectiveness, may be formulated into a topically effective agent by utilizing various newer formulation approaches of ocular drug delivery. Even though the carbonic anhydrase inhibitor, acetazolamide (ACZ) has a poor solubility and penetration power (BCS Class IV), various studies mentioned in the revi...

  3. Evaluation of association between mandibular crowding and some of anatomical indexes in skeletal Cl II 8-12 years old patient with mandibular deficiency

    OpenAIRE

    Shirazi Mohsen; Darvishpour Hojat; Nateghi Reza; Mirhashemi Amir Hosein; Salari Behzad

    2015-01-01

    Tehran University of Medical Sciences, Tehran, Iran ( )   Background and Aims: Nowadays patients refer to orthodontist for issue such as dental crowding and other aesthetic problems. The aims of this study were to evaluate the relationship between some of mandibular anatomical landmarks and dental crowding in the patient with skeletal Cl II due to mandibular deficiency.   Materials and Methods: 108 cases have been randomly selected out of patients with mandibular relate...

  4. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel;

    2005-01-01

    (-)D(-) mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the......Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have...... overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (A(-)D(-)) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, A...

  5. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties

    Science.gov (United States)

    Supuran, Claudiu T.

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC50 values around 10−8M against isozyme CA II, and 10−7 M against isozyme CAI. PMID:18472784

  6. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties.

    Science.gov (United States)

    Supuran, C T

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC(50) values around 10(-8)M against isozyme CA II, and 10(-7) M against isozyme CAI.

  7. Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4+ CD25+ regulatory T cells population

    Science.gov (United States)

    Zheng, Quan-you; Liang, Shen-ju; Li, Gui-qing; Lv, Yan-bo; Li, You; Tang, Ming; Zhang, Kun; Xu, Gui-lian; Zhang, Ke-qin

    2016-01-01

    Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3−/−) as skin graft donors or recipients. Compared with C3+/+ B6 allografts, C3−/− B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2bm12 B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3+/+ allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3−/− allografts. Moreover, C3−/− allografts caused attenuated Th1/Th17 responses, but increased CD4+CD25+Foxp3+ regulatory T (Treg) cell expression markedly in local intragraft and H-2bm12 recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4+ CD25+ Treg cell population expansion and attenuated Th1/Th17 response. PMID:27641978

  8. Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4(+) CD25(+) regulatory T cells population.

    Science.gov (United States)

    Zheng, Quan-You; Liang, Shen-Ju; Li, Gui-Qing; Lv, Yan-Bo; Li, You; Tang, Ming; Zhang, Kun; Xu, Gui-Lian; Zhang, Ke-Qin

    2016-01-01

    Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3(-/-)) as skin graft donors or recipients. Compared with C3(+/+) B6 allografts, C3(-/-) B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2(bm12) B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3(+/+) allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3(-/-) allografts. Moreover, C3(-/-) allografts caused attenuated Th1/Th17 responses, but increased CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell expression markedly in local intragraft and H-2(bm12) recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4(+) CD25(+) Treg cell population expansion and attenuated Th1/Th17 response. PMID:27641978

  9. Structure and function of carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-07-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently. PMID:27407171

  10. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M;

    2001-01-01

    Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mic...

  11. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines.

    Science.gov (United States)

    Li, Xiao C; Shull, Gary E; Miguel-Qin, Elisa; Chen, Fang; Zhuo, Jia L

    2015-11-01

    The role of Na(+/)H(+) exchanger 3 (NHE3) in the kidney in angiotensin II (ANG II)-induced hypertension remains unknown. The present study used global NHE3-deficient mice with transgenic rescue of the Nhe3 gene in small intestines (tgNhe3(-/-)) to test the hypothesis that genetic deletion of NHE3 selectively in the kidney attenuates ANG II-induced hypertension. Six groups of wild-type (tgNhe3(+/+)) and tgNhe3(-/-) mice were infused with either vehicle or ANG II (1.5 mg/kg/day, i.p., 2 weeks, or 10 nmol/min, i.v., 30 min), treated with or without losartan (20 mg/kg/day, p.o.) for 2 weeks. Basal systolic blood pressure (SBP) and mean intra-arterial blood pressure (MAP) were significantly lower in tgNhe3(-/-) mice (P excretion, urinary Na(+) excretion, urinary K(+) excretion, and urinary Cl(-) excretion were significantly lower in tgNhe3(-/-) mice (P < 0.01). These responses were associated with significantly elevated plasma ANG II and aldosterone levels, and marked upregulation in aquaporin 1, the Na(+)/HCO3 cotransporter, the α1 subunit isoform of Na(+)/K(+)-ATPase, protein kinase Cα, MAP kinases ERK1/2, and glycogen synthase kinase 3 α/β in the renal cortex of tgNhe3(-/-) mice (P < 0.01). ANG II infusion markedly increased SBP and MAP and renal cortical transporter and signaling proteins in tgNhe3(+/+), as expected, but all of these responses to ANG II were attenuated in tgNhe3(-/-) mice (P < 0.01). These results suggest that NHE3 in the kidney is necessary for maintaining normal blood pressure and fully developing ANG II-dependent hypertension.

  12. New selective carbonic anhydrase IX inhibitors: synthesis and pharmacological evaluation of diarylpyrazole-benzenesulfonamides.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Meignan, Samuel; Foulon, Catherine; Six, Perrine; Gros, Abigaëlle; Bal-Mahieu, Christine; Supuran, Claudiu T; Scozzafava, Andrea; Frédérick, Raphaël; Masereel, Bernard; Depreux, Patrick; Lansiaux, Amélie; Goossens, Jean-François; Gluszok, Sébastien; Goossens, Laurence

    2013-03-15

    Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1μM CA IX inhibitor. PMID:23168081

  13. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides.

    Science.gov (United States)

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-04-01

    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  14. Rescue of NGF-deficient mice II: basal forebrain cholinergic projections require NGF for target innervation but not guidance.

    Science.gov (United States)

    Phillips, Heidi S; Nishimura, Merry; Armanini, Mark P; Chen, Karen; Albers, Kathryn M; Davis, Brian M

    2004-04-29

    Basal forebrain cholinergic (BFC) neurons are an important substrate of cognitive function and are hypothesized to require the presence of nerve growth factor (NGF) for survival and target innervation. NGF-deficient mice develop BFC neurons that extend projections into telencephalic targets, but the mice perish before innervation is fully established. Rescue of NGF-deficient mice by transgenic expression of NGF under the keratin promoter yields viable mice with disrupted CNS expression of NGF. In the current study, rescued NGF-deficient mice contain normal numbers of septal cholinergic neurons yet reveal severe compromise of cholinergic innervation of both cortex and hippocampus. Surprisingly, intracerebroventricular infusion of NGF into juvenile mice can induce an essentially normal pattern of cholinergic innervation of the hippocampus. These results indicate that NGF is required for induction of proper innervation by BFC neurons, but that the cellular pattern of expression of this factor is not critical for specifying the distribution of axon terminals. PMID:15093680

  15. M-CSF deficiency leads to reduced metallothioneins I and II expression and increased tissue damage in the brain stem after 6-aminonicotinamide treatment

    DEFF Research Database (Denmark)

    Penkowa, Milena; Poulsen, Christian; Carrasco, Javier;

    2002-01-01

    6-Aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray-matter astrocytes followed by a vigorous inflammatory response. Macrophage colony stimulating factor (M-CSF) is important during inflammation, and in order to further clarify the roles for M-CSF...... in neurodegeneration and brain cell death, we have examined the effect of 6-AN on osteopetrotic mice with genetic M-CSF deficiency (op/op mice). The 6-AN-induced degeneration of gray-matter areas was comparable in control and op/op mice, but the numbers of reactive astrocytes, macrophages, and lymphocytes...... for caspases and cytochrome c) were significantly increased in 6-AN-injected op/op mice relative to controls. From a number of antioxidant factors assayed, only metallothioneins I and II (MT-I+II) were decreased in op/op mice in comparison to controls. Thus, the present results indicate that M-CSF...

  16. Leukocyte Adhesion Deficiency Type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium.

    OpenAIRE

    Karsan, A.; Cornejo, C J; Winn, R K; Schwartz, B R; Way, W; Lannir, N; Gershoni-Baruch, R; Etzioni, A; Ochs, H. D.; Harlan, J. M.

    1998-01-01

    Leukocyte Adhesion Deficiency Type II (LAD II) is a recently described syndrome and the two patients with this defect lack fucosylated glycoconjugates. These glycoconjugates include the selectin ligand, sialyl LewisX, and various fucosylated blood group antigens. To date, the molecular anomaly in these patients has not been identified. We localized the defect in LAD II to the de novo pathway of GDP-fucose biosynthesis, by inducing cell-surface expression of fucosylated glycoconjugates after e...

  17. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Arsenescu, Violeta [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Arsenescu, Razvan [Digestive Diseases and Nutrition, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Parulkar, Madhura; Karounos, Michael [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Zhang, Xuan [Graduate Center for Toxicology, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Baker, Nicki [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States); Cassis, Lisa A., E-mail: lcassis@uky.edu [Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200 (United States)

    2011-11-15

    Infusion of angiotensin II (AngII) to hyperlipidemic mice augments atherosclerosis and causes formation of abdominal aortic aneurysms (AAAs). Each of these AngII-induced vascular pathologies exhibit pronounced inflammation. Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote inflammation in endothelial cells and adipocytes, two cell types implicated in AngII-induced vascular pathologies. The purpose of this study was to test the hypothesis that administration of PCB77 to male apolipoprotein E (ApoE) -/- mice promotes AngII-induced atherosclerosis and AAA formation. Male ApoE-/- mice were administered vehicle or PCB77 (49 mg/kg, i.p.) during week 1 and 4 (2 divided doses/week) of AngII infusion. Body weights and total serum cholesterol concentrations were not influenced by administration of PCB77. Systolic blood pressure was increased in AngII-infused mice administered PCB77 compared to vehicle (156 {+-} 6 vs 137 {+-} 5 mmHg, respectively). The percentage of aortic arch covered by atherosclerotic lesions was increased in AngII-infused mice administered PCB77 compared to vehicle (2.0 {+-} 0.4 vs 0.9 {+-} 0.1%, respectively). Lumen diameters of abdominal aortas determined by in vivo ultrasound and external diameters of excised suprarenal aortas were increased in AngII-infused mice administered PCB77 compared to vehicle. In addition, AAA incidence increased from 47 to 85% in AngII-infused mice administered PCB77. Adipose tissue in close proximity to AAAs from mice administered PCB77 exhibited increased mRNA abundance of proinflammatory cytokines and elevated expression of components of the renin-angiotensin system (angiotensinogen, angiotensin type 1a receptor (AT1aR)). These results demonstrate that PCB77 augments AngII-induced atherosclerosis and AAA formation. -- Highlights: Black-Right-Pointing-Pointer Polychlorinated biphenyl 77 (PCB77) promotes AngII-induced hypertension. Black-Right-Pointing-Pointer PCB77 augments AngII

  18. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    Science.gov (United States)

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect.

  19. Monothiocarbamates Strongly Inhibit Carbonic Anhydrases in Vitro and Possess Intraocular Pressure Lowering Activity in an Animal Model of Glaucoma.

    Science.gov (United States)

    Vullo, Daniela; Durante, Mariaconcetta; Di Leva, Francesco Saverio; Cosconati, Sandro; Masini, Emanuela; Scozzafava, Andrea; Novellino, Ettore; Supuran, Claudiu T; Carta, Fabrizio

    2016-06-23

    A series of monothiocarbamates (MTCs) were prepared from primary/secondary amines and COS as potential carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, using the dithiocarbamates, the xanthates, and the trithiocarbonates as lead compounds. The MTCs effectively inhibited the pharmacologically relevant human (h) hCAs isoforms I, II, IX, and XII in vitro and showed KIs spanning between the low and medium nanomolar range. By means of a computational study, the MTC moiety binding mode on the CAs was explained. Furthermore, a selection of MTCs were evaluated in a normotensive glaucoma rabbit model for their intraocular pressure (IOP) lowering effects and showed interesting activity. PMID:27253845

  20. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients

    Energy Technology Data Exchange (ETDEWEB)

    Sáez, Laura; Molina, Jorge; Florea, Daniela I.; Planells, Elena M. [Institute of Nutrition and Food Technology and Department of Physiology, Faculty of Pharmacy, Campus Cartuja, University of Granada, E-18071 Granada (Spain); Cabeza, M. Carmen [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain); Quintero, Bartolomé, E-mail: bqosso@ugr.es [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain)

    2013-06-27

    Graphical abstract: -- Highlights: •We examinate stability of L-cysteine capped CdTe QD. •Factors influence QD fluorescence response are controlled. •Application in copper deficiency analysis is made. •We report comparison with other techniques. -- Abstract: The catalytic activity of copper ion gives, from the physiological point of view, a central role in many biological processes. Variations in the composition and location of cellular copper have been addressed given their physiological and pathological consequences. In this paper L-cysteine capped CdTe quantum dots is used for the fluorimetric determination of Cu(II) in biological samples from healthy individuals and patients admitted to the Intensive Care Units (ICU). An acceptable homogeneity in the CdTe QDs size has been obtained with an average value of 3 nm. No significant alterations in the spectral properties were observed for 2 months when stored in vacutainers at 6 °C and a concentration of approximately 2 μM. Data from oxidative stress markers such superoxide dismutase, total antioxidant capacity and DNA damage can be correlated with a Cu(II) deficiency for the ICU patients as measured by flame-atomic absorption spectroscopy (FAAS) and inductively coupled plasma source mass spectrometry (ICP-MS). Aqueous solutions 0.3 μM of L-cysteine capped CdTe QDs in MOPS buffer (6 mM, pH 7.4) used at 21 °C in the range 15–60 min after preparation of the sample for the measurements of fluorescence gives contents in Cu(II) for erythrocytes in good agreement with those obtained in FAAS and ICP-MS but the comparative ease of use makes the fluorimetric technique more suitable than the other two techniques for routine analysis.

  1. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •We examinate stability of L-cysteine capped CdTe QD. •Factors influence QD fluorescence response are controlled. •Application in copper deficiency analysis is made. •We report comparison with other techniques. -- Abstract: The catalytic activity of copper ion gives, from the physiological point of view, a central role in many biological processes. Variations in the composition and location of cellular copper have been addressed given their physiological and pathological consequences. In this paper L-cysteine capped CdTe quantum dots is used for the fluorimetric determination of Cu(II) in biological samples from healthy individuals and patients admitted to the Intensive Care Units (ICU). An acceptable homogeneity in the CdTe QDs size has been obtained with an average value of 3 nm. No significant alterations in the spectral properties were observed for 2 months when stored in vacutainers at 6 °C and a concentration of approximately 2 μM. Data from oxidative stress markers such superoxide dismutase, total antioxidant capacity and DNA damage can be correlated with a Cu(II) deficiency for the ICU patients as measured by flame-atomic absorption spectroscopy (FAAS) and inductively coupled plasma source mass spectrometry (ICP-MS). Aqueous solutions 0.3 μM of L-cysteine capped CdTe QDs in MOPS buffer (6 mM, pH 7.4) used at 21 °C in the range 15–60 min after preparation of the sample for the measurements of fluorescence gives contents in Cu(II) for erythrocytes in good agreement with those obtained in FAAS and ICP-MS but the comparative ease of use makes the fluorimetric technique more suitable than the other two techniques for routine analysis

  2. Heavy metal ion inhibition studies of human, sheep and fish α-carbonic anhydrases.

    Science.gov (United States)

    Demirdağ, Ramazan; Yerlikaya, Emrah; Şentürk, Murat; Küfrevioğlu, Ö İrfan; Supuran, Claudiu T

    2013-04-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) were purified from sheep kidney (sCA IV), from the liver of the teleost fish Dicentrarchus labrax (dCA) and from human erythrocytes (hCA I and hCA II). The purification procedure consisted of a single step affinity chromatography on Sepharose 4B-tyrosine-sulfanilamide. The kinetic parameters of these enzymes were determined for their esterase activity with 4-nitrophenyl acetate as substrate. The following metal ions, Pb(2+), Co(2+), Hg(2+), Cd(2+), Zn(2+), Se(2+), Cu(2+), Al(3+) and Mn(3+) showed inhibitory effects on these enzymes. The tested metal ions inhibited these CAs competitively in the low milimolar/submillimolar range. The susceptibility to various cations inhibitors differs significantly between these vertebrate α-CAs and is probably due to their binding to His64 or the histidine cluster. PMID:22145795

  3. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    Science.gov (United States)

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed. PMID:11520080

  4. Discovery of potent carbonic anhydrase and acetylcholine esterase inhibitors: novel sulfamoylcarbamates and sulfamides derived from acetophenones.

    Science.gov (United States)

    Akıncıoğlu, Akın; Akıncıoğlu, Hülya; Gülçin, İlhami; Durdagi, Serdar; Supuran, Claudiu T; Göksu, Süleyman

    2015-07-01

    In this study, several novel sulfamides were synthesized and evaluated for their acetylcholine esterase (AChE) and human carbonic anhydrase I, and II isoenzymes (hCA I and II) inhibition profiles. Reductive amination of methoxyacetophenones was used for the synthesis of amines. Amines were converted to sulfamoylcarbamates with chlorosulfonyl isocyanate (CSI) in the presence of BnOH. Pd-C catalyzed hydrogenolysis of sulfamoylcarbamates afforded sulfamides. These novel compounds were good inhibitors of the cytosolic hCA I, and hCA II with Ki values in the range of 45.9±8.9-687.5±84.3 pM for hCA I, and 48.80±8.2-672.2±71.9pM for hCA II. The inhibitory effects of the synthesized novel compounds on AChE were also investigated. The Ki values of these compounds were in the range of 4.52±0.61-38.28±6.84pM for AChE. These results show that hCA I, II, and AChE were effectively inhibited by the novel sulfamoylcarbamates 17-21 and sulfamide derivatives 22-26. All investigated compounds were docked within the active sites of the corresponding enzymes revealing the reasons of the effective inhibitory activity. PMID:25921269

  5. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  6. Evaluation of the oxidative stress modulation in Drosophila melanogaster strains deficient in endogenous antioxidants and with chronic exposure to casiopeina Cas II-gly and gamma radiation

    International Nuclear Information System (INIS)

    The casiopeinas are a family of coordination compounds with copper metallic center that have shown to have antineoplastic activity. The experimental evidences suggest that its action mechanism is through the generation of free radicals. The casiopeina (Cas II-gly) is believed to causes oxidative damage in the mitochondria, leading to the cellular death. The present study has the purpose to evaluate the antioxidant potential of the tetrapyrroles: cupro-sodica chlorophyllin (CSC), protoporphyrin-Ix (Pp-Ix) and the bilirubin (Bili) against the oxidant action of the Cas II-gly. The present study will also contribute in the characterization of the biological activity of the Cas II-gly. For this purpose is quantifies the effect of these compounds in the enzymes activity, superoxide dismutase (Sod) and catalase (Cat) in wild Drosophila melanogaster strains Canton-S and in the deficient in Sod and Cat. Two protocols were used, in the first male of 1-24 h of age were pre-treated with 0, 0.01, 0.1 and 1 m M of Cas II-gly and later on they were treated with radiation (15 Gy), and the second 69 m M of CSC, Pp-Ix or Bili, during 8 days and later they were treated with 0.1 m M of Cas II-gly during 24 h. The enzymatic activity was measured with the detection packages of enzymes Sod and Cat of Sigma. It was found that none of the three pigments increment the Sod activity but, if they diminished that of Cat (p≤0.007). The three concentrations of Cas II-gly did not increase the Sod activity significantly, only the concentration of 0.1 m M diminishes in 5.6 U the Cat activity (p <0.03) the same as the treatment with 15 Gy of gamma rays (8 U, p <0.004). The Cas II-gly combination 0.1 m M with the pigments does not modify the Sod and Cat activity. These results suggest that the proven pigments act as antioxidants, avoiding the induction of exogenous antioxidants caused by the gamma rays or the Cas II-gly. (Author)

  7. Skeletal and Dentoalveolar changes concurrent to use of Twin Block appliance in Class II division I cases with a deficient mandible: A cephalometric study

    Directory of Open Access Journals (Sweden)

    A K Sharma

    2012-01-01

    Full Text Available Most of Class II malocclusions are due to underdeveloped mandible with increased overjet and overbite. Lack of incisal contact results in the extrusion of the upper and lower anterior dentoalveolar complex, which helps to lock the mandible and prevent its normal growth and development, and this abnormality, is exaggerated by soft tissue imbalance. The purpose of present study was to cephalometrically evaluate skeletal and dentoalveolar changes following the use of Twin-Block appliance in 10 growing children of age group 9-13 years (mean 11.1 year ± SD 1.37 of Class II division 1 malocclusion with a deficient mandible. Cephalometric pre- and post-functional treatment measurements (angular and linear were done and statistically analyzed using student′s paired t-test. The results of the present study showed that maxilla (SNA was restricted sagittally (head gear effect with marked maxillary dental retraction. Significant mandible sagittal advancement (SNB with minimum dental protraction was observed with significant increase in the mandibular length. The maxillomandibular skeletal relation (ANB and WITS appraisal reduced considerably which improved the profile and facial esthetics. Pronounced correction of overjet and overbite was seen. The present study concluded that Class II correction occurs by both skeletal and dentoalveolar changes.

  8. H-deficient blood groups of Reunion island. II. Differences between Indians (Bombay Phenotype) and whites (Reunion phenotype).

    Science.gov (United States)

    Le Pendu, J; Gerard, G; Vitrac, D; Juszczak, G; Liberge, G; Rouger, P; Salmon, C; Lambert, F; Dalix, A M; Oriol, R

    1983-05-01

    Two variants of recessive, H-deficient nonsecretor individuals (h/h, se/se) were identified on Reunion Island: (1) H-negative individuals corresponding to the classical Bombay phenotypes (OhO, OhA, OhB, OhAB) who lack completely the H antigen on their red cells; all of them were Indian and had strong anti-H antibodies reacting with normal O and Oh red cells from whites; and (2) H-weak individuals (Oh, Ah, Bh, ABh). This phenotype represented the majority (85%) of the H-deficient phenotypes on Reunion Island, and all of them were white. They had only a weak expression of the H antigen and showed small but detectable amounts of ABH antigens on their red cells. Their anti-H antibodies reacted with normal O erythrocytes, but failed to react with Oh red cells, regardless of the ethnic origin of the donor. They were all from the same geographical area on the Island (Cilaos) and showed homogeneous titers of anti-H antibodies in sera. We propose to call this particular variant of weak H phenotype, belonging to the so-called para-Bombay series, Reunion.

  9. Protein C Thr315Ala variant results in gain of function but manifests as type II deficiency in diagnostic assays.

    Science.gov (United States)

    Ding, Qiulan; Yang, Likui; Dinarvand, Peyman; Wang, Xuefeng; Rezaie, Alireza R

    2015-04-01

    Protein C (PC) is a vitamin K-dependent plasma glycoprotein, which upon activation by thrombin in complex with thrombomodulin (TM), regulates the coagulation cascade through a feedback loop inhibition mechanism. PC deficiency is associated with an increased risk of venous thromboembolism (VTE). A recent cohort study aimed at establishing a normal PC range identified a healthy PC-deficient subject whose PC antigen level of 65% and activity levels of 50% (chromogenic assay) and 36% (clotting assay) were markedly low. The proband has a negative family history of VTE. Genetic analysis revealed the proband has a heterozygous missense mutation in which Thr-315 of the PC heavy chain has been substituted with Ala. We expressed this mutant in HEK-293 cells and purified it to homogeneity. A similar decrease in both anticoagulant and anti-inflammatory activities of the activated protein C mutant was observed in plasma- and cell-based assays. Interestingly, we discovered if functional assays were coupled to PC activation by the thrombin-TM complex, the variant exhibits improved activities in all assays. Sequence analysis revealed Thr-315 is a consensus N-linked glycosylation site for Asn-313 and that its elimination significantly (∼four- to fivefold) improves the maximum velocity of PC activation by the thrombin-TM complex, explaining the basis for the proband's negative VTE pedigree. PMID:25651845

  10. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob;

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  11. [Health and nutritional status of 'alternatively' fed infants and young children, facts and uncertainties. II. Specific nutritional deficiencies; discussion].

    Science.gov (United States)

    Dagnelie, P C; Van Staveren, W A; Hautvast, J G

    1985-12-01

    This article, which is the second in a series of two articles, discusses available scientific information on the nutritional status of infants and preschool children on alternative diets with regard to calcium, iron, vitamin B12 and D. Some favourable aspects of alternative food habits in such children are also mentioned. Most studies report low intakes of vitamin D and in vegan and macrobiotic children also of calcium and vitamin B12, but it cannot be excluded that some alternative sources of these nutrient may have been missed. Deficiencies have been described for vitamin D and B12 but the evidence is often unconvincing. For example, exposure to sunlight has not been measured in most of the studies on rickets. From the literature available, it would appear that there is a need for longitudinal research on the growth and development of alternatively fed infants and preschool children and for information on the nutrient composition of alternative foods.

  12. Synthesis and inhibition potency of novel ureido benzenesulfonamides incorporating GABA as tumor-associated carbonic anhydrase IX and XII inhibitors.

    Science.gov (United States)

    Ceruso, Mariangela; Antel, Sabrina; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    New ureido benzenesulfonamides incorporating a GABA moiety as a linker between the ureido and the sulfonamide functionalities were synthesized and their inhibition potency determined against both the predominant cytosolic (hCA I and II) and the transmembrane tumor-associated (hCA IX and XII) isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The majority of these compounds were medium potency inhibitors of the cytosolic isoform hCA I and effective hCA II inhibitors, whereas they showed strong inhibition of the two transmembrane tumor-associated isoforms hCA IX and XII, with KIs in nanomolar range. Only one derivative had a good selectivity for inhibition of the tumor-associated hCA IX target isoform over the cytosolic and physiologically dominant off-target hCA I and II, being thus a potential tool to develop new anticancer agents. PMID:25792500

  13. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII.

    Science.gov (United States)

    Chandak, Navneet; Ceruso, Mariangela; Supuran, Claudiu T; Sharma, Pawan K

    2016-07-01

    Four novel scaffolds consisting of total 24 compounds (1a-1o, 2a-2c, 3a-3c and 4a-4c) bearing aromatic sulfonamide and coumarin moieties connected through various linkers were synthesized in order to synergize the inhibition potential of both the moieties against four selected human carbonic anhydrase isoforms (hCA I, II, IX & XII). All compounds were found to be potent inhibitors of tumor associated hCA IX & XII while at the same time required large amounts to inhibit off-targeted housekeeping hCA I & II. Selectivity was more pronounced against hCA II over I, and hCA XII over IX. Results were compared with antitumor drug acetazolamide. One derivative 2b of series 2 was found to be a better selective inhibitor of hCA IX and XII. PMID:27137360

  14. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  15. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Aldred, P.; Fu, Ping; Barrett, G.; Penschow, J.D.; Wright, R.D.; Coghlan, J.P.; Fernley, R.T. (The Howard Florey Institute of Experimental Physiology and Medicine, Parkville, Victoria (Australia))

    1991-01-01

    Complementary DNA clones coding for the human secreted carbonic anhydrase isozyme (CAVI) have been isolated and their nucleotide sequences determined. These clones identify a 1.45-kb mRNA that is present in high levels in parotid submandibular salivary glands but absent in other tissues such as the sublingual gland, kidney, liver, and prostate gland. Hybridization histochemistry of human salivary glands shows mRNA for CA VI located in the acinar cells of these glands. The cDNA clones encode a protein of 308 amino acids that includes a 17 amino acid leader sequence typical of secreted proteins. The mature protein has 291 amino acids compared to 259 or 260 for the cytoplasmic isozymes, with most of the extra amino acids present as a carboxyl terminal extension. In comparison, sheep CA VI has a 45 amino acid extension. Overall the human CA VI protein has a sequence identity of 35 {percent} with human CA II, while residues involved in the active site of the enzymes have been conserved. The human and sheep secreted carbonic anhydrases have a sequence identity of 72 {percent}. This includes the two cysteine residues that are known to be involved in an intramolecular disulfide bond in the sheep CA VI. The enzyme is known to be glycosylated and three potential N-glycosylation sites (Asn-X-Thr/Ser) have been identified. Two of these are known to be glycosylated in sheep CA VI. Southern analysis of human DNA indicates that there is only one gene coding for CA VI.

  16. Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis.

    Science.gov (United States)

    Saad, Abeer E; Ashour, Dalia S; Abou Rayia, Dina M; Bedeer, Asmaa E

    2016-06-01

    Trichinellosis is a globally distributed helminthic infection. There is a considerable interest in developing new anti-helminthic drugs affecting all the developmental stages of Trichinella. Acetazolamide (carbonic anhydrase (CA) inhibitor) involves a novel mechanism of action by inhibiting such an essential enzyme for parasite metabolism. This work aimed to study the effect of acetazolamide against different stages of T. spiralis in experimental animals. Mice were divided into three groups: group I: infected and treated with acetazolamide on day 2 post infection (P.I.), group II: infected and treated with acetazolamide on day 12 P.I., and group III: infected non-treated. From each group, small intestine and muscles were removed for histopathological and immunohistochemical studies. Also, total adult and muscle larval count were estimated. We found that acetazolamide was effective in reduction of both adult and muscle larval counts. When given early, the effect was more pronounced on the adults (62.7 %). However, the efficacy of the drug against muscle larvae was increased when given late (63 %). Improvement of the intestinal histopathological changes was observed in all the treated groups. Degeneration of encysted larvae with minimal pathologic changes of infected skeletal muscle was observed in the treated groups. Expression of matrix metalloproteinase-9 showed a statistically significant decrease in the intestinal and muscle tissues in all treated groups as compared to the control group. In conclusion, the present study revealed that acetazolamide, carbonic anhydrase inhibitor, could be a promising drug against both adults and larvae of T. spiralis. PMID:26979731

  17. Evaluation of association between mandibular crowding and some of anatomical indexes in skeletal Cl II 8-12 years old patient with mandibular deficiency

    Directory of Open Access Journals (Sweden)

    Shirazi Mohsen

    2015-05-01

    Full Text Available Tehran University of Medical Sciences, Tehran, Iran ( mirahashemi@tums.ac.ir   Background and Aims: Nowadays patients refer to orthodontist for issue such as dental crowding and other aesthetic problems. The aims of this study were to evaluate the relationship between some of mandibular anatomical landmarks and dental crowding in the patient with skeletal Cl II due to mandibular deficiency.   Materials and Methods: 108 cases have been randomly selected out of patients with mandibular related Cl II problem associated with lower incisor crowding, out of orthodontic patient department of Tehran university of medical sciences. ANB, SNB, mandibular discrepancy, gonial angle, Sn-Go-Gn and IMPA was evaluated out of the data. Lateral cephalograms were used for this matter. The correlation between variables was evaluated by correlation test and after reviewing the data was analyzed using Normality test, the Pearson correlation coefficient was used for normally distributed variables.   Results: Corpus-ramus length ratio had a significant relationship with dental crowding (P≤0.05 but there was no meaningful and significant relationship between other facial landmarks ( P = 0.26 .   Conclusion: there seems to be a slight relationship between facial landmarks and dental crowding in lower incisors. But further case control and clinical studies may be helpful in achieving more reliable data.

  18. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity.

    Science.gov (United States)

    Bozdag, Murat; Alafeefy, Ahmed M; Vullo, Daniela; Carta, Fabrizio; Dedeoglu, Nurcan; Al-Tamimi, Abdul-Malek S; Al-Jaber, Nabila A; Scozzafava, Andrea; Supuran, Claudiu T

    2015-12-15

    Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail. PMID:26639945

  19. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa

    International Nuclear Information System (INIS)

    Carbonic anhydrase (CA) isozymes may have an important role in cancer development. Some isozymes control pH homeostasis in tumors that appears to modulate the behaviour of cancer cells. CA XIII is the newest member of the CA gene family. It is a cytosolic isozyme which is expressed in a number of normal tissues. The present study was designed to investigate CA XIII expression in prospectively collected colorectal tumor samples. Both neoplastic and normal tissue specimens were obtained from the same patients. The analyses were performed using CA XIII-specific antibodies and an immunohistochemical staining method. For comparison, the tissue sections were immunostained for other cytosolic isozymes, CA I and II. The results indicated that the expression of CA XIII is down-regulated in tumor cells compared to the normal tissue. The lowest signal was detected in carcinoma samples. This pattern of expression was quite parallel for CA I and II. The down-regulation of cytosolic CA I, II and XIII in colorectal cancer may result from reduced levels of a common transcription factor or loss of closely linked CA1, CA2 and CA13 alleles on chromosome 8. Their possible role as tumor suppressors should be further evaluated

  20. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa

    Directory of Open Access Journals (Sweden)

    Saarnio Juha

    2005-04-01

    Full Text Available Abstract Background Carbonic anhydrase (CA isozymes may have an important role in cancer development. Some isozymes control pH homeostasis in tumors that appears to modulate the behaviour of cancer cells. CA XIII is the newest member of the CA gene family. It is a cytosolic isozyme which is expressed in a number of normal tissues. The present study was designed to investigate CA XIII expression in prospectively collected colorectal tumor samples. Methods Both neoplastic and normal tissue specimens were obtained from the same patients. The analyses were performed using CA XIII-specific antibodies and an immunohistochemical staining method. For comparison, the tissue sections were immunostained for other cytosolic isozymes, CA I and II. Results The results indicated that the expression of CA XIII is down-regulated in tumor cells compared to the normal tissue. The lowest signal was detected in carcinoma samples. This pattern of expression was quite parallel for CA I and II. Conclusion The down-regulation of cytosolic CA I, II and XIII in colorectal cancer may result from reduced levels of a common transcription factor or loss of closely linked CA1, CA2 and CA13 alleles on chromosome 8. Their possible role as tumor suppressors should be further evaluated.

  1. Structural study of interaction between brinzolamide and dorzolamide inhibition of human carbonic anhydrases.

    Science.gov (United States)

    Pinard, Melissa A; Boone, Christopher D; Rife, Brittany D; Supuran, Claudiu T; McKenna, Robert

    2013-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes that catalyze the reversible hydration of carbon dioxide and bicarbonate. Their pivotal role in metabolism, ubiquitous nature, and multiple isoforms (CA I-XIV) has made CAs an attractive drug target in clinical applications. The usefulness of CA inhibitors (CAIs) in the treatment of glaucoma and epilepsy are well documented. In addition several isoforms of CAs (namely, CA IX) also serve as biological markers for certain tumors, and therefore they have the potential for useful applications in the treatment of cancer. This is a structural study on the binding interactions of the widely used CA inhibitory drugs brinzolamide (marketed as Azopt®) and dorzolamide (marketed as Trusopt®) with CA II and a CA IX-mimic, which was created via site-directed mutagenesis of CA II cDNA such that the active site resembles that of CA IX. Also the inhibition of CA II and CA IX and molecular docking reveal brinzolamide to be a more potent inhibitor among the other catalytically active CA isoforms compared to dorzolamide. The structures show that the tail end of the sulfonamide inhibitor is critical in forming stabilizing interactions that influence tight binding; therefore, for future drug design it is the tail moiety that will ultimately determine isoform specificity. PMID:24090602

  2. Expression of ABCA3, a causative gene for fatal surfactant deficiency, is up-regulated by glucocorticoids in lung alveolar type II cells

    International Nuclear Information System (INIS)

    We have shown previously that the ATP-binding cassette transporter ABCA3 is expressed predominantly at the limiting membrane of the lamellar bodies in lung alveolar type II cells. Very recently, an ABCA3 gene mutation was reported in human newborns with fatal surfactant deficiency. In the present study, we have shown in rat lung that expression of the ABCA3 protein is dramatically increased after embryonic day (E) 20.5 just before birth. Expression was also markedly induced even at E18.5 when dexamethasone (Dex), which is known to accelerate surfactant formation, was administered to pregnant female rats for 3 days from E15.5. Since Dex increased the ABCA3 mRNA expression level in human alveolar type II cell line A549 cells 4-fold, we cloned and characterized the promoter region of the human ABCA3 gene. Promoter activity of the 5'-flanking region of the ABCA3 gene, which contains a potential glucocorticoid-responsive element (GRE), was up-regulated about 2-fold. Up-regulation by Dex was not observed when the GRE-containing region was deleted or when a point mutation was introduced into the GRE, and electrophoretic mobility shift assay using Dex-treated A549 nuclear extracts demonstrated specific binding of the glucocorticoid receptor to the GRE. These findings demonstrate that glucocorticoid-induced up-regulation of ABCA3 expression in vivo is mediated by transcriptional activation through the GRE in the promoter, and suggest that ABCA3 plays an important role in the formation of pulmonary surfactant, probably by transporting lipids such as cholesterol

  3. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.

    Science.gov (United States)

    Esbaugh, A J; Secor, S M; Grosell, M

    2015-09-01

    Carbonic anhydrase (CA) is one of the most abundant proteins found in vertebrate erythrocytes with the majority of species expressing a low activity CA I and high activity CA II. However, several phylogenetic gaps remain in our understanding of the expansion of cytoplasmic CA in vertebrate erythrocytes. In particular, very little is known about isoforms from reptiles. The current study sought to characterize the erythrocyte isoforms from two squamate species, Python molurus and Nerodia rhombifer, which was combined with information from recent genome projects to address this important phylogenetic gap. Obtained sequences grouped closely with CA XIII in phylogenetic analyses. CA II mRNA transcripts were also found in erythrocytes, but found at less than half the levels of CA XIII. Structural analysis suggested similar biochemical activity as the respective mammalian isoforms, with CA XIII being a low activity isoform. Biochemical characterization verified that the majority of CA activity in the erythrocytes was due to a high activity CA II-like isoform; however, titration with copper supported the presence of two CA pools. The CA II-like pool accounted for 90 % of the total activity. To assess potential disparate roles of these isoforms a feeding stress was used to up-regulate CO2 excretion pathways. Significant up-regulation of CA II and the anion exchanger was observed; CA XIII was strongly down-regulated. While these results do not provide insight into the role of CA XIII in the erythrocytes, they do suggest that the presence of two isoforms is not simply a case of physiological redundancy.

  4. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    OpenAIRE

    Supuran, Claudiu T.

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM ...

  5. Sarcoidosis patient: an unexpected reaction to carbonic anhydrase enzyme inhibitor

    OpenAIRE

    Khedr, Yahya A H; Khedr, Abdulla H

    2013-01-01

    Ocular diseases are very common in many of the systemic diseases such as sarcoidosis, and may sometimes be the presenting symptom of the disease. In this case report, we present an unusual reaction of the sarcoid granuloma to carbonic anhydrase enzyme inhibitors (CAIs), which was encountered in a patient with ocular sarcoidosis. This observation was taken after a 2-week interval between a CT scan orbits and an MRI orbits which showed a decrease in size from 4×3×4 cm to 2.5×2.5×2 cm, respectiv...

  6. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  7. Dithiocarbamates with potent inhibitory activity against the Saccharomyces cerevisiae β-carbonic anhydrase.

    Science.gov (United States)

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Isik, Semra; AlOthman, Zeid; Osman, Sameh M; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-01

    Dithiocarbamates (DTCs) prepared from primary or secondary amines, which incorporated amino/hydroxyl-alkyl, mono-/bicyclic aliphatic/heterocyclic rings based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, were investigated for the inhibition of α- and β-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, such as the human (h) isoform hCA I and II, as well as the Saccharomyces cerevisiae β-CA, scCA. The yeast and its β-CA were shown earlier to be useful models of pathogenic fungal infections. The DTCs investigated here were medium potency hCA I inhibitors (K(I)s of 66.5-910 nM), were more effective as hCA II inhibitors (K(I)s of 8.9-107 nM) and some of them showed excellent, low nanomolar activity against the yeast enzyme, with inhibition constants ranging between 6.4 and 259 nM. The detailed structure activity relationship for inhibition of the yeast and human enzymes is discussed. Several of the investigated DTCs showed excellent selectivity ratios for inhibiting the yeast over the human cytosolic CA isoforms. PMID:25669351

  8. Carbonic anhydrase activity in isolated chloroplasts of chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    In a new assay of carbonic anhydrase, NaH14CO3 solution at the bottom of a sealed vessel releases 14CO3 which diffuses to the top of the vessel to be assimilated by actively photosynthesizing Chlamydomonas cells. The assay is initiated by illuminating cells and stopped by turning the light off and killing the cells with acid. Enzyme activity was estimated from acid stable radioactivity above the uncatalyzed background level. With bovine carbonic anhydrase, 1.5 Wilbur Anderson Unit (WAU) can be consistantly measured at 5-6 fold above background. Sonicated whole cells of air adapted wild type (+)gave 741.1 ± 12.4 WAU/mg chl. Intact washed cells of mixotrophically grown wall-less mutant CWD(-) and a high CO2 requiring wall-less double mutant CIA-3/CW15 (-) gave 7.1 ± 1.9 and 2.8 ± 7.8 WAU/mg chl respectively. Chloroplasts isolated from CWD and CIA-3/CW15 and subsequently disrupted gave 64.0 ± 14.7 and 2.8 ± 3.2 WAU/mg chl respectively. Chloroplast sonicate from another wall-less mutant CW15(-) gave activity comparable to CWD. Thus on a chlorophyll basis, enzyme activity in chloroplasts from mixotrophically grown cells is about 1/10th of the level found in air adapted wild type cells. CIA-3 seems to lack this activity

  9. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  10. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  11. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  12. Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive organs

    Directory of Open Access Journals (Sweden)

    Tomas Eija

    2004-10-01

    Full Text Available Abstract Background Carbonic anhydrase (CA classically catalyses the reversible hydration of dissolved CO2 to form bicarbonate ions and protons. The twelve active CA isozymes are thought to regulate a variety of cellular functions including several processes in the reproductive systems. Methods The present study was designed to investigate the expression of transmembrane CAs, CA IX and XII, in the mouse uterus, ovary and placenta. The expression of CA IX and XII was examined by immunoperoxidase staining method and western blotting. CA II and XIII served as positive controls since they are known to be present in the mouse reproductive tract. Results The data of our study indicated that CA XII is expressed in the mouse endometrium. Only very faint signal was observed in the corpus luteum of the ovary and the placenta remained mainly negative. CA IX showed weak reaction in the endometrial epithelium, while it was completely absent in the ovary and placenta. Conclusion The conservation of CA XII expression in both mouse and human endometrium suggests a role for this isozyme in reproductive physiology.

  13. Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies.

    Science.gov (United States)

    Karataş, Mert Olgun; Uslu, Harun; Sarı, Suat; Alagöz, Mehmet Abdullah; Karakurt, Arzu; Alıcı, Bülent; Bilen, Cigdem; Yavuz, Emre; Gencer, Nahit; Arslan, Oktay

    2016-10-01

    Among many others, coumarin derivatives are known to show human carbonic anhydrase (hCA) inhibitory activity. Since hCA inhibition is one of the underlying mechanisms that account for the activities of some antiepileptic drugs (AEDs), hCA inhibitors are expected to have anti-seizure properties. There are also several studies reporting compounds with an imidazole and/or benzimidazole moiety which exert these pharmacological properties. In this study, we prepared fifteen novel coumarin-bearing imidazolium and benzimidazolium chloride, nine novel benzoxazinone-bearing imidazolium and benzimidazolium chloride derivatives and evaluated their hCA inhibitory activities and along with fourteen previously synthesized derivatives we scanned their anticonvulsant effects. As all compounds inhibited purified hCA isoforms I and II, some of them also proved protective against Maximal electroshock seizure (MES) and ScMet induced seizures in mice. Molecular docking studies with selected coumarin derivatives have revealed that these compounds bind to the active pocket of the enzyme in a similar fashion to that previously described for coumarin derivatives.

  14. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; Osman, Sameh M; De Luca, Viviana; Scozzafava, Andrea; Alothman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2014-01-01

    The δ-carbonic anhydrase (CA, EC 4.2.1.1) TweCA from the marine diatom Thalassiosira weissflogii has recently been cloned, purified and its activity/inhibition with anions investigated. Here we report the first sulfonamide/sulfamate inhibition study of a δ-class CA. Among the 40 such compounds investigated so far, 3-bromosulfanilamide, acetazolamide, ethoxzolamide, dorzolamide and brinzolamide were the most effective TweCA inhibitors detected, with KIs of 49.6-118nM. Many simple aromatic sulfonamides as well as dichlorophenamide, benzolamide, topiramate, zonisamide, indisulam and valdecoxib were medium potency inhibitors, (KIs of 375-897nM). Saccharin and hydrochlorothiazide were ineffective inhibitors of the δ-class enzyme, with KIs of 4.27-9.20μM. The inhibition profile of the δ-CA is very different from that of α-, β- and γ-CAs from different organisms. Although no X-ray crystal structure of this enzyme is available, we hypothesize that as for other CA classes, the sulfonamides inhibit the enzymatic activity by binding to the Zn(II) ion from the δ-CA active site. PMID:24314394

  15. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten;

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  16. Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors

    DEFF Research Database (Denmark)

    Stefánsson, E; Jensen, P K; Eysteinsson, T;

    1999-01-01

    To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture.......To evaluate how the oxygen tension of the optic nerve (ONP(O)2) is affected by the administration of the carbonic anhydrase inhibitors dorzolamide and acetazolamide and by alterations in oxygen and carbon dioxide in the breathing mixture....

  17. Carbonic anhydrase immobilized on hollow fiber membranes using glutaraldehyde activated chitosan for artificial lung applications

    OpenAIRE

    Kimmel, J. D.; Arazawa, D. T.; Ye, S.-H.; Shankarraman, V; Wagner, W. R.; Federspiel, W. J.

    2013-01-01

    Extracorporeal CO2 removal from circulating blood is a promising therapeutic modality for the treatment of acute respiratory failure. The enzyme carbonic anhydrase accelerates CO2 removal within gas exchange devices by locally catalyzing HCO3− into gaseous CO2 within the blood. In this work, we covalently immobilized carbonic anhydrase on the surface of polypropylene hollow fiber membranes using glutaraldehyde activated chitosan tethering to amplify the density of reactive amine functional gr...

  18. Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels

    DEFF Research Database (Denmark)

    Pedersen, Daniella Bach; Koch Jensen, Peter; la Cour, Morten;

    2005-01-01

    Carbonic anhydrase inhibitors (CAIs) increase blood flow in the brain and probably also in the optic nerve and retina. Additionally they elevate the oxygen tension in the optic nerve in the pig. We propose that they also raise the oxygen tension in the retina. We studied the oxygen tension in the...... in the pig retina and optic nerve before and after dorzolamide injection. Also the retinal vessel diameters during carbonic anhydrase inhibition were studied....

  19. Complexes With Biologically Active Ligands. Part 111. Synthesis and Carbonic Anhydrase Inhibitory Activity of Metal Complexes of 4,5-Disubstituted-3-Mercapto-1,2,4-Triazole Derivatives

    Science.gov (United States)

    Scozzafava, Andrea; Cavazza, Christine; Saramet, Ioana; Briganti, Fabrizio; Banciu, Mircea D.

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma. PMID:18475819

  20. Complexes with biologically active ligands. Part 11. Synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercapto-1,2,4-triazole derivatives.

    Science.gov (United States)

    Scozzafava, A; Cavazza, C; Supuran, C T; Saramet, I; Briganti, F; Banciu, M D

    1998-01-01

    Complexes containing five 4,5-disubstituted-3-mercapto-1,2,4-triazoles and Zn(II), Hg(II) and Cu(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic and NMR spectroscopy, conductimetry and TG analysis). Both the thione as well as the thiolate forms of the ligands were evidenced to interact with the metal ions in the prepared complexes. The original mercaptans and their metal complexes behave as inhibitors of three carbonic anhydrase (CA) isozymes, CA I, II and IV, but did not lower intraocular pressure in rabbits in animal models of glaucoma.

  1. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications

    Directory of Open Access Journals (Sweden)

    Christopher D. Boone

    2013-01-01

    Full Text Available As the global atmospheric emissions of carbon dioxide (CO2 and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs, which reversibly catalyze the hydration of CO2 into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2 atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.

  2. Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours

    Institute of Scientific and Technical Information of China (English)

    Antti J. Kivel(a); Jyrki Kivel(a); Juha Saarnio; Seppo Parkkila

    2005-01-01

    Carbonic anhydrases (CAs) catalyse the hydration of CO2to bicarbonate at physiological pH. This chemical interconversion is crucial since HCO3- is the substrate for several biosynthetic reactions. This review is focused on the distribution and role of CA isoenzymes in both normal and pathological gastrointestinal (GI) tract tissues. It has been known for many years that CAs are widely present in the GI tract and play important roles in several physiological functions such as production of saliva, gastric acid, bile, and pancreatic juice as well as in absorption of salt and water in intestine. New information suggests that these enzymes participate in several processes that were not envisioned earlier. Especially, the recent reports on plasma membranebound isoenzymes Ⅸ and Ⅻ have raised considerable interest since they were reported to participate in cancer invasion and spread. They are induced by tumour hypoxia and may also play a role in von Hippel-Lindau (VHL)-mediated carcinogenesis.

  3. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-09-15

    Inhibition of the β-carbonic anhydrases (CAs, EC 4.2.1.1) from pathogenic fungi (Cryptococcus neoformans, Candida albicans, Candida glabrata, Malassezia globosa) and bacteria (three isoforms from Mycobacterium tuberculosis, Rv3273, Rv1284 and Rv3588), as well from the insect Drosophila melanogaster (DmeCA) and the plant Flaveria bidentis (FbiCA1) with the boronic acid peptidomimetic proteosome inhibitor bortezomib was investigated. Bortezomib was a micromolar inhibitor of all these enzymes, with KIs ranging between 1.12 and 11.30μM. Based on recent crystallographic data it is hypothesized that the B(OH)2 moiety of the inhibitor is directly coordinated to the zinc ion from the enzyme active site. The class of boronic acids, an under-investigated type of CA inhibitors, may lead to the development of anti-infectives with a novel mechanism of action, based on the pathogenic organisms CA inhibition. PMID:27469982

  4. Evolution of carbonic anhydrase in C4 plants.

    Science.gov (United States)

    Ludwig, Martha

    2016-06-01

    During the evolution of C4 photosynthesis, the intracellular location with most carbonic anhydrase (CA) activity has changed. In Flaveria, the loss of the sequence encoding a chloroplast transit peptide from an ancestral C3 CA ortholog confined the C4 isoform to the mesophyll cell cytosol. Recent studies indicate that sequence elements and histone modifications controlling the expression of C4-associated CAs were likely present in the C3 ancestral chromatin, enabling the evolution of the C4 pathway. Almost complete abolishment of maize CA activity yields no obvious phenotype at ambient CO2 levels. This contrasts with results for Flaveria CA mutants, and has opened discussion on the role of CA in the C4 carbon concentrating mechanism.

  5. Carbonic anhydrase in Escherichia coli. A product of the cyn operon.

    Science.gov (United States)

    Guilloton, M B; Korte, J J; Lamblin, A F; Fuchs, J A; Anderson, P M

    1992-02-25

    The product of the cynT gene of the cyn operon in Escherichia coli has been identified as a carbonic anhydrase. The cyn operon also includes the gene cynS, encoding the enzyme cyanase. Cyanase catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. The carbonic anhydrase was isolated from an Escherichia coli strain overexpressing the cynT gene and characterized. The purified enzyme was shown to contain 1 Zn2+/subunit (24 kDa) and was found to behave as an oligomer in solution; the presence of bicarbonate resulted in partial dissociation of the oligomeric enzyme. The kinetic properties of the enzyme are similar to those of carbonic anhydrases from other species, including inhibition by sulfonamides and cyanate. The amino acid sequence shows a high degree of identity with the sequences of two plant carbonic anhydrases. but not with animal and algal carbonic anhydrases. Since carbon dioxide formed in the bicarbonate-dependent decomposition of cyanate diffuses out of the cell faster than it would be hydrated to bicarbonate, the apparent function of the induced carbonic anhydrase is to catalyze hydration of carbon dioxide and thus prevent depletion of cellular bicarbonate.

  6. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; Fisher, Gillian M; Andrews, Katherine T; Poulsen, Sally-Ann; Capasso, Clemente; Supuran, Claudiu T

    2014-09-15

    The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report. PMID:25168745

  7. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected. Howeve

  8. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase

    Science.gov (United States)

    Nasir, Irem; Lundqvist, Martin; Cabaleiro-Lago, Celia

    2015-10-01

    The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being ``hard'' or ``soft''. However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino

  9. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    Science.gov (United States)

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  10. Human CD4-major histocompatibility complex class II (DQw6) transgenic mice in an endogenous CD4/CD8-deficient background: reconstitution of phenotype and human-restricted function

    OpenAIRE

    1994-01-01

    To reconstitute the human immune system in mice, transgenic mice expressing human CD4 and human major histocompatibility complex (MHC) class II (DQw6) molecules in an endogenous CD4- and CD8-deficient background (mCD4/8-/-), after homologous recombination, have been generated. We report that expression of human CD4 molecule in mCD4/8-/- mice rescues thymocyte development and completely restores the T cell compartment in peripheral lymphoid organs. Upon vesicular stomatitis virus (VSV) challen...

  11. Increased oxidation-related glutathionylation and carbonic anhydrase activity in endometriosis.

    Science.gov (United States)

    Andrisani, Alessandra; Donà, Gabriella; Brunati, Anna Maria; Clari, Giulio; Armanini, Decio; Ragazzi, Eugenio; Ambrosini, Guido; Bordin, Luciana

    2014-06-01

    This study examined the possible involvement of carbonic anhydrase activation in response to an endometriosis-related increase in oxidative stress. Peripheral blood samples obtained from 27 healthy controls and 30 endometriosis patients, classified as having endometriosis by histological examination of surgical specimens, were analysed by multiple immunoassay and carbonic anhydrase activity assay. Red blood cells (RBC) were analysed for glutathionylated protein (GSSP) content in the membrane, total glutathione (GSH) in the cytosol and carbonic anhydrase concentration and activity. In association with a membrane increase of GSSP and a cytosolic decrease of GSH content in endometriosis patients, carbonic anhydrase significantly increased (P < 0.0001) both monomerization and activity compared with controls. This oxidation-induced activation of carbonic anhydrase was positively and significantly correlated with the GSH content of RBC (r = 0.9735, P < 0.001) and with the amount of the 30-kDa monomer of carbonic anhydrase (r = 0.9750, P < 0.001). Because carbonic anhydrase activation is implied in many physiological and biochemical processes linked to pathologies such as glaucoma, hypertension, obesity and infections, carbonic anhydrase activity should be closely monitored in endometriosis. These data open promising working perspectives for diagnosis and treatment of endometriosis and hopefully of other oxidative stress-related diseases. Endometriosis is a chronic disease associated with infertility and local inflammatory response, which is thought to spread rapidly throughout the body as a systemic subclinical inflammation. One of the causes in the pathogenesis/evolution of endometriosis is oxidative stress, which occurs when reactive oxygen species are produced faster than the endogenous antioxidant defence systems can neutralize them. Once produced, reactive oxygen species can alter the morphological and functional properties of endothelial cells, including

  12. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  13. A novel library of saccharin and acesulfame derivatives as potent and selective inhibitors of carbonic anhydrase IX and XII isoforms.

    Science.gov (United States)

    Carradori, Simone; Secci, Daniela; De Monte, Celeste; Mollica, Adriano; Ceruso, Mariangela; Akdemir, Atilla; Sobolev, Anatoly P; Codispoti, Rossella; De Cosmi, Federica; Guglielmi, Paolo; Supuran, Claudiu T

    2016-03-01

    Small libraries of N-substituted saccharin and N-/O-substituted acesulfame derivatives were synthesized and tested as atypical and selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Most of them inhibited hCA XII in the low nanomolar range, hCA IX with KIs ranging between 19 and 2482nM, whereas they were poorly active against hCA II (KIs >10μM) and hCA I (KIs ranging between 318nM and 50μM). Since hCA I and II are ubiquitous off-target isoforms, whereas the cancer-related isoforms hCA IX and XII were recently validated as drug targets, these results represent an encouraging achievement in the development of new anticancer candidates. Moreover, the lack of a classical zinc binding group in the structure of these inhibitors opens innovative, yet unexplored scenarios for different mechanisms of inhibition that could explain the high inhibitory selectivity. A computational approach has been carried out to further rationalize the biological data and to characterize the binding mode of some of these inhibitors. PMID:26810710

  14. Carbonic anhydrase inhibitors: Design, synthesis, kinetic, docking and molecular dynamics analysis of novel glycine and phenylalanine sulfonamide derivatives.

    Science.gov (United States)

    Fidan, İsmail; Salmas, Ramin Ekhteiari; Arslan, Mehmet; Şentürk, Murat; Durdagi, Serdar; Ekinci, Deniz; Şentürk, Esra; Coşgun, Sedat; Supuran, Claudiu T

    2015-12-01

    The inhibition of two human cytosolic carbonic anhydrase isozymes I and II, with some novel glycine and phenylalanine sulfonamide derivatives were investigated. Newly synthesized compounds G1-4 and P1-4 showed effective inhibition profiles with KI values in the range of 14.66-315μM for hCA I and of 18.31-143.8μM against hCA II, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico docking studies were applied. Atomistic molecular dynamic simulations were performed for docking poses which utilize to illustrate the inhibition mechanism of used inhibitors into active site of CAII. These sulfonamide containing compounds generally were competitive inhibitors with 4-nitrophenylacetate as substrate. Some investigated compounds here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide, sulfanilamide or mafenide and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.

  15. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action.

    Science.gov (United States)

    Bozdag, Murat; Carta, Fabrizio; Vullo, Daniela; Akdemir, Atilla; Isik, Semra; Lanzi, Cecilia; Scozzafava, Andrea; Masini, Emanuela; Supuran, Claudiu T

    2015-05-15

    A new series of dithiocarbamates (DTCs) was prepared from primary/secondary amines incorporating amino/hydroxyl-alkyl, mono- and bicyclic aliphatic ring systems based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, and carbon disulfide. The compounds were investigated for the inhibition of four mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, that is, the human (h) hCA I, II, IX and XII, drug targets for antiglaucoma (hCA II and XII) or antitumor (hCA IX/XII) agents. The compounds were moderate or inefficient hCA I inhibitors (off-target isoform for both applications), efficiently inhibited hCA II, whereas some of them were low nanomolar/subnanomolar hCA IX/XII inhibitors. One DTC showed excellent intraocular pressure (IOP) lowering properties in an animal model of glaucoma, with a two times better efficiency compared to the clinically used sulfonamide dorzolamide. PMID:25846066

  16. Iron deficiency.

    Science.gov (United States)

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world.

  17. IgM natural autoantibodies against bromelain-treated mouse red blood cells recognise carbonic anhydrase.

    Science.gov (United States)

    Jonusys, A M; Cox, K O; Steele, E J

    1991-01-01

    Carbonic anhydrase (CA) from mouse erythrocyte membranes is recognised as an autoantigen in Western blotting experiments with FUB 1, a murine IgM monoclonal antibody that binds both phosphatidylcholine and bromelain-treated mouse red blood cells (BrMRBC). Serum from mice stimulated with lipopolysaccharide (LPS-serum) also recognises CA. From SDS-PAGE, and blotting experiments with whole mouse erythrocytes, we found two closely spaced glycoprotein bands in the 30 kD region that reacted with both FUB 1 and LPS-serum. One of the molecular weight markers, bovine carbonic anhydrase which is of a molecular weight of about 30 kD, electrophoresed in the same 30 kD region also reacted with these antibodies. Carbonic anhydrases from a range of mammalian species were found to be crossreactive with FUB 1 and LPS-serum by Western blotting, whereas human glycophorin A and human asialoglycophorin were not recognised by the antibodies. FUB 1 specifically recognises both native and denatured bovine carbonic anhydrase in ELISA assays. The serological identity of the determinants of CA and BrMRBC was confirmed by specific absorption of both FUB 1 and LPS-serum with BrMRBC and normal mouse erythrocytes. We propose that a native autoantigenic epitope on erythrocytes may be revealed by the proteolytic action of bromelain and that this determinant is associated, at least in part, with carbonic anhydrase.

  18. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization.

    Science.gov (United States)

    Ozensoy Guler, Ozen; Capasso, Clemente; Supuran, Claudiu T

    2016-10-01

    In this paper, we reviewed the purification and characterization methods of the α-carbonic anhydrase (CA, EC 4.2.1.1) class. Six genetic families (α-, β-, γ-, δ-, ζ- and η-CAs) all know to date, all encoding such enzymes in organisms widely distributed over the phylogenetic tree. Starting from the manuscripts published in the 1930s on the isolation and purification of α-CAs from blood and other tissues, and ending with the recent discovery of the last genetic family in protozoa, the η-CAs, considered for long time an α-CA, we present historically the numerous and different procedures which were employed for obtaining these catalysts in pure form. α-CAs possess important application in medicine (as many human α-CA isoforms are drug targets) as well as biotechnological processes, in which the enzymes are ultimately used for CO2 capture in order to mitigate the global warming effects due to greenhouse gases. Recently, it was discovered an involvement of CAs in cancerogenesis as well as infection caused by pathogenic agents such as bacteria, fungi and protozoa. Inhibition studies of CAs identified in the genome of the aforementioned organisms might lead to the discovery of innovative drugs with a novel mechanism of action. PMID:26118417

  19. Carbonic anhydrase isozymes Ⅸ and Ⅻ in gastric tumors

    Institute of Scientific and Technical Information of China (English)

    Mari Leppilampi; Juha Saarnio; Tuomo J. Karttunen; Jyrki Kivel(a); Silvia Pastorekov(a); Jaromir Pastorek; Abdul Waheed; William S. Sly; Seppo Parkkila

    2003-01-01

    AIM: To systematically study the expression of carbonic anhydrase (CA) isowmes Ⅸ and Ⅻ in gastric tumors.METHODS: We analyzed a representative series of specimens from non-neoplastic gastric mucosa and from various dysplastic and neoplastic gastric lesions for the expression of CA IX and XII. Immunohistochemical staining was performed using isozyme-specific antibodies and biotinstreptavidin complex method.RESULTS: CA IX was highly expressed in the normal gastric mucosa and remained positive in many gastric tumors. In adenomas, CA IX expression significantly decreased towards the high grade dysplasia. However, the expression resumed back to the normal level in well differentiated adenocarcinomas,while it again declined in carcinomas with less differentiation.In comparison, CA Ⅻ showed no or weak immunoreaction in the normal gastric mucosa and was slightly increased in tumors.CONCLUSION: These results demonstrate that CA Ⅸexpression is sustained in several types of gastric tumors.The variations observed in the CA Ⅸ levels support the concept that gastric adenomas and carcinomas are distinct entities and do not represent progressive steps of a single pathway.

  20. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.

    Science.gov (United States)

    Merle, Geraldine; Fradette, Sylvie; Madore, Eric; Barralet, Jake E

    2014-06-17

    Biomimetic carbonation carried out with carbonic anhydrase (CA) in CO2-absorbing solutions, such as methyldiethanolamine (MDEA), is one approach that has been developed to accelerate the capture of CO2. However, there are several practical issues, such as high cost and limited enzyme stability, that need to be overcome. In this study, the capacity of CA immobilization on a porous solid support was studied to improve the instability in the tertiary amine solvent. We have shown that a 63% porosity macroporous carbon foam support makes separation and reuse facile and allows for an efficient supply and presentation of CO2 to an aqueous solvent and the enzyme catalytic center. These enzymatic supports conserved 40% of their initial activity after 42 days at 70 °C in an amine solvent, whereas the free enzyme shows no activity after 1 h in the same conditions. In this work, we have overcome the technical barrier associated with the recovery of the biocatalyst after operation, and most of all, these electropolymerized enzymatic supports have shown a remarkable increase of thermal stability in an amine-based CO2 sequestration solvent. PMID:24856780

  1. No evidence of mutations in the genes for type I and type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) in nonclassical 3{beta}HSD deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Zerah, M.; Mani, P.; Schram, P. [New York Hospital-Cornell Medical Center, New York, NY (United States)] [and others

    1994-12-01

    Nonclassical 3{beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase deficiency (NC3{beta}HSDD) has been diagnosed in hyperandrogenic women with an increasing frequency during the last 14 yr. Fifteen menarcheal women with androgen excess syndrome, previously diagnosed with NC3{beta}HSDD were studied, in 12 after discontinuation of glucocorticoid treatment, in 2 patients never treated with glucocorticoids, and in 1 both before and after glucocorticoid therapy. Molecular DNA analysis was also performed in 6 of the patients, using the strategy successfully used to detect point mutations in the type II 3{beta}-hydroxysteriod dehydrogenase (3{beta}HSD) gene, which are responsible for classical 3{beta}HSD deficiency. This strategy consists of the direct sequencing of polymerase chain reaction-amplified DNA fragments corresponding to the complete coding sequence and all intron-exon junctions and to the 5{prime}- and 3{prime}-noncoding region of this gene. We were unable to demonstrate any mutation of the type II 3{beta}HSD gene in these 6 patients. To gain additional information about potential mutations, direct sequencing of the type I 3{beta}HSD gene was also performed using this same strategy, and no mutations were found. The present study strongly suggests that unlike the salt-losing and nonsalt-losing forms of classical 3{beta}HSD deficiency, NC3{beta}HSDD is not due to a mutant type II 3{beta}HSD enzyme. However, the possibility remains of a mutation(s) in the unsequenced regions of the type II 3{beta}HSD gene or elsewhere, such as in a gene for modulatory protein, playing a specific role in the expression of the type II 3{beta}HSD gene. On the other hand, knowing the multiple hormonal controls to which 3{beta}HSD activity is subject, it cannot be excluded that at least in some cases, NC3{beta}HSDD may be an acquired defect, the result of endogenous or environmental factors. 41 refs., 2 figs., 2 tabs.

  2. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Amaya Blanco-Rivero

    Full Text Available BACKGROUND: Cah3 is the only carbonic anhydrase (CA isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO(2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO(2 conditions. RESULTS/CONCLUSIONS: In the present work we demonstrate that after transfer to low CO(2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO(2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO(2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO(2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO(2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. SIGNIFICANCE: This is the first report of a CA being post

  3. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  4. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    OpenAIRE

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C.; Silverman, D.; Anderson, P. M.; Fuchs, J A

    1993-01-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloto...

  5. The influence of high dietary protein, energy and mineral intake on deficient young camel (Camelus dromedarius)--II. Changes in mineral status.

    Science.gov (United States)

    Faye, B; Saint-Martin, G; Cherrier, R; Ruffa, A

    1992-06-01

    1. Mangrove Avicennia marina is poor in some trace elements such as copper, zinc and manganese. In a trial we used 32 young camels divided into four groups. 2. Groups 1 and 3 were supplemented with copper and zinc in drinking water after 1 month of mangrove feeding. 3. Groups 2 and 3 received concentrate rich in protein and energy. The supplementation was stopped after 2 months. 4. All the camels were deficient in trace elements at the beginning of mineral supplementation. 5. The plasma concentration of copper increased significantly up to normal levels (less than 70 micrograms/100 ml) in energy protein supplemented groups, but the quantity supplied (100 mg of copper sulphate/day) was not sufficient to maintain this level after the end of supplementation. 6. The original zinc deficiency was too severe to observe a significant effect of the mineral supplementation. 7. Calcium, magnesium and phosphorus levels were improved during the supplementation period in protein-energy supplemented groups. 8. A high interaction between mineral absorption and quality of the diet was observed. A well-balanced diet seems essential to avoid deficient mineral status.

  6. Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies.

    Science.gov (United States)

    Carta, Fabrizio; Ferraroni, Marta; Scozzafava, Andrea; Supuran, Claudiu T

    2016-01-15

    Fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) were essential for demonstrating the role played by the tumor-associated isoform CA IX in acidification of tumors, cancer progression towards metastasis and for the development of imaging and therapeutic strategies for the management of hypoxic tumors which overexpress CA IX. However, the presently available such compounds are poorly water soluble which limits their use. Here we report new fluorescent sulfonamides 7, 8 and 10 with increased water solubility. The new derivatives showed poor hCA I inhibitory properties, but were effective inhibitors against the hCA II (KIs of 366-127 nM), CA IX (KIs of 8.1-36.9 nM), CA XII (KIs of 4.1-20.5 nM) and CA XIV (KIs of 12.8-53.6 nM). A high resolution X-ray crystal structure of one of these compounds bound to hCA II revealed the factors associated with the good inhibitory properties. Furthermore, this compound showed a three-fold increase of water solubility compared to a similar derivative devoid of the triazole moiety, making it an interesting candidate for ex vivo/in vivo studies. PMID:26682703

  7. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    Science.gov (United States)

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  8. Molecular and biochemical characterization of carbonic anhydrases of Paracoccidioides

    Science.gov (United States)

    Tomazett, Mariana Vieira; Zanoelo, Fabiana Fonseca; Bailão, Elisa Flávia Cardoso; Bailão, Alexandre Melo; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-01-01

    Abstract Carbonic anhydrases (CA) belong to the family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the present work, we characterized the cDNAs of four Paracoccidioides CAs (CA1, CA2, CA3, and CA4). In the presence of CO2, there was not a significant increase in fungal ca1, ca2 and ca4 gene expression. The ca1 transcript was induced during the mycelium-to-yeast transition, while ca2 and ca4 gene expression was much higher in yeast cells, when compared to mycelium and mycelium-to-yeast transition. The ca1 transcript was induced in yeast cells recovered directly from liver and spleen of infected mice, while transcripts for ca2 and ca4 were down-regulated. Recombinant CA1 (rCA1) and CA4 (rCA4), with 33 kDa and 32 kDa respectively, were obtained from bacteria. The enzymes rCA1 (β-class) and rCA4 (α-class) were characterized regarding pH, temperature, ions and amino acids addition influence. Both enzymes were stable at pHs 7.5-8.5 and temperatures of 30-35 °C. The enzymes were dramatically inhibited by Hg+2 and activated by Zn+2, while only rCA4 was stimulated by Fe2+. Among the amino acids tested (all in L configuration), arginine, lysine, tryptophan and histidine enhanced residual activity of rCA1 and rCA4. PMID:27560991

  9. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets.

    Science.gov (United States)

    Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO₂ hydration, with kcat values in the range of (3.4-8.3) × 10⁵ s(-1) and kcat/KM values of (4.7-8.5) × 10⁷ M(-1)·s(-1). In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3-90.5 nM). The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2-88.5 nM). Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets. PMID:27322334

  10. Legionella pneumophila Carbonic Anhydrases: Underexplored Antibacterial Drug Targets

    Directory of Open Access Journals (Sweden)

    Claudiu T. Supuran

    2016-06-01

    Full Text Available Carbonic anhydrases (CAs, EC 4.2.1.1 are metalloenzymes which catalyze the hydration of carbon dioxide to bicarbonate and protons. Many pathogenic bacteria encode such enzymes belonging to the α-, β-, and/or γ-CA families. In the last decade, enzymes from some of these pathogens, including Legionella pneumophila, have been cloned and characterized in detail. These enzymes were shown to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3 × 105 s−1 and kcat/KM values of (4.7–8.5 × 107 M−1·s−1. In vitro inhibition studies with various classes of inhibitors, such as anions, sulfonamides and sulfamates, were also reported for the two β-CAs from this pathogen, LpCA1 and LpCA2. Inorganic anions were millimolar inhibitors, whereas diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid, and phenylarsonic acid were micromolar ones. The best LpCA1 inhibitors were aminobenzolamide and structurally similar sulfonylated aromatic sulfonamides, as well as acetazolamide and ethoxzolamide (KIs in the range of 40.3–90.5 nM. The best LpCA2 inhibitors belonged to the same class of sulfonylated sulfonamides, together with acetazolamide, methazolamide, and dichlorophenamide (KIs in the range of 25.2–88.5 nM. Considering such preliminary results, the two bacterial CAs from this pathogen represent promising yet underexplored targets for obtaining antibacterials devoid of the resistance problems common to most of the clinically used antibiotics, but further studies are needed to validate them in vivo as drug targets.

  11. Thermodynamics of binding of Zn2+ to carbonic anhydrase inhibitors

    Science.gov (United States)

    Remko, Milan; Garaj, Vladimír

    The Becke3LYP functional of DFT theory and the two-layered ONIOM (B3LYP/6-311+G(d,p): MNDO) method were used to characterize 46 gas-phase complexes of 34 neutral and anionic ligands (H2O, CH3OH, CH3COOH, CH3CONH2, HOSO2NH2, CO2, HSO2NH2, CH3SO2NH2, CH3C(=O)NHOH, imidazole, NH2SO2NH2, anions of 4-aminobenzenesulphonamide, saccharin, 1I9L, brinzolamide, dorzolamide, acetazolamide, further HO(-), CH3O(-), CH3COO(-), CH3CONH(-), N=N=N(-), S=C=N(-), CH3C(=O)NHO(-), HOCOO(-), imidazoleN(-), phenol-O(-), HOSO2NH(-), (-)OSO2NH(-), (-)OSO2NH2, H2NSO2NH(-), HSO2NH(-), CH3SO2NH(-), and CF3SO2NH(-), respectively) with Zn2+. Proton dissociation enthalpies and Gibbs energies of acidic inhibitors in the presence of zinc were computed. Their gas-phase acidity considerably increases upon chelation. Of the bases investigated, the weakest zinc affinity is exhibited by carbon dioxide (-313.5 kJ mol-1). Deprotonated inhibitors have higher affinities for zinc than the neutral ones. Compared to the other mono-deprotonated ligands the acetohydroxamic acid anion has the highest affinity for zinc (-1872.7 kJ mol-1). The zinc affinity of the acetazolamide anion computed using the hybrid ONIOM (B3LYP/6-311+G(d,p): MNDO) method is in very good agreement with the full DFT ones and this method can be adopted to model large complexes of inhibitors with the active site of carbonic anhydrase.

  12. Class II malocclusion associated with mandibular deficiency and maxillary and mandibular crowding: follow-up evaluation eight years after treatment completion.

    Science.gov (United States)

    Aidar, Luís Antônio de Arruda

    2016-01-01

    This report describes the correction of a clinical case of malocclusion with anteroposterior discrepancy and transverse, sagittal and vertical deficiencies. A nonextraction technique was used to preserve space in the dental arches and control facial growth for the correction of the sagittal skeletal relationship and of overbite. The mechanics adopted efficiently corrected malocclusion: all functional and esthetic goals were achieved, and results remained stable eight years after treatment completion. This case was presented to the Committee of the Brazilian Board of Orthodontics and Facial Orthopedics (BBO) as part of the requirements necessary to obtain the BBO Diploma. PMID:27653270

  13. Carbonic anhydrase IX in early-stage non-small cell lung cancer.

    NARCIS (Netherlands)

    Kim, S.; Rabbani, Z.N.; Vollmer, R.T.; Schreiber, E.G.; Oosterwijk, E.; Dewhirst, M.W.; Vujaskovic, Z.; Kelley, M.J.

    2004-01-01

    PURPOSE: Tumor hypoxia is associated with poor prognosis and increased tumor aggressiveness. Carbonic anhydrase (CA) IX, an endogenous marker for tumor hypoxia, catalyzes the hydration of carbon dioxide into carbonic acid and contributes to the pH regulation of tumor cells. Therefore, CA IX might al

  14. Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Gordon C.; Heinhorst, Sabine; Kerfeld, Cheryl A.

    2010-06-23

    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle.

  15. Variable involvement of the perivascular retinal tissue in carbonic anhydrase inhibitor induced relaxation of porcine retinal arterioles in vitro

    DEFF Research Database (Denmark)

    Kehler, Anne Katrine; Holmgaard, Kim; Hessellund, Anders;

    2007-01-01

    PURPOSE: Inhibition of carbonic anhydrase in the eye is an important treatment modality for reducing the intraocular pressure in glaucoma. However, evidence suggests that carbonic anhydrase inhibition also exerts a relaxing effect on the vessels in the optic nerve, and it has been suggested......, and the vasodilating effect of acetazolamide almost disappeared. CONCLUSIONS: A further elucidation of the mechanisms of action of carbonic anhydrase-induced dilation of retinal arterioles may contribute to a better understanding of the regulation of retinal blood flow. The perivascular retinal tissue may play...... a significant role in diameter control of retinal arterioles. Udgivelsesdato: 2007-Oct...

  16. Expression and Activity of Carbonic Anhydrase IX Is Associated With Metabolic Dysfunction in MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Ying LI; Wang, Hai; Oosterwijk, Egbert; Tu, Chingkuang; Shiverick, Kathleen T.; Silverman, David N.; Frost, Susan C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a “triple-negative,” basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydrase XII (CAXII). CAIX expression in the basal B cells is both density-and hypoxia-dependent and is correlated with carbonic anhydrase activity. Evidence is provided that CAIX contributes to extracel...

  17. Thermodynamics of binding of a sulfonamide inhibitor to metal-mutated carbonic anhydrase as studied by affinity capillary electrophoresis.

    Science.gov (United States)

    Sato, Yosuke; Hoshino, Hitoshi; Iki, Nobuhiko

    2015-09-01

    By affinity capillary electrophoresis (ACE), the thermodynamic binding constants of a sulfonamide (SA) inhibitor to bovine carbonic anhydrase II (CA) and metal mutated variants (M-CAs) were evaluated. 1-(4-Aminosulfonylphenylazo)-2-naphthol-6,8-disulfonate was used as the SA in the electrophoretic buffer for ACE. The Scatchard analysis of the dependence of the electrophoretic mobility of native CA on the SA concentration provided the binding constant to be Kb=(2.29±0.05)×10(6) M(-1) (at pH8.4, 25°C). On the other hand, apoCA showed far smaller value [Kb=(3.76±0.14)×10(2) M(-1)], suggesting that the coordination of SA to the Zn(II) center controlled the binding thermodynamics. The ACE of M-CAs showed the same behaviors as native CA but with different Kb values. For example, Co-CA adopting the same tetrahedral coordination geometry as native CA exhibited the largest Kb value [(2.55±0.05)×10(6) M(-1)] among the M-CAs. In contrast, Mn- and Ni-CA, which adopted the octahedral coordination geometry, had Kb values that were about two orders of magnitude lower. Because the hydrophobic cavity of CA around the active center pre-organized the orientation of SA, thereby fixing the ligating NH(-) moiety to the apex of the tetrahedron supported by three basal His3 of CA, metals such as Zn and Co at the center of M-CA gave the most stable CA-SA complex. However, pre-organization was not favored for octahedral geometry. Thus, pre-organization of SA was the key to facilitating the tetrahedral coordination geometry of the Zn(II) active center of CA.

  18. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-01

    We report the cloning, purification and characterization of the full domain of carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, which incorporates 358 amino acid residues (from 181 to 538, in the sequence of this 600 amino acid long protein), called PfCAdom. The enzyme, which belongs to the η-CA class showed the following kinetic parameters: kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), being 13.3 times more effective as a catalyst compared to the truncated form PfCA. PfCAdom is more effective than the human (h) isoform hCA I, being around 50% less effective compared to hCA II, one of the most catalytically efficient enzymes known so far. Intriguingly, the sulfonamides CA inhibitors generally showed much weaker inhibitory activity against PfCAdom compared to PfCA, prompting us to hypothesize that the 69 amino acid residues insertion present in the active site of this η-CA is crucial for the active site architecture. The best sulfonamide inhibitors for PfCAdom were acetazolamide, methazolamide, metanilamide and sulfanilamide, with KIs in the range of 366-808nM. PMID:27485387

  19. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  20. Pseudomonas aeruginosa exhibits deficient biofilm formation in the absence of class II and III ribonucleotide reductases due to hindered anaerobic growth.

    Directory of Open Access Journals (Sweden)

    Anna eCrespo

    2016-05-01

    Full Text Available Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments.Ribonucleotide reductases (RNRs are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II and III. Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development.In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the

  1. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  2. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    DEFF Research Database (Denmark)

    Pedersen, D B; Eysteinsson, T; Stefánsson, E;

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  3. A physiological role for cyanate-induced carbonic anhydrase in Escherichia coli.

    Science.gov (United States)

    Guilloton, M B; Lamblin, A F; Kozliak, E I; Gerami-Nejad, M; Tu, C; Silverman, D; Anderson, P M; Fuchs, J A

    1993-03-01

    Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and

  4. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    Science.gov (United States)

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. PMID:26858287

  5. Genetics Home Reference: isolated growth hormone deficiency

    Science.gov (United States)

    ... deficiency dwarfism, pituitary growth hormone deficiency dwarfism isolated GH deficiency isolated HGH deficiency isolated human growth hormone deficiency isolated somatotropin deficiency isolated somatotropin deficiency disorder ...

  6. VLCAD deficiency

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, B S; Gregersen, N;

    2006-01-01

    -negative diagnoses of VLCADD in asymptomatic newborn babies. In view of the emerging genotype-phenotype correlation in this disorder, the information derived from mutational analysis can be helpful in designing the appropriate follow-up and therapeutic regime for these patients.......We diagnosed six newborn babies with very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) through newborn screening in three years in Victoria (prevalence rate: 1:31,500). We identified seven known and two new mutations in our patients (2/6 homozygotes; 4/6 compound heterozygotes). Blood...... samples taken at age 48-72 h were diagnostic whereas repeat samples at an older age were normal in 4/6 babies. Urine analysis was normal in 5/5. We conclude that the timing of blood sampling for newborn screening is important and that it is important to perform mutation analysis to avoid false...

  7. Development of 3-(4-aminosulphonyl)-phenyl-2-mercapto-3H-quinazolin-4-ones as inhibitors of carbonic anhydrase isoforms involved in tumorigenesis and glaucoma.

    Science.gov (United States)

    Alafeefy, Ahmed M; Carta, Fabrizio; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Al-Kahtani, Abdulla A; Supuran, Claudiu T

    2016-03-15

    A series of heterocyclic benzenesulfonamides incorporating 2-mercapto-3H-quinazolin-4-one tails were prepared by condensation of substituted anthranilic acids with 4-isothiocyanato-benzenesulfonamide. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA IX and XII (trans-membrane, tumor-associated enzymes). They acted as medium potency inhibitors of hCA I (KIs of 81.0-3084 nM), being highly effective as hCA II (KIs in the range of 0.25-10.8 nM), IX (KIs of 3.7-50.4 nM) and XII (KIs of 0.60-52.9 nM) inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of three isoforms (CA II, IX and XII) is dysregulated. PMID:26875933

  8. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  9. [Mode of action, clinical profile and relevance of carbonic anhydrase inhibitors in glaucoma therapy].

    Science.gov (United States)

    Eichhorn, M

    2013-02-01

    Since their introduction the local carbonic anhydrase inhibitors (CAH) dorzolamide and brinzolamide have become well established in the drug therapy of glaucoma. They lower intraocular pressure (IOP) by blocking specifically carbonic anhydrase in the ciliary epithelium and thereby the secretion of aqueous humor. The IOP lowering effect is comparable with that of beta-blockers, but less than that of prostaglandin agonists. Because of their specific mode of action they produce an additive pressure lowering effect with any other glaucoma drug. Therefore they are ideal for being combined with other drugs. In addition, CAH may improve perfusion of the posterior eye. Preliminary results in glaucoma patients under dorzolamide therapy suggesting a reduction in the risk of progression due to enhanced blood flow need further confirmation. PMID:23430679

  10. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations.

    OpenAIRE

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Supuran, Claudiu T.

    2012-01-01

    The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residue...

  11. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    Energy Technology Data Exchange (ETDEWEB)

    Weiwei, Zhang [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China); Hu, Renming, E-mail: taylorzww@gmail.com [Department of Endocrinology and Metabolism, HuaShan Hospital, Institute of Endocrinology and Diabetology, Shanghai Medical College, Fudan University, No. 12 Wulumuqi Road, Shanghai 200040 (China)

    2009-12-18

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  12. Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

    OpenAIRE

    Reibring, Claes-Göran; El Shahawy, Maha; Hallberg, Kristina; Kannius-Janson, Marie; Nilsson, Jeanette; Parkkila, Seppo; Sly, William S; Waheed, Abdul; Linde, Anders; Gritli-Linde, Amel

    2014-01-01

    Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution pa...

  13. Toxic Epidermal Necrolysis Induced by the Topical Carbonic Anhydrase Inhibitors Brinzolamide and Dorzolamide

    OpenAIRE

    Chun, Ji Sun; Yun, Sook Jung; Lee, Jee Bum; Kim, Seong Jin; Won, Young Ho; Lee, Seung Chul

    2008-01-01

    Brinzolamide and dorzolamide are highly specific topical carbonic anhydrase inhibitors (CAIs). They lower intraocular pressure (IOP) by reducing the rate of aqueous humour formation without serious side effects. Although systemic CAIs are the most potent medications for lowering intraocular pressure for conditions with ocular hypertension, many cases with adverse systemic reactions have been reported, including Stevens-Johnson syndrome (SJS) and Toxic epidermal necrolysis (TEN). Here, we repo...

  14. Targeting carbonic anhydrase to treat diabetic retinopathy: Emerging evidences and encouraging results

    International Nuclear Information System (INIS)

    Diabetic retinopathy (DR) is the leading cause of vision loss among working-age populations in developed countries. Current treatment options are limited to tight glycemic, blood pressure control and destructive laser surgery. Carbonic anhydrases (CAs) are a group of enzymes involving in the rapid conversion of carbon dioxide to bicarbonate and protons. Emerging evidences reveal CA inhibitors hold the promise for the treatment of DR. This article summarizes encouraging results from clinical and animal studies, and reviews the possible mechanisms.

  15. Strong topical steroid, NSAID, and carbonic anhydrase inhibitor cocktail for treatment of cystoid macular edema

    Directory of Open Access Journals (Sweden)

    Asahi MG

    2015-12-01

    Full Text Available Masumi G Asahi, Gabriela L Bobarnac Dogaru, Spencer M Onishi, Ron P GallemoreRetina Macula Institute, Torrance, CA, USA Purpose: To report the combination cocktail of strong steroid, non-steroidal anti-inflammatory drug (NSAID, and carbonic anhydrase inhibitor drops for treatment of cystoid macular edema. Methods: This is a retrospective case series of patients with cystoid macular edema managed with a topical combination of strong steroid (difluprednate, NSAID, and carbonic anhydrase inhibitor drops. The patients were followed with optical coherence tomography and fluorescein angiography. Results: In our six cases, resolution of the cystic edema with improvement in visual acuity was achieved with the use of a combination cocktail of drops. Leakage on fluorescein angiography and cystic edema on optical coherence tomography both responded to treatment with the topical cocktail of drops. Conclusion: A topical cocktail of strong steroid, NSAID, and carbonic anhydrase inhibitor drops are effective for managing cystoid macular edema. Further studies comparing this combination with more invasive treatments should be undertaken to determine the efficacy of this cocktail over other treatment options. Keywords: birdshot chorioretinopathy, diabetic macular edema, retinal vein occlusion

  16. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  17. Screening and docking studies of natural phenolic inhibitors of carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbonic anhydrase Ⅱ (CAⅡ) is an important enzyme complex with Zn2+,which is involved in many physiological and pathological processes, such as calcification, glaucoma and tumorigenicity. In order to search for novel inhibitors of CAⅡ, inhibition assay of carbonic anhydrase Ⅱ was performed, by which seven natural phenolic compounds, including four phenolics (grifolin, 4-O-methyl-grifolic acid, grifolic acid, and isovanillic acid) and three flavones (eriodictyol, quercetin and puerin A), showed in-hibitory activities against CAⅡ with IC50s in the range of 6.37-71.73 μmol/L. Grifolic acid is the most active one with IC50 of 6.37 μmol/L. These seven phenolic compounds were proved to be novel natural carbonic anhydrase Ⅱ inhibitors, which were obtained in flexible docking study with GOLD 3.0 soft-ware. Results indicated that the aliphatic chain and polar groups of hydroxyl and carboxyl are impor-tant to their inhibitory activities, providing a new insight into study on CA Ⅱ potent inhibitors.

  18. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  19. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX.

    Science.gov (United States)

    Pinard, Melissa A; Aggarwal, Mayank; Mahon, Brian P; Tu, Chingkuang; McKenna, Robert

    2015-10-01

    Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.

  20. Carbonic Anhydrase and Zinc in Plant Physiology Anhidrasa Carbónica y Zinc en Fisiología Vegetal

    Directory of Open Access Journals (Sweden)

    Dalila Jacqueline Escudero-Almanza

    2012-03-01

    Full Text Available Carbonic anhydrase (CA (EC: 2.4.1.1 catalyzes the rapid conversion of carbon dioxide plus water into a proton and the bicarbonate ion (HCO3- that can be found in prokaryotes and higher organisms; it is represented by four different families. Carbonic anhydrase is a metalloenzyme that requires Zn as a cofactor and is involved in diverse biological processes including pH regulation, CO2 transfer, ionic exchange, respiration, CO2 photosynthetic fixation, and stomatal closure. Therefore, the review includes relevant aspects about CA morphology, oligomerization, and structural differences in the active site. On the other hand, we consider the general characteristics of Zn, its geometry, reactions, and physiology. We then consider the CA catalysis mechanism that is carried out by the metal ion and where Zn acts as a cofactor. Zinc deficiency can inhibit growth and protein synthesis, and there is evidence that it reduces the CA content in some plants, which is a relationship addressed in this review. In leaves, CA represents 20.1% of total soluble protein, while it is the second most abundant in the chloroplast after ribulose 1,5-disphosphate carboxylase/oxygenase (RuBisCO. This facilitates the supply of CO2 to the phosphoenolpyruvate carboxylase in C4 and CAM plants and RuBisCO in C3 plants.La anhidrasa carbónica (CA (EC: 4.2.1.1 cataliza la conversión rápida de dióxido de carbono más agua en un protón y el ion bicarbonato (HCO3-; la cual puede encontrarse en procariotas y en organismos superiores y está representada por cuatro familias distintas. La CA es una metaloenzima que requiere Zn como cofactor y está implicada en diversos procesos biológicos, incluyendo la regulación del pH, la transferencia de CO2, intercambio iónico, la respiración, la fijación fotosintética de CO2, y el cierre estomático. Por lo cual, la revisión incluye aspectos relevantes sobre la morfología de laAC, su oligomerización y diferencias estructurales en el

  1. Evidence that an internal carbonic anhydrase is present in 5% CO2-grown and air-grown Chlamydomonas

    International Nuclear Information System (INIS)

    Inorganic carbon (C/sub i/) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (C/sub i/) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some C/sub i/, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase

  2. The selective expression of carbonic anhydrase genes of Aspergillus nidulans in response to changes in mineral nutrition and CO2 concentration.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Dong, Cuiling; Liu, Fanghua

    2016-02-01

    Carbonic anhydrase (CA) plays an important role in the formation and evolution of life. However, to our knowledge, there has been no report on CA isoenzyme function differentiation in fungi. Two different CA gene sequences in Aspergillus nidulans with clear genetic background provide us a favorable basis for studying function differentiation of CA isoenzymes. Heterologously expressed CA1 was used to test its weathering ability on silicate minerals and real-time quantitative PCR was used to detect expression of the CA1 and CA2 genes at different CO2 concentrations and in the presence of different potassium sources. The northern blot method was applied to confirm the result of CA1 gene expression. Heterologously expressed CA1 significantly promoted dissolution of biotite and wollastonite, and CA1 gene expression increased significantly in response to soluble K-deficiency. The northern blot test further showed that CA1 participated in K-feldspar weathering. In addition, the results showed that CA2 was primary involved in adapting to CO2 concentration change. Taken together, A. nidulans can choose different CA to meet their survival needs, which imply that some environmental microbes have evolved different CAs to adapt to changes in CO2 concentration and acquire mineral nutrition so that they can better adapt to environmental changes. Inversely, their adaption may impact mineral weathering and/or CO2 concentration, and even global change.

  3. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Energy Technology Data Exchange (ETDEWEB)

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  4. A new peptide ligand for targeting human carbonic anhydrase IX, identified through the phage display technology.

    Directory of Open Access Journals (Sweden)

    Vasileios Askoxylakis

    Full Text Available UNLABELLED: Carbonic anhydrase IX (CAIX is a transmembrane enzyme found to be overexpressed in various tumors and associated with tumor hypoxia. Ligands binding this target may be used to visualize hypoxia, tumor manifestation or treat tumors by endoradiotherapy. METHODS: Phage display was performed with a 12 amino acid phage display library by panning against a recombinant extracellular domain of human carbonic anhydrase IX. The identified peptide CaIX-P1 was chemically synthesized and tested in vitro on various cell lines and in vivo in Balb/c nu/nu mice carrying subcutaneously transplanted tumors. Binding, kinetic and competition studies were performed on the CAIX positive human renal cell carcinoma cell line SKRC 52, the CAIX negative human renal cell carcinoma cell line CaKi 2, the human colorectal carcinoma cell line HCT 116 and on human umbilical vein endothelial cells (HUVEC. Organ distribution studies were carried out in mice, carrying SKRC 52 tumors. RNA expression of CAIX in HCT 116 and HUVEC cells was investigated by quantitative real time PCR. RESULTS: In vitro binding experiments of (125I-labeled-CaIX-P1 revealed an increased uptake of the radioligand in the CAIX positive renal cell carcinoma cell line SKRC 52. Binding of the radioligand in the colorectal carcinoma cell line HCT 116 increased with increasing cell density and correlated with the mRNA expression of CAIX. Radioligand uptake was inhibited up to 90% by the unlabeled CaIX-P1 peptide, but not by the negative control peptide octreotide at the same concentration. No binding was demonstrated in CAIX negative CaKi 2 and HUVEC cells. Organ distribution studies revealed a higher accumulation in SKRC 52 tumors than in heart, spleen, liver, muscle, intestinum and brain, but a lower uptake compared to blood and kidney. CONCLUSIONS: These data indicate that CaIX-P1 is a promising candidate for the development of new ligands targeting human carbonic anhydrase IX.

  5. Relationship among Photosys- tem Ⅱ carbonic anhydrase, extrinsic polypeptides and manganese cluster

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effects of Photosystem Ⅱ (PS Ⅱ) extrinsic poly- peptides of oxygen-evolving complex and manganese clusters on PSⅡ carbonic anhydrase (CA) were studied with spinach PSⅡ membranes. The result supported that membrane-bound CA is located in the donor side of PSⅡ. The extrinsic polypeptides played an important role of maintaining CA activity. After removing manganese clusters, oxygen evolution activity was inhibited, but PSⅡ-CA activity was unchanged. It was concluded that CA activity is independent of the presence of manganese clusters, and was not directly correlated with oxygen evolution activity.

  6. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.

    OpenAIRE

    Swenson, E.R.; Robertson, H T; Hlastala, M P

    1993-01-01

    Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measu...

  7. Carbonic Anhydrase as Pollution Biomarker: An Ancient Enzyme with a New Use

    Directory of Open Access Journals (Sweden)

    Trifone Schettino

    2012-11-01

    Full Text Available The measurement of cellular and sub-cellular responses to chemical contaminants (referred to as biomarkers in living organisms represents a recent tool in environmental monitoring. The review focuses on carbonic anhydrase, a ubiquitous metalloenzyme which plays key roles in a wide variety of physiological processes involving CO2 and HCO3−. In the last decade a number of studies have demonstrated the sensitivity of this enzyme to pollutants such as heavy metals and organic chemicals in both humans and wildlife. The review analyses these studies and discusses the potentiality of this enzyme as novel biomarker in environmental monitoring and assessment.

  8. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure.

    Science.gov (United States)

    Huang, Qinhua; Rui, Eugene Y; Cobbs, Morena; Dinh, Dac M; Gukasyan, Hovhannes J; Lafontaine, Jennifer A; Mehta, Saurabh; Patterson, Brian D; Rewolinski, David A; Richardson, Paul F; Edwards, Martin P

    2015-03-26

    The antiglaucoma drugs dorzolamide (1) and brinzolamide (2) lower intraocular pressure (IOP) by inhibiting the carbonic anhydrase (CA) enzyme to reduce aqueous humor production. The introduction of a nitric oxide (NO) donor into the alkyl side chain of dorzolamide (1) and brinzolamide (2) has led to the discovery of NO-dorzolamide 3a and NO-brinzolamide 4a, which could lower IOP through two mechanisms: CA inhibition to decrease aqueous humor secretion (reduce inflow) and NO release to increase aqueous humor drainage (increase outflow). Compounds 3a and 4a have shown improved efficacy of lowering IOP in both rabbits and monkeys compared to brinzolamide (2). PMID:25728019

  9. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII.

    Science.gov (United States)

    Eldehna, Wagdy M; Fares, Mohamed; Ceruso, Mariangela; Ghabbour, Hazem A; Abou-Seri, Sahar M; Abdel-Aziz, Hatem A; Abou El Ella, Dalal A; Supuran, Claudiu T

    2016-03-01

    By using a molecular hybridization approach, two series of amido/ureidosubstituted benzenesulfonamides incorporating substituted-isatin moieties were synthesized. The prepared derivatives were in vitro evaluated for their inhibitory activity against human carbonic anhydrase (hCA, EC 4.2.1.1) I, II (cytosolic) and IX, XII (transmembrane, tumor-associated) isoforms. All these isoforms were inhibited in variable degrees by the sulfonamides reported here. hCA I was inhibited with KIs in the range of 7.9-894 nM, hCA II in the range of 7.5-1645 nM (with one compound having a KI > 10 μM); hCA IX in the range of 5.0-240 nM, whereas hCA XII in the range of 0.47-2.83 nM. As all these isoforms are involved in various pathologies, in which their inhibition can be exploited therapeutically, the derivatives reported here may represent interesting extensions to the field of CA inhibitors of the sulfonamide type. PMID:26840366

  10. The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides.

    Science.gov (United States)

    Vullo, Daniela; Luca, Viviana De; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-03-15

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 (SspCA) was investigated for its inhibition with a large series of sulfonamides and a sulfamate, the classical inhibitors of these zinc enzymes. SspCA showed an inhibition profile with these compounds very similar to that of the predominant human cytosolic isoform hCA II, and not to that of the bacterial α-CA from Helicobacter pylori. Some clinically used drugs such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulthiame were low nanomolar SspCA/hCA II inhibitors (KIs in the range of 4.5-12.3nM) whereas simple aromatic/heterocyclic sulfonamides were less effective, micromolar inhibitors. As this highly catalytically active and thermostable enzyme may show biotechnological applications, its inhibition studies may be relevant for designing on/off systems to control its activity. PMID:22883029

  11. Genetics Home Reference: carnitine palmitoyltransferase II deficiency

    Science.gov (United States)

    ... myalgia and rhabdomyolysis may be triggered by exercise, stress, exposure to extreme temperatures, infections, or fasting. The first episode usually occurs during childhood or adolescence. Most people with the myopathic form of CPT ...

  12. Zinc Transfer Kinetics of Metallothioneins and Their Fragmentswith Apo-carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    HUANG, Zhong-Xian; LIU, Fang; ZHENG, Qi; YU, Wen-Hao

    2001-01-01

    Tne zinc transfer reactions from Zn7-MT-I, Zn7-MT-Ⅱ, Zn4α fragment (MT-I) and Zn4-α fragment (MT-Ⅱ) to apo-carbonic anhydrase have been studied. In each reaction, no more than one zinc ion per molecule is involved in metal transfer.Zn7-MT-I and Zn7-MT-Ⅱ donate zinc to apo-carbonic anhydrase and de novo constitute it at a comparable efficiency,while Zn7-MT-Ⅱ exhibits a little faster rate. Surprisingiy,Zinc is released from Zn4-α fragment (MT-Ⅱ) with a much faster rate than from Zn4-α fragment (MT-I), whose rate is close to that of Zn7-MT-I. The reason for the difference is still unknown. Introducing complex compounds into this system may give rise to an effect on the reaction. The transfer from Zn7-MT-Ⅱ in the presence of reduced glutathione shows little difference compare to the control, suggesting that the reduced glutathione is not involved in zinc transfer process. However,glutathione disulfide does accelerate this zinc transfer reaction remarkably, indicating that the oxidative factors contribute to zinc rlease from metallothioneins.

  13. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Leukocyte Adhesion Deficiency (LAD) LAD is an immune deficiency in ... are slow to heal also may have LAD. Treatment and Research Doctors prescribe antibiotics to prevent and ...

  14. Factor VII deficiency

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000548.htm Factor VII deficiency To use the sharing features on this page, please enable JavaScript. Factor VII (seven) deficiency is a disorder caused by a ...

  15. Folate-deficiency anemia

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL ... and women are the two groups at highest risk for iron-deficiency anemia. Outlook Doctors usually can ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video— ... treatment. For more information about living with and managing iron-deficiency anemia, go to the Health Topics ...

  18. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000408.htm Familial lipoprotein lipase deficiency To use the sharing features on this page, please enable JavaScript. Familial lipoprotein lipase deficiency is a group of rare genetic disorders ...

  19. Optimizing lutetium 177-anti-carbonic anhydrase IX radioimmunotherapy in an intraperitoneal clear cell renal cell carcinoma xenograft model

    NARCIS (Netherlands)

    Muselaers, C.H.J.; Oosterwijk, E.; Bos, D.L.; Oyen, W.J.G.; Mulders, P.F.A.; Boerman, O.C.

    2014-01-01

    A new approach in the treatment of clear cell renal carcinoma (ccRCC) is radioimmunotherapy (RIT) using anti-carbonic anhydrase IX (CAIX) antibody G250. To investigate the potential of RIT with lutetium 177 (177Lu)-labeled G250, we conducted a protein dose escalation study and subsequently an RIT st

  20. Evolution of the mammary capillary network and carbonic anhydrase activity throughout lactation and during somatotropin treatment in goats

    DEFF Research Database (Denmark)

    Nielsen, Mette Benedicte Olaf; Cvek, Katarina; Dahlborn, Kristina

    2010-01-01

    During the normal course of lactation, mammary metabolic activity and blood flow are closely correlated. Six lactating goats were used in this experiment to test the hypothesis that the capillary network and the capillary enzyme, carbonic anhydrase (CA; EC 4.2.1.1) are important regulatory factors...

  1. Metabolic Effect of Estrogen Receptor Agonists on Breast Cancer Cells in the Presence or Absence of Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Anissa Belkaid

    2016-05-01

    Full Text Available Metabolic shift is one of the major hallmarks of cancer development. Estrogen receptor (ER activity has a profound effect on breast cancer cell growth through a number of metabolic changes driven by its effect on transcription of several enzymes, including carbonic anhydrases, Stearoyl-CoA desaturase-1, and oncogenes including HER2. Thus, estrogen receptor activators can be expected to lead to the modulation of cell metabolism in estrogen receptor positive cells. In this work we have investigated the effect of 17β-estradiol, an ER activator, and ferulic acid, a carbonic anhydrase inhibitor, as well as ER activator, in the absence and in the presence of the carbonic anhydrase inhibitor acetazolamide on the metabolism of MCF7 cells and MCF7 cells, stably transfected to express HER2 (MCF7HER2. Metabolic profiles were studied using 1D and 2D metabolomic Nuclear Magnetic Resonance (NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results in the context of biochemical pathways. Overall changes in hydrophilic metabolites were largest following treatment of MCF7 and MC7HER2 cells with 17β-estradiol. However, the carbonic anhydrase inhibitor acetazolamide had the largest effect on the profile of lipophilic metabolites.

  2. Expression and activity of carbonic anhydrase IX is associated with metabolic dysfunction in MDA-MB-231 breast cancer cells.

    NARCIS (Netherlands)

    Li, Ying; Wang, H.; Oosterwijk, E.; Tu, C.; Shiverick, K.T.; Silverman, D.N.; Frost, S.C.

    2009-01-01

    The expression of carbonic anhydrase IX (CAIX), a marker for hypoxic tumors, is correlated with poor prognosis in breast cancer patients. We show herein that the MDA-MB-231 cells, a "triple-negative," basal B line, express exclusively CAIX, while a luminal cell line (T47D) expresses carbonic anhydra

  3. Iron deficiency and cognition

    OpenAIRE

    Hulthén, Lena

    2003-01-01

    Iron deficiency is the most prevalent nutritional disorder in the world. One of the most worrying consequences of iron deficiency in children is the alteration of behaviour and cognitive performance. In iron-deficient children, striking behavioural changes are observed, such as reduced attention span, reduced emotional responsiveness and low scores on tests of intelligence. Animal studies on nutritional iron deficiency show effects on learning ability that parallel the human studies. Despite ...

  4. Iron-Deficiency Anemia

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, ... Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the NHLBI on Twitter. What Is Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily ... Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the ...

  6. Pancreatic SEC23B deficiency is sufficient to explain the perinatal lethality of germline SEC23B deficiency in mice

    OpenAIRE

    Rami Khoriaty; Lesley Everett; Jennifer Chase; Guojing Zhu; Mark Hoenerhoff; Brooke McKnight; Matthew P. Vasievich; Bin Zhang; Kärt Tomberg; John (Jack) Williams; Ivan Maillard; David Ginsburg

    2016-01-01

    In humans, loss of function mutations in SEC23B result in Congenital Dyserythropoietic Anemia type II (CDAII), a disease limited to defective erythroid development. Patients with two nonsense SEC23B mutations have not been reported, suggesting that complete SEC23B deficiency might be lethal. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration and that mice with hematopoietic SEC23B deficiency do not exhibit CDAII. We now show that SEC2...

  7. Update and critical appraisal of combined timolol and carbonic anhydrase inhibitors and the effect on ocular blood flow in glaucoma patients

    Directory of Open Access Journals (Sweden)

    Adam M Moss

    2010-03-01

    Full Text Available Adam M Moss, Alon Harris, Brent Siesky, Deepam Rusia, Kathleen M Williamson, Yochai ShoshaniDepartment of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USAAbstract: Topical hypotensive therapy with both timolol and carbonic anhydrase inhibitors has been shown to be efficacious at reducing intraocular pressure. Many prospective studies have also suggested that carbonic anhydrase inhibitors augment ocular blood flow and vascular regulation independent of their hypotensive effects. Although consistent in their findings, these studies must be cautiously interpreted due to the limitations of study design and specific blood flow imaging modalities. The purpose of this review is to appraise and critically evaluate the current body of literature investigating the effects of combined treatment with topical carbonic anhydrase inhibitors and timolol in patients with glaucoma with respect to ocular blood flow, visual function, and optic nerve head structure.Keywords: ocular blood flow, carbonic anhydrase inhibitor, timolol, glaucoma, visual function, optic nerve head

  8. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R. [St. Louis Univ. School of Medicine, MO (United States)] [and others

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundaries are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.

  9. Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii

    Directory of Open Access Journals (Sweden)

    Vincenzo Alterio

    2015-03-01

    Full Text Available The Carbon Concentration Mechanism (CCM allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.

  10. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    Science.gov (United States)

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  11. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants: a new approach to estimating in vivo carbonic anhydrase activity

    Energy Technology Data Exchange (ETDEWEB)

    Holtum, J.A.M.; Summons, R.; Roeske, C.A.; Comins, H.N.; O' Leary, M.H.

    1984-01-01

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with TC YO2, then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the ( TC) malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance or by mass spectrometry. Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum, 40 for Kalanchoee daigremontiana, and 100 or greater for Bryophyllum tubiflorum, Kalanchoee serrata, and Kalanchoae tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. 37 references, 2 figures, 8 tables.

  12. Carbonic Anhydrases in Cnidarians: Novel Perspectives from the Octocorallian Corallium rubrum.

    Science.gov (United States)

    Le Goff, Carine; Ganot, Philippe; Zoccola, Didier; Caminiti-Segonds, Natacha; Allemand, Denis; Tambutté, Sylvie

    2016-01-01

    Although the ability to elaborate calcium carbonate biominerals was apparently gained independently during animal evolution, members of the alpha carbonic anhydrases (α-CAs) family, which catalyze the interconversion of CO2 into HCO3-, are involved in the biomineralization process across metazoans. In the Mediterranean red coral Corallium rubrum, inhibition studies suggest an essential role of CAs in the synthesis of two biominerals produced in this octocoral, the axial skeleton and the sclerites. Hitherto no molecular characterization of these enzymes was available. In the present study we determined the complete set of α-CAs in C. rubrum by data mining the genome and transcriptome, and measured their differential gene expression between calcifying and non-calcifying tissues. We identified six isozymes (CruCA1-6), one cytosolic and five secreted/membrane-bound among which one lacked two of the three zinc-binding histidines and was so referred to as a carbonic anhydrase related protein (CARP). One secreted isozyme (CruCA4) showed specific expression both by qPCR and western-blot in the calcifying tissues, suggesting its involvement in biomineralization. Moreover, phylogenetic analyses of α-CAs, identified in six representative cnidarians with complete genome, support an independent recruitment of α-CAs for biomineralization within anthozoans. Finally, characterization of cnidarian CARPs highlighted two families: the monophyletic cytosolic CARPs, and the polyphyletic secreted CARPs harboring a cnidarian specific cysteine disulfide bridge. Alignment of the cytosolic CARPs revealed an evolutionary conserved R-H-Q motif in place of the characteristic zinc-binding H-H-H necessary for the catalytic function of α-CAs. PMID:27513959

  13. Acquired color vision deficiency.

    Science.gov (United States)

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  14. [Approaches to vitamin B12 deficiency].

    Science.gov (United States)

    Russcher, Henk; Heil, Sandra G; Slobbe, Lennert; Lindemans, Jan

    2012-01-01

    A 28-year-old female vegetarian was referred to a specialist in internal medicine with persistent iron deficiency. Laboratory analysis revealed microcytic anaemia with low ferritin levels but normal total vitamin B12 levels. The red blood cell distribution width, however, showed a very wide variation in red blood cell sizes, indicating a coexisting vitamin B12 deficiency, which was confirmed by the low concentration of active vitamin B12. Another patient, a 69-year-old woman with a history of previous gastric surgery and renal insufficiency as a complication of diabetes mellitus, was suspected to be deficient in vitamin B12, as she had low total vitamin B12 levels and an accumulation of methylmalonic acid and homocysteine in her blood. Testing the total concentration of vitamin B12 alone has insufficient diagnostic accuracy and no accepted gold standard is available for diagnosing vitamin B12 deficiency. With the development of newer tests, such as measuring holotranscobalamin II (concentration of active vitamin B12), atypical and subclinical deficiency states can be recognized. A new approach to diagnosing vitamin B12 deficiency is presented, based upon these 2 case descriptions.

  15. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates

    Directory of Open Access Journals (Sweden)

    Niederhauser Barbara

    2010-07-01

    Full Text Available Abstract Background The β-carbonic anhydrase (CA, EC 4.2.1.1 enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster. Results The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M-1s-1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM and more potently by sulfamide (KI of 0.15 mM. Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM. Conclusions The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.

  16. The integrative segment of the quail Coturnix coturnix japonica. Occurrence and distribution of carbonic anhydrase and complex carbohydrates.

    OpenAIRE

    Gabriella, M G; Menghi, G

    1994-01-01

    As part of a more extensive study into the involvement of carbonic anhydrase in avian excretory function, the occurrence and distribution of this enzyme was investigated in the quail integrative segment. The integrative segment represents, in birds, that part of the intestinal tract where ureteral urine undergoes postrenal modification to form definitive urine. To define the structural peculiarities within the intestinal epithelium, the constituent parts, namely cloaca, rectum and caecum, as ...

  17. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    OpenAIRE

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-01-01

    Background Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA I...

  18. Lipoprotein lipase deficiency.

    OpenAIRE

    Shankar K; Bava H; Shetty J; Joshi M

    1997-01-01

    A rare case of a 3 month old child with lipoprotein lipase deficiency who presented with bronchopneumonia is reported. After noticing lipaemic serum and lipaemia retinalis, a diagnosis of hyperlipoproteinaemia was considered. Lipoprotein lipase deficiency was confirmed with post heparin lipoprotein lipase enzyme activity estimation.

  19. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  20. Iron deficiency in childhood

    NARCIS (Netherlands)

    L. Uijterschout

    2015-01-01

    Iron deficiency (ID) is the most common micronutrient deficiency in the world. Iron is involved in oxygen transport, energy metabolism, immune response, and plays an important role in brain development. In infancy, ID is associated with adverse effects on cognitive, motor, and behavioral development

  1. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A;

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  2. Vitamin deficiencies and excesses

    Science.gov (United States)

    Vitamins are essential nutrients that must be supplied exogenously either as part of a well balanced diet or as supplements. Deficiency states are uncommon in developed countries except, perhaps, among some food insecure families. In contrast, deficiency states are quite common in many developing ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Blood Tests Blood Transfusion Restless Legs Syndrome Send a link to NHLBI to someone by E-MAIL | ... Iron-Deficiency Anemia? Español Iron-deficiency anemia is a common, easily treated condition that occurs if you ...

  4. Deficiently Extremal Gorenstein Algebras

    Indian Academy of Sciences (India)

    Pavinder Singh

    2011-08-01

    The aim of this article is to study the homological properties of deficiently extremal Gorenstein algebras. We prove that if / is an odd deficiently extremal Gorenstein algebra with pure minimal free resolution, then the codimension of / must be odd. As an application, the structure of pure minimal free resolution of a nearly extremal Gorenstein algebra is obtained.

  5. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Schlossmacher, Ute; Neufurth, Meik; Feng, Qingling; Diehl-Seifert, Bärbel; Müller, Werner E G

    2014-05-01

    Ca-phosphate/hydroxyapatite (HA) crystals constitute the mineral matrix of vertebrate bones, while Ca-carbonate is the predominant mineral of many invertebrates, like mollusks. Recent results suggest that CaCO₃ is also synthesized during early bone formation. We demonstrate that carbonic anhydrase-driven CaCO₃ formation in vitro is activated by organic extracts from the demosponge Suberites domuncula as well as by quinolinic acid, one component isolated from these extracts. Further results revealed that the stimulatory effect of bicarbonate (HCO₃ (-)) ions on mineralization of osteoblast-like SaOS-2 cells is strongly enhanced if the cells are exposed to inorganic polyphosphate (polyP), a linear polymer of phosphate linked by energy-rich phosphodiester bonds. The effect of polyP, administered as polyP (Ca²⁺ salt), on HA formation was found to be amplified by addition of the carbonic anhydrase-activating sponge extract or quinolinic acid. Our results support the assumption that CaCO₃ deposits, acting as bio-seeds for Ca-carbonated phosphate formation, are formed as an intermediate during HA mineralization and that the carbonic anhydrase-mediated formation of those deposits is under a positive-negative feedback control by bone alkaline phosphatase-dependent polyP metabolism, offering new targets for therapy of bone diseases/defects. PMID:24374859

  6. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    Science.gov (United States)

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  7. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.

    Science.gov (United States)

    Kogawa, Masakazu; Wijenayaka, Asiri R; Ormsby, Renee T; Thomas, Gethin P; Anderson, Paul H; Bonewald, Lynda F; Findlay, David M; Atkins, Gerald J

    2013-12-01

    The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings

  8. [delta-Aminolevulinate dehydratase deficiency].

    Science.gov (United States)

    Fujita, H; Ishida, N; Akagi, R

    1995-06-01

    delta-Aminolevulinate dehydratase (ALAD: E. C. 4.2.1.24), the second enzyme in the heme biosynthetic pathway, condenses two moles of delta-aminolevulinic acid to form porphobilinogen. ALAD deficiency is well known to develop signs and symptoms of typical hepatic porphyria, and classified into three categories as follows: (i) ALAD porphyria, a genetic defect of the enzyme, (ii) tyrosinemia type I, a genetic defect of fumarylacetoacetase in the tyrosine catabolic pathway, producing succinylacetone (a potent inhibitor of ALAD), and (iii) ALAD inhibition by environmental hazards, such as lead, trichloroethylene, and styrene. In the present article, we will describe molecular and biochemical mechanisms to cause the enzyme defect to discuss the significance of ALAD defect on human health.

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... intravenous iron therapy. Rate This Content: NEXT >> Featured Video Living With and Managing Iron-Deficiency Anemia 05/18/2011 This video—presented by the National Heart, Lung, and Blood ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... symptoms. Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in ... 18/2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Entire Site Health Topics News & Resources Intramural Research Public Health Topics Education & Awareness Resources Contact The Health ... Severe iron-deficiency anemia can lead to heart problems, infections, problems with growth and development in children, ...

  12. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Are Sleep Deprivation and Deficiency? Sleep deprivation (DEP-rih-VA- ... Rate This Content: NEXT >> Updated: February 22, 2012 Sleep Infographic Sleep Disorders & Insufficient Sleep: Improving Health through ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health Topics Education & Awareness Resources Contact The Health Information Center Health Professionals Systematic Evidence Reviews & Clinical Practice ... and see the benefits of treatment. For more information about living with and managing iron-deficiency anemia, ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Digg. Share this page from the NHLBI on Facebook. Add this link to the NHLBI to my ... such as tiredness, poor skin tone, dizziness, and depression. After her doctor diagnosed her with iron-deficiency ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS PREVENTION LIVING WITH CLINICAL TRIALS LINKS Related Topics ... Doctors usually can successfully treat iron-deficiency anemia. Treatment will depend on the cause and severity of ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich protein that carries oxygen from the lungs to the rest of the body. Iron-deficiency ... 2011 This video—presented by the National Heart, Lung, and Blood Institute, part of the National Institutes ...

  17. Adult growth hormone deficiency

    OpenAIRE

    Vishal Gupta

    2011-01-01

    Adult growth hormone deficiency (AGHD) is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD) has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth...

  18. Clinical significance of complement deficiencies.

    Science.gov (United States)

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  19. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-01-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions. PMID:27385052

  20. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes. PMID:26850377

  1. Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Dedeoglu, Nurcan; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. Here we report and anion inhibition study of the β-CA, VchCAβ with anions and other small molecules which inhibit metalloenzymes. The best VchCAβ anion inhibitors were sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 54-86μM. Diethyldithiocarbonate was also an effective VchCAβ inhibitor, with an inhibition constant of 0.73mM. The halides, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrate, nitrite, stannate, selenate, tellurate, divanadate, tetraborate, perrhenate, perruthenate, peroxydisulfate, selenocyanide, trithiocarbonate, and fluorosulfonate showed affinity in the low millimolar range, with KIs of 2.3-9.5mM. Identification of selective inhibitors of VchCAβ (over the human CA isoforms) may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzyme. PMID:26853167

  2. Enzyme renaturation to higher activity driven by the sol-gel transition: Carbonic anhydrase

    Science.gov (United States)

    Vinogradov, Vladimir V.; Avnir, David

    2015-09-01

    We describe a so-far unknown route for renaturing denatured enzymes, namely subjecting the denatured enzyme to an oxide sol-gel transition. The phenomenon was revealed in a detailed study of denatured carbonic anhydrase which was subjected to an alumina sol-gel transition, up to the thermally stabilizing entrapment in the final xerogel. Remarkably, not only that the killed enzyme regained its activity during the sol-gel process, but its activity increased to 180% of the native enzyme. To the best of our knowledge, this is the first report of enhanced activity following by renaturing (a “Phoenix effect”). Kinetic study which revealed a five-orders of magnitude (!) increase in the Arrhenius prefactor upon entrapment compared to solution. Circular dichroism analysis, differential scanning calorimetry, zeta potential analyses as well as synchronous fluorescence measurements, all of which were used to characterize the phenomenon, are consistent with a proposed mechanism which is based on the specific orienting interactions of the active site of the enzyme with respect to the alumina interface and its pores network.

  3. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes.

  4. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-07-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.

  5. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-02-15

    The Antarctic bacterium Colwellia psychrerythraea encodes for a γ-class carbonic anhydrase (CA, EC 4.2.1.1), which was cloned, purified and characterized. The enzyme (CpsCAγ) has a moderate catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with a k(cat) 6.0×10(5) s(-1) and a k(cat)/K(m) of 4.7×10(6) M(-1) s(-1). A series of sulfonamides and a sulfamate were investigated as inhibitors of the new enzyme. The best inhibitor was metanilamide (K(I) of 83.5 nM) followed by indisulam, valdecoxib, celecoxib, sulthiame and hydrochlorothiazide (K(I)s ranging between 343 and 491 nM). Acetazolamide, methazolamide as well as other aromatic/heterocyclic derivatives showed inhibition constants between 502 and 7660 nM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here, by allowing the identification of inhibitors which may be useful as pharmacologic tools.

  6. The role of carbonic anhydrase in C4 photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Studer, Anthony [Life Sciences Research Foundation, Baltimore, MD (United States)

    2015-10-01

    Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C4 photosynthesis, the hydration of CO2 into bicarbonate, and is potentially rate limiting in C4 grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.

  7. Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization.

    Science.gov (United States)

    Fei, Xiaoyao; Chen, Shaoyun; Liu, Dai; Huang, Chunjie; Zhang, Yongchun

    2016-09-01

    Two functionalized SBA-15 [amine-functionalized SBA-15 (AFS) and epoxy-functionalized SBA-15 (GFS)] with different types of functional groups were synthesized by a hydrothermal process and post functionalized with 3-aminopropyltriethoxysilane (APTES) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), respectively. They were used for the immobilization of carbonic anhydrase (CA). The physicochemical properties of the functionalized SBA-15 were characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption, (13)C, (29)Si solid-state nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). Before and after CA was immobilized on AFS and GFS, the effects of temperature and pH value on the enzyme activity, storage stability, and reusability were investigated using para-nitrophenyl acetate (p-NPA) assay. CA/GFS showed a better performance with respect to storage stability and reusability than CA/AFS. Moreover, the amount of CaCO3 precipitated over CA/AFS was less than that precipitated over CA/GFS, which was almost equal to that precipitated over the free CA. The results indicate that the epoxy group is a more suitable functional group for covalent bonding with CA than the amino group, and GFS is a promising support for CA immobilization. PMID:27215831

  8. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  9. Innovative molecular diagnosis of Trichinella species based on β-carbonic anhydrase genomic sequence.

    Science.gov (United States)

    Zolfaghari Emameh, Reza; Kuuslahti, Marianne; Näreaho, Anu; Sukura, Antti; Parkkila, Seppo

    2016-03-01

    Trichinellosis is a helminthic infection where different species of Trichinella nematodes are the causative agents. Several molecular assays have been designed to aid diagnostics of trichinellosis. These assays are mostly complex and expensive. The genomes of Trichinella species contain certain parasite-specific genes, which can be detected by polymerase chain reaction (PCR) methods. We selected β-carbonic anhydrase (β-CA) gene as a target, because it is present in many parasites genomes but absent in vertebrates. We developed a novel β-CA gene-based method for detection of Trichinella larvae in biological samples. We first identified a β-CA protein sequence from Trichinella spiralis by bioinformatic tools using β-CAs from Caenorhabditis elegans and Drosophila melanogaster. Thereafter, 16 sets of designed primers were tested to detect β-CA genomic sequences from three species of Trichinella, including T. spiralis, Trichinella pseudospiralis and Trichinella nativa. Among all 16 sets of designed primers, the primer set No. 2 efficiently amplified β-CA genomic sequences from T. spiralis, T. pseudospiralis and T. nativa without any false-positive amplicons from other parasite samples including Toxoplasma gondii, Toxocara cati and Parascaris equorum. This robust and straightforward method could be useful for meat inspection in slaughterhouses, quality control by food authorities and medical laboratories. PMID:26639312

  10. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    Science.gov (United States)

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  11. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.

    Science.gov (United States)

    Watson, Stuart K; Han, Zhenlin; Su, Wei Wen; Deshusses, Marc A; Kan, Eunsung

    2016-12-01

    The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.

  12. Sulfamate inhibitor S4 influences carbonic anhydrase IX ectodomain shedding in colorectal carcinoma cells.

    Science.gov (United States)

    Hektoen, Helga Helseth; Ree, Anne Hansen; Redalen, Kathrine Røe; Flatmark, Kjersti

    2016-10-01

    Carbonic anhydrase IX (CAIX) is a pivotal pH regulator under hypoxia, which by its tumor-specific expression represents an attractive target for cancer therapy. Here, we report on effects of the sulfamate CAIX inhibitor S4 (4-(3'-(3″,5″-dimethylphenyl)ureido)phenyl sulfamate) in colorectal carcinoma cell lines. S4 was administered under experimental hypoxia or normoxia to HT29, KM20L2 and HCT116 cells. Effects on survival, proliferation, pH, lactate extrusion and CAIX protein expression were evaluated. S4 treatment resulted in attenuated hypoxia-induced extracellular acidification and reduced clonogenic survival under hypoxia in HT29 cells. The pH effects were present only in a [Formula: see text]-free buffer system and were accompanied by decreased lactate extrusion. The main finding of this work was that S4 treatment caused alterations in CAIX ectodomain shedding. This merits further investigation to understand how sulfamates influence CAIX activity and how such drugs may be of use in cancer treatment. PMID:26244271

  13. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. PMID:25773015

  14. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; Fisher, Gillian M; Andrews, Katherine T; Poulsen, Sally-Ann; Capasso, Clemente; Supuran, Claudiu T

    2015-02-01

    The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors. PMID:25533402

  15. Carbonic anhydrase XII expression is associated with histologic grade of cervical cancer and superior radiotherapy outcome

    International Nuclear Information System (INIS)

    To investigate whether expression of carbonic anhydrase XII (CA12) is associated with histologic grade of the tumors and radiotherapy outcomes of the patients with invasive cervical cancer. CA12 expression was examined by immunohistochemical stains in cervical cancer tissues from 183 radiotherapy patients. Histological grading was classified as well (WD), moderately (MD) or poorly differentiated (PD). Oligonucleotide microarray experiment was performed using seven cervical cancer samples to examine differentially expressed genes between WD and PD cervical cancers. The association between CA12 and histological grade was analyzed by chi-square test. CA12 and histological grades were analyzed individually and as combined CA12 and histologic grade categories for effects on survival outcome. Immunohistochemical expression of CA12 was highly associated with the histologic grade of cervical cancer. Lack of CA12 expression was associated with PD histology, with an odds ratio of 3.9 (P = 0.01). Microarray analysis showed a fourfold reduction in CA12 gene expression in PD tumors. CA12 expression was marginally associated with superior disease-free survival. Application of the new combined categories resulted in further discrimination of the prognosis of patients with moderate and poorly differentiated tumor grade. Our study indicates that CA12 may be used as a novel prognostic marker in combination with histologic grade of the tumors

  16. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors. PMID:24375583

  17. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    Science.gov (United States)

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors.

  18. Evaluation of the oxidative stress modulation in Drosophila melanogaster strains deficient in endogenous antioxidants and with chronic exposure to casiopeina Cas II-gly and gamma radiation; Evaluacion de la modulacion del estres oxidante en cepas de Drosophila melanogaster deficientes en antioxidantes endogenos y con exposicion cronica a casiopeina CII-gly y radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez V, E. R.

    2013-07-01

    The casiopeinas are a family of coordination compounds with copper metallic center that have shown to have antineoplastic activity. The experimental evidences suggest that its action mechanism is through the generation of free radicals. The casiopeina (Cas II-gly) is believed to causes oxidative damage in the mitochondria, leading to the cellular death. The present study has the purpose to evaluate the antioxidant potential of the tetrapyrroles: cupro-sodica chlorophyllin (CSC), protoporphyrin-Ix (Pp-Ix) and the bilirubin (Bili) against the oxidant action of the Cas II-gly. The present study will also contribute in the characterization of the biological activity of the Cas II-gly. For this purpose is quantifies the effect of these compounds in the enzymes activity, superoxide dismutase (Sod) and catalase (Cat) in wild Drosophila melanogaster strains Canton-S and in the deficient in Sod and Cat. Two protocols were used, in the first male of 1-24 h of age were pre-treated with 0, 0.01, 0.1 and 1 m M of Cas II-gly and later on they were treated with radiation (15 Gy), and the second 69 m M of CSC, Pp-Ix or Bili, during 8 days and later they were treated with 0.1 m M of Cas II-gly during 24 h. The enzymatic activity was measured with the detection packages of enzymes Sod and Cat of Sigma. It was found that none of the three pigments increment the Sod activity but, if they diminished that of Cat (p≤0.007). The three concentrations of Cas II-gly did not increase the Sod activity significantly, only the concentration of 0.1 m M diminishes in 5.6 U the Cat activity (p <0.03) the same as the treatment with 15 Gy of gamma rays (8 U, p <0.004). The Cas II-gly combination 0.1 m M with the pigments does not modify the Sod and Cat activity. These results suggest that the proven pigments act as antioxidants, avoiding the induction of exogenous antioxidants caused by the gamma rays or the Cas II-gly. (Author)

  19. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants. A new approach to estimating in vivo carbonic anhydrase activity.

    Science.gov (United States)

    Holtum, J A; Summons, R; Roeske, C A; Comins, H N; O'Leary, M H

    1984-06-10

    Crassulacean acid metabolism (CAM) plants fix carbon dioxide at night by the carboxylation of phosphoenolpyruvate. If CO2 fixation is conducted with 13C18O2 , then in the absence of carbonic anhydrase, the malate formed by dark CO2 fixation should also contain high levels of carbon-13 and oxygen-18. Conversely, if carbonic anhydrase is present and highly active, oxygen exchange between CO2 and cellular H2O will occur more rapidly than carboxylation, and the [13C] malate formed will contain little or no oxygen-18 above the natural abundance level. The presence of oxygen-18 in these molecules can be detected either by nuclear magnetic resonance (using the oxygen-18 effect on the carbon-13 chemical shift of the carboxyl carbon) or by mass spectrometry (comparing the ions at three and five units above the molecular weight with that one unit above). Studies of phosphoenolpyruvate carboxylase in the presence and absence of carbonic anhydrase in vitro confirm the validity of the method. When CAM plants are studied by this method, we find that most species show incorporation of a significant amount of oxygen-18. Comparison of these results with results of isotope fractionation and gas exchange studies permits calculation of the in vivo activity of carbonic anhydrase toward HCO-3 compared with that of phosphoenolpyruvate carboxylase. The ratio (carbonic anhydrase activity/phosphoenolpyruvate carboxylase activity) is species dependent and varies from a low of about 7 for Ananas comosus to values near 20 for Hoya carnosa and Bryophyllum pinnatum , 40 for Kalancho ë daigremontiana , and 100 or greater for Bryophyllum tubiflorum , Kalancho ë serrata, and Kalancho ë tomentosa. Carbonic anhydrase activity increases relative to phosphoenolpyruvate carboxylase activity at higher temperature. PMID:6427227

  20. Iron deficiency anaemia.

    Science.gov (United States)

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  1. Antepartum ornithine transcarbamylase deficiency.

    Science.gov (United States)

    Nakajima, Hitoshi; Sasaki, Yosuke; Maeda, Tadashi; Takeda, Masako; Hara, Noriko; Nakanishi, Kazushige; Urita, Yoshihisa; Hattori, Risa; Miura, Ken; Taniguchi, Tomoko

    2014-01-01

    Ornithine transcarbamylase deficiency (OTCD) is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left. PMID:25759629

  2. Membrane Specific Carbonic Anhydrase (CA-IV) Expression in Bovine Lung: The Effects of Alcoholic and Non-Alcoholic Drinks

    OpenAIRE

    DEMİR, Nazan; NADAROĞLU, Hayrunnisa

    2002-01-01

    Carbonic anhydrase (CA) (carbonate hydrolyase: E. C. 4.2.1.1) from bovine lung was purified by a new method and characterized. The purification level was 4306-fold. The optimum temperature for maximum enzyme activity was 37.5°C. The optimum pH was 7.4, varying between 3.5 and 10.0. SDS-polyacryamide gel electrophoresis (3-10% discontinuous SDS-PAGE) showed two distinct bands for CA-IV. The molecular weights of the enzymes were found to be approximately 54.000 and 29.000, respectively. ...

  3. Immunocytochemical localization of carbonic anhydrase in the pseudobranch tissue of the rainbow trout Oncorhynchus mykiss

    Institute of Scientific and Technical Information of China (English)

    S. M. RAHIM; A. G. MAZLAN; K. D. SIMON; J. P. DELAUNOY; P. LAURENT

    2014-01-01

    本文题目:虹鳟假鳃组织中的碳酸酐酶免疫细胞化学定位Immunocytochemical localization of carbonic anhydrase in the pseudobranch tissue of the rainbow trout Oncorhynchus mykiss研究目的:假腮的功能早已引起科学家兴趣,但还有待阐明。本文通过研究硬骨鱼类品种虹鳟鱼(Oncorhynchus mykiss)的假腮碳酸酐酶的免疫定位,来探讨假腮碳酸酐酶的生理功能。研究方法:免疫组织化学染色技术。重要结论:免疫组化结果显示碳酸酐酶分布在假腮细胞中,更精确地说是在其细胞顶端分布。细胞基底端、管状系统、毛细血管和柱细胞均无免疫染色。免疫细胞化学定位进一步验证了这些结果,并显示一部分是细胞质碳酸酐酶,其余的与细胞膜结构连接。此外,腔隙层未显示出免疫过氧化物酶的活性。本研究揭示了假腮碳酸酐酶的功能与细胞外介质有关,碳酸酐酶能干预传入神经纤维刺激机制。%Pseudobranch function has long interested scientists, but its role has yet to be elucidated. Several studies have suggested that pseudobranchs serve respiratory, osmoregulatory, and sensory functions. This work investigated the immunolocalization of pseudobranch carbonic anhydrase (CA) in the teleost fish species rainbow trout (Oncor-hynchus mykiss) to clarify its physiological function. CA was purified from rainbow trout gil s O. mykiss and specific antibodies were raised. Immunoblotting between tissue homogenates of pseudobranch and gil CA antibodies showed specific immunostaining with only one band corresponding to CA in the pseudobranch homogenate. Results of im-munohistochemical technique revealed that CA was distributed within pseudobranch cells and more precisely in the apical parts (anti-vascular) of cells. The basal (vascular) parts of cells, tubular system, blood capillaries, and pillar cells were not immunostained. Immunocytochemistry confirmed these results and

  4. Anion inhibition profiles of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-15

    We have cloned, purified and investigated the catalytic activity and anion inhibition profiles of a full catalytic domain (358 amino acid residues) carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, PfCAdom, an enzyme belonging to the η-CA class and identified in the genome of the malaria-producing protozoa. A truncated such enzyme, PfCA1, containing 235 residues was investigated earlier for its catalytic and inhibition profiles. The two enzymes were efficient catalysts for CO2 hydration: PfCAdom showed a kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), whereas PfCA showed a lower activity compared to PfCAdom, with a kcat of 1.4×10(5)s(-1) and kcat/Km of 5.4×10(6)M(-1)×s(-1). PfCAdom was generally less inhibited by most anions and small molecules compared to PfCA1. The best PfCAdom inhibitors were sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 9-68μM, followed by bicarbonate, hydrogensulfide, stannate and N,N-diethyldithiocarbamate, which were submillimolar inhibitors, with KIs in the range of 0.53-0.97mM. Malaria parasites CA inhibition was proposed as a new strategy to develop antimalarial drugs, with a novel mechanism of action. PMID:27480028

  5. Expression patterns and subcellular localization of carbonic anhydrases are developmentally regulated during tooth formation.

    Directory of Open Access Journals (Sweden)

    Claes-Göran Reibring

    Full Text Available Carbonic anhydrases (CAs play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA but also in the papillary layer, dental papilla mesenchyme, odontoblasts and the epithelial rests of Malassez. We uncovered that the latter form lace-like networks around incisors; hitherto these have been known to occur only in molars. All CAs studied were produced by MA, however CAIV, CAIX and CARPXI proteins were distinctly enriched in the ruffled membrane of the ruffled MA but exhibited a homogeneous distribution in smooth-ended MA. While CAIV, CAVI/Car6, CAIX, CARPXI and CAXIV were produced by all odontoblasts, CAIII distribution displayed a striking asymmetry, in that it was virtually confined to odontoblasts in the root of molars and root analog of incisors. Remarkably, from initiation until near completion of odontogenesis and in several other tissues, CAXIII localized mainly in intracellular punctae/vesicles that we show to overlap with LAMP-1- and LAMP-2-positive vesicles, suggesting that CAXIII localizes within lysosomes. We showed that expression of CAs in developing teeth is not confined to cells involved in biomineralization, pointing at their participation in other biological events. Finally, we uncovered novel sites of CA expression, including the developing brain and eye, the olfactory epithelium, melanoblasts, tongue, notochord, nucleus pulposus and sebaceous glands. Our study provides important information for

  6. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos.

    Science.gov (United States)

    Karakostis, Konstantinos; Costa, Caterina; Zito, Francesca; Brümmer, Franz; Matranga, Valeria

    2016-06-01

    Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus. PMID:27230618

  7. Iodine Deficiency and Human Development

    Directory of Open Access Journals (Sweden)

    M A Sviridonova

    2014-03-01

    Full Text Available Iodine is а vital microelements that are essential for the normal human development and functions. Iodine deficiency is a global problem: about 2 billion individuals worldwide suffer from a lack of iodine. Despite goiter is the most visually noticeable manifestation of iodine deficiency, the most significant consequence of the iodine deficiency is impaired neurodevelopment, particularly early in life. Moreover, moderate to severe iodine deficiency increases the risk of spontaneous abortion, low birth weight and infant mortality. Babies in utero affected by iodine deficiency are at increased risk of mental developmental disorders, cretinism is their extreme degree. In addition, moderate to severe iodine deficiency in childhood negatively affects somatic growth. Iodine deficiency compensation improves cognitive and motor function in children. Iodine prophylaxis of deficient populations is an extremely effective approach to reduce the substantial adverse effects of iodine deficiency throughout the life cycle.

  8. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    biennially to exchange views and research findings. The fourth biennial meeting was held in Copenhagen, Denmark, on 2-3 June 2005. This review covers the wide range of AAT deficiency-related topics that were addressed encompassing advances in genetic characterization, risk factor identification, clinical...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... the body. Iron-deficiency anemia usually develops over time if your body doesn't have enough iron ... Institutes of Health—shows how Susan, a full-time worker and student, has coped with having iron- ...

  10. Iodine-deficiency disorders

    NARCIS (Netherlands)

    Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S.

    2008-01-01

    billion individuals worldwide have insufficient iodine intake, with those in south Asia and sub-Saharan Africa particularly affected. Iodine deficiency has many adverse effects on growth and development. These effects are due to inadequate production of thyroid hormone and are termed iodine-deficien

  11. Mortality and GH deficiency

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Gravholt, Claus Højbjerg; Laursen, Torben;

    2007-01-01

    OBJECTIVE: To estimate the mortality in Denmark in patients suffering from GH deficiency (GHD). DESIGN: Mortality was analyzed in 1794 GHD patients and 8014 controls matched on age and gender. All records in GHD patients were studied and additional morbidity noted. Patients were divided into chil...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body. Low iron levels usually are due to blood loss, poor diet, or an inability to absorb enough iron from food. Overview Iron-deficiency anemia is a common type of anemia . The term "anemia" usually refers to ...

  13. Mutation of Gly195 of the ChlH Subunit of Mg-chelatase Reduces Chlorophyll and Further Disrupts PS II Assembly in a Ycf48-Deficient Strain of Synechocystis sp. PCC 6803

    Science.gov (United States)

    Crawford, Tim S.; Eaton-Rye, Julian J.; Summerfield, Tina C.

    2016-01-01

    Biogenesis of the photosystems in oxygenic phototrophs requires co-translational insertion of chlorophyll a. The first committed step of chlorophyll a biosynthesis is the insertion of a Mg2+ ion into the tetrapyrrole intermediate protoporphyrin IX, catalyzed by Mg-chelatase. We have identified a Synechocystis sp. PCC 6803 strain with a spontaneous mutation in chlH that results in a Gly195 to Glu substitution in a conserved region of the catalytic subunit of Mg-chelatase. Mutant strains containing the ChlH Gly195 to Glu mutation were generated using a two-step protocol that introduced the chlH gene into a putative neutral site in the chromosome prior to deletion of the native gene. The Gly195 to Glu mutation resulted in strains with decreased chlorophyll a. Deletion of the PS II assembly factor Ycf48 in a strain carrying the ChlH Gly195 to Glu mutation did not grow photoautotrophically. In addition, the ChlH-G195E:ΔYcf48 strain showed impaired PS II activity and decreased assembly of PS II centers in comparison to a ΔYcf48 strain. We suggest decreased chlorophyll in the ChlH-G195E mutant provides a background to screen for the role of assembly factors that are not essential under optimal growth conditions. PMID:27489555

  14. Evaluation of impacted Brazilian estuaries using the native oyster Crassostrea rhizophorae: Branchial carbonic anhydrase as a biomarker.

    Science.gov (United States)

    Azevedo-Linhares, Maristela; Freire, Carolina A

    2015-12-01

    In this study, we investigated the use of branchial carbonic anhydrase activity in a sessile filter feeding species, the oyster Crassostrea rhizophorae, as a biomarker. The oysters were collected in three human impacted Brazilian estuaries, following a crescent latitudinal gradient: in Pernambuco state (Itamaracá), in Espírito Santo state (Piraquê), and in Paraná state (Paranaguá), in August/2003 (Winter in the southern hemisphere) and February/2004 (Summer). Three sites were chosen in each estuary for oyster sampling: Reference (R), Contaminated 1 (C1, close to industrial/harbor contamination), and Contaminated 2 (C2, near to sewage discharges). Comparing to values in oysters sampled in reference sites, there was apparent inhibition in carbonic anhydrase activity (CAA) in gills of oysters from C1 of Itamaracá and from C2 of Piraquê, both cases in Summer. On the other hand, increased CAA was noted in C2 oysters of Itamaracá in winter, and of Paranaguá, in both seasons. Branchial CAA in C. rhizophorae was thus very responsive to coastal contamination. Data are consistent with its usefulness as a supporting biomarker for inexpensive and rapid analysis in the assessment of estuaries using a sessile osmoconformer species, but preferably allied to other biomarkers and with knowledge on the suite of contaminants present.

  15. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect

    OpenAIRE

    Draghici, Bogdan; Vullo, Daniela; Akocak, Suleyman; Walker, Ellen A; Supuran, Claudiu T.; Ilies, Marc A.

    2014-01-01

    A series of ethylene bis-imidazoles was synthesized via a novel microwave-mediated synthesis. Biological testing on eight isozymes of carbonic anhydrase (CA) present in the human brain revealed compounds with nanomolar potency against CA VA and CA VII, also displaying excellent selectivity against other CA isozymes present in this organ.

  16. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  17. Toward standardization of carbohydrate-deficient transferrin (CDT) measurements: II. Performance of a laboratory network running the HPLC candidate reference measurement procedure and evaluation of a candidate reference material.

    Science.gov (United States)

    Helander, Anders; Wielders, Jos P M; Jeppsson, Jan-Olof; Weykamp, Cas; Siebelder, Carla; Anton, Raymond F; Schellenberg, François; Whitfield, John B

    2010-11-01

    Carbohydrate-deficient transferrin (CDT) is a descriptive term used for a temporary change in the transferrin glycosylation profile caused by alcohol, and used as a biomarker of chronic high alcohol consumption. The use of an array of methods for measurement of CDT in various absolute or relative amounts, and sometimes covering different transferrin glycoforms, has complicated the comparability of results and caused confusion among medical staff. This situation prompted initiation of an IFCC Working Group on CDT standardization. This second publication of the WG-CDT covers the establishment of a network of reference laboratories running a high-performance liquid chromatography (HPLC) candidate reference measurement procedure, and evaluation of candidate secondary reference materials. The network laboratories demonstrated good and reproducible performance and thus can be used to assign target values for calibrators and controls. A candidate secondary reference material based on native human serum lyophilized with a cryo-/lyoprotectant to prevent protein denaturation was found to be commutable and stable during storage. A proposed strategy for calibration of different CDT methods is also presented. In an external quality assurance study involving 66 laboratories and covering the current routine CDT assays (HPLC, capillary electrophoresis and immunoassay), recalculation of observed results based on the nominal values for the candidate calibrator reduced the overall coefficient of variation from 18.9% to 5.5%. The logistics for distribution of reference materials and review of results were found to be functional, indicating that a full reference system for CDT may soon be available.

  18. Transient partial growth hormone deficiency due to zinc deficiency.

    Science.gov (United States)

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  19. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  20. Proximal Focal Femoral Deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Kalia, Vibhuti

    2008-01-01

    Full Text Available Proximal focal femoral deficiency (PFFD is a developmental disorder of the proximal segment of thefemur and of acetabulum resulting in shortening of the affected limb and impairment of the function. It isa spectrum of congenital osseous anomalies characterized by a deficiency in the structure of the proximalfemur. The diagnosis is often made by radiological evaluation which includes identification and descriptionof PFFD and evaluation of associated limb anomalies by plain radiographs. Contrast arthrography orMagnetic Resonance Imaging is indicated when radiological features are questionable and to disclose thepresence and location of the femoral head and any cartilagenous anlage. The disorder is more commonlyunilateral and is apparent at birth. However, bilateral involvement is rarely seen. Therapy of the disorder isdirected towards satisfactory ambulation and specific treatment depending on the severity of dysplasia.

  1. Expression of transmembrane carbonic anhydrases, CAIX and CAXII, in human development

    Directory of Open Access Journals (Sweden)

    Lerman Michael I

    2009-03-01

    Full Text Available Abstract Background Transmembrane CAIX and CAXII are members of the alpha carbonic anhydrase (CA family. They play a crucial role in differentiation, proliferation, and pH regulation. Expression of CAIX and CAXII proteins in tumor tissues is primarily induced by hypoxia and this is particularly true for CAIX, which is regulated by the transcription factor, hypoxia inducible factor-1 (HIF-1. Their distributions in normal adult human tissues are restricted to highly specialized cells that are not always hypoxic. The human fetus exists in a relatively hypoxic environment. We examined expression of CAIX, CAXII and HIF-1α in the developing human fetus and postnatal tissues to determine whether expression of CAIX and CAXII is exclusively regulated by HIF-1. Results The co-localization of CAIX and HIF-1α was limited to certain cell types in embryonic and early fetal tissues. Those cells comprised the primitive mesenchyma or involved chondrogenesis and skin development. Transient CAIX expression was limited to immature tissues of mesodermal origin and the skin and ependymal cells. The only tissues that persistently expressed CAIX protein were coelomic epithelium (mesothelium and its remnants, the epithelium of the stomach and biliary tree, glands and crypt cells of duodenum and small intestine, and the cells located at those sites previously identified as harboring adult stem cells in, for example, the skin and large intestine. In many instances co-localization of CAIX and HIF-1α was not evident. CAXII expression is restricted to cells involved in secretion and water absorption such as parietal cells of the stomach, acinar cells of the salivary glands and pancreas, epithelium of the large intestine, and renal tubules. Co-localization of CAXII with CAIX or HIF-1α was not observed. Conclusion The study has showed that: 1 HIF-1α and CAIX expression co- localized in many, but not all, of the embryonic and early fetal tissues; 2 There is no evidence of

  2. Linking Carbonic Anhydrase Abundance and Diversity in Soils to Ecological Function

    Science.gov (United States)

    Pang, E.; Meredith, L. K.; Welander, P. V.

    2015-12-01

    Carbonic anhydrase (CA) is an ancient enzyme widespread among bacteria, archaea, and eukarya that catalyzes the following reaction: CO2 + H2O ⇌ HCO3- + H+. Its functions are critical for key cellular processes such as concentrating CO2 for autotrophic growth, pH regulation, and pathogen survival in hosts. Currently, there are six known CA classes (α, β, γ, δ, η, ζ) arising from several distinct evolutionary lineages. CA are widespread in sequenced genomes, with many organisms containing multiple classes of CA or multiple CA of the same class. Soils host rich microbial communities with diverse and important ecological functions, but the diversity and abundance of CA in soils has not been explored. CA appears to play an important, but poorly understood, role in some biogeochemical cycles such as those of CO2 and its oxygen isotope composition and also carbonyl sulfide (COS), which are potential tracers in predictive carbon cycle models. Recognizing the prevalence and functional significance of CA in soils, we used a combined bioinformatics and molecular biology approach to address fundamental questions regarding the abundance, diversity, and function of CA in soils. To characterize the abundance and diversity of the different CA classes in soils, we analyzed existing soil metagenomic and metatranscriptomic data from the DOE Joint Genome Institute databases. Out of the six classes of CA, we only found the α, β, and γ classes to be present in soils, with the β class being the most abundant. We also looked at genomes of sequenced soil microorganisms to learn what combination of CA classes they contain, from which we can begin to predict the physiological role of CA. To characterize the functional roles of the different CA classes in soils, we collected soil samples from a variety of biomes with diverse chemical and physical properties and quantified the rate of two CA-mediated processes: soil uptake of COS and acceleration of the oxygen isotope exchange

  3. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes.

    Directory of Open Access Journals (Sweden)

    Toshifumi Maruyama

    Full Text Available Carbonic anhydrase (CA IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2. While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α, both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.

  4. Micronutrient deficiency in children.

    Science.gov (United States)

    Bhan, M K; Sommerfelt, H; Strand, T

    2001-05-01

    Malnutrition increases morbidity and mortality and affects physical growth and development, some of these effects resulting from specific micronutrient deficiencies. While public health efforts must be targeted to improve dietary intakes in children through breast feeding and appropriate complementary feeding, there is a need for additional measures to increase the intake of certain micronutrients. Food-based approaches are regarded as the long-term strategy for improving nutrition, but for certain micronutrients, supplementation, be it to the general population or to high risk groups or as an adjunct to treatment must also be considered. Our understanding of the prevalence and consequences of iron, vitamin A and iodine deficiency in children and pregnant women has advanced considerably while there is still a need to generate more knowledge pertaining to many other micronutrients, including zinc, selenium and many of the B-vitamins. For iron and vitamin A, the challenge is to improve the delivery to target populations. For disease prevention and growth promotion, the need to deliver safe but effective amounts of micronutrients such as zinc to children and women of fertile age can be determined only after data on deficiency prevalence becomes available and the studies on mortality reduction following supplementation are completed. Individual or multiple micronutrients must be used as an adjunct to treatment of common infectious diseases and malnutrition only if the gains are substantial and the safety window sufficiently wide. The available data for zinc are promising with regard to the prevention of diarrhea and pneumonia. It should be emphasized that there must be no displacement of important treatment such as ORS in acute diarrhea by adjunct therapy such as zinc. Credible policy making requires description of not only the clinical effects but also the underlying biological mechanisms. As findings of experimental studies are not always feasible to extrapolate to

  5. Iron-Deficiency Anemia (For Parents)

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  6. Osteoarthropathy in mucopolysaccharidosis type II

    OpenAIRE

    2013-01-01

    Introduction Mucopolysaccharidosis type II (MPS type II, Hunter syndrome) is a rare (~ 1/1500.000), X-linked inherited disorder (affects boys) due to deficiency of the lysosomal enzyme iduronate sulfatase (Xq.28). The complex clinical picture includes osteoarthropathy with a tendency to flexion stiffness and disability. In our country, the specific diagnosis and enzyme replacement therapy (ERT), are recently available in the Center for Genetic Pathology Cluj. Objectives Assessment of clinical...

  7. How prevalent is vitamin B(12) deficiency among vegetarians?

    Science.gov (United States)

    Pawlak, Roman; Parrott, Scott James; Raj, Sudha; Cullum-Dugan, Diana; Lucus, Debbie

    2013-02-01

    Vegetarians are at risk for vitamin B(12) (B12) deficiency due to suboptimal intake. The goal of the present literature review was to assess the rate of B12 depletion and deficiency among vegetarians and vegans. Using a PubMed search to identify relevant publications, 18 articles were found that reported B12 deficiency rates from studies that identified deficiency by measuring methylmalonic acid, holo-transcobalamin II, or both. The deficiency rates reported for specific populations were as follows: 62% among pregnant women, between 25% and almost 86% among children, 21-41% among adolescents, and 11-90% among the elderly. Higher rates of deficiency were reported among vegans compared with vegetarians and among individuals who had adhered to a vegetarian diet since birth compared with those who had adopted such a diet later in life. The main finding of this review is that vegetarians develop B12 depletion or deficiency regardless of demographic characteristics, place of residency, age, or type of vegetarian diet. Vegetarians should thus take preventive measures to ensure adequate intake of this vitamin, including regular consumption of supplements containing B12.

  8. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase.

    Science.gov (United States)

    Guo, C; Gynn, M; Chang, T M S

    2015-06-01

    We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.

  9. Treatment of carnitine deficiency.

    Science.gov (United States)

    Winter, S C

    2003-01-01

    Carnitine deficiency is a secondary complication of many inborn errors of metabolism. Pharmacological treatment with carnitine not only corrects the deficiency, it facilitates removal of accumulating toxic acyl intermediates and the generation of mitochondrial free coenzyme A (CoA). The United States Food and Drug Administration (US FDA) approved the use of carnitine for the treatment of inborn errors of metabolism in 1992. This approval was based on retrospective chart analysis of 90 patients, with 18 in the untreated cohort and 72 in the treated cohort. Efficacy was evaluated on the basis of clinical and biochemical findings. Compelling data included increased excretion of disease-specific acylcarnitine derivatives in a dose-response relationship, decreased levels of metabolites in the blood, and improved clinical status with decreased hospitalization frequency, improved growth and significantly lower mortality rates as compared to historical controls. Complications of carnitine treatment were few, with gastrointestinal disturbances and odour being the most frequent. No laboratory or clinical safety issues were identified. Intravenous carnitine preparations were also approved for treatment of secondary carnitine deficiency. Since only 25% of enteral carnitine is absorbed and gastrointestinal tolerance of high doses is poor, parenteral carnitine treatment is an appealing alternative therapeutic approach. In 7 patients treated long term with high-dose weekly to daily venous boluses of parenteral carnitine through a subcutaneous venous port, benefits included decreased frequency of decompensations, improved growth, improved muscle strength and decreased reliance on medical foods with liberalization of protein intake. Port infections were the most troubling complication. Theoretical concerns continue to be voiced that carnitine might result in fatal arrhythmias in patients with long-chain fat metabolism defects. No published clinical studies substantiate these

  10. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    Science.gov (United States)

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  11. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.

    Science.gov (United States)

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T; Peyron, Jean-François; Imbert, Véronique

    2013-06-01

    The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis. The same results were observed with the SupT1 human T cell lymphoma line. In addition we observed an upregulation of CAXII in human T-ALL samples supporting the case that CAXII may represent a new therapeutic target for T-ALL/LL. PMID:23348702

  12. Transcriptome analysis and characterisation of gill-expressed carbonic anhydrase and other key osmoregulatory genes in freshwater crayfish Cherax quadricarinatus

    Directory of Open Access Journals (Sweden)

    Muhammad Yousuf Ali

    2015-12-01

    Full Text Available The pH and salinity balance mechanisms of crayfish are controlled by a set of transport-related genes. We identified a set of the genes from the gill transcriptome from a freshwater crayfish Cherax quadricarinatus using the Illumina NGS-sequencing technology. We identified and characterized carbonic anhydrase (CA genes and some other key genes involved in systematic acid-base balance and osmotic/ionic regulation. We also examined expression patterns of some of these genes across different sublethal pH levels [1]. A total of 72,382,710 paired-end Illumina reads were assembled into 36,128 contigs with an average length of 800 bp. About 37% of the contigs received significant BLAST hits and 22% were assigned gene ontology terms. These data will assist in further physiological-genomic studies in crayfish.

  13. DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Isik, Semra; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Scozzafava, Andrea; Supuran, Claudiu T; Capasso, Clemente

    2012-12-13

    We have cloned, purified, and characterized an α-carbonic anhydrase (CA, EC 4.2.1.1) from the human pathogenic bacterium Vibrio cholerae, VchCA. The new enzyme has significant catalytic activity, and an inhibition study with sulfonamides and sulfamates led to the detection of a large number of low nanomolar inhibitors, among which are methazolamide, acetazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, and indisulam (KI values in the range 0.69-8.1 nM). As bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit the in vivo virulence, we propose that VchCA may be a target for antibiotic development, exploiting a mechanism of action rarely considered until now. PMID:23181552

  14. The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Scozzafava, Andrea; Carginale, Vincenzo; Rossi, Mosè; Supuran, Claudiu T; Capasso, Clemente

    2013-08-01

    The α-carbonic anhydrase (CA, EC 4.2.1.1) from the newly discovered extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) is the most effective CA known to date. Here we investigated the inhibition profile of this enzyme with a series of aromatic and heterocyclic sulfonamides, and one sulfamate. Many clinically used sulfonamides, such as acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, topiramate, celecoxib and sulpiride were low nanomolar/subnanomolar SazCA inhibitors (KIs in the range of 0.9-10.8 nM) whereas simple aromatic derivatives were less effective as SazCA inhibitors. The inhibition profile of SazCA is slightly different from that of the related enzyme from S. yellostonense (SspCA), investigated earlier by our groups. PMID:23777827

  15. Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis

    Directory of Open Access Journals (Sweden)

    Jérôme eDoyen

    2013-01-01

    Full Text Available The relationship between acidosis within the tumor microenvironment and radioresistance of hypoxic tumor cells remains unclear. Previously we reported that hypoxia-induced carbonic anhydrases CAIX and CAXII constitute a robust pHi-regulating system that confers a survival advantage on hypoxic human colon carcinoma LS174Tr cells in acidic microenvironments. Here we investigate the role of acidosis, CAIX and CAXII knock-down in combination with ionizing radiation. Fibroblasts cells (-/+ CAIX and LS174Tr cells (inducible knock-down for ca9/ca12 were analyzed for cell cycle phase distribution and survival after irradiation in extracellular pHo manipulations and hypoxia (1% O2 exposure. Radiotherapy was used to target ca9/ca12-silenced LS174Tr tumors grown in nude mice. We found that diminishing the pHi-regulating capacity of fibroblasts through inhibition of NHE-1 sensitize cells to radiation-induced cell death. Secondly, the pHi-regulating function of CAIX plays a key protective role in irradiated fibroblasts in an acidic environment as accompanied by a reduced number of cells in the radiosensitive phases of the cell cycle. Thirdly, we demonstrate that irradiation of LS174Tr spheroids, silenced for either ca9 or both ca9/ca12, showed a respective 50% and 75% increase in cell death as a result of a decrease in cell number in the radioresistant S phase and a disruption of CA-mediated pHi regulation. Finally, LS174Tr tumor progression was strongly decreased when ca9/ca12 silencing was combined with irradiation in vivo. These findings highlight the combinatory use of radiotherapy with targeting of the pHi-regulating carbonic anhydrases as an anti-cancer strategy.

  16. Phosphorus Deficiency in Ducklins

    Institute of Scientific and Technical Information of China (English)

    CuiHengmin; LuoLingping

    1995-01-01

    20 one-day-old Tianfu ducklings were fed on a natural diet deficient in phosphorus(Ca 0.80%,P 0.366%)for three weeks and examined for signs and lesions.Signs began to appear at the age of one week,and became serous at two weeks.13 ducklings died during the experiment.Morbidity was 100% and mortality was 65%.The affected ducklings mainly showed leg weakness,severe lamencess,deprssion,lack of appetite and stunted growth,The serum alkaline phosphatase activities increased markedly.The serum phosphorus concentration,tibial ash,ash calcium and phosphorus content decreased obviously.At necropsy,maxillae and ribe were soft,and the latter was crooked.Long ones were soft and broke easily.The hypertrophic zone of the growth-plate in the epiphysis of long ones was lengthened and osteoid tissue increased in the metaphyseal spongiosa histopathologically.The above mentioned symptoms and lesions could be prevented by adding phosphorus to the natural deficient diet(up to 0.65%),The relationship between lesions and signs,pathomorphological characterisation and pathogensis were also discussed in this paper.

  17. Glucose-6-phosphatase deficiency

    Directory of Open Access Journals (Sweden)

    Labrune Philippe

    2011-05-01

    Full Text Available Abstract Glucose-6-phosphatase deficiency (G6P deficiency, or glycogen storage disease type I (GSDI, is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea. Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty, generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency. GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib. Mutations in the genes G6PC (17q21 and SLC37A4 (11q23 respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most

  18. [Iron deficiency and digestive disorders].

    Science.gov (United States)

    Cozon, G J N

    2014-11-01

    Iron deficiency anemia still remains problematic worldwide. Iron deficiency without anemia is often undiagnosed. We reviewed, in this study, symptoms and syndromes associated with iron deficiency with or without anemia: fatigue, cognitive functions, restless legs syndrome, hair loss, and chronic heart failure. Iron is absorbed through the digestive tract. Hepcidin and ferroportin are the main proteins of iron regulation. Pathogenic micro-organisms or intestinal dysbiosis are suspected to influence iron absorption.

  19. Iatrogenic limbal stem cell deficiency.

    OpenAIRE

    Holland, E J; Schwartz, G S

    1997-01-01

    PURPOSE: To describe a group of patients with limbal stem cell (SC) deficiency without prior diagnosis of a specific disease entity known to be causative of SC deficiency. METHODS: We performed a retrospective review of the records of all patients with ocular surface disease presenting to the University of Minnesota between 1987 and 1996. Patients were categorized according to etiology of limbal deficiency. Patients who did not have a specific diagnosis previously described as being causative...

  20. Biogenesis of lysosomal enzymes in the alpha-glucosidase II-deficient modA mutant of Dictyostelium discoideum: retention of alpha-1,3-linked glucose on N-linked oligosaccharides delays intracellular transport but does not alter sorting of alpha-mannosidase or beta-glucosidase.

    Science.gov (United States)

    Ebert, D L; Bush, J M; Dimond, R L; Cardelli, J A

    1989-09-01

    The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.

  1. Zinc deficiency and eating disorders.

    Science.gov (United States)

    Humphries, L; Vivian, B; Stuart, M; McClain, C J

    1989-12-01

    Decreased food intake, a cyclic pattern of eating, and weight loss are major manifestations of zinc deficiency. In this study, zinc status was evaluated in 62 patients with bulimia and 24 patients with anorexia nervosa. Forty percent of patients with bulimia and 54% of those with anorexia nervosa had biochemical evidence of zinc deficiency. The authors suggest that for a variety of reasons, such as lower dietary intake of zinc, impaired zinc absorption, vomiting, diarrhea, and binging on low-zinc foods, patients with eating disorders may develop zinc deficiency. This acquired zinc deficiency could then add to the chronicity of altered eating behavior in those patients. PMID:2600063

  2. Prevalence and correlates of vitamin K deficiency in children with inflammatory bowel disease.

    Science.gov (United States)

    Nowak, Jan K; Grzybowska-Chlebowczyk, Urszula; Landowski, Piotr; Szaflarska-Poplawska, Anna; Klincewicz, Beata; Adamczak, Daria; Banasiewicz, Tomasz; Plawski, Andrzej; Walkowiak, Jaroslaw

    2014-01-01

    Although vitamin K deficiency has been implicated in adult inflammatory bowel disease (IBD), its prevalence in pediatric IBD remains unknown. We carried out a cross-sectional study in 63 children with Crohn's disease (CD) and 48 with ulcerative colitis (UC) to assess the prevalence of vitamin K deficiency and to search for potential correlation between vitamin K status and pediatric IBD activity. Vitamin K status was assessed using protein induced by vitamin K absence-II (PIVKA-II; ELISA). Prevalence of vitamin K deficiency was 54.0% in CD and 43.7% in UC. Vitamin K deficiency was more common in patients with higher CD activity, in CD patients with higher mass Z-scores, and less common among children with CD treated with infliximab. Relation of vitamin K deficiency to pediatric IBD clinical course and treatment demand further research. PMID:24759680

  3. Situação nutricional e alimentar de pré-escolares no semi-árido da Bahia (Brasil: II ­ Hipovitaminose A Nutritional status of pre-school children of the semi-arid region of Bahia (Brazil: II ­ Vitamin A deficiency

    Directory of Open Access Journals (Sweden)

    Leonor M.P. Santos

    1996-02-01

    Full Text Available Foram estudados 754 pré-escolares de áreas urbanas de sete municípios do semi-árido do Estado Bahia, Brasil, com o objetivo de determinar a prevalência da hipovitaminose A e sua associação com a idade, sexo, renda em salário-mínimo, escolaridade materna e adequação dietética em vitamina A. Na amostra estudada não se registrou nenhum caso de sinais e/ou sintomas de xeroftalmia durante o exame clínico-oftalmológico. Em 563 crianças foi possível a coleta de sangue para determinação de retinol sérico; encontrou-se um valor médio de 20,3 µg/dl (DP=10,8µg/dl e uma prevalência de 15,3% de níveis deficientes (abaixo de 10,0 µg/dl. Em todos os sete municípios estudados a prevalência de retinol sérico deficiente foi superior a 5,0% que é nível crítico proposto pela OMS para considerar a hipovitaminose A como problema de saúde pública. A distribuição de retinol sérico encontrada não teve relação com o sexo das crianças, mas com a idade, diminuindo a prevalência de níveis deficientes e baixos na medida em que a idade aumenta. Não se encontrou associação entre renda familiar per capita ou escolaridade materna e a prevalência de níveis de retinol deficiente. Os resultados de consumo alimentar provenientes do inquérito recordatório de 24h mostraram que apenas 8% das crianças consumiram quantidades adequadas de retinol ou de seus precursores; 66% ingeriam abaixo da metade e quase 35% delas não chegaram a ingerir nem um quarto da quantidade recomendada para sua faixa etária. A carência de vitamina A deve ser considerada como problema de saúde pública severo, tanto pela alta prevalência de níveis deficientes de retinol em todos os municípios como também pela dimensão da inadequação dietética.A survey of 754 preschool children was undertaken in the urban areas of seven small towns of the semi-arid region of Bahia, Northeastern Brazil, to determine the prevalence of vitamin A deficiency, as well as its

  4. Research progress of carbon dioxide capture by using carbonic anhydrase%碳酸酐酶用于二氧化碳捕集的研究进展

    Institute of Scientific and Technical Information of China (English)

    王静

    2012-01-01

    碳酸酐酶(CA)可以加速捕集化石燃料燃烧产生的二氧化碳,从而降低CO2的排放量.主要介绍了CA的来源、活性、稳定性及作用.分析了使用新型生物方法对二氧化碳进行捕集和储存的优缺点,并对下一步的工作进行了展望.%It has been demonstrated that carbonic anhydrase has the potential of accelerating of carbon dioxide capture from fossil fuel and reduce the discharge of carbon dioxide. The source, activity, stability and functions of carbonic anhydrase are mainly presented. In addition, the advantages and disadvantages of using new biological for carbon dioxide capture and storage are discussed and analyzed, and the further study is prospected.

  5. Influence of obesity and androgen deficiency on prostatic blood circulation

    Directory of Open Access Journals (Sweden)

    I. A. Tyuzikov

    2012-01-01

    Full Text Available In Study at 120 Diabetes Mellitus II type men the high frequency Obesity (71,7% and Androgen Deficiency (52,8—64,5% of the patients depending on a degree of the indemnification and them pathogenic authentic communications were shown. The blood level of total testosterone was represented by the critical factor of Prostatic arterial Blood Circulation. Obesity and Androgen Deficiency are seem as independent risk factors to development of ischemic prostatopathy, such as Prostatic blood circulation Disorders can develop earlier than other variants of the diabetic microangiophaty.

  6. Iron deficiency and iron deficiency anemia in women.

    Science.gov (United States)

    Coad, Jane; Pedley, Kevin

    2014-01-01

    Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.

  7. Iron deficiency and cardiovascular disease

    NARCIS (Netherlands)

    von Haehling, Stephan; Jankowska, Ewa A.; van Veldhuisen, Dirk J.; Ponikowski, Piotr; Anker, Stefan D.

    2015-01-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of card

  8. Carbonic anhydrase-related protein XI: structure of the gene in the greater false vampire bat (Megaderma lyra) compared with human and domestic pig.

    Science.gov (United States)

    Porter, Calvin A; Hewett-Emmett, David; Tashian, Richard E

    2013-06-01

    Carbonic anhydrase-related protein XI (CA-RP XI) is a member of the α-carbonic anhydrase family (encoded by the gene CA-11), which has lost features of the active site required for enzymatic activity. Using PCR, we amplified CA-11 from genomic DNA of the bat Megaderma lyra. To elucidate the gene structure, we sequenced PCR products and compared their sequences with genomic and mRNA sequences known from human and domestic pig. We identified and sequenced eight introns in the bat CA-11. Five introns (introns 3-7) are located in identical or similar positions in other members of the vertebrate α-carbonic anhydrase gene family. Two 5' introns and one 3' intron are located in the regions of little or no sequence similarity with other members of the gene family. The low sequence similarity and additional introns suggest a separate evolutionary origin for the 5' and 3' portions of the CA-RP XI gene. PMID:23417223

  9. Common genetic denominators for Ca++-based skeleton in Metazoa: role of osteoclast-stimulating factor and of carbonic anhydrase in a calcareous sponge.

    Directory of Open Access Journals (Sweden)

    Werner E G Müller

    Full Text Available Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC. Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative enzyme carbonic anhydrase and the (putative osteoclast-stimulating factor (OSTF, that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl(2 show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca(2+-depletion condition (1 mM CaCl(2. Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes to human (osteoclast.

  10. Iron deficiency anemia in children.

    Science.gov (United States)

    Subramaniam, Girish; Girish, Meenakshi

    2015-06-01

    Iron deficiency is not just anemia; it can be responsible for a long list of other manifestations. This topic is of great importance, especially in infancy and early childhood, for a variety of reasons. Firstly, iron need is maximum in this period. Secondly, diet in infancy is usually deficient in iron. Thirdly and most importantly, iron deficiency at this age can result in neurodevelopmental and cognitive deficits, which may not be reversible. Hypochromia and microcytosis in a complete blood count (CBC) makes iron deficiency anemia (IDA) most likely diagnosis. Absence of response to iron should make us look for other differential diagnosis like β thalassemia trait and anemia of chronic disease. Celiac disease is the most important cause of true IDA not responding to oral iron therapy. While oral ferrous sulphate is the cheapest and most effective therapy for IDA, simple nonpharmacological and pharmacological measures can go a long way in prevention of iron deficiency. PMID:25636824

  11. Chromospheric, transition layer and coronal emission of metal deficient stars

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  12. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  13. Genetics Home Reference: factor V deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions factor V deficiency factor V deficiency Enable Javascript to view the expand/collapse ... Print All Open All Close All Description Factor V deficiency is a rare bleeding disorder. The signs ...

  14. Monocular Elevation Deficiency - Double Elevator Palsy

    Science.gov (United States)

    ... Español Condiciones Chinese Conditions Monocular Elevation Deficiency/ Double Elevator Palsy En Español Read in Chinese What is monocular elevation deficiency (Double Elevator Palsy)? Monocular Elevation Deficiency, also known by the ...

  15. Genetics Home Reference: leptin receptor deficiency

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions leptin receptor deficiency leptin receptor deficiency Enable Javascript to view the expand/ ... boxes. Print All Open All Close All Description Leptin receptor deficiency is a condition that causes severe ...

  16. Genetics Home Reference: congenital leptin deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions congenital leptin deficiency congenital leptin deficiency Enable Javascript to view the expand/collapse ... Print All Open All Close All Description Congenital leptin deficiency is a condition that causes severe obesity ...

  17. Genetics Home Reference: factor XIII deficiency

    Science.gov (United States)

    ... InfoSearch: Factor XIII deficiency Factor XIII Registry Database: Introduction to Factor XIII Deficiency MalaCards: factor xiii deficiency ... Library of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA ...

  18. Genetics Home Reference: combined pituitary hormone deficiency

    Science.gov (United States)

    ... Genetics Home Health Conditions combined pituitary hormone deficiency combined pituitary hormone deficiency Enable Javascript to view the ... boxes. Print All Open All Close All Description Combined pituitary hormone deficiency is a condition that causes ...

  19. [Iodine deficiency during pregnancy ].

    Science.gov (United States)

    de Luis, D A; Aller, R; Izaola, O

    2005-09-01

    Iodine is an essential micronutrient, it would be administered every day with our diet. The main role of this micronutrient is the synthesis of thyroid hormone. Thyroid hormones are related with brain development and metabolic regulation. Iodine deficit is related with goitre, and an important problem "diseases related with iodine deficiency", including high rate of neonatal mortality, decrease of intelligence, delayed of growth, high rate of aborts and congenital abnormalities.A risk group is pregnant women. Some authors have been demonstrated the utility of iodine supplementation during pregnancy. A systematic review of Cochrane group has shown that iodine supplementation during pregnancy decreased neonatal mortality RR 0.71 (0.56-0.9), and decrease the incidence of cretinism in children under 4 years RR 0.27 (0.12-0.6). As final recommendations, a program in pregnant women must be development to treat with iodine such as we make with folic acid. Pills with iron and iodine (1 mg iron and 25 ug iodine) have been demonstrated better results that pills with iodine. Tablets are the main presentation due to the role of the women in our Society and the work time. Programs of iodine enriched salt have been demonstrated a follow up of 50%. PMID:16386080

  20. Iodine deficiency disorders.

    Science.gov (United States)

    Elliott, T C

    1987-01-01

    Iodine deficiency disorder (IDD) affects 800 million people in the world, yet iodine supplementation is one of the most cost-effective nutritional interventions known. Iodine is incorporated into thyroid hormones, necessary for regulating metabolic rate, growth, and development of the brain and nervous system. IDD may appear as goiter in adults, usually not a serious problem, or in cretinism in children, which is marked by severe mental and physical retardation, with irreversible hearing and speech defects and either deaf-mutism, squint and paralysis, or stunting and edema. Children supplemented by age 1 or 2 can sometimes be helped. Foods contain variable amounts of iodine dependent on the soil where they are grown, hence mountainous and some inland regions have high goiter and IDD incidence. There are also goitrogenic foods, typically those of the cabbage family. Diagnosis is clinical or by blood tests for thyroid hormone levels and ratios. Finger-stick methods are available. Prevention of IDD is simple with either iodized salt or flour, iodinated central water supplies, injectable or oral iodine-containing oil. All cost about $.04 per person per year, except injections, which cost about $1 per person, but have the advantage that they could be combined with immunizations. Local problems with supplements are loss of iodine in salt with storage in tropics, and local production of cheaper uniodinated salt. Emphasis should be given to pregnant women and young children. There is no harm in giving pregnant women iodine injections in 2nd or 3rd trimester. PMID:12343033

  1. Differential diagnosis of tetrahydrobiopterin deficiency.

    Science.gov (United States)

    Niederwieser, A; Ponzone, A; Curtius, H C

    1985-01-01

    Six hundred and seventy-three children (483 newborns and 190 older selected children) were screened for tetrahydrobiopterin (BH4) deficiency by HPLC of urine pterins and BH4 load test. One patient with GTP cyclohydrolase I deficiency, 36 patients with dihydrobiopterin synthetase (DHBS) deficiency (of which six were in the newborn and 30 in the older children) and 14 with dihydropteridine reductase deficiency (DHPR) were found. All 37 patients with defective BH4 biosynthesis responded to a BH4 load by lowering of the elevated serum phenylalanine concentration but four of 14 patients with DHPR deficiency did not. Measurement of DHPR activity in blood spots on Guthrie cards is recommended. Since subvariants of patients with BH4 deficiency exist, homovanillic acid, 5-hydroxyindole acetic acid, pterins, phenylalanine, and tyrosine in cerebrospinal fluid should be measured for diagnosis and the control of therapy. The activity of the phosphate-eliminating enzyme (a key enzyme in BH4 biosynthesis and part of "DHBS") was measured in human liver and activities of approx. 1 n U (mg protein)-1 were found. In the liver biopsy of a patient with DHBS deficiency no activity (less than 3% of controls) was demonstrated. PMID:3930839

  2. Iron Deficiency Anemia in Pregnancy.

    Science.gov (United States)

    Breymann, Christian

    2015-10-01

    Anemia is a common problem in obstetrics and perinatal care. Any hemoglobin below 10.5 g/dL can be regarded as true anemia regardless of gestational age. Reasons for anemia in pregnancy are mainly nutritional deficiencies, parasitic and bacterial diseases, and inborn red blood cell disorders such as thalassemias. The main cause of anemia in obstetrics is iron deficiency, which has a worldwide prevalence between estimated 20%-80% and consists of a primarily female population. Stages of iron deficiency are depletion of iron stores, iron-deficient erythropoiesis without anemia, and iron deficiency anemia, the most pronounced form of iron deficiency. Pregnancy anemia can be aggravated by various conditions such as uterine or placental bleedings, gastrointestinal bleedings, and peripartum blood loss. In addition to the general consequences of anemia, there are specific risks during pregnancy for the mother and the fetus such as intrauterine growth retardation, prematurity, feto-placental miss ratio, and higher risk for peripartum blood transfusion. Besides the importance of prophylaxis of iron deficiency, the main therapy options for the treatment of pregnancy anemia are oral iron and intravenous iron preparations.

  3. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children

    Science.gov (United States)

    Schulze, Kerry J.; Cole, Robert N.; Wu, Lee S. F.; Yager, James D.; Groopman, John; Christian, Parul; West, Keith P.

    2016-01-01

    Abstract Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6–8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and correlated relative abundance of proteins quantified by mass spectrometry with PIVKA-II. VK deficiency (PIVKA-II >2 μg/L) was associated with a higher abundance of low-density lipoproteins, total cholesterol, and triglyceride concentrations (p 10% of the children, five proteins were associated with PIVKA-II and seven proteins were differentially abundant between VK deficient versus sufficient children, including coagulation factor-II, hemoglobin, and vascular endothelial cadherin, passing a false discovery rate (FDR) threshold of 10% (q PIVKA-II or VK deficiency at a less stringent FDR (q  0.7). Untargeted proteomics offers a novel systems approach to elucidating biological processes of coagulation, vascularization, and erythrocyte oxidative stress related to VK status. The results may help elucidate subclinical metabolic disturbances related to VK deficiency in populations. PMID:26913649

  4. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children.

    Science.gov (United States)

    Lee, Sun Eun; Schulze, Kerry J; Cole, Robert N; Wu, Lee S F; Yager, James D; Groopman, John; Christian, Parul; West, Keith P

    2016-04-01

    Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6-8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and correlated relative abundance of proteins quantified by mass spectrometry with PIVKA-II. VK deficiency (PIVKA-II>2 μg/L) was associated with a higher abundance of low-density lipoproteins, total cholesterol, and triglyceride concentrations (p10% of the children, five proteins were associated with PIVKA-II and seven proteins were differentially abundant between VK deficient versus sufficient children, including coagulation factor-II, hemoglobin, and vascular endothelial cadherin, passing a false discovery rate (FDR) threshold of 10% (qPIVKA-II or VK deficiency at a less stringent FDR (q0.7). Untargeted proteomics offers a novel systems approach to elucidating biological processes of coagulation, vascularization, and erythrocyte oxidative stress related to VK status. The results may help elucidate subclinical metabolic disturbances related to VK deficiency in populations. PMID:26913649

  5. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children.

    Science.gov (United States)

    Lee, Sun Eun; Schulze, Kerry J; Cole, Robert N; Wu, Lee S F; Yager, James D; Groopman, John; Christian, Parul; West, Keith P

    2016-04-01

    Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6-8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and correlated relative abundance of proteins quantified by mass spectrometry with PIVKA-II. VK deficiency (PIVKA-II>2 μg/L) was associated with a higher abundance of low-density lipoproteins, total cholesterol, and triglyceride concentrations (p10% of the children, five proteins were associated with PIVKA-II and seven proteins were differentially abundant between VK deficient versus sufficient children, including coagulation factor-II, hemoglobin, and vascular endothelial cadherin, passing a false discovery rate (FDR) threshold of 10% (qPIVKA-II or VK deficiency at a less stringent FDR (q0.7). Untargeted proteomics offers a novel systems approach to elucidating biological processes of coagulation, vascularization, and erythrocyte oxidative stress related to VK status. The results may help elucidate subclinical metabolic disturbances related to VK deficiency in populations.

  6. Clinical manifestations of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-01-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal diseases, following uses of certain drugs such as penicillamine for Wilson's disease and diuretics in some cases, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. In pregnancy and during periods of growth the requirement of zinc is increased. The clinical manifestations in severe cases of zinc deficiency include bullous-pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males; it is fatal if unrecognized and untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities, and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss, and hyperammonemia. Zinc is a growth factor. Its deficiency adversely affects growth in many animal species and humans. Inasmuch as zinc is needed for protein and DNA synthesis and for cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Whether or not zinc is required for the metabolism of somatomedin needs to be investigated in the future. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level; the hypothalamic-pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in cell division, its deficiency may adversely affect testicular size and thus affect its functions. Zinc is required for the functions of several enzymes and whether or not it has an enzymatic role in steroidogenesis is not known at present

  7. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    Science.gov (United States)

    ... links) CLIMB: Children Living with Inherited Metabolic Diseases Muscular Dystrophy Association: Myoadenylate Deaminase Deficiency Genetic Testing Registry (1 link) Muscle AMP deaminase deficiency ...

  8. 寿胎II号协定方联合黄体酮辨治肾虚型胎动不安的临床研究%Clinical Study of Shoutai II Decoction combined with Progesterone on Fetal Irritability of Kidney Deficiency Pattern

    Institute of Scientific and Technical Information of China (English)

    宋家欣; 吴丹; 王薇

    2016-01-01

    目的::探讨寿胎II号协定方联合黄体酮辨治肾虚型胎动不安的临床效果。方法:选择2014年6月至2015年9月我院收治的肾虚型胎动不安患者110例,随机分为对照组和观察组患者各55例。对照组患者给予黄体酮肌肉注射,观察组则联合给予寿胎II号协定方内服治疗。对比2组的临床疗效,评价主要中医证候积分,监测治疗前后血清激素水平变化,随访统计患者的分娩情况。结果:观察组的有效率90.9%高于对照组患者74.5%( P<0.05);观察组患者的腰酸、腹痛、小腹下坠、阴道少量下血等症状改善优于对照组患者,证候积分显著低于对照组患者( P<0.05);观察组患者血清β-HCG、P水平显著高于对照组患者(P<0.05);观察组的分娩结局明显优于对照组患者(P<0.05)。结论:寿胎II号协定方联合黄体酮辨治肾虚型胎动不安患者疗效肯定,能显著改善临床症状,提高保胎成功率,其机制与提高血清激素水平密切相关,是中西医结合保胎效果的突出体现,值得临床推广运用。%Objective:To investigate the clinical effect of Shoutai II Decoction combined with progesterone on fetal irritability of kidney deficiency pattern. Methods:A hundred and ten patients with fetal irritability due to deficiency of the kidney admitted in the hospital from June 2014 to 2015 September randomly assigned for the control group and the observation group with 55 cases in each. Patients in the control group were treated with progesterone intramuscular injection and the observation group was additionally treated with Shoutai II Decoction. The clinical efficacy of the two groups was compared and the main TCM syndrome score was e-valuated. The changes of serum hormone level before and after treatment were monitored. Results:The effective rate of the obser-vation group was 90. 9% higher than that of the control group (74. 5%) (P<0. 05);symptoms

  9. [Four cases of aldosterone synthase deficiency in childhood].

    Science.gov (United States)

    Collinet, E; Pelissier, P; Richard, O; Gay, C; Pugeat, M; Morel, Y; Stephan, J-L

    2012-11-01

    Neonatal salt-wasting syndromes are rare but potentially serious conditions. Isolated hypoaldosteronism is an autosomal recessive inherited disorder of terminal aldosterone synthesis, leading to selective aldosterone deficiency. Two different biochemical forms of this disease have been described, called aldosterone synthase deficiency or corticosterone methyl oxydase, types I and II. In type I, there is no aldosterone synthase activity and the 18 hydroxycorticosterone (18 OHB) level is low, whereas in type II, a residual activity of aldosterone synthase persists and 18 OHB is overproduced. We report on four patients with isolated hypoaldosteronism. In 2 of them, who were recently diagnosed with aldosterone synthase deficit, we discuss the symptoms and treatment. The 2 other patients are now adults. We discuss the long-term outcome, the quality of adult life, aldosterone synthase deficits, as well as the pathophysiology and molecular analysis.

  10. Synthesis of 4-(2-substituted hydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects.

    Science.gov (United States)

    Gul, Halise Inci; Kucukoglu, Kaan; Yamali, Cem; Bilginer, Sinan; Yuca, Hafize; Ozturk, Iknur; Taslimi, Parham; Gulcin, Ilhami; Supuran, Claudiu T

    2016-08-01

    In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by (1)H NMR, (13)CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1-S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1-S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79 ± 0.22-2.73 ± 0.08 nM against hCA I and in the range of 1.72 ± 0.58-11.64 ± 5.21 nM against hCA II, respectively. PMID:26044365

  11. Synthesis of 4-(2-substituted hydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects.

    Science.gov (United States)

    Gul, Halise Inci; Kucukoglu, Kaan; Yamali, Cem; Bilginer, Sinan; Yuca, Hafize; Ozturk, Iknur; Taslimi, Parham; Gulcin, Ilhami; Supuran, Claudiu T

    2016-08-01

    In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by (1)H NMR, (13)CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1-S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1-S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79 ± 0.22-2.73 ± 0.08 nM against hCA I and in the range of 1.72 ± 0.58-11.64 ± 5.21 nM against hCA II, respectively.

  12. Genetic analysis of familial isolated growth hormone deficiency type I.

    OpenAIRE

    Phillips, J. A.; Parks, J. S.; Hjelle, B L; Herd, J E; Plotnick, L P; Migeon, C. J.; Seeburg, P H

    1982-01-01

    Nuclear DNA from individuals belonging to nine different families in which two sibs were affected with isolated growth hormone deficiency type I were studied by restriction endonuclease analysis. By using 32P-labeled human growth hormone or the homologous human chorionic somatomammotropin complementary DNA (cDNA) sequences as a probe, the growth hormone genes of affected individuals from all families yielded normal restriction patterns. Polymorphic restriction endonuclease sites (HincII and M...

  13. Evolutionary Processes and Mental Deficiency

    Science.gov (United States)

    Spitz, Herman H.

    1973-01-01

    The author hypothesizes that central nervous system damage of deficiency associated with mental retardation affects primarily those cortical processes which developed at a late stage in man's evolutionary history. (Author)

  14. [Niacin deficiency and cutaneous immunity].

    Science.gov (United States)

    Ikenouchi-Sugita, Atsuko; Sugita, Kazunari

    2015-01-01

    Niacin, also known as vitamin B3, is required for the synthesis of coenzymes, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). Niacin binds with G protein-coupled receptor (GPR) 109A on cutaneous Langerhans cells and causes vasodilation with flushing in head and neck area. Niacin deficiency due to excessive alcohol consumption, certain drugs or inadequate uptake in diet causes pellagra, a photosensitivity dermatitis. Recently several studies have revealed the mechanism of photosensitivity in niacin deficiency, which may pave a way for new therapeutic approaches. The expression level of prostaglandin E synthase (PTGES) is up-regulated in the skin of both pellagra patients and niacin deficient pellagra mouse models. In addition, pellagra is mediated through prostaglandin E₂-EP4 (PGE₂-EP4) signaling via reactive oxygen species (ROS) production in keratinocytes. In this article, we have reviewed the role of niacin in immunity and the mechanism of niacin deficiency-induced photosensitivity. PMID:25765687

  15. Cutaneous findings of nutritional deficiencies in children.

    Science.gov (United States)

    Goskowicz, M; Eichenfield, L F

    1993-08-01

    Nutritional deficiencies may be associated with a variety of cutaneous findings in children. This review emphasizes new developments relating to cutaneous findings of nutritional deficiencies. Zinc deficiency, acrodermatitis enteropathica, and acrodermatitis enteropathica-like eruptions are seen with a variety of conditions including cystic fibrosis, anorexia nervosa, and breastfeeding. Similar cutaneous findings not related to zinc deficiency may also occur with such metabolic disorders as methylmalonic aciduria, multiple carboxylase deficiency, essential fatty acid deficiency and other amino acid deficiencies. Vitamin K deficiency is associated with hemorrhagic disease of the newborn and coagulopathy. Vitamin A deficiency presents with a variety of systemic findings and distinctive dermatologic findings. Acute vitamin A deficiency may be seen in children infected with measles and is associated with more severe disease. The systemic and cutaneous findings of vitamin C deficiency, scurvy, are discussed. PMID:8374671

  16. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    De Luca, Viviana; Vullo, Daniela; Del Prete, Sonia; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-02-15

    We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here. PMID:26778292

  17. Anion and sulfonamide inhibition studies of an α-carbonic anhydrase from the Antarctic hemoglobinless fish Chionodraco hamatus.

    Science.gov (United States)

    Cincinelli, Alessandra; Martellini, Tania; Vullo, Daniela; Supuran, Claudiu T

    2015-12-01

    An α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from the Antarctic hemoglobinless fish Chionodraco hamatus (icefish). The new enzyme, denominated ChaCA, has a good catalytic activity for the physiologic CO2 hydration to bicarbonate reaction, similar to that of the low activity human isoform hCA I, with a kcat of 5.3×10(5) s(-1), and a kcat/Km of 3.7×10(7) M(-1) s(-1). The enzyme was inhibited in the submillimolar range by most inorganic anions (cyanate, thiocyanate, cyanide, bicarbonate, halides), whereas sulfamide, sulfamate, phenylboronic/phenylarsonic acids were micromolar inhibitors, with KIs in the range of 9-77 μM. Many clinically used drugs, such as acetazolamide, methazolamide, dorzolamide, brinzolamide, topiramate and benzolamide were low nanomolar inhibitors, with KIs in the range of 39.1-77.6 nM. As the physiology of CO2/bicarbonate transport or the Root effect in this Antarctic fish are poorly understood at this moment, such inhibition data may give a more detailed insight in the role that CAs play in these phenomena, by the use of inhibitors described here as physiologic tools. PMID:26525863

  18. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  19. Sulfonamide inhibition studies of the α-carbonic anhydrase from the gammaproteobacterium Thiomicrospira crunogena XCL-2, TcruCA.

    Science.gov (United States)

    Vullo, Daniela; Bhatt, Avni; Mahon, Brian P; McKenna, Robert; Supuran, Claudiu T

    2016-01-15

    We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena. PMID:26691758

  20. 植物碳酸酐酶的研究进展%Progress in Research on Plant Carbonic Anhydrase

    Institute of Scientific and Technical Information of China (English)

    蒋春云; 马秀灵; 沈晓艳; 李燕; 赵彦修

    2013-01-01

    在植物组织中,碳酸酐酶(CA)催化CO2与HCO3-之间可逆的水合反应,重新固定呼吸释放的CO2并用于细胞光合作用.本文简要介绍了CA的生理机能、分类、亚细胞定位、基因功能等的研究进展,并展望了CA在提高C3植物光合效率以及CA在C3植物由C3光合类型转向C4光合类型方面的研究意义.%Carbonic anhydrase (CA) catalyses the reversible reaction between CO2 and HCO3-in plant living organisms.It can refix the respiration-released CO2 which participates in photosynthesis process.In this article we summarize the research progress in the physiological function,classification,subcellular localization and gene function of CA.And we prospect its crucial roles in increasing the photosynthetic rate in C3 plants and in the type of photosynthesis from C3 to C4.

  1. Evaluation of a Carbonic Anhydrase IX-Targeted Near-Infrared Dye for Fluorescence-Guided Surgery of Hypoxic Tumors.

    Science.gov (United States)

    Lv, Peng-Cheng; Roy, Jyoti; Putt, Karson S; Low, Philip S

    2016-05-01

    Proof-of-principle studies in ovarian, lung, and brain cancer patients have shown that fluorescence-guided surgery can enable removal of otherwise undetectable malignant lesions, decrease the number of cancer-positive margins, and permit identification of disease-containing lymph nodes that would have normally evaded resection. Unfortunately, the current arsenal of tumor-targeted fluorescent dyes does not permit identification of all cancers, raising the need to design new tumor-specific fluorescent dyes to illuminate the currently undetectable cancers. In an effort to design a more universal fluorescent cancer imaging agent, we have undertaken to synthesize a fluorophore that could label all hypoxic regions of tumors. We report here the synthesis, in vitro binding, and in vivo imaging of a near-infrared (NIR) fluorescent dye that is targeted to carbonic anhydrase IX (CA IX), i.e., a widely accepted marker of hypoxic tissues. The low molecular weight NIR probe, named Hypoxyfluor, is shown to bind CA IX with high affinity and accumulate rapidly and selectively in CA IX positive tumors. Because nearly all human cancers contain hypoxic regions that express CA IX abundantly, this NIR probe should facilitate surgical resection of a wide variety of solid tumors. PMID:27043317

  2. Identification of two carbonic anhydrases in the mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications.

    Science.gov (United States)

    LE Roy, Nathalie; Marie, Benjamin; Gaume, Béatrice; Guichard, Nathalie; Delgado, Sidney; Zanella-Cléon, Isabelle; Becchi, Michel; Auzoux-Bordenave, Stéphanie; Sire, Jean-Yves; Marin, Frédéric

    2012-07-01

    Carbonic anhydrases (CAs) represent a diversified family of metalloenzymes that reversibly catalyze the hydration of carbon dioxide. They are involved in a wide range of functions, among which is the formation of CaCO(3) skeletons in metazoans. In the shell-forming mantle tissues of mollusks, the location of the CA catalytic activity is elusive and gives birth to contradicting views. In the present paper, using the European abalone Haliotis tuberculata, a key model gastropod in biomineralization studies, we identified and characterized two CAs (htCA1 and htCA2) that are specific of the shell-forming mantle tissue. We analyzed them in a phylogenetic context. Combining various approaches, including proteomics, activity tests, and in silico analyses, we showed that htCA1 is secreted but is not incorporated in the organic matrix of the abalone shell and that htCA2 is transmembrane. Together with previous studies dealing with molluskan CAs, our findings suggest two possible modes of action for shell mineralization: the first mode applies to, for example, the bivalves Unio pictorum and Pinctada fucata, and involves a true CA activity in their shell matrix; the second mode corresponds to, for example, the European abalone, and does not include CA activity in the shell matrix. Our work provides new insight on the diversity of the extracellular macromolecular tools used for shell biomineralization study in mollusks.

  3. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea.

    Science.gov (United States)

    De Luca, Viviana; Vullo, Daniela; Del Prete, Sonia; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-02-15

    We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0×10(5)s(-1) and a kcat/Km of 4.7×10(6)M(-1)×s(-1). This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4-4.4mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.

  4. Self-healing of Early Age Cracks in Cement-based Materials by Mineralization of Carbonic Anhydrase Microorganism

    Directory of Open Access Journals (Sweden)

    Chunxiang eQian

    2015-11-01

    Full Text Available This research investigated the self-healing potential of early age cracks in cement-based materials incorporating the bacteria which can produce carbonic anhydrase. Cement-based materials specimens were pre-cracked at the age of 7, 14, 28, 60 days to study the repair ability influenced by cracking time, the width of cracks were between 0.1 and 1.0 mm to study the healing rate influenced by width of cracks. The experimental results indicated that the bacteria showed excellent repairing ability to small cracks formed at early age of 7 days, cracks below 0.4 mm was almost completely closed. The repair effect reduced with the increasing of cracking age. Cracks width influenced self-healing effectiveness significantly. The transportation of CO2 and Ca2+ controlled the self-healing process. The computer simulation analyses revealed the self-healing process and mechanism of microbiologically precipitation induced by bacteria and the depth of precipitated CaCO3 could be predicted base on valid Ca2+.

  5. Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.

    Science.gov (United States)

    Zubrienė, Asta; Smirnovienė, Joana; Smirnov, Alexey; Morkūnaitė, Vaida; Michailovienė, Vilma; Jachno, Jelena; Juozapaitienė, Vaida; Norvaišas, Povilas; Manakova, Elena; Gražulis, Saulius; Matulis, Daumantas

    2015-10-01

    Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.

  6. Impacts of Elevated CO2 Concentration on Biochemical Composition,Carbonic Anhydrase, and Nitrate Reductase Activity of Freshwater Green Algae

    Institute of Scientific and Technical Information of China (English)

    Jian-Rong XIA; Kun-Shan GAO

    2005-01-01

    To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.

  7. Carbonic Anhydrase VI Gene Polymorphism rs2274327 Relationship Between Salivary Parameters and Dental-Oral Health Status in Children.

    Science.gov (United States)

    Sengul, Fatih; Kilic, Munevver; Gurbuz, Taskin; Tasdemir, Sener

    2016-08-01

    The aim of this study was to research carbonic anhydrase (CA) VI one single-nucleotide polymorphism (SNP) and its potential association with dental-oral health status (dental caries, Plaque Index (PI) and Gingival Index (GI)) and salivary parameters (salivary buffering capacity, salivary flow rate (SFR)) in children. A total of 178 children were divided into two groups: non-carious (n = 70, 34 boys and 36 girls) and carious (n = 108, 47 boys and 61 girls). The clinical evaluations were performed according to the decayed, missing, and filled teeth (dmft/DMFT) index by a specialist. Clinical parameters including PI, GI, and simplified oral hygiene index (OHI-S) were recorded. Salivary pH (SpH) was measured using pH paper. Blood samples and unstimulated whole saliva were collected, and SFR was calculated. The CA VI rs2274327 polymorphism was determined by a LightSNiP assay on the realtime PCR system. The frequencies of rs2274327 were not significant between groups (p > 0.05). There was a positive correlation between OHI-S and SpH in the carious and non-carious groups (p OHI-S, PI, GI, SFR, and SpH (p > 0.05). CA VI SNP (rs2274327) had no statistically significant association with OHI-S, PI, GI, SFR, and SpH in the children.

  8. Carbonic Anhydrase VI Gene Polymorphism rs2274327 Relationship Between Salivary Parameters and Dental-Oral Health Status in Children.

    Science.gov (United States)

    Sengul, Fatih; Kilic, Munevver; Gurbuz, Taskin; Tasdemir, Sener

    2016-08-01

    The aim of this study was to research carbonic anhydrase (CA) VI one single-nucleotide polymorphism (SNP) and its potential association with dental-oral health status (dental caries, Plaque Index (PI) and Gingival Index (GI)) and salivary parameters (salivary buffering capacity, salivary flow rate (SFR)) in children. A total of 178 children were divided into two groups: non-carious (n = 70, 34 boys and 36 girls) and carious (n = 108, 47 boys and 61 girls). The clinical evaluations were performed according to the decayed, missing, and filled teeth (dmft/DMFT) index by a specialist. Clinical parameters including PI, GI, and simplified oral hygiene index (OHI-S) were recorded. Salivary pH (SpH) was measured using pH paper. Blood samples and unstimulated whole saliva were collected, and SFR was calculated. The CA VI rs2274327 polymorphism was determined by a LightSNiP assay on the realtime PCR system. The frequencies of rs2274327 were not significant between groups (p > 0.05). There was a positive correlation between OHI-S and SpH in the carious and non-carious groups (p  0.05). CA VI SNP (rs2274327) had no statistically significant association with OHI-S, PI, GI, SFR, and SpH in the children. PMID:27100223

  9. Role of Carbonic Anhydrase as an Activator in Carbonate Rock Dissolution and Its Implication for Atmospheric CO2 Sink

    Institute of Scientific and Technical Information of China (English)

    刘再华

    2001-01-01

    The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.``

  10. Effects of intraleaf variations in carbonic anhydrase activity and gas exchange on leaf C18OO isoflux in Zea mays.

    Science.gov (United States)

    Affek, Hagit P; Krisch, Maria J; Yakir, Dan

    2006-01-01

    Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes. PMID:16411935

  11. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Pedas, Pai; Laursen, Kristian Holst;

    2013-01-01

    chlorophyll (Chl) a fluorescence as a tool for diagnosis of latent Mn deficiency. Methods: Barley plants grown under controlled greenhouse conditions or in the field were exposed to different intensities of Mn deficiency. The responses were characterised by analysis of Chl a fluorescence, photosystem II (PSII......) proteins and mineral elements. Results: Analysis of the Chl a fluorescence induction kinetics (FIK) revealed distinct changes long before any visual symptoms of Mn deficiency were apparent. The changes were specific for Mn and did not occur in Mg, S, Fe or Cu deficient plants. The changes in Mn deficient......Background and aims: Manganese (Mn) deficiency represents a major plant nutritional disorder in winter cereals. The deficiency frequently occurs latently and the lack of visual symptoms prevents timely remediation and cause significant yield reductions. These problems prompted us to investigate...

  12. Zinc and its deficiency diseases.

    Science.gov (United States)

    Evans, G W

    1986-01-01

    The pervasive role of zinc in the metabolic function of the body results from its function as a cofactor of a multitude of enzymes. Zinc is found in every tissue in the body, and because zinc metalloenzymes are found in every known class of enzymes, the metal has a function in every conceivable type of biochemical pathway. Symptoms resulting from zinc deficiency are as diverse as the enzymes with which the metal is associated. If chronic, severe, and untreated, zinc deficiency can be fatal. Less drastic symptoms include infections, hypogonadism, weight loss, emotional disturbance, dermatitis, alopecia, impaired taste acuity, night blindness, poor appetite, delayed wound healing, and elevated blood ammonia levels. Many symptoms of zinc deficiency result from poor diet consumption, but often the most severe symptoms result from other factors including excessive alcohol use, liver diseases, malabsorption syndromes, renal disease, enteral or parenteral alimentation, administration of sulfhydryl-containing drugs, and sickle cell disease. The most severe symptoms of zinc deficiency occur in young children affected with the autosomal-recessive trait, acrodermatitis enteropathica. This disease results in decreased synthesis of picolinic acid which causes an impaired ability to utilize zinc from common food. Because simple laboratory analyses are often not reliable in determining zinc nutriture of a patient, those symptoms caused by suspected zinc deficiency are best verified by the oral administration of zinc dipicolinate. This zinc compound is efficacious and safe and would provide an accurate means of identifying symptoms that do result from zinc deficiency. PMID:3514057

  13. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    Science.gov (United States)

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  14. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sho Nishida

    2015-04-01

    Full Text Available Excessive accumulation of nickel (Ni can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe-regulated transporter1 (IRT1, mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i Zn deficiency induces short-term Ni2+ absorption and (ii Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  15. [Iron deficiency and iron deficiency anemia are global health problems].

    Science.gov (United States)

    Dahlerup, Jens; Lindgren, Stefan; Moum, Björn

    2015-03-10

    Iron deficiency and iron deficiency anemia are global health problems leading to deterioration in patients' quality of life and more serious prognosis in patients with chronic diseases. The cause of iron deficiency and anemia is usually a combination of increased loss and decreased intestinal absorption and delivery from iron stores due to inflammation. Oral iron is first line treatment, but often hampered by intolerance. Intravenous iron is safe, and the preferred treatment in patients with chronic inflammation and bowel diseases. The goal of treatment is normalisation of hemoglobin concentration and recovery of iron stores. It is important to follow up treatment to ensure that these objectives are met and also long-term in patients with chronic iron loss and/or inflammation to avoid recurrence of anemia.

  16. Observation on Therapeutic Effect of the Depression of Heart-spleen Deficiency with Wuling Capsule

    International Nuclear Information System (INIS)

    To evaluate the effect on the treatment of depression belong to the type of heart-spleen deficiency with Wuling capsule, 37 patients were assigned into two groups: the deficiency of both the heart and spleen group (I) and the non deficiency of both the heart and spleen group (II). The efficacy of two groups was surveyed and compared after taken Wuling capsule 2 and 4 weeks,respectively. After treatment, there was a difference (P0.05). The satisfactory effects were showed on various kinds of depressions using wuling capsules,while deficiency of both the heart and spleen group effects were better than that of the non deficiency of both the heart and spleen group. (authors)

  17. Ethylene participates in the regulation of Fe deficiency responses in Strategy I plants and in rice

    Directory of Open Access Journals (Sweden)

    Carlos eLucena

    2015-11-01

    Full Text Available Iron (Fe is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed.

  18. Iron deficiency and cardiovascular disease.

    Science.gov (United States)

    von Haehling, Stephan; Jankowska, Ewa A; van Veldhuisen, Dirk J; Ponikowski, Piotr; Anker, Stefan D

    2015-11-01

    Iron deficiency affects up to one-third of the world's population, and is particularly common in elderly individuals and those with certain chronic diseases. Iron excess can be detrimental in cardiovascular illness, and research has now also brought anaemia and iron deficiency into the focus of cardiovascular medicine. Data indicate that iron deficiency has detrimental effects in patients with coronary artery disease, heart failure (HF), and pulmonary hypertension, and possibly in patients undergoing cardiac surgery. Around one-third of all patients with HF, and more than one-half of patients with pulmonary hypertension, are affected by iron deficiency. Patients with HF and iron deficiency have shown symptomatic improvements from intravenous iron administration, and some evidence suggests that these improvements occur irrespective of the presence of anaemia. Improved exercise capacity has been demonstrated after iron administration in patients with pulmonary hypertension. However, to avoid iron overload and T-cell activation, it seems that recipients of cardiac transplantations should not be treated with intravenous iron preparations.

  19. Oxygen-18 Exchange as a Measure of Accessibility of CO2 and HCO3− to Carbonic Anhydrase in Chlorella vulgaris (UTEX 263) 1

    Science.gov (United States)

    Tu, C. K.; Acevedo-Duncan, Mildred; Wynns, George C.; Silverman, David N.

    1986-01-01

    We have measured the exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3− kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3− with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18C content of CO2 was much less than the 18O content of HCO3− in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3− into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 × 10−4 s−1 due to our experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate. PMID:16664755

  20. Oxygen-18 Exchange as a Measure of Accessibility of CO(2) and HCO(3) to Carbonic Anhydrase in Chlorella vulgaris (UTEX 263).

    Science.gov (United States)

    Tu, C K; Acevedo-Duncan, M; Wynns, G C; Silverman, D N

    1986-04-01

    We have measured the exchange of (18)O between CO(2) and H(2)O in stirred suspensions of Chlorella vulgaris (UTEX 263) using a membrane inlet to a mass spectrometer. The depletion of (18)O from CO(2) in the fluid outside the cells provides a method to study CO(2) and HCO(3) (-) kinetics in suspensions of algae that contain carbonic anhydrase since (18)O loss to H(2)O is catalyzed inside the cells but not in the external fluid. Low-CO(2) cells of Chlorella vulgaris (grown with air) were added to a solution containing (18)O enriched CO(2) and HCO(3) (-) with 2 to 15 millimolar total inorganic carbon. The observed depletion of (18)O from CO(2) was biphasic and the resulting (18)C content of CO(2) was much less than the (18)O content of HCO(3) (-) in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO(3) (-) into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 x 10(-4) s(-1) due to our experimental errors. The Fick's law rate constant for entry of CO(2) to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO(2) flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO(2) entry into the cell or both. The CO(2) hydration activity inside the cells was 160 times the uncatalyzed CO(2) hydration rate. PMID:16664755

  1. 呋塞米对碳酸酐酶的抑制效应再研究%Inhibitory effect of furosemide on carbonic anhydrase

    Institute of Scientific and Technical Information of China (English)

    袁美华; 蒋彦; 杨毅

    2013-01-01

    The inhibitory effect of a high efficient diuretic ,furosemide ,on carbonic anhydrase was investigated in this study .Compared with acetazolamide ,furosemide can quickly make BCAⅡ inactive when its concentration is close to the enzyme concentration . The results show that furosemide is a non-competitive inhibitor of carbonic anhydrase ,the vaules of its IC50 and KI are 0 .759 μM ,0 .51 μM . Acetazolamide is a competitive inhibitor of carbonic anhydrase ,the vaules of its IC5 0 and KI are 0.199μM ,0 .099 μM .%呋塞米是一种高效利尿剂,本实验主要探究其对碳酸酐酶的抑制效应.相比较乙酰唑胺而言,呋塞米在其浓度接近碳酸酐酶浓度时能使该酶基本失活.研究发现,呋塞米对碳酸酐酶的抑制效应表现为非竞争性抑制,其 IC50为0.759μM ,KI 为0.61μM ,乙酰唑胺的 IC50为0.199μM , KI 为0.099μM ,表现为竞争性抑制.

  2. Oxygen-18 exchange as a measure of accessibility of CO2 and HCO3- to carbonic anhydrase in Chlorella vulgaris (UTEX 263)

    International Nuclear Information System (INIS)

    The exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) was measured using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3- kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3- with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18O content of CO2 was much less than the 18O content of HCO3- in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3- into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 x 10-4 s-1 due to experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate

  3. Clinical, endocrinological and biochemical effects of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-08-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal disease, certain diuretics, the use of chelating agents such as penicillamine for Wilson's disease, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. The requirement of zinc is increased in pregnancy and during the growing age period. The clinical manifestations in severe cases of zinc deficiency included bullous-pustular dermatitis, alopecia, diarrhoea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males and it is fatal if untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss and hyperammonaemia. Zinc is a growth factor. As a result of its deficiency, growth is affected adversely in many animal species and in man. Inasmuch as zinc is needed for protein and DNA synthesis and cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level and the hypothalamic--pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in a cell division, its deficiency may adversely affect testicular size and thus its function. In mice, the incidence of degenerate oocytes, and hypohaploidy and hyperhaploidy in metaphase II oocytes were increased due to zinc deficiency. Zinc at physiological concentrations reduced prolactin secretion from the pituitary in vitro and it has been

  4. Folate Deficiency in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Gopalakrishna Rajesh

    2010-07-01

    Full Text Available Dear Sir, While there has been a spurt of interest in genetic alterations associated with pancreatitis in the past few years, interest in the role of environmental factors has largely focused on alcoholism and smoking with insufficient attention being paid to the contributions of nutritional deficiency, and the role of environmental toxins in the pathogenesis of pancreatitis. Braganza and Dormandy [1] argue convincingly about the role played by cytochrome P450 monooxygenases (especially CYP1A enzyme induction by xenobiotics and the resultant oxidative stress, as also the now increasingly recognized reductive stress posed by the metabolites in initiating pancreatic injury. Their article underlines the important part played by the deficiency of methyl and thiol molecules in different stages of the progression of pancreatic damage. Furthermore, they attempt to establish a link between environmental and genetic factors and bring in a holistic view on the etiopathogenesis of chronic pancreatitis. We have recently demonstrated lower plasma methionine levels in two cohorts of chronic pancreatitis patients; one of tropical chronic pancreatitis and the other, of alcoholic chronic pancreatitis as compared to healthy controls [2] which suggests that deficiency of methyl groups may be a factor in various forms of pancreatitis. Similarly, we have shown lower red cell glutathione levels in chronic pancreatitis patients with tropical chronic pancreatitis and alcoholic chronic pancreatitis, indicating deficiency of thiol molecules. In addition, we have demonstrated significantly higher levels of plasma total homocysteine in chronic pancreatitis patients than in healthy controls. Moreover, our study has shown that there is a deficiency of red cell folate in the majority of chronic pancreatitis patients, more so in tropical chronic pancreatitis; and that folate deficiency appeared to be the key factor in hyperhomocysteinemia in chronic pancreatitis patients

  5. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Science.gov (United States)

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  6. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Directory of Open Access Journals (Sweden)

    Shenghua Huang

    Full Text Available The β-class carbonic anhydrases (β-CAs are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2-HCO(3(- interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules.

  7. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide.

    Science.gov (United States)

    Huang, Shenghua; Hainzl, Tobias; Grundström, Christin; Forsman, Cecilia; Samuelsson, Göran; Sauer-Eriksson, A Elisabeth

    2011-01-01

    The β-class carbonic anhydrases (β-CAs) are widely distributed among lower eukaryotes, prokaryotes, archaea, and plants. Like all CAs, the β-enzymes catalyze an important physiological reaction, namely the interconversion between carbon dioxide and bicarbonate. In plants the enzyme plays an important role in carbon fixation and metabolism. To further explore the structure-function relationship of β-CA, we have determined the crystal structures of the photoautotroph unicellular green alga Coccomyxa β-CA in complex with five different inhibitors: acetazolamide, thiocyanate, azide, iodide, and phosphate ions. The tetrameric Coccomyxa β-CA structure is similar to other β-CAs but it has a 15 amino acid extension in the C-terminal end, which stabilizes the tetramer by strengthening the interface. Four of the five inhibitors bind in a manner similar to what is found in complexes with α-type CAs. Iodide ions, however, make contact to the zinc ion via a zinc-bound water molecule or hydroxide ion--a type of binding mode not previously observed in any CA. Binding of inhibitors to Coccomyxa β-CA is mediated by side-chain movements of the conserved residue Tyr-88, extending the width of the active site cavity with 1.5-1.8 Å. Structural analysis and comparisons with other α- and β-class members suggest a catalytic mechanism in which the movements of Tyr-88 are important for the CO(2)-HCO(3)(-) interconversion, whereas a structurally conserved water molecule that bridges residues Tyr-88 and Gln-38, seems important for proton transfer, linking water molecules from the zinc-bound water to His-92 and buffer molecules. PMID:22162771

  8. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes.

    Science.gov (United States)

    Ogawa, Takahiro; Noguchi, Keiichi; Saito, Masahiko; Nagahata, Yoshiko; Kato, Hiromi; Ohtaki, Akashi; Nakayama, Hiroshi; Dohmae, Naoshi; Matsushita, Yasuhiko; Odaka, Masafumi; Yohda, Masafumi; Nyunoya, Hiroshi; Katayama, Yoko

    2013-03-13

    Carbonyl sulfide (COS) is an atmospheric trace gas leading to sulfate aerosol formation, thereby participating in the global radiation balance and ozone chemistry, but its biological sinks are not well understood. Thiobacillus thioparus strain THI115 can grow on thiocyanate (SCN(-)) as its sole energy source. Previously, we showed that SCN(-) is first converted to COS by thiocyanate hydrolase in T. thioparus strain THI115. In the present work, we purified, characterized, and determined the crystal structure of carbonyl sulfide hydrolase (COSase), which is responsible for the degradation of COS to H2S and CO2, the second step of SCN(-) assimilation. COSase is a homotetramer composed of a 23.4 kDa subunit containing a zinc ion in its catalytic site. The amino acid sequence of COSase is homologous to the β-class carbonic anhydrases (β-CAs). Although the crystal structure including the catalytic site resembles those of the β-CAs, CO2 hydration activity of COSase is negligible compared to those of the β-CAs. The α5 helix and the extra loop (Gly150-Pro158) near the N-terminus of the α6 helix narrow the substrate pathway, which could be responsible for the substrate specificity. The k(cat)/K(m) value, 9.6 × 10(5) s(-1) M(-1), is comparable to those of the β-CAs. COSase hydrolyzes COS over a wide concentration range, including the ambient level, in vitro and in vivo. COSase and its structurally related enzymes are distributed in the clade D in the phylogenetic tree of β-CAs, suggesting that COSase and its related enzymes are one of the catalysts responsible for the global sink of COS. PMID:23406161

  9. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Stefan Burén

    Full Text Available BACKGROUND: The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited. CONCLUSIONS/SIGNIFICANCE: We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native

  10. Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-08-15

    Among the numerous metalloenzymes known to date, carbonic anhydrase (CA, EC 4.2.1.1) was the first zinc containing one, being discovered decades ago. CA is a hydro-lyase, which catalyzes the following hydration-dehydration reaction: CO2+H2O⇋HCO3(-)+H(+). Several CA classes are presently known, including the α-, β-, γ-, δ-, ζ- and η-CAs. In prokaryotes, the existence of genes encoding CAs from at least three classes (α-, β- and γ-class) suggests that these enzymes play a key role in the physiology of these organisms. In many bacteria CAs are essential for the life cycle of microbes and their inhibition leads to growth impairment or growth defects of the pathogen. CAs thus started to be investigated in detail in bacteria, fungi and protozoa with the aim to identify antiinfectives with a novel mechanism of action. Here, we investigated the catalytic activity, biochemical properties and anion inhibition profiles of the three CAs from the bacterial pathogen Vibrio cholera, VchCA, VchCAβ and VchCAγ. The three enzymes are efficient catalysts for CO2 hydration, with kcat values ranging between (3.4-8.23)×10(5)s(-1) and kcat/KM of (4.1-7.0)×10(7)M(-1)s(-1). A set of inorganic anions and small molecules was investigated for inhibition of these enzymes. The most potent VchCAγ inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging between 44 and 91μM. PMID:27283786

  11. Epidermal carbonic anhydrase activity and exoskeletal metal content during the molting cycle of the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Calhoun, Stacy; Zou, Enmin

    2016-03-01

    During the crustacean molting cycle, the exoskeleton is first mineralized in postmolt and intermolt and then presumably demineralized in premolt in order for epidermal retraction to occur. The mineralization process calls for divalent metal ions, such as Ca(2+) and Mg(2+) , and bicarbonate ions whereas protons are necessary for dissolution of carbonate salts. Carbonic anhydrase (CA) has been suggested to be involved in exoskeletal mineralization by providing bicarbonate ions through catalyzing the reaction of carbon dioxide hydration. However, results of earlier studies on the role of epidermal CA in metal incorporation in crustacean exoskeleton are not consistent. This study was aimed to provide further evidence to support the notion that epidermal CA is involved in exoskeletal mineralization using the blue crab, Callinectes sapidus (Rathbun 1896), as the model crustacean. Significant increases first in calcium and magnesium then in manganese post-ecdysis indicate significant metal deposition during postmolt and intermolt. Significant positive correlation between calcium or magnesium content and epidermal CA activity in postmolt and intermolt constitutes evidence that CA is involved in the mineralization of the crustacean exoskeleton. Additionally, we proposed a hypothetical model to describe the role of epidermal CA in both mineralization and demineralization of the exoskeleton based on the results of epidermal CA activity and exoskeletal metal content during the molting cycle. Furthermore, we found that the pattern of epidermal CA activity during the molting cycle of C. sapidus is similar to that of ecdysteroids reported for the same species, suggesting that epidermal CA activity may be under control of the molting hormones. PMID:26935248

  12. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia.

    Directory of Open Access Journals (Sweden)

    Bagna Bao

    Full Text Available Carbonic anhydrase IX (CA IX is a transmembrane protein that has been shown to be greatly upregulated under conditions of hypoxia in many tumor cell lines. Tumor hypoxia is associated with impaired efficacy of cancer therapies making CA IX a valuable target for preclinical and diagnostic imaging. We have developed a quantitative in vivo optical imaging method for detection of CA IX as a marker of tumor hypoxia based on a near-infrared (NIR fluorescent derivative of the CA IX inhibitor acetazolamide (AZ. The agent (HS680 showed single digit nanomolar inhibition of CA IX as well as selectivity over other CA isoforms and demonstrated up to 25-fold upregulation of fluorescent CA IX signal in hypoxic versus normoxic cells, which could be blocked by 60%-70% with unlabeled AZ. CA IX negative cell lines (HCT-116 and MDA-MB-231, as well as a non-binding control agent on CA IX positive cells, showed low fluorescent signal under both conditions. In vivo FMT imaging showed tumor accumulation and excellent tumor definition from 6-24 hours. In vivo selectivity was confirmed by pretreatment of the mice with unlabeled AZ resulting in >65% signal inhibition. HS680 tumor signal was further upregulated >2X in tumors by maintaining tumor-bearing mice in a low oxygen (8% atmosphere. Importantly, intravenously injected HS680 signal was co-localized specifically with both CA IX antibody and pimonidazole (Pimo, and was located away from non-hypoxic regions indicated by a Hoechst stain. Thus, we have established a spatial correlation of fluorescence signal obtained by non-invasive, tomographic imaging of HS680 with regions of hypoxia and CA IX expression. These results illustrate the potential of HS680 and combined with FMT imaging to non-invasively quantify CA IX expression as a hypoxia biomarker, crucial to the study of the underlying biology of hypoxic tumors and the development and monitoring of novel anti-cancer therapies.

  13. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors

    Directory of Open Access Journals (Sweden)

    Olga eSedlakova

    2014-01-01

    Full Text Available Acidic tissue microenvironment contributes to tumor progression via multiple effects including the activation of angiogenic factors and proteases, reduced cell-cell adhesion, increased migration and invasion, etc. In addition, intratumoral acidosis can influence the uptake of anticancer drugs and modulate the response of tumors to conventional therapy. Acidification of the tumor microenvironment often develops due to hypoxia-triggered oncogenic metabolism, which leads to the extensive production of lactate, protons and carbon dioxide. In order to avoid intracellular accumulation of the acidic metabolic products, which is incompatible with the survival and proliferation, tumor cells activate molecular machinery that regulates pH by driving transmembrane inside-out and outside-in ion fluxes. Carbonic anhydrase IX (CA IX is a hypoxia-induced catalytic component of the bicarbonate import arm of this machinery. Through its catalytic activity, CA IX directly participates in many acidosis-induced features of tumor phenotype as demonstrated by manipulating its expression and/or by in vitro mutagenesis. CA IX can function as a survival factor protecting tumor cells from hypoxia and acidosis, as a pro-migratory factor facilitating cell movement and invasion, as a signaling molecule transducing extracellular signals to intracellular pathways (including major signaling and metabolic cascades and converting intracellular signals to extracellular effects on adhesion, proteolysis and other processes. These functional implications of CA IX in cancer are supported by numerous clinical studies demonstrating the association of CA IX with various clinical correlates and markers of aggressive tumor behavior. Although our understanding of the many faces of CA IX is still incomplete, existing knowledge supports the view that CA IX is a biologically and clinically relevant molecule, exploitable in anticancer strategies aimed at targeting adaptive responses to hypoxia

  14. Potentiation of the effect of thiazide derivatives by carbonic anhydrase inhibitors: molecular mechanisms and potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available BACKGROUND: Carbonic anhydrase inhibitors (CAI are mild diuretics, hence not widely used in fluid overloaded states. They are however the treatment of choice for certain non-kidney conditions. Thiazides, specific inhibitors of Na-Cl cotransport (NCC, are mild agents and the most widely used diuretics in the world for control of mild hypertension. HYPOTHESIS: In addition to inhibiting the salt reabsorption in the proximal tubule, CAIs down-regulate pendrin, therefore leaving NCC as the major salt absorbing transporter in the distal nephron, and hence allowing for massive diuresis by the inhibitors of NCC in the setting of increased delivery of salt from the proximal tubule. EXPERIMENTAL PROTOCOLS AND RESULTS: Daily treatment of rats with acetazolamide (ACTZ, a known CAI, for 10 days caused mild diuresis whereas daily treatment with hydrochlorothiazide (HCTZ for 4 days caused hardly any diuresis. However, treatment of rats that were pretreated with ACTZ for 6 days with a combination of ACTZ plus HCTZ for 4 additional days increased the urine output by greater than 2 fold (p<0.001, n = 5 compared to ACTZ-treated animals. Sodium excretion increased by 80% in the ACTZ plus HCTZ group and animals developed significant volume depletion, metabolic alkalosis and pre-renal failure. Molecular studies demonstrated ∼75% reduction in pendrin expression by ACTZ. The increased urine output in ACTZ/HCTZ treated rats was associated with a significant reduction in urine osmolality and reduced membrane localization of AQP-2 (aquaporin2. CONCLUSIONS: These results indicate that ACTZ down-regulates pendrin expression and leaves NCC as the major salt absorbing transporter in the distal nephron in the setting of increased delivery of salt from the proximal tubule. Despite being considered mild agents individually, we propose that the combination of ACTZ and HCTZ is a powerful diuretic regimen.

  15. Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration.

    Science.gov (United States)

    Yong, Joel K J; Cui, Jiwei; Cho, Kwun Lun; Stevens, Geoff W; Caruso, Frank; Kentish, Sandra E

    2015-06-01

    Carbonic anhydrase (CA) is a native enzyme that facilitates the hydration of carbon dioxide into bicarbonate ions. This study reports the fabrication of thin films of active CA enzyme onto a porous membrane substrate using layer-by-layer (LbL) assembly. Deposition of multilayer films consisting of polyelectrolytes and CA was monitored by quartz crystal microgravimetry, while the enzymatic activity was assayed according to the rates of p-nitrophenylacetate (p-NPA) hydrolysis and CO2 hydration. The fabrication of the films onto a nonporous glass substrate showed CO2 hydration rates of 0.52 ± 0.09 μmol cm(-2) min(-1) per layer of bovine CA and 2.6 ± 0.7 μmol cm(-2) min(-1) per layer of a thermostable microbial CA. The fabrication of a multilayer film containing the microbial CA on a porous polypropylene membrane increased the hydration rate to 5.3 ± 0.8 μmol cm(-2) min(-1) per layer of microbial CA. The addition of mesoporous silica nanoparticles as a film layer prior to enzyme adsorption was found to increase the activity on the polypropylene membranes even further to a rate of 19 ± 4 μmol cm(-2) min(-1) per layer of microbial CA. The LbL treatment of these membranes increased the mass transfer resistance of the membrane but decreased the likelihood of membrane pore wetting. These results have potential application in the absorption of carbon dioxide from combustion flue gases into aqueous solvents using gas-liquid membrane contactors. PMID:25984966

  16. Iron deficiency in the tropics.

    Science.gov (United States)

    Fleming, A F

    1982-06-01

    Iron in food is classified as belonging to the haem pool, the nonhaem pool, and extraneous sources. Haem iron is derived from vegetable and animal sources with varying bioavailability. Hookworm infestation of the intestinal tract affects 450 million people in the tropics. Schistosoma mansoni caused blood loss in 7 Egyptian patients of 7.5- 25.9 ml/day which is equivalent to a daily loss of iron of .6-7.3 mg daily urinary loss of iron in 9 Egyptian patients. Trichuris trichiura infestation by whipworm is widespread in children with blood loss of 5 ml/day/worm. The etiology of anemia in children besides iron deficiency includes malaria, bacterial or viral infections, folate deficiency and sickle-cell disease. Severe infections cause profound iron-deficiency anemia in children in central American and Malaysia. Plasmodium falciparum malaria-induced anaemia in tropical Africa lowers the mean haemoglobin concentration in the population by 2 g/dI, causing profound anaemia in some. The increased risk of premature delivery, low birthweight, fetal abnormalities, and fetal death is directly related to the degree of maternal anemia. Perinatal mortality was reduced from 38 to 4% in treated anemic mothers. Mental performance was significantly lower in anemic school children and improved after they received iron. Supplements of iron, soy-protein, calcium, and vitamins given to villagers with widespread malnutrition, iron deficiency, and hookworm infestation in Colombia reduced enteric infections in children. Severe iron-deficiency anemia was treated in adults in northern Nigeria by daily in Ferastral 10 ml, which is equivalent to 500 mg of iron per day. Choloroquine, folic acid, rephenium hydroxynaphthoate, and tetrachlorethylene treat adults with severe iron deficiency from hookworm infestation in rural tropical Africa. Blood transfusion is indicated if the patient is dying of anaemia or is pregnant with a haemoglobin concentration 6 gm/dl. In South East Asia, mg per day

  17. [Phosphate metabolism and iron deficiency].

    Science.gov (United States)

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  18. Screening for late neonatal vitamin K deficiency by acarboxyprothrombin in dried blood spots.

    OpenAIRE

    Motohara, K.; Endo, F; Matsuda, I

    1987-01-01

    Acarboxyprothrombin (protein induced by vitamin K absence or antagonist-II (PIVKA-II] concentrations in dried blood spots were determined in 19,029 infants at about 1 month of age as an indicator of vitamin K deficiency. We observed 51 cases with raised blood concentrations of PIVKA-II (greater than 4 AU/ml), nine of whom showed very high concentrations (greater than 20 AU/ml). For infants who did not receive vitamin K prophylaxis at birth, the incidence of the PIVKA-II test yielding positive...

  19. Epigenetic Deficiencies and Replicative Stress

    DEFF Research Database (Denmark)

    Shoaib, Muhammad; Sørensen, Claus Storgaard

    2015-01-01

    Cancer cell-specific synthetic lethal interactions entail promising therapeutic possibilities. In this issue of Cancer Cell, Pfister et al. describe a synthetic lethal interaction where cancer cells deficient in H3K36me3 owing to SETD2 loss-of-function mutation are strongly sensitized to inhibiti...

  20. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  1. Congenital β-lipoprotein deficiency

    NARCIS (Netherlands)

    Buchem, F.S.P. van; Pol, G.; Gier, J. de; Böttcher, C.J.F.; Pries, C.

    1966-01-01

    There are several degrees of β-lipoprotein deficiency. If there is no β-lipoprotein present, or if there are only traces of it, the Bassen-Kornzweig syndrome develops. A constant feature of this syndrome is disturbed fat absorption with accumulation of fat in the epithelium of intestinal mucosa and

  2. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  3. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae. PMID:26960545

  4. Regulation of expression and biochemical characterization of a beta-class carbonic anhydrase from the plant growth-promoting rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kaur, Simarjot; Mishra, Mukti Nath; Tripathi, Anil K

    2009-10-01

    Carbonic anhydrase (CA; [EC 4.2.1.1]) is a ubiquitous enzyme catalysing the reversible hydration of CO(2) to bicarbonate, a reaction that supports various biochemical and physiological functions. Genome analysis of Azospirillum brasilense, a nonphotosynthetic, nitrogen-fixing, rhizobacterium, revealed an ORF with homology to beta-class carbonic anhydrases (CAs). Biochemical characteristics of the beta-class CA of A. brasilense, analysed after cloning the gene (designated as bca), overexpressing in Escherichia coli and purifying the protein by affinity purification, revealed that the native recombinant enzyme is a homotetramer, inhibited by the known CA inhibitors. CA activity in A. brasilense cell extracts, reverse transcriptase (RT)-PCR and Western blot analyses showed that bca was constitutively expressed under aerobic conditions. Lower beta-galactosidase activity in A. brasilense cells harbouring bca promoter: lacZ fusion during the stationary phase or during growth on 3% CO(2) enriched air or at acidic pH indicated that the transcription of bca was downregulated by the stationary phase, elevated CO(2) levels and acidic pH conditions. These observations were also supported by RT-PCR analysis. Thus, beta-CA in A. brasilense seems to be required for scavenging CO(2) from the ambient air and the requirement of CO(2) hydration seems to be higher for the cultures growing exponentially at neutral to alkaline pH.

  5. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    Directory of Open Access Journals (Sweden)

    Steven F Werder

    2010-04-01

    Full Text Available Steven F Werder1,21Kansas University School of Medicine – Wichita, Wichita, KS, USA; 2Community Health Center of Southeast Kansas, Pittsburg, KS, USAIntroduction: Although consensus guidelines recommend checking serum B12 in patients with dementia, clinicians are often faced with various questions: (1 Which patients should be tested? (2 What test should be ordered? (3 How are inferences made from such testing? (4 In addition to serum B12, should other tests be ordered? (5 Is B12 deficiency compatible with dementia of the Alzheimer’s type? (6 What is to be expected from treatment? (7 How is B12 deficiency treated?Methods: On January 31st, 2009, a Medline search was performed revealing 1,627 citations related to cobalamin deficiency, hyperhomocysteinemia, and dementia. After limiting the search terms, all abstracts and/or articles and other references were categorized into six major groups (general, biochemistry, manifestations, associations and risks, evaluation, and treatment and then reviewed in answering the above questions.Results: The six major groups above are described in detail. Seventy-five key studies, series, and clinical trials were identified. Evidence-based suggestions for patient management were developed.Discussion: Evidence is convincing that hyperhomocysteinemia, with or without hypovitaminosis B12, is a risk factor for dementia. In the absence of hyperhomocysteinemia, evidence is less convincing that hypovitaminosis B12 is a risk factor for dementia. B12 deficiency manifestations are variable and include abnormal psychiatric, neurological, gastrointestinal, and hematological findings. Radiological images of individuals with hyperhomocysteinemia frequently demonstrate leukoaraiosis. Assessing serum B12 and treatment of B12 deficiency is crucial for those cases in which pernicious anemia is suspected and may be useful for mild cognitive impairment and mild to moderate dementia. The serum B12 level is the standard initial test

  6. Diagnosis of vitamin B12 deficiency.

    OpenAIRE

    HU, Rehman

    1984-01-01

    Vitamin B12 (cobalamin) deficiency occurs primarily as a result  of insufficient dietary intake or poor absorp-tion. There is widespread global prevalence of vitamin B12 deficiency, resulting in considerable morbidity.

  7. Genetics Home Reference: tyrosine hydroxylase deficiency

    Science.gov (United States)

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions TH deficiency tyrosine hydroxylase deficiency ...

  8. Changes in circulating levels of fibroblast growth factor 23 induced by short-term dietary magnesium deficiency in rats.

    Science.gov (United States)

    Matsuzaki, Hiroshi; Katsumata, Shinichi; Maeda, Yoshiaki; Kajita, Yasutaka

    2016-06-01

    Fibroblast growth factor 23 (FGF23) is a potent regulator of phosphorus (P) and vitamin D metabolism. Long-term dietary magnesium (Mg) deficiency increases circulating levels of FGF23, whereas the effects of short-term dietary Mg deficiency are unclear. Thus, the present study investigated whether short-term dietary Mg deficiency affects circulating levels of FGF23. We also assessed changes in renal mRNA expression of vitamin D metabolizing enzymes and type II sodium-phosphate (Na/Pi) cotransporters, since these are regulated by FGF23. Rats were fed a control diet (control group) or an Mg-deficient diet (Mg-deficient group) for 2, 4 or 7 days. Serum Mg levels were significantly lower in the Mg-deficient group than in the control group at all time points. Serum FGF23 levels were significantly higher in the Mg-deficient group than in the control group at day 7. The 25-hydroxyvitamin D-24-hydroxylase (24(OH)ase) mRNA levels were significantly higher in the Mg-deficient group than in the control group at day 7 . No significant differences in types IIa and IIc Na/Pi cotransporter mRNA levels were observed between the control and Mg-deficient groups. These results suggest that dietary Mg deficiency causes a rapid increase in circulating levels of FGF23 and renal 24(OH)ase mRNA levels. PMID:27624533

  9. Cobalamin deficiency in children: A literature review

    OpenAIRE

    Moen, Synne Helland

    2013-01-01

    Objective: The aim of this review is to present cobalamin deficiency in children with a specific focus on infants. Background: Cobalamin deficiency is caused by inadequate intake, malabsorption or inborn errors of vitamin B12 metabolism. Cobalamin deficiency in infants is usually caused by deficiency in the mother. There is often a diagnostic delay among infants because the most frequent symptoms are unspecific, e.g., developmental delay, apathy, hypotonia, anorexia and failure to thrive. Chi...

  10. Iron Deficiency in Autism and Asperger Syndrome.

    Science.gov (United States)

    Latif, A.; Heinz, P.; Cook, R.

    2002-01-01

    Retrospective analysis of the full blood count and, when available, serum ferritin measurements of 96 children (52 with autism and 44 with Asperger syndrome) found six autistic children had iron deficiency and 12 of the 23 autistic children with serum ferritin measures were iron deficient. Far fewer Asperger children were iron deficient. Results…

  11. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    Science.gov (United States)

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  12. MODELLING THE INHIBITORY ACTIVITY ON CARBONIC ANHYDRASE IV OF SUBSTITUTED THIADIAZOLE - AND THIADIAZOLINE - DISULFONAMIDES: INTEGRATION OF STRUCTURE INFORMATION

    Directory of Open Access Journals (Sweden)

    Sorana Daniela Bolboaca

    2006-07-01

    Full Text Available ABSTRACT:Purpose: To analyze the relationships between inhibitory activities on carbonic anhydrase IV and structures of substituted 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamide through integration of compounds complex structure information by the use of Molecular Descriptors Family.Method: A number of forty compounds were used to generate and compute the molecular descriptors family and to build structure-activity relationships models. The obtained multi-varied models (the models with two, respectively with four descriptors were validated by computing the cross-validation leave-one-out score (r2cv-loo, and analyzed through assessment of the squared correlation coefficients (r2, and the models stability (r2 - r2cv-loo. The estimation abilities of the multi-varied MDF-SAR model with four descriptors were analyzed in training and test sets.Results: Analysis of the obtained models shows that the best results was obtained by the multi-varied model with four molecular descriptors (r2 = 0.920. The prediction abilities of this model is sustained by the cross validation leave-one-out score (r2cv-loo = 0.903, the model stability (r2 - r2cv-loo = 0.017, and the results on training versus test analysis (no significant differences between correlation coefficients in training and test sets, p > 0.05. The multi-varied model which used four descriptors proved to render higher value of correlation coefficient comparing with previous reported models (p 0.05. El modelo multivariante que utilizó cuatro descriptores mostró un valor más alto del coeficiente de correlación en comparación con los modelos divulgados anteriormente (p < 0.01.Conclusión: El modelo multivariante con cuatro descriptores es sólido y fiable e indica que la actividad de la inhibición en la carboanhidrasa IV producida por las sufonamidas sustituidas del 1,3,4-tiadiazol- y de la 1,3,4-tiadiazolina- dependen de la naturaleza de la geometría y de la topología del compuesto

  13. Inhibition of hypoxia-inducible carbonic anhydrase-IX enhances hexokinase Ⅱ inhibitor-induced hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Su-jong YU; Hyo-suk LEE; Jung-hwan YOON; Jeong-hoon LEE; Sun-jung MYUNG; Eun-sun JANG; Min-sun KWAK; Eun-ju CHO; Ja-june JANG; Yoon-jun KIM

    2011-01-01

    Aim: The hypoxic condition within large or infiltrative hypovascular tumors produces intracellular acidification, which could activate many signaling pathways and augment cancer cell growth and invasion. Carbonic anhydrase-Ⅸ (CA-Ⅸ) is an enzyme lowering pH. This study is to examine whether hypoxia induces CA-Ⅸ in hepatocellular carcinoma (HCC) cells, and to evaluate its clinical implication in HCC patients.Methods: Human HCC cell lines (Huh-7 and HepG2 cells) were used, and cell growth was assessed using MTS assay. CA-IX expression and apoptotic/kinase signaling were evaluated using immunoblotting. The cells were transfected with CA-Ⅸ-specific siRNA, or treated with its inhibitor 4-(2-aminoethyl) benzenesulfonamide (CAI#1), and/or the hexokinase Ⅱ inhibitor, 3-bromopyruvate (3-BP). A clinic pathological analysis of 69 patients who underwent an HCC resection was performed using a tissue array.Results: Incubation of HCC cells under hypoxia (1% 02, 5% C02, 94% N2) for 36 h significantly increased CA-IX expression level. CAI#1(400 μmol/L) or CA-IX siRNA (100 μmol/L) did not influence HCC cell growth and induce apoptosis. However, CAI#1 or CA-IX siRNA at these concentrations enhanced the apoptosis induced by 3-BP (100 μmol/L). This enhancement was attributed to increased ER stress and JNK activation, as compared with 3-BP alone. Furthermore, a clinic pathological analysis of 69 HCC patients revealed that tumor CA-Ⅸ intensity was inversely related to E-cadherin intensity.Conclusion: Inhibition of hypoxia-induced CA-Ⅸ enhances hexokinase Ⅱ inhibitor-induced HCC apoptosis. Furthermore, CA-IX expres sion profiles may have prognostic implications in HCC patients. Thus, the inhibition of CA-Ⅸ, in combination with a hexokinase Ⅱ inhibitor, may be therapeutically useful in patients with HCCs that are aggressively growing in a hypoxic environment.

  14. Vitamin D deficiency in Europe

    DEFF Research Database (Denmark)

    Cashman, Kevin D.; Dowling, Kirsten G; Škrabáková, Zuzana;

    2016-01-01

    BACKGROUND: Vitamin D deficiency has been described as being pandemic, but serum 25-hydroxyvitamin D [25(OH)D] distribution data for the European Union are of very variable quality. The NIH-led international Vitamin D Standardization Program (VDSP) has developed protocols for standardizing existing...... 25(OH)D values from national health/nutrition surveys. OBJECTIVE: This study applied VDSP protocols to serum 25(OH)D data from representative childhood/teenage and adult/older adult European populations, representing a sizable geographical footprint, to better quantify the prevalence of vitamin D...... sera. These data were combined with standardized serum 25(OH)D data from 4 previously standardized studies (for a total n = 55,844). Prevalence estimates of vitamin D deficiency [using various serum 25(OH)D thresholds] were generated on the basis of standardized 25(OH)D data. RESULTS: An overall pooled...

  15. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  16. Newborn screening for MCAD deficiency

    DEFF Research Database (Denmark)

    Horvath, Gabriella A; Davidson, A G F; Stockler-Ipsiroglu, Sylvia G;

    2008-01-01

    BACKGROUND: Medium Chain Acyl-CoA Dehydrogenase (MCAD) Deficiency is an autosomal recessive disorder of fatty acid oxidation, with potential fatal outcome. MCAD deficiency is diagnosed by acylcarnitine analysis on newborn screening blood spot cards by tandem mass spectrometry. Early diagnosis...... of MCAD and presymptomatic treatment can potentially reduce morbidity and mortality. OBJECTIVES: To evaluate incidence, clinical outcome, biochemical and molecular phenotype of MCAD cases detected in the first three years of newborn screening in British Columbia (BC). METHODS AND RESULTS: Medium chain...... is comparable to reports from other newborn screening programs. Persistence of elevated C8 levels and C8/C10 ratios in confirmed MCAD cases suggest that these are sensitive markers for newborn screening. Early detection and treatment have successfully prevented adverse health outcomes in patients with MCAD....

  17. Vitamin D deficiency in Fibromyalgia

    International Nuclear Information System (INIS)

    Objective: To check the Vitamin D levels in patients diagnosed as fibromyagia in our population. Methods: Study was done at Medical OPD of Civil Hospital Karachi, from January to March 2009. Female patients diagnosed as Fibromyalgia according to American College of Rheumatology (ACR) criteria and exclusion of systemic illness on examination, and normal reports of blood CP, ESR, serum calcium, phosphate and Alkaline Phosphatase, were asked to get Vitamin D levels in their serum. Vitamin D deficiency is defined as 30 ng/ml. Result: Forty female patients were included in the study. The mean age was 37.65 +- 11.5 years. Mean Vitamin D level was 17.41 +- 5.497 ng/ml. Thirty two (80%) of patients had Vitamin D deficiency, mean levels of 15.855 +- 4.918 ng/ml and 8(20%) had Vitamin D insufficiency, mean levels of 23.64 +- 2.39 ng/ml. Patients with vitamin D deficiency and age less than 45 years were 22 (68.75%), had mean vitamin D level 16.87 +- 4.48 ng/ml whereas in age ranging from 46-75 years were 10 (31.25%) had mean vitamin D level 16.09 +- 6.45 ng/ml. Conclusion: Vitamin D deficiency is frequently seen in patients diagnosed as fibromyalgia and nonspecific musculoskeletal pain in our population. Although the sample size of the study is small, but the figures are so alarming that it is an eye opener towards the need of a population based study, including normal population as well as those presenting with musculoskeletal pain. (author)

  18. [Iodine deficiency in cardiovascular diseases].

    Science.gov (United States)

    Molnár, I; Magyari, M; Stief, L

    1998-08-30

    The thyroid hormone deficiency on cardiovascular function can be characterized with decreased myocardial contractility and increased peripheral vascular resistance as well as with the changes in lipid metabolism. 42 patients with cardiovascular disease (mean age 65 +/- 13 yr, 16 males) were investigated if iodine insufficiency can play a role as a risk factor for the cardiovascular diseases. The patients were divided in 5 subgroups on the ground of the presence of hypertension, congestive heart failure, cardiomyopathy, coronary disfunction and arrhythmia. Urine iodine concentration (5.29 +/- 4.52 micrograms/dl) was detected with Sandell-Kolthoff colorimetric reaction. The most decreased urine iodine concentration was detected in the subgroups with arrhythmia and congestive heart failure (4.7 +/- 4.94 micrograms/dl and 4.9 +/- 4.81 micrograms/dl, respectively). An elevated TSH level was found by 3 patients (5.3 +/- 1.4 mlU/l). An elevation in lipid metabolism (cholesterol, triglyceride) associated with all subgroups without arrhythmia. In conclusion, the occurrence of iodine deficiency in cardiovascular disease is frequent. Iodine supplementation might prevent the worsing effect of iodine deficiency on cardiovascular disease.

  19. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  20. Multispectral colour analysis for quantitative evaluation of pseudoisochromatic color deficiency tests

    Science.gov (United States)

    Ozolinsh, Maris; Fomins, Sergejs

    2010-11-01

    Multispectral color analysis was used for spectral scanning of Ishihara and Rabkin color deficiency test book images. It was done using tunable liquid-crystal LC filters built in the Nuance II analyzer. Multispectral analysis keeps both, information on spatial content of tests and on spectral content. Images were taken in the range of 420-720nm with a 10nm step. We calculated retina neural activity charts taking into account cone sensitivity functions, and processed charts in order to find the visibility of latent symbols in color deficiency plates using cross-correlation technique. In such way the quantitative measure is found for each of diagnostics plate for three different color deficiency carrier types - protanopes, deutanopes and tritanopes. Multispectral color analysis allows to determine the CIE xyz color coordinates of pseudoisochromatic plate design elements and to perform statistical analysis of these data to compare the color quality of available color deficiency test books.

  1. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  2. Degradation of the Bile Salt Export Pump at Endoplasmic Reticulum in Progressive Familial Intrahepatic Cholestasis Type II (PFIC II)

    OpenAIRE

    Wang, Lin; Dong, Huiping; Soroka, Carol J.; WEI, NING; Boyer, James L.; Hochstrasser, Mark

    2008-01-01

    The bile salt export pump (Bsep) represents the major bile salt transport system at the canalicular membrane of hepatocytes. When examined in model cell lines, genetic mutations in the BSEP gene impair its targeting and transport function, contributing to the pathogenesis of PFIC II. PFIC II mutations are known to lead to a deficiency of BSEP in human hepatocytes, suggesting that PFIC II mutants are unstable and degraded in the cell. To investigate this further, we have characterized the impa...

  3. Oxygen-18 exchange as a measure of accessibility of CO/sub 2/ and HCO/sub 3//sup -/ to carbonic anhydrase in Chlorella vulgaris (UTEX 263)

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C.K.; Acevedo-Duncan, M.; Wynns, G.C.; Silverman, D.N.

    1986-04-01

    The exchange of /sup 18/O between CO/sub 2/ and H/sub 2/O in stirred suspensions of Chlorella vulgaris (UTEX 263) was measured using a membrane inlet to a mass spectrometer. The depletion of /sup 18/O from CO/sub 2/ in the fluid outside the cells provides a method to study CO/sub 2/ and HCO/sub 3//sup -/ kinetics in suspensions of algae that contain carbonic anhydrase since /sup 18/O loss to H/sub 2/O is catalyzed inside the cells but not in the external fluid. Low-CO/sub 2/ cells of Chlorella vulgaris (grown with air) were added to a solution containing /sup 18/O enriched CO/sub 2/ and HCO/sub 3//sup -/ with 2 to 15 millimolar total inorganic carbon. The observed depletion of /sup 18/O from CO/sub 2/ was biphasic and the resulting /sup 18/O content of CO/sub 2/ was much less than the /sup 18/O content of HCO/sub 3//sup -/ in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO/sub 3//sup -/ into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 x 10/sup -4/ s/sup -1/ due to experimental errors. The Fick's law rate constant for entry of CO/sub 2/ to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO/sub 2/ flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO/sub 2/ entry into the cell or both. The CO/sub 2/ hydration activity inside the cells was 160 times the uncatalyzed CO/sub 2/ hydration rate.

  4. Gene encoding γ-carbonic anhydrase is cotranscribed with argC and induced in response to stationary phase and high CO2 in Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Mishra Mukti N

    2010-07-01

    Full Text Available Abstract Background Carbonic anhydrase (CA is a ubiquitous enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction underlying diverse biochemical and physiological processes. Gamma class carbonic anhydrases (γ-CAs are widespread in prokaryotes but their physiological roles remain elusive. At present, only γ-CA of Methanosarcina thermophila (Cam has been shown to have CA activity. Genome analysis of a rhizobacterium Azospirillum brasilense, revealed occurrence of ORFs encoding one β-CA and two γ-CAs. Results One of the putative γ-CA encoding genes of A. brasilense was cloned and overexpressed in E. coli. Electrometric assays for CA activity of the whole cell extracts overexpressing recombinant GCA1 did not show CO2 hydration activity. Reverse transcription-PCR analysis indicated that gca1 in A. brasilense is co-transcribed with its upstream gene annotated as argC, which encodes a putative N-acetyl-γ-glutamate-phosphate reductase. 5'-RACE also demonstrated that there was no transcription start site between argC and gca1, and the transcription start site located upstream of argC transcribed both the genes (argC-gca1. Using transcriptional fusions of argC-gca1 upstream region with promoterless lacZ, we further demonstrated that gca1 upstream region did not have any promoter and its transcription occurred from a promoter located in the argC upstream region. The transcription of argC-gca1 operon was upregulated in stationary phase and at elevated CO2 atmosphere. Conclusions This study shows lack of CO2 hydration activity in a recombinant protein expressed from a gene predicted to encode a γ-carbonic anhydrase in A. brasilense although it cross reacts with anti-Cam antibody raised against a well characterized γ-CA. The organization and regulation of this gene along with the putative argC gene suggests its involvement in arginine biosynthetic pathway instead of the predicted CO2 hydration.

  5. Hepcidin expression in the liver of rats fed a magnesium-deficient diet.

    Science.gov (United States)

    Ishizaki, Natsumi; Kotani, Megumi; Funaba, Masayuki; Matsui, Tohru

    2011-10-01

    Mg deficiency accelerates Fe accumulation in the liver, which may induce various metabolic disturbances. In the present study, we examined the gene expression of Hepcidin, a peptide hormone produced in the liver to regulate intestinal Fe absorption negatively, in Mg-deficient rats. Although liver Fe concentration was significantly higher in rats fed an Mg-deficient diet for 4 weeks than in rats fed a control diet, Hepcidin expression in the liver was comparable between the dietary groups. Previous studies revealed that Fe overload up-regulated Hepcidin expression through transcriptional activation by Fe-induced bone morphogenetic protein (Bmp) 6, a growth/differentiation factor belonging to the transforming growth factor-β family, in the liver. Mg deficiency up-regulated the expression of Bmp6 but did not affect the expression of inhibition of DNA binding 1, a sensitive Bmp-responsive gene. In addition, the expression of Bmp receptors such as activin receptor-like kinase 2 (Alk2), activin receptor type IIA (Actr2a), activin receptor type IIB (Actr2b) and Bmp type II receptor (Bmpr2) was lower in the liver of Mg-deficient rats than in that of control rats. The present study indicates that accumulation of hepatic Fe by Mg deficiency is a stimulant inducing Bmp6 expression but not Hepcidin expression by blunting Bmp signalling possibly resulting from down-regulation of the receptor expression. Unresponsive Hepcidin expression may have a role in Mg deficiency-induced changes related to increased liver Fe.

  6. Pregnancy and maternal iron deficiency stimulate hepatic CRBPII expression in rats.

    Science.gov (United States)

    Cottin, Sarah C; Gambling, Lorraine; Hayes, Helen E; Stevens, Valerie J; McArdle, Harry J

    2016-06-01

    Iron deficiency impairs vitamin A (VA) metabolism in the rat but the mechanisms involved are unknown and the effect during development has not been investigated. We investigated the effect of pregnancy and maternal iron deficiency on VA metabolism in the mother and fetus. 54 rats were fed either a control or iron deficient diet for 2weeks prior to mating and throughout pregnancy. Another 15 female rats followed the same diet and were used as non-pregnant controls. Maternal liver, placenta and fetal liver were collected at d21 for total VA, retinol and retinyl ester (RE) measurement and VA metabolic gene expression analysis. Iron deficiency increased maternal hepatic RE (PRE (P<.05), and decreased placenta total VA (P<.05). Pregnancy increased Cellular Retinol Binding Protein (CRBP)-II gene expression by 7 fold (P=.001), decreased VA levels (P=.0004) and VA metabolic gene expression (P<.0001) in the liver. Iron deficiency increased hepatic CRBPII expression by a further 2 fold (P=.044) and RBP4 by~20% (P=.005), increased RBPR2 and decreased CRBPII, LRAT, and TTR in fetal liver, while it had no effect on VA metabolic gene expression in the placenta. Hepatic CRBPII expression is increased by pregnancy and further increased by iron deficiency, which may play an important role in VA metabolism and homeostasis. Maternal iron deficiency also alters VA metabolism in the fetus, which is likely to have consequences for development.

  7. Genotypic and phenotypic features of citrin deficiency: five-year experience in a Chinese pediatric center.

    Science.gov (United States)

    Song, Yuan-Zong; Deng, Mei; Chen, Feng-Ping; Wen, Fang; Guo, Li; Cao, Shui-Liang; Gong, Jian; Xu, Hao; Jiang, Guang-Yu; Zhong, Le; Kobayashi, Keiko; Saheki, Takeyori; Wang, Zi-Neng

    2011-07-01

    Citrin is a liver-type aspartate/glutamate carrier (AGC) encoded by the gene SLC25A13. Two phenotypes for human citrin deficiency have been described, namely the adult-onset citrullinemia type II (CTLN2) and the neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). However, citrin deficiency currently remains a perplexing and poorly recognized disorder. In particular, description of post-NICCD clinical presentations before CTLN2 onset is rather limited. Analysis of SLC25A13 mutations, identification of dysmorphic erythrocytes, hepatobiliary scintigraphic imaging and investigation of post-NICCD clinical presentations were performed in a citrin-deficient cohort comprised of 51 cases of children diagnosed with citrin deficiency in a Chinese pediatric center. Twelve SLC25A13 mutations were detected in this cohort, including the novel V411M and G283X mutations. Among the 51 citrin-deficient subjects, 7 cases had echinocytosis, which was associated with more severe biochemical abnormalities. Delayed hepatic discharge and bile duct/bowel visualization were common scintigraphic findings. Moreover, 9 of the 34 post-NICCD cases demonstrated concurrent failure to thrive and dyslipidemia, constituting a clinical phenotype different from NICCD and CTLN2. The novel mutations, echinocytosis, hepatobiliary scintigraphic features and the novel clinical phenotype in this study expanded the genotypic and phenotypic spectrum of citrin deficiency, and challenge the traditionally-assumed 'apparently healthy' period after the NICCD state for this disease entity. PMID:21424115

  8. Deficiencies in the Management of Iron Deficiency Anemia During Childhood.

    Science.gov (United States)

    Powers, Jacquelyn M; Daniel, Catherine L; McCavit, Timothy L; Buchanan, George R

    2016-04-01

    Limited high-quality evidence supports the management of iron deficiency anemia (IDA). To assess our institutional performance in this area, we retrospectively reviewed IDA treatment practices in 195 consecutive children referred to our center from 2006 to mid-2010. The majority of children were ≤4 years old (64%) and had nutritional IDA (74%). In 11- to 18-year-old patients (31%), the primary etiology was menorrhagia (42%). Many were referred directly to the emergency department and/or prescribed iron doses outside the recommended range. Poor medication adherence and being lost-to-follow-up were common. Substantial improvements are required in the management of IDA.

  9. Four methods compared for measuring des-carboxy-prothrombin (PIVKA-II).

    Science.gov (United States)

    Widdershoven, J; van Munster, P; De Abreu, R; Bosman, H; van Lith, T; van der Putten-van Meyel, M; Motohara, K; Matsuda, I

    1987-11-01

    PIVKA-II (Protein Induced by Vitamin K Absence) is abnormal des-carboxylated prothrombin, which is present in vitamin K deficiency or in patients using warfarin. With a sensitive method for PIVKA-II, biochemical vitamin K deficiency can be established before clinical symptoms occur. We give an overview of methods used to detect PIVKA-II, and four selected methods are inter-compared: (a) measuring total factor II including PIVKA-II by using Echis carinatus snake venom as an activator of prothrombin; (b) measuring PIVKA-II by using snake venom as an activator of factor II after adsorption of functional factor II onto barium sulfate; (c) electrophoresis-immunofixation method; and (d) enzyme immunoassay. We found d to be the most sensitive and reliable method for PIVKA-II.

  10. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture

    Science.gov (United States)

    Zhang, S.; Zhang, Z.; Lu, Y.; Rostam-Abadi, M.; Jones, A.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) currently under development could significantly reduce the energy consumed when capturing CO2 from the flue gases of coal-fired power plants. The biocatalyst carbonic anhydrase (CA) has been found to effectively promote the absorption of CO2 into the potassium carbonate solution that would be used in the IVCAP. Two CA enzymes were immobilized onto three selected support materials having different pore structures. The thermal stability of the immobilized CA enzymes was significantly greater than their free counterparts. For example, the immobilized enzymes retained at least 60% of their initial activities after 90days at 50??C compared to about 30% for their free counterparts under the same conditions. The immobilized CA also had significantly improved resistance to concentrations of sulfate (0.4M), nitrate (0.05M) and chloride (0.3M) typically found in flue gas scrubbing liquids than their free counterparts. ?? 2011 Elsevier Ltd.

  11. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Pavel Mader

    2014-01-01

    Full Text Available Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs. Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.

  12. Carborane-Based Carbonic Anhydrase Inhibitors: Insight into CAII/CAIX Specificity from a High-Resolution Crystal Structure, Modeling, and Quantum Chemical Calculations

    Science.gov (United States)

    Mader, Pavel; Pecina, Adam; Cígler, Petr; Lepšík, Martin; Šícha, Václav; Hobza, Pavel; Grüner, Bohumír; Fanfrlík, Jindřich; Brynda, Jiří; Řezáčová, Pavlína

    2014-01-01

    Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively. PMID:25309911

  13. The impact of Carbonic Anhydrase on the partitioning of leaf and soil CO18O and COS gas exchange across scales

    Science.gov (United States)

    Wingate, L.; Wehr, R. A.; Commane, R.; Ogee, J.; Sauze, J.; Jones, S.; Launois, T.; Wohl, S.; Whelan, M.; Meredith, L. K.; Genty, B.; Gimeno, T.; Kesselmeier, J.; Bosc, A.; Cuntz, M.; Munger, J. W.; Nelson, D. D.; Saleska, S. R.; Wofsy, S. C.; Zahniser, M. S.

    2015-12-01

    Photosynthesis (GPP), the largest CO2 flux to the land surface, is currently estimated with considerable uncertainty at between 100-175 Pg C yr-1. More robust estimates of global GPP could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the oxygen isotopic composition (δ18O) of atmospheric CO2. However, quantifying GPP using these tracers hinges on a better understanding of how soil micro-organisms modify the atmospheric concentrations of CO18O and COS at large scales. In particular, understanding better the role and activity of the enzyme Carbonic Anhydrase (CA) in soil micro-organisms is critical. We present novel datasets and model simulations demonstrating the progress in the collection of multi-tracer field datasets and how a new generation of multi-tracer land surface models can provide valuable constraints on photosynthesis and respiration across scales.

  14. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum.

    Science.gov (United States)

    Liu, Zhu; Bartlow, Patrick; Dilmore, Robert M; Soong, Yee; Pan, Zhiwei; Koepsel, Richard; Ataai, Mohammad

    2009-01-01

    Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3(-) and H+. Cost-efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA-based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. PMID:19224556

  15. Muscle phosphoglycerate mutase deficiency revisited

    DEFF Research Database (Denmark)

    Naini, Ali; Toscano, Antonio; Musumeci, Olimpia;

    2009-01-01

    storage disease type X and novel mutations in the gene encoding the muscle subunit of PGAM (PGAM2). DESIGN: Clinical, pathological, biochemical, and molecular analyses. SETTING: Tertiary care university hospitals and academic institutions. Patients A 37-year-old Danish man of Pakistani origin who had...... PGAM deficiency, and molecular studies revealed 2 novel homozygous mutations, a nonsense mutation and a single nucleotide deletion. Pathological studies of muscle showed mild glycogen accumulation but prominent tubular aggregates in both patients. CONCLUSIONS: We found that glycogen storage disease...

  16. Carbonic Anhydrase IX is Not a Predictor of Outcomes in Non-Metastatic Clear Cell Renal Cell Carcinoma - A Digital Analysis of Tissue Microarray

    Directory of Open Access Journals (Sweden)

    Marcelo Zerati

    2013-07-01

    Full Text Available Introduction The knowledge about the molecular biology of clear cell renal cell carcinoma (ccRCC is evolving, and Carbonic Anhydrase type IX (CA-IX has emerged as a potential prognostic marker in this challenging disease. However, most of the literature about CA-IX on ccRCC comes from series on metastatic cancer, with a lack of series on non-metastatic cancer. The objective is to evaluate the expression of CA-IX in a cohort of non-metastatic ccRCC, correlating with 1 overall survival, and 2 with established prognostic parameters (T stage, tumor size, Fuhrman nuclear grade, microvascular invasion and peri-renal fat invasion. Materials and Methods This is a retrospective cohort study. We evaluated 95 patients with non-metastatic clear cell renal cell carcinoma, as to the expression of CA-IX. The analyzed parameters where: overall survival (OS, TNM stage, tumor size (TS, Fuhrman nuclear grade (FNG, microvascular invasion (MVI, peri-renal fat invasion (PFI. We utilized a custom built tissue microarray, and the immunoexpression was digitally quantified using the Photoshop® software. Results: Th e mean follow-up time was 7.9 years (range 1.9 to 19.5 years. The analysis of CA-IX expression against the selected prognostic parameters showed no correlation. The results are as follows: Overall survival (p = 0.790; T stage (p = 0.179; tumor size (p = 0.143; grouped Fuhrman nuclear grade (p = 0.598; microvascular invasion (p = 0.685, and peri-renal fat invasion (p = 0.104. Conclusion Carbonic anhydrase type IX expression does not correlate with overall survival and conventional prognostic parameters in non-metastatic clear cell renal cell carcinoma.

  17. Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration.

    Science.gov (United States)

    Faridi, Shazia; Satyanarayana, T

    2016-08-01

    The emissions of CO2 into the atmosphere have been constantly rising due to anthropogenic activities, which have led to global warming and climate change. Among various methods proposed for mitigating CO2 levels in the atmosphere, carbonic anhydrase (CA)-mediated carbon sequestration represents a greener and safer approach to capture and convert it into stable mineral carbonates. Despite the fact that CA is an extremely efficient metalloenzyme that catalyzes the hydration of CO2 (CO2 + H2O ↔ HCO3 (-) + H(+)) with a kcat of ∼10(6) s(-1), a thermostable, and alkalistable CA is desirable for the process to take place efficiently. The purified CA from alkaliphilic, moderately thermophilic, and halotolerant Bacillus halodurans TSLV1 (BhCA) is a homodimeric enzyme with a subunit molecular mass of ~37 kDa with stability in a broad pH range between 6.0 and 11.0. It has a moderate thermostability with a T1/2 of 24.0 ± 1.0 min at 60 °C. Based on the sensitivity of CA to specific inhibitors, BhCA is an α-CA; this has been confirmed by nucleotide/amino acid sequence analysis. This has a unique property of stimulation by SO4 (2-), and it remains unaffected by SO3 (2-), NOx, and most other components present in the flue gas. BhCA is highly efficient in accelerating the mineralization of CO2 as compared to commercial bovine carbonic anhydrase (BCA) and is also efficient in the sequestration of CO2 from the exhaust of petrol driven car, thus, a useful biocatalyst for sequestering CO2 from flue gas. PMID:27102616

  18. Significance of different carbon forms and carbonic anhydrase activity in monitoring and prediction of algal blooms in the urban section of Jialing River, Chongqing, China.

    Science.gov (United States)

    Nie, Yudong; Zhang, Zhi; Shen, Qian; Gao, Wenjin; Li, Yingfan

    2016-05-18

    The Three Gorges Dam is one of the largest hydroelectric power plants worldwide; its reservoir was preliminarily impounded in 2003 and finally impounded to 175 m in 2012. The impoundment caused some environmental problems, such as algal blooms. Carbonic anhydrase (CA) is an important biocatalyst in the carbon utilization by algae and plays an important role in algal blooms. CA has received considerable attention for its role in red tides in oceans, but less investigation has been focused on its role in algal blooms in fresh water. In this study, the seasonal variation of water quality parameters, different carbon forms, carbonic anhydrase activity (CAA), and the algal cell density of four sampling sites in the urban section of the Jialing River were investigated from November 1, 2013 to October 31, 2014. Results indicated that CAA exhibited a positive correlation with dissoluble organic carbon (DOC), pH, and temperature, but a negative correlation with CO2 and dissoluble inorganic carbon (DIC). Algal cell density exhibited a positive correlation with flow velocity (V), pH, particulate organic carbon (POC), and CAA, a negative correlation with CO2, and a negative partial correlation with DIC. The relationship between CAA and algal cell density for the entire year can be described as cells = 23.278CAA - 42.666POC + 139.547pH - 1057.106. The algal bloom prediction model for the key control period can be described as cells = -45.895CAA + 776.103V- 29.523DOC + 14.219PIC + 35.060POC + 19.181 (2 weeks in advance) and cells = 69.200CAA + 203.213V + 4.184CO2 + 38.911DOC + 40.770POC - 189.567 (4 weeks in advance). The findings in this study demonstrate that the carbon utilization by algae is conducted by CA and provide a new method of monitoring algal cell density and predicting algal blooms. PMID:27142237

  19. Anesthetic Management of a Pediatric Patient with Arginase Deficiency

    Directory of Open Access Journals (Sweden)

    Abdulkadir Atım

    2011-09-01

    Full Text Available Arginase deficiency is an autosomal recessive disorder of the urea cycle in which a defect in conversion of arginine to urea and ornithine leads to hyperammonemia. Patients with urea cycle disorders may show increased protein catabolism due to inadequate intake of energy, protein and essential amino acids; infections, fever and surgery. A 12-year-old girl with arginase deficiency, ASA II who weighed 40 kg was scheduled for bilateral adductor, quadriceps and gastrocnemius tenotomies. She had mental retardation, spasticity and flexion posture of thelower limbs. Metabolic homeostasis was restored with appropriate diet. Successful anesthetic management allowed the patient to be discharged 48 hours after surgery. Increased levels of arginine and ammonia during or after surgery may lead to serious complications such as hypotension, cerebral edema, convulsions, hypothermia and spasticity. Thus special attention must be given to metabolic homeostasis and nutrition of the patients with arginase deficiency in the perioperative period. Primary goals should be to minimize stress levels by effective anxiolysis, provide an adequate amount of protein-free energy with proper fluid management and to obtain an effective preemptive and postoperative analgesia. In addition to a high level of knowledge, successful anesthesia requires professional communication among nursing staff, dietitians, pediatric metabolism specialist, surgeon and anesthesiologist.

  20. TBscore II

    DEFF Research Database (Denmark)

    Rudolf, Frauke; Lemvik, Grethe; Abate, Ebba;

    2013-01-01

    Abstract Background: The TBscore, based on simple signs and symptoms, was introduced to predict unsuccessful outcome in tuberculosis patients on treatment. A recent inter-observer variation study showed profound variation in some variables. Further, some variables depend on a physician assessing...... them, making the score less applicable. The aim of the present study was to simplify the TBscore. Methods: Inter-observer variation assessment and exploratory factor analysis were combined to develop a simplified score, the TBscore II. To validate TBscore II we assessed the association between start...

  1. Establishing a rat model for the study of vitamin K deficiency.

    Science.gov (United States)

    Mi, Yanni; Xiao, Xue; Liu, Dongzheng; Ping, Nana; Zhu, Yanbing; Li, Bo; Long, Lihui; Cao, Yongxiao

    2016-04-01

    The main vitamin K-deficient model, minidose warfarin, is different from the pathological mechanism of vitamin K deficiency, which is a shortage of vitamin K. The objective of this study was to establish a new method of vitamin K-deficient model combining a vitamin K-deficient diet with the intragastrical administration of gentamicin in rats. The clotting was assayed by an automated coagulation analyser. The plasma PIVKA-II was assayed by ELISA. The vitamin K status was detected by an HPLC-fluorescence system. In the diet- and gentamicin-induced vitamin K-deficient 14-day group, the rats had undetected vitamin K1 and vitamin K2 in the liver and a prolonged APTT. In the 21-day group, there was also a prolonged PT and a decrease of the FIX activities. In the 28-day group, the undetected vitamin K1 and vitamin K2, the prolonged PT and APTT, and the decrease of the FII, FVII, FIX, and FX activities prompted the suggestion that there were serious deficiencies of vitamin K and vitamin K-dependent coagulation in rats. It is suggested that the diet- and gentamicin-induced vitamin K-deficient 14-day or 21-day model can be used for studies related to the status of vitamin K. The vitamin K-deficient 28-day model can be applied to research involving both the status of vitamin K and of vitamin K-dependent coagulation. In conclusion, the combination of a vitamin K-deficient diet with the administration of gentamicin results in a useful model of vitamin K-deficieny.

  2. Establishing a rat model for the study of vitamin K deficiency.

    Science.gov (United States)

    Mi, Yanni; Xiao, Xue; Liu, Dongzheng; Ping, Nana; Zhu, Yanbing; Li, Bo; Long, Lihui; Cao, Yongxiao

    2016-04-01

    The main vitamin K-deficient model, minidose warfarin, is different from the pathological mechanism of vitamin K deficiency, which is a shortage of vitamin K. The objective of this study was to establish a new method of vitamin K-deficient model combining a vitamin K-deficient diet with the intragastrical administration of gentamicin in rats. The clotting was assayed by an automated coagulation analyser. The plasma PIVKA-II was assayed by ELISA. The vitamin K status was detected by an HPLC-fluorescence system. In the diet- and gentamicin-induced vitamin K-deficient 14-day group, the rats had undetected vitamin K1 and vitamin K2 in the liver and a prolonged APTT. In the 21-day group, there was also a prolonged PT and a decrease of the FIX activities. In the 28-day group, the undetected vitamin K1 and vitamin K2, the prolonged PT and APTT, and the decrease of the FII, FVII, FIX, and FX activities prompted the suggestion that there were serious deficiencies of vitamin K and vitamin K-dependent coagulation in rats. It is suggested that the diet- and gentamicin-induced vitamin K-deficient 14-day or 21-day model can be used for studies related to the status of vitamin K. The vitamin K-deficient 28-day model can be applied to research involving both the status of vitamin K and of vitamin K-dependent coagulation. In conclusion, the combination of a vitamin K-deficient diet with the administration of gentamicin results in a useful model of vitamin K-deficieny. PMID:27256579

  3. Vitamin D deficiency and stroke

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Vitamin D comprises a group of fat-soluble pro-hormones, obtained from sun exposure, food, and supplements, and it must undergo two hydroxylation reactions to be activated in the body. Several studies have shown the role of vitamin D in mineral metabolism regulation, especially calcium, phosphorus, and bone metabolism. Some factors such as inadequate vitamin intake and liver or kidney disorders can lead to vitamin D deficiency. Furthermore, vitamin D malnutrition may also be linked to susceptibility to chronic diseases such as heart failure, peripheral artery disease, high blood pressure, cognitive impairment including foggy brain and memory loss, and autoimmune diseases including diabetes type I. Recent research has revealed that low levels of vitamin D increase the risk of cardiovascular-related morbidity (Sato et al., 2004 and mortality (Pilz et al., 2008. Also, hypertension contributes to a reduction in bone mineral density and increase in the incidence of stroke and death. This article reviews the function and physiology of vitamin D and examines the effects of vitamin D deficiency on susceptibility to stroke, as a cardiovascular event, and its morbidity and subsequent mortality.

  4. Multispectral Analysis of Color Vision Deficiency Tests

    OpenAIRE

    Sergejs FOMINS; Ozolinsh, Maris

    2011-01-01

    Color deficiency tests are usually produced by means of polygraphy technologies and help to diagnose the type and severity of the color deficiencies. Due to different factors, as lighting conditions or age of the test, standard characteristics of these tests fail, thus not allowing diagnosing unambiguously the degree of different color deficiency. Multispectral camera was used to acquire the spectral images of the Ishihara and Rabkin pseudoisochromatic plates in the visible spectrum. Spectral...

  5. Prevalence of Color Vision Deficiency in Qazvin

    OpenAIRE

    Mohammad khalaj; Ameneh Barikani; Mozhgan Mohammadi

    2014-01-01

    Background: Color vision deficiency (CVD) is an X chromosome-linked recessive autosomal dominant. Determine the prevalence of color blindness in Qazvin population. Materials and Methods: In a cross sectional study color vision deficiency examined in 1853 individuals with age 10-25 years old who participated in private clinics and eye clinic of Bu-Ali hospital in Qazvin in 2010. The screening of color vision deficiency was performed using Ishihara test. Data were analyzed by SPSS-16 with χP...

  6. Vitamin B12 deficiency and depression

    OpenAIRE

    Milanlıoğlu, Aysel

    2011-01-01

    Vitamin B12 deficiency may cause psychiatric manifestations preceding the hematological and neurological symptoms. Despite a variety of symptoms, data on the role of vitamin B12 deficiency in depression are sparse. We report a case with B12 deficiency that is diagnosed with psychotic depression and treated successively with vitamin B12 replacement instead of using conventional therapy. Future investigations should focus on the role of vitamin B12 status in depression and other neurops...

  7. Atypical B12 Deficiency with Nonresolving Paraesthesia

    OpenAIRE

    Haider, S.; Ahmad, N; Anaissie, E J; Abdel Karim, N.

    2013-01-01

    Vitamin B12 deficiency can present with various hematological, gastrointestinal and neurological manifestations. We report a case of elderly female who presented with neuropathy and vitamin B12 deficiency where the final work-up revealed polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS). This case suggests that, although POEMS syndrome is a rare entity, it can present with vitamin-B12 deficiency and thus specific work up for early diagnosis of P...

  8. Vitamin D Deficiency in Early Pregnancy

    OpenAIRE

    Flood-Nichols, Shannon K.; Tinnemore, Deborah; Huang, Raywin R.; Napolitano, Peter G.; Ippolito, Danielle L.

    2015-01-01

    Objective Vitamin D deficiency is a common problem in reproductive-aged women in the United States. The effect of vitamin D deficiency in pregnancy is unknown, but has been associated with adverse pregnancy outcomes. The objective of this study was to analyze the relationship between vitamin D deficiency in the first trimester and subsequent clinical outcomes. Study Design This is a retrospective cohort study. Plasma was collected in the first trimester from 310 nulliparous women with singlet...

  9. Vitamin D Deficiency in Children and Adolescents

    OpenAIRE

    Andıran, Nesibe; Çelik, Nurullah; AKÇA, Halise; Doğan, Güzide

    2012-01-01

    Objective Vitamin D deficiency is an important health problem in both developed and developing countries. Recent reports on the extraskeletal effects of vitamin D have led to increased interest in prevalence studies on states of deficiency/insufficiency of vitamin D. The aim of this study was to determine the frequency of vitamin D deficiency and insufficiency in children and adolescents residing in Ankara, Turkey and to investigate the factors associated with low vitamin D status. Methods: A...

  10. Characterization of the responses of cork oak (Quercus suber) to iron deficiency.

    Science.gov (United States)

    Gogorcena, Y; Molias, N; Larbi, A; Abadía, J; Abadía, A

    2001-12-01

    We studied responses of cork oak (Quercus suber L.) to iron (Fe) deficiency by comparing seedlings grown hydroponically in nutrient solution with and without Fe. Seedlings grown without Fe developed some responses typical of the Strategy I group of Fe-efficient plants, including two- and fourfold increases in plasma membrane ferric chelate reductase activity of root tips after 2 and 4 weeks of culture in the absence of Fe, respectively. Moreover, seedlings grown hydroponically for 2 weeks without Fe caused marked decreases in the pH of the nutrient solution, indicating that root plasma membrane ATPase activity was induced by Fe deficiency. Iron deficiency also caused marked decreases in leaf chlorophyll and carotenoid concentrations, and chlorophyll concentrations were decreased more than carotenoid concentrations. Iron deficiency resulted in an 8% decrease in the dark-adapted efficiency of photosystem II and a 43% decrease in efficiency of photosystem II at steady-state photosynthesis. No major root morphological changes were observed in seedlings grown without Fe, although seedlings grown in Fe-deficient nutrient solution had light-colored roots in contrast to the dark brown color of control roots.

  11. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth, and...

  12. Vitamin C deficiency in weanling guinea pigs

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Trueba, Gilberto Perez; Poulsen, Henrik E.;

    2007-01-01

    Neonates are particularly susceptible to malnutrition due to their limited reserves of micronutrients and their rapid growth. In the present study, we examined the effect of vitamin C deficiency on markers of oxidative stress in plasma, liver and brain of weanling guinea pigs. Vitamin C deficiency...... increased, while protein oxidation decreased (P¼0003). The results show that the selective preservation of brain ascorbate and induction of DNA repair in vitamin C-deficient weanling guinea pigs is not sufficient to prevent oxidative damage. Vitamin C deficiency may therefore be particularly adverse during...

  13. Genetics Home Reference: common variable immune deficiency

    Science.gov (United States)

    ... 2 links) National Institute of Allergy and Infectious Diseases: Immune System National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases Educational Resources (8 links) Boston Children's ...

  14. Formation of Rhamnogalacturonan II-Borate Dimer in Pectin Determines Cell Wall Thickness of Pumpkin Tissue1

    Science.gov (United States)

    Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko

    2001-01-01

    Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567

  15. Deficient approaches to human neuroimaging

    DEFF Research Database (Denmark)

    Stelzer, Johannes; Lohmann, Gabriele; Mueller, Karsten;

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is the workhorse of imaging-based human cognitive neuroscience. The use of fMRI is ever-increasing; within the last 4 years more fMRI studies have been published than in the previous 17 years. This large body of research has mainly focused...... of the major conceptual and practical deficiencies in widely used brain-mapping approaches, and exemplify some of these issues by the use of imaging data and simulations. In particular, we discuss the inherent pitfalls and shortcomings of methodologies for statistical parametric mapping. Our critique...... emphasizes recent reports of excessively high numbers of both false positive and false negative findings in fMRI brain mapping. We outline our view regarding the broader scientific implications of these methodological considerations and briefly discuss possible solutions....

  16. B12 Deficiency with Children

    Directory of Open Access Journals (Sweden)

    Selahattin Katar

    2007-01-01

    Full Text Available Aim of the study: to rewieved the clinical and laboratory properties of seven cases with megaloblastic anemia. Clinical and laboratory findings of seven cases with megaloblastic anemia are described. İt is determined that all of the patients received little or no animal products by nutritional history. Clinically apatite, malasia, headeche, otism, and parestheia in the lower extremities and foods were present in patients. On physical examination; four patients had glossit, four had hyporeflexia, one had ataxia. Folat level was normal and B12 vitamin level was low in all patients. The MCV (mean corpuscular volume was normal in three patients. Hypersegmentation of neutrophil was observed in all patients, leukopenia in two, and trombocytopenia was observed in one patient.Conclusion: it is suggested B12 vitamin deficiency in the patients that received little or no animal products by nutritional history. However, hypersegmentation of neutrophil in peripheral blood sample is an important finding for diagnosis of megaloblastic anemia.

  17. [Iron deficiency in the elderly].

    Science.gov (United States)

    Helsen, Tuur; Joosten, Etienne

    2016-06-01

    Anemia is a common diagnosis in the geriatric population, especially in institutionalized and hospitalized elderly. Most common etiologies for anemia in elderly people admitted to a geriatric ward are iron-deficiency anemia and anemia associated with chronic disease.Determination of serum ferritin is the most used assay in the differential diagnosis, despite low sensitivity and moderate specificity. New insights into iron homeostasis lead to new diagnostic assays such as serum hepcidin, serum transferrin receptor and reticulocyte hemoglobin equivalent.Importance of proper diagnosis and treatment for this population is large since there is a correlation between anemia and morbidity - mortality. Anemia is usually defined as hemoglobin less than 12 g/dl for women and less than 13 g/dl for men. There is no consensus for which hemoglobinvalue an investigation into underlying pathology is obligatory. This needs to be evaluated depending on functional condition of the patient. PMID:27106490

  18. Biological Systems of Vitamin K: A Plasma Nutriproteomics Study of Subclinical Vitamin K Deficiency in 500 Nepalese Children

    OpenAIRE

    Lee, Sun Eun; Schulze, Kerry J.; Robert N Cole; Wu, Lee S.F.; Yager, James D.; Groopman, John; Christian, Parul; West, Keith P

    2016-01-01

    Abstract Vitamin K (VK) is a fat-soluble vitamin whose deficiency disrupts coagulation and may disturb bone and cardiovascular health. However, the scale and systems affected by VK deficiency in pediatric populations remains unclear. We conducted a study of the plasma proteome of 500 Nepalese children 6–8 years of age (male/female ratio = 0.99) to identify proteins associated with VK status. We measured the concentrations of plasma lipids and protein induced by VK absence-II (PIVKA-II) and co...

  19. Vitamin A deficiency causes oxidative damage to liver mitochondria in rats.

    Science.gov (United States)

    Barber, T; Borrás, E; Torres, L; García, C; Cabezuelo, F; Lloret, A; Pallardó, F V; Viña, J R

    2000-07-01

    Mitochondrial damage in rat liver induced by chronic vitamin A-deficiency was studied using three different groups of rats: (i) control rats, (ii) rats fed a vitamin A-free diet until 50 d after birth and (iii) vitamin A-deficient rats re-fed a control diet for 30 d. No statistical difference in body weight and food intake was found between control and vitamin A-deficient rats. Liver GSH concentration was similar in both groups. However, in vitamin A-deficient rats, the mitochondrial GSH/GSSG ratio was significantly lower and the levels of malondialdehyde (MDA) and 8-oxo-7, 8-dihydro-2'-deoxyguanosine (oxo8dG) were higher when compared to control rats. These values were partially restored in re-fed rats. The mitochondrial membrane potential of vitamin A-deficient rats was significantly lower than in control rats and returned to normal levels in restored vitamin A rats. Two populations of mitochondria were found in vitamin A-deficient rats according to the composition of membrane lipids. One population showed a similar pattern to the control mitochondria and the second population had a higher membrane lipid content. This report emphasizes the protective role of vitamin A in liver mitochondria under physiological circumstances.

  20. Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae

    Directory of Open Access Journals (Sweden)

    Meizhen eLi

    2016-06-01

    Full Text Available Phosphorus (P is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-hour diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus.